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L’énoncé comporte 4 exercices indépendants.

Exercice 1. (Questions de cours)
(1) Soit M ∈Mn(C), n ∈ N∗.

(a) Donner la définition de la norme subordonnée |||M |||1.
|||M |||1 = supx∈Cn,x 6=0

‖Mx‖1
‖x‖1 où ‖.‖1 désigne la norme 1 sur Cn, i.e. ‖(x1, . . . , xn)‖1 =∑n

k=1 |xk|

(b) Montrer que |||M |||1 = max
1≤j≤n

n∑
i=1

|Mi,j |.

On a pour tout x = (x1, . . . , xn) ∈ Cn,Mx = (
∑
jMi,jxj)i donc ‖Mx‖1 =

∑
i |
∑
jMi,jxj | ≤∑

i

∑
j |Mi,j xj | =

∑
i

∑
j |Mi,j | |xj | =

∑
j(
∑
i |Mi,j |)|xj | ≤ (max1≤j≤n

∑n
i=1 |Mi,j |)

∑
j |xj | =

(max1≤j≤n
∑n
i=1 |Mi,j |) ‖x‖1 donc |||M |||1 ≤ max1≤j≤n

∑n
i=1 |Mi,j |.

Réciproquement, soit j0 tel que
∑n
i=1 |Mi,j0 | = max1≤j≤n

∑n
i=1 |Mi,j | et soit x̄ =

(x1, . . . , xn) tel que xj = 0 pour j 6= j0 et xj0 = 1. On a ‖x̄‖1 = 1 et Mx̄ = (Mi,j0)i
donc ‖Mx̄‖1 =

∑n
i=1 |Mi,j0 | = max1≤j≤n

∑n
i=1 |Mi,j |. Comme ‖x̄‖1 = 1, on a ‖Mx̄‖1 =

‖Mx̄‖1
‖x̄‖1 ≤ |||M |||1, d’où max1≤j≤n

∑n
i=1 |Mi,j | ≤ |||M |||1

(2) Soit N =

i 0 0
1 −i 0
i 0 0.1

.

Définir et calculer le conditionnement de N pour la norme subordonnée 1 surM3(C).
La matrice N est triangulaire et tous ses coefficients diagonaux sont non nuls, donc elle

est inversible. On inverse facilement N en résolvant par méthode de descente le système

N

x1

x2

x3

 =

y1

y2

y3

. On trouve N−1 =

 −i 0 0
−1 i 0
−10 0 10

. Le conditionnement de N pour la

norme subordonnée ||| · |||1 sur M3(C) est cond1(N) = |||N |||1 |||N−1|||1. On trouve grâce à la
question précédente |||N |||1 = 3 et |||N−1|||1 = 12 donc cond1(N) = 36.

(3) On considère une matrice B ∈Mn(R), n ∈ N∗, dont on suppose qu’elle admet une décom-
position LU (sans permutation).
(a) Rappeler la définition de la décomposition LU vue en cours.

B = LU avec L triangulaire inférieure à diagonale unité et U triangulaire supérieure.
(b) On note B = (bij), L = (`ij), U = (uij) et on considère toutes les sous-matrices princi-

pales Bk = (bij)1≤i,j≤k, Lk = (`ij)1≤i,j≤k, Uk = (uij)1≤i,j≤k, k = 1, . . . , n.
(i) Montrer que, pour tout k = 1, . . . , n, Bk = LkUk.

Pour tout k ∈ {1, . . . , n} et 1 ≤ i, j,≤ k, (Bk)i,j = Bi,j =
∑

1≤`≤n Li,`U`,j =∑
j≤`≤i Li,`U`,j car L est triangulaire inférieure et U est triangulaire supérieure

(avec la convention qu’une somme vide est nulle). Or 1 ≤ i, j,≤ k donc (Bk)i,j =∑
1≤`≤k Li,`U`,j =

∑
1≤`≤k(Lk)i,`(Uk)`,j d’où Bk = LkUk.

