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Mathématiques - E2C Algeébre 1
Corrigé

Exercice 1 : Logique.

1. Est-ce que les deux propositions suivantes sont équivalentes ? Justifier la réponse.
(a) P+ (Q+«+ R) et b)) (P+ Q)+« R.
2. Que signifie I’énoncé suivant (ot u : N — R est une fonction) :
Az >0VneN, |lun) <z)—= (3LERVe>0Vn e NIn' >n, |u(n) - <e).

Donner sa négation.

3. Soient X et Y deux ensembles. Montrer que
() P(X)NPY)CP(XNY). b)) P(X)UP(Y)CP(XUY).
Est-ce qu’on a égalité?

Solution.

1. On écrit la table de vérité.
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La bme et la 7me colonne étant identiques, les deux propositions sont équivalentes.

2. L’énoncé signifie : Si (u(n)), est une suite bornée, alors il y a une suite extraite convergente. La
négation est

Fr>0VneN, |[un) <z)—= (VLeERTe>0In e NVn' >n, [f(n) — L] > ¢).

3.(a) Soit Ze P(X)NP(Y).DoncZC Xet ZCY,douZCXNY et ZeP(XNY).
Réciproquement, si Z € P(X NY),alors X CXNY, dou X C X et ZCY. Ainsi Z € P(X) et
ZePY), et ZeP(X)NP(Y). Donc on a égalité.

(b) Soit Z € P(X)UP(Y). Alors ZC X ou ZC Y, dod ZC X UY et Z€ P(XUY).
Pour montrer qu'on a pas égalité, soit X = {x} et Y = {y} avec x # y, et Z = {x,y}. Alors
ZeP(XUY), mais Z ¢ P(X)UP(Y).

Exercice 2 : Applications.
Soient E, E’, F, F' quatre ensembles, et u : B/ — E et v : F — F’ deux applications. On définit application
0 : FF 5 F'" par f>vo fou.
1. Vérifier que ¢ est bien définie.
2. Montrer que si v est injective et u surjective alors ¢ est injective.
Indication : Il ne s’agit pas de montrer que ¢( f) est injective en tant que fonction de E’ vers F”. Utiliser
le critére connu de 'injectivité. Pour montrer que deux fonctions dans F'F sont égales, montrer qu’elles
ont méme valeur pour tout = € FE.



3. Montrer que si v est surjective et u injective alors ¢ est surjective.
Indication : Prendre f' € F'E' et trouver des fonctions réciproques unilaterales u/, v’ bien choisies
pour que f =" o f ou’ € FF satisfasse p(f) = f'.
Solution.

1. Si f € FF alors imu C E = dom f, et im f € F = domw. La composition v o f o u est donc bien
définie, de domaine domu = E’ et d’image contenu dans imv C F'. Ainsi ¢(f) € F'.

2. Soit v injective et u surjective. On suppose f, ' € FF avec o(f) = ¢(f'). Doncvo fou=wvo f ou.
Soit z € E. Par surjectivite de u il y a y € E’ avec u(y) = x. Ainsi

v(f(@) = v(f(w(y)) = (vo fou)(y) = (vo fou)(y) =v(f'(uly))) =v(f(@))
Par injectivité de v on a f(z) = f'(z). Puisque x € E était quelconque, f = f’. Ceci montre que ¢
est injective.

3. Soit v surjective et u injective. Soit v’ : F/ — F une fonction réciproque a droite de v, et v’ : B — E’
une fonction réciproque a gauche de u. Donc vov' = idp et v/ ou = idgr. Soit maintenant f' € Y
On pose f =" o f/ ou. La composition est bien définie, et f € E¥. Alors

o(f)=vo fou=vov'ofouou=idpo foidg = f.

Donc f’ € im ¢, et ¢ est surjective.

Exercice 3 : Les complexes.
1. Soit n € N* et a,b € R. Calculer

n

Zn: <Z> cos(a+kb) et Y <Z> sin(a + kb).

k=0 k=0
2. Déterminer algébriquement les racines 4¢° dans C de —119 + 1203.
Indication : 119% + 120% = 1692 et 169 = 132.

3. Caractériser géométriquement la similitude directe z — (2 + 2i)z — (7 + 44).

Solution.
1. On calcule :

n n

0 @ cos(a + kb) + i . <Z> sin(a + kb) = kzzo <Z> (cos(a+ kb) +isin(a + kb))

k=

= kzo (Z) pilatkb) _ ia Z (Z) (eib)k _ eia(eib i 1)n _ cia (eib/Q(eib/Z + efib/Q))n

= k=0
= ! (aFnb/2)9m 05" (b/2)) = 2™ cos(a + nb/2) cos™(b/2) + i 2" sin(a + nb/2) cos™(b/2).

En prenant partie réelle et imaginaire, on trouve

Z (Z) cos(a + kb) = 2" cos(a + nb/2) cos™(b/2), et
k=0

Z <Z> sin(a + kb) = 2" sin(a 4+ nb/2) cos"(b/2).

k=0

2. On pose —119 + 120i = (a + ib)? = a® — b? + 2abi. Donc a? — b? = —119, 2ab = 120 et

a? +b% = | — 119 4 120i| = 1/(—119)2 + 1202 = 169.

Il en suit que 2a% = —119 + 169 = 50 et a = £5, d’oul b = 120/2a = +12.

On cherche donc les racines carrées de £(5 + 124). On pose 5 + 12i = (x + iy)? = 22 — y* + 2xyi.
Alors 22 — 9% =5, 22y = 12 et 22 + 9% = |5 + 12i| = /52 + 122 = /169 = 13. Ainsi 222 = 5 + 13
et x = £3, d’out y = 12/2x = +2. Les quatre racines 4°° de —119 + 120¢ sont donc 3 + 2i, —3 — 21,
i(3+2i) = —2+43i et —i(3+2i) =2 — 3i.



