Chapitre 1

Espaces topologiques

1.1 Notion de topologie, ouverts

Définition 1. On appelle espace topologique un couple (X,T) ot X est un ensemble et T une famille
de parties de X vérifiant :

(T1) 0eT, XeT,

(T2) Une intersection finie d’éléments de T appartient o T,

(T3) Une reunion quelconque d’éléments de T appartient o T .
On appelle T la topologie sur X.

Exemple 1. X = R" avec 7 la famille des ensembles ouverts de R"™.

Exemple 2. X avec 7 = {0, X}. On appelle 7 la topologie chaotique.

Exemple 3. X avec 7 = P(X), la famille de toutes les parties de X. On appelle 7 la topologie discrete.
On peut construire des topologies a 'aide de distances.

Définition 2. Soit X un ensemble non vide. Une distance (métrique) sur X est une application
(z,y) — d(x,y) de X x X dans RT telle que :

(D1) d(z,y) =0 <=z =y,

(D2) d(z,y) =d(y,x), VwzyeX,

(D3) d(z,y) < d(z,z)+d(z,y), Y x,y,z€ X (inégalité triangulaire).

Exemple 4. X = R" avec

d(l‘,y) =

x,y € R™. C’est la distance Euclidienne sur R".
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Exemple 5. Sur tout ensemble non vide X on peut définir une distance. Par exemple, en posant

d(z,y) 0, siz=y
T,y) = .
Y 1, siz#y

C’est la distance “discréte” sur X.

Définition 3. Un espace métrique est un couple (X, d), ot d est une distance sur X.

Définition 4. Soit (X,d) un espace métrique. Pour x € X et r > 0, on définit :
a) la boule ouverte de centre x et rayon r : B(x,r) ={y € X ; d(y,z) <r};

b) la boule fermée de centre x et rayon r : B(x,r) ={y € X ; d(y,z) <r}.
Exemple 6. Dans R muni de la distance usuelle, B(1,1) =|0, 2].

Définition 5. Soit (X, d) un espace métrique. Par définition, une partie non-vide U de X est un ouvert
si, pour tout x € U, il existe un r > 0 tel que B(x,r) C U. Par définition () est un ouvert.

N. B. En principe, r dépend de z.

Exemple 7. Dans R muni de la distance usuelle, U =|0, 1] est un ouvert. En effet, si on pose, pour x € U,
r = min{x, 1 — x}, on vérifie aisément que B(z,r) C U.

Proposition 1. Soit (X, d) un espace métrique.
1. Une intersection finie d’ouverts est ouverte.

2. Une reunion quelconque d’ouverts est ouverte.

n
Démonstration. 1) Soit = € ﬂ U;j.OnazxzeU;,i=1,...,n. Chaque U; étant ouvert, il existe un r; > 0
i=1
tel que B(z,r;) C U, i = 1,...,n. Soit r = min{ry,...,r,}. Alors B(z,r) C B(x,r;), i =1,...,n, et
n
donc B(z,r) C U;, i =1,...,n. Il sensuit que B(x,r) C ﬂ U;.
i=1
2) Soit x € UUi‘ Il existe un ig € I tel que z € U;,. U;, étant ouvert, il existe un r > 0 tel que
el
B(z,r) C Uj,. Pour ce méme r, on a B(z,r) C U Ui. O
el

Définition 6. Soit (X,d) un espace métrique. La topologie métrique de (X, d) est
T ={UC X ; U est un ouvert}.

nc on peut voir un es métriqu mme un rticulier d’un es ique.
Donc on peut vo espace mét e co e cas particulier d’'un espace topolo e

Terminologie. On appelle les éléments d’une topologie 7 aussi les ouverts de Iespace (X, 7).
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Définition 7. Soit (X,7T) un espace topologique. On dit que X est un espace de Hausdorff, ou séparé,
st pour deuz points x,y distincts on trouve deux ouverts U,V € T, t.q x €U,y eV et UNV = (.

Proposition 2. Un espace métrique est un espace de Hausdorff (pour la topologie métrique).

Démonstration. Soit (X, d) un espace métrique. Soient z,y € X, x # y. Alors p = d(:;,y) > (0. On pose

U= B(xz,p) et V.= B(y,p). Supposons que z € UNV. Alors

d(z,y) < d(z,2) +d(z,y) < p+p=d(z,y).
Ceci est une contradiction. Donc U NV = 0 et X est Hausdorff. O

Exemple 8. On revient a l'exemple de la topologie chaotique, X avec 7 = {0, X}. Le seul ouvert qui
contient un point de X est X lui-méme. Donc si X contient deux points, ces deux points ne peuvent pas
étre dans deux ouverts différents. Alors si X contient plus qu’un point il n’est pas Hausdorff.

Définition 8. Soit (X,7T) un espace topologique. Un ensemble F C X est fermé si son complémentaire
F€ est ouvert, c.-a.-d. si F¢e€T.

Exemple 9. () et X sont a la fois ouverts et fermés.
Proposition 3. Dans un espace de Hausdorff X tout ensemble fini est fermé.

Démonstration. 11 suffit de montrer que {z} est fermé, ou x € X. Soit y € {z}¢ (on suppose que X a
plus qu’un point.) Alors on peut choisir un ouvert V;, C X qui contient y mais pas x. Il s’ensuit que
{2} = Uyefaye Vy qui est alors reunion des ouverts, donc ouvert. O

Proposition 4. Soit (X, d) un espace métrique.
1. Pour tout x € X et tout r >0, B(z,r) est un ouvert.
2. Pour tout x € X et tout r >0, B(z,r) est un fermé.

Démonstration. 1) Soit y € B(x,r). On a p =r —d(y,x) > 0. On va prouver que B(y, p) C B(z,r). En
effet,

z € B(p,y) = d(z,y) < p = d(z,2) < d(2,y) +d(y,2) < p+d(y,z) =r = 2z € B(z,r).

2) On doit montrer que B(z,7)¢ est un ouvert. Soit y € B(z,r)¢; y satisfait donc d(y,z) > r. Soit
p=d(y,z) —r>0.Ona

2 € B(y,p) = d(z,%) > d(y,z) — d(z,y) > d(y,x) —p=r =z € B(z,r)";
autrement dit, on a B(y, p) C B(z,r)°. O

Proposition 5. Soit (X,7) un espace topologique. Alors
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1. Une reunion finie de fermés est fermé.

2. Une intersection quelconque de fermés est fermé.

Démonstration. 1) Soient F;, i = 1,...,n des fermés. Alors U; = Ff sont ouverts. On a

Ur-Uxw-x\Ou
=1 =1 i=1

ce qui est fermé car par (T2) (L, U; est ouvert.
2) Soient F;, ¢ € I des fermés et U; = Ff. On a

NF=x\Ui=x\{JUu

icl el el

ce qui est fermé car par (T3) (J;c; Ui est ouvert. O

1.2 Espaces normés

Définition 9. Soit E un espace vectoriel réel. Une norme sur E est une application x — ||z|| de E dans
R* = [0, 00[ telle que :
(N1) ||z|| =0 <=2 =0;
(N2) M|l = [N[l=ll, VAeRVzeE;
(N3) ||z +y|| < |zl + |lyll, V x,y € E (inégalité triangulaire).
n 1/2
Exemple 10. On rappelle que, dans R”, ||z|js = (Zw?) est une norme (la norme euclidienne
i=1
standard) ; ici, x = (x1,...,Zy,).
n
Exemple 11. On vérifie aisément que, dans R”, les formules ||z||; = Z |z;| et
i=1
|z|loo = max{|z1],...,|zn|} définissent des normes.

n 1/p
Exemple 12. Pour 1 < p < 0o et z € R", on définit ||z||, = (Z ]xi\p> (pour p = 2, on retrouve le
i=1

cas particulier de la norme euclidienne). || ||, vérifie clairement (N1) et (N2). On peut montrer que | ||,
vérifie aussi (N3); c’est I'inégalité de Minkowski prouvée a la fin de ce chapitre. Par conséquent, || ||, est
une norme.

Sur R, toutes les normes définies ci-dessus coincident avec I'application z — |z|. Cette norme est la
norme usuelle sur R.

Définition 10. Un espace normé est un couple (E,|| ||), ot || || est une norme sur E.
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Proposition 6. Un espace normé (E,|| ||) est un espace métrique pour la métrique d(z,y) = ||z — y||,
Vaz,yeX.

Démonstration. (D1) découle de (N1). Pour vérifier (D2), on note que

d(y,z) = lly — zll = [(=1)(z = y)ll = [ = U}z =yl = [z — yll = d(z,y).
(D3) est une conséquence de (N3) :
d(z,y) = [z —yll = l[(z = 2) + z =Yl <llx = 2] + |z =yl = d(z, 2) + d(z,y).

1.3 Intérieur, adhérence

o
Définition 11. Soit (X,7) un espace topologique. Pour A C X, on définit l'intérieur de A, A, par

A= U v

U ouvert, UCA

A= N F

F fermé, FDA

et l’adhérence de A, A, par

Proposition 7. Soit A une partie d’un espace topologique.
a) A est un ouvert contenu dans A.

o
b) Si U est un ouvert et U C A, alors U CA.

Autrement dit, ;1 est le plus grand ouvert contenu dans A.
a’) A est un fermé contenant A.

b’) Si F est un fermé et F O A, alors F D A.

Autrement dit, A est le plus petit fermé contenant A.

e]
Démonstration. a) A est une union d’ouverts contenus dans A, donc un ouvert contenu dans A. b) Par
définition! La preuve est identique pour a’), b”). O

Exemple 13. On considére, dans R muni de la distance usuelle, A = [0, 1[. Alors ;1:]0, 1[et A=[0,1].

En effet, |0, 1] est un ouvert contenu dans A, [0, 1] est un fermé contenant A, et donc |0, 1[C ACACAc

[} [}
[0,1]. On a donc soit A= A, soit A=]0, 1[. Pour éliminer la premiére possibilité, on montre que A n’est

pas un ouvert. Par I’absurde : sinon, il existe un r > 0 tel que B(0,r) =] — r,r[C A. Or, —r/2 € B(0,r),
mais —7/2 € A. Contradiction. Pour A4, il y a aussi deux possibilités : A = [0,1] ou A = A. On n’est pas
dans le deuxiéme cas, car A n’est pas fermé. Ceci revient & montrer que A¢ =] — oo, 0[U[1, +00[ n’est pas

un ouvert et se démontre par I’absurde (il n’y a pas de r > 0 tel que B(1,r) C A°).
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Proposition 8. Soient A et B deux parties d’un espace topologique.
1. OnaACB:h(ZlCé et AC B.
2. A= X\ A et A= X\ A°.

