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Exercice 1 : Logique.

1. Est-ce que les deux propositions suivantes sont équivalentes ? Justifier la réponse.

(a) P ↔ (Q↔ R) et (b) (P ↔ Q)↔ R.

2. Que signifie l’énoncé suivant (où u : N→ R est une fonction) :

(∃x > 0 ∀n ∈ N, |u(n)| < x)→ (∃ ` ∈ R∀ ε > 0∀n ∈ N ∃n′ > n, |u(n′)− `| < ε).

Donner sa négation.

3. Soient X et Y deux ensembles. Montrer que

(a) P(X) ∩ P(Y ) ⊆ P(X ∩ Y ). (b) P(X) ∪ P(Y ) ⊆ P(X ∪ Y ).

Est-ce qu’on a égalité ?

Solution.

1. On écrit la table de vérité.

P Q R Q↔ R P ↔ (Q↔ R) P ↔ Q (P ↔ Q)↔ R

V V V V V V V
V V F F F V F
V F V F F F F
V F F V V F V
F V V V F F F
F V F F V F V
F F V F V V V
F F F V F V F

La 5me et la 7me colonne étant identiques, les deux propositions sont équivalentes.

2. L’énoncé signifie : Si (u(n))n est une suite bornée, alors il y a une suite extraite convergente. La
négation est

(∃x > 0∀n ∈ N, |u(n)| < x)→ (∀ ` ∈ R ∃ ε > 0 ∃n ∈ N ∀n′ > n, |f(n′)− `| ≥ ε).

3. (a) Soit Z ∈ P(X) ∩ P(Y ). Donc Z ⊆ X et Z ⊆ Y , d’où Z ⊆ X ∩ Y et Z ∈ P(X ∩ Y ).
Réciproquement, si Z ∈ P(X ∩ Y ), alors X ⊆ X ∩ Y , d’où X ⊆ X et Z ⊆ Y . Ainsi Z ∈ P(X) et
Z ∈ P(Y ), et Z ∈ P(X) ∩ P(Y ). Donc on a égalité.

(b) Soit Z ∈ P(X) ∪ P(Y ). Alors Z ⊆ X ou Z ⊆ Y , d’où Z ⊆ X ∪ Y et Z ∈ P(X ∪ Y ).
Pour montrer qu’on a pas égalité, soit X = {x} et Y = {y} avec x 6= y, et Z = {x, y}. Alors
Z ∈ P(X ∪ Y ), mais Z /∈ P(X) ∪ P(Y ).

Exercice 2 : Applications.
Soient E, E′, F , F ′ quatre ensembles, et u : E′ → E et v : F → F ′ deux applications. On définit l’application
ϕ : FE → F ′E

′
par f 7→ v ◦ f ◦ u.

1. Vérifier que ϕ est bien définie.

2. Montrer que si v est injective et u surjective alors ϕ est injective.
Indication : Il ne s’agit pas de montrer que ϕ(f) est injective en tant que fonction de E′ vers F ′. Utiliser
le critère connu de l’injectivité. Pour montrer que deux fonctions dans FE sont égales, montrer qu’elles
ont même valeur pour tout x ∈ E.
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3. Montrer que si v est surjective et u injective alors ϕ est surjective.
Indication : Prendre f ′ ∈ F ′E

′ et trouver des fonctions réciproques unilaterales u′, v′ bien choisies
pour que f = v′ ◦ f ′ ◦ u′ ∈ FE satisfasse ϕ(f) = f ′.

Solution.
1. Si f ∈ FE alors imu ⊆ E = dom f , et im f ⊆ F = dom v. La composition v ◦ f ◦ u est donc bien

définie, de domaine domu = E′ et d’image contenu dans im v ⊆ F ′. Ainsi ϕ(f) ∈ F ′E
′
.

2. Soit v injective et u surjective. On suppose f, f ′ ∈ FE avec ϕ(f) = ϕ(f ′). Donc v ◦ f ◦ u = v ◦ f ′ ◦ u.
Soit x ∈ E. Par surjectivite de u il y a y ∈ E′ avec u(y) = x. Ainsi

v(f(x)) = v(f(u(y))) = (v ◦ f ◦ u)(y) = (v ◦ f ′ ◦ u)(y) = v(f ′(u(y))) = v(f(x)).

Par injectivité de v on a f(x) = f ′(x). Puisque x ∈ E était quelconque, f = f ′. Ceci montre que ϕ
est injective.

