Cursus préparatoire : Analyse 1 et Algèbre 1

20 novembre 2024

Devoir surveillé N°3 Durée: 1h30

Le candidat ou la candidate attachera la plus grande importance à la clarté, à la précision et à la concision de la rédaction. Dans toutes les questions, il sera tenu le plus grand compte de la rigueur de la rédaction; toute réponse insuffisamment justifiée sera considérée comme nulle. Calculatrices et notes de cours sont interdites. Le sujet est recto-verso. Le barème indiqué est approximatif.

Exercice 1 (6 points). Soit $(b_n)_{n\in\mathbb{N}}$ la suite numérique définie par

$$\begin{cases}
b_0 = \frac{3}{2} \\
b_{n+1} = b_n^2 - 2b_n + 2
\end{cases}$$
(1)

- 1. Démontrer par récurrence que pour tout $n \in \mathbb{N}, 1 \leq b_n \leq 2$. Indication : considérer $b_{n+1}-1$
- 2. Démontrer que la suite $(b_n)_{n\in\mathbb{N}}$ est décroissante.
- 3. En déduire que la suite $(b_n)_{n\in\mathbb{N}}$ converge vers une limite $\ell\in\mathbb{R}$.
- 4. Justifier que $\ell = \ell^2 2\ell + 2$ et déterminer la limite ℓ .

Exercice 2 (2 points). Soit A et B deux parties non-vides et bornées de \mathbb{R} .

Vrai ou faux? (Attention les points seront accordés pour la justification seulement!)

- 1. $A \subseteq B \Rightarrow \sup A \leqslant \sup B$,
- 2. $\sup(A \cup B) = \max(\sup A, \sup B)$,
- 3. $\sup A + \sup B = \sup(A \cup B)$.

Exercice 3 (2 points). Étudier la convergence des suites dont le terme général est donné par

- 1. $w_n = \sqrt[n]{n}$
- 2. $t_n = \sin(n\pi/4) + \cos(n\pi/2)$
- 3. $s_n = \sqrt{n+1} \sqrt{n}$

Exercice 4. 1. (1 point) Montrer que $\forall (x,y) \in \mathbb{R}^2$, les deux propositions suivantes sont vraies

- (a) $(y > 0 \text{ et } x > 0) \Rightarrow \sqrt{xy} \le \frac{x+y}{2}$
- (b) $(y \ge x > 0) \Rightarrow (x \le \frac{x+y}{2} \le y \text{ et } x \le \sqrt{xy} \le y)$.
- 2. (5 points) Soient u_0 et v_0 des réels strictement positifs avec $u_0 < v_0$. On définit deux suites $(u_n)_{n \in \mathbb{N}}$ et $(v_n)_{n \in \mathbb{N}}$ de la façon suivante :

$$u_{n+1} = \sqrt{u_n v_n}$$
 et $v_{n+1} = \frac{u_n + v_n}{2}$.

- (a) Montrer que $u_n \leq v_n$ quel que soit $n \in \mathbb{N}$.
- (b) Montrer que $(v_n)_{n\in\mathbb{N}}$ est décroissante.
- (c) Montrer que $(u_n)_{n\in\mathbb{N}}$ est croissante.
- (d) En déduire qu'il existe des réels u et v tel que la suite $(u_n)_{n\in\mathbb{N}}$ converge vers u et la suite $(v_n)_{n\in\mathbb{N}}$ converge vers v.
- (e) Montrer que u = v. Indication : Éviter d'utiliser le théorème des suites adjacentes et remarquer quelles relations satisfont u et v.

Exercice 5 (6 points). Soit $n \ge 1$.

1. Montrer que l'équation

$$\sum_{k=1}^{n} x^k = 1$$

admet une unique solution, que l'on notera a_n , dans]0,1]. Indication : étudier la fonction $f_n:[0,1]\to\mathbb{R}$ définie par $f_n(x)=\sum_{k=1}^n x^k-1$.

- 2. Montrer que $(a_n)_{n\in\mathbb{N}}$ est une suite strictement décroissante. Indication : quel est le signe de $f_{n+1}(a_n)$?
- 3. Montrer que $(a_n)_{n\in\mathbb{N}}$ est une suite minorée par $\frac{1}{2}$ et déduire qu'elle admet une limite $\ell \geq \frac{1}{2}$. Indication : sommes géométriques
- 4. (Bonus + 2pts) Montrer que $\ell = \frac{1}{2}$.