Mathématiques - DS n°2

Partie CUPGE Corrigé

Exercice 1:

1. Est-ce que les énoncés suivants sont équivalents :

$$P \to (Q \leftrightarrow R)$$
 et $(P \to Q) \leftrightarrow (P \to R)$.

2. Donner la négation de l'énoncé suivant, où f est une fonction réelle :

$$\exists x \ \forall y > 0 \ \exists z > 0 \ \forall u \ (|u| < z \rightarrow |f(u) - x| < y).$$

Que signifie cet énoncé?

Solution.

1.

P	Q	R	$Q \leftrightarrow R$	$P \to (Q \leftrightarrow R)$	$P \rightarrow Q$	$P \rightarrow R$	$(P \to Q) \leftrightarrow (P \to R)$
\overline{V}	V	V	V	V	V	V	V
V	V	F	F	F	V	F	F
V	F	V	F	F	F	V	F
V	F	F	V	V	F	F	V
F	V	V	V	V	V	V	V
F	V	F	F	V	V	V	V
F	F	V	F	V	V	V	V
F	F	F	V	V	V	V	V

La 5me et la dernière colonne sont égales. les deux propositions sont donc équivalentes.

2. La négation est

$$\forall x \exists y > 0 \ \forall z > 0 \ \exists u \ (|u| < z \land |f(u) - x| > y).$$

L'énoncé (original) signifie que f est continue en 0.

Exercice 2: Soit $f: X \to Y$ une application.

- 1. Montrer que f est injective ssi pour tout $X' \subseteq X$ on a $f^{-1}[f[X']] = X'$.
- 2. Montrer que f est surjective ssi pour tout $Y' \subseteq Y$ on a $f[f^{-1}[Y']] = Y'$.

Solution.

- 1. Soit f injective, et $X' \subseteq X$. Si $x \in X'$, alors $f(x) \in f[X']$ et $x \in f^{-1}[f[X']]$. Donc $X' \subseteq f^{-1}[f[X']]$. Inversement, soit $x \in f^{-1}[f[X']]$. Alors $f(x) \in f[X']$, et il y a $y \in X'$ avec f(x) = f(y). Par injectivité, $x = y \in X'$. Donc $f^{-1}[f[X']] \subseteq X'$, et on a égalité.
 - Réciproquement, supposons $f^{-1}[f[X']] = X'$ pour tout $X' \subseteq X$, et considérons $x, y \in X$ avec f(x) = f(y). On pose $X' = \{y\}$. Alors $x \in f^{-1}[f[X']] = X' = \{y\}$, ce qui donne x = y. Ainsi f est injective.
- 2. Soit f surjective, et $Y' \subseteq Y$. Si $y \in f[f^{-1}[Y']]$, alors y = f(x) pour un $x \in f^{-1}[Y']$, ce qui implique $y = f(x) \in Y'$ et $f[f^{-1}[Y']] \subseteq Y'$. Inversement, soit $y \in Y'$. Comme f est surjective, il y a $x \in X$ avec f(x) = y', et $x \in f^{-1}[Y']$. Alors $y = f(x) \in f[f^{-1}[Y']]$. Donc $Y' \subseteq f[f^{-1}[Y']]$, et on a égalité. Réciproquement, supposons $f[f^{-1}[Y']] = Y'$ pour tout $Y' \subseteq Y$. En prenant Y' = Y on a im $f \supseteq f[f^{-1}[Y]] = Y$, et f est surjective.

Exercice 3: Soit R une relation symétrique sur un ensemble non-vide X telle que pour tout $x \in X$ il y a $x' \in X$ avec xRx'. On définit la relation E sur X par

$$xEx'$$
 ssi $\exists n \in \mathbb{N}^* \exists x_0, \dots, x_n \in X \ (x = x_0 \land x' = x_n \land \bigwedge_{i=1}^n x_{i-1}Rx_i).$

Montrer que E est une relation d'équivalence.

Solution. Soit $x \in X$. Par hypothèse il y a $x' \in X$ avec xRx', et donc x'Rx puisque R est symétrique. Ainsi x, x', x témoigne que xEx, et E est réflexif.

Soient $x, x' \in X$ avec xEx'. Donc il y a $x = x_0, \ldots, x_n = x' \in X$ tel que $x_{i-1}Rx_i$ pour $i = 1, \ldots, n$. Par symétrie de R on a x_iRx_{i-1} , et la suite $x' = x_n, x_{n-1}, \ldots, x_0 = x$ témoigne que x'Ex. Ainsi E est symétrique.

Soient $x, x', x'' \in X$ avec xEx' et x'Ex''. Donc il y a $x = x_0, \ldots, x_n = x' \in X$ et $x' = x'_0, \ldots, x'_k = x'' \in X$ avec $x_{i-1}Rx_i$ pour $i = 1, \ldots, n$ et $x'_{i-1}Rx'_i$ pour $i = 1, \ldots, k$. Alors la suite $x = x_0, x_1, \ldots, x_n = x'_0, x'_1, \ldots, x'_k = x''$ témoigne que xEx''. Ainsi E est transitive.

Il en suit que E est une relation d'équivalence.

Exercice 4 : Soient K, L, M des corps ordonnés avec $K \subseteq L \subseteq M$.

