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Aucun appareil électronique (en particulier un téléphone ou une calculatrice) n’est autorisé.
Les réponses devront étre rédigées et argumentées avec soin.

L’énoncé comporte 4 exercices indépendants.

Exercice 1. (Questions de cours)
(1) Soit M € M, (C), n € N*.

(a) Donner la définition de la norme subordonnée ||M|;.

IM[ly = sup,ecn pio 05 o |||y désigne la norme 1 sur C, ie. ||(z1,....2,)[1 =

Y [EIR
S0 fo
n
(b) Montrer que ||[M]|; = max Z |M; ;.
1<j<n &

Onapour tout x = (z1,...,2,) € C", Mo = (3, M; jx;); donc |[Mzxlly = 32, | >0, M ja;| <
D2 Mg sl =370 57 M ey | = 32530 1M j])ls] < (maxy<jcn 300y [ M) 32 o] =
(maxi<j<n 325y [Mijl) @]l done [ My < maxi<jcn 325 [Mi)-

Réciproquement, soit jo tel que Y. | [M; | = maxi<j<n > oy |M; ;| et soit & =
(z1,...,2y,) tel que z; = 0 pour j # jo et zj, = 1. On a ||Z||; = 1 et MZ = (M, ;,):

done [|Mz|ly = 320 [Mi jo| = maxicj<n 35 [Mi ;] Comme [|Z]|y =1, on a [ M2Z], =
et < UM, ot maxi<jen 350y [Migl < |M [

zlh - =

i 0 0
(2) Soit N= {1 —i 0
i 0 01

Définir et calculer le conditionnement de N pour la norme subordonnée 1 sur M3(C).

La matrice N est triangulaire et tous ses coefficients diagonaux sont non nuls, donc elle
est inversible. On inverse facilement N en résolvant par méthode de descente le systéme

Iq U1 —1 0 0

Nlazs| =(wy2]. Ontrouve N"' = | —1 i 0 |. Le conditionnement de N pour la
I3 Y3 —10 0 10

norme subordonnée || - [|; sur M3(C) est condy(N) = [|[N||1 [N "!]l;. On trouve grace a la

question précédente || N1 = 3 et [N~y = 12 donc cond; (N) = 36.
n considére une matrice B € M,,(R), n € N*, dont on suppose qu’elle admet une décom-
3) O ide trice B € M, (R N*, dont ‘elle admet dé
position LU (sans permutation).
(a) Rappeler la définition de la décomposition LU vue en cours.
B = LU avec L triangulaire inférieure a diagonale unité et U triangulaire supérieure.
(b) On note B = (b;;), L = (4;;), U = (u;;) et on considére toutes les sous-matrices princi-
pales By, = (bijh<ij<ks L = (bihi<ij<n: Us = (wijh<ij<r, k=1,...,n.
(i) Moutrer que, pour tout k =1,...,n, By = LyUy.
Pour tout k € {1,...,”} et 1 < 14,5, < k, (Bk)77j = B,L'_’j = Zlg(gnLi-[UE»j =
> j<i<iLieUp; car L est triangulaire inférieure et U est triangulaire supérieure
(avec la convention qu’une somme vide est nulle). Or 1 < ¢,5, < k donc (By),;,; =

Dor<o<k LieUej = 321 <o (Li)ie(Ug)e,j d'ott By, = LUy
1
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(ii) En déduire que si B est une matrice symétrique définie positive alors tous les coeffi-
cients diagonaux de U sont strictement positifs.
Par le critére de Sylvester, on sait que tous les déterminants mineurs principaux
det(Bg), k =1,...,n, sont strictement positifs. D’aprés la question précédente, on a
pour tout k = 1,...,n, det(By) = det(LyUy) = det(Ly) det(Uy) = I¥_ u;; car L est
triangulaire & diagonale unité et U est triangulaire. Pour k = 1, on a uy; = det(B;) >
0. Pour tout 1 < k < n, on a II¥_ ju;; = det(By) > 0 et ¥ ju;; = ukkﬂfz_llum =
ULk dCt(Bk_l). Or dCt(Bk_l) > 0 donc ug, > 0.

