Feuille d'exercices nº 9

CONTINUITÉ ET DÉRIVABILITÉ

Exercice 1. Soient $(a, b) \in \mathbb{R}^2$ tel que $a < b, x_0 \in]a, b[$ et $f :]a, b[\to \mathbb{R}$. On suppose que f est continue en x_0 et que $f(x_0) > 0$. Montrer qu'il existe un intervalle ouvert I inclus dans]a, b[et contenant x_0 , tel que $\forall x \in I, f(x) > 0$.

Exercice 2. Étudier la continuité des fonctions suivantes sur leur domaine de définition :

1.
$$f: [0,2] \to \mathbf{R}$$
 définie par $f(x) = \begin{cases} x^2 & \text{si } 0 \le x \le 1 \\ 2x - 1 & \text{si } 1 < x \le 2. \end{cases}$

- 2. $f: \mathbf{R} \to \mathbf{R}$ définie par $f(x) = x + \frac{\sqrt{x^2}}{x}$ si $x \neq 0$, et f(0) = 1.
- 3. $f: \mathbf{R}_+ \to \mathbf{R}$ définie par $f(x) = x E(\frac{1}{x})$ si $x \neq 0$, et f(0) = 1, où E est la fonction «partie entière».
- 4. $f: [-2,2] \to \mathbf{R}$ définie par $f(x) = x^2 \sin\left(\frac{\pi}{x}\right)$ si $x \neq 0$ et f(0) = 0.

Exercice 3.

1. Montrer que si $f: \mathbf{R} \to \mathbf{R}$ est une fonction continue telle que

$$\lim_{x \to +\infty} f(x) = +\infty \text{ et } \lim_{x \to -\infty} f(x) = -\infty,$$

alors f est surjective.

- 2. Soit $P \in \mathbf{R}[X]$ un polynôme de degré impair. Montrer que P admet une racine réelle.
- 3. Donner un exemple de polynôme à coefficients réels, de degré pair, n'admettant pas de racine réelle.

Exercice 4. Montrer qu'il existe $x \in \left[\frac{3\pi}{4}, \pi\right]$ tel que

$$\tan(x) + \frac{x}{3} = 0.$$

Exercice 5.

- 1. Soit $f:[0,1]\to \mathbf{R}$ une application continue, telle que $f[[0,1]]\subseteq [0,1]$. Montrer que f possède un point fixe.
- 2. Soit $g:[0,1] \to [0,1]$ une application. On suppose que pour tout $(x,y) \in [0,1]^2$ tels que $x \neq y$, on a |g(x) g(y)| < |x y|. Montrer que g admet un unique point fixe.

Exercice 6.

- 1. Soit $f: \mathbf{R} \to \mathbf{R}$ une fonction continue et périodique. Montrer que f possède un maximum et un minium.
- 2. Calculer

$$\lim_{x \to +\infty} \frac{\ln(x)}{x \left(\sin^8(x) + \cos^{14}(x)\right)}.$$

Exercice 7. Montrer que la fonction $f: \mathbf{R} \to \mathbf{R}, x \mapsto x^2$ n'est pas uniformément continue.

Exercice 8. Le but de cet exercice est de déterminer l'ensemble des applications $f: \mathbf{R} \to \mathbf{R}$ continues qui vérifient la condition

(*):
$$\forall (x,y) \in \mathbf{R}^2, \ f(x+y) = f(x) f(y).$$

Soit f vérifiant (*).

- 1. Montrer que : $\forall n \geq 2, \ \forall (x_1, \dots, x_n) \in \mathbf{R}^n, \ f(x_1 + \dots + x_n) = f(x_1) \cdots f(x_n).$
- 2. Quelles sont les valeurs possibles pour f(0)?
- 3. On suppose qu'il existe $x_0 \in \mathbf{R}$ tel que $f(x_0) = 0$. Que peut-on dire de f? On suppose désormais que f ne s'annule pas.
- 4. Montrer qu'il existe $\alpha \in \mathbf{R}_{+}^{\star}$ tel que pour tout $n \in \mathbf{N}$, $f(n) = \alpha^{n}$.
- 5. Montrer que : $\forall k \in \mathbf{Z}, f(k) = \alpha^k$.
- 6. Montrer que : $\forall r \in \mathbf{Q}, f(r) = \alpha^r$.
- 7. Conclure.

Exercice 9. Soit $f:[0,\infty[\to [0,\infty[$ une fonction continue telle que f(x)/x a une limite réelle $\ell \in [0,1[$ quand x tend vers ∞ . Montrer que f a un point fixe.

Exercice 10. Soit f continue sur \mathbf{R}_+ telle que, pour tout réel positif x, on ait $f(x^2) = f(x)$. Montrer que f est constante.

Exercice 11. Soit $f: \mathbf{R}_+ \to \mathbf{R}$ continue et admettant une limite réelle quand x tend vers ∞ . Montrer que f est uniformément continue sur \mathbf{R}_+ .

Exercice 12. Soit $f:[0,1] \to \mathbf{R}$ continue et vérifiant f(0) = f(1).

- 1. Soit n un entier naturel non nul et soit a = 1/n. Montrer que l'équation f(x + a) = f(x) admet au moins une solution.
- 2. Montrer (en fournissant une fonction précise) que, si a est un réel de]0,1[qui n'est pas de la forme précédente, il est possible que l'équation f(x+a)=f(x) n'ait pas de solution.