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Exercice 1 : Logique.
1. Est-ce que les deux propositions suivantes sont équivalentes ? Justifier la réponse.

(a) P → (Q→ R) et (b) (P → Q)→ R.

2. Écrire en langage formel l’énoncé suivant :
Pour tout nombre premier il existe un nombre premier strictement plus grand.

Ensuite, écrire la négation de cet énoncé.
Attention : Il faut traduire premier en n’utilisant que l’addition et la multiplication.

3. On cherche à calculer la somme Sn =
∑n2

k=1E(
√
k), où E(x) est la partie entière de x.

(a) Montrer que

Sn = n+
n−1∑
i=1

(i+1)2−1∑
k=i2

E(
√
k).

(b) Conclure.

Solution.
1. On écrit la table de vérité.

P Q R Q→ R P → (Q→ R) P → Q (P → Q)→ R

V V V V V V V
V V F F F V F
V F V V V F V
V F F V V F V
F V V V V V V
F V F F V V F
F F V V V V V
F F F V V V F

La 5me et la 7me colonne étant différentes, les deux propositions ne sont pas équivalentes.
2. On note que p est premier ssi p satisfait p > 1∧∀x∀y [xy = p→ (x = 1∨ y = 1)]. L’énoncé est donc :

∀p [(p > 1 ∧ ∀x∀y [xy = p→ (x = 1 ∨ y = 1)])→ ∃q (q > p ∧ ∀x∀y [xy = q → (x = 1 ∨ y = 1)])].

La négation est :

∃p [(p > 1 ∧ ∀x∀y [xy = p→ (x = 1 ∨ y = 1)]) ∧ ∀q (q ≤ p ∨ ∃x∃y [xy = q ∧ x 6= 1 ∧ y 6= 1)])].

3. (a) On a E(
√
n2) = n, et donc

Sn =

n2∑
k=1

E(
√
k) =

22−1∑
k=12

E(
√
k)+

32−1∑
k=22

E(
√
k)+· · ·+

n2−1∑
k=(n−1)2

E(
√
k)+E(

√
n2) = n+

n−1∑
i=1

(i+1)2−1∑
k=i2

E(
√
k).

(b) Pour i2 ≤ k ≤ (i+ 1)2 − 1 on a E(
√
k) = i. Ainsi

Sn = n+
n−1∑
i=1

(i+1)2−1∑
k=i2

i = n+
n−1∑
i=1

[(i+ 1)2 − i2]i = n+
n−1∑
i=1

(2i+ 1)i = n+
n−1∑
i=1

(2i2 + i)

= n+ 2
(n− 1)n(2n− 1)

6
+

(n− 1)n

2
=
n

6
[6 + (n− 1)(2(2n− 1) + 3)]

=
n

6
[6 + (n− 1)(4n+ 1)] =

n

6
[4n2 − 3n+ 5].
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Exercice 2 : Relations et Applications.
1. Soient E un ensemble et f : E → E une application. On suppose que f ◦ f = f et que f est injective

ou surjective. Montrer que f = idE .
2. Soient E et F deux ensembles, f : E → F une application, A ⊆ E et B ⊆ F . Montrer que

f [A ∩ f−1[B]] = f [A] ∩B.

3. Soient E un ensemble et A ⊆ E. On note f l’application X 7→ X ∩A de P(E) dans P(E).
(a) Montrer que X ∼ X ′ ssi f(X) = f(X ′) est une relation d’équivalence.
(b) Montrer que P(A) est un ensemble de représentants des classes d’équivalence de ∼.

Solution.
1. Si f est injective, il y a une fonction réciproque à gauche f ′, avec f ′ ◦ f = idE . Alors

f = idE ◦ f = (f ′ ◦ f) ◦ f = f ′ ◦ (f ◦ f) = f ′ ◦ f = idE .

Si f est surjective, il y a une fonction réciproque à droite f ′′, avec f ◦ f ′′ = idE . Alors

f = f ◦ idE = f ◦ (f ◦ f ′′) = (f ◦ f) ◦ f ′′ = f ◦ f ′′ = idE .