3. Soit v surjective et u injective. Soit v′ : F ′ → F une fonction réciproque à droite de v, et u′ : E → E′

une fonction réciproque à gauche de u. Donc v ◦ v′ = idF ′ et u′ ◦ u = idE′ . Soit maintenant f ′ ∈ F ′E
′
.

On pose f = v′ ◦ f ′ ◦ u′. La composition est bien définie, et f ∈ EF . Alors

ϕ(f) = v ◦ f ◦ u = v ◦ v′ ◦ f ′ ◦ u′ ◦ u = idF ′ ◦ f ′ ◦ idE′ = f ′.

Donc f ′ ∈ imϕ, et ϕ est surjective.

Exercice 3 : Les complexes.
1. Soit n ∈ N∗ et a, b ∈ R. Calculer

n∑
k=0

(
n

k

)
cos(a+ kb) et

n∑
k=0

(
n

k

)
sin(a+ kb).

2. Déterminer algébriquement les racines 4es dans C de −119 + 120i.
Indication : 1192 + 1202 = 1692 et 169 = 132.

3. Caractériser géométriquement la similitude directe z 7→ (2 + 2i)z − (7 + 4i).

Solution.
1. On calcule :

n∑
k=0

(
n

k

)
cos(a+ kb) + i

n∑
k=0

(
n

k

)
sin(a+ kb) =

n∑
k=0

(
n

k

)(
cos(a+ kb) + i sin(a+ kb)

)
=

n∑
k=0

(
n

k

)
ei(a+kb) = eia

n∑
k=0

(
n

k

)(
eib
)k

= eia
(
eib + 1

)n
= eia

(
eib/2(eib/2 + e−ib/2)

)n
= ei(a+nb/2)2n cosn(b/2)) = 2n cos(a+ nb/2) cosn(b/2) + i 2n sin(a+ nb/2) cosn(b/2).

En prenant partie réelle et imaginaire, on trouve
n∑

k=0

(
n

k

)
cos(a+ kb) = 2n cos(a+ nb/2) cosn(b/2), et

n∑
k=0

(
n

k

)
sin(a+ kb) = 2n sin(a+ nb/2) cosn(b/2).

2. On pose −119 + 120i = (a+ ib)2 = a2 − b2 + 2abi. Donc a2 − b2 = −119, 2ab = 120 et

a2 + b2 = | − 119 + 120i| =
√

(−119)2 + 1202 = 169.

Il en suit que 2a2 = −119 + 169 = 50 et a = ±5, d’où b = 120/2a = ±12.
On cherche donc les racines carrées de ±(5 + 12i). On pose 5 + 12i = (x + iy)2 = x2 − y2 + 2xyi.
Alors x2 − y2 = 5, 2xy = 12 et x2 + y2 = |5 + 12i| =

√
52 + 122 =

√
169 = 13. Ainsi 2x2 = 5 + 13

et x = ±3, d’où y = 12/2x = ±2. Les quatre racines 4es de −119 + 120i sont donc 3 + 2i, −3 − 2i,
i(3 + 2i) = −2 + 3i et −i(3 + 2i) = 2− 3i.
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3. On a 2 + 2i 6= 1. Il s’agit donc d’une homothétie-rotation de rapport |2 + 2i| =
√

8 = 2
√

2, d’angle
arg(2 + 2i) = π/4, et de centre le point fixe d’affice z = f(z) = (2 + 2i)z − (7 + 4i), d’où

z =
7 + 4i

1 + 2i
=

(7 + 4i)(1− 2i)

(1 + 2i)(1− 2i)
=

7 + 8 + 4i− 14i

1 + 4
= 3− 2i.

Exercice 4 : Arithmétique.
1. Donner toutes les solutions entières de l’équation diopĥantienne 1077z − 711y = 297.
2. Montrer que si n ∈ N est à la fois un carré d’un entier et un cube d’un entier, alors n est une puissance

6me d’un entier.

Solution.
1. On calcule pgcd(1077, 711) et des coefficients de Bézout à l’aide de l’algorithme d’Euclide. On rappelle

que an = una+ vnb, avec un+1 = un−1 − qnun et vn+1 = vn−1 − qnvn.

n an−1 = an × qn + an+1 un vn
0 1077 711 1 0
1 1077 = 711 × 1 + 366 0 1
2 711 = 366 × 1 + 345 1 −1
3 366 = 345 × 1 + 21 −1 2
4 345 = 21 × 16 + 9 2 −3
5 21 = 9 × 2 + 3 −33 50
7 9 = 3 × 3 + 0 68 −103

Ainsi pgcd(1077, 711) = 3, et 1077× 68− 711× 103 = 3. Puisque 297 = 3× 99, il y a des solutions,
notamment une solution particulière (y0, z0) = (103× 99, 68× 99). On divise l’équation par 3.