Démonstration. 1. Evident.

o -
2. On prouve la premiére égalité, qui revient, aprés passage au complémentaire, & X\ A= A¢. (En
Pappliquant & A€ on obtient la seconde égalité.) On a

o o -
A= U v=x\4= N U= (| F=4-
U ouvert, UCA U ouvert, UCA F fermé, FFDA¢
O
Proposition 9. Dans un espace topologique,
o
1. U owvert < U =[.
2. F fermé <= F =F.
[e]
Démonstration. 1. "<=" est claire, car [J est un ouvert. Réciproquement, si U est ouvert, alors le point

o (o]
b) de la proposition précédente implique U CU. Par ailleurs, on a toujours U DU, d’ou I'égalité
voulue.
2. Par passage au complémentaire de a) : F fermé<= F¢ ouvert<= F¢=F‘= X\ F < F =F.
O

Proposition 10. Dans un espace topologique
1. AUB=AUB.
2. ANB C AN B. En général, Uinclusion est stricte.
3. ANB=ANB.
4. A CJ BDJZX U ]?3 En général, l'inclusion est stricte.
Démonstration. 1. ACAUB = AC AUB;deméme, B C AU B et par conséquent AUB C AU B.
Par ailleurs, AU B est un fermé contenant AU B et donc AUB C AU B.
2. Comme ANBC A onaANBC A;deméme, ANBC B,dou ANBC ANB.
Un exemple d’inclusion stricte : dans R muni de la distance usuelle, on prend A = [0, 1], B =|1,2]. On
avu que A = [0, 1] ; par le méme raisonnement, B = [1,2]. Alors AN B =0 = (), mais AN B = {1}.
3. Comme dans 2, on a A (?W BC ;1 N é Par ailleurs, ;1 N é est un ouvert contenu dans AN B et donc
;1 N 103CA r% B.
4. L’inclusion se montre comme dans 1. Un exemple d’inclusion stricte : on prend A, B comme dans
2. Alors (pourquoi?) A 0 B=]0,2] et AU 132]0,2[\{1}.
O
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1.4 Voisinage d’un point

Définition 12. Soit (X,7T) un espace topologique. On appelle voisinage de x € X toute ensemble V C X
qui contient un ouvert U qui contient x. Un pose V, la famille des voisinages de x.

Proposition 11. Soit A une partie d’un espace topologique.

o
1. x €A si et seulement si A contient un voisinage de x.

2. x € A si et seulement si A intersecte tout voisinage de x.

[¢] o
Démonstration. 1. Soit € A. Alors A est un voisinage de x qui est contenu dans A.
On suppose que A contient un voisinage de x. Alors il existe un ouvert U t.q. z € U C A. Donc par

o]
definition de linterieur x € U C A.

— - o
2. x€Assix ¢ A =A° ssi A° ne contient pas de voisinage de z ssi A intersecte tout voisinage de .
O

1.5 Suites

Si (zn) est une suite, on notera une suite extraite (=sous-suite) soit par (zy, ), soit par z,,). Dans le
premier cas, ng,ny, ..., est une suite strictement croissante d’entiers; dans le second, ¢ : N — N est une
application strictement croissante.

Par abus de notation, si tous les termes d’une suite (z,,) appartiennent a un ensemble X, on écrit (z,,) C X.

Définition 13. Soit (X,7) un espace topologique. Si (xy,) C X et x € X, alors, par définition, x, — x
((x,) converge vers x) si et seulement si tout voisinage de x contient presque tout point de la suite,
c.-a.-d.

vVVeV,d, Ny eN tqg Vn>Ny:x, V.

Une suite () est convergente s’il existe un x € X tel que x, — x. On écrit alors = lim x,.
n—oo

Il est évident, & partir de la définition, que si (x,) — x et si (z,, ) est une sous-suite, alors x,, — .

Exemple 14. (X,7) avec 7 = {0, X}. Alors le seul voisinage d’un point est X. Il s’ensuit que chaque
point de X est limite de chaque suite de X!

Exemple 15. (X,7) avec T = P(X). Alors {z} est un ouvert donc un voisinage. Il s’ensuit qu’une suite
(5,) converge vers x si et seulement si INVn > N : z, = x.

Proposition 12. Soit (X,7) un espace de Hausdorff. Alors une suite converge vers au plus un point de
X.
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Démonstration. Supposons que z et y sont limite d’une suite (z,,). Si x # y il existe deux ouverts disjoints,
UetV,zeU,yeV.Mais UNYV est un voisinage de x et contient donc presque tout point de la suite.
Contradiction ! O

Proposition 13. Soit (X, d) un espace métrique. Alors (x,,) converge vers x si et seulement si d(zy,x) —
0 ou encore
Ve>03IN. €N tqg Vn>Nc:d(x,,z)<e.

Démonstration. x = lim,, x,, si et seulement si tout voisinage de x contient presque tout point de (z,).
Ceci est équivalent a dire que tout ouvert contenant x contient presque tout point de (x,). Ceci est
équivalent a dire que toute boule ouverte de centre x contient presque tout point de (zy,). O

1.6 Caractérisation des ensembles a ’aide des suites

Pour cette section on demande que (X, d) soit un espace métrique.

Proposition 14. Soit (X,d) un espace métrique et F C X. Alors
F={reX; 3 (x,) CF telle que z, — x}.

Démonstration. "D" On considére un x appartenant & I’ensemble de droite. Soit » > 0. Il existe ng tel
que d(z,,x) <7, n > ng. En particulier, x,,, € B(z,r) N F, et donc B(z,r) N F # 0, dot z € F.

"C" Soit x € F. Pour n € N, on considére un z,, € FNB(x,1/(n+1)). Alors (z,) C F, d(zn,x) < 1/(n+1)
et donc z,, — x. O

Corollaire 1. F' est un fermé <= pour toute suite convergente (x,,) C F on a lim z, € F.
n—oo

Démonstration. "==" Si z est tel qu'il existe une suite (z,) C F telle que x, — =, alors z € F = F.
"—="Si xz € F, il existe une suite (x,) C F telle que x,, — x. Par conséquent, z € F, et donc F' C F.
Comme on a toujours F' C F', on trouve F' = F', et donc F est fermé. O

1.7 Comparaison des topologies sur un méme espace

Définition 14. Soit X un ensemble et 11,75 deux topologies sur X. On dit que la topologie T est plus
grossiére que To (ou Ty est plus fine que T1) si Ty C 7.

Remarque 1. Si une suite (z,,) converge vers x pour la topologie 72 (qui est plus fine que 77) alors elle
converge aussi vers x pour la topologie 77.

Définition 15. Soit E un espace vectoriel. Deux normes || ||1, || |2 sur E sont équivalentes <
3 01,02 > 0 telles que ClHl’Hl < HZ‘HQ < CQHIL‘Hl, VxekE.
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Définition 16. Soit X un ensemble non vide. Deux distances di, dy sur X sont équivalentes <—
3 CbCQ > 0 telles que Cld1($,y) < d2($,y) < ngl(l',y), v T,y € X.

Il est facile de vérifier que I’équivalence des normes ou distances est, comme son nom l'indique, une
relation d’équivalence.
Le résultat suivant est évident :

Proposition 15. Soit || |1, || ||2 deuz normes équivalentes sur E. Alors les distances associées a || |1,
| |2 sont équivalentes.

Proposition 16. Soit dy, dy deux distances équivalentes sur l’ensemble X . Alors les topologies ils defi-
nissent sont les mémes. Plus précisement :

a) xp — x dans (X, d1) <= x, — x dans (X, da) ;

b) les fermés de (X,dy) et de (X,da) coincident;

c) les ouverts de (X,dy) et de (X,dy) coincident.

Démonstration. a) Exercice! b) C’est une conséquence de a) et de la caractérisation des fermés a l'aide
des suites. ¢) Par passage au complémentaire de b). O

On montrera plus tard le résultat fondamental suivant :

Théoréme 1. Soit E un espace vectoriel réel de dimension finie. Alors toutes les normes sur E sont
équivalentes.

Il s’ensuit que, pour ce qui concerne les ouverts, fermés, suites convergentes, le choix de la norme sur
b )] ) )

un tel espace est immatériel. En particulier, on ne précisera pas la norme sur E. Par exemple, "Dans R",

..." sous-entend "Dans R™ muni d’une norme (et de la distance associée), ...".

1.8 Construction des espaces topologiques

1.8.1 Sous-espace

Définition 17. Soit A C X une partie d’un espace topologique (X, 7). On pose
Ta={UNAlU € T}

et lappelle la topologie induite sur A (ou la topologie relative sur A).

Lemme 1. 74 est une topologie sur A.

Démonstration. (T1) 0=0NnAet X =X NAdonc (), X C7Ty.
(T2) Soit I fini alors (;c;(U; N A) = ((N;c; Ui) N A. Alors une intersection finie d’ensembles de la
forme U; N A, U; ouvert, est ouverte pour la topologie induite.
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(T3) Soit I quelconque alors | J;c;(UsNA) = (U;e; Us) NA. Alors une reunion quelconque d’ensembles

de la forme U; N A, U; ouvert, est ouverte pour la topologie induite.
O

Proposition 17. Soit A C X une partie d’un espace topologique (X, T) et x € A. Alors V' est un voisinage
de x pour la topologie Ty si et seulement s’il existe un voisinage W C X pour x (pour la topologie T ), tel
que V=WnNA.

Démonstration. Soit V un voisinage de x pour la topologie 74. Alors il existe U € Ty t.q. x € U C V.
Alors il existe U € T t.q. U = U N A. Pose W = U UV. Alors W est voisinage de  pour la topologie 7
et V=WnA.

Soit W voisinage de = pour la topologie 7. Alors il existe U € T t.q. z € U C W. Pose V. = W N A.
Alors U = U N A est un ouvert de T4 qui contient z et est contenu dans V. Donc V est voisinage de z
pour la topologie 74. O

Proposition 18. Soit A C X wune partie d’un espace métrique (X,d). Soit da la restriction de d sur
A x A. Alors (A,dy) est un espace métrique et Ty est la topologie métrique de d 4.

Démonstration. On utilise que By, (x,r) = Bg(z,r) N A. O]

1.8.2 Produit d’espaces

Définition 18. Soient (Xy,7x), 1 < k < n des espaces topologiques et X = X1 x -+ x X, le produit
Cartesien. La topologie produit est la famille T de parties de X qui sont reunion quelconque d’ensembles
de la forme

Uy X xUy. Ué€Tg.
Lemme 2. 7 est une topologie sur X.

Démonstration. (T1) 0=0x---xPet X =X x---x X, donc 0, X C Ty.
(T2) Un ouvert est de la forme Ui:( cr Uiy X -+ x Uy, ot I est une famille de multi-indices
quelconque. Or

i1, in)

(UUil ><"'><Uz‘n> UV x-xVi | = U (UsxxUs)N(Vjy x - x V)
el jeJ iel;jed
(4,9)eIxJ

et U;, NV, sont des ouverts dans Xj,.
(T3) Par définition de la topologie produit !
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Proposition 19. Soient (Xg,dr), 1 < k < n des espaces métriques et X = Xj x --- x X,,. Soit D :
X x X — R" donné par
D(z,y) = max di(, Yr)-

Alors (X, D) est un espace métrique et T est la topologie métrique de D.

1
Remarque 2. Dy(z,y) = (O di(xk, yx)P)?, 1 < p < oo définit une métrique équivalente a D.

Démonstration. Soit U € T et x € U. Il existe donc U; € 7; t.q. x € Uy x Us. Comme 7; est métrique
par rapport a d; il existe r; t.q. Bg,(x;,r;) C U;. Soit r = min{ry,r2}. Alors x = (z1,x2) € By, (z1,7) X
By, (z2,7). Or By, (x1,7) X Bg,(z2,7) = Bp(x,r) ce qui montre que U est ouvert pour D. Ceci montre
aussi qu’une boule ouverte pour D est produit des ouverts de X; et donc appartient a 7. O

Proposition 20. Soient (X, 7x), 1 < k < n des espaces topologiques et X = X1 x - -+ x X,, avec topologie
du produit. Alors une suite (x™), C X converge vers x si et seulement si toutes les suites données par les
composantes (x}})n C X, convergent vers xy, 1 <k < n.

