Fascicule d'exercices, Mathématiques 3 - PCSI

Table des matières

Fiche 1 - Espaces vectoriels, applications linéaires	2
Fiche 2 - Matrices, déterminants	4
Fiche 3 - Systèmes d'équations linéaires	7
Fiche 4 - Réduction des endomorphismes	9
Fiche 5 - Produit scalaire, diagonalisation	13
Fiche 6 - Suites et séries numériques	16
Fiche 7 - Séries entières	19
Fiche 8 - Séries entières - équations différentielles	21

Fiche 1 - Espaces vectoriels, applications linéaires

Exercice 1. Les ensembles suivants sont-ils des sous-espaces vectoriels?

$$E_1 = \{(x, y) \in \mathbb{R}^2, x \leq y\}, \quad E_2 = \{(x, y, z) \in \mathbb{R}^3, x + 2y + z = 0\},$$

$$E_3 = \{(x, y, z) \in \mathbb{R}^3, x^2 + y^2 + z^2 = 1\}, \quad E_4 = \{(x, y, z) \in \mathbb{R}^3, x - y + z = 0\}.$$

Exercice 2.

- 1. Les vecteurs $\vec{u} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$, $\vec{v} = \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix}$ sont-ils linéairement indépendants dans \mathbb{R}^3 ? Sont-ils générateurs de \mathbb{R}^3 ? Forment-ils une base?
- 2. Mêmes questions pour $\vec{u} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$, $\vec{v} = \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix}$, $\vec{w} = \begin{pmatrix} 7 \\ 8 \\ 9 \end{pmatrix}$.
- 3. Mêmes questions pour $\vec{u} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$, $\vec{v} = \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix}$, $\vec{w} = \begin{pmatrix} 7 \\ 8 \\ 9 \end{pmatrix}$, $\vec{r} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$.

Exercice 3. Soit E l'espace vectoriel sur $\mathbb R$ des fonctions infiniment dérivables de $\mathbb R$ dans $\mathbb R$ et ω un nombre réel non nul.

- 1. On définit $\vec{u}: \mathbb{R} \to \mathbb{R}$ par $\vec{u}(x) = \cos(\omega x)$ et $\vec{v}: \mathbb{R} \to \mathbb{R}$ par $\vec{v}(x) = \sin(\omega x)$. Montrer que \vec{u} et \vec{v} sont des vecteurs de E linéairement indépendants.
- 2. Soit F_{ω} le sous-espace vectoriel de E formé par les solutions de l'équation différentielle $y'' + \omega^2 y = 0$. On admet que $\dim(F_{\omega}) = 2$. Montrer que $\mathcal{B} = (\vec{u}, \vec{v})$ est une base de F_{ω} .
- 3. On définit $\vec{w}: \mathbb{R} \to \mathbb{R}$ par $\vec{w}(x) = \cos(\omega x + a)$ et $\vec{r}: \mathbb{R} \to \mathbb{R}$ par $\vec{v}(x) = \sin(\omega x + a)$ où a est un réel fixé. Écrire \vec{w} et \vec{r} dans la base \mathcal{B} et montrer que $\mathcal{C} = (\vec{w}, \vec{r})$ est une base de F_{ω} .
- 4. Exprimer la fonction \vec{u} dans la base \mathcal{C} .

Exercice 4. Dans \mathbb{R}^2 , on considère les sous-ensembles

$$E = \{(x, y) \in \mathbb{R}^2 : y = -x\} \text{ et } F = \{(x, y) \in \mathbb{R}^2 : y = x\}.$$

Montrer que E et F sont des sous-espaces vectoriels de \mathbb{R}^2 et que $E \oplus F = \mathbb{R}^2$.

Exercice 5. Soit f l'application de \mathbb{R}^4 dans \mathbb{R}^3 définie, pour tout $(x, y, z, t) \in \mathbb{R}^4$, par

$$f(x, y, z, t) = (x + y + z + t, y - t, x - 2z + 3t).$$

- 1. Montrer que f est linéaire.
- 2. Déterminer une base du noyau de f. Quelle est sa dimension?
- 3. En déduire le rang de f.

Exercice 6. Soit f l'endomorphisme de \mathbb{R}^3 défini par

$$f(\vec{e}_1) = 13\vec{e}_1 + 12\vec{e}_2 + 6\vec{e}_3, \ f(\vec{e}_2) = -8\vec{e}_1 - 7\vec{e}_2 - 4\vec{e}_3, \ f(\vec{e}_3) = -12\vec{e}_1 - 12\vec{e}_2 - 5\vec{e}_3,$$

où $\mathcal{B} = (\vec{e}_1, \vec{e}_2, \vec{e}_3)$ est la base canonique de \mathbb{R}^3 .

- 1. Démontrer que $F_1 = \{\vec{u} \in \mathbb{R}^3 : f(\vec{u}) = \vec{u}\}$ et $F_2 = \{\vec{u} \in \mathbb{R}^3 : f(\vec{u}) = -\vec{u}\}$ sont des sous-espaces vectoriels de \mathbb{R}^3 et déterminer la dimension de chacun d'eux.
- 2. Montrer que F_1 et F_2 sont supplémentaires.

Exercices supplémentaires

Exercice 7. Pour tous les cas suivants, indiquer si F est un sous-espace vectoriel de E:

- $F = \{(x, y) \in \mathbb{R}^2 : 2x + 3y = 0\}$ a) $E = \mathbb{R}^2$,
- b) $E = \mathbb{R}^2$, $F = \{(x, y) \in \mathbb{R}^2 : y = 1\}$
- $F = \{(x, y) \in \mathbb{R}^2 : xy = 0\}$ c) $E=\mathbb{R}^2$,

- d) $E = \mathbb{R}^3$, $F = \{(x, y, z) \in \mathbb{R}^3 : x = 0\}$ e) $E = \mathbb{R}^3$, $F = \{(x, y, z) \in \mathbb{R}^3 : x + y z = 0\}$ f) $E = \mathbb{R}^3$, $F = \{(x, y, z) \in \mathbb{R}^3 : y = 2x \text{ et } z = x\}$

Dans les cas où F est un sous-espace vectoriel de E, indiquer sa nature géométrique.

Exercice 8. Soit E l'espace vectoriel sur \mathbb{R} des applications dérivables de \mathbb{R} dans \mathbb{R} . Soit F le sousensemble de E des applications f qui vérifient f(0) = f'(0) = 0.

- 1. Montrer que F est un sous-espace vectoriel de E.
- 2. Soit H l'ensemble des applications $x \mapsto ax + b$, où $a, b \in \mathbb{R}$. Vérifier que H est un sous-espace vectoriel de E et montrer que $F \oplus H = E$.

Exercice 9.

- 1. Soient u et v deux vecteurs de \mathbb{R}^2 non colinéaires l'un à l'autre (c'est-à-dire tels que pour tout réel λ , on ait $u \neq \lambda v$ et $v \neq \lambda u$). Montrer que le sous-espace vectoriel engendré par u et v est égal à \mathbb{R}^2 .
 - 2. En déduire la description complète des sous-espaces vectoriels de \mathbb{R}^2 .

Exercice 10. Dans \mathbb{R}^4 , on considère les vecteurs :

$$\vec{v}_1 = \begin{pmatrix} 1 \\ 2 \\ 0 \\ 1 \end{pmatrix}, \ \vec{v}_2 = \begin{pmatrix} 1 \\ 0 \\ 2 \\ 1 \end{pmatrix}, \ \vec{v}_3 = \begin{pmatrix} 2 \\ 0 \\ 4 \\ 2 \end{pmatrix}$$

$$\vec{w}_1 = \begin{pmatrix} 1 \\ 2 \\ 1 \\ 0 \end{pmatrix}, \ \vec{w}_2 = \begin{pmatrix} -1 \\ 1 \\ 1 \\ 1 \end{pmatrix}, \ \vec{w}_3 = \begin{pmatrix} 2 \\ -1 \\ 0 \\ 1 \end{pmatrix}, \ \vec{w}_4 = \begin{pmatrix} 2 \\ 2 \\ 2 \\ 2 \end{pmatrix}.$$

- 1. Montrer que les familles (\vec{v}_1, \vec{v}_2) et $(\vec{w}_1, \vec{w}_2, \vec{w}_3)$ sont libres.
- 2. Soit F le sous-espace vectoriel engendré par $\mathcal{V} = (\vec{v}_1, \vec{v}_2, \vec{v}_3)$. Déterminer une base de F.
- 3. Soit G le sous-espace vectoriel engendré par $\mathcal{W} = (\vec{w_1}, \vec{w_2}, \vec{w_3}, \vec{w_4})$. Déterminer une base de G.

