L3 Mathématiques générales et applications Algèbre linéaire et bilinéaire, analyse matricielle

CONTRÔLE FINAL VENDREDI 10 JANVIER 2025 – DURÉE : 2H

Aucun document n'est autorisé.

Aucun appareil électronique (en particulier un téléphone ou une calculatrice) n'est autorisé.

Les réponses devront être rédigées et argumentées avec soin.

L'énoncé comporte 4 exercices indépendants.

Exercice 1. (Questions de cours)

- (1) Soit $M \in \mathcal{M}_n(\mathbb{C}), n \in \mathbb{N}^*$.
 - (a) Donner la définition de la norme subordonnée $||M||_1$.
 - (b) Montrer que $||M||_1 = \max_{1 \le j \le n} \sum_{i=1}^n |M_{i,j}|$.
- (2) Soit $N = \begin{pmatrix} i & 0 & 0 \\ 1 & -i & 0 \\ i & 0 & 0.1 \end{pmatrix}$.

Définir et calculer le conditionnement de N pour la norme subordonnée 1 sur $\mathcal{M}_3(\mathbb{C})$.

- (3) On considère une matrice $B \in \mathcal{M}_n(\mathbb{R})$, $n \in \mathbb{N}^*$, dont on suppose qu'elle admet une décomposition LU (sans permutation).
 - (a) Rappeler la définition de la décomposition LU vue en cours.
 - (b) On note $B = (b_{ij})$, $L = (\ell_{ij})$, $U = (u_{ij})$ et on considère toutes les sous-matrices principales $B_k = (b_{ij})_{1 \leq i,j \leq k}$, $L_k = (\ell_{ij})_{1 \leq i,j \leq k}$, $U_k = (u_{ij})_{1 \leq i,j \leq k}$, $k = 1, \ldots, n$.
 - (i) Montrer que, pour tout k = 1, ..., n, $B_k = L_k U_k$.
 - (ii) En déduire que si B est une matrice symétrique définie positive alors tous les coefficients diagonaux de U sont strictement positifs.
- (4) On considère la forme quadratique sur \mathbb{R}^2 définie par q(x,y) = -xy. Écrire q comme une combinaison linéaire de carrés de formes linéaires indépendantes sur \mathbb{R}^2 .

Exercice 2. On veut résoudre au sens des moindres carrés le système

$$D\left(\begin{array}{c} x\\y\end{array}\right) = \left(\begin{array}{c} 15\\0\\15\\0\end{array}\right) \quad \text{avec } D = \left(\begin{array}{cc} 2&1\\2&0\\1&1\\0&2\end{array}\right).$$

- (1) Écrire l'équation normale associée au problème aux moindres carrés.
- (2) En déduire une solution du problème aux moindres carrés et justifier qu'elle est unique.
- (3) Calculer la norme 2 du résidu, c'est-à-dire l'erreur d'approximation.
- (4) Que représente géométriquement cette quantité?

Exercice 3. On considère deux formes quadratiques q et q_0 sur \mathbb{R}^n , avec q_0 définie positive.

- (1) Montrer qu'il existe une base (u_1, \ldots, u_n) de \mathbb{R}^n orthonormée pour la forme q_0 .
- (2) On note φ la forme polaire de q. Rappeler sa définition.
- (3) Comment s'écrit la matrice $M_{(u_i)}(q)$ de q dans la base (u_1, \ldots, u_n) ?
- (4) Si (v_1, \ldots, v_n) est une autre base de \mathbb{R}^n orthonormée pour la forme q_0 , quelle propriété vérifie la matrice $P = \operatorname{Mat}_{(u_i),(v_i)}(\operatorname{Id})$ de passage de la base (u_1, \ldots, u_n) à la base (v_1, \ldots, v_n) ?
- (5) Soit $M_{(v_i)}(q)$ la matrice de q dans la base (v_1, \ldots, v_n) . Quelle relation lie $M_{(u_i)}(q)$ et $M_{(v_i)}(q)$?
- (6) En déduire que $\sum_{i=1}^{n} q(u_i) = \sum_{i=1}^{n} q(v_i)$.
- (7) Application: on prend maintenant n=2 et on considère dans le plan euclidien un triangle (OAB) avec O, A, B trois points non alignés. On choisit pour q le carré de la norme euclidienne canonique de \mathbb{R}^2 , i.e. $q(x) = ||x||^2$ pour $x \in \mathbb{R}^2$, et pour q_0 la forme quadratique dont la matrice dans la base $(\overrightarrow{OA}, \overrightarrow{OB})$ est la matrice identité. On note I le milieu du segment [AB] et φ_0 la forme polaire associée à q_0 .
 - (a) Déterminer $\varphi_0(\sqrt{2OI}, \sqrt{2OI})$, $\varphi_0(\frac{1}{\sqrt{2}}\overrightarrow{AB}, \frac{1}{\sqrt{2}}\overrightarrow{AB})$ et $\varphi_0(\sqrt{2OI}, \frac{1}{\sqrt{2}}\overrightarrow{AB})$.
 - (b) En déduire que $(\sqrt{2OI}, \frac{1}{\sqrt{2}}\overrightarrow{AB})$ est une base orthonormée pour q_0 .
 - (c) Déduire des questions précédentes la formule d'Apollonius $OA^2 + OB^2 = 2OI^2 + \frac{1}{2}AB^2$.