(4) On considére la forme quadratique sur R? définie par ¢(z,y) = —ay. Ecrire ¢ comme une

combinaison linéaire de carrés de formes linéaires indépendantes sur R?.
On a, pour tout (z,y) € R?, q(z,y) = i[(T —y)? — (z +y)?] donc ¢ = i[ﬁ% — 2] ot les

deux formes /1 : (z,y) — x —y et o : (x,y) — = + y sont linéaires et indépendantes.

Exercice 2. On veut résoudre au sens des moindres carrés le systéme

15 2 1

T 0 2 0
D<y>_ 15 avec D = 11
0 0 2

(1) Ecrire I’équation normale associée au probléme aux moindres carrés.

15

‘ost éanati t LL‘itO AnTOS Cs 9355*45
C’est ’équation D* D (y) =D 15 | donc apres calcul (6 3> (y) = <30 .
0

(2) En déduire une solution du probléme aux moindres carrés et justifier qu’elle est unique.
D' D est inversible donc 'équation normale admet une unique solution : le vecteur (4, 3).
Or, par un théoréme du cours, un vecteur est une solution du probléme aux moindre carrés
si et seulement s’il est solution de ’équation normale donc le probléme aux moindres carrés
admet (z0,y0) = (4,3) comme unique solution.

(3) Calculer la norme 2 du résidu, c’est-a-dire 'erreur d’approximation.

15 —4
Le résidu est D <Z§> — 105 = _88 . Sa norme euclidienne est /180 = 6+/5.
0 6
(4) Que représente géométriquement cette quantité ?
15
Cette quantité coincide avec min, ) || D (Zj) _ 105 |l2, ¢’est donc la distance (pour la
0
15
norme euclidienne de R*) du vecteur 105 au sous-espace vectoriel Im(D) engendré par
0

les colonnes de D.
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Exercice 3. On considére deux formes quadratiques ¢ et gy sur R™, avec gy définie positive.

(1) Montrer qu’il existe une base (u1,...,u,) de R™ orthonormée pour la forme gp.

3

Méthode 1 : comme g est une forme quadratique sur R™, il existe d’aprés un théo-
réme du cours une base (ay,...,a,) de R™ go-orthogonale. Comme ¢ est définie positive,
qo(@;) > 0 pour tout i donc on peut définir u; = 4;/+/qo(%;) et (u1,...,u,) est une base

qo-orthonormée.

Méthode 2 : gy étant définie positive, sa forme polaire g définit un produit scalaire sur
R™. On choisit une base quelconque de R”, on l'orthonormalise par Gram-Schmidt, et on

obtient une base (u1,...,u,) go-orthonormée.

(2) On note ¢ la forme polaire de ¢q. Rappeler sa définition.

C’est I'unique forme bilinéaire symétrique vérifiant ¢(z, x) = ¢(x) pour tout x € R™.

(3) Comment s’écrit la matrice M(,,)(¢) de ¢ dans la base (u1,...,u,)?

C’est la matrice dont I’élément (i, j) est ¢(u;, u;). En particulier, les éléments diagonaux

sont les ¢(u;,u;) = q(u;).

(4) Si(v1,...,vy,) est une autre base de R orthonormée pour la forme ¢g, quelle propriété vérifie

la matrice P = Mat ) (v,)(Id) de passage de la base (u1,...,u,) a la base (vi,...,v,) 7

La forme polaire ¢y de qo définit un produit scalaire sur R”. La matrice de passage
entre deux bases orthonormées pour ce produit scalaire est, par théoréme, une matrice

orthogonale. On en déduit que P € O,(R), i.c. P est inversible et P* = P~

(5) Soit M(,,)(¢q) la matrice de ¢ dans la base (vi,...,v,). Quelle relation lie M,,(q) et

Comme il s’agit des matrices de la méme forme quadratique exprimées dans deux bases
différentes, on sait par un résultat de cours qu’elles sont liées par la relation de congruence

A[(m)(q) =P Aj(ul)(q) P.
(6) En déduire que Y7, q(u;) = >, q(v;).

On a Z?’:l q(v;) = tracc(]ﬂ(vi)(q)) = trace(P! M,,(q) P) = tracc(A/[(ui)(q)PPL)

trace(My,)(q)) = > q(u;) car P P* = I,.

