Université Claude Bernard - Lyon 1 Semestre d’Automne 2025-2026
Cursus préparatoire : Analyse 1 et Algebre 1 17 Décembre 2025

Devoir surveillé N°4
Durée : 1130

Le candidat ou la candidate attachera la plus grande importance a la clarté, a la précision et a
la concision de la rédaction. Dans toutes les questions, il sera tenu le plus grand compte de la
rigueur de la rédaction ; toute réponse insuffisamment justifiée sera considérée comme nulle.
Calculatrices et notes de cours sont interdites. Le sujet est recto-verso. Le baréme indiqué est

approzrimatif.

Exercice 1 (4 points).
1. Trouver les couples (a, b) € Z solutions de ’équation 49a — 24b = 3.
2. Montrer que 7°* — 923 est divisible par 11.

Solution:

1. 49 = 7% et 24 = 23 . 3 sont premiers entre eux. On a la relation de Bézout 49 — 2 x 24 =
1. En multipliant par 3 on trouve que (3,6) est solution particuliere de I’équation.

Considérons maintenant une autre solution (a, b). Alors
49(a — 3) —24(b—6) = 0.

Donc 24 divise 49(a — 3). Comme 24 et 49 sont premiers entre eux, on a donc 24 qui
divise a — 3. Il existe donc k € Z tel que a = 24k + 3. En réinjectant dans ’équation
précédente, on en déduit que b = 49k + 6. Réciproquement, tout couple de la forme
(24K + 3,49k + 6) avec k entier est bien solution de 1’équation de départ.

2. Comme 11 est premier, d’apres le petit théoréme de Fermat on a 7' = 1 mod 11 et

9 =1 mod 11. Il s’ensuit que
7= (7. 7" =7 mod 11.
Puisque 72 =49 =5 mod 11, on a 7* =52 =3 mod 11.

D’un autre coté, 9% = (919)2.93 = 9% mod 11. Or 92 = 81 = 4 mod 11, d'ott 9*
4x9=3 mod 11.

D’apres ce qui précede, 7% — 923 =3 —3 =0 mod 11, d’ot le résultat.

Exercice 2 (6 points). Soient K un corps et Q un polynome non nul de K[X]. On rappelle que
Q est scindé sur K s’il s’écrit comme produit de polynomes de degré 1 a coefficients dans K.



Soit P un polynome de R[X] de degré n > 1, scindé sur R, possédant r racines réelles distinctes
a1 < -+ < a,. On note m; la multiplicité de a; pour ¢ = 1,...,7 et A le coefficient dominant de
P, de sorte que

P(X) = AMX —a)™ (X —a,)™.

1. Montrer que si « est racine de P de multiplicité m > 1, alors « est racine de P’ de

multiplicité m — 1 (refaire la démonstration du cours).

2. On suppose dans cette question uniquement que P est simplement scindé, c’est-a-dire que

m; = 1 pour i =1,...,r. Montrer que P’ est aussi simplement scindé sur R.
3. Déduire de 1. et de la preuve de 2. que P’ est scindé sur R dans le cas général.

4. Déduire de la question précédente que le polynéme P? + 1 est simplement scindé sur C.

Solution:
1. D’apres le cours, a est racine d’ordre m si et seulement si P(a) = P'(a) = -+ =
Pm=(q) =0 et P (a) # 0. En posant @ = P', on a Q®) = P*+1) pour tout entier
k> 0. Il s’ensuit que Q(a) = --- = Q™ (a) = 0 et QU V(a) # 0. D’ou le résultat.

Deuxieme preuve. Par définition, « est racine d’ordre m de P si et seulement si il existe
un polynome @ € R[X] tel que P(X) = (X — a)"Q(X) avec Q(a) # 0. En dérivant et
en factorisant par (X — a)™ !, on obtient

P(X)= (X —a)™'R(X), otonaposé R(X)=mQ(X)+ (X —a)Q(X).

Comme on a R(a) = mQ(«) # 0, on a bien « racine d’ordre m — 1 de P’.