Démonstration. Soit (x™), une suite dans X. On suppose d’abord que la suite converge vers x dans X.
Alors dans tout voisinage V € V, se trouve presque tout point de la suite. Soit V; un voisinage de la
composante x; dans X;. Alors V; contient un ouvert U; qui contient z;. Comme Uy X --- X U, est un
voisinage de z il contient presque tout point de la suite (z"),. Donc V; contient presque tout point de la
suite (z'),. Donc ('), tend vers z;.

Supposons maintenant que les (z'),, tend vers z;. Soit V' un voisinage de . Or comme V' contient un
ouvert qui contient x il contient méme un ouvert de la forme Uy X - - - x U,, U; € 7;, qui contient x. U; est
un voisinage de x; et donc contient presque tout point de la suite (z]'),. Donc d’abord Uy x --- x U, et
en conséquence aussi V' contient presque tout point de la suite (z"),. Donc (z"),, tend vers x. O]

1.8.3 Espace quotient

Définition 19. Soit ~ une relation d’équivalence sur un espace topologique (X, 7). On pose X = X/ ~
Uensemble des classes d’équivalance de la relation et note [z] € X la classe de x. Soit ¢ : X — X la
surjection canonique, q(z) = [x]. On pose

Ty ={UcCX|¢"'(U) e T}
et Uappelle la topologie quotient sur X.
Lemme 3. 73 est une topologie sur X.

Démonstration. (T1) 0 =q 1(0) et X = ¢ *(X)
(T2) Pour n’importe quelle application ¢ : X — Y et A,B C X ona ¢ {(ANB) = ¢ 1 (A) Ny~ 1(B).
On applique celui & ¢ = g et A, B deux ouverts de X.
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(T3) Avec la méme notation comme dessus, si {A4;}icr est une famille quelconque de parties de X on
a ¢ NUer 4i) = User ¢ 1 (As). On applique celui & ¢ = g et A; des ouverts de X.
O

Exemple 16. X =R,z ~ysiz —y € Q. Alors T = {0, X}. En particulier R/Q n’est pas Hausdorff
pour la topologie quotient.

1.9 Compléments

1 1
Proposition 21. (Inégalité de Young) Sia,b >0 et si 1 < p,q < oo sont tels que — + — =1, alors
P q

P
ab< T+ (1.1)
p q
aP
Démonstration. On fixe b. La fonction a — f(a) = — + — — ab, a > 0, atteint son minimum pour
p q
ag = b/ P~V et on vérifie facilement que f(ag) = 0 (on utilise 'égalité P 7= q). O

Proposition 22. (Inégalité de Hélder) Si a = (ai,...,a,),b = (b1,...,bp) ER™ et si 1 < p,q < 0

sont tels que — 4+ — =1, alors
P q

’L

b < Dl ol = (Dazrp)l/p(gwi\q)w). (12)

Démonstration. Si a = 0 ou b = 0, 'inégalité suit trivialement. Supposons a # 0 et b £ 0. Dans ce cas,
a = |lal|, >0 et 8 =|bllg > 0. Soit A > 0 a déterminer ultérieurement. Pour chaque i, on a

b Apaip biq
labi] = (4] »(' ‘)_' Ul

p Adq
En sommant ces inégalités pour ¢ = 1,...,n, on trouve, & l'aide de I'inégalité triangulaire,
n n
511
D abi| <) aibs
q
=1 i=1 p A q
34 54/ (P+a) Bi/p p 1
On choisit maintenant A de sorte que APa? = —; alors A = = (car = — et
Aa ap/(p+a) alld p+q q
1
S —). En remplagant dans I'inégalité ci-dessus, on trouve
p+q p
045
Zaz i § — + —=aff= ||(I||p||b”q
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Proposition 23. (Inégalité de Minkowski) Si a,b € R" et 1 < p < o0, alors
lla+0llp < llallp + [[bllp- (1.3)

Démonstration. Si a + b = 0, c’est immédiat. Supposons a + b # 0 et posons o = [|a + b, > 0. Soit
1 1

1< g < oo tel que — 4+ — =1 (autrement dit, ¢ = Ll) On a, de I'inégalité de Holder,
P 4q p—

n
Z |ail|a; + biP~" =
=1

n
> ailla; + b~
=1

n 1/p , n (»-1)/p .
< <Zlai|p> (Z|ai+bi|p> = o’ lallp
i=1 i=1

1 —1 .
(car q(p — 1) =p et — ="y et, de meme, Y [illa; + bsl"~" < a1 ||,
q p i=1

En sommant ces deux inégalités et en utilisant l'inégalité triangulaire, on trouve

n n n
o = ai+bilP = ai + billai + 0:P < (lail + bil)las + 6P < oP " ([lallp + 10]) 5
i=1 i=1 i=1

'inégalité de Minkowski s’obtient de cette derniére inégalité en simplifiant par a1 O
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Chapitre 2

Continuité

2.1 Caractérisations de la continuité

Définition 1. Soient (X1,71), (X2, 72) deux espaces topologiques et f : X1 — Xo une application. Soit
a€ Xy etbe Xy, On dit que f tends vers b si x tend vers a, écrit limy_,, f(x) = b, si pour tout voisinage
V' de b il existe un voisinage U de a t.q. f(U) C V.

Proposition 1. Soient (X1,d1), (X2,d2) deuz espaces métriques et f : X1 — Xo une application. Soit
a € X1 etbe Xy. Alors f tends vers b si x tend vers a si et seulement si pour tout € > 0 il existe & > 0
t.q. Vo € X1 :di(z,a) < 6 implique da(f(x),b) < e.

On note que 'enoncé « Vo € X : di(z,a) < § implique da(f(z),b) < € » est équivalent & f(By, (a,d)) C
Bd2 (b, 6).

Démonstration. Supposons que f(z) “=% b. Soit € > 0. Alors By, (b, €) est un voisinage de b. Il existe alors
un voisinage U de a t.q. f(U) C Bg,(b,€). U contient un ouvert qui contient a et cet ouvert contient une
boule ouvert de centre a. Soit § > 0 son rayon. Alors f(By,(a,0)) C f(U) C Bg,(b,€).

Supposons maintenant que Ve > 035 > 0 : f(Bgy,(a,0)) C Bg,(b,€). Soit V un voisinage de b. Il existe
donc € > 0 t.q. Bg,(b,e) C V. Il existe 6 > 0 t.q. f(Bg,(a,d)) C Bg,(b,€). En particulier U = By, (a,d) et
un voisinage t.q. f(U) C V. O

Définition 2. Soient (X1,71), (Xo,72) deuz espaces topologiques et f : X1 — Xo une application. On dit
que f est continue en a € X; si f tends vers f(a) si x tend vers a.

On dit que f est continue sur A si f est continue en tout point de A. On dit que f est continue si f
est continue sur X.

Théoréme 2. Soient (X1,71), (X2,72) deux espaces topologiques et f : X1 — Xo une application. Les
conditions suivantes sont équivalentes :

1. f est continue.

15
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2. Le pré-image f~H(U) d’un owvert (de X3) est ouvert (dans X1).
3. Le pré-image f~Y(F) d’un fermé (de Xs) est fermé (dans X1).

4. Pour toute partie A C X1 on a f(A) C f(A).

Démonstration. (1 = 4) : Soit f continue et a € A. Soit W un voisinage de f(a). Par continuité de f
il existe un voisinage V de a t.q. f(V) C W. Commea € Aona VNA#(. Donc® # f(VNA) C
fOV)Nf(A) c W N f(A). Il en suit que f(a) € f(A).

(4 = 3) : Supposons (4). Soit F C Xy fermé et E = f~Y(F) € X;. On a f(E) = f(f~}(F)) C F.

Donc f(E) C F = F. Soit # € E. Alors, par (4), f(z) € f(E), donc f(z) € F. Donc x € E ce qui montre
E = FE et E est fermé.

(3 = 2) : Supposons (3). Soit U C X5 ouvert. f~1(U°) = {z € Xq|f(x) ¢ U} = Xq\f 1 (U). U° est
fermé donc par (3) aussi f~1(U€) est fermé donc f~1(U) est ouvert.

(2 = 1) : Supposons (2). Soit a € X;. Soit V voisinage de f(a). Il existe un ouvert W t.q. f(a) € W C
V. D’aprés (2) f~H(W) est ouvert et a € f~1(W). Donc U = f~1(W) est un voisinage de a qui satisfait
f(U) c W C V. Ceci montre que f est continue en a. O

Corollaire 2. La composition de deux fonctions continues est continue.

Démonstration. Soit f : X — Y, g:Y — Z des fonctions continues. Soit U C Z un ouvert. Alors (g o
£7HU) = f~Y (g 1 (U)). Par la continuité de g, g~ (U) est ouvert et par la continuité de f, f~1(g~*(U))
est ouvert. 0l

Exemple 1. Pour X; = R" et X7 = R™ avec topologie usuelle on retrouve la notion de continuité usuelle.

Exemple 2. Soit X1 = Xy = X et 77,72 deux topologies sur X. L’identié¢ id : X — X, id(z) = x et
continue si et seulement si 7o C 77, c.-a.-d. 77 est plus fine que 7.

Exemple 3. Soit X; = A C X3 et 71 = Ty, la topologie induite. Alors 'inclusion © : A — X, 1(z) = z,
est continue.

Exemple 4. Soit X = X; x Xy avec topologie produit. Alors 7j : X — X, m(x1,22) = x; est continue.

Exemple 5. Soit ~ une relation d’équivalence sur X; et Xy = X, avec la topologie quotient. Alors la
surjection canonique ¢ est continue.

2.2 Applications linéaires continues

Proposition 2. Soient (E,|| ||g), (F,|| ||F) deuz espaces normés. Pour une application linéaire f :
(E, || lg) — (E || ||F), les propriétés suivantes sont équivalentes :

a) f continue;

b) f continue en 0 ;

c) il existe un C' > 0 tel que ||f(z)||r < C|z||g, V z € E.
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Si, de plus, E est de dimension finie, alors toute application linéaire f : (E,| ||g) — (F,] ||r) est
continue.

Démonstration. "a)==b)" Evident. "b)==-c)" Il existe un § > 0 tel que ||z — 0||p < § = | f(z) —

. . ) 2|z 2
FO)lr < 1Sz € B\ {0}, ona e < 6, 0d y = 5o Done @)l = 25 E N w)le < 3ol

Cette égalité étant clairement vérifiée si = 0, on retrouve c) avec C' = —.

"c)=a)" On a ||f(z) — f(y)llr =|f(z —y)|lr < C|lx—yl|g; f est C-lipschitzienne, donc continue.
Pour la derniére propriété, on fixe une base {ei,...,e,} de E. Si z = x1e1 + ... x,e,, on vérifie aisément

que z — ||z||1 = |z1| + ... |zy| est une norme sur E. Il suffit de vérifier la continuité par rapport a cette
norme. On a

1f @)l = [If(z1e1 + ... znen)|p < 21l f(eD)llr + .. - [zn|[[ fen)lF < Cllz]l1,

ou € = max{|[|f(er)|[r,. .., [lf(en)llF}- O
Corollaire 3. Si f : (E,|| |g) — (F,|| ||r) est linéaire et continue, alors il existe une plus petite
constante C > 0 telle que ||f(2)||r < C||z||g, V € E. De plus, on a
f(@)|lF
o= sp WOIE_ oy rae= s @l
ceBzz0 |ZIE  zemijz)m=1 2Bz 5<1

Démonstration. L’ensemble F = {K > 0 ;|| f(z)||r < K||z||g, V © € E} est non vide et minoré par 0.
Par conséquent, C' = inf F' € F existe. Il est immédiat que cette constante C' est la constante désirée et

qu’elle est donnée par la premiére formule. La deuxiéme et troisiéme formule suivent de I’observation que
lf@llr Hf(/\I)HF’ pour tout A % 0. =

=/l [RE =

Définition 3. Soient (E,|| ||g), (F,| ||r) deuz espaces normés. On note
L(E,F)={f:E— F ;f linéaire et continue}.