Exercice 4. L'objet de cet exercice est de comparer les méthodes de Jacobi et Gauss-Seidel pour les matrices tridiagonales.

Soit $n \in \mathbb{N}^*$ et $A = (a_{i,j})_{1 \leq i,j \leq n} \in \mathcal{M}_n(\mathbb{R})$ une matrice inversible et tridiagonale, c'est-à-dire que $a_{ij} = 0$ si |i-j| > 1. On considère la décomposition A = D - E - F, où D est la diagonale de A, (-E) sa partie triangulaire inférieure stricte et (-F) sa partie triangulaire supérieure stricte. On suppose que D est inversible et on note \mathcal{L}_J et \mathcal{L}_{GS} les matrices d'itération des méthodes de Jacobi et Gauss-Seidel pour la résolution numérique d'un système linéaire associé à la matrice A.

- (1) Justifier que, sous les hypothèses de l'exercice, les matrices \mathcal{L}_J et \mathcal{L}_{GS} sont bien définies.
- (2) Rappeler la définition des méthodes de Jacobi et de Gauss-Seidel. Donner une condition nécessaire et suffisante de convergence pour chacune de ces méthodes.
- (3) Déterminer les matrices \mathcal{L}_J et \mathcal{L}_{GS} pour la matrice particulière

$$A = \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix}$$

et calculer leurs rayons spectraux. En déduire la convergence des méthodes de Jacobi et de Gauss-Seidel pour la résolution numérique du système linéaire Ax = b où $b \in \mathbb{R}^2$.

(4) On revient au cas général d'une matrice $A = (a_{i,j})_{1 \leq i,j \leq n} \in \mathcal{M}_n(\mathbb{R})$ inversible et tridiagonale telle que \mathcal{L}_J et \mathcal{L}_{GS} soient bien définies. Montrer que $\lambda \in \mathbb{C}$ est une valeur propre de \mathcal{L}_J si et seulement s'il existe un vecteur complexe $x = (x_1, \ldots, x_n) \in \mathbb{C}^n$, $x \neq 0$, tel que

$$-a_{p,p-1}x_{p-1} - a_{p,p+1}x_{p+1} = \lambda a_{p,p}x_p, \quad p = 1, \dots, n,$$

avec la convention $x_0 = x_{n+1} = a_{n,n+1} = a_{1,0} = 0$.

(5) Soit $y=(y_1,\ldots,y_n)\in\mathbb{C}^n$ défini par $y_p=\lambda^p x_p,\ p=1,\ldots,n,$ où $\lambda\in\mathbb{C}^*$ est une valeur propre non nulle de \mathcal{L}_J et $x=(x_1,\ldots,x_n)\in\mathbb{C}^n$ un vecteur propre associé. Montrer que

$$-\lambda^2 a_{p,p-1} y_{p-1} - a_{p,p+1} y_{p+1} = \lambda^2 a_{p,p} y_p, \quad p = 1, \dots, n,$$

avec la convention $y_0 = y_{n+1} = a_{n,n+1} = a_{1,0} = 0$.

- (6) Soit $\lambda \in \mathbb{C}^*$. Montrer que λ est une valeur propre de \mathcal{L}_J si et seulement si λ^2 est une valeur propre de \mathcal{L}_{GS} .
- (7) En déduire que $\rho(\mathcal{L}_{GS}) = [\rho(\mathcal{L}_J)]^2$, où $\rho(\cdot)$ désigne le rayon spectral. Quelle conclusion peut-on en tirer sur la vitesse de convergence des méthodes de Jacobi et de Gauss-Seidel pour les matrices tridiagonales?
- (8) Montrer que λ est une valeur propre de \mathcal{L}_J si et seulement si $-\lambda$ est aussi valeur propre.