2. Remarque : d’une maniere générale, n = my; + --- + m,. Ici, on a donc n = r. Soit
ie{l,...,n—1}. La fonction polynomiale associée a P est continue / dérivable sur R,
en particulier elle I'est aussi sur le segment [oy;, a;41]. Par ailleurs P(«;) = P(a;41) = 0.
D’apres le théoreme de Rolle, il existe ¢; €|ay, aii1[ tel que P'(¢;) = 0. On a donc
trouvé n — 1 racines réelles distinctes de P’, a savoir ¢; < -+ - < ¢,_1. Comme P’ a degré

n—1 > 0, ce sont toutes les racines de P dans C, et on en déduit que P’ est scindé sur
R.

3. Cas général. Rappelons que P a degré n = my + --- + m,. D’apres la question 1., si
m; > 1 alors «; est racine d’ordre m; — 1 de P/ pour i = 1,...,r. Cela donne

(m—-1)+-4+m—-1)=m+--4+m —r=n-—r

racines réelles de P’ comptées avec multiplicité. D’un autre coté, la preuve de la question
précédente montre que P’ possede (au moins) une racine réelle dans chaque intervalle
|ai, a;yq]. Cela donne r — 1 racines réelles supplémentaires distinctes des précédentes.
Donc P’ possede au moins n—r+r—1 = n—1 racines réelles comptées avec multiplicité.
Comme P’ a degré n — 1 > 0, ce sont toutes les racines de P’ (dans C). Donc P’ est

scindé dans R.
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4. On pose Q = P%?+1. D’apres le théoréme fondamental de 1’algeébre, Q est scindé sur C.
D’apres la question 1., ) est simplement scindé si @ et ()’ n’ont pas de racine commune.
Or ) = 2P'P, qui est scindé sur R puisque P et P’ le sont. Donc toutes les racines de
Q' sont réelles. D’un autre coté, le polynéme @) ne posséde aucune racine réelle (pour
tout x € R, on a Q(x) > 1). Donc @ et (' n’ont pas de racine commune.

Exercice 3 (7 points). On dit que (x,y, z) est un triplet de Markov si x, y, z sont des entiers > 1
satisfaisant I’équation de Markov
o+ + 22 = 3wy
1. Déterminez tous les triplets de Markov de la forme (z,x, z).
2. Montrez qu'il n’y a pas de triplet de Markov de la forme (z, z, z) avec = < z.
3. Supposons maintenant que (x,z, z) est un triplet de Markov avec z < z.
(a) Montrez que x? divise 22, puis que x divise z (on justifiera).

(b) Ecrivons z = kxz avec k € N. Déterminez les valeurs possibles pour k, puis en déduire
I'ensemble des triplets de Markov de la forme (z,x, z) avec = < z.

4. On définit la fonction T par la formule

T(x,y,z) = (z,y,3xy — 2).

On rappelle que la suite de Fibonacci (F,),>o est définie par (Fy, F1) = (0,1) et par la
relation de récurrence

Fn+2 = Fn+1 + Fn (n Z 0)

(a) Montrez que si (x,y, z) est un triplet de Markov, alors T'(x,y, z) vérifie '’équation de
Markov.

(b) Etant donné un entier n > 1, on note M,, = (1, Fy,_1, Fo,11). Montrez que M, 1 =
T(17 F2n+1> F2n—1)'

(¢) Prouvez que M, est un triplet de Markov pour tout entier n > 1.

Solution:
1. On tombe sur I'équation 3z? = 3x3. Apres simplification (z # 0) cela donne x = 1.

2. Par l'absurde, supposons que (z, z, z) est un triplet de Markov, avec x < z. Alors on
doit avoir z* +22% = 3z2% Donc 22 = 2%(3x —2). Or le membre de droite est clairement
> 2% (puisque 3z — 2 > 1) : absurde.

3. Supposons maintenant que (x, z, z) est un triplet de Markov avec z < z.

(a) On déduit de I'équation de Markov que 2x? + 22 = 3z%z, ce qu'on réécrit 2?2 =
7%(3z — 2). On a donc 22 qui divise 22. On a vu en TD que cela impliquait que
z divise z. Il suffit d’écrire x = [[_, pi* et 2z = Hlepfi, avec pi, ..., ps nombres

premiers deux a deux distincts et «;, 8; € N (éventuellement nuls). On a alors
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2?2 = [[p> et 22 = [[p?. La condition 22 | 2% implique que 2, < 28;, donc
a; < B, donc x| z...

