
Université Claude Bernard - Lyon 1 Semestre d’Automne 2025-2026

Cursus préparatoire : Analyse 1 et Algèbre 1 17 Décembre 2025

Devoir surveillé N°4

Durée : 1h30

Le candidat ou la candidate attachera la plus grande importance à la clarté, à la précision et à

la concision de la rédaction. Dans toutes les questions, il sera tenu le plus grand compte de la

rigueur de la rédaction ; toute réponse insuffisamment justifiée sera considérée comme nulle.

Calculatrices et notes de cours sont interdites. Le sujet est recto-verso. Le barème indiqué est

approximatif.

Exercice 1 (4 points).

1. Trouver les couples (a, b) ∈ Z solutions de l’équation 49a− 24b = 3.

2. Montrer que 754 − 923 est divisible par 11.

Solution:

1. 49 = 72 et 24 = 23 · 3 sont premiers entre eux. On a la relation de Bézout 49− 2× 24 =

1. En multipliant par 3 on trouve que (3, 6) est solution particulière de l’équation.

Considérons maintenant une autre solution (a, b). Alors

49(a− 3)− 24(b− 6) = 0.

Donc 24 divise 49(a − 3). Comme 24 et 49 sont premiers entre eux, on a donc 24 qui

divise a − 3. Il existe donc k ∈ Z tel que a = 24k + 3. En réinjectant dans l’équation

précédente, on en déduit que b = 49k + 6. Réciproquement, tout couple de la forme

(24k + 3, 49k + 6) avec k entier est bien solution de l’équation de départ.

2. Comme 11 est premier, d’après le petit théorème de Fermat on a 710 ≡ 1 mod 11 et

910 ≡ 1 mod 11. Il s’ensuit que

754 = (710)5 · 74 ≡ 74 mod 11.

Puisque 72 = 49 ≡ 5 mod 11, on a 74 ≡ 52 ≡ 3 mod 11.

D’un autre côté, 923 = (910)2 · 93 ≡ 93 mod 11. Or 92 = 81 ≡ 4 mod 11, d’où 93 ≡
4× 9 ≡ 3 mod 11.

D’après ce qui précède, 754 − 923 ≡ 3− 3 ≡ 0 mod 11, d’où le résultat.

Exercice 2 (6 points). Soient K un corps et Q un polynôme non nul de K[X]. On rappelle que

Q est scindé sur K s’il s’écrit comme produit de polynômes de degré 1 à coefficients dans K.



Soit P un polynôme de R[X] de degré n ≥ 1, scindé sur R, possédant r racines réelles distinctes

α1 < · · · < αr. On note mi la multiplicité de αi pour i = 1, . . . , r et λ le coefficient dominant de

P , de sorte que

P (X) = λ(X − α1)
m1 · · · (X − αr)

mr .

1. Montrer que si α est racine de P de multiplicité m > 1, alors α est racine de P ′ de

multiplicité m− 1 (refaire la démonstration du cours).

2. On suppose dans cette question uniquement que P est simplement scindé, c’est-à-dire que

mi = 1 pour i = 1, . . . , r. Montrer que P ′ est aussi simplement scindé sur R.

3. Déduire de 1. et de la preuve de 2. que P ′ est scindé sur R dans le cas général.

4. Déduire de la question précédente que le polynôme P 2 + 1 est simplement scindé sur C.

Solution:

1. D’après le cours, α est racine d’ordre m si et seulement si P (α) = P ′(α) = · · · =

P (m−1)(α) = 0 et P (m)(α) ̸= 0. En posant Q = P ′, on a Q(k) = P (k+1) pour tout entier

k ≥ 0. Il s’ensuit que Q(α) = · · · = Q(m−2)(α) = 0 et Q(m−1)(α) ̸= 0. D’où le résultat.

Deuxième preuve. Par définition, α est racine d’ordre m de P si et seulement si il existe

un polynôme Q ∈ R[X] tel que P (X) = (X − α)mQ(X) avec Q(α) ̸= 0. En dérivant et

en factorisant par (X − α)m−1, on obtient

P ′(X) = (X − α)m−1R(X), où on a posé R(X) = mQ(X) + (X − α)Q′(X).

Comme on a R(α) = mQ(α) ̸= 0, on a bien α racine d’ordre m− 1 de P ′.

2. Remarque : d’une manière générale, n = m1 + · · · + mr. Ici, on a donc n = r. Soit

i ∈ {1, . . . , n− 1}. La fonction polynomiale associée à P est continue / dérivable sur R,
en particulier elle l’est aussi sur le segment [αi, αi+1]. Par ailleurs P (αi) = P (αi+1) = 0.