Si f € L(E,F), la constante C' de la proposition précédente est notée ||f|| (g r), ou tout simplement | f||.
Dans le cas particulier ou F = R muni de la distance usuelle, on écrit E' au lieu de L(E,R) ; E' est le
dual de E. Si f € E', on appelle f une forme linéaire continue sur R.

Proposition 3. L(E, F) est un espace vectorielréel et f — || f|| est une norme sur L(E, F).

2.3 Opérations avec les fonctions continues

Proposition 4. Soient (X,7) un espace topologique et (E,|| ||) un espace normé.
a) Si f1, fo: (X,d) — (E,|| ||) sont continues, alors fi1 + fa est continue.

b) Si f:(X,d)—>Retg:(X,d)— (E,| ||) sont continues, alors fg est continue.
Cas particulier : si g : (X,d) — (E,|| ||) est continue et A € R, alors Ag est continue.
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Démonstration. a) On munit E x E de la norme || ||;. L’application G: E x E — E, G(y,z) =y + z est
linéaire et continue, car ||G(y, 2)|| < |[(y,2)|[i- On a fi + fo =Go F,ou F = (f1, f2) : (X,d) - EXE
est continue; il s’ensuit que f; + f2 est continue.

b) H: Rx E — E, H(A\ z) = Az, est continue, comme on vérifie aisément. Comme fg = H o K, ou
K:(X,d)—-RxE, K=(f,g), on trouve que fg est continue. O]

2.4 Convergence uniforme

Définition 4. Soient f,, : (X1,71) — (X2,73) des fonctions entre deux espaces topologiques. La suite (fy)
converge point par point vers une fonction f : X1 — Xy si Vo € X, la suite (f,(x))n converge vers

f(z).

On dit aussi que (fy), converge simplement vers f. La limite d’une suite de fonctions continues qui
est convergent point par point n’est pas forcément continue.

On rappelle que dans le cas o1 7 est la topologie métrique par rapport a4 une métrique d, la convergence
point par point de la suite (f,), vers f veut dire

Vo € XiVe > 03N ,Vn > N, d(fn(x), f(2)) < €.

Définition 5. Soient fp, f : (X1,7) — (X2,d) des fonctions entre un espace topologique et un espace
metrique. La suite (f,) converge uniformément vers f si

Ve > 03N Vn > NVz € X 1 d(fn(x), f(z)) <e.

On écrit alors fn — f.

Théoréme 3. Soient f, : (X,7) — (Y,d) des fonctions continues entre un espace topologique et un
espace metrique. Si fn, — f, alors f est continue.

Démonstration. Soient a € X et € > 0. Comme f,, — f il existe un ng tel que Vo € X : d(fn,(2), f(x)) <
£/3. Par continuité de f,, il existe un voisinage V' € V, tel que f(V) C By(f(a),e/3). Donc Vo € V :

d(fno(2), f(x)) < €/3. En particulier, Vo € V : d(f(z), f(a)) < d(f(z), fno(x)) + d(fno(x), fre(a)) +
d(fne(a), f(a)) < e. Ceci montre qu’on a trouvé pour € > 0 un voisinage V de a t.q. f(V) C By(f(a),€).
Donc f est continue en a. 0

La convergence uniforme entraine la convergence point par point.

2.5 Homéomorphismes

Définition 6. Une application f : (X1,71) — (2,73) est un homéomorphisme si f est continue,
bijective et sa réciproque f~1 est continue aussi.
On dit alors que (X1,71) et (X2,72) sont homéomorphes.
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Exemple 6. Soit X; = Xy = X et 77,75 deux topologies sur X. L’identité id : X — X, id(z) = x est un
homéomorphisme si et seulement si 77 = 75.

Exemple 7. Une bijection f : X; — X5 est un homéomorphisme si et seulement si 7, — 73 : U — f(U)
est une bijection.

Le résultat suivant est immédiat

Proposition 5. La relation "(X1,71) est homéomorphe avec (Xa,72)" est une relation d’équivalence.
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Chapitre 3

Espaces complets

3.1 Suites de Cauchy

Les notions de suite de Cauchy et de complétude dépendent d’une distance et donc s’appliquent aux
espaces métriques.

Définition 1. Soit (X,d) un espace métrique. Une suite (z,) C X est de Cauchy <=V ¢ > 0, il eziste
un ng tel que d(zp, Ty) < € dés que n,m > ng.

Il est facile & voir que les suites de Cauchy le restent si on remplace d par une distance équivalente.

Définition 2. Soit (X,d) un espace topologique. Si (x,) C X et x € X, alors, par définition, x est une
valeur d’adhérence de la suite (xy,) si elle admet une sous-suite qui converge vers x.

Exemple 1. Dans R muni de la distance usuelle, soit x,, = (—1)", n € N. Alors 1 est une valeur
d’adhérence de (x,,), car xo, — 1.

Proposition 1. Soit (X,d) un espace métrique et (xy,), une suite dans X. Si x, — x, alors x est la seule
valeur d’adhérence de la suite (xy,). En particulier, la limite d’une suite convergente est unique.

Démonstration. x est une valeur d’adhérence, car la suite extraite (z,) converge vers x. Soit y une valeur
d’adhérence de (z,,). Il existe une sous-suite (z,, ) telle que x,, — y. Par ailleurs, on a aussi z,, — z. On
suppose par 'absurde y # x. Alors d(z,y) > 0. Posons ¢ = d(z,y)/2 > 0. Comme z,, — z, il existe un
ki tel que d(zp,,z) < e si k > k;; de méme, il existe un ky tel que d(zp,,y) < € si k > ko. Alors, pour
k = max{ki, k2}, on a d(x,y) < d(z,zp,) + d(zn,,y) < 2¢ = d(x,y), ce qui est absurde. O

Proposition 2. a) Si (x,) converge, alors (x,,) est une suite de Cauchy.

b) Une suite de Cauchy a au plus une valeur d’adhérence.

c¢) Une suite de Cauchy converge<=> elle a une valeur d’adhérence.

d) On considére une suite de réels strictement positifs, ar — 0. Si () est une suite de Cauchy, il existe
une suite extraite (z,,) telle que d(xy,, T, ) < ax, V k.

19
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Démonstration. a) Si x = lim x, et ¢ > 0, il existe un ng tel que d(z,,z) < /2 si n > ng. Si m,n > no,
n—oo

on trouve alors d(zy, Tm) < d(zp,x) + d(zm,x) < €.

b) Soient a,b € X tels que, pour deux sous-suites, (Zy(n)) €t (Tym)), on ait Tym) — a et zyp) — b
On suppose par absurde a # b et soit ¢ = d(a,b) > 0. Il existe trois entiers, ng, ni, ng, tels que :
d(Tn, Tm) < €/3 si n,m > ng, d(Tym),a) < /3 sin >ny, d@ym),b) < e/3sin > ny. Par ailleurs, on a
p(n) — oo et Y(n) — oo, et donc il existe un ng tel que ng > ny et p(ng) > ng, respectivement un ny tel
que ng4 > ng et ¥(nyg) > ng. On obtient la contradiction

e =d(a,b) < d(mw(ng), a) + d(mw(ng), $¢(”4)) + d(J:TZJ(TM)’ b) < e.

c) "=" Une suite convergente a une valeur d’adhérence. "<=" Si a est une valeur d’adhérence de (),
il existe une sous-suite (z,(,)) telle que z ;) — . Soit € > 0. Il existe un n; tel que d(w, ), a) < €/2 si
n > ny. Avec le ng correspondant a /2 dans la définition d’une suite de Cauchy, il existe un ny > ny tel
que ¢(ng) > ng. Pour n > ng, on trouve d(zn, a) < d(Tn, Ty(ny)) + d(Tp(ny), a) < € sin > no.

d) Pour chaque k, il existe un ny tel que d(zp, xm) < ag,V n,m > ng. Comme cette propriété reste vraie
en remplagant ny par un nombre supérieur a ny, on peut supposer ng < n; < .... Donc (z,,) est une
sous-suite et la propriété demandée est vérifiée par construction. O

La réciproque de a) est fausse :

Exemple 2. Dans Q muni de la distance usuelle dans R, la suite (x,,) définie par z,, = E(2"/2)/2" est
de Cauchy, mais ne converge pas.

En effet, on a (2”\/5 -1)/2" <z, < V2, ot 2, — v/2 dans R. Donc (z5,) est une suite de Cauchy. Par
ailleurs, v/2 ¢ Q. L'unicité de la limite implique que (z,,) ne converge pas dans Q.

Définition 3. Si (X, d) est un espace métrique,
a) une partie A de X est bornée s’il existe a € X et r > 0 tels que d(a,x) <r,Vz € A;
b) une suite (z,) C X est bornée s’il existe a € X et r > 0 tels que d(a,zy,) <r, ¥V n.

Exercice. Si a) ou b) sont vraies pour un @ € X et un r, elles sont vraies pour tout b € X, quitte a
changer 7.

Proposition 3. Une suite de Cauchy est bornée.

Démonstration. On fixe un a € X. Il existe un ng tel que d(xp, ) < 1 si n,m > ng. Si n > ng,
on trouve d(a,z,) < d(a,xn,) + d(Tn,Tn,) < d(a,zn,) + 1. Finalement, d(a,z,) < r, ¥V n, ou r =
max{d(a, xo), ... ,d(a,zpy—1),d(a, zn,) + 1}. O

A nouveau, la réciproque est fausse :

n

Exemple 3. Dans R, la suite (xy,), ©n, = (—1)", est bornée, mais pas de Cauchy.

En effet, d(0,z,) <1, ¥V n. Comme 1 et —1 sont des valeurs d’adhérence de (x,,), cette suite n’est pas de
Cauchy.
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3.2 Complétude

Définition 4. Un espace métrique (X,d) est complet<= toute suite de Cauchy (z,) C X est conver-
gente.
Un espace normé (E, || ||) est de Banach<= E est complet pour la distance associée a || ||.

Exemple 4. Q muni de la distance usuelle dans R n’est pas complet, car il existe dans Q une suite de
Cauchy non convergente.

Théoréme 4. R est complet.

Remarque 1. On admet qu’il existe un ensemble R satisfaisant les propriétés algébriques usuelles et
laziome de la borne sup.

Démonstration. Soient A, = {Tpn, Tni1,.-.,}, ap = inf Ay, b, = sup A,. On a a,, b, € R, car A, est
borné. Clairement, a, < by, (a,) est croissante, (b,) décroissante. Soit £ > 0. Il existe un ng tel que
|zn — xm| < /2 si n,m > ng. Pour n > ng, on a donc A4, C [y, — /2,2n, + £/2], ce qui implique
Tng — /2 < ap < by < xpy +¢/2; dou by, — ay, < e. Il s’ensuit que les suites (ay,), (by,) sont adjacentes.
Par conséquent, il existe un a € R tel que a,, — a, b, — b. Comme a,, < z,, < b,, on trouve z,, — a. [

k
Proposition 4. Soient (X;,d;), j =1,...,k, des espaces complets. Alors X = H X muni d’une distance
j=1
produit est complet.