Exercice 11. Parmi les applications suivantes, déterminer celles qui sont linéaires (avec $a \in \mathbb{R}$):

d)
$$(x,y) \mapsto (x+a,y+a)$$
 e) $(x,y,z) \mapsto (x+z,y+z)$

f)
$$\mathbb{R}^2 \longrightarrow \mathbb{R}^3$$
 $(x,y) \longmapsto (2x,0,x-y)$ g) $\mathbb{R} \longrightarrow \mathbb{R}$ $x \mapsto \sin x$

Exercice 12. On considère $\mathcal{B} = (\vec{e}_1, \vec{e}_2, \vec{e}_3)$ la base canonique de \mathbb{R}^3 et l'endomorphisme f de \mathbb{R}^3 défini

$$f(\vec{e}_1) = \vec{e}_1, \quad f(\vec{e}_2) = -\vec{e}_1, \quad f(\vec{e}_3) = \vec{e}_3.$$

- 1. Déterminer l'image par f d'un élément $\vec{u} = x\vec{e}_1 + y\vec{e}_2 + z\vec{e}_3$ de \mathbb{R}^3 .
- 2. Déterminer le noyau et l'image de f et donner une base de chacun d'eux.
- 3. Montrer que $f \circ f = f$.

Fiche 2 - Matrices, déterminants

Exercice 13. On considère les matrices suivantes :

$$A = \left(\begin{array}{cc} 1 & 2 & 3 \end{array}\right), \ B = \left(\begin{array}{cc} 1 \\ -2 \end{array}\right), \ C = \left(\begin{array}{cc} 2 & 1 \\ -3 & 0 \\ 1 & 2 \end{array}\right), \ D = \left(\begin{array}{cc} -2 & 5 \\ 5 & 0 \end{array}\right), \ E = \left(\begin{array}{cc} -1 & 1 & 3 \\ -1 & -4 & 0 \\ 0 & 2 & 5 \end{array}\right).$$

Quels sont les produits matriciels possibles? En calculer au moins trois.

Exercice 14. On considère les matrices A, B, C, D définies par :

$$A = \begin{pmatrix} 1 & 0 & -1 \\ -2 & 1 & 0 \\ 1 & -1 & 1 \end{pmatrix}, \ B = \begin{pmatrix} -1 & 1 & 0 \\ 2 & -1 & 0 \\ 0 & 1 & 2 \end{pmatrix}, \ C = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \ D = \begin{pmatrix} x \\ y \\ z \end{pmatrix}.$$

- 1. Calculer A + B, AB, AD, λA , $A \lambda C$, où λ est un nombre réel quelconque.
- 2. Calculer det(A), det(B), det(AB). A-t-on det(AB) = det(BA)?

Exercice 15. Soit $\mathcal{B} = (\vec{e}_1, \vec{e}_2)$ la base canonique de \mathbb{R}^2 . On considère les vecteurs

$$\vec{u} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}_{\mathcal{B}}, \ \vec{v} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}_{\mathcal{B}}$$

(donnés en composantes dans cette base).

- 1. Montrer de deux façons différentes que les vecteurs \vec{u} et \vec{v} sont linéairement indépendants.
- 2. En déduire que $C = (\vec{u}, \vec{v})$ est une base de \mathbb{R}^2 .
- 3. Écrire un vecteur quelconque $\vec{w} = \begin{pmatrix} x \\ y \end{pmatrix}_{\mathcal{B}}$ de \mathbb{R}^2 sous la forme $a\vec{u} + b\vec{v}$. En déduire la matrice des composantes $M_{\mathcal{C}}(\vec{w})$ du vecteur \vec{w} dans la base \mathcal{C} .
- 4. Donner la matrice de passage $P = P_{\mathcal{BC}}$ ainsi que la matrice de passage inverse $P^{-1} = P_{\mathcal{CB}}$.
- 5. Vérifier que $PP^{-1} = P^{-1}P = I$ (donc les matrices $P_{\mathcal{CB}}$ et $P_{\mathcal{BC}}$ sont inverses l'une de l'autre) et que $\binom{x}{y} = P\binom{a}{b}$.

Exercice 16. Déterminer les matrices des applications linéaires suivantes dans les bases canoniques des espaces vectoriels considérés :

(a)
$$f: \mathbb{R}^2 \to \mathbb{R}^2$$
, $f(x,y) = (2x+3y, 3x-5y)$; (b) $f: \mathbb{R}^2 \to \mathbb{R}^3$, $f(x,y) = (2x-y, x+y, x-y)$.

Exercice 17. Soit f l'application de \mathbb{R}^3 dans \mathbb{R}^3 définie, pour tout $(x,y,z) \in \mathbb{R}^3$, par

$$f(x, y, z) = (x + y + z, y - z, x - 2z).$$

- 1. Montrer que f est linéaire.
- 2. Écrire la matrice A de f relativement à la base canonique de \mathbb{R}^3 .
- 3. Calculer det(A). La matrice A est-elle inversible?

Exercices supplémentaires

Exercice 18. On considère la matrice $A=\left(\begin{array}{cc} a & b \\ 0 & a \end{array}\right)$ où $(a,b)\in\mathbb{R}^2.$

- 1. Calculer A^2 et A^3 .
- 2. Calculer A^n pour tout entier n strictement positif.

Exercice 19. Soit $f: \mathbb{R}^3 \to \mathbb{R}^3$ l'application définie par

$$f(x, y, z) = (2x - z, -x + 3y + z, z).$$

- 1. Calculer $f(\vec{0})$, f(1,1,1) et f(1,0,-1).
- 2. Montrer que f est une application linéaire.
- 3. Calculer les images de \vec{e}_1 , \vec{e}_2 et \vec{e}_3 par f où $\mathcal{B} = (\vec{e}_1, \vec{e}_2, \vec{e}_3)$ est la base canonique de \mathbb{R}^3 . En déduire la matrice de f dans la base \mathcal{B} .

Exercice 20. Soit $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ une matrice 2×2 à coefficients dans \mathbb{R} . Montrer que si A est inversible alors son inverse est donné par la formule

$$A^{-1} = \frac{1}{\det(A)} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}.$$

Exercice 21. Déterminer les matrices des applications linéaires suivantes dans les bases canoniques des espaces vectoriels considérés :

(a)
$$f: \mathbb{R}^2 \to \mathbb{R}^2$$
, $f(x,y) = (3x + 7y, 2x - 5y)$; (b) $f: \mathbb{R}^3 \to \mathbb{R}^2$, $f(x,y,z) = (x + y, y - z)$.

Exercice 22. On munit l'espace vectoriel $\mathbb{R}_3[X]$ de la base $\mathcal{B} = (1, X, X^2, X^3)$. On considère les endomorphisms $\frac{d}{dX}$ et $\frac{d^2}{dX^2}$ de $\mathbb{R}_3[X]$ définis par

$$\frac{d}{dX}(P) = P', \ \frac{d^2}{dX^2}(P) = P''.$$

Calculer la matrice des endomorphisms $\frac{d}{dX}$ et $\frac{d^2}{dX^2}$ dans la base \mathcal{B} . Quelle relation y a-t-il entre ces deux matrices?

Exercice 23. Soit $f: \mathbb{R}^2 \to \mathbb{R}^3$ et $g: \mathbb{R}^3 \to \mathbb{R}^2$ les deux applications linéaires définies, en coordonnées cartésiennes, par

$$f(x,y) = (2x + y, -y, x - 2y), g(x,y,z) = (x - z, 2y).$$

- 1. Calculer les applications composées $g\circ f:\mathbb{R}^2\to\mathbb{R}^2$ et $f\circ g:\mathbb{R}^3\to\mathbb{R}^3$.
- 2. Trouver les matrices A et A' qui représentent f et g dans les bases canoniques de \mathbb{R}^2 et \mathbb{R}^3 .
- 3. Vérifier que les produits A'A et AA' représentent les composés $g \circ f$ et $f \circ g$.

Exercice 24. Soit $f: \mathbb{R}^2 \to \mathbb{R}^2$ définie par

$$f(x,y) = (x - y, x + y).$$

- 1. Déterminer la matrice A dans la base canonique $\mathcal{B} = (\vec{e_1}, \vec{e_2})$ de \mathbb{R}^2 .
- 2. Calculer f^{-1} et en déduire A^{-1} .
- 3. Est-ce que l'application f est un isomorphisme?
- 4. Si on considère le produit scalaire euclidien sur \mathbb{R}^2 , est-ce que l'application f est une isométrie?

