Université Claude Bernard Lyon 1 Semestre d’automne 2024-2025
Cursus prépa - Premiére année

Mathématiques - CF Algébre 1
Corrigé

Exercice 1 : Logique.

1. Est-ce que les deux propositions suivantes sont équivalentes ? Justifier la réponse.
(a) P—(Q— R) et ) (P—Q)— R.

2. KEcrire en langage formel ’énoncé suivant :
Pour tout nombre premier il existe un nombre premier strictement plus grand.

Ensuite, écrire la négation de cet énoncé.
Attention : Il faut traduire premier en n’utilisant que ’addition et la multiplication.

3. On cherche a calculer la somme S, = ZZ; E(VE), ott E(z) est la partie entiére de x.

(a) Montrer que
n—1 (i+1)2-1

Sn:n—i—z Z

=1 k=2
(b) Conclure.

Solution.

1. On écrit la table de vérité.
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La 5me et la 7me colonne étant différentes, les deux propositions ne sont pas équivalentes.

2. On note que p est premier ssi p satisfait p > 1 AVaVy [zy = p — (x = 1V y = 1)]. L’énoncé est donc :
Vpl(p>1AVaVyloy =p = (. =1Vy=1)]) = 3q(¢>pAVaVy oy = ¢ — (x =1Vy =1)])].
La négation est :
Wlp>1AVaVy ey =p— (@=1Vy=1)])AVq(¢<pVIzIy[zy =qAz # 1Ny #1)])

3.(a) On a E(Vn2) =n, et donc

221 32-1 n2—1 n—1 (i+1)2-1
Sy = Z EWk) =Y EWVE)+> EWVE+-+ Y ENVE+EWVR?) =n+d > EWk)
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(b) Pour i2 <k < (i+1)>—1on a E(vVk) =i. Ainsi
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Exercice 2 : Relations et Applications.

1. Soient F un ensemble et f : F — E une application. On suppose que f o f = f et que f est injective
ou surjective. Montrer que f = idg.

2. Soient E et F' deux ensembles, f : E — F une application, A C F et B C F. Montrer que
fIAN £ (B]) = f[A] N B.

3. Soient E un ensemble et A C E. On note f l'application X — X N A de P(E) dans P(E).
(a) Montrer que X ~ X’ ssi f(X) = f(X') est une relation d’équivalence.

(b) Montrer que P(A) est un ensemble de représentants des classes d’équivalence de ~.

Solution.

1. Si f est injective, il y a une fonction réciproque a gauche f’, avec f' o f = idg. Alors
f=idgof=(flof)of=[fo(fof)=fof=idp.
Si f est surjective, il y a une fonction réciproque a droite f”, avec f o f” = idg. Alors
f=Ffoidp=Ffo(fof)=(fof)of'=fof =idp.

2. Soit y € f[AN f7YB]]. Donc il y a a € AN f~B] avec f(a) = y. Puisque a € f~[B] on a
y = f(a) € B. Donc y € f[A|NB
Réciproquement, soit y € f[A] N B. Donc il y a a € A avec f(a) =y € B, et donc a € f~![B]. Ainsi
a€ ANfiB], et y= f(a) € f[AN f7YB].
Donc f[AN f~YB]] = f[A] N B.
3.(a) On a f(X) = f(X), dou X ~ X et ~ est réflexive. Si X ~ X'  alors f(X) = f(X'), d’ou
f(X) = f(X) et X! ~ X : La relation ~ est symétrique. Enfin, si X ~ X" et X’ ~ X" on a
f(X) = f(X") et f(X) = f(X"), don f(X) = f(X"). Ainsi X ~ X" et ~ est transitive. Il sagot
bien d’une relation d’équivalence.
(b) Ona XNA=(XNA)NA dou X ~XNAecP(A). Deplus, si Y,Y' € P(A) avec Y ~ Y’ alors
Y =f(Y)=fY’) =Y’ Ainsi tout X € P(E) est ~-équivalent a un unique Y € P(A), a savoir
Y = f(X) =X NA. Donc P(A) est un systéme de représentants des classes modulo ~.

Exercice 3 : Les complexes.

1. Soit a € C\ U. On note f la fonction z — Z=%. Montrer que f est définie sur U, & valeurs dans U,
et que f: U — U est bijective. (Rappel : U= {z eC:|z|=1})

2. Résoudre algébriquement dans C I’équation 222 + (8 — 5i)z + (4 — 13i) = 0.

Solution.
1. Si z € Uon a |az| = |a||z| = |a|] # 1 puisque a ¢ U. Donc az # 1, et f(z) est bien défini. De plus,
2z =1=|z| et donc

‘z—a|_ |z —al _\z—a!_|z—a|_\z—a]_1

az—1'" laz—1]|z2| l|la—z Ja—z J|a—=z

et f(z)eU

Siy=f(z) =%, onaylaz—1)=z—a,soit z(ay—1) =y —aet z = ayyial = f(y). Donc f est sa

propre fonction réciproque, et donc bijective.

