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Exercice 1 : Les réels.
Soit A une partie de R.

1. Donner la définition de l’adhérence Ā de A dans R.
2. Donner la définition que A est dense dans R.
3. Montrer que A est dense dans R si et seulement si Ā = R.

Solution.

1. L’adhérence de A dans R est Ā = {x ∈ R : ∀ ε > 0, A ∩ ]x− ε, x+ ε[ 6= ∅}.
2. A est dense dans R si pour tous a < b réels A ∩ ]a, b[ 6= ∅.
3. Soit A dense dans R. Alors pour tout x ∈ R et ε > 0 on a x− ε < x+ ε, d’où A ∩ ]x− ε, x+ ε[ 6= ∅

par densité. Ainsi x ∈ Ā et R ⊆ Ā. Puisque Ā ⊆ R, on a égalité.
Réciproquement, soit Ā = R, et a < b réels. On prend x = a+b

2 et ε =
∣∣a−b

2

∣∣. Puisque x ∈ R = Ā, on
a ∅ 6= A ∩ ]x− ε, x+ ε[ = A ∩A ∩ ]a, b[, d’où A est dense dans R.

Exercice 2 : Suites.
Soit (hn)n la suite réelle donnée par hn =

∑n
k=1

1
k . On pose un = hn − lnn et vn = hn − ln(n+ 1).

1. Montrer que les suites (un)n et (vn)n sont adjacentes. Leur limite commune s’appelle la constante
d’Euler, notée γ.
Indication : Utiliser le TAF avec la fonction ln.

2. En déduire que la suite (hn)n diverge vers +∞.

Solution.

1. La fonction ln est dérivable sur R∗+ avec fonction dérivée 1
x . D’après le TAF, pour tout n ∈ N∗ il y a

cn ∈ ]n, n+ 1[ avec 1
cn

= ln(n+ 1)− lnn. Ainsi

un+1 − un = hn+1 − ln(n+ 1)− hn + lnn =
1

n+ 1
− (ln(n+ 1)− lnn) =

1

n+ 1
− 1

cn
< 0,

vn+1 − vn = hn+1 − ln(n+ 2)− hn + ln(n+ 1) =
1

n+ 1
− (ln(n+ 2)− ln(n+ 1) =

1

n+ 1
− 1

cn+1
> 0.

Donc (un)n est décroissante et (vn)n est croissante. De plus,

un − vn = ln(n+ 1)− lnn =
1

cn
→ 0 quand n→∞

puisque n < cn < n+1. Ainsi (un)n et (vn)n sont adjacentes. D’après le théorème des suites adjacentes
elles convergent vers une même limite.

2. Puisque limn→∞ lnn = +∞ et limn→∞(hn − lnn) = γ ∈ R, on a

lim
n→∞

hn = lim
n→∞

(hn − lnn) + lim
n→∞

lnn = +∞.

Exercice 3 : Continuité.
Soient f : R → R une fonction continue et périodique. On suppose que f ne possède pas de plus petite
période strictement positive.

1. Montrer que pour tout entier n > 0 il y a une période strictement positive pn < 1
n .

2. Montrer que pour tout a < b et n > 0 il y a an avec |an − b| < 1
n et f(an) = f(a).

3. Conclure que f est constante.

1



Solution.

1. Soit X l’ensemble non-vide des périodes positives de f . Alors X est minoré par 0 ; d’après l’axiome
de la borne supérieure (et donc inférieure), inf X existe. On veut montrer que inf X = 0. Sinon,
m = inf X > 0. On pose ε = m

2 . Alors il y a une période p ∈ [m,m + ε[. Si p = m alors p serait une
période minimale. Donc m < p et il y a une période p′ ∈ [m, p[. Or, pour tout x ∈ R on a

f(x+ (p− p′)) = f((x+ p)− p′) = f(x+ p) = f(x).

Donc p− p′ est une période de f . Mais 0 < p− p′ < m
2 < m, ce qui contredit la fait que m minore X.

Ainsi inf X = 0, et pour tout entier n > 0 il y a une période strictement positive pn < 1
n .

2. Puisque pn > 0, par archimédianité de R il y a un n minimal avec npn > b − a ; puisque b > a on a
n > 0 et donc (n − 1)pn < b − a ≤ npn. On pose an = a + npn. Alors f(a) = f(an) puisque pn est
une période de f , et b ≤ an < b+ pn < b+ 1

n , d’où |an − b| <
1
n .

3. On a limn→∞ an = b, et par continuité de f on a f(b) = limn→∞ f(an) = f(a). Ainsi f(a) = f(b)
pour tout a < b et f est constante.