3. On a 2 + 2i # 1. 1l s’agit donc d'une homothétie-rotation de rapport |2 + 2i| = v/8 = 2v/2, d’angle
arg(2 4 2i) = m/4, et de centre le point fixe d’affice z = f(2) = (2 + 2i)z — (7 + 4i), d’ou

T4 (TH4)(1—20) T84 4i— 140

_ _ _ =3— 2.
Tlv2a 1r20(1-2) 1+4 !

Exercice 4 : Arithmétique.
1. Donner toutes les solutions entiéres de I'équation diophantienne 1077z — 7 11y = 297.
2. Montrer que sin € N est a la fois un carré d’un entier et un cube d’un entier, alors n est une puissance
6" d’un entier.
Solution.

1. On calcule pged (1077, 711) et des coefficients de Bézout a l’aide de I’algorithme d’Euclide. On rappelle
que Gy = Upa + Vb, avec Upt1 = Up—1 — Gulpn €6 Vpat1 = Up—1 — QnUn.

N |ap-1 = Gan X Qqn + Apy1 Unp, Un
0 1077 711 1 0
11077 = 711 x 1 4+ 366 0 1
21 711 = 366 x 1 + 345 1 -1
3] 366 = 345 x 1 + 21| -1 2
4] 345 = 21 x 16 + 9 2 -3
5 21 = 9 x 2 + 3| —33 50
7 9 = 3 x 3 + 0 68 | —103

Ainsi pged(1077,711) = 3, et 1077 x 68 — 711 x 103 = 3. Puisque 297 = 3 x 99, il y a des solutions,
notamment une solution particuliére (yg, zo) = (103 x 99,68 x 99). On divise I’équation par 3.

1077z — 711y = 297  ssi 359z — 237y = 99.

Si (y,z) est une solution, alors 359(z — z9) = 237(y — yo). Puisque pged(359,237) = 1, d’aprés
le lemme de Gauss 237 | z — 2z, et il y a k € Z avec z = 237k + zp = 237k + 68 x 99. Alors
237(y — yo) = 359(z — 20) = 359 x 237k et y = 359k + yo = 359k + 103 x 99. Ce calcul montre aussi
que

359z — 237y = 3592p — 237yo = 99.
L’ensemble des solutions est donc {(359k + 10197, 237k 4 6732) : k € Z}.

2. Soitn = Hle py* la décomposition de n en facteurs premiers, avec p; < - -+ < pi, des nombres premiers
eta; e N*pouri=1,....k Si¢,m e N avec n = (2 =m3, alors £ et m divisent n, et leurs facteurs
premiers sont parmi les p;. Donc £ = Hle p?i et m = Hle pst, avec b, ¢; € N. Or, (2 = Hle p?bi
et m? = Hlepi’ci. Par unicité de la décomposition, a; = 2b; = 3¢; pour i = 1,...,k. Donc 2 | a; et
3 | a;; puisque pged(2,3) =1 on a 6 | a;, et a; = 6d; avec d; € N. On pose r = Hle pgi € N. Alors
r6 =n.

Exercice 5 : Polynémes.
Soit P € R[X] un polynéme tel que P(z) > 0 pour tout € R. On cherche & montrer qu’il existent des
polynomes S, T € R[X] tels que P = 5% + T2
1. Montrer que les racines réelles de P sont de multiplicité paire.
2. Pour a € C\ R, écrire (X — a)(X — @) comme somme de deux carrés de polyndmes.
3. Montrer que si S;, T; € R[X] pouri =0,...,n, alorsily a P,Q € R[X] avec [[[_,(S?+T7) = P?+Q>.
Indication : (8% + T?)(S" +T"?) = (SS" +TT")? + (ST’ + S'T)2.

4. Conclure.

Solution.

1. Supposons que a est une racine réelle de P de multiplicité impaire. Alors P(X) = (X —a)*Q(X) avec
k impair et @ € R[X] avec Q(a) # 0. Par continuité il y a € > 0 tel que @) ne change pas de signe
dans Ja — €, a + €[. Puisque k est impair, (X — a)* change de signe en a. Donc P change de signe en
a, ce qui est impossible puisque P(X) > 0 pour tout X € R. Donc toutes les racines réelles de P sont
de multiplicité paire.



2. Soit o = b + ic. Alors
(X —a)(X—a)=(X-b—ic)(X —b+ic)= (X —b)?+ .

3. Par récurrence. Initialisation : Pour n = 0 on prend P = Sy et @ = Tp.
Hérédité : Supposons I’enoncé vrai pour n et considérons H?:”LOI(SiQ + Tf) D’aprés ’hypothése de
récurence il y a P,Q € R[X] avec [[I(S? + T?) = P? + @Q*. Donc

n+1
[1(S7+17) = (P* + @*)(Shi1 + Ti11) = (PSnir + QTg1)” + (PToss — QSni1)”.
i=0

L’énoncé est donc vrai pour tout n € N.

4. Puisque P est réel, si « € C\ R est racine P, le conjugué complexe & aussi. Donc
P(X)=c][(X —a)*™ [[(X = a))(X — &),
i J

ou c est le coefficient dominant, les a; sont les racines réelles distinctes de P, et les (o, &;) les couples
de racines complexes conjugués de P. Or, P(0) > 0 implique ¢ > 0 et ¢ = d? 4+ 0? pour un d € R, de
plus (X — a;)?" = ((X — ai)”)2 +02. D’aprés 2. et 3.ily a S,T € R[X] avec P = 5% + T2,



