Feuille d'exercices nº 6

Espaces compacts

Exercice 1. Déterminer si les ensembles suivants sont, ou ne sont pas, compacts dans \mathbb{R}^2 muni de la topologie usuelle :

- $A = \{(x,y) \in \mathbf{R}^2 \colon x^2 + y^4 \le \cos(xy)\},\$
- $B = \{(x, y) \in \mathbf{R}^2 \colon 0 < xy \le x^2 \le 1\},\$
- $C = \{(x, y) \in \mathbf{R}^2 : 0 \le xy \le x^2 \le 1\}.$

Exercice 2. Soit un entier $n \ge 2$ et l'espace vectoriel normé $\mathcal{M}_n(\mathbf{R})$ des matrices réelles de taille $n \times n$ $(\mathcal{M}_n(\mathbf{R})$ est un espace vectoriel de dimension n^2). On note $\|\cdot\|$ la norme matricielle subordonnée à la norme euclidienne $\|\cdot\|_2$, c'est-à-dire, pour $M \in \mathcal{M}_n(\mathbf{R})$,

$$|||M||| = \sup_{X \in \mathbf{R}^n \setminus \{0\}} \frac{||MX||_2}{||X||_2}.$$

On considère l'ensemble des matrices orthogonales $O(n) = \{A \in M_n(\mathbf{R}) : {}^t\!AA = I_n\}.$

- 1. Soit $A \in O(n)$. Déterminer |||A|||.
- 2. Montrer que O(n) est compact.
- 3. Étudier la compacité de l'ensemble $GL_n(\mathbf{R})$ des matrices inversibles dans $\mathcal{M}_n(\mathbf{R})$.

Exercice 3. On note E l'espace des fonctions continues de [0,1] vers \mathbb{R} , qu'on munit de la norme $\|.\|_{\infty}$.

- 1. Montrer que l'ensemble des fonctions dérivables de [0,1] vers ${\bf R}$ n'est pas un sous-ensemble compact de E.
- 2. Montrer que la boule fermée de centre 0 et de rayon 1 n'est pas non plus un sous-ensemble compact de E. On pourra commencer par donner un exemple de suite (f_n) dans cette boule qui a une limite simple qui n'est pas une limite uniforme, puis s'appuyer sur cette suite.

Exercice 4. Montrer que l'intervalle]0,1[n'est pas un sous-ensemble compact de \mathbf{R} en donnant explicitement un exemple qui montre qu'il ne vérifie pas la propriété de Borel-Lebesgue.

Exercice 5. Soit X un ensemble muni de la distance discrète. Montrer que X est compact si et seulement si X est fini.

Exercice 6. Soit (X, d) un espace métrique compact, et $(x_n)_{n \in \mathbb{N}}$ une suite d'éléments de X. Montrer que $(x_n)_{n \in \mathbb{N}}$ converge si et seulement si elle a une unique valeur d'adhérence.

Exercice 7. Soit $(E, \|\cdot\|)$ un espace vectoriel normé, A et B deux parties de E. On note $A + B = \{a + b \mid a \in A, b \in B\}$.

- 1. Montrer que si A et B sont compacts, alors A + B est compact.
- 2. Montrer que si A est compact et B est fermé, alors A + B est fermé.
- 3. Donner un exemple de parties toutes deux fermées d'un espace normé dont la somme n'est pas un fermé.

Exercice 8. Dans un espace métrique soit U et V deux ouverts disjoints et K un compact inclus dans la réunion $U \cup V$. Montrer que $U \cap K$ et $V \cap K$ sont compacts.

Exercice 9. Soit (X, d) un espace métrique, et soit (K_n) une suite de compacts dans X qui sont emboîtés, c'est-à-dire tels que pour tout $n \ge 0$, $K_{n+1} \subset K_n$. On note K l'intersection des K_n .

- 1. Montrer que K est fermé dans K_0 , puis que K est compact.
- 2. Dans cette question, on suppose K vide. Montrer que $(K_0 \setminus K_n)_{n \ge 1}$ est un recouvrement ouvert de K_0 , et en déduire que l'un au moins des K_n est vide.
- 3. Soit U un ouvert de X contenant K. Montrer qu'il existe un n tel que $K_n \subset U$.

Exercice 10. Soit $m \ge 1$ et $n \ge 1$ et soit f une application continue de \mathbf{R}^n vers \mathbf{R}^m . Montrer que $||f(x)|| \to +\infty$ quand $||x|| \to +\infty$ si et seulement si pour tout K compact inclus dans \mathbf{R}^m , l'ensemble $f^{-1}(K)$ est également compact.

Exercice 11. Soit $n \ge 1$ et soit g une application continue de \mathbf{R}^n vers \mathbf{R} . On suppose que $g(x) \to 0$ quand $||x|| \to +\infty$.

Montrer que g est bornée, que g est uniformément continue, que g atteint au moins une de ses bornes (et donner un exemple où l'une des deux n'est pas atteinte).

