Topologie des espaces métriques. Examen de session 1. Durée 2h. Décembre 2023

Première partie : à composer sur la copie N.1 (seconde partie au verso)

Questions de cours.

- 1. Démontrer que, dans un espace métrique, si $(C_i)_{i\in\mathcal{I}}$ est une famille de parties connexes et $\bigcap_{i\in\mathcal{I}} C_i$ n'est pas vide, alors $\bigcup_{i\in\mathcal{I}} C_i$ est connexe.
- 2. Démontrer que tout espace métrique connexe par arcs est connexe.

Exercice Dans cet exercice, les suites sont toutes indexées par N, les suites de réels étant notées comme des fonctions : une suite de réels est notée x et non $(x_k)_{k\geq 0}$, le réel qui est sa valeur en l'entier k étant noté x(k) et non x_k . On rappelle que ℓ^∞ désigne l'espace vectoriel des suites bornées de réels. Il est normé par la norme $\|.\|_\infty$ définie par $\|x\|_\infty = \sup_{k\geq 0} |x(k)|$. Tous les sous-ensembles de ℓ^∞ qui seront introduits sont munis de la distance induite par celle associée à la norme $\|.\|_\infty$.

On note

$$X_1 = \{ x \in \ell^{\infty} \mid \forall k \in \mathbf{N}, |x(k)| = 1 \}.$$

- 1. Pour chaque $n \in \mathbb{N}$, on note c_n la suite définie comme suit : pour tout $k \geq 0$ on pose $c_n(k) = 1$ si k = n et $c_n(k) = -1$ sinon.
 - (a) Soit $\psi: \mathbf{N} \to \mathbf{N}$ une application strictement croissante. Pour chaque $n \in \mathbf{N}$, déterminer la valeur de $||c_{\psi(n+1)} c_{\psi(n)}||_{\infty}$, et en déduire que la suite $(c_{\psi(n)})_{n \geq 0}$ est une suite divergente.
 - (b) Montrer que X_1 n'est pas compact.
- 2. Soit $a: \mathbb{N} \to \mathbb{R}^{+*}$ une suite bornée de réels strictement positifs telle que $a(k) \not\to 0$ quand $k \to +\infty$. On note

$$X_a = \{x \in \ell^\infty \mid \forall k \in \mathbf{N}, |x(k)| = a(k)\}$$

(a) Justifier l'existence d'une application strictement croissante $\varphi: \mathbf{N} \to \mathbf{N}$ et d'un réel M>0 tel que pour tout $k\geq 0$

$$\frac{1}{M} \le a\left(\varphi(k)\right).$$

Dans la suite, φ désigne une telle application. Pour $x \in \ell^{\infty}$ on définit une suite U(x) en posant pour chaque $k \geq 0$:

$$[U(x)](k) = \frac{x(\varphi(k))}{a(\varphi(k))}.$$

- (b) Montrer que la suite U(x) appartient à ℓ^{∞} puis que U est une application linéaire continue de ℓ^{∞} dans ℓ^{∞} .
- (c) Montrer que $U(X_a) = X_1$.
- (d) En déduire que X_a n'est pas compact.

Problème ¹. Dans ce problème, les blocs A et B sont indépendants. Le bloc C repose sur les résultats des blocs A et B. Pour $x, y \in \mathbf{R}^d$, où $d \in \mathbf{N}^*$, on note $\langle x, y \rangle = \sum_{i=1}^d x_i y_i$ le produit scalaire de x et y et $||x|| = (\sum_{i=1}^d x_i^2)^{1/2}$ la norme euclidienne de x. On rappelle l'identité, utile dans B3,

$$||x + y||^2 = ||x||^2 + ||y||^2 + 2\langle x, y \rangle.$$

Bloc A Soit $0 \le \gamma < 1$ et $(x_n)_{n \in \mathbb{N}}$ une suite de \mathbb{R}^d , telle que

$$\forall n \in \mathbf{N}^*, \quad ||x_{n+1} - x_n|| \le \gamma ||x_n - x_{n-1}||.$$

- 1. Montrer que, pour tout $k \in \mathbb{N}$, on a $||x_{k+1} x_k|| \le \gamma^k ||x_1 x_0||$.
- 2. Montrer que, pour tout $n, m \in \mathbb{N}$, avec n > m, on a

$$||x_n - x_m|| \le ||x_1 - x_0|| \left(\sum_{k=m}^{n-1} \gamma^k\right) \le ||x_1 - x_0|| \frac{\gamma^m}{1 - \gamma}.$$

3. En déduire que la suite $(x_n)_{n \in \mathbb{N}}$ converge dans \mathbb{R}^d .

Bloc B Soit M>0 et $f\colon \mathbf{R}^d\to \mathbf{R}^d$ une application M-lipschitzienne. On suppose que

$$\exists k \in \mathbf{R}, \ k < 1 \quad \text{tel que} \quad \forall x, y \in \mathbf{R}^d, \qquad \langle f(y) - f(x), y - x \rangle \leq k \|y - x\|^2.$$

- 1. Démontrer que si $x, y \in \mathbf{R}^d$ sont deux points fixes de f dans \mathbf{R}^d , alors x = y.
- 2. Pour $x_0 \in \mathbf{R}^d$, on construit la suite $(x_n)_{n \in \mathbf{N}}$ définie par récurrence :

$$x_{n+1} = (1 - \alpha)x_n + \alpha f(x_n), \qquad (n \in \mathbf{N}),$$

où $\alpha \in]0,1]$ est un paramètre que l'on choisira après. Démontrer que si $(x_n)_{n \in \mathbb{N}}$ converge dans \mathbb{R}^d , alors la limite de la suite $(x_n)_{n \in \mathbb{N}}$ est un point fixe de f.

3. Démontrer que, pout tout $n \in \mathbf{N}^*$,

$$||x_{n+1} - x_n||^2 \le C(\alpha) ||x_n - x_{n-1}||^2,$$

οù

$$C(\alpha) = (1 - \alpha)^2 + M^2 \alpha^2 + 2\alpha (1 - \alpha)k.$$
 (*)

Bloc C

- 1. Soit M>0 et k<1. On définit $C(\alpha)$ par la formule (*), pour tout $\alpha\in\mathbf{R}$. Dériver la fonction $\alpha\mapsto C(\alpha)$ et calculer C(0) et C'(0). En déduire qu'il existe $\alpha\in]0,1]$ tel que $0\leq C(\alpha)<1$.
- 2. Conclure que si f vérifie les conditions du bloc B, alors f possède un et un seul point fixe dans \mathbf{R}^d .
- 3. Démontrer que, si $f : \mathbf{R}^d \to \mathbf{R}^d$ est une application contractante, alors f vérifie les conditions du bloc B.

^{1.} Communiqué par F. Lagoutière.