2. Soit y ∈ f [A ∩ f−1[B]]. Donc il y a a ∈ A ∩ f−1[B] avec f(a) = y. Puisque a ∈ f−1[B] on a
y = f(a) ∈ B. Donc y ∈ f [A] ∩B.
Réciproquement, soit y ∈ f [A] ∩ B. Donc il y a a ∈ A avec f(a) = y ∈ B, et donc a ∈ f−1[B]. Ainsi
a ∈ A ∩ f−1[B], et y = f(a) ∈ f [A ∩ f−1[B]].
Donc f [A ∩ f−1[B]] = f [A] ∩B.

3. (a) On a f(X) = f(X), d’où X ∼ X et ∼ est réflexive. Si X ∼ X ′, alors f(X) = f(X ′), d’où
f(X ′) = f(X) et X ′ ∼ X : La relation ∼ est symétrique. Enfin, si X ∼ X ′ et X ′ ∼ X ′′, on a
f(X) = f(X ′) et f(X ′) = f(X ′′), d’où f(X) = f(X ′′). Ainsi X ∼ X ′′ et ∼ est transitive. Il sagot
bien d’une relation d’équivalence.

(b) On a X ∩A = (X ∩A)∩A, d’où X ∼ X ∩A ∈ P(A). De plus, si Y, Y ′ ∈ P(A) avec Y ∼ Y ′, alors
Y = f(Y ) = f(Y ′) = Y ′. Ainsi tout X ∈ P(E) est ∼-équivalent à un unique Y ∈ P(A), à savoir
Y = f(X) = X ∩A. Donc P(A) est un système de représentants des classes modulo ∼.

Exercice 3 : Les complexes.
1. Soit a ∈ C \ U. On note f la fonction z 7→ z−a

āz−1 . Montrer que f est définie sur U, à valeurs dans U,
et que f : U→ U est bijective. (Rappel : U = {z ∈ C : |z| = 1}.)

2. Résoudre algébriquement dans C l’équation 2z2 + (8− 5i)z + (4− 13i) = 0.

Solution.
1. Si z ∈ U on a |āz| = |ā| |z| = |ā| 6= 1 puisque a /∈ U. Donc āz 6= 1, et f(z) est bien défini. De plus,
zz̄ = 1 = |z| et donc ∣∣ z − a

āz − 1

∣∣ =
|z − a|
|āz − 1| |z̄|

=
|z − a|
|ā− z̄|

=
|z − a|
|a− z|

=
|z − a|
|a− z|

= 1

et f(z) ∈ U.
Si y = f(z) = z−a

āz−1 , on a y(āz − 1) = z − a, soit z(āy − 1) = y − a et z = y−a
āy−1 = f(y). Donc f est sa

propre fonction réciproque, et donc bijective.
2. On calcule le déterminant

∆ = (8− 5i)2 − 4 · 2 · (4− 13i) = 64− 25− 80i− 32 + 104i = 7 + 24i.

On pose δ = a+ ib avec ∆ = δ2 = a2 − b2 + 2abi. En prenant la partie réelle et la partie imaginaire,
on obtient

a2 − b2 = 7, 2ab = 24, et a2 + b2 = |δ|2 = |∆| =
√

72 + 242 =
√

625 = 25.

Ainsi 2a2 = 32 et a = ±4, ce qui donne b = ±3 et δ = ±(4 + 3i). Donc

z ∈ −(8− 5i)± (4 + 3i)

4
= {−1 + 2i,−3 +

i

2
}.
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Exercice 4 : Arithmétique.

1. Montrer que pour tous n ∈ N∗ et a, b ∈ Z, si a ≡ b mod n alors an ≡ bn mod n2.
Indication : an − bn = (a− b) (an−1 + · · ·+ bn−1).

2. Donner toutes les solutions dans Z du système de congruences

x ≡ 1 mod 597 et x ≡ 2 mod 322.

3. Montrer que si x3 + y3 + z3 est divisible par 7, xyz l’est aussi.

Solution.

1. Puisque a ≡ b mod n on a

an−1 + an−2b+ · · ·+ abn−2 + bn−1 ≡ an−1 + · · ·+ an−1 = n · an−1 ≡ 0 mod n.