(b) Ecrivons z = kz avec k € N. Comme z, z > 1 par hypothese, on a k > 1, et méme
k > 2 puisque z > x. On déduit de 2% = 2%(3z — 2) que k* = 3kz — 2, ce qu’on
réécrit k(3x — k) = 2. On a donc k qui divise 2, donc k = 2, et on doit avoir
3z — k=1, ce qui impose = = 1. Donc (z,z,2) = (1,1, 2) est 'unique solution.

4. On définit la fonction T" par la formule
T(x,y,z) = (z,y,3xy — 2).

On rappelle que la suite de Fibonacci (F},),>0 est définie par (Fo, F1) = (0,1) et par la
relation de récurrence
Fn+2 = Fn+1 + Fn (n Z 0)

(a) Supposons que (x, vy, z) est un triplet de Markov, donc x2+y*+2? = 3xyz. Vérifions
que T'(x,y,z) = (a,b,c) vérifie I'équation de Markov. On a

a> + 0+ =2+ + By — 2)? =22 + 4+ 22 + 92%y® — 6ayz
= 92%y* — 3zyz
= 3zy(3zy — z) = 3abc.

Donc T'(x,y, z) vérifie '’équation de Markov.

(b) Il s’agit de montrer la relation Fy,, 3 = 3F5,+1 — Fo,—1. Or on a
Fopis = Fopio + Foni1 = (Fopg1 + Fop) + Fongr,

et on conclut en écrivant Fy, = Fo,11 — Fo, 1.

(¢) On procede par récurrence sur n. Pour n =1 on a My = (1, Fy, F3) = (1,1,2) qui
est solution. Supposons que M, est un triplet de Markov pour un entier n > 1
fixé. Alors (1, Fopi1, Fon_1) (qui est juste une permutation des coordonnées de M,,)
est aussi un triplet de Markov, et M, 1 = T'(1, Fopy1, Fon—1) vérifie 'équation de
Markov, donc est un triplet de Markov (ce sont des entiers > 1).

Exercice 4 (4 points). Soit f :]0, +oo[— R une fonction dérivable et soit ¢ un nombre réel tel que

lim, , o f'(xz) = {. Le but de cet exercice est de montrer que
lim @ = /.
r—+oo I

1. On suppose dans cette question que ¢ = 0.
(a) Montrer que pour tout € > 0, il existe M > 0 tel que, pour tout x > M, on a
‘f(w) < ‘f(M)‘ L
T | T 2
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(b) En déduire le résultat dans ce cas.
2. Démontrer le résultat dans le cas général.

3. Soit ¢ :]0, +00[— R une fonction dérivable telle que lim, . g(z)/z = ¢. A-t-on forcément

lim, 100 ¢'(x) = £7 (On justifiera soigneusement sa réponse.)

Solution:
1. (a) Soit € > 0. Comme lim, o f'(z) = 0, il existe M > 0 tel que pour tout > M
on a |f'(z)| <e/2. Soit © > M. Le TAF sur [M, z] implique qu'il existe ¢ €M, z|
tel que f(x) = f(M) + (x — M) f'(c). Comme |f'(c)| < &/2, on en déduit que

f(@)] < |f(M)] + el — M| < |f(M)| +3:§.

On obtient le résultat en divisant par x.

(b) Puisque M est fixé, quand on fait tendre x vers I'infini le terme |f (M) /x| tend vers
0. II existe donc N > M tel que pour tout x > N on a |f(M)|/x < /2. D’apres
ce qui précede, pour tout x > N, on a |f(x)/x| < e. Donc on a bien que f(z)/z

tend vers 0 quand z tend vers 'infini.

2. On pose g(z) = f(x) — £z pour tout = > 0. Cette fonction vérifie les hypotheses de la
question 1., donc lim, o, g(x)/z = 0. Comme g(z)/x = f(z)/x — ¢, on en déduit que
lim, o, f(z)/z =¢.

3. Non. Prendre par exemple g(x) = cos(z). On a lim, .. g(z)/z = 0, mais ¢'(z) =

—sin(x) n’a pas de limite en +o00.

Page 5