1
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(ii) En déduire que si B est une matrice symétrique définie positive alors tous les coeffi-
cients diagonaux de U sont strictement positifs.
Par le critère de Sylvester, on sait que tous les déterminants mineurs principaux
det(Bk), k = 1, . . . , n, sont strictement positifs. D’après la question précédente, on a
pour tout k = 1, . . . , n, det(Bk) = det(LkUk) = det(Lk) det(Uk) = Πk

i=1uii car L est
triangulaire à diagonale unité et U est triangulaire. Pour k = 1, on a u11 = det(B1) >

0. Pour tout 1 < k ≤ n, on a Πk
i=1uii = det(Bk) > 0 et Πk

i=1uii = ukkΠk−1
i=1 uii =

ukk det(Bk−1). Or det(Bk−1) > 0 donc ukk > 0.
(4) On considère la forme quadratique sur R2 définie par q(x, y) = −xy. Écrire q comme une

combinaison linéaire de carrés de formes linéaires indépendantes sur R2.
On a, pour tout (x, y) ∈ R2, q(x, y) = 1

4 [(x − y)2 − (x + y)2] donc q = 1
4 [`21 − `22] où les

deux formes `1 : (x, y) 7→ x− y et `2 : (x, y) 7→ x+ y sont linéaires et indépendantes.

Exercice 2. On veut résoudre au sens des moindres carrés le système

D

(
x
y

)
=


15
0
15
0

 avec D =


2 1
2 0
1 1
0 2

 .

(1) Écrire l’équation normale associée au problème aux moindres carrés.

C’est l’équation DtD

(
x
y

)
= Dt


15
0
15
0

, donc après calcul
(

9 3
6 3

)(
x
y

)
=

(
45
30

)
.

(2) En déduire une solution du problème aux moindres carrés et justifier qu’elle est unique.
DtD est inversible donc l’équation normale admet une unique solution : le vecteur (4, 3).

Or, par un théorème du cours, un vecteur est une solution du problème aux moindre carrés
si et seulement s’il est solution de l’équation normale donc le problème aux moindres carrés
admet (x0, y0) = (4, 3) comme unique solution.

(3) Calculer la norme 2 du résidu, c’est-à-dire l’erreur d’approximation.

Le résidu est D
(
x0

y0

)
−


15
0
15
0

 =


−4
8
−8
6

. Sa norme euclidienne est
√

180 = 6
√

5.

(4) Que représente géométriquement cette quantité ?

Cette quantité coïncide avec min(x,y) ‖D
(
x
y

)
−


15
0
15
0

 ‖2, c’est donc la distance (pour la

norme euclidienne de R4) du vecteur


15
0
15
0

 au sous-espace vectoriel Im(D) engendré par

les colonnes de D.



CONTRÔLE FINAL VENDREDI 10 JANVIER 2025 – DURÉE : 2H CORRECTION 3

Exercice 3. On considère deux formes quadratiques q et q0 sur Rn, avec q0 définie positive.
(1) Montrer qu’il existe une base (u1, . . . , un) de Rn orthonormée pour la forme q0.

Méthode 1 : comme q0 est une forme quadratique sur Rn, il existe d’après un théo-
rème du cours une base (ũ1, . . . , ũn) de Rn q0-orthogonale. Comme q0 est définie positive,
q0(ũi) > 0 pour tout i donc on peut définir ui = ũi/

√
q0(ũi) et (u1, . . . , un) est une base

q0-orthonormée.
Méthode 2 : q0 étant définie positive, sa forme polaire ϕ0 définit un produit scalaire sur

Rn. On choisit une base quelconque de Rn, on l’orthonormalise par Gram-Schmidt, et on
obtient une base (u1, . . . , un) q0-orthonormée.

(2) On note ϕ la forme polaire de q. Rappeler sa définition.
C’est l’unique forme bilinéaire symétrique vérifiant ϕ(x, x) = q(x) pour tout x ∈ Rn.