Démonstration. On muni X de la distance Dog. Si (2") est une suite de Cauchy dans X, (z7) l'est aussi
dans X;. Si 7 — x; dans Xj, alors 2™ — (x1,...,7k) dans X. O

Corollaire 4. R" muni d’une norme produit est complet.

Définition 5. Soit X un espace topologique et (Y, D) un espace métrique. Une fonction f: X — Y est
bornée si son image f(X) est bornée.

Co(X,Y)={f: X =Y ;f continue et bornée}.

Si f, g € Cp(X,Y), on pose 6(f,g) = sup{D(f(z),9(z)) ;2 € X}.

Exercice. a) 6(f,g) < co.
b) 5(fnaf)_>0<:>fnlf

Proposition 5. Si (Y, D) est complet, alors Cy(X,Y) est complet.

Démonstration. Si (f,) est une suite de Cauchy dans Cy(X,Y"), alors, pour tout € X, (f,(x)) est une

suite de Cauchy dans Y. On pose f(z) = lim f,(z). Soit € > 0. Il existe un ng tel que §(fn, fm) < €/2,
n—oo

n,m > ng. Pour tout z € X, on a alors D(f,(z), f(z)) < €/2 si n > ng; ceci s’obtient en faisant

m — oo dans 'inégalité précédente (on utilise la continuité de y — D(a,y)). On trouve d(fn, f) < &,
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n > ng. Il sensuit que §(f,, f) — 0, ce qui revient a f,, — f. Par conséquent, f est continue. Pour
e =1, il existe un a € Y et un r > 0 tels que (D(a, fn,(z)) < r, z € X. On a alors D(a, f(z)) <
D(a, fny(x)) + D(fno(z), f(x)) <7+ 1. 1l Sensuit que f € Cp(X,Y). O

Proposition 6. Si X est un espace topologique et (E, || ||g) est un espace de Banach, alors Cy(X, E)
est un espace de Banach.

Démonstration. 11 suffit de vérifier que Cp(X, E) est un espace vectoriel, les autres propriétés découlant
de la proposition précédente. Si f,g € Cp(X, E) et A € R, alors Af + g est continue. Par ailleurs, il existe
ri,7m2 > 0 tels que ||f(2)||g < 71, ||g(2)||F < ro, x € X. Il s’ensuit que ||(Af+9)||lr < [Alr1+re, 2 € X. O

Proposition 7. Si (E,|| ||g) est un espace normé et (F,|| ||r) un espace de Banach, alors L(E, F) est
une espace de Banach.

Démonstration. Soit (f,) C L(E,F) une suite de Cauchy. Pour tout x € E, (f,(x)) est une suite de
Cauchy dans F. En effet, soit ¢ > 0. Il existe un ng tel que || f, — fm|| < &/(||z]|g + 1) si n,m > ng. Pour
des tels n, m, on a alors

(@) = fn(@)[[F = [ (fn = fm) (@) |7 < ([ fr = Finlll|2][2 < e

On pose, pour x € E, f(x) = lim f,(z). Alors f est linéaire. En effet,
fQz +y) = lim fu(Az +y) = lm (Afu(@) + fu(y)) = Af(2) + f(y), YAERVzyel;

(on se sert de la continuité des applications (a,b) — a + b dans F' x F et (A, a) — Aa dans R x F).

Il existe un r > 0 tel que [|fp]| < 7, n € N. Alors ||f(2)||r = lim |[fo(z)|F < 7|z||E, x € E, don f
continue. e

Enfin, on montre que f,, — f. Soit £ > 0. Il existe un ng tel que || f,, — f|| < /2 si n,m > ng. En particulier,
si||z]|g <1, alors || frn(z) — fm(2)||F < /2. Comme dans la preuve de la proposition précédente, on trouve
| fr(x) = f(2)||lF <e&/2sin>mnget|z||g < 1. Par passage au sup, on obtient || f, — f|| <esin >mng. O

Proposition 8. (* = {z = (z,) C R ; (z,) bornée} muni de la norme ||z||cc = sup |z,| est un espace de
neN

Banach.

Démonstration. On munit N de la distance discréte d. Si (ar) C N, on a a — a <= il existe un rang
ko tel que ar = a pour k > ky. "<=" est claire. Pour "=", 3 k¢ tel que d(ag,a) < 1/2si k > ky; il
s’ensuit que ay = a si k > ko. Conséquence : toute application f : (N,d) — (Y, D) est continue, quel que
soit I'espace métrique (Y, D). On trouve que (£, || ||o) = Cp((N,d), (R, ] |)). O
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3.3 Relation entre complétude et fermeture

Soient (X, d) un espace métrique et A C X.

Proposition 9. a) Si (A,d) est complet, alors A est un fermé de X.
b) Si (X,d) est complet et A est un fermé de X, alors (A, d) est complet.

Démonstration. a) Soient (x,) C A et a € X tels que x,, — a. Alors (z,,) est une suite de Cauchy, donc
convergente (dans A) vers un b € A. L’unicité de la limite (dans X') implique a = b € A. Il s’ensuit que
AC A, dou A fermé.

b) Soit () une suite de Cauchy dans A. Alors il existe un a € X tel que z,, — a. Il s’ensuit que a € A,
et donc (z,,) converge dans A. O

Corollaire 5. Dans un espace métrique complet, A complet<—= A fermé.

Proposition 10. Soit (X,d) un espace métrique. Si toutes les parties fermées et bornées de X sont
compleétes, alors X est complet.

Démonstration. Soit (z,,) une suite de Cauchy dans X. Alors (z,,) est bornée, et donc (x,,) C B(a,r) pour
un a € X et un r > 0. B(a,r) étant un fermé borné, (z,) converge dans B(a,r), et donc dans X. O

3.4 Théoréme du point fixe

Définition 6. Une application f : (X,d) — (Y, D) est contractante s’il existe un k < 1 tel que f soit
k-lipschitzienne.

Définition 7. Si f : X — X, un point fixe de f est une solution de l’équation f(z) = x.

Théoréme 5. (Théoréme du point fixe de Picard) Soient (X,d) un espace métrique complet et
f:(X,d) — (X,d) contractante. Alors :
a) f a exactement un point five a ;
b) pour tout xg € X, la suite (xy,), ¥, = fo fo...o f(xg), converge vers a;
—_—

n fois
n

1—k
Démonstration. a) Soit 0 < k < 1 tel que f soit k-lipschitzienne. f a au plus un point fixe : si, par
I'absurde, a et b sont des points fixes et a # b, on aboutit & la contradiction 0 < d(a,b) = d(f(a), f(b)) <
kd(a,b) < d(a,b).

L’existence de a suit de b) : si la suite (z,,) converge et si a est tel que x,, — a, alors z,+1 = f(x,) — f(a),
d’ou f(a) = a.

b) On a, pour tout n, d(zp4+1,x,) < k"d(z1,x0) (par récurrence sur n). Par conséquent, si m > n, alors

c) de plus, si k <1 est tel que f soit k-lipschitzienne, alors on a d(x,,a) < d(z1,x0).

n

(1) d(xm7xn) < d(fcnaxn-i-l) + d(xn+17xn+2) +...+ d($m—la xm) < 11— %

d(:Cl, xo) = Ck".
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Comme Ck™ — 0, pour tout € > 0 il existe un ng tel que Ck™ < € si n > ng. Il s’ensuit que d(x,, z,) < €
sim,n > ng. La suite (z,,) étant de Cauchy, elle converge vers un a € X. De ce qui précede, a est 'unique
point fixe de f.

c) Comme z,, — a, la conclusion s’obtient en faisant tendre m — oo dans (1). O

Exemple 5. Trouver le nombre des solutions de l’équation cosx = x.

On acosz = = = € [—1,1]. Soit f : X = [-1,1] — X, f(z) = cosz. [—1,1] est complet (avec
la distance usuelle), car fermé dans R. Par ailleurs, on a |f'(x)] < sinl < 1, 2 € X. Le théoréme des
accroissements finis implique |f(z) — f(y)| < sinl|z — y|, x,y € X. Il s’ensuit que ’équation cosx = x a
exactement une solution.

Le théoréme suivant est une application importante du théoréme de point fixe.

Théoréme 6. Soient U C RP et V C RY des ouverts et F : U xV — RY une fonction de classe C' (toutes
ses derivées partielles existent et sont continues). On pose pour x € U, F, : V — R?, F,(y) = F(z,y). On
suppose qu’il existe (§,m) € U x V, t.q. F(§,m) =0 et la dérivée de F¢ en n, Fé(n), soit inversible. Alors

il existe un voisinage UcU de &, un voisinage V CV de n et une fonction continue f : U— f/, t.q.
f&)=n et YreU: F(z, f(z))=0.
De plus, si (z,y) € U x V satisfies F(xz,y) = 0 alors y = f(x).

Démonstration. La dérivée Fl(y) de F, en y est une application linéaire (une matrice ¢ X ¢, la matrice de
Jacobi de Fy en y). Posons J = F¢(n) et &, : V — RY, @,(y) =y — JLE,(y). Alors ®, est de classe C!
et (z,y) — @ (y) = id — J71F.(y) continue. De plus, Pi(n) =1id — J~1J = 0. Il existe donc un voisinage
W CcUxV de(&n) tq.

V(z,y) e W @) < (3.1)

1
2
(norme en sens des applications linéaires). Comme F' est continue et F'(£,17) = 0 on trouve pour tout
€ > 0 un voisinage U, C U de € t.q.

€

Ve e Ue: |F(z,n)] < ———.
AflT=H|

(3.2)
Choisissons € t.q. U, X B(n,€) € W (B(n, €) la boule ouverte dans R?) et posons U = U, et V = B(1, €).
On pose
~ €
D:={g € G(U,R?) : g(§) = n et sup|lg(z) —nll < 5}
zelU

Cy(U,R?) est un espace de Banach pour la norme | - [[oo, [|glloc = sup, [|g(x)[|rs. D est I'intersection des
deux espaces fermés : de la boule fermée dans Cy(U, R?) de centre 7 et rayon § avec I'espace des fonctions
de C’b(U ,R?) qui s’annulle en £. D est donc complet. Le but est de trouver la fonction f comme point fixe
d’une application contractante A sur D.
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Posons A : D — C(U,RY), A(g)(z) = g(z) — J~'F(z, g(z)). En effet, on voit toute de suite que A(g)
est continue. De plus A(g)(&) =n— J1F(&n) =n. On a ®,(y) — ®,.(2) = fol O (y+t(y — 2))(y — 2)dt.
Donc (3.1) implique

Ve €V Baly) — 2l < 5yl 33
Comme A(g)(z) = ®.(g(x)) o obticnt || A(g1)(x) ~ Alg2) (@)]| < Hlor(x) — ga()]| pour tout 1,2 € D.

Donc [|A(g1) — A(g2)[lso < 3]l91 — 92|l et A est contractante pour la norme || - [|oo. Montrons que A envoie
D dans D. Ceci decoule de

[A(g)(x) —nll < [[A(g9)(z) — A(n) ()| + [|A(n)(z) —nl| < ng(w) -+ <

=~ o
|

car A(n)(x) —n=J 'F(x,n) et [T F(z,n) < [|[J[|F(,n)]| < § dapres (3.2).
Application du théoréme de point fixe nous fournit un unique point fixe f de A qui satisfait A(f) = f
donc F(z, f(x)) = 0.

