Analyse 1 - Corrigé du contrôle du 19/11/2024

Question 1. a) Soient f et g deux fonctions réelles définies sur \mathbb{R} . Rappeler les conditions d'existence

b) Déterminer l'ensemble de définition de la fonction $h: x \mapsto \ln(x^2 + x + 1)$ et calculer la dérivée là

et la formule de la dérivée de $f \circ g$.

où elle existe.
c) Déterminer l'ensemble de définition de la fonction $\phi: x \mapsto \arctan(\sqrt{x^2 - 1})$ et calculer la dérivée là où elle existe.
a) Soient fet q deux fonctions définies ru R.
Si latia muti desirralla alors la l'extration a
a) Soient fet q deux fonctions définies ru R. Si fet q sont dérivables, alors fo g l'est et on a : Pour tout & ER, (fo q) (x) = f'(q(x)) x q'(x)
et g: 2 \rightarrow 22+2+1.
et $a: x \mapsto a^2 + x + 1$.
g est définie et dérivable sur R: c'est un polynôme de degrés On remarque que son discriminant D est égal à -3. Donc, pour tout « EIR, g (») > 0. Lest définie et dérivable sur R+ «. « h-fog est donc définie et dérivable sur R et on a, pour tout « EIR :
On remarque au son discriminant D est égal à -3.
D- (m) - 0
Direction of the second of the
- fest de fine et dérivable seu IK"
a h-fog est donc définie et désivable sur R et on
a fact a E B.
1 1 () 2 m + 1
$\frac{h'(a)}{a^2+a+1}$
2°+2+1
c) da fonction a: 2 - 1 est délinie sur
c) da fonction $g: x \mapsto \sqrt{x^2-1}$ est définie sur $]-\varphi, -1] \cup [1, +\infty[$ Elle est dérivable sur $]-\varphi, -1[\cup]1, +\infty[$ et de dérivée $g: x \mapsto \frac{x}{\sqrt{x^2-1}}$
7 7 7 1 7 1 2
J-0, -1 0 11, + of er al aliante g: n -
\L-1
la fonction l'a > arctan a et définie et dévirable
A. B. at I Plant B. D. at D. a. D. 1
La fonction $f: x \mapsto arctan x$ et définie et dévirable sur R et f' est la fonction $f': x \mapsto \frac{1}{1+x^2}$

Donc & est définer sur] - 0, -1] U[+1, +00[et dérivable sur]-0, 1[U]1,+00[, et pour tout ou dans cet ensemble, on a: $\phi'(x) = \frac{1}{1 + (\sqrt{x^2 - 1})^2} \times \frac{x}{\sqrt{x^2 - 1}} = \frac{x}{(1 + x^2 - 1)\sqrt{x^2 - 1}} = \frac{1}{x\sqrt{x^2 - 1}}$ Bonus: on peut utilier le toux d'accroissement en 1 et en (-1) pour vérifier que « n'est pas dérivable en ces 2 points. Par eaemple en 1: Soit h > 0 et 2 = 1+h. φ(1+h) - φ(1) = archan V(1+h)2-1 - archan O $= \frac{arctan \sqrt{2h + h^2}}{\sqrt{2h + h^2}} \times \frac{\sqrt{2h + h^2}}{h}$ Lorsque h > 0+, \land lh+h2 \rightarrow 0
et lorsque u > 0, \ \frac{\arctanu}{u} \rightarrow \text{arctanu} \rightarrow \text{arc Donc, lorque $h \rightarrow 0^+$ arctan $\sqrt{2h + h^2} \rightarrow 1$ Pour tout h > 0, $\sqrt{2h+l^2} = \sqrt{\frac{2}{h}} + 1$ Donc $\sqrt{2h+h^2}$ $h \to 0^+$

Question 2. Étudier la monotonie de la suite $(a_n)_{n\geq 0}=(e^n-n)_{n\geq 0}$. I've méthode: étudions la fonction of définie ru R⁺

par f(n) = eⁿ - n.

f est de vivable et pour tout no,

f'(n) = eⁿ - 1 > 0

Donc of est strictement cro issante ru R⁺.

Or pour tout n \in N, u_n = f(n).

Donc la ruite (un) est strictement croissante 2º méthode: Soit n € IN. Or e = 2,8 > 2 Donc, pour tout m, e^m > 1 et (e-1) > 1 On a donc un+1 - um > 0. La suite (un) est strictement croiscante.

Question 3. On considere la suite $(u_n)_{n\geq 1}$ définie par $u_n=\frac{4n-\sin(n)}{\sqrt{n^2+3n+1}+\ln(n^2)}$. Calculer, si elle existe, la limite de (u_n) quand $n\to\infty$.

Soit m>1. u_m ent bien définie et on a: $u_m=\frac{M}{M}\left(\frac{1+\frac{3}{4}+\frac{1}{M^2}+\frac{2}{M}}{M}\ln u\right)$ Fin m ent bounde donc $\frac{1}{M}$ $\frac{1}{M}$

Question 4. On considère la suite $(v_n)_{n\geq 1}$ définie par $v_n = \frac{1}{n!} \sum_{k=1}^n k!$.

- a) Calculer v_1, v_2, v_3 et v_4 .
- **b)** La suite (v_n) est-elle monotone?
- c) En utilisant que, pour tout $1 \le k \le n-2$, on a $\frac{k!}{n!} \le \frac{1}{n(n-1)}$, montrer que, pour tout $n \in \mathbb{N}^*$:

$$1 \le v_n \le 1 + \frac{2}{n}.$$

d) En déduire la limite de (v_n) .

a)
$$v_1 = \frac{1}{\lambda} = 1$$
 $v_2 = \frac{1+\varrho}{2} = \frac{3}{2}$

$$N_3 = \frac{1+2+6}{6} = \frac{9}{6} = \frac{3}{2}$$

$$\frac{N_{4}}{4} = \frac{1+2+6+24}{24} = \frac{33}{8} = \frac{11}{8}$$

$$\frac{k!}{m!} = \frac{1 \times 2 \times - - \times k}{1 \times 2 \times - - \times k \times (k+1) - \times (m-1) \times n}$$

$$\frac{k!}{m!} = \frac{1 \times 2 \times - - \times k}{1 \times 2 \times - - \times k}$$

$$\frac{1}{m!} = \frac{1 \times 2 \times - - \times k}{1 \times 2 \times - - \times k}$$

$$\leq \frac{n-2}{n(n-1)} + \frac{1}{m} + 1$$

$$\frac{1}{m} + \frac{1}{m} + 1 = \frac{\ell}{m} + 1$$

· Par ailleurs, pour tout m, vm > 1 xm = 1

d) La ruite constante (1) n et la suite (1+2) n n tendent veus 1 donc, par le théorème des gendarmes, on peut conclure que (vn) converge et que lim vn = 1