(3) Comment s’écrit la matrice M(ui)(q) de q dans la base (u1, . . . , un) ?
C’est la matrice dont l’élément (i, j) est ϕ(ui, uj). En particulier, les éléments diagonaux

sont les ϕ(ui, ui) = q(ui).
(4) Si (v1, . . . , vn) est une autre base de Rn orthonormée pour la forme q0, quelle propriété vérifie

la matrice P = Mat(ui),(vi)(Id) de passage de la base (u1, . . . , un) à la base (v1, . . . , vn) ?
La forme polaire ϕ0 de q0 définit un produit scalaire sur Rn. La matrice de passage

entre deux bases orthonormées pour ce produit scalaire est, par théorème, une matrice
orthogonale. On en déduit que P ∈ On(R), i.e. P est inversible et P t = P−1.

(5) Soit M(vi)(q) la matrice de q dans la base (v1, . . . , vn). Quelle relation lie M(ui)(q) et
M(vi)(q) ?

Comme il s’agit des matrices de la même forme quadratique exprimées dans deux bases
différentes, on sait par un résultat de cours qu’elles sont liées par la relation de congruence
M(vi)(q) = P tM(ui)(q)P .

(6) En déduire que
∑n
i=1 q(ui) =

∑n
i=1 q(vi).

On a
∑n
i=1 q(vi) = trace(M(vi)(q)) = trace(P tM(ui)(q)P ) = trace(M(ui)(q)P P

t) =

trace(M(ui)(q)) =
∑n
i=1 q(ui) car P P t = In.

(7) Application : on prend maintenant n = 2 et on considère dans le plan euclidien un triangle
(OAB) avec O,A,B trois points non alignés. On choisit pour q le carré de la norme eucli-
dienne canonique de R2, i.e. q(x) = ‖x‖2 pour x ∈ R2, et pour q0 la forme quadratique dont
la matrice dans la base (

−→
OA,
−−→
OB) est la matrice identité. On note I le milieu du segment

[AB] et ϕ0 la forme polaire associée à q0.

(a) Déterminer ϕ0(
√

2
−→
OI,
√

2
−→
OI), ϕ0( 1√

2

−−→
AB, 1√

2

−−→
AB) et ϕ0(

√
2
−→
OI, 1√

2

−−→
AB).

On a ϕ0(
√

2
−→
OI,
√

2
−→
OI) = 2ϕ0(

−→
OI,
−→
OI) = 2ϕ0(

−−→
OA+

−−→
OB

2 ,
−−→
OA+

−−→
OB

2 ) = 1
2q0(
−→
OA +

−−→
OB). On

développe :
1

2
q0(
−→
OA+

−−→
OB) =

1

2
q0(
−→
OA) + ϕ0(

−→
OA,
−−→
OB) +

1

2
q0(
−−→
OB)

Comme la matrice de q0 dans la base (
−→
OA,
−−→
OB) est la matrice identité, on a q0(

−→
OA) =

q0(
−−→
OB) = 1 et ϕ0(

−→
OA,
−−→
OB) = 0. On en déduit que

ϕ0(
√

2
−→
OI,
√

2
−→
OI) =

1

2
(q(
−→
OA) + q(

−−→
OB)) = 1

On procède de façon similaire pour obtenir que

ϕ0

(
1√
2

−−→
AB,

1√
2

−−→
AB

)
=

1

2
ϕ0

(−−→
OB −

−→
OA,
−−→
OB −

−→
OA
)

=
1

2
(q(
−−→
OB) + q(

−→
OA)) = 1,

ϕ0

(√
2
−→
OI,

1√
2

−−→
AB

)
= ϕ0

(−→
OA+

−−→
OB

2
,
−−→
OB −

−→
OA

)
=

1

2
(q(
−−→
OB)− q(

−→
OA)) = 0.
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(b) En déduire que (
√

2
−→
OI, 1√

2

−−→
AB) est une base orthonormée pour q0.

C’est une conséquence immédiate des calculs de la question précédente.
(c) Déduire des questions précédentes la formule d’Apollonius OA2 +OB2 = 2OI2 + 1

2AB
2.

