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Exercice 1 : Les réels.

Soit A une partie de R.
1. Donner la définition de ’'adhérence A de A dans R.
2. Donner la définition que A est dense dans R.

3. Montrer que A est dense dans R si et seulement si A = R.

Solution.
1. L’adhérence de A dans Rest A={r € R:Ve >0, AN]x—ex+ ¢l #0}.
2. A est dense dans R si pour tous a < b réels A N Ja,b] # 0.

3. Soit A dense dans R. Alors pour tout xt € Rete >0onaz—e<xz+e dout ANz —e,x+e #0
par densité. Ainsi z € A et R C A. Puisque A C R, on a égalité.
Réciproquement, soit A = R, et a < b réels. On prend z = “T*'b et e = ‘“T_b‘ Puisque z € R = A, on
al#AAN]z—ex+e[=ANAN]a,b[, dou A est dense dans R.

Exercice 2 : Suites.
Soit (hy)n la suite réelle donnée par h, = Y ;_, % On pose u, = h, —Inn et v, = hy, —In(n + 1).

1. Montrer que les suites (up)n et (vy)n, sont adjacentes. Leur limite commune s’appelle la constante
d’Euler, notée ~.
Indication : Utiliser le TAF avec la fonction In.

2. En déduire que la suite (hy,), diverge vers +oo.

Solution.

1. La fonction In est dérivable sur R’ avec fonction dérivée % D’aprés le TAF, pour tout n € N* il y a
¢n € |n,n+ 1] avec é =In(n+ 1) —Inn. Ainsi
1 1

1
un+1—un:hn+1—ln(n—l—l)—hn—l—lnn:m—(ln(n—{—l)—lnn):m—a<0,
1 1

n+1 cpt1

Upt1l — Up = hpy1 —In(n +2) —hy, +In(n+1) = —(In(n+2) —In(n+1) =

n+1

Donc (up)y, est décroissante et (vy,), est croissante. De plus,

1
Up —vp =In(n+1)—lnn=— —0 quand n — c©
Cn

puisque n < ¢, < n+1. Ainsi (uy ), et (v, )y sont adjacentes. D’apreés le théoréme des suites adjacentes
elles convergent vers une méme limite.

2. Puisque limy, o0 Inn = 400 et lim,, o0 (hy, —Inn) =y € R, on a

lim h, = lim (hy, —Inn)+ lim Inn = 4o0.
n—oo n—oo n—oo

Exercice 3 : Continuité.
Soient f : R — R une fonction continue et périodique. On suppose que f ne posséde pas de plus petite
période strictement positive.

1. Montrer que pour tout entier n > 0 il y a une période strictement positive p, < %
2. Montrer que pour tout a < betn > 0ily a a, avec [a, —b| < £ et f(a,) = f(a).

3. Conclure que f est constante.



Solution.

1.

Soit X ’ensemble non-vide des périodes positives de f. Alors X est minoré par 0; d’aprés 'axiome
de la borne supérieure (et donc inférieure), inf X existe. On veut montrer que inf X = 0. Sinon,
m = inf X > 0. On pose ¢ = 3. Alors il y a une période p € [m,m + ¢[. Si p = m alors p serait une

période minimale. Donc m < p et il y a une période p’ € [m, p[. Or, pour tout z € R on a
fla+@—1)) = f(x+p) =) = flx+p) = f(2).
Donc p — p’ est une période de f. Mais 0 < p—p’ < & < m, ce qui contredit la fait que m minore X.

Ainsi inf X = 0, et pour tout entier n > 0 il y a une période strictement positive p,, < %

Puisque p, > 0, par archimédianité de R il y a un n minimal avec np, > b — a; puisque b > a on a
n > 0 et donc (n — 1)p, < b—a < np,. On pose a,, = a + np,. Alors f(a) = f(ay,) puisque p,, est
une période de f, et b < a, <b+p, <b+ %, d’ou |a, — b| < %

. On a limy, o a, = b, et par continuité de f on a f(b) = lim, oo f(an) = f(a). Ainsi f(a) = f(b)

pour tout a < b et f est constante.

