Mathématiques - DS n°2

PARTIE CUPGE

Documents et calculettes interdits

Exercice 1:

1. Est-ce que les énoncés suivants sont équivalents :

$$P \to (Q \leftrightarrow R)$$
 et $(P \to Q) \leftrightarrow (P \to R)$.

2. Donner la négation de l'énoncé suivant, où f est une fonction réelle :

$$\exists x \ \forall y > 0 \ \exists z > 0 \ \forall u \ (|u| < z \rightarrow |f(u) - x| < y).$$

Que signifie cet énoncé?

Exercice 2: Soit $f: X \to Y$ une application.

- 1. Montrer que f est injective ssi pour tout $X' \subseteq X$ on a $f^{-1}[f[X']] = X'$.
- 2. Montrer que f est surjective ssi pour tout $Y' \subseteq Y$ on a $f[f^{-1}[Y']] = Y'$.

Exercice 3: Soit R une relation symétrique sur un ensemble non-vide X telle que pour tout $x \in X$ il y a $x' \in X$ avec xRx'. On définit la relation E sur X par

$$xEx'$$
 ssi $\exists n \in \mathbb{N}^* \exists x_0, \dots, x_n \in X \ (x = x_0 \land x' = x_n \land \bigwedge_{i=1}^n x_{i-1}Rx_i).$

Montrer que E est une relation d'équivalence.

Exercice 4 : Soient K, L, M des corps ordonnés avec $K \subseteq L \subseteq M$.

- 1. (a) Donner la définition qu'une partie $X \subseteq K$ est dense dans K.
 - (b) Montrer que si K est dense dans M, alors K est dense dans L et L est dense dans M.
 - (c) Montrer que si K est dense dans L et L est dense dans M, alors K est dense dans M.
- 2. (a) Donner la définition que K est archimédien.
 - (b) Montrer que si L est archimédien, alors K est archimédien.

Exercice 5: Soit $(u_n)_n$ une suite bornée. Pour tout $n \in \mathbb{N}$ on pose $v_n = \sup\{u_i : i \geq n\}$.

- 1. Justifier l'existence de v_n .
- 2. Montrer que v_n est décroissante, et en déduire que v_n est convergente.
- 3. En déduire le théorème de Bolzano-Weierstrass. (Attention : $(v_n)_n$ n'est pas suite extraite de $(u_n)_n$.)
- 4. Montrer qu'une suite $(w_n)_n$ non-bornée admet une suite extraite qui diverge vers ∞ ou $-\infty$.