Exercice 4 : Dérivabilité.
Soit I une intervalle réel ouvert et f : I → R une fonction convexe.

1. Énoncer le lemme des trois pentes.

2. Montrer que pour tout a ∈ I les taux d’accroissement ∆f,a(x) sont croissantes sur I \ {a}.
3. En déduire que f possède une dérivée à gauche et une dérivée à droite en a pour tout a ∈ I.
4. En déduire que f est continue sur I.

Solution.

1. Soient a < b < c dans I. Si f est convexe sur I, alors

f(b)− f(a)

b− a
≤ f(c)− f(a)

c− a
≤ f(c)− f(b)

c− b
.

2. La deuxième inégalité donne ∆f,c(a) ≤ ∆f,c(b), donc ∆f,c(x) est croissante pour x < c. La première
inégalité donne ∆f,a(b) ≤ ∆f,a(c), donc ∆f,a(x) est croissante pour x > a. Enfin, l’inégalité entre les
termes extrêmes donne ∆f,b(a) ≤ ∆f,b(c), donc ∆f,b(x) est croissante de la gauche vers la droite de
b. Puisque c’est vrai pour tout a, b, c ∈ I, ∆f,a(x) est croissante sur I \ {a} pour tout a ∈ I.

3. Puisque I est ouvert, pour tout a ∈ I il y a a′, a′′ ∈ I avec a′ < a < a′′. Alors ∆f,a(x) est croissante sur
]a′, a[ et majoré par ∆f,a(a

′′). Ainsi f ′g(a) = limx→a− ∆f,a(x) existe. De même, ∆f,a(x) est croissante
sur ]a, a′′[ et minoré par ∆f,a(a

′). Ainsi f ′d(a) = limx→a+ ∆f,a(x) existe.

4. Soit m = max{|f ′g(a)|, |f ′d(a)|}. Alors

0 ≤ lim
x→a
|f(a)− f(x)| = lim

x→a
|∆f,a(x)| |a− x| ≤ m lim

x→a
|a− x| = 0

et f est continue en a, pour tout a ∈ I.

Exercice 5 : Fonctions usuelles.
Soit I =]− π

2 ,
π
2 [. On considère la fonction réelle f : x 7→ ln tan

(
x
2 + π

4

)
sur I.

1. Montrer que f est bien définie et donner sa parité.

2. Montrer que pour tout x ∈ I on a

(a) tanh(f(x)) = sin(x). (b) cosh(f(x)) =
1

cos(x)
. (c) sinh(f(x)) = tan(x).

3. Calculer la fonction dérivée de f .

4. Donner le tableau de variations de f .
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Solution.

1. Pour x ∈ I on a 0 < x
2 + π

4 <
π
2 , et donc 0 < tan(x2 + π

4 ) <∞. Donc f est bien défini sur I. On a

f(−x) = ln tan
(−x

2
+
π

4

)
= ln tan−1

(x
2

+
π

4

)
= − ln tan

(x
2

+
π

4

)
= −f(x).

Donc f est impaire.

2. On pose x′ = x
2 + π

4 . Alors sin(x′) 6= 0 6= cos(x′), et

tanh(f(x)) =
ef(x) − e−f(x)

ef(x) + e−f(x)
=

tan(x′)− 1/ tan(x′)

tan(x′) + 1/ tan(x′)
=

sin2(x′)− cos2(x′)

sin2(x′) + cos2(x′)

= − cos(2x′) = − cos(x+
π

2
) = sin(x) ;

cosh(f(x)) =
ef(x) + e−f(x)

2
=

tan(x′) + 1/ tan(x′)

2
=

sin2(x′) + cos2(x′)

2 cos(x′) sin(x′)

=
1

sin(2x′)
=

1

sin(x+ π
2 )

=
1

cos(x)
;

sinh(f(x)) =
ef(x) − e−f(x)

2
=

tan(x′)− 1/ tan(x′)

2
=

sin2(x′)− cos2(x′)

2 cos(x′) sin(x′)

=
− cos(2x′)

sin(2x′)
=
− cos(x+ π

2 )

sin(x+ π
2 )

=
sin(x)

cos(x)
= tan(x).

3. Avec x′ comme en 2. on a

f ′(x) =
1
2/ cos2(x2 + π

4 ))

tan(x2 + π
4 )

=
1

2 cos(x′) sin(x′)
=

1

sin(2x′)
=

1

sin(x+ π
2 )

=
1

cos(x)
.

4.
x −π

2 0 π
2

f ′(x) +
f(x) −∞ ↗ 0 ↗ ∞
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