D’après le théorème de Rolle, il existe ci ∈]αi, αi+1[ tel que P ′(ci) = 0. On a donc

trouvé n−1 racines réelles distinctes de P ′, à savoir c1 < · · · < cn−1. Comme P ′ a degré

n− 1 ≥ 0, ce sont toutes les racines de P dans C, et on en déduit que P ′ est scindé sur

R.

3. Cas général. Rappelons que P a degré n = m1 + · · · + mr. D’après la question 1., si

mi > 1 alors αi est racine d’ordre mi − 1 de P ′ pour i = 1, . . . , r. Cela donne

(m1 − 1) + · · ·+ (mr − 1) = m1 + · · ·+mr − r = n− r

racines réelles de P ′ comptées avec multiplicité. D’un autre côté, la preuve de la question

précédente montre que P ′ possède (au moins) une racine réelle dans chaque intervalle

]αi, αi+1[. Cela donne r − 1 racines réelles supplémentaires distinctes des précédentes.

Donc P ′ possède au moins n−r+r−1 = n−1 racines réelles comptées avec multiplicité.

Comme P ′ a degré n − 1 ≥ 0, ce sont toutes les racines de P ′ (dans C). Donc P ′ est

scindé dans R.
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4. On pose Q = P 2+1. D’après le théorème fondamental de l’algèbre, Q est scindé sur C.
D’après la question 1., Q est simplement scindé si Q et Q′ n’ont pas de racine commune.

Or Q′ = 2P ′P , qui est scindé sur R puisque P et P ′ le sont. Donc toutes les racines de

Q′ sont réelles. D’un autre côté, le polynôme Q ne possède aucune racine réelle (pour

tout x ∈ R, on a Q(x) ≥ 1). Donc Q et Q′ n’ont pas de racine commune.

Exercice 3 (7 points). On dit que (x, y, z) est un triplet de Markov si x, y, z sont des entiers ≥ 1

satisfaisant l’équation de Markov

x2 + y2 + z2 = 3xyz.

1. Déterminez tous les triplets de Markov de la forme (x, x, x).

2. Montrez qu’il n’y a pas de triplet de Markov de la forme (x, z, z) avec x < z.

3. Supposons maintenant que (x, x, z) est un triplet de Markov avec x < z.

(a) Montrez que x2 divise z2, puis que x divise z (on justifiera).

(b) Écrivons z = kx avec k ∈ N. Déterminez les valeurs possibles pour k, puis en déduire

l’ensemble des triplets de Markov de la forme (x, x, z) avec x < z.

4. On définit la fonction T par la formule

T (x, y, z) = (x, y, 3xy − z).

On rappelle que la suite de Fibonacci (Fn)n≥0 est définie par (F0, F1) = (0, 1) et par la

relation de récurrence

Fn+2 = Fn+1 + Fn (n ≥ 0).

(a) Montrez que si (x, y, z) est un triplet de Markov, alors T (x, y, z) vérifie l’équation de

Markov.

(b) Étant donné un entier n ≥ 1, on note Mn = (1, F2n−1, F2n+1). Montrez que Mn+1 =

T (1, F2n+1, F2n−1).

(c) Prouvez que Mn est un triplet de Markov pour tout entier n ≥ 1.

Solution:

1. On tombe sur l’équation 3x2 = 3x3. Après simplification (x ̸= 0) cela donne x = 1.

2. Par l’absurde, supposons que (x, z, z) est un triplet de Markov, avec x < z. Alors on

doit avoir x2+2z2 = 3xz2. Donc x2 = z2(3x−2). Or le membre de droite est clairement

> x2 (puisque 3x− 2 ≥ 1) : absurde.

3. Supposons maintenant que (x, x, z) est un triplet de Markov avec x < z.

(a) On déduit de l’équation de Markov que 2x2 + z2 = 3x2z, ce qu’on réécrit z2 =

x2(3z − 2). On a donc x2 qui divise z2. On a vu en TD que cela impliquait que

x divise z. Il suffit d’écrire x =
∏s

i=1 p
αi
i et z =

∏s
i=1 p

βi

i , avec p1, . . . , ps nombres

premiers deux à deux distincts et αi, βi ∈ N (éventuellement nuls). On a alors
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x2 =
∏

p2αi
i et z2 =

∏
p2βi

i . La condition x2 | z2 implique que 2αi ≤ 2βi, donc

αi ≤ βi, donc x | z...