Exercice 25. Soit

$$A = \left(\begin{array}{rrr} -4 & 1 & 1\\ 1 & -1 & -2\\ -2 & 1 & -1 \end{array}\right)$$

et soit $f: \mathbb{R}^3 \to \mathbb{R}^3$ l'application linéaire canoniquement associée à A (par rapport à la base canonique). Soit

$$\vec{u} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \ \vec{v} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \ \vec{w} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix},$$

donnés en composantes dans la base canonique. Montrer que $\mathcal{B} = (\vec{u}, \vec{v}, \vec{w})$ est une base de \mathbb{R}^3 et donner la matrice de f dans cette nouvelle base.

Exercice 26. L'espace vectoriel \mathbb{R}^2 (resp. \mathbb{R}^3) est muni de la base canonique. Écrire les matrices des applications linéaires suivantes dans la base canonique :

- 1. La rotation d'angle θ dans \mathbb{R}^2 .
- 2. La rotation d'angle θ autour de Oz dans \mathbb{R}^3 .
- 3. La réflexion par rapport à Ox dans \mathbb{R}^2 .
- 4. La réflexion par rapport au plan xOy dans \mathbb{R}^3 .

Exercice 27. Soit \mathcal{B} (resp. \mathcal{D}) la base canonique de \mathbb{R}^4 (resp. \mathbb{R}^2).

1. Soit $L: \mathbb{R}^4 \to \mathbb{R}^2$ l'application linéaire dont la matrice dans les bases \mathcal{B} et \mathcal{D} est :

$$L_{DB} = \begin{pmatrix} 1 & 1 & 2 & 3 \\ 1 & -1 & 4 & 5 \end{pmatrix}$$

Calculer une base de Ker(L) et de Im(L).

2. Soit $L: \mathbb{R}^2 \to \mathbb{R}^4$ donné par la matrice dans les bases \mathcal{B} et \mathcal{D} :

$$L_{DB} = \begin{pmatrix} 1 & 1 \\ 1 & -1 \\ 2 & 4 \\ 3 & 5 \end{pmatrix}$$

Calculer une base de Ker(L) et de Im(L).

Exercice 28. On munit l'espace vectoriel $\mathbb{R}_2[X]$ de la base $\mathcal{B} = (1, X, X^2)$. Donner la matrice de l'endomorphisme L de $\mathbb{R}_2[X]$ dans la base \mathcal{B} qui est défini par : pour tout $P \in \mathbb{R}_2[X]$, L(P)(X) = P(X-1).

Exercice 29. Pour tout $x \in \mathbb{R}$, on pose :

$$A(x) = \begin{pmatrix} \operatorname{ch} x & \operatorname{sh} x \\ \operatorname{sh} x & \operatorname{ch} x \end{pmatrix}.$$

- 1. Montrer que A(x) est inversible d'inverse A(-x), pour tout $x \in \mathbb{R}$.
- 2. Déterminer $A(x)^n$ pour tout $x \in \mathbb{R}$ et $n \in \mathbb{Z}$.

Exercice 30. Dans \mathbb{R}^3 muni de la base canonique $\mathcal{E} = (\vec{e}_1, \vec{e}_2, \vec{e}_3)$, on considère les vecteurs

$$\vec{u} = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \ \vec{v} = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, \ \vec{w} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}.$$

- 1. Montrer que le système $\mathcal{B} = (\vec{u}, \vec{v}, \vec{w})$ est une base de \mathbb{R}^3 .
- 2. Donner la matrice de passage $P = P_{\mathcal{EB}}$.
- 3. Donner la matrice de passage inverse $P^{-1} = P_{BE}$ et vérifier que $PP^{-1} = P^{-1}P = I$.
- 4. Décomposer le vecteur $\vec{t} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ dans la base \mathcal{B} .

Exercice 31. (Calcul de A^n) Soit E un espace vectoriel réel de dimension 3 et soit $B = (\vec{e}_1, \vec{e}_2, \vec{e}_3)$ une base de E. Soit E l'endomorphisme de E dont la matrice dans la base E est donnée par :

$$A = L_B = \begin{pmatrix} 1 & 1 & -1 \\ 0 & 2 & 0 \\ -1 & 1 & 1 \end{pmatrix}$$

- 1. Déterminer Ker(L) et Im(L), sous-espaces de E et en donner une base. Quel est le rang de L?
- 2. On note $\vec{\epsilon}_1 = \vec{e}_1 + \vec{e}_3$, $\vec{\epsilon}_2 = \vec{e}_1 \vec{e}_3$, $\vec{\epsilon}_3 = \vec{e}_1 + \vec{e}_2$. Montrer que $B' = (\vec{\epsilon}_1, \vec{\epsilon}_2, \vec{\epsilon}_3)$ est une base de E. Préciser la matrice de passage $P = P_{BB'}$ de B à B', ainsi que la matrice inverse P^{-1} .
- 3. Exprimer $L(\vec{\epsilon}_1), L(\vec{\epsilon}_2), L(\vec{\epsilon}_3)$ dans la base B' et en déduire la matrice $D = L_{B'}$ de L dans la base B'

- 4. Quelle relation lie les matrices A, D, P?
- 5. Pour tout entier $n \ge 1$ exprimer la matrice A^n .

Fiche 3 - Systèmes d'équations linéaires

Exercice 32. On considère les systèmes d'équations linéaires suivants :

$$(S_1) \begin{cases} x+y+z=1\\ 2x-y+3z=5\\ y-z=7 \end{cases}, (S_2) \begin{cases} x-y+2z=1\\ x+y+4z=2 \end{cases}$$

- 1. Déterminer l'écriture matricielle des systèmes (S_1) et (S_2) .
- 2. Déterminer les applications linéaires associées aux systèmes (S_1) et (S_2) .
- 3. Dire si (S_1) et (S_2) admettent des solutions (sans les calculer).

Exercice 33. Résoudre en utilisant la méthode du pivot de Gauss les systèmes suivants :

$$(S_1) \begin{cases} x+y+z=1 \\ 2x-y+3z=3 \\ y-z=1 \end{cases}, (S_2) \begin{cases} x-y+2z=1 \\ x+y+4z=2 \end{cases}, (S_3) \begin{cases} x+2y=1 \\ x-y=2 \\ x+3y=3 \end{cases}$$

Exercice 34. Résoudre, suivant les valeurs de $\lambda \in \mathbb{R}$, les systèmes :

$$(S_1) \begin{cases} x+y+z=\lambda+1 \\ \lambda x+y+(\lambda-1)z=\lambda \\ x+\lambda y+z=1 \end{cases}, (S_2) \begin{cases} (2-\lambda)x+2y=0 \\ x+(2-\lambda)y+z=0 \\ 2y+(2-\lambda)z=0 \end{cases}$$

Exercice 35. Calculer, en utilisant la méthode du pivot de Gauss, les inverses des matrices

$$A = \begin{pmatrix} 1 & -4 \\ 3 & 5 \end{pmatrix} \quad B = \begin{pmatrix} 2 & 5 \\ 1 & 3 \end{pmatrix} \quad C = \begin{pmatrix} 1 & -2 & 5 \\ 3 & 1 & 0 \\ -1 & 2 & -4 \end{pmatrix} \quad D = \begin{pmatrix} 4 & 12 & -3 \\ -1 & 2 & 3 \\ 3 & 3 & -5 \end{pmatrix}.$$

Exercice 36. Résoudre le système suivant par la formule de Cramer :

$$(S) \left\{ \begin{array}{l} x - 2y = 1 \\ 2x + y = 3 \end{array} \right.$$

Exercice 37. Déterminer le rang et l'ensemble des solutions des systèmes linéaires suivants :

$$(S_1) \quad \left\{ \begin{array}{l} 2x_1+x_2=0 \\ x_1+3x_2=0 \end{array} \right. , \quad (S_2) \left\{ \begin{array}{l} 2x_1+x_2=3 \\ x_1+4x_2=3 \end{array} \right. , \quad (S_3) \left\{ \begin{array}{l} 2x_1+x_2=3+2i \\ x_1+(4+i)x_2=3+i \end{array} \right.$$

Exercices supplémentaires

Exercice 38. Résoudre dans $\mathbb R$ les systèmes suivants en utilisant la méthode du pivot de Gauss :

a)
$$\begin{cases} x - y + z = 0 \\ 5x + 2y - z = 0 \\ -3x - 4y + 3z = 0 \end{cases}$$
b)
$$\begin{cases} x - y + z = 3 \\ 5x + 2y - z = 5 \\ -3x - 4y + 3z = 1 \end{cases}$$
c)
$$\begin{cases} 3x + 4y + z + 2t = 3 \\ 6x + 8y + 2z + 5t = 7 \\ 9x + 12y + 3z + 10t = 13 \end{cases}$$
d)
$$\begin{cases} 2x + y + z + t = 3 \\ x + 2y + z + t = 1 \\ x + y + 2z + t = 2 \\ x + y + z + 2t = 4 \\ x - y + z - t = 0 \end{cases}$$