2. On calcule le déterminant
A= (8—52’)2—4-2‘(4—132') =64 — 25 — 807 — 32+ 104¢ = 7 + 244.

On pose § = a + ib avec A = §%2 = a® — b? + 2abi. En prenant la partie réelle et la partie imaginaire,
on obtient

a> =02 =7, 2ab=24, et a®+b*=15>=|A] =72+ 242 = V625 = 25.
Ainsi 2a% = 32 et a = 44, ce qui donne b= 43 et § = i(4 + 3i). Donc

e _(8_52); Chuk DN —3+%}.




Exercice 4 : Arithmétique.

1. Montrer que pour tous n € N* et a,b € Z, si a = b mod n alors ™ = b" mod n?.
Indication : a" —b" = (a —b) (@™ 1 +--- +b"71).

2. Donner toutes les solutions dans Z du systéme de congruences

=1 mod597 et =2 mod 322.

3. Montrer que si 23 + y2 + 22 est divisible par 7, xyz 'est aussi.

Solution.

1. Puisque ¢ =b mod n on a
a1t +a" P ab" P =" 4 d" P =0 d™ =0 mod n.
Ainsin|a—betn|a®t+a"2b+ - +ab" 2+ "1, d'ot
n? | (a—b)(a" ' +a" b+ -+ ab" ") =a" - 0",

et a” = b" mod n2.

2. On effectue I'algorithme d’Euclide.
597 =322-1+ 275

322 =275-1+47
275 =47-5+40

47=40-1+4+7

40=7-5+5
7T=5-1+42
5=2-241.

Ainsi 597 A 322 =1 et 1|2 — 1. Il y a donc des solutions. On remonte.

1=5-2.2=5-(7-5)-2=5-3-7-2=(40—7-5)-3—-7-2=40-3—7-17
—=40-3— (47 —40) - 17 =40-20 — 47 - 17 = (275 — 47-5) - 20 — 47 - 17 = 275 - 20 — 47 - 117
= 27520 — (322 — 275) - 117 = 275 - 137 — 322 - 117 = (597 — 322) - 137 — 322 - 117
= 597 - 137 — 322 - 254.

Si xg est une solution, il y a des entiers relatifs yg, zg tel que 1+ 597yg = x = 2 + 32223. Ceci donne
I’équation diophantienne
597y — 322zp =2 —-1=1

ce qui donne une solution particuliere (yo, z0) = (137,254), et o = 1 4+ 597yo = 81790. Si (x,y) est
une autre solution, 597(y —yo) = 322(z — zp). Puisque 597A322 = 1, on a 322 | y —yp et y = yo + 322k
pour k € Z, ce qui donne x = 1 + 597 (137 4+ 322k) = 81790 + 597 - 322k, pour k € Z. Puisque
81790 + 597 - 322k = 81790 modulo 597 et modulo 322, ce sont toutes les solutions.

3. On calcule les cubes modulo 7 :
0°=0, (£1)®==41, (£2)3=48=+1 mod7, (£3)>==427=7F1 mod 7.

Si aucun de z, y, z est divisible par 7, alors 23 +33 423 = £14+141 € {£1,43} mod 7, et 23 +y3 +23
ne serait pas divisible par 7. Donc au moins un de z,y, z est divisible par 7, et zyz ’est aussi.

Exercice 5 : Polynémes.
1. Résoudre I'équation polynémiale (X2 + 1)P” = P, pour P € C[X].
Indication : Poser P(X) = ZZ:O ap X", et obtenir des conditions sur les ay.
2. Soient P € R[X] de degré d > 0 et a € R. On suppose P(a) > 0 et P%*)(a) > 0 pour tout k € [1,d].
Montrer que P n’a pas de racine dans [a, oo[.



Solution.
1. On pose P(X) = ZZ:O apXF*, ott d = deg(P). Alors P"(X) = Zz:Q apk(k —1)X*2 et on a

d d
Y apXP=P(X)= (X2 +1)P"(X) = (X +1)>_ apk(k — 1)X*?
k=0 k=2
d d—2
=Y apk(k — DX+ apio(k+2)(k+ 1)X".
k=2 k=0

En comparant les coefficients de X*, on obtient ar = ark(k — 1) + ary2(k + 2)(k + 1) pour tout k
(ot ar = 0 pour k > d). Notamment on a ag = aqgd(d —1). Sid=0oud=1onaa;=0;sid>1
on a d(d — 1) est un entier > 1, ce qui implique ay = 0. Dans tous les cas P = 0, ce qui est la seule
solution.

2. D’aprés la formule de Taylor on a pour x > a que