- 1. (a) Donner la définition qu'une partie $X \subseteq K$ est dense dans K.
 - (b) Montrer que si K est dense dans M, alors K est dense dans L et L est dense dans M.
 - (c) Montrer que si K est dense dans L et L est dense dans M, alors K est dense dans M.
- 2. (a) Donner la définition que K est archimédien.
 - (b) Montrer que si L est archimédien, alors K est archimédien.

Solution.

- 1. (a) X est dense dans K si $X \cap [a, b] \neq \emptyset$ pour tout a < b dans K.
 - (b) Soit K dense dans M, et a < b dans L. Alors $a, b \in M$, et il y a $x \in K$ avec $a \le x \le b$ par densité de K dans M. Ainsi K est dense dans L. Pour la deuxième partie, si a < b dans M, puisque K est dense dans M et $K \subseteq L$ on a $\emptyset \ne K \cap [a,b] \subseteq L \cap [a,b]$. Ainsi L est dense dans M.
 - (c) Soit K dense dans L et L dense dans M. Considérons a < b dans M. Alors $a < \frac{2a+b}{3} < \frac{a+2b}{3} < b$. Par densité de L dans M il y a $a' \in [a, \frac{2a+b}{3}] \cap L$ et $b' \in [\frac{a+2b}{3}, b] \cap L$. Donc a' < b' dans L, et par densité de K dans L il y a $x \in [a', b'] \cap K$. Alors $x \in [a, b] \cap K$. Ceci montre que K est dense dans L.
- 2. (a) K est archimédien si pour tout a > 0 dans K et tout $b \in K$ il y a $n \in \mathbb{N}$ avec $a + \cdots + a \ge b$ (n termes).
 - (b) Soit a > 0 dans K et $b \in K$. Alors $a, b \in L$ et par achimédianité de L il y a $n \in \mathbb{N}$ avec $a + \cdots + a \ge b$ (n termes). Ceci montre que K est archimédien.

Exercice 5 : Soit $(u_n)_n$ une suite bornée. Pour tout $n \in \mathbb{N}$ on pose $v_n = \sup\{u_i : i \geq n\}$.

- 1. Justifier l'existence de v_n .
- 2. Montrer que v_n est décroissante, et en déduire que v_n est convergente.
- 3. En déduire le théorème de Bolzano-Weierstrass. (Attention : $(v_n)_n$ n'est pas suite extraite de $(u_n)_n$.)
- 4. Montrer qu'une suite $(w_n)_n$ non-bornée admet une suite extraite qui diverge vers ∞ ou $-\infty$.

Solution.

- 1. On a $u_n \in \{u_i : i \ge n\}$, donc cet ensemble est non-vide, et il est majoré puisque la suite $(u_n)_n$ l'est. D'après l'axiome de la borne supérieur le sup existe.
- 2. Pour $m \leq n$ on a $\{u_i : i \geq m\} \supseteq \{u_i : i \geq n\}$, et donc

$$v_m = \sup\{u_i : i \ge m\} \ge \sup\{u_i : i \ge n\} = v_n.$$

Ainsi la suite $(v_n)_n$ est décroissante.

Or, si M minore la suite $(u_n)_n$, alors M minore tous les u_i , et donc $v_n = \sup\{u_i : i \geq n\}$. Donc $(v_n)_n$ est une suite décroissante minorée, qui doit converger dans \mathbb{R} d'après le théorème de la suite monotone.

3. Soit $\ell = \lim_{n \to \infty} v_n$. On construit récursivement une suite extraite de $(u_n)_n$ qui converge vers ℓ . Supposons qu'on ait trouvé $i_0 < i_1 < \dots < i_{k-1}$ telle que $|\ell - u_{i_j}| \le \frac{1}{j+1}$ pour $j = 0, \dots, k-1$. (L'hypothèse est vide pour k = 0.) Puisque $\lim_{n \to \infty} v_n = \ell$ il y a $N \in \mathbb{N}$ telle que $|v_n - \ell| \le \frac{1}{k+1}$ pour $n \ge N$, et on peut prendre $N \ge i_{k-1}$ si $k \ne 0$. Puisque $v_N = \sup\{u_i : i \ge N\}$ il y a $n \ge N$ tel que $u_n \in [v_N - \frac{1}{k+1}, v_N]$. Or $(v_n)_n$ est décroissante et donc $v_n \ge \ell$. Il en découle que

$$\ell - \frac{1}{k+1} \le v_N - \frac{1}{k+1} \le u_n \le v_N \le \ell + \frac{1}{k+1}.$$

Alors $i_k = n \ge N > i_{k-1}$ convient. On a bien $\lim_{k \to \infty} u_{i_k} = \ell$.

4. Si $(w_n)_n$ n'est pas majoré, alors pour tout $n \in \mathbb{N}$ il y a $i_n \in \mathbb{N}$ avec $w_{i_n} \geq n$. De même, si $(w_n)_n$ n'est pas minoré, alors pour tout $n \in \mathbb{N}$ il y a $i_n \in \mathbb{N}$ avec $w_{i_n} \leq -n$. Si on enlève les termes répétés, on obtient une suite extraite qui diverge vers $\pm \infty$.