Licence UE : Algèbre 1(MATH)

Examen blanc 1 - 23 Octobre 2025

Durée : on ne sait jamais

Exercice 1 Identité remarquable en action.

Montrer que pour tout $x \in \mathbb{R}$:

$$\left| \frac{2x}{x^2 + 1} \right| \leqslant 1.$$

Exercice 2 Sommes.

1. Calculer

$$\sum_{k=0}^{2025} \cos(\frac{k\pi}{4}).$$

2. Exprimer ses sommes en fonction de n:

a)
$$\sum_{k=0}^{n} (2k+1)$$
, b) $\sum_{k=2}^{n} \left(\frac{1}{(k+1)^2} - \frac{1}{(k-1)^2} \right)$ c) $\sum_{k=1}^{n} \frac{1}{k(k+3)}$,

Indication pour $\mathbf{2}c)$: trouver a et b tel que $\frac{1}{k(k+3)} = \frac{a}{k} + \frac{b}{(k+3)}$.

Exercice 3 Binôme de Newton.

Soit $n \in \mathbb{N}, n \ge 1$.

1. Montrer que pour tout $k = \{0, 1, \dots, n-1, n\}$, on a

$$\left(\begin{array}{c} n \\ k \end{array}\right) = \left(\begin{array}{c} n \\ n-k \end{array}\right).$$

2. Montrer que pour tout $k = \{0, 1, \dots, n-1\}$, on a

$$\left(\begin{array}{c} 2n \\ k \end{array}\right) < \left(\begin{array}{c} 2n \\ n \end{array}\right).$$

3. Déduire de ce qui préceéde que pour tout $k = \{0, 1, \dots 2n\}$ on a

$$\left(\begin{array}{c} 2n \\ k \end{array}\right) \leqslant \left(\begin{array}{c} 2n \\ n \end{array}\right).$$

4. Trouver la valeur de la somme en fonction de n:

$$\sum_{k=0}^{2n} \left(\begin{array}{c} 2n \\ k \end{array} \right).$$

5. Montrer que

$$\frac{2^{2n}}{2n+1} < \left(\begin{array}{c} 2n\\ n \end{array}\right).$$

Exercice 4 Ensembles.

Soient A, B et C trois ensembles. On suppose que l'on a les deux inclusions suivantes :

$$A \cup B \subset A \cup C$$
 et $A \cap B \subset A \cap C$.

Montrer que $B \subset C$.

Exercice 5 Logique et ensembles.

Soit $f: E \to F$ une application. On considère les assertions mathématiques (P) et (Q) suivantes :

- $(P): \exists y \in F, \forall x \in E, f(x) = y$
- $(Q): \forall y \in F, \exists x \in E, f(x) = y.$
- 1. Ecrire les négations non(P) et non(Q).
- 2. Soit $f: \mathbb{R} \to \mathbb{R}_+$ définie pour tout $x \in \mathbb{R}$ par $f(x) = x^2$. Laquelle des deux assertions (P) ou (Q) est-elle vraie? Justifier.
- 3. Même question avec $f: \mathbb{R} \to \mathbb{R}$ définie pour tout $x \in \mathbb{R}$ par $f(x) = \sin(x)$.

Exercice 6 Parties du plan et logique.

Soit P_1 et P_2 les parties du plan \mathbb{R}^2 définies par :

$$P_1 = \{(x, y) \mid x + y \le 1\},\$$

$$P_2 = \{(x, y) \mid x - y \le 1\}.$$

- 1. Représenter $P_1 \cap P_2$ et $P_1 \cup P_2$ dans le plan \mathbb{R}^2 .
- 2. Comparer les ensembles suivants :

$$(P_1 \cap P_2)^c$$
, $P_1^c \cap P_2^c$, $(P_1 \cup P_2)^c$, $P_1^c \cup P_2^c$.

3. Démontrer les lois de Morgan en dressant la table de vérité :

$$\neg (P \lor Q) \equiv (\neg P) \land (\neg Q),$$

$$\neg (P \land Q) \equiv (\neg P) \lor (\neg Q),$$

(On note $\neg P$ - "non P", \vee - "ou", \wedge - "et").

Exercice 7 Quantificateurs

Soit E un ensemble et A, B deux parties de E.

Écrire, en utilisant les symboles \forall , \exists , \in , \notin , \land , \lor , les assertions suivantes :

- 1. $A \cap B \neq \emptyset$;
- 2. $A \subset B$;
- 3. $A \not\subset B$;
- 4. $A = \emptyset$.