Exercice 39. En utilisant la méthode de Cramer, calculer la valeur de x dans les systèmes linéaires suivants :

a)
$$\begin{cases} x + 2y = 4 \\ 2x - y = 5, \end{cases}$$
 b)
$$\begin{cases} x + 2y - 3z = 2 \\ y = 3 \\ 2x + 3y - z = 1. \end{cases}$$

En utilisant la méthode de Cramer, calculer la valeur de y dans les systèmes linéaires suivants :

c)
$$\begin{cases} 3x + 2y = 4 \\ 4x + 3y = 2, \end{cases}$$
 d)
$$\begin{cases} x + 2y + z = 6 \\ x + y + z = 4 \\ 3x + 2y + z = 8. \end{cases}$$

Exercice 40. (Suite Exercice 4) Calculer les inverses des matrices

$$A = \begin{pmatrix} 1 & -4 \\ 3 & 5 \end{pmatrix} \quad B = \begin{pmatrix} 2 & 5 \\ 1 & 3 \end{pmatrix} \quad C = \begin{pmatrix} 1 & -2 & 5 \\ 3 & 1 & 0 \\ -1 & 2 & -4 \end{pmatrix} \quad D = \begin{pmatrix} 4 & 12 & -3 \\ -1 & 2 & 3 \\ 3 & 3 & -5 \end{pmatrix}.$$

Résoudre les systèmes linéaires suivants :

$$A\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 \\ -3 \end{pmatrix}, \qquad A\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \qquad A\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 2 \\ 5 \end{pmatrix}.$$

$$B\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 \\ -3 \end{pmatrix}, \qquad B\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \qquad B\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 2 \\ 5 \end{pmatrix}.$$

$$C\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 \\ -3 \\ 2 \end{pmatrix}, \qquad C\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \qquad C\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 2 \\ 7 \\ -4 \end{pmatrix}.$$

$$D\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 \\ -3 \\ 2 \end{pmatrix}, \qquad D\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \qquad D\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 2 \\ 7 \\ -4 \end{pmatrix}.$$

Exercice 41.

1. Déterminer pour quelles valeurs de a, b réelles le système suivant a une solution unique, n'a pas de solution, ou a une infinité de solutions :

$$\begin{cases} ax + 2y + az = 1\\ ax + (a+4)y + 3az = -2\\ -ax - 2y + z = 1\\ (a+2)y + (3a+1)z = b \end{cases}$$

2. Pour les systèmes homogènes suivants, indiquer s'ils ont une solution unique ou s'ils en ont une infinité, et dans le dernier cas indiquer la dimension de l'espace des solutions.

$$\left\{ \begin{array}{l} x+2y-z=0 \\ -y+3z=0 \end{array} \right. , \qquad \left\{ \begin{array}{l} 5x-2y-2z=0 \\ 4x+z=0 \\ 3z=0 \end{array} \right. , \qquad \left\{ \begin{array}{l} x+y+z+t=0 \\ z-t=0 \end{array} \right.$$

Exercice 42. Inverser les matrices suivantes :

$$A = \left(\begin{array}{ccc} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{array}\right), \ \ B = \left(\begin{array}{ccc} 1 & 1 & 2 \\ 0 & 2 & 4 \\ 0 & -1 & 3 \end{array}\right), \ \ C = \left(\begin{array}{ccc} 3 & 2 & 1 \\ 2 & 3 & 1 \\ 4 & -1 & 1 \end{array}\right)$$

Fiche 4 - Réduction des endomorphismes

Exercice 43. On considère les matrices réelles suivantes :

$$A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \quad C = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 6 \end{pmatrix}.$$

- 1. Quelles sont les valeurs propres des matrices A, B et C?
- 2. Lesquelles de ces matrices sont diagonalisables?

Exercice 44. On considère la matrice réelle

$$A = \left(\begin{array}{rrr} 1 & 0 & 2 \\ 0 & 1 & 4 \\ 0 & 0 & 3 \end{array}\right).$$

- 1. Déterminer le polynôme caractéristique de A.
- 2. Calculer les valeurs propres de A.
- 3. Déterminer une base (ainsi que la dimension) des sous-espaces propres associés aux valeurs propres de A.
- 4. Justifier pourquoi A est diagonalisable.
- 5. Expliciter une base \mathcal{B} de \mathbb{R}^3 dans laquelle la matrice A est représentée par une matrice diagonale D, ainsi qu'une matrice inversible P vérifiants $A = PDP^{-1}$.

Exercice 45. Soit C_{an} la base canonique de \mathbb{R}^3 et soit f l'endomorphisme de \mathbb{R}^3 défini par

$$f(x, y, z) = (3x + 2y - 2z, 2y, y + z).$$

- 1. Déterminer la matrice de f dans la base canonique.
- 2. Déterminer les valeurs propres de f.
- 3. Montrer que f est diagonalisable et expliciter une base \mathcal{B} de \mathbb{R}^3 dans laquelle la matrice de f est une matrice diagonale D, ainsi qu'une matrice inversible P telles que $A = PDP^{-1}$.

Exercice 46. On considère la matrice réelle

$$A = \begin{pmatrix} 1 & 3 \\ 3 & 1 \end{pmatrix}.$$

- 1. Montrer que A est diagonalisable et expliciter une matrice D diagonale et une matrice P inversible telles que $A = PDP^{-1}$.
- 2. Calculer A^n pour $n \in \mathbb{N}$.
- 3. Expliciter en fonction de n les suites (u_n) et (v_n) définies par :

$$\begin{cases} u_{n+1} = u_n + 3v_n \\ v_{n+1} = 3u_n + v_n \end{cases}$$

avec $u_0 = 1$ et $v_0 = 2$.

Exercices supplémentaires

Exercice 47. (Diagonalisation) Soit Can la base canonique de \mathbb{R}^3 et soit L l'endomorphisme de \mathbb{R}^3 dont la matrice dans la base Can est donnée par :

$$A = \begin{pmatrix} 2 & 1 & -1 \\ 1 & 2 & -1 \\ 1 & 1 & 0 \end{pmatrix}$$

- 1. Déterminer une base \mathcal{B} de \mathbb{R}^3 dans laquelle la matrice de L est une matrice diagonale D que l'on précisera.
- 2. Donner les équations dans la base canonique de 3 plans vectoriels stables par L.

Exercice 48. Soit E un espace vectoriel réel et L un endomorphisme de V. On suppose que L possède une valeur propre non nulle $\lambda \in \mathbb{R}$. Montrer que si L est inversible, alors λ^{-1} est valeur propre de L^{-1} .

Exercice 49. Soit A une matrice 3×3 de valeurs propres 1, 2, 3 correspondant respectivement aux vecteurs propres $\vec{b}_1, \vec{b}_2, \vec{b}_3$. On suppose que

$$\vec{v} = \vec{b}_1 - 4\vec{b}_2 + 3\vec{b}_3.$$

Calculer $A^5\vec{v}$.

Exercice 50. Montrer que si A est une matrice diagonalisable, alors det(A) est égale au produit des valeurs propres de A.

Exercice 51. (Application aux suites récurrentes) Soit

$$A = \begin{pmatrix} 3 & -2 \\ 1 & 0 \end{pmatrix}.$$

- 1. Trouver une base \mathcal{B} de l'espace vectoriel \mathbb{R}^2 formée par des vecteurs propres de A et préciser une matrice diagonale semblable à A.
- 2. Donner la matrice de passage P de la base canonique Can de \mathbb{R}^2 à la base \mathcal{B} et calculer P^{-1} .
- 3. Soit $(u_n)_{n\geqslant 0}$ une suite réelle déterminée par ses 2 premiers termes u_0 et u_1 et par $u_n=3u_{n-1}-2u_{n-2}$ pour tout $n\geqslant 2$.

En remarquant que pour tout $n \ge 2$, $\binom{u_n}{u_{n-1}} = A \binom{u_{n-1}}{u_{n-2}}$, exprimer u_n en fonction de u_0 et u_1 pour $n \ge 2$.

Exercice 52. Soit Can la base canonique de \mathbb{R}^3 et soit f l'endomorphisme de \mathbb{R}^3 défini par

$$f(x, y, z) = (x + 2y, 2x + y, y).$$

- 1. Déterminer la matrice de f dans la base canonique.
- 2. Déterminer les valeurs propres de f.
- 3. Montrer que f est diagonalisable et expliciter une base \mathcal{B} de \mathbb{R}^3 dans laquelle la matrice de f est une matrice diagonale D, ainsi qu'une matrice inversible P tel que $A = PDP^{-1}$.

Exercice 53. Soient $a, b, c \in \mathbb{R}$ et A la matrice donnée par

$$A = \left(\begin{array}{ccc} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 2 \end{array}\right).$$

- 1. Déterminer les valeurs propres de A et leurs multiplicités algébriques.
- 2. Montrer que si $a \neq 0$, alors A n'est pas diagonalisable.
- 3. On suppose a = 0.