(
−→
OA,
−−→
OB) et (

√
2
−→
OI, 1√

2

−−→
AB) sont deux bases q0-orthonormées. Il découle de la question

(6) que q(
−→
OA) + q(

−−→
OB) = q(

√
2
−→
OI) + q( 1√

2

−−→
AB) = 2q(

−→
OI) + 1

2q(
−−→
AB). C’est exactement

la formule voulue puisque q est le carré de la norme euclidienne sur R2.

Exercice 4. L’objet de cet exercice est de comparer les méthodes de Jacobi et Gauss-Seidel pour
les matrices tridiagonales.
Soit n ∈ N∗ et A = (ai,j)1≤i,j≤n ∈ Mn(R) une matrice inversible et tridiagonale, c’est-à-dire que
aij = 0 si |i− j| > 1. On considère la décomposition A = D −E − F , où D est la diagonale de A,
(−E) sa partie triangulaire inférieure stricte et (−F ) sa partie triangulaire supérieure stricte.
On suppose que D est inversible et on note LJ et LGS les matrices d’itération des méthodes de
Jacobi et Gauss-Seidel pour la résolution numérique d’un système linéaire associé à la matrice A.

(1) Justifier que, sous les hypothèses de l’exercice, les matrices LJ et LGS sont bien définies.
Par hypothèse, D est inversible, donc la matrice LJ = D−1(E + F ) est bien définie. La

matrice D −E est triangulaire et −E est triangulaire inférieure stricte donc det(D −E) =
det(D) 6= 0. La matrice LGS = (D − E)−1F est donc bien définie.

(2) Rappeler la définition des méthodes de Jacobi et de Gauss-Seidel. Donner une condition
nécessaire et suffisante de convergence pour chacune de ces méthodes.

Pour résoudre numériquement le système Ax = b, on se donne un vecteur initial x0 et
on considère les suites définies par xk+1 = LJxk + D−1b (méthode de Jacobi) ou xk+1 =
LGSxk + (D−E)−1b (méthode de Gauss-Seidel). Ces méthodes convergent quel que soit le
point initial x0 si et seulement si le rayon spectral des matrices d’itération LJ ou LGS est
< 1.

(3) Déterminer les matrices LJ et LGS pour la matrice particulière

A =

(
2 −1
−1 2

)
et calculer leurs rayons spectraux. En déduire la convergence des méthodes de Jacobi et de
Gauss-Seidel pour la résolution numérique du système linéaire Ax = b où b ∈ R2.

On a D =

(
2 0
0 2

)
, −E =

(
0 0
−1 0

)
et −F =

(
0 −1
0 0

)
donc LJ = D−1(E + F ) =(

0 1
2

1
2 0

)
qui a pour valeurs propres − 1

2 ,
1
2 donc son rayon spectral est 1

2 . On a ensuite

LGS = (D−E)−1F =

(
0 1

2
0 1

4

)
qui a pour valeurs propres 0, 1

4 donc son rayon spectral est
1
4 . Les deux méthodes de Jacobi et de Gauss-Seidel appliquées à la matrice D convergent.

(4) On revient au cas général d’une matrice A = (ai,j)1≤i,j≤n ∈ Mn(R) inversible et tridiago-
nale telle que LJ et LGS soient bien définies. Montrer que λ ∈ C est une valeur propre de
LJ si et seulement s’il existe un vecteur complexe x = (x1, . . . , xn) ∈ Cn, x 6= 0, tel que

−ap,p−1xp−1 − ap,p+1xp+1 = λap,pxp, p = 1, . . . , n,

avec la convention x0 = xn+1 = an,n+1 = a1,0 = 0.
λ ∈ C est une valeur propre de LJ si et seulement s’il existe x = (x1, . . . , xn) ∈ Cn, x 6= 0

tel que D−1(E+F )x = λx ce qui équivaut à (E+F )x = λDx qu’on vérifie être l’expression
matricielle des égalités demandées.