Soit maintenant (z,y) €

U x V solution de F(z,y) = 0. Alors ®,(y) = y et donc, en utilisant (3.3)
1/ () = yll = 122(f () — P2(y)

I < 3llf(2) =yl ce qui implique || f(z) — y|| = 0. H

3.5 Séries

Définition 8. Soient (E,|| ||) un espace normé et (z,) C E. La série Zmn est convergente<=> la
n>0

n
suite Sy, = Zxk est convergente. On pose Zazn = lim S,.

n—00
k=0 n>0

Définition 9. La série E x, est absolument convergente<= E |z || est convergente.
n>0 n>0

n
Traduction : Z ||xn|| convergente <= il existe un M > 0 tel que Z llzk|| < M pour tout n.
n>0 k=0

Proposition 11. Dans un espace de Banach, une série absolument convergente est convergente.

n
Démonstration. Soient € > 0 et T, = Z |xk||. 11 existe un ng tel que |T,, — T,,| < € si m,n > ng. Si

k=0
m >n>ng,on a || Sy — Su| < T — T, < ¢e; lasuite (Sy,) est de Cauchy, donc convergente. O

Exemple 6. Soit E un espace de Banach et T' € L(F). Si ||T'|| < 1, alors Id — T et bijectif et son inverse
est linéaire et continu.
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Posons x,, =T, n > 0. On remarque que, si 1,5 € L(E), alors ||[T'S|| < ||T||||S||- En effet,

T T T
TS| :supw < su IS < su WIS}

= [[T[l[I51]-
w20zl T az0 7] w20 |l

Il s’ensuit que ||z, | < ||T']|", et donc la série Z xy, est convergente dans L£(E), car absolument convergente.
n>0

On pose S, = ka, S = an € L(E).Ona (Id—T)S, =1d—T"" d’ou (Id—T)S = Id, par passage
k=0 n>0
a la limite. De méme, S(Id —T") = Id. Donc S est 'inverse de Id — 7.



Chapitre 4

Compacité

4.1 Notion de compacité

Définition 1. Soit U une famille de parties d’un espace topologique (X, 7). On dit que U est un recou-
vrement ouvert de X sild C T, c.-a.-d. les membres de U sont ouverts, et X = U U.

veu
On dit que V C U est un sous-recouvrement fini si V est fini (contient un nombre fini de membres)
et X =|JU.
vey

Définition 2. Un espace topologique X est compact si tout recouvrement ouvert de X admet un sous-
recouvrement fini.

Exemple 1. Soit X avec topologie discréte, 7 = P(X). Alors X est compact ssi X est fini.
Par passage au complémentaire, on trouve

Corollaire 6. Soit (X,d) un espace compact.
a) St (F})icr est une famille de fermés telle que ﬂ F; =0, alors il existe une famille finie J C I telle que

el

() F=10.

jeJ

b) Si (F})icr est une famille de fermés telle que m F; # 0 pour toute famille finie J C I, alors ﬂ F;, #0.
jed il

Théoréme 7. Soient X et Y deux espaces compacts. Alors leur produit Cartesien X X Y est compact
pour la topologie produit.

25
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4.2 Compacité pour les espaces métriques

Définition 3. Un espace (X,7T) topologique est séquentiellement compact si toute suite (x,) C X
admet une sous-suite convergente. Autrement dit, toute suite (x,) C X a au moins une valeur d’adhérence.

Dans cette section on montrera que pour un espace métrique étre séquentiellement compact est équi-
valent & étre compact. On remarque que la propriété d’un espace d’étre séquentiellement compact ne
change pas si on remplace la distance par une distance équivalente.

Théoréme 8. (Lebesgue) Soit (X, d) séquentiellement compact. On suppose que (U;)ier est un recou-
vrement ouvert de X ). Alors il existe un r > 0 tel que, pour tout v € X, B(x,r) soit contenue dans U;
pour un certain i (dépendant de x, en principe).

(r est la constante de Lebesgue du recouvrement (U;)ier.)

Démonstration. Par absurde : pour tout 7 > 0, il existe un x € X tel que B(z,r) ne soit contenue dans
aucun U;. Pour r = 1/(n+1), on trouve un z,, tel que B(xy,1/(n+1)) ne soit contenue dans aucun U;. On
considére une sous-suite (x,, ) convergente vers un z € X. Il existe un ¢ tel que z € U;, et donc un € > 0 tel
que B(z,e) C U;. 1l existe un kg tel que d(xy,,z) < e/2si k > ko. Il existe un kq tel que 1/(ng+1) < ¢/2
si k> k. Si k = max{ko, k1}, alors z € B(zp,,1/(np +1) = d(z,2) < d(z,zp,) +d(zn,,x) < €, et donc
B(zp,,1/(n + 1)) C B(x,e) C U;, contradiction. O

Proposition 1. Soient (X, d) séquentiellement compact et r > 0. Alors il existen € N* et x1,..., 2, € X

n
tels que X = U B(zj,r).
j=1

Démonstration. Par 1’absurde : sinon, pour tout 1 € X on a B(x1,r) # X. Soit xy & B(x1,7). Alors
B(zy,7) U B(xg,7) # X. Soit 3 ¢ B(x1,7) U B(x2,7) # X, etc. Par récurrence, on trouve une suite

n—1
(zn) telle que =, & U B(xj,r). 11 s’ensuit que d(zp,zm) > r, V. m,n. Une telle suite ne peut pas
j=1
avoir de sous-suite convergente (contradiction qui finit la preuve). En effet, si, par I'absurde, z,, — z,
alors d(zy,,xn,) > r si k # [. En faisant d’abord | — oo, ensuite k& — oo, on trouve d(z,z) > r,
contradiction. O
Proposition 2. Soit (x,) une suite sans valeur d’adhérence de (X,d). Alors, pour tout x € X, il existe
un r > 0 tel que B(x,r) ne contienne qu’un nombre fini de termes de la suite.

Démonstration. C’est une conséquence de la Proposition 19 du Chapitre 1, mais on présente une preuve
directe. Par I'absurde : il existe x € X tel que, pour tout r > 0, B(x, ) contienne une infinité de termes
de la suite. On prend r = 1. Alors B(x, 1) contient une infinité de termes de la suite; en particulier, on
trouve un ng tel que d(zy,,x) < 1. Par récurrence, en prenant r = 1/(k + 1), on trouve un ng > ng_1
tel que d(zp,,x) < 1/(k + 1). Il s’ensuit que (x,, ) est une sous-suite de la suite initiale et que z,, — =,
contradiction. O
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Théoréme 9. (Borel-Lebesgue) Un espace métrique est séquentiellement compact si et seulement s’il
est compact.

Démonstration. "=—" Soit r la constante de Lebesgue d’un recouvrement (U;);cs. Il existe 21, ..., 2, € X

n
tels que X = U B(zj,7). Pour j =1,...,n, il existe un i; € I tel que B(zj,7) C U;;. Alors X = U Ug,
j=1 keJ

ouJ={i;; j=1,...,n}

"«=" Par contraposée : si (X, d) n’est pas compact, il existe une suite (z,) C X sans valeur d’adhérence.
Pour tout x € X, il existe un r, > 0 tel que B(x,r;) ne contienne qu'un nombre fini de termes de la suite.
Clairement, (B(z,7s))zex est un recouvrement ouvert de X. Si on considére une famille finie J C X, alors
l'union de la famille (B(x,rz))zes ne contient qu'un nombre fini de termes de la suite. En particulier,
cette famille ne couvre ni la suite (z,), ni X. O

Proposition 3. Un espace métrique compact est complet.

Démonstration. Soit (X, d) un espace métrique compact. Alors toute suite de Cauchy admet une valeur
d’adhérence ; elle est donc convergente ; par conséquent, (X, d) est complet. O

Proposition 4. Soient (X,d) un espace métrique compact et A C X. Alors A compact <= A fermé
dans X.

Démonstration. Si A est compact, alors A est complet, donc fermé dans X. Réciproquement, si (z,,) est
une suite de A, alors (x,) a une valeur d’adhérence dans X ; A étant fermé, cette valeur d’adhérence
appartient a A, et donc (z,,) a une valeur d’adhérence dans A. O

4.3 Fonctions continues sur un compact

Proposition 5. Soit f : X — Y wune fonction continue entre espaces topologiques. Si A C X est un
compact, alors f(A) est un compact.

Démonstration. Soit U un recouvrement ouvert de f(A). Comme f est continue, V := {f~(U)|U € U} est
un recouvrement ouvert de A. Comme A est compact, V admet un sous-recouvrement fini V'. {f(V)|V €
V'} est un sous-recouvrement fini . O

Proposition 6. Soit f : X — R une fonction continue sur un espace topologique X compact. Alors
sup f et inf f sont finis et il existe a,b € X tels que f(a) =inf f et f(b) = sup f.

(Une fonction continue réelle sur un compact est bornée et ses bornes sont atteintes.)

Démonstration. A := f(X) est un compact dans R. On considére le sup; le raisonnement est similaire
pour 'inf. M = sup A est fini, car sinon, il existe une suite croissante dans A qui diverge et une telle suite
n’admet pas de sous-suite convergente. Il existe alors une suite (¢,) C A telle que ¢,, — M. Chaque sous-
suite (t,, ) convergente converge aussi vers M. Donc M € A par compacité de A. Donc sup f = M = f(b)
pour un b € X. O
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Proposition 7. Tout espace métrigue compact est borné.

Démonstration. Soit (X, d) compact. On fixe un a € X et on considére la fonction continue f : (X, d) — R,
f(x) = d(z,a). Alors f est bornée; en particulier, il existe un r > 0 tel que f(z) < r, x € X, ou encore
X = B(a,r). O

Proposition 8. Soit f : X — Y wune application continue et bijective entre deux espaces topologiques,
X étant un compact. Alors [ est un homéomorphisme.

Démonstration. 1l suffit de vérifier la continuité de f~1. Soit F un fermé de X ; F est donc compact. Alors
(f~YH)~YF) = f(F) est un compact de Y, donc un fermé de Y. O

Définition 4. f: (X,d) — (Y, D) est uniformément continue<= pour tout € > 0 il existe un § > 0
tel que D(f(x), f(y)) < e dés que d(x,y) < 0.

Autrement dit, on peut prendre, dans la définition de la continuité, un ¢ indépendant de a. Il est immédiat
qu’une fonction uniformément continue est continue.

Théoréme 10. (Heine) Soit f € C((X,d),(Y,D)), avec (X,d) compact. Alors f est uniformément
continue.

Démonstration. Soit € > 0. Pout tout a € X, il existe un §, > 0 tel que D(f(z), f(a)) < &/2 si
d(xz,a) < e. Clairement, (B(a,dq))scx est un recouvrement ouvert de X. Soit ¢ la constante de Le-
besgue de ce recouvrement. Si z,y € X et d(z,y) <, alors z,y € B(z,0) C B(a,d,) pour un a € X,

d’ou D(f(x), f(y)) < d(f(x), f(a)) +d(f(a), f(y)) <e. =

4.4 Exemples d’espaces compacts

Théoréme 11. (Bolzano-Weierstrass) Un intervalle fermé et borné de R est compact.