(b) Écrivons z = kx avec k ∈ N. Comme x, z ≥ 1 par hypothèse, on a k ≥ 1, et même

k ≥ 2 puisque z > x. On déduit de z2 = x2(3z − 2) que k2 = 3kx − 2, ce qu’on

réécrit k(3x − k) = 2. On a donc k qui divise 2, donc k = 2, et on doit avoir

3x− k = 1, ce qui impose x = 1. Donc (x, x, z) = (1, 1, 2) est l’unique solution.

4. On définit la fonction T par la formule

T (x, y, z) = (x, y, 3xy − z).

On rappelle que la suite de Fibonacci (Fn)n≥0 est définie par (F0, F1) = (0, 1) et par la

relation de récurrence

Fn+2 = Fn+1 + Fn (n ≥ 0).

(a) Supposons que (x, y, z) est un triplet de Markov, donc x2+yx+z2 = 3xyz. Vérifions

que T (x, y, z) = (a, b, c) vérifie l’équation de Markov. On a

a2 + b2 + c2 = x2 + y2 + (3xy − z)2 = x2 + y2 + z2 + 9x2y2 − 6xyz

= 9x2y2 − 3xyz

= 3xy(3xy − z) = 3abc.

Donc T (x, y, z) vérifie l’équation de Markov.

(b) Il s’agit de montrer la relation F2n+3 = 3F2n+1 − F2n−1. Or on a

F2n+3 = F2n+2 + F2n+1 = (F2n+1 + F2n) + F2n+1,

et on conclut en écrivant F2n = F2n+1 − F2n−1.

(c) On procède par récurrence sur n. Pour n = 1 on a M1 = (1, F1, F3) = (1, 1, 2) qui

est solution. Supposons que Mn est un triplet de Markov pour un entier n ≥ 1

fixé. Alors (1, F2n+1, F2n−1) (qui est juste une permutation des coordonnées de Mn)

est aussi un triplet de Markov, et Mn+1 = T (1, F2n+1, F2n−1) vérifie l’équation de

Markov, donc est un triplet de Markov (ce sont des entiers ≥ 1).

Exercice 4 (4 points). Soit f :]0,+∞[→ R une fonction dérivable et soit ℓ un nombre réel tel que

limx→+∞ f ′(x) = ℓ. Le but de cet exercice est de montrer que

lim
x→+∞

f(x)

x
= ℓ.

1. On suppose dans cette question que ℓ = 0.

(a) Montrer que pour tout ε > 0, il existe M > 0 tel que, pour tout x ≥ M , on a∣∣∣∣f(x)x

∣∣∣∣ ≤ ∣∣∣∣f(M)

x

∣∣∣∣+ ε

2
.
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(b) En déduire le résultat dans ce cas.

2. Démontrer le résultat dans le cas général.

3. Soit g :]0,+∞[→ R une fonction dérivable telle que limx→+∞ g(x)/x = ℓ. A-t-on forcément

limx→+∞ g′(x) = ℓ ? (On justifiera soigneusement sa réponse.)

Solution:

1. (a) Soit ε > 0. Comme limx→+∞ f ′(x) = 0, il existe M > 0 tel que pour tout x ≥ M

on a |f ′(x)| ≤ ε/2. Soit x ≥ M . Le TAF sur [M,x] implique qu’il existe c ∈]M,x[

tel que f(x) = f(M) + (x−M)f ′(c). Comme |f ′(c)| ≤ ε/2, on en déduit que

|f(x)| ≤ |f(M)|+ ε|x−M | ≤ |f(M)|+ x
ε

2
.

On obtient le résultat en divisant par x.

(b) Puisque M est fixé, quand on fait tendre x vers l’infini le terme |f(M)/x| tend vers

0. Il existe donc N ≥ M tel que pour tout x ≥ N on a |f(M)|/x ≤ ε/2. D’après

ce qui précède, pour tout x ≥ N , on a |f(x)/x| ≤ ε. Donc on a bien que f(x)/x

tend vers 0 quand x tend vers l’infini.

2. On pose g(x) = f(x) − ℓx pour tout x > 0. Cette fonction vérifie les hypothèses de la

question 1., donc limx→∞ g(x)/x = 0. Comme g(x)/x = f(x)/x − ℓ, on en déduit que

limx→∞ f(x)/x = ℓ.

3. Non. Prendre par exemple g(x) = cos(x). On a limx→∞ g(x)/x = 0, mais g′(x) =

− sin(x) n’a pas de limite en +∞.
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