- (a) Déterminer une base (ainsi que la dimension) des sous-espaces propres associés aux valeurs propres de A.
- (b) En déduire que A est diagonalisable.
- (c) Donner une matrice diagonale D et une matrice inversible P telles que $A = PDP^{-1}$.
- (d) Calculer A^n pour tout $n \in \mathbb{N}$.

Exercice 54. Soit $f: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ l'endomorphisme défini par

$$f(x,y) := (x - y, y).$$

- 1. Déterminer les matrices A et A' de f dans la base canonique et dans la base $\mathcal{B} = ((1,2),(-1,-1))$.
- 2. Vérifier que le polynôme caracteristique P_A est le même que $P_{A'}$.
- 3. Calculer les valeurs propres et les sous-espaces propres de f.
- 4. Est-ce que f est diagonalisable? Si oui, diagonaliser f.

Exercice 55. Soit $f: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ l'endomorphisme défini par

$$f(1,0) := (2,0), \quad f(3,1) = (0,1).$$

- 1. Déterminer la matrice A de f dans la base $\mathcal{B} = ((1,0),(3,1))$.
- 2. Calculer les valeurs propres et les sous-espaces propres de f.
- 3. Diagonaliser f.

Exercice 56. (Systèmes différentielles) On considére le système différentiel suivant

$$(S) \begin{cases} x'(t) = 3tx(t) + 2y(t) + e^t \\ y'(t) = 2x(t) + 3ty(t) + e^{-t} \end{cases}$$

1. Montrer qu'on peut écrire (S) sous la forme matricielle

$$X' = A(t)X + B(t)$$

οù

$$A(t) = \left(\begin{array}{cc} 3t & 2 \\ 2 & 3t \end{array} \right), \ B(t) = \left(\begin{array}{c} e^t \\ e^{-t} \end{array} \right), \ X(t) = \left(\begin{array}{c} x(t) \\ y(t) \end{array} \right).$$

- 2. Soit $t \in \mathbb{R}$ fixé. Montrer que la matrice A(t) admet deux valeurs propres distinctes.
- 3. Déterminer une base de vecteurs propres de A(t).
- 4. Montrer que le système différentiel (S) est équivalent au système

$$(S_1)$$
 $X_1' = DX_1 + B_1(t)$

où D est une matrice diagonale.

5. Résoudre le système (S_1) et en déduire les solutions de (S).

Exercice 57. (Systèmes différentielles)

1. Trouver les valeurs propres et une base de vecteurs propres pour la matrice

$$A = \begin{pmatrix} -5 & 4 \\ 1 & -8 \end{pmatrix} .$$

2. On considère le système d'équations différentielles couplées

$$\begin{array}{rcl} \frac{d^2x_1}{dt^2} & = & -5x_1 + 4x_2 \,, \\ \frac{d^2x_2}{dt^2} & = & x_1 - 8x_2 \,, \end{array}$$

(a) Déterminer les modes normaux (c'est-à-dire les vecteurs propres de la matrice associée au système).

(b) Résoudre le système pour la condition initiale $x_1(0) = 1$, $x_2(0) = 1$ et $\frac{d}{dt}x_1(0) = \frac{d}{dt}x_2(0) = 0$. Est-ce que la solution est périodique? Si oui, donner sa période.

Exercice 58. (Matrices complexes) Diagonaliser, si c'est possible, les matrices complexes suivantes :

$$A = \left(\begin{array}{ccc} 1 & 0 & 4 \\ 0 & 1 & 2 \\ 0 & 0 & i \end{array}\right), \ B = \left(\begin{array}{ccc} 1+i & 0 & 2 \\ 0 & 1 & 1 \\ 2 & 0 & i \end{array}\right), \ C = \left(\begin{array}{ccc} 1+i & 0 & 0 \\ 0 & 1 & 0 \\ 2 & 1 & 1+2i \end{array}\right).$$

Exercice 59. (Matrices complexes) Déterminer les valeurs propres de la matrice

$$A = \begin{pmatrix} 1 & j & j^2 \\ j & j^2 & 1 \\ j^2 & 1 & j \end{pmatrix},$$

où $j = e^{2\pi i/3}$, en précisant leur ordre de multiplicité (algébrique) [Rappel : $j^3 = 1$ et $1 + j + j^2 = 0$].

Exercice 60. Soit

$$A = \left(\begin{array}{rrr} 1 & 2 & 6 \\ -1 & 0 & 2 \\ 1 & 2 & 2 \end{array}\right).$$

- 1. Diagonaliser A.
- 2. En déduire, pour tout $n \in \mathbb{N}$, une expression de A^n en fonction de n.

Exercice 61. On considère l'espace vectoriel $E = \mathbb{R}_n[X]$ des polynômes de degré inférieur ou égale à n. Soit L l'endomorphisme de E défini par L(P)(X) = (X-1)P'(X). Déterminer les valeurs propres de L ainsi que les sous-espaces propres.

Exercice 62. La matrice

$$\left(\begin{array}{ccc}
3 & 7 & -3 \\
-2 & -5 & 2 \\
-4 & -10 & 3
\end{array}\right)$$

est-elle diagonalisable sur \mathbb{R} ? Sur \mathbb{C} ?

Exercice 63. Diagonaliser la matrice

$$\left(\begin{array}{cccc} 0 & 1 & 0 & 0 \\ 2 & 0 & -1 & 0 \\ 0 & 7 & 0 & 6 \\ 0 & 0 & 3 & 0 \end{array}\right).$$

Fiche 5 - Produit scalaire, diagonalisation

Exercice 64. On munit \mathbb{R}^3 du produit scalaire canonique. Soient $\vec{v} = (-3, 5, 8)$ et $\vec{w} = (1, -4, 9)$ deux vecteurs de \mathbb{R}^3 .

- 1. Calculer les longueurs de \vec{v} et \vec{w} .
- 2. Calculer l'angle non-orienté entre \vec{v} et \vec{w} .
- 3. Calculer le résultat de la projection orthogonale de \vec{v} sur la droite engendrée par \vec{w} .
- 4. Trouver une base orthonormée du plan engendré par les deux vecteurs \vec{v} et \vec{w} .
- 5. Trouver un vecteur orthogonal aux deux vecteurs \vec{v} et \vec{w} .

Exercice 65. Soient $\vec{v} = (1+i, 1-i)$ et $\vec{w} = (1-i, 1+i)$ deux vecteurs de \mathbb{C}^2 muni du produit scalaire canonique. Calculer le produit scalaire $\langle \vec{v} | \vec{w} \rangle$ et les normes de \vec{v} et \vec{w} .

Exercice 66. On considère \mathbb{R}^3 muni du produit scalaire canonique. Orthonormaliser en suivant le procédé de Gram-Schmidt la base constituée des vecteurs

$$\vec{u}_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \ \vec{u}_2 = \begin{pmatrix} -1 \\ 0 \\ -1 \end{pmatrix} \ \text{et} \ \vec{u}_3 = \begin{pmatrix} -1 \\ 2 \\ 3 \end{pmatrix}.$$

Exercice 67. On considère \mathbb{R}^3 muni du produit scalaire canonique. Soit F le sous-espace vectoriel $F = \{(x, y, z) \in \mathbb{R}^3 \mid x + y + z = 0\}.$

- 1. Déterminer une base orthonormée de F.
- 2. Déterminer la projection orthogonale p_F sur F.

Exercice 68. Soit $E = \mathbb{R}_3[X]$ l'espace vectoriel des polynômes de degré inférieur ou égale à 3, muni du produit scalaire

$$\langle P|Q\rangle = \int_{-1}^1 P(t)Q(t)dt.$$

Appliquer le procédé d'orthonormalisation de Gram-Schmidt aux vecteurs $P_0(X) = 1$, $P_1(X) = X$ et $P_2(X) = X^2$.

Exercice 69. Montrer que l'application $B: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$ définie pour tous $\vec{u} = (x_1, x_2), \ \vec{v} = (y_1, y_2)$ par

$$B(\vec{u}, \vec{v}) = x_1 y_1 - 2x_1 y_2 - 2x_2 y_1 + 6x_2 y_2$$

définie un produit scalaire dans \mathbb{R}^2 .

Exercice 70. On munit \mathbb{R}^3 du produit scalaire canonique et on considère la matrice

$$A = \begin{pmatrix} -1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{pmatrix}.$$

Trouver une matrice orthogonale O telle que OA^tO soit diagonale.

Exercice 71. On munit \mathbb{C}^2 du produit scalaire canonique et on considère la matrice

$$A = \begin{pmatrix} 1 & i \\ -i & 1 \end{pmatrix}.$$

Trouver une matrice unitaire U telle que UAU^* soit diagonale.