Démonstration. Soit I = [a,b], avec a,b € R. On définit une suite d’intervalles de la maniére suivante :
on pose Iy = I. Si I} a été construit tel qu’il contienne une infinité de termes de la suite, on divise I en
deux intervalles fermés de longueur égale a la moitié de la longueur de Iy, J et K. I;11 est alors un de ces
deux intervalles ; on lui demande de contenir une infinité de termes de la suite. On note que c’est toujours
possible de construire I y1, car au moins 'un des J ou K contient une infinité de termes de la suite. On
construit ensuite, par récurrence, une sous-suite (z,, ) telle que ,, € I, k € N. On choisit z,, = z¢ € Io.
En supposant x,, < z,, < ... < zp, , construits, on note que, par construction, I; contient des termes
Ty, avec n > ni_1. On choisit alors un ny > ni_ tel que z,, € Ij. La suite (z,, ) est de Cauchy. En effet,
sil >k, alors @y, Ty, € Iy (car I C I}) et donc |z, — 2, | < (b—a)/2F. Comme (b — a)/2¥ — 0, pour
tout € > 0 il existe un kg tel que (b—a)/2% < e si k > ko ; il s’ensuit que |z, — 2, | < € si k, 1 > ko.

[a, b] étant complet (car fermé dans R), on trouve que (x,, ) converge dans [a, b], et donc (x,,) a une valeur
d’adhérence. O
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Proposition 9. Dans R"™ muni d’une norme produit, les compacts sont précisément les ensembles fer-
més et bornés.

Démonstration. Un compact est toujours borné et complet, et donc borné et fermé dans R”.
Réciproquement, si K est borné, il existe un r > 0 tel que ||z||oo < 7, z € K. Alors K C L = [—r,r|", qui
est compact comme produit de compacts. K étant fermé dans R", il est fermé dans L, donc compact. [

Théoréme 12. Toutes les normes sur R™ sont équivalentes.

Démonstration. 11 suffit de montrer que toutes les normes sont équivalentes a || ||1. Soit || || une norme sur
n

R™ et soit f : (R™, || [1) — R, f(x) = ||z]. Alors | f(z) = f(y)| = || = ylll < le—yll <D lzj—yjllle;l <
j=1

Cllz — yll1, on C = max{|le1|,...,|len]|}. Il s’ensuit que f est C-lipschitzienne, donc continue. Soit K =

{zx € R"; ||z||; = 1}. Alors K est fermé dans (R™, || ||1) (car z + ||z||; est 1-lipschitzienne, donc continue,

pour la norme || ||1) et borné. Il s’ensuit que cet ensemble est compact dans (R™, || ||1). Comme f(x) # 0,

x € K, on trouve que m = mi]I{lf(l‘) >0 (et M = ma}:écf(:c) > 0). Siy € R™\ {0}, alors z = —’y e K
xe TE Yil1

et y = [[yliz. On trouve mljylly < |lyll = llyll1f(z) < Mly[1, ou encore mly|ly < [[y| < M|ly[1. Cette

inégalité étant clairement vraie si y = 0, on obtient 1’équivalence des normes. O

On peut enfin prouver le

Théoréme 1. Dans un espace vectoriel de dimension finie, toutes les normes sont équivalentes.

Démonstration. Soit {ei,...,e,} une base fixée de l'espace de dimension finie E. Soit T' : R" — E,
T(x1,...,2n) = x1€1 + ...+ Tpey, qui est clairement linéaire et bijective. Soient || ||1, || ||]2 deux normes
sur E. On définit |||z|||; = || Tz||;, j = 1,2. Il est immédiat que ||| |||; sont des normes sur R™. Il existe

alors C1,Cy > 0 telles que

Cillelly = LT ellls < llella = [T elll2 < Callelly = CallIT  elll1, Vee€ E.

U
Théoréme 10. Soit (E,|| ||) un espace normé de dimension finie. Alors :
a) E est complet.
b) A C E est complet<—= A est fermé.
¢) A C E est compact<=- A est fermé et borné.
Démonstration. Soit T I'application définie ci-dessus. Il suffit de considérer sur E la norme |le]| = |7 e]|o-

a) Si (e") est une suite de Cauchy dans E, il est clair que (T~'e") est un suite de Cauchy dans (R”, || ||s0),
qui est complet. Si T~ 'e™® — x, alors clairement e” — T'z.

b) "=" Un sous-espace complet est toujours fermé. "<=" Soit (e") une suite de Cauchy de A. Alors
(T~te™) est une suite de Cauchy dans R™ (pourquoi?). Si z est la limite de cette deuxiéme suite, alors
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e" — Tx dans E (pourquoi?). A étant fermé, on trouve que Tz € A; par conséquent, tout suite de
Cauchy de A converge dans A.

c) "=" est vraie dans tout espace métrique. "<=" Clairement, si A est fermé et borné, T-1(A) 'est
aussi (pourquoi?). Donc T~!(A) est un compact de R™. Il s’ensuit que A = T(T~'(A)) est un compact
de F (car image d’un compact par une fonction continue). O

4.5 Compléments

Ce dernier résultat est faux dans tout espace de dimension infinie :

Théoréme 11. (Riesz) Soit (E,|| ||) un espace normé de dimension infinie. Alors B(0,1) est un
ensemble fermé, borné, mais non compact.

Dans la preuve du théoréme, on se servira du résultat suivant :

Lemme 1. Soit A un ensemble fermé contenu dans un espace normé de dimension finie (G, || ||).
Alors, pour tout x € G, il existe un a € A tel que ||z — a|| = d(z, A).

Autrement dit, I'inf dans la définition de la distance d’un point & un ensemble est atteint.

Démonstration. 11 existe une suite (a,) C A telle que ||z — ay| — d(z, A). La suite (||x — ay,]|) est donc
bornée dans R : il existe un M > 0 tel que ||z —ay,|| < M, n € N. Il s’ensuit que ||ay|| < ||z —ap|| + ||z]| <
M + ||z|| = R. La suite (a,) appartient donc a I'ensemble K = AN B(0, R), qui est fermé et borné, donc
compact. Il existe donc une sous-suite (a,, ) qui converge vers un a € K (d’ot a € A). Finalement, on
trouve ||z — af| = kh—{go |z — an, || = d(x, A). O

Revenons au théoréme.

Démonstration. 11 existe, dans E, un vecteur non nul fy (sinon £ = {0}, qui est de dimension finie). Soit

eo = fo/llfoll, qui vérifie ||eg|] = 1. Nous allons construire par récurrence une suite (e;,) telle que |le,|| =1
et ||en—em|| > 1si m # n; clairement, une telle suite ne peut avoir de sous-suite convergente, ce qui finit la
preuve. Supposant e, . .., e,—1 déja construits, soit F' =Vect({eg,...,en—1}). On a F # E, sinon E serait

de dimension finie. Soit f,, € E'\ F. F étant fermé dans E (car complet), on a d(f,, F) > 0. Le lemme
précédent (avec A = F et G =Vect(FU{ f,,}) implique 'existence d’un g,, € F tel que || fr,—gnl|l = d(fn, F).
On pose e, = (fn—9n) /|| fn—gnl|, de sorte que, clairement, |le,|| = 1. Il reste & montrer que |le, —e;|| > 1,
j=0,...,n—1.Si, pour un tel j, on pose h = g, +d(x, F)e; € F,on a |le, —¢j|| = || fn—h||/d(fn, F) > 1,
par définition de la distance & un ensemble. O



Chapitre 5

Connexité

5.1 Notion de connexité

Définition 1. Un espace topologique (X,T) est connexe si les seules parties a la fois ouvertes et fermées
de X sont () et X.
Une partie A C X est connexe si (A, T4) est connexe ot Ty est la topologie induite sur A.

Proposition 1. Les propriétés suivantes sont équivalentes :

a) (X,T) est connexe;

b) Si X = F1 UFy, avec Fy, Fy fermés disjoints, alors F1 =0 ou Fy =0 ;
¢) Si X = Uy UUs, avec Uy, Us ouverts disjoints, alors Uy =0 ou Uy =) ;
d) Si f € C((X,d),{0,1}), alors f est constante.

Ici, {0,1} est muni de la topologie discréte.

Démonstration. a)==b) On a F} = (F»)¢; par conséquent, F est a la fois ouvert et fermé. On a donc
Fy =0ou F; = X (et alors Fy = ().

b)=-c) On a X = (U1)°U (U2)¢, d’on (U1)¢ = 0 ou (Us2)® = 0, ce qui revient a Uy = (), respectivement
Uy = 0.

c)==d) {0} et {1} sont des ouverts de {0,1}, et donc U; = f~1({0}) et Uz = f~1({1}) sont des ouverts
de X. Clairement, ces deux ouverts sont disjoints et X = U; U Us. Il s’ensuit que Uy = () (et alors f = 1)
ou Uz =0 (et alors f =0).

d)=a) Si A est une partie a la fois ouverte et fermée de X, soit f = 14. Alors f € C(X,{0,1}), car
les ouverts de {0,1} sont @, {0}, {1} et {0,1}, et on vérifie aisément que les images réciproques de ces
ensembles sont des ouverts de X. On a donc f =0ou f =1 (et alors A=0 ou A = X). O

Proposition 2. Soient (X,T) un espace topologique et A C X. Si A est connexe et A C B C A, alors B
est connezxe.

31
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Démonstration. Soit F' : B — {0,1} continue. Alors sa restriction f|4 : A — {0,1} est continue et
donc constant par la connexité de A. Soit b = f(z) pour z € A. Comme f est continue, f~1({b})
est un fermé pour la topologie 7p. il existe donc une fermé F dans X t.q. f~1({b}) = BN F. On a
A=fla P ({b}) c f'({b}) C F. Donc BC AC F = F. Donc f~'({b}) = BN F = B ce qui implique
que f est constant sur B. Donc B est connexe. O

Proposition 3. Soient (X,7) un espace topologique et (A;)icr une famille de parties de X. On suppose
que :
(i) chaque A; est conneze;
(i1) il existe un ig € I tel que A; N Ay #0,Viel.
Alors U A; est connexe.
el

Démonstration. Soit f € C(U A;;{0,1}). Alors, pour chaque i, |, est constante; soit ¢; la valeur de
el
cette constante. Si z € A; N A;,, on trouve ¢; = f(z) = ¢, d’ou f est constante. O
Corollaire 7. Soient (X,7T) un espace topologique et (A;)icr une famille de parties connezes de X telle
que ﬂ A; # 0. Alors U A; est connexe.
iel iel
Corollaire 8. Soient A, B deux parties connexes de X telles que AN B # (). Alors AU B est conneze.
Un résultat plus fort que le corollaire précédent est :

Proposition 4. Soient A, B deuz parties connexes de X telles que AN B # (). Alors AU B est conneze.

Démonstration. On pose C = AU(ANB). Donc A C C C A et alors C est connexe et C N B # (). D’aprés
le corrolaire C'U B est connexe. Mais CUB = AUBU(ANB)=AUB. O

Définition 2. Soit z € X, point d’un espace topologique. La composante connexe de x estC, = U{A; A
conneze, A contient x}.
Une partie A de X est une composante connexe s’il existe un x tel que A = C,.

Proposition 5. a) C, est la plus grande partie connexe de X contenant x (en particulier, x € Cy);

b) deux composantes connexes sont soit égales, soit disjointes; l'union des composantes connezes est X
(autrement dit, les composantes connexes forment une partition de X );

¢) chaque composante conneze est fermée dans X ;

d) Si les composantes connezes sont en nombre fini, alors chaque composante conneze est ouverte dans
X.