Exercice 12. Soit (X, d) un espace métrique. On rappelle que pour $A \subset X$ (non vide) et $x \in X$, on note $d(x, A) = \inf_{y \in A} d(x, y)$ et qu'on a montré en TD (fiche 2, exercice 11) que l'application $x \mapsto d(x, A)$ est continue.

Pour $A \subset X$, $B \subset X$ (non vides), on note $d(A,B) = \inf_{x \in A, y \in B} d(x,y)$.

- 1. Soit K et F deux parties disjointes non vides de X, avec K compact et F fermé dans X. Montrer que d(K,F) > 0.
- 2. Donner un exemple d'espace métrique (X, d) et de fermés disjoints non vides E et F dans X avec d(E, F) = 0.
- 3. Soit K et L deux compacts non vides de X. Montrer qu'il existe un $x \in K$ et un $y \in L$ tels que d(K, L) = d(x, y).
- 4. Dans cette question $X = \mathbf{R}^n$ pour un $n \ge 1$, muni de la distance euclidienne. Soit K et F disjoints non vides dans \mathbf{R}^n avec K compact et F fermé. Pour R > 0 on note $F_R = \{y \in F \mid ||y|| \le R\}$. Construire un R tel que $d(K, F) = d(K, F_R)$ et en déduire qu'il existe un $x \in K$ et un $y \in F$ tels que d(K, F) = d(x, y).

Exercice 13.

1. Soit (X, d) un espace métrique, et $(x_n)_{n \in \mathbb{N}}$ une suite d'éléments de X. On suppose que (x_n) converge vers x dans (X, d) et on pose

$$A = \{x_n \colon n \in \mathbf{N}\} \cup \{x\}$$

Montrer que A est un sous-ensemble compact de (X, d).

2. Soit (Y, d_Y) et (Z, d_Z) deux espaces métriques, et soit f une application de Y vers Z. On suppose d'une part que f est continue, et d'autre part que pour tout compact $K \subset Z$, $f^{-1}(K)$ est également compact. Montrer que pour tout fermé $F \subset Y$, f(F) est également fermé.

Exercice 14. Soit (K,d) un espace métrique compact et $f:K\to K$ une fonction telle que :

pour tout
$$x \in K$$
, tout $y \in K$ tels que $x \neq y$, $d(f(x), f(y)) < d(x, y)$.

- 1. Montrer que f a au plus un point fixe.
- 2. Montrer qu'il existe un élément $a \in K$ tel que $d(a, f(a)) \leq d(x, f(x))$ pour tout $x \in K$.
- 3. Montrer que f(a) = a.
- 4. Soit $x_0 \in K$, on définit la suite $(x_n)_{n \ge 0}$ par $x_{n+1} = f(x_n)$ pour tout $n \in \mathbb{N}$. Montrer que $(d(x_n, a))_{n \ge 0}$ converge vers une limite $\ell \ge 0$.
- 5. Montrer que $\ell = 0$.
- 6. Énoncer le résultat démontré dans cet exercice.

Exercice 15. Soit (K, d) un espace métrique compact. On considère une isométrie $f: K \to K$, c.à.d. telle que pour tout $x, y \in K$, d(f(x), f(y)) = d(x, y).

Le but de l'exercice est de montrer que f est bijective.

- 1. Vérifier que f est injective.
- 2. Supposons que f n'est pas bijective. Montrer qu'il existe alors $b \in K$ tel que d(b, f(K)) = r > 0.
- 3. Soit $(b_n)_{n \in \mathbb{N}}$ la suite définie par $b_0 = b$ et pour tout $n \in \mathbb{N}$, $b_{n+1} = f(b_n)$.
 - (a) Montrer que pour tout n > 0, $d(b, b_n) \ge r$.
 - (b) En déduire que pour tout $m > n \ge 0$, $d(b_n, b_m) \ge r$.
 - (c) Montrer qu'aucune suite extraite de $(b_n)_{n \in \mathbb{N}}$ ne peut converger et conclure.

Exercice 16. Soit (K,d) un espace métrique compact, soit $f:K\to K$ telle que :

pour tout
$$x, y \in K$$
, $d(f(x), f(y)) \ge d(x, y)$.

Le but de l'exercice est de montrer que f est une isométrie bijective.

On considère x et y deux éléments de K et on définit deux suites $(x_n)_{n \in \mathbb{N}}$ et $(y_n)_{n \in \mathbb{N}}$ par $x_0 = x$, $y_0 = y$, et pour tout $n \in \mathbb{N}$, $x_{n+1} = f(x_n)$ et $y_{n+1} = f(y_n)$.

- 1. Justifier qu'il existe une fonction $\theta : \mathbf{N} \to \mathbf{N}$ strictement croissante telle que les suites $(x_{\theta(n)})_{n \in \mathbf{N}}$ et $(y_{\theta(n)})_{n \in \mathbf{N}}$ sont convergentes.
- 2. On définit par récurrence une fonction $\varphi : \mathbf{N} \to \mathbf{N}$ en posant $\varphi(0) = \theta(0)$, $\varphi(1) = \theta(1)$ et pour tout $n \ge 0$, $\varphi(n+2) = \theta(2\varphi(n+1) \varphi(n) + 1)$.