Exercices supplémentaires

Exercice 72. On munit \mathbb{R}^3 du produit scalaire canonique. Soit Can la base canonique de \mathbb{R}^3 .

- 1. Montrer que Can est une base orthonormée.
- 2. Montrer que la base $\mathcal{B} = (u_1, u_2, u_3)$ définie par

$$u_1 = (\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}), u_2 = (\frac{1}{\sqrt{2}}, \frac{-1}{\sqrt{2}}, 0), u_3 = (\frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}}, \frac{-2}{\sqrt{6}})$$

est une base orthonormée.

- 3. Calculer la matrice de passage P de la base Can à la base \mathcal{B} .
- 4. Vérifier que $P \cdot {}^{t}P = {}^{t}P \cdot P = I$.

Exercice 73. Diagonaliser en base orthonormée les matrices symétriques suivantes :

$$A = \left(\begin{array}{cc} 1 & 2 \\ 2 & 1 \end{array}\right), \ B = \left(\begin{array}{cc} 1 & 1 \\ 1 & 1 \end{array}\right), C = \left(\begin{array}{cc} 0 & 3 \\ 3 & -8 \end{array}\right).$$

Exercice 74. Soit P le plan dans \mathbb{R}^3 qui passe par les points (0,0,0), (1,2,-1) et (2,1,1). Trouver une base orthonormée $(\vec{b}_1,\vec{b}_2,\vec{b}_3)$ de \mathbb{R}^3 telle que (\vec{b}_1,\vec{b}_2) soit une base du plan P.

Exercice 75. Pour chacune des matrices symétriques suivantes, trouver une matrice orthogonale O telle que OA^tO soit diagonale.

$$\begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix}, \quad \begin{pmatrix} 1 & 3 \\ 3 & -1 \end{pmatrix}, \quad \begin{pmatrix} 5 & 0 & -2 \\ 0 & 7 & -2 \\ -2 & -2 & 6 \end{pmatrix}.$$

Exercice 76. Calculer les valeurs propres et déterminer une base orthonormée de vecteurs propres de la matrice

$$A = \begin{pmatrix} 4 & -2 & -2 \\ -2 & 4 & -2 \\ -2 & -2 & 4 \end{pmatrix}.$$

Exercice 77. Soit $E = \mathbb{R}_2[X]$ et soit $\varphi : E^2 \to \mathbb{R}$ l'application définie par

$$\varphi(P,Q) = P(0)Q(0) + P(1)Q(1) + P(2)Q(2).$$

Montrer que φ est un produit scalaire.

Exercice 78.

1. Montrer que l'application $B: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$ donnée par

$$B(x,y) = x_1y_1 - 2x_1y_2 - 2x_2y_1 + 6x_2y_2$$

définie un produit scalaire dans \mathbb{R}^2 . Trouver une base de \mathbb{R}^2 qui soit orthonormaée par rapport à B

2. Déterminer pour quelles valeurs réelles de a,b l'application $B: \mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R}$ suivante est un produit scalaire dans \mathbb{R}^3

$$B(x,y) = ax_1y_1 + bx_1y_2 + bx_2y_1 + bx_2y_2 + (1+b)x_3y_3$$

Exercice 79.

- 1. Rappeler l'inégalité de Cauchy-Schwarz.
- 2. Montrer que pour toute fonction continue d'un intervalle [a, b] dans \mathbb{R} , on a :

$$\left(\int_a^b f(t) dt\right)^2 \le (b-a) \int_a^b (f(t))^2 dt.$$

Exercice 80. Soit A une matrice symétrique réelle de type (2,2). Si les valeurs propres de A sont 3,4 et que $\binom{3}{4}$ est un vecteur propre associé à 3, trouver un vecteur propre associé à 4. Trouver A et une racine carrée de A, c'est-à-dire une matrice B telle que $B^2 = A$.

Exercice 81. Soit $E = \mathcal{M}_2(\mathbb{R})$ muni du produit scalaire

$$\langle M|N\rangle = Tr(M^tN)$$

Soit

$$F = \left\{ \begin{pmatrix} a & b \\ -b & a \end{pmatrix} \mid a, b \in \mathbb{R} \right\}.$$

- 1. Déterminer une base orthonormée de F^{\perp} .
- 2. Calculer la projection de la matrice $A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ sur F^{\perp} .

Exercice 82. Soit $E = \mathbb{R}_2[X]$ muni du produit scalaire

$$\langle P|Q\rangle = P(0)Q(0) + P(1)Q(1) + P(2)Q(2)$$

et soit $F = \mathbb{R}_1[X]$ le sous-espace vectoriel des polynômes de degré au plus 1.

- 1. Transformer la base canonique (1, X) de F en une base orthonormée.
- 2. Déterminer $p_F(R)$ où p_F est le projecteur orthogonal sur F et $R(X) = 3X^2 5X$.
- 3. Déterminer la matrice de p_F dans la base $(1, X, X^2)$.
- 4. Retrouver le résultat de la question précédente.

Exercice 83. Soit

$$A = \begin{pmatrix} 2 & -1 & -i & 0 \\ -1 & 2 & -i & 0 \\ i & i & 2 & 0 \\ 0 & 0 & 0 & 3 \end{pmatrix}.$$

Trouver une matrice unitaire U telle que UAU^* soit diagonale.

Exercice 84. Soit D le disque unité fermé de \mathbb{R}^2 . On considère l'espace vectoriel E des fonctions $f:D\to\mathbb{R}$ de classe C^1 nulles sur le bord de D. Pour $f,g\in E$, on pose

$$\langle f|g\rangle = \iint_D \left(\frac{\partial f}{\partial x}\frac{\partial g}{\partial x} + \frac{\partial f}{\partial y}\frac{\partial g}{\partial y}\right) dxdy.$$

Montrer que c'est un produit scalaire.

Fiche 6 - Suites et séries numériques

Exercice 85. Déterminer si les suites suivantes sont convergentes ou non. Dans le cas où elles convergent donner la limite :

(1)
$$u_n = \frac{(-1)^n}{3^n}$$
, (2) $u_n = \frac{n^2}{e^n}$, (3) $u_n = \frac{\sin(n)}{n^2}$, (4) $u_n = n^2 \sin(\frac{1}{3^n})$, (5)* $u_n = n(1 - \cos\frac{1}{n})$, (6)* $u_n = \frac{a^n - b^n}{a^n + b^n}$, a, b strictement positifs.

Exercice 86. À l'aide du critère de d'Alembert ou du critère de Cauchy, déterminer la nature des séries de termes généraux :

(1)
$$u_n = \frac{2^n}{n!}$$
, (2) $u_n = (\pi + \frac{1}{n})^n$, (3) $u_n = (\frac{\sin^2 n}{n})^n$, $(4)^* u_n = \frac{n!}{n^n}$.

Exercice 87. Déterminer la nature (convergence absolue, convergence, semi-convergence, divergence et divergence grossière) des séries $\sum u_n$ de termes généraux :

(1)
$$u_n = q^n$$
 où $q > 0$, (2) $u_n = n^{\alpha+1}$ où $\alpha \in \mathbb{R}$, (3) $u_n = \frac{1}{n(n+1)(n+2)}$, $(4)^*$ $u_n = \ln(1 - \frac{1}{(n+2)^2})$

$$(5)^* \ u_n = e^{\frac{1}{n}} - 1 - \frac{1}{n}, \qquad (6)^{**} \ u_n = \int_0^{1/n^2} \sin(t) \ dt, \qquad (7)^{**} \ u_n = \frac{(-1)^n}{n \ln(n)}, \qquad (8)^{**} \ u_n = \frac{(-1)^n}{n(\ln n)^2}.$$

Exercice 88. ** Pour quelles valeurs de $\alpha \in \mathbb{R}$ la série

$$\sum_{n=2}^{\infty} \frac{1}{n^{\alpha}(n-1)}$$

est-elle convergente? Calculer sa somme lorsque $\alpha = 1$.

Exercices supplémentaires

Exercice 89. Étudier les suites $(u_n)_n$ dont le terme général est donné par

(1)
$$u_n = \frac{1}{2^n}$$
, (2) $u_n = \frac{1}{\sqrt{n}}$, (3) $u_n = n^{1/n}$, (4) $u_n = \frac{2^n}{n^2}$,
(5)* $u_n = (1 + \frac{2}{n})^n$, (6)* $u_n = n\sin(\frac{2}{n})$, (7)* $u_n = \sqrt[n]{n+1}$, (8)* $u_n = (1 - \frac{1}{n})^n$.

Pour celles qui convergent, donner la limite. Déterminer la nature des séries $\sum_n u_n$.