(7) Application : on prend maintenant n = 2 et on considére dans le plan euclidien un triangle
(OAB) avec O, A, B trois points non alignés. On choisit pour ¢ le carré de la norme eucli-
dienne canonique de R?, i.e. ¢(z) = ||z|* pour z € R?, et pour go la forme quadratique dont

la matrice dans la base (Wl, O?) est la matrice identité. On note I le milieu du segment

[AB] et g la forme polaire associée a qo.

(a) Déterminer (po(ﬂa, \/507), god\%ﬁ, \%z@) et <p0(\/§07, \%zﬁ)

On a wo(ﬂa, \/504}) = 2990((7[},0_[}) = 2@0(@, @) = %qo((jzl + O?) On

développe :
11— 1 — — 1
50(04 + 0B) = 5a0(0A) + 90(O4,0B) + ;00(0B)

—

—
Comme la matrice de gy dans la base (OA, O?) est la matrice identité, on a ¢o(OA) =

qo(@) =1let 900((721,0?) = 0. On en déduit que
#0(v/201,v/201) = %(q(O_f‘l) +q(OB)) =1

On procéde de fagon similaire pour obtenir que

1 1 1 — — 1 —
- (ﬂ‘@)’ ﬂﬁ) — %0 (0B ~ 04,08 - 04) = S (a(0B) + q(0A)) = 1,

.
oo (VEOL - 08) = oo <O‘4§@>E§ ﬁ) ~ 5(@(OB) — (0A)) =0,
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(b) En déduire que (\/507 , %E) est une base orthonormée pour go.
C’est une conséquence immeédiate des calculs de la question précédente.

(c) Déduire des questions précédentes la formule d’Apollonius QA% +0B? = 201?% + %ABQ.
((ﬁ, O@) et (\/557 , %E ) sont deux bases gg-orthonormeées. Il découle de la question
(6) que q(071) +¢(OB) = q(ﬂ(ﬁ) + (1(\%1@) = 2q(()7) + %q(zﬁ) C’est exactement

la formule voulue puisque ¢ est le carré de la norme euclidienne sur R2.

Exercice 4. L’objet de cet exercice est de comparer les méthodes de Jacobi et Gauss-Seidel pour
les matrices tridiagonales.

Soit n € N* et A = (a;,;)1<ij<n € Mu(R) une matrice inversible et tridiagonale, c’est-a-dire que
a;j = 0si |i — j| > 1. On considére la décomposition A = D — E — F, o D est la diagonale de A,
(—FE) sa partie triangulaire inférieure stricte et (—F) sa partie triangulaire supérieure stricte.

On suppose que D est inversible et on note L; et Lgg les matrices d’itération des méthodes de
Jacobi et Gauss-Seidel pour la résolution numérique d’un systéme linéaire associé a la matrice A.

(1) Justifier que, sous les hypothéses de l'exercice, les matrices £ et Lgg sont bien définies.

Par hypothése, D est inversible, donc la matrice £L; = D~'(E + F) est bien définie. La
matrice D — F est triangulaire et —F' est triangulaire inférieure stricte donc det(D — E) =
det(D) # 0. La matrice Lgs = (D — E)~1F est donc bien définie.

(2) Rappeler la définition des méthodes de Jacobi et de Gauss-Seidel. Donner une condition
nécessaire et suffisante de convergence pour chacune de ces méthodes.

Pour résoudre numériquement le systéme Az = b, on se donne un vecteur initial xq et
on considére les suites définies par zx41 = Lyx) + D~ 'b (méthode de Jacobi) ou xp 1 =
Laszr + (D — E)™1b (méthode de Gauss-Seidel). Ces méthodes convergent quel que soit le
point initial zg si et seulement si le rayon spectral des matrices d’itération L£; ou Lgg est
<1

(3) Déterminer les matrices L et Lgg pour la matrice particuliére

a=(2 )

et calculer leurs rayons spectraux. En déduire la convergence des méthodes de Jacobi et de
Gauss-Seidel pour la résolution numérique du systéme linéaire Az = b o b € R?.