Ainsi n | a− b et n | an−1 + an−2b+ · · ·+ abn−2 + bn−1, d’où

n2 | (a− b)(an−1 + an−2b+ · · ·+ abn−2 + bn−1) = an − bn,

et an ≡ bn mod n2.

2. On effectue l’algorithme d’Euclide.
597 = 322 · 1 + 275

322 = 275 · 1 + 47

275 = 47 · 5 + 40

47 = 40 · 1 + 7

40 = 7 · 5 + 5

7 = 5 · 1 + 2

5 = 2 · 2 + 1.

Ainsi 597 ∧ 322 = 1 et 1 | 2− 1. Il y a donc des solutions. On remonte.

1 = 5− 2 · 2 = 5− (7− 5) · 2 = 5 · 3− 7 · 2 = (40− 7 · 5) · 3− 7 · 2 = 40 · 3− 7 · 17

= 40 · 3− (47− 40) · 17 = 40 · 20− 47 · 17 = (275− 47 · 5) · 20− 47 · 17 = 275 · 20− 47 · 117

= 275 · 20− (322− 275) · 117 = 275 · 137− 322 · 117 = (597− 322) · 137− 322 · 117

= 597 · 137− 322 · 254.

Si x0 est une solution, il y a des entiers relatifs y0, z0 tel que 1 + 597y0 = x = 2 + 322z0. Ceci donne
l’équation diophantienne

597y0 − 322z0 = 2− 1 = 1

ce qui donne une solution particulière (y0, z0) = (137, 254), et x0 = 1 + 597y0 = 81790. Si (x, y) est
une autre solution, 597(y−y0) = 322(z−z0). Puisque 597∧322 = 1, on a 322 | y−y0 et y = y0 +322k
pour k ∈ Z, ce qui donne x = 1 + 597 (137 + 322k) = 81790 + 597 · 322k, pour k ∈ Z. Puisque
81790 + 597 · 322k ≡ 81790 modulo 597 et modulo 322, ce sont toutes les solutions.

3. On calcule les cubes modulo 7 :

03 = 0, (±1)3 = ±1, (±2)3 = ±8 ≡ ±1 mod 7, (±3)3 = ±27 ≡ ∓1 mod 7.

Si aucun de x, y, z est divisible par 7, alors x3 +y3 +z3 ≡ ±1±1±1 ∈ {±1,±3} mod 7, et x3 +y3 +z3

ne serait pas divisible par 7. Donc au moins un de x, y, z est divisible par 7, et xyz l’est aussi.

Exercice 5 : Polynômes.

1. Résoudre l’équation polynômiale (X2 + 1)P ′′ = P , pour P ∈ C[X].
Indication : Poser P (X) =

∑d
k=0 akX

k, et obtenir des conditions sur les ak.

2. Soient P ∈ R[X] de degré d > 0 et a ∈ R. On suppose P (a) > 0 et P (k)(a) ≥ 0 pour tout k ∈ J1, dK.
Montrer que P n’a pas de racine dans [a,∞[.
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Solution.

1. On pose P (X) =
∑d

k=0 akX
k, où d = deg(P ). Alors P ′′(X) =

∑d
k=2 akk(k − 1)Xk−2, et on a

d∑
k=0

akX
k = P (X) = (X2 + 1)P ′′(X) = (X2 + 1)

d∑
k=2

akk(k − 1)Xk−2

=
d∑

k=2

akk(k − 1)Xk +
d−2∑
k=0

ak+2(k + 2)(k + 1)Xk.

En comparant les coefficients de Xk, on obtient ak = akk(k − 1) + ak+2(k + 2)(k + 1) pour tout k
(où ak = 0 pour k > d). Notamment on a ad = add(d − 1). Si d = 0 ou d = 1 on a ad = 0 ; si d > 1
on a d(d − 1) est un entier > 1, ce qui implique ad = 0. Dans tous les cas P = 0, ce qui est la seule
solution.

2. D’après la formule de Taylor on a pour x ≥ a que

P (x) =
d∑

k=0

P (k)(a)

k!
(x− a)k = P (a) +

d∑
k=1

P (k)(a)

k!
(x− a)k ≥ P (a) > 0.
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