Licence de mathématiques

L3, parcours « enseignement » – analyse réelle

examen final

lundi 6 janvier 2025

durée 2H

Ni documents, ni calculatrices, ni téléphones, ni ordinateurs ne sont autorisés.

Exercice 1 Soit $u_0 = 3$ et $\forall n \geqslant 1$, $u_{n+1} = \frac{4u_n - 2}{u_n + 1}$.

- a) Montrer que pour tout $n \in \mathbb{N}$, $u_n > 2 \Rightarrow u_n > u_{n+1} > 2$.
- 1,5 b) En déduire que la suite (u_n) est convergente et trouver sa limite.
 - c) Montrer que la suite (x_n) définie par

$$\forall n \in \mathbb{N}, \ x_n = \frac{u_n - 1}{u_n - 2}$$

est géométrique.

2

1

1

d) En déduire u_n en fonction de n.

Exercice 2 a) La série $\sum_{n\geqslant 1} \frac{(-1)^{n-1}}{n}$ est-elle absolument convergente? *Justifier sa réponse*.

- b) On pose $\forall n \geq 1$, $S_n = \sum_{k=1}^n \frac{(-1)^{k-1}}{k}$. Montrer que la suite $(S_{2n})_{n \geq 1}$ est croissante et que la suite $(S_{2n-1})_{n \geq 1}$ est décroissante.
- **1** c) Montrer que pour tout $n \ge 1$, $S_{2n} \le S_{2n-1}$. En déduire que la série $\sum_{n \ge 1} \frac{(-1)^{n-1}}{n}$ converge.
 - d) En utilisant une formule de Taylor-Lagrange, montrer que

2,5
$$\forall n \ge 1, S_{2n} < \ln 2 < S_{2n-1}$$

et en déduire la somme $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}$.

e) Soient $(a_n)_{n\geqslant 1}$, $(b_n)_{n\geqslant 1}$ deux suites. On suppose que $\forall n\geqslant 1,\ a_n>0$. On suppose que $\sum_{n\geqslant 1}a_n$ converge. Montrer que si $a_n\sim b_n$, alors la série $\sum_{n\geqslant 1}b_n$ converge aussi.

- **2** f) Donner un contre-exemple si (a_n) n'est pas de signe constant.
- g) On suppose toujours que $\forall n \ge 1, a_n > 0, \sum_{n \ge 1} a_n$ converge et que $a_n \sim b_n$. Montrer que

$$\sum_{k=n+1}^{\infty} a_k \sim \sum_{k=n+1}^{\infty} b_k .$$

- ${\color{red} {\bf 1}} \quad \text{h)} \quad \text{En déduire que } \sum_{k=n+1}^{\infty} \frac{1}{k^2} \sim \frac{1}{n}.$
- i) On pose $\forall n \ge 1$, $\gamma_n = \ln n \sum_{k=1}^n \frac{1}{k}$.

 Montrer que $\gamma_{n+1} \gamma_n \sim \frac{1}{2n^2}$.
 - j) En déduire que la suite $(\gamma_n)_{n\geqslant 1}$ converge vers un réel γ , que

$$\sum_{k=1}^{n} \frac{1}{k} \sim \ln n$$

et que

$$\gamma - \gamma_n \sim \frac{1}{2n}$$
.

Exercice 3 Pour tout $x \ge 0$, soit $f(x) = \sqrt[3]{x^3 + x^2 + x}$.

- a) La fonction f est-elle dérivable en 0? Justifier sa réponse.
- b) Montrer que la fonction f admet une asymptote oblique en +∞, donner l'équation de l'asymptote et la position du graphe de f par rapport à cette droite au voisinage de l'infini.