1077z − 711y = 297 ssi 359z − 237y = 99.

Si (y, z) est une solution, alors 359(z − z0) = 237(y − y0). Puisque pgcd(359, 237) = 1, d’après
le lemme de Gauss 237 | z − z0, et il y a k ∈ Z avec z = 237k + z0 = 237k + 68 × 99. Alors
237(y − y0) = 359(z − z0) = 359× 237k et y = 359k + y0 = 359k + 103× 99. Ce calcul montre aussi
que

359z − 237y = 359z0 − 237y0 = 99.

L’ensemble des solutions est donc {(359k + 10197, 237k + 6732) : k ∈ Z}.
2. Soit n =

∏k
i=1 p

ai
i la décomposition de n en facteurs premiers, avec p1 < · · · < pk des nombres premiers

et ai ∈ N∗ pour i = 1, . . . , k. Si `,m ∈ N avec n = `2 = m3, alors ` et m divisent n, et leurs facteurs
premiers sont parmi les pi. Donc ` =

∏k
i=1 p

bi
i et m =

∏k
i=1 p

ci
i , avec bi, ci ∈ N. Or, `2 =

∏k
i=1 p

2bi
i

et m3 =
∏k

i=1 p
3ci
i . Par unicité de la décomposition, ai = 2bi = 3ci pour i = 1, . . . , k. Donc 2 | ai et

3 | ai ; puisque pgcd(2, 3) = 1 on a 6 | ai, et ai = 6di avec di ∈ N. On pose r =
∏k

i=1 p
di
i ∈ N. Alors

r6 = n.

Exercice 5 : Polynômes.
Soit P ∈ R[X] un polynôme tel que P (x) ≥ 0 pour tout x ∈ R. On cherche à montrer qu’il existent des
polynômes S, T ∈ R[X] tels que P = S2 + T 2.

1. Montrer que les racines réelles de P sont de multiplicité paire.
2. Pour α ∈ C \ R, écrire (X − α)(X − ᾱ) comme somme de deux carrés de polynômes.
3. Montrer que si Si, Ti ∈ R[X] pour i = 0, . . . , n, alors il y a P,Q ∈ R[X] avec

∏n
i=0(S

2
i +T 2

i ) = P 2+Q2.
Indication : (S2 + T 2)(S′2 + T ′2) = (SS′ + TT ′)2 + (ST ′ + S′T )2.

4. Conclure.

Solution.
1. Supposons que a est une racine réelle de P de multiplicité impaire. Alors P (X) = (X−a)kQ(X) avec
k impair et Q ∈ R[X] avec Q(a) 6= 0. Par continuité il y a ε > 0 tel que Q ne change pas de signe
dans ]a− ε, a+ ε[. Puisque k est impair, (X − a)k change de signe en a. Donc P change de signe en
a, ce qui est impossible puisque P (X) ≥ 0 pour tout X ∈ R. Donc toutes les racines réelles de P sont
de multiplicité paire.
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2. Soit α = b+ ic. Alors

(X − α)(X − ᾱ) = (X − b− ic)(X − b+ ic) = (X − b)2 + c2.

3. Par récurrence. Initialisation : Pour n = 0 on prend P = S0 et Q = T0.
Hérédité : Supposons l’enoncé vrai pour n et considérons

∏n+1
i=0 (S2

i + T 2
i ). D’après l’hypothèse de

récurence il y a P,Q ∈ R[X] avec
∏n

i=0(S
2
i + T 2

i ) = P 2 +Q2. Donc

n+1∏
i=0

(S2
i + T 2

i ) = (P 2 +Q2)(S2
n+1 + T 2

n+1) = (PSn+1 +QTn+1)
2 + (PTn+1 −QSn+1)

2.

L’énoncé est donc vrai pour tout n ∈ N.
4. Puisque P est réel, si α ∈ C \ R est racine P , le conjugué complexe ᾱ aussi. Donc

P (X) = c
∏
i

(X − ai)2ni
∏
j

(X − αj)(X − ᾱj),

où c est le coefficient dominant, les ai sont les racines réelles distinctes de P , et les (αj , ᾱj) les couples
de racines complexes conjugués de P . Or, P (0) ≥ 0 implique c ≥ 0 et c = d2 + 02 pour un d ∈ R, de
plus (X − ai)2ni =

(
(X − ai)n

)2
+ 02. D’après 2. et 3. il y a S, T ∈ R[X] avec P = S2 + T 2.
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