Feuille d'exercices nº 5

Applications contractantes, points fixes

Exercice 1. On considère le système d'équations

$$\begin{cases} 4x = \sin(x+y), & (x,y) \in \mathbf{R}^2 \\ 3y = 3 + 2\arctan(x-y). \end{cases}$$
 (1)

- 1. Déterminer une fonction $f: \mathbf{R}^2 \to \mathbf{R}^2$ telle que $(x, y) \in \mathbf{R}^2$ soit solution de (1) si et seulement si (x, y) est un point fixe de f.
- 2. Montrer que f est contractante de $(\mathbf{R}^2, \|\cdot\|_1)$ dans lui-même. On commencera par montrer les deux inégalités suivantes : pour tout $a, b \in \mathbf{R}$, $|\sin(a) \sin(b)| \le |a b|$ et $|\arctan(a) \arctan(b)| \le |a b|$.
- 3. Montrer que le système (1) admet une unique solution dans \mathbb{R}^2 .

Exercice 2. Pour chaque choix de valeur initiale $x_0 \in \mathbf{R}$, on définit une suite $(x_n)_{n \ge 0}$ en posant $x_{n+1} = x_n^2 + \sin n - 100$ pour tout $n \ge 0$.

L'objectif de l'exercice est de montrer qu'il existe un et un seul choix de x_0 pour lequel la suite (x_n) évolue dans l'intervalle [10, 11].

On note $Y = \{(y_n) \in \ell^{\infty} \mid \forall n \in \mathbb{N}, 10 \leq y_n \leq 11\}$ et on le munit de la métrique induite par celle de ℓ^{∞} .

- 1. Montrer que Y est un espace métrique complet.
- 2. Pour $(y_n) \in Y$, on pose $F((y_n)) = (z_n)$ où $z_n = \sqrt{y_{n+1} + 100 \sin n}$ pour tout $n \ge 0$. Montrer que cette formule définit une application F de Y vers Y.
- 3. Montrer que F est contractante.
- 4. Conclure.

Exercice 3. Soit (X, d) un espace métrique complet et f une application de X vers lui-même. On suppose qu'il existe un entier $k \ge 1$ telle que la composée $f^k \stackrel{\text{def}}{=} f \circ \ldots \circ f$ (k fois) soit contractante.

- 1. Montrer que f a au plus un point fixe.
- 2. Montrer que l'unique point fixe de f^k est un point fixe de f.

Exercice 4. Soit $(E, \|\cdot\|)$ un espace de Banach et soit f une application de E vers lui-même. On suppose $\mathrm{Id} - f$ contractante.

- 1. Pour chaque y de E, on note g_y l'application $\mathrm{Id} f + y$. En observant que l'équation f(x) = y (d'inconnue x) peut se réécrire en $g_y(x) = x$, montrer que f est bijective.
- 2. Montrer que f^{-1} est lipschitzienne.