Exercice 4 : Dérivabilité.
Soit I une intervalle réel ouvert et f : I — R une fonction convexe.

1.

2.
3.
4.

Enoncer le lemme des trois pentes.
Montrer que pour tout a € I les taux d’accroissement Ay, () sont croissantes sur I \ {a}.
En déduire que f posséde une dérivée a gauche et une dérivée a droite en a pour tout a € 1.

En déduire que f est continue sur I.

Solution.

1.

2.

Soient @ < b < ¢ dans I. Si f est convexe sur I, alors

f0) = fla) _ fle) = fla) _ fle) = f(b)

b—a - c—a - c—b

La deuxiéme inégalité donne As.(a) < Ay .(b), donc Ay () est croissante pour x < c. La premiére
inégalité donne Ay ,(b) < Agq(c), donc A () est croissante pour z > a. Enfin, Iinégalité entre les
termes extrémes donne Ayfy(a) < Ayy(c), donc Ay y(x) est croissante de la gauche vers la droite de
b. Puisque c’est vrai pour tout a,b,c € I, Ay ,(x) est croissante sur I \ {a} pour tout a € I.

Puisque I est ouvert, pour tout a € I'ily aa’,a” € I avec a’ < a < a”. Alors Ay ,(x) est croissante sur
Ja',a[ et majoré par Ay, (a”). Ainsi fy(a) = lim,_,,~ Af () existe. De méme, Ay ,(x) est croissante
sur ]a, a”’[ et minoré par A¢,(a’). Ainsi fi(a) =lim, ,,+ Ay q(x) existe.

Soit m = max{|f,(a)l,|f;(a)|}. Alors

0 < lim [f(a) ~ f(2)] = lim [Ag ()| |a — x| < m lim |a — 2] =0

r—ra

et f est continue en a, pour tout a € I.

Exercice 5 : Fonctions usuelles.

Soit I =] — Z, Z[. On considére la fonction réelle f : 2 — Intan (% + F) sur I.
1. Montrer que f est bien définie et donner sa parité.

2.

3.
4.

Montrer que pour tout x € I on a

(a) tanh(f(z)) = sin(x). (b) cosh(f(z)) = L . (¢) sinh(f(x)) = tan(z).

cos(x)

Calculer la fonction dérivée de f.

Donner le tableau de variations de f.



Solution.

. Porz € Tona0< 3+ 7 <73, etdonc0<tan(3 + %) < oo. Donc f est bien défini sur I. On a

f(=z) =Intan (%x + %) = Intan? (g + %) = —Intan (g + %) = —f(z).

Donc f est impaire.
2. On pose 2’/ = § 4 7. Alors sin(a') # 0 # cos(z'), et

e/@ — =@ tan(a’) — 1/tan(z’)  sin®(2’) — cos?(z’)

tanh = = =
anh(f(z)) ef@) 4 e=f(@)  tan(a’) + 1/tan(z’)  sin®(z’) + cos?(a’)
= —cos(22') = — cos(x + g) = sin(x);
ef@) 4 e f@)  tan(a!) +1/tan(z’)  sin®(z’) + cos? (')
cosh(f(z)) = 2 B 2 ~ 2cos(z) sin(a’)
_ 1 _ 1 1
sin(22’)  sin(z 4+ %) cos(z)’
) ef@) —e=f(@)  tan(z’) — 1/tan(2’)  sin®(z’) — cos?(z’)
sinh(f () = 2 N 2 ~ 2cos(a’)sin(z’)
_ —cos(22’)  —cos(x+ %) sin(z)
~ sin(22/)  sin(z+3)  cos(z) tan(z).
3. Avec 2/ comme en 2. on a
i )_%/COSQ(%Jrg)) 1 1 1 1
)= tan(%Z +7%)  2cos(z’)sin(z/)  sin(22/) sin(z+73)  cos(z)’
4.
v | -3 0 7
/(@) +