Exercice 90. Considérons les suites $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ définies par

$$\forall n \in \mathbb{N}, u_n = \sum_{k=0}^n \frac{1}{k!}, \quad \forall n \in \mathbb{N}^*, v_n = u_n + \frac{1}{n(n!)}.$$

- 1. Montrer que (u_n) est strictement croissante et que (v_n) est strictement décroissante.
- 2. Montrer que pour tout $n \in \mathbb{N}^*$, $u_n < v_n$.
- 3. Montrer que (u_n) converge vers e.
- 4. Montrer que (v_n) converge vers e.
- 5. * Montrer que

$$\forall n \in \mathbb{N}^*, \exists ! \theta_n, 0 < \theta_n < 1 \text{ et } e = u_n + \frac{\theta_n}{n(n!)}.$$

- 6. ** Donner une valeur approchée par défaut de e à 10^{-4} près.
- 7. ** Montrer que $e \in \mathbb{R} \mathbb{Q}$.

Exercice 91. Étudier la nature des séries $\sum u_n$ de de termes généraux :

(1)
$$u_n = \frac{1}{n(n+1)}$$
, (2) $u_n = \frac{2n-1}{n(n^2-4)}$, (3) $u_n = (-1)^n \ln(\frac{n+1}{n-1})$, (4) $u_n = \frac{1}{3^n \cosh n}$

$$(5)^* u_n = \frac{\ln n}{n}, \qquad (6)^* u_n = \frac{\ln n}{n2^n}, \qquad (7)^* u_n = \frac{(-1)^n}{\sqrt{n^2 + n}}, \qquad (8)^* u_n = (1 + \sqrt{n})^{-n},$$

$$(9)^* u_n = \frac{1}{4^n \ln(2 + \frac{1}{n})}, \qquad (10)^* u_n = \frac{1}{4^n \ln(1 + \frac{1}{n})}.$$

Exercice 92. * Pour quelles valeurs de $\alpha \in \mathbb{R}$ la série

$$\sum_{n=3}^{\infty} \frac{2n+1}{n(n^2-4)^{\alpha}}$$

est-elle convergente? Calculer sa somme lorsque $\alpha = 1$.

Exercice 93. * Étudier la convergence de la série numérique de terme général donné pour tout $n \ge 1$ par

$$u_n = \frac{\sqrt{n} + \sin(n)}{\ln(n+1) + n^3}.$$

Exercice 94. * Montrer que la série numérique suivante est convergente et calculer sa somme :

$$\sum_{n\geq 1} \frac{1}{n(n+2)}.$$

Exercice 95. ** Calculer une valeur approchée à 10^{-2} de la série $\sum_{n>1} \frac{(-1)^n}{n}$.

Exercice 96. Soit $f:[0,1] \to \mathbb{R}$ une application continue. On considère la série numérique $\sum_{n\geq 0} u_n$ de terme général $u_n = (-1)^n \int_0^1 x^n f(x) dx$.

1. Montrer que pour tout $x \in [0,1]$

$$\sum_{k=0}^{n} (-1)^k x^k = \frac{1 + (-1)^n x^{n+1}}{1+x}.$$

2. * On note $(S_n)_{n\geq 0}$ la suite des sommes partielles, $S_n=\sum_{k=0}^n u_k$. Montrer que

$$S_n = \int_0^1 \frac{f(x)}{1+x} dx + \int_0^1 \frac{(-1)^n x^{n+1}}{1+x} f(x) dx.$$

- 3. * En déduire que la série $\sum_{n\geq 0} u_n$ est convergente et que sa somme vaut $\int_0^1 \frac{f(x)}{1+x} dx$.
- 4. ** Montrer, en choisissant judicieusement f, que $\sum_{n=0}^{+\infty} \frac{(-1)^n}{n+1} = \ln(2)$.

Exercice 97. On considère $\mathbb{R}_2[X]$ l'espace vectoriel des polynômes de degré inférieur ou égale à 2. On pose $P_0(X) = 1$, $P_1(X) = X$, $P_2(X) = X(X - 1)$ et $\mathcal{B} = (P_0, P_1, P_2)$.

- 1. Montrer que \mathcal{B} est une base de $\mathbb{R}_2[X]$.
- 2. Soit $Q(X) = X^2 + X + 1$. Calculer les composantes de Q dans la base \mathcal{B} .
- 3. * Montrer que la série suivante est convergente et calculer sa somme

$$\sum_{n=0}^{\infty} \frac{n^2 + n + 1}{n!}.$$

Exercice 98. * Écrire le nombre rationnel 1,037037...037... sous la forme $\frac{p}{q}$ où p et q sont des nombres entiers.

Exercice 99.

- 1. Donner la nature de la série $\sum_{n=2}^{\infty} u_n$ de terme général $u_n = \frac{1}{n} + \ln(1 \frac{1}{n})$.
- 2. * Simplifier la somme partielle $S_n=\sum_{k=2}^n u_k$ et en déduire la convergence de la suite $\alpha_n=1+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{n}-\ln(n).$
- 3. ** En déduire la somme de la série

$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n + (-1)^{n+1}}.$$

Exercice 100. ** En exprimant $u_n = \frac{1 + (-1)^n n^{\alpha}}{n^{2\alpha}}$ comme somme de deux suites, déterminer selon les valeurs de α la nature de la série $\sum u_n$.

Fiche 7 - Séries entières

Exercice 101. Déterminer le rayon de convergence des séries entières à variables complexes suivantes :

(1)
$$\sum \frac{z^n}{n^2}$$
, (2) $\sum \frac{(-1)^n}{2^n \sqrt{n}} z^n$, (3) $\sum \frac{z^{3n}}{2^n}$, (4) $\sum \frac{z^{n^2}}{n}$.

Exercice 102. Exprimer la somme de chaque série entière réelle sur son intervalle de convergence que l'on précisera :

$$(1) \sum_{n=0}^{+\infty} \frac{x^{n+1}}{n+1}, \qquad (2) \sum_{n=0}^{+\infty} \frac{n}{n+1} x^n, \qquad (3) \sum_{n=0}^{+\infty} n^2 x^n, \qquad (4) \sum_{n=0}^{+\infty} (3n+1) x^{3n+2}.$$

Exercice 103. On considère la suite $(u_n)_{n\in\mathbb{N}^*}$ définie par

$$u_n = \frac{\sin(\frac{1}{\sqrt{n}})}{(n+1)^3 \ln(1+\frac{1}{n})}, \ n \ge 1.$$

1. Montrer que

$$u_n \sim_{+\infty} \frac{1}{n^{\frac{5}{2}}}.$$

- 2. Montrer que la série numérique $\sum_{n=1}^{+\infty} u_n$ est convergente.
- 3. Déterminer le rayon de convergence de la série entière $\sum_{n=1}^{+\infty} u_n z^n$.

Exercice 104. Soit f la fonction définie par

$$f(x) = \sum_{n=1}^{+\infty} \sin(\frac{1}{\sqrt{n}})x^n.$$

- 1. Déterminer le rayon de convergence R de cette série entière.
- 2. Étudier la convergence en -R et en R.

Exercices supplémentaires

Exercice 105. Déterminer le rayon de convergence des séries entières à variables complexes suivantes :

(1)
$$\sum \frac{(2n)!}{(n!)^2} z^n$$
, (2) $\sum (1 + \frac{1}{n})^{n^2} z^n$, (3) $\sum \frac{\ln(n)}{\ln(n+1)} z^n$, (4) $\sum (-1)^n \frac{n^n}{n!} z^{4n+1}$,

(5)
$$\sum (-1)^n (n+3)! z^n$$
, (6) $\sum n^n z^n$, (7) $\sum \frac{(-2)^n}{n+1} z^n$, (8) $\sum (1+i)^n z^n$.

Exercice 106. Calculer le rayon de convergence des séries entières suivantes :

$$(1) \sum \frac{n^3+1}{3^n} x^n, \qquad (2) \sum \frac{\ln n}{n^3} x^n, \qquad (3) \sum \frac{\ln (n^n)}{(\ln n)^n} x^n, \qquad (4) \sum \sin^3(\frac{1}{n}) x^n.$$

19

Exercice 107. Déterminer le rayon de convergence et la somme de la série entière $\sum \frac{x^{2n}}{2n+1}$.

Exercice 108. Soit $\sum a_n z^n$ une série entière de rayon de convergence R. Soit $p \in \mathbb{N}^*$. Déterminer le rayon de convergence de la série entière $\sum a_n z^{pn}$.

Exercice 109. Soit $\sum_{n=0}^{\infty} a_n z^n$ une série entière. On suppose qu'elle diverge pour z=3+4i et qu'elle converge pour z=5i. Quel est son rayon de convergence?