Montrer que φ est bien définie en vérifiant par récurrence sur $n \in \mathbb{N}$ que $\varphi(n+1) - \varphi(n) > 0$.

- 3. En déduire que $(x_{\varphi(n)})_{n\in\mathbb{N}}$ et $(y_{\varphi(n)})_{n\in\mathbb{N}}$ sont convergentes.
- 4. Montrer que $\psi: \mathbf{N} \to \mathbf{N}, n \mapsto \varphi(n+1) \varphi(n)$ est strictement croissante.
- 5. Vérifier que pour tout $n \in \mathbb{N}$, $d(x, x_{\psi(n)}) \leq d(x_{\varphi(n)}, x_{\varphi(n+1)})$ et $d(y, y_{\psi(n)}) \leq d(y_{\varphi(n)}, y_{\varphi(n+1)})$.
- 6. En déduire que $\lim_{n\to\infty} x_{\psi(n)} = x$ et $\lim_{n\to\infty} y_{\psi(n)} = y$.
- 7. Montrer enfin que d(f(x), f(y)) = d(x, y).
- 8. Conclure en utilisant l'exercice précédent (ou en montrant que f(K) est dense dans K).

Exercice 17. Soit $(E, \|.\|)$ un **R**-espace vectoriel normé. Soit K une partie de E compacte, convexe et non vide, et soit a un élément de K. Soit f une application 1-lipschitzienne de K dans K.

1. Pour chaque $n \ge 2$ et tout x de K, on pose :

$$f_n(x) = \frac{1}{n}a + \frac{n-1}{n}f(x).$$

Montrer que f_n envoie K dans K, puis que f_n admet un unique point fixe dans K.

2. En déduire que f admet au moins un point fixe dans K.

Exercice 18. Premier théorème de Dini

Soit (K, d) un espace métrique compact et soit (f_n) une suite de fonctions continues à valeurs réelles définies sur K. On suppose d'une part que pour tout x fixé de K la suite de réels $(f_n(x))$ est décroissante, et d'autre part que la suite de fonctions (f_n) converge simplement vers 0.

- 1. Justifier que pour tout $x \in K$ et tout $n \in \mathbb{N}$, on a $f_n(x) \ge 0$.
- 2. Montrer que pour tout $n \in \mathbb{N}$, on peut choisir un $x_n \in K$ pour lequel $\sup_{x \in K} f_n(x) = f_n(x_n)$.
- 3. Montrer que la suite $(f_n(x_n))$ est décroissante et minorée, et conclure qu'elle converge vers un réel qu'on notera l.
- 4. Justifier l'existence d'une application φ de **N** vers **N** strictement croissante telle que la suite $(x_{\varphi(n)})$ soit convergente vers un élément de K qu'on notera x.
- 5. Soit N et n deux entiers naturels avec $N \leq n$. Justifier l'inégalité

$$(*_{N,n})$$
 $f_{\varphi(n)}(x_{\varphi(n)}) \leq f_{\varphi(N)}(x_{\varphi(n)})$

puis écrire l'inégalité $(*_N)$ qu'on parvient à montrer en faisant tendre n vers l'infini dans $(*_{N,n})$, à N fixé.

6. Déduire de la question précédente que l = 0, puis que la convergence de (f_n) vers la fonction nulle est uniforme.

Exercice 19. Le but de cet exercice est de montrer le théorème de d'Alembert–Gauss : tout polynôme non-constant à coefficients complexes admet une racine complexe.

Soit P un polynôme non-constant à coefficients complexes.

- 1. Montrer que la fonction $f: \mathbf{C} \to \mathbf{R}$, $z \mapsto |P(z)|$ admet un minimum global. On note $z_0 \in \mathbf{C}$ un point tel que $|P(z_0)| = \min_{z \in \mathbf{C}} |P(z)|$.
- 2. Supposons que $P(z_0) \neq 0$. On définit $Q: \mathbb{C} \to \mathbb{C}, \ z \mapsto \frac{P(z_0+z)}{P(z_0)}$.
 - (a) Montrer qu'il existe $p, n \in \mathbf{N}^*$ deux entiers tels que $1 \leq p \leq n$, et $b_p, \dots, b_n \in \mathbf{C}$ tels que $Q(z) = 1 + \sum_{k=p}^{n} b_k z^k$ et $b_p \neq 0$.
 - (b) Soit r > 0 et $\varphi \in \mathbf{R}$ tels que $b_p = re^{i\varphi}$. Pour tout $\rho > 0$, on note $z_\rho = \rho e^{i(\pi \varphi)/p}$. Vérifier que si ρ est suffisamment petit, alors $|Q(z_\rho)| < 1$.
- 3. Conclure.