(20 (0 0 - (0 -1 o -~
OnaD-(O 2),—E—<1 O)et F—(O O)dOIICL:J—D (E+F) =

1
8 qui a pour valeurs propres —%, % donc son rayon spectral est % On a ensuite

Y
W= O

1

0 5 .
Los=(D—-E)"'F = (0 %) qui a pour valeurs propres 0, i donc son rayon spectral est
1
i. Les deux méthodes de Jacobi et de Gauss-Seidel appliquées a la matrice D convergent.
(4) On revient au cas général d’une matrice A = (a; ;)1<i j<n € My (R) inversible et tridiago-
nale telle que L; et Lgg soient bien définies. Montrer que A € C est une valeur propre de
Ly si et seulement s’il existe un vecteur complexe z = (z1,...,z,) € C*, x # 0, tel que

—Opp-1Tp—1 = Oppp1Tps1 = AdppTp, P=1,...,m,
avec la convention o = Tp41 = appy1 = a1,0 = 0.

A € C est une valeur propre de L si et seulement §'il existe x = (21,...,2,) € C*, 2 #0
tel que D™} (E+ F)z = Az ce qui équivaut & (E+ F)x = ADx qu’on vérifie étre I’expression
matricielle des égalités demandées.

(5) Soit y = (y1,-..,yn) € C™ défini par y, = Mz, p =1,...,n, ot A € C* est une valeur
propre non nulle de L et z = (z1,...,2,) € C" un vecteur propre associé. Montrer que

2 2
=A% pp—1Yp—1 — App+1Yp+1 = AN ppYp, P=1,...,m,
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(6)

(8)

avec la convention Yy = Yn41 = apnt1 = a1,0 = 0.
On part des égalités démontrées a la question précédente :

—Opp—1Tp—1 — Oppp1Tpt1 = Adpplp, P=1,...,n,
qui équivalent (comme A # 0) a

Yp—1 Yp+1 Yp _
7ap1p_17p_1 — ap"p—"_liAp-‘rl = /\ap_,pﬁ, p= 1, ceey N

On multiplie, pour chaque p, la ligne d’indice p par AP*!, et on obtient les égalités voulues.
On observe que ces égalités correspondent & I'égalité matricielle (\2E + F)y = A2 Dy.

Soit A € C*. Montrer que \ est une valeur propre de L si et seulement si A? est une valeur
propre de Lgs.

Si A € C* est valeur propre de L et x est un vecteur propre associé, on définit le vecteur
y=(y1,---,yn) € C" par y, = NWzp, p=1,...,n et on déduit de la question précédente
que (A2E + F)y = A2Dy donc (D — E)~'Fy = \?y. Comme y n’est pas nul, on en déduit
que A\? est une valeur propre de Lgg.

Réciproquement, si A2 € C* est une valeur propre de Lgg et y un vecteur propre associé,
on définit le vecteur « = (z1,...,2,) € C" par z, = %, p=1,...,n et on obtient grace a
ce qui précéde que (E + F)z = ADx donc D™Y(E + F)x = Az. Comme z est non nul, on en
déduit que A est valeur propre de L.

En déduire que p(Lgs) = [p(Ls)]°, ou p(-) désigne le rayon spectral. Quelle conclusion
peut-on en tirer sur la vitesse de convergence des méthodes de Jacobi et de Gauss-Seidel
pour les matrices tridiagonales ?

D’aprés ce qui précéde, les rayons spectraux sont soit tous les deux nuls, soit tous les deux
non nuls. §'ils ne sont pas nuls, on déduit de la question précédente que p(Las) = [p(L£)]?
(qui est évidemment vrai aussi s’ils sont nuls). En effet, soit u # 0 une valeur propre de Lgg
telle que |u| = p(Las). D’aprés la question précédente, si A € C vérifie A2 = p alors \ est
une valeur propre de £;. Comme |A| < p(L) et p(Lgs) = || = [A?| = |A]? on en déduit
que p(Les) < [p(L1)]".

Réciproquement, si A est une valeur propre non nulle de £; telle que |\ = p(L£) alors
A2 est une valeur propre de Lgs et [p(£5)]* = [A2 = |X2] < p(Las).

On a donc bien

p(Las) = [p(Ls))
On en déduit que les deux méthodes convergent simultanément ou divergent simultanément.
Et si elles convergent, les deux rayons spectraux sont < 1 et la méthode de Gauss-Seidel
converge donc beaucoup plus vite que celle de Jacobi.

Montrer que A est une valeur propre de L si et seulement si —\ est aussi valeur propre.
C’est évident si A = 0. Lorsque A € C*, on a, d’aprés la question (6),
Av.p.de L7 < A2 vp.de Lgs < (=N)? vp. de Lgg & — A v.p. de L.