Exercice 110. Soit f la fonction définie par

$$f(x) = \sum_{n=1}^{+\infty} \frac{n^2 + 1}{2^n} x^n.$$

- 1. Déterminer le domaine de définition de f.
- 2. Déterminer le domaine de dérivabilité de f.

Fiche 8 - Séries entières - équation différentielles

Exercice 111. Déterminer le développement en série entière en x_0 des fonctions à variable réelle suivantes (en précisant les intervalles de validité du développement) :

- 1. $f(x) = \frac{1}{(x-1)(x-3)}$ en $x_0 = 0$
- 2. $f(x) = \ln(x^2 3x + 2)$ en $x_0 = 0$
- 3. $f(x) = \sin(x)$ en $x_0 = \frac{\pi}{4}$
- 4. $f(x) = \frac{1}{x^2}$ en $x_0 = 1$

Exercice 112. On considère l'équation différentielle

$$x^{2}(1-x)y'' - x(1+x)y' + y = 0.$$

- 1. Calculer une solution particulière non nulle u(x) de l'équation développable en série entière.
- 2. A l'aide du changement de fonction y(x) = z(x)u(x), trouver la solution générale de l'équation sur]0,1[.

Exercice 113. On considère l'équation différentielle

$$(x^2 + x)y'' + (1 + 3x)y' + y = 0$$

Déterminer une solution particulière non nulle u(x) (développable en série entière) de l'équation sur l'intervalle I =]0, 1[, puis la solution générale de l'équation sur I de la forme y = zu.

Exercices supplémentaires

Exercice 114. Soit $u(x) = \sum_{n=3}^{\infty} \frac{x^n}{n(n-2)}$. Quel est le rayon de convergence de cette série entière? Calculer u(x). (Indication : on pourra tout d'abord calculer u'(x).)

Exercice 115. (*)

On considère l'équation différentielle

$$(E) y'' - xy' - y = 0$$

avec la condition initiale

(CE)
$$y(0) = 1, y'(0) = 0.$$

On suppose que (E) admet une solution développable en série entière au voisinage de 0, $y(x) = \sum_{n=0}^{+\infty} a_n x^n$, de rayon de convergence R > 0 et vérifiant la condition initiale (CE).

- 1. Calculer a_0 et a_1 .
- 2. Montrer que a_n vérifie la relation de récurrence

$$a_n = \frac{1}{n}a_{n-2}$$
, pour tout $n \ge 2$.

- 3. Déterminer l'expression de a_{2k} et montrer que $a_{2k+1}=0$ pour tout $k\in\mathbb{N}$.
- 4. Donner l'expression de la série entière obtenue et calculer son rayon de convergence.

Exercice 116. (**)

Déterminer le développement en série entière des fonctions suivantes au point indiqué en précisant le domaine de validité du développement :

1.
$$f(x) = e^x$$
 en $x_0 = 1$

2.
$$f(x) = \frac{1+x}{(1-x)^3}$$
 en $x_0 = 0$

3.
$$f(x) = \ln(1 + x + x^2)$$
 en $x_0 = 0$

4.
$$f(x) = \arctan\left(\frac{1-x^2}{1+x^2}\right)$$
 en $x_0 = 0$

Exercice 117. (**)

On considère l'équation différentielle

$$(E) (1+x^2)y'' - 2y = 0$$

1. On suppose que (E) admet une solution développable en série entière au voisinage de 0, $y(x) = \sum_{n\geq 0} a_n x^n$, de rayon de convergence R>0. Montrer que y est solution de (E) si et seulement si

$$a_{n+2} = -\frac{n-2}{n+2}a_n$$
 pour tout $n \in \mathbb{N}$.

2. Montrer qu'il existe une unique solution f de (E) développable en série entière au voisinage de 0 vérifiant f(0) = 0 et f'(0) = 1. Calculer les coefficients et le rayon de convergence de la série entière obtenue.

Exercice 118. (***)

On considère l'équation différentielle

$$(E) xy'' + 2y' + xy = 0$$

- 1. Montrer qu'il existe une unique solution f développable en série entière solution de (E) et vérifiant f(0) = 1.
- 2. Quel est le domaine de définition de f? Calculer f sur ce domaine.

Exercice 119. (***)

On considère l'équation différentielle

$$(E) x(1-x)y' + y = x$$

On suppose que (E) admet une solution développable en série entière au voisinage de $0, y(x) = \sum_{n>0} a_n x^n$, de rayon de convergence R>0.

- 1. Calculer a_0, a_1, a_2 et exprimer a_n en fonction de a_{n-1} .
- 2. Déterminer l'expression de a_n .
- 3. Déterminer le rayon de convergence de la série entière obtenue.
- 4. Donner l'expression de y(x) sous forme de fonctions élémentaires.

Exercice 120. (**)

Pour quelles valeurs de $\alpha \in \mathbb{R}$ existe-t-il une fonction f non nulle développable en série entière au voisinage de 0 telle que $f'(x) = f(\alpha x)$? Préciser alors le rayon de convergence de la série obtenue.

Développements usuels

Fonction	Développement en série entière	Domaine de validité
e^x	$\sum_{n=0}^{+\infty} \frac{x^n}{n!} = 1 + x + \frac{1}{2}x^2 + \dots + \frac{x^n}{n!} + \dots$	\mathbb{R}
$\cos x$	$\sum_{n=0}^{+\infty} \frac{(-1)^n x^{2n}}{(2n)!} = 1 - \frac{1}{2} x^2 + \dots + \frac{(-1)^n x^{2n}}{(2n)!} + \dots$	$\mathbb R$
$\sin x$	$\sum_{n=0}^{+\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!} = x - \frac{1}{6}x^3 + \dots + \frac{(-1)^n x^{2n+1}}{(2n+1)!} + \dots$	$\mathbb R$
ch x	$\sum_{n=0}^{+\infty} \frac{x^{2n}}{(2n)!} = 1 + \frac{1}{2}x^2 + \dots + \frac{x^{2n}}{(2n)!} + \dots$	$\mathbb R$
$\operatorname{sh} x$	$\sum_{n=0}^{+\infty} \frac{x^{2n+1}}{(2n+1)!} = x + \frac{1}{6}x^3 + \dots + \frac{x^{2n+1}}{(2n+1)!} + \dots$	${\mathbb R}$
$(1+x)^{\alpha}$	$1 + \sum_{n=1}^{+\infty} \frac{\alpha(\alpha - 1)(\alpha - 2)\cdots(\alpha - (n - 1))}{n!} x^n$] – 1, 1[
$\frac{1}{1-x}$	$\sum_{n=0}^{+\infty} x^n = 1 + x + x^2 + \dots + x^n + \dots$] – 1, 1[
$\frac{1}{1-x^2}$	$\sum_{n=0}^{+\infty} x^{2n} = 1 + x^2 + x^4 + \dots + x^{2n} + \dots$] – 1, 1[
$\frac{1}{1+x}$	$\sum_{n=0}^{+\infty} (-1)^n x^n = 1 - x + x^2 + \dots + (-1)^n x^n + \dots$] - 1, 1[

$\frac{1}{1+x^2}$	$\sum_{n=0}^{+\infty} (-1)^{2n} x^{2n} = 1 - x^2 + x^4 + \dots + (-1)^{2n} x^{2n} + \dots$] - 1,1[
$\frac{1}{\sqrt{1-x^2}}$	$\sum_{n=0}^{+\infty} \frac{(2n)!}{2^{2n}(n!)^2} x^{2n} = 1 + \frac{1}{2}x^2 + \dots + \frac{(2n)!}{2^{2n}(n!)^2} x^{2n} + \dots$] - 1,1[
$\frac{1}{\sqrt{1+x^2}}$	$\sum_{n=0}^{+\infty} \frac{(-1)^n (2n)!}{2^{2n} (n!)^2} x^{2n} = 1 - \frac{1}{2} x^2 + \dots + \frac{(-1)^n (2n)!}{2^{2n} (n!)^2} x^{2n} + \dots$] - 1,1[
$\ln(1+x)$	$\sum_{n=1}^{+\infty} \frac{(-1)^{n+1}}{n} x^n = x - \frac{1}{2}x^2 + \dots + \frac{(-1)^{n+1}}{n} x^n + \dots$] - 1,1[
$\arctan x$	$\sum_{n=0}^{+\infty} \frac{(-1)^{n+1}}{2n+1} x^{2n+1} = x - \frac{1}{3}x^3 + \dots + \frac{(-1)^{n+1}}{2n+1} x^{2n+1} + \dots$] - 1,1[
$\arcsin x$	$\sum_{n=0}^{+\infty} \frac{(2n)!}{2^{2n}(n!)^2(2n+1)} x^{2n+1} = x + \frac{1}{6}x^3 + \dots + \dots$] - 1,1[