Démonstration. a) On doit montrer que : (i) C; est connexe, (ii) x € Cy, (#4) si A est connexe et x € A,
alors A C C;. La derniére propriété est claire grace a la définition de C,. Pour les deux premiéres, notons
que {z} est connexe (pourquoi?); en particulier, z € C,. On peut écrire C, = U{A ; A connexe et
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An{x} # 0}, ce qui montre que C, est connexe.
b) Si C, NC, # 0, alors C; UC, est connexe et contient z. On trouve C;, UC, C C,, d’ott Cy C C, ; de méme,
on a C, C Cy, d'ou Cy = C,. Par ailleurs, on a X = U {z} C U C, C X, dou U C,=X.

zeX rzeX zeX
c) C, étant connexe, C, (qui contient x) 'est aussi. Il s’ensuit que Cy C Cy, ot Cy; = C,. On trouve que
C, est un fermé.
d) Ona X\ Cp, = U{Cy ; C; NCy = 0}. C’est une union finie de fermeés, donc un fermé. Il s’ensuit que Cy
est un ouvert. O

Le résultat suivant est immédiat.

Proposition 6. La relation x ~ y <= x et y appartiennent a la méme composante connezre est une
relation d’équivalence.

Proposition 7. Soient X, Y des espaces topologiques et f : X — Y wune fonction continue. Si X est
connexe, alors f(X) est conneze.

Démonstration. Soit g € C(f(X),{0,1}). Alors go f € C(X,{0,1}). Il s’ensuit que g o f est constante;
par exemple, go f =0. Si y € f(X), il existe un € X tel que y = f(z). On trouve g(y) = g(f(x)) =0,
et donc ¢ est constante. O

k
Proposition 8. Soient X1,..., Xy, k espaces connezxes. Alors X = H X est connexe.
=1

Démonstration. 1l suffit de prouver le résultat si £ = 2; le cas général s’obtient immédiatement par
récurrence sur k. On fixe 1 € Xj. Soient A = {z1} x Xo, Ay, = X1 x {y}, y € Xa. Alors X1 x Xy =

AU U A,. Par ailleurs, on a A, N A # 0,V y e Xy. Il suffit de montrer que A et A, sont connexes. On

yeXs
prouve que A est connexe; argument est le méme pour A,. Soit f: Xo — X, f(z2) = (21, 22). Alors f
est continue, car ses coordonnées sont continues. Xy étant connexe, A = f(X3) l'est aussi. O

5.2 Exemples d’espaces connexes

Théoréme 12. a) Une partie A de R est connexe si et seulement si A est un intervalle.

b) St ACR etz € A, alors la composante conneze de x dans A est le plus grand intervalle contenant x
et contenu dans A.

c¢) Tout ouvert U de R est une union au plus dénombrable d’intervalles ouverts disjoints.

La partie ¢) est une caractérisation des ouverts de R, car, réciproquement, toute union d’intervalles
ouverts est un ouvert.
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Démonstration. a) Si A n’est pas un intervalle, alors il existe z < y < z tels que z,z € A, mais z € A.
Alors U = AN] — 00, z[, V = AN|z, +00[ sont des ouverts non vides et disjoints de A tels que A=U UV,
et donc A n’est pas connexe. Réciproquement, supposons A intervalle et soit f € C(A4,{0,1}). Si, par
Pabsurde, f n’est pas constante, alors il existe z,y € A tels que f(z) =0 et f(y) = 1. De par le théoréme
des valeurs intermédiaires, il existe un z compris entre et y (donc appartenant a A) tel que f(z) = 1/2,
contradiction.
b) Posons J = U{I intervalle C A ; x € I'}. J est un intervalle, car une union d’intervalles dont l'inter-
section est non vide (ce qui est le cas ici, car = est dans chaque intervalle) est un intervalle. Par définition
de J, c’est le plus grand intervalle de A contenant x. De a), J est connexe et donc J C C,. Par ailleurs,
C, est un intervalle contenant x, d’ou C, C J. Finalement, C, = J.
¢) On commence par montrer qu'une composante connexe est un intervalle ouvert. Soient J une com-
posante connexe de U et z € J. Comme x € U, il existe un r > 0 tel que |z — r,x + r[C U. Alors J et
|z — r,x 4+ r| sont des parties connexes de U d’intersection non vide. On trouve que JU]z — r,x + r| est
une partie connexe de U contenant z, et donc JU|x —r,z + r[C C, = J. Finalement, |z — r,x +r[C J, et
donc J est un ouvert.
OnalU = U Ji, avec chaque J; composante connexe (donc intervalle ouvert) ; on suppose qu’il n’y a pas
i€l
de répétition dans cette liste, ce qui implique J; NJg, = 0 si 7 # k. Chaque J; contient un nombre rationnel
q;- L’application g : I — Q, g(i) = ¢;, est injective (car les intervalles sont disjoints). On trouve que I est
au plus dénombrable. O

Exemple 1. Si X = Q, alors C, = {z}, z € Q.
En effet, Q ne contient pas d’intervalle non trivial, car entre deux rationnels il existe toujours un irrationnel.

Définition 3. Soit E un espace vectoriel. Si x,y € E, le segment [z, y| est défini par [x,y] = {(1—t)x+
ty ;t € ]0,1]}.

Une partie C' de E est convexe si [z,y] C C pour tout z,y € C.

Une partie A de E est étoilée (par rapport a un point xo) s’il existe un xo € A tel que [zg,x] C A,
VaxeA.

Proposition 9. Pour une partie A d’un espace normé (E,|| ||), on a A convexre = A éloilée — A
conneze.

Démonstration. La premiére implication est claire (on peut choisir n’importe quel zy € A). Pour la
seconde, on note que = € [zg, x|, x € A, d'ott A C U [0, 2] C A, ou encore A = U [z0, x].

z€A z€A
On montre d’abord qu’un segment est connexe. En effet, [z,y] = f(]0,1]), ou f : [0,1] — E, f(t) =

(I—t)x+ty. Ona ||f(t)— f(s)|]| = |s—t|[lz =y, V s,t € [0,1] ; ainsi, f est lipschitzienne, donc continue.
On trouve que [z,y| est connexe. Finalement, A est une union d’ensembles connexes dont I'intersection
est non vide (elle contient xp), donc A est connexe. O

Corollaire 9. Un espace normé est conneze.
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Exemple 2. Soit B une boule dans un espace normé. Alors B est convexe, donc conneze.

On suppose, par exemple, que B = B(x,r); argument est le méme pour une boule fermée. Si y,z € B
et t €[0,1], alors [[(1 —t)y+tz) —z| =1 -)(y—x)+t(z—2)|| < (1 —¢)||ly — | + t|]z — x| <r, ou
encore (1 —t)y +tz € B.

Exemple 3. A =R?\ {0} est conneze.

En effet, A=BUC,ou B={(z,y) € A; y>0},C={(x,y) € A; y <0}. Clairement, BNC # 0, B
est étoilé par rapport a (0, 1), C est étoilé par rapport a (0, —1), d’ou la conclusion.

Exemple 4. R et R? ne sont pas homéomorphes.

Si, par I'absurde, il existe un homéomorphisme f : R? — R, soit a = f(0,0). Alors fir2\f0} est un
homéomorphisme de R? \ {0} vers R\ {a}. R?\ {0} étant connexe, R\ {a} l'est aussi, contradiction.
Proposition 10. Soit U un ouvert dans un espace normé (E, || ||). Alors les composantes connezes

de U sont ouvertes.

Démonstration. Soit A une composante connexe de U. Si x € A, il existe un r > 0 tel que B(z,r) C U.
A et B(z,r) sont connexes, d’intersection non vide, et donc A U B(z,r) est une partie connexe de U
contenant x. Il s’ensuit que AU B(z,r) C A, ou encore B(z,r) C A. O

5.3 Connexité par arcs

Définition 4. Soit (X, T) un espace topologique. Un arc dans X est une application continue f : [a, b] —
X, ot [a,b] est un intervalle de R. Si x = f(a), y = f(b), on dit aussi que f est un arc de = a y.
(X,7T) est connexe par arcs si pour tout x,y € X, il existe un arc de x a y.

Proposition 11. Un espace connexe par arcs est conneze.

Démonstration. Soit X connexe par arcs. On fixe un a € X. Pour chaque x € X, soit f; € C([ag, bz, X)

telle fi(ay) = a, fo(by) = x. Alors A, = f.(I,) est un connexe de X. De plus, on a A, N A, # 0. 1

s’ensuit que U A, est connexe. Par ailleurs, on a x € A,, x € X, et donc U A, =X. O
zeX reX

Définition 5. Soit (X,7) un espace topologique et x € X. On pose x = y s’il existe un arc de x 4 y

Lemme 1. La relation x = y est une relation d’équivalence.

Démonstration. f:[0,1] — X, f(t) = z, est un arc de x & x, et donc & ~ z. Si f : [a,b] — X est un arc
de z a y, il est immédiat que g : [a,b] — X, g(t) = f(a+b—1), est un arc de y & z, et donc la relation
est symétrique. Enfin, si f : [a,b] — X, g : [¢,d] — X sont un arc de x a y, respectivement de y a z, alors
f(t), sit € [a,b)
glt+b—c), siteed]
relation est donc transitive. O

on voit facilement que h : [a,b+d —¢] — X, h(t) = { ,est un arc de z a z; la
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Exemple 5. Dans un espace normé, un ensemble étoilé A est connexe par arcs.

En effet, soit xq tel que [xg, 2] C A,Va € A. Alorsxg ~ z, Vo € A, car f :[0,1] — E, f(t) = zo+t(z—x0)
est un arc de zg & x. De la proposition précédente, on trouve que A est connexe par arcs.

Définition 6. Si (X,7) est un espace topologique et x € X, on pose Dy ={y € X ; = ~ y}.

Proposition 12. a) D, est la plus grande partie de X contenant x et connexe par arcs.
b) On a D, C C,.

La propriété a) justifie le nom de composante connexe par arcs de x qu’'on donne a D,.

Démonstration. a) De la proposition précédente, D, est connexe par arcs. Clairement, la definition de D,
implique que D, contient toute partie connexe par arcs contenant x.
b) D, est une partie connexe de X contenant x, et donc D, C Cy. O

Proposition 13. Si A est une partie de R, alors D, =C,, ¥V x € A.

Démonstration. On a vu que C, est le plus grand intervalle de A contenant z. Il s’ensuit que C, est un
intervalle, qui est clairement connexe par arcs. On trouve que C, C D,, d’ou la conclusion. 0

Théoréme 13. Soient (E,|| ||) un espace normé et U un ouvert de E. Alors D, =C,, x € U.

Démonstration. Soit D, la composante connexe par arcs dans U de y € C,. Clairement, D, C C;. On
montre que D, est un ouvert. En effet, soit z € D,,. Il existe un r > 0 tel que B(z,7) C Cy. B(z,r) étant
étoilée par rapport & z, on a z ~ w, V w € B(z,r). Comme on a aussi z ~ w, V w € Dy, on trouve que
D, U B(z,r) est connexe par arcs et contient y, d’ott B(z,7) C D,.

Deux composantes connexes par arcs étant soit égales, soit disjointes (car ~ est une relation d’équivalence),
on trouve que C, = U D,,, les ensembles D, étant mutuellement disjoints (on écrit cette union de sorte

1€l
qu’il n’y ait pas de répétitions). On fixe un iy € I. Alors C, = Dy, U U Dy, ; il s’ensuit que C, est une
i€l\{io}

union de deux ouverts disjoints. C, étant connexe, I’'un de ces deux ouverts doit étre vide, ce qui implique
I ={ip}. On trouve C; = Dy, ; comme z € Cy, on doit avoir Cy = Dj. O

Corollaire 10. Dans un espace normé, tout ouvert connexe est connexe par arcs.