(5) Soit y = (y1, . . . , yn) ∈ Cn défini par yp = λpxp, p = 1, . . . , n, où λ ∈ C∗ est une valeur
propre non nulle de LJ et x = (x1, . . . , xn) ∈ Cn un vecteur propre associé. Montrer que

−λ2ap,p−1yp−1 − ap,p+1yp+1 = λ2ap,pyp, p = 1, . . . , n,
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avec la convention y0 = yn+1 = an,n+1 = a1,0 = 0.
On part des égalités démontrées à la question précédente :

−ap,p−1xp−1 − ap,p+1xp+1 = λap,pxp, p = 1, . . . , n,

qui équivalent (comme λ 6= 0) à

−ap,p−1
yp−1

λp−1
− ap,p+1

yp+1

λp+1
= λap,p

yp
λp
, p = 1, . . . , n.

On multiplie, pour chaque p, la ligne d’indice p par λp+1, et on obtient les égalités voulues.
On observe que ces égalités correspondent à l’égalité matricielle (λ2E + F )y = λ2Dy.

(6) Soit λ ∈ C∗. Montrer que λ est une valeur propre de LJ si et seulement si λ2 est une valeur
propre de LGS .

Si λ ∈ C∗ est valeur propre de LJ et x est un vecteur propre associé, on définit le vecteur
y = (y1, . . . , yn) ∈ Cn par yp = λpxp, p = 1, . . . , n et on déduit de la question précédente
que (λ2E + F )y = λ2Dy donc (D − E)−1Fy = λ2y. Comme y n’est pas nul, on en déduit
que λ2 est une valeur propre de LGS .

Réciproquement, si λ2 ∈ C∗ est une valeur propre de LGS et y un vecteur propre associé,
on définit le vecteur x = (x1, . . . , xn) ∈ Cn par xp =

yp
λp , p = 1, . . . , n et on obtient grâce à

ce qui précède que (E+F )x = λDx donc D−1(E+F )x = λx. Comme x est non nul, on en
déduit que λ est valeur propre de LJ .

(7) En déduire que ρ(LGS) = [ρ(LJ)]
2, où ρ(·) désigne le rayon spectral. Quelle conclusion

peut-on en tirer sur la vitesse de convergence des méthodes de Jacobi et de Gauss-Seidel
pour les matrices tridiagonales ?

D’après ce qui précède, les rayons spectraux sont soit tous les deux nuls, soit tous les deux
non nuls. S’ils ne sont pas nuls, on déduit de la question précédente que ρ(LGS) = [ρ(LJ)]

2

(qui est évidemment vrai aussi s’ils sont nuls). En effet, soit µ 6= 0 une valeur propre de LGS
telle que |µ| = ρ(LGS). D’après la question précédente, si λ ∈ C vérifie λ2 = µ alors λ est
une valeur propre de LJ . Comme |λ| ≤ ρ(LJ) et ρ(LGS) = |µ| = |λ2| = |λ|2 on en déduit
que ρ(LGS) ≤ [ρ(LJ)]

2.
Réciproquement, si λ est une valeur propre non nulle de LJ telle que |λ| = ρ(LJ) alors

λ2 est une valeur propre de LGS et [ρ(LJ)]
2

= |λ|2 = |λ2| ≤ ρ(LGS).
On a donc bien

ρ(LGS) = [ρ(LJ)]
2

On en déduit que les deux méthodes convergent simultanément ou divergent simultanément.
Et si elles convergent, les deux rayons spectraux sont < 1 et la méthode de Gauss-Seidel
converge donc beaucoup plus vite que celle de Jacobi.

(8) Montrer que λ est une valeur propre de LJ si et seulement si −λ est aussi valeur propre.
C’est évident si λ = 0. Lorsque λ ∈ C∗, on a, d’après la question (6),

λ v.p. de LJ ⇔ λ2 v.p. de LGS ⇔ (−λ)2 v.p. de LGS ⇔ −λ v.p. de LJ .


