Feuille d'exercices n° 3 Continuité

Exercice 1. L'intervalle [0,1] étant muni de sa distance usuelle, l'application $x \mapsto x^2$ est-elle lipschitzienne? Et l'application $y \mapsto \sqrt{y}$?

Exercice 2. On munit \mathbf{R} de la distance usuelle. Soit f une application dérivable de \mathbf{R} vers \mathbf{R} . Montrer que f est lipschitzienne si et seulement si f' est bornée.

Exercice 3. On a vu (exercice 7 de la fiche 1) que sur \mathbf{R} , l'application $\delta:(x,y)\mapsto \frac{|y-x|}{1+|y-x|}$ est une distance, qui définit la même topologie que la distance usuelle d. Ces deux distances sont-elles topologiquement équivalentes? Sont-elles Lipschitz-équivalentes?

- 1. Donner une condition nécessaire et suffisante sur A pour que χ_A soit continue.
- 2. Déterminer l'ensemble des points où χ_A est continue.
- 3. On munit **R** de la distance usuelle. Que peut-on dire de $\chi_{\mathbf{Q}}$?

Exercice 5. Soit (X, d) un espace métrique, A une partie non vide de E et f une application continue de X vers \mathbf{R} . Montrer que $\sup_A f = \sup_{\overline{A}} f$.

Exercice 6. Soit (X, d_X) et (Y, d_Y) deux espaces métriques et $f: X \to Y$. Montrer que f est continue sur X si et seulement si pour toute partie A de X, on a $f(\overline{A}) \subseteq \overline{f(A)}$.

Exercice 7. Soit (X, d_X) et (Y, d_Y) deux espaces métriques, et f une application de X vers Y. Montrer que si f est continue, alors son graphe (c'est-à-dire $\{(x, y) \in X \times Y \mid y = f(x)\}$) est fermé dans l'espace métrique $X \times Y$. Donner un exemple qui montre que l'implication réciproque n'est pas toujours vraie.

Exercice 8. Soit a_1, \ldots, a_n des réels, et soit $\varphi \colon \mathbf{R}^n \to \mathbf{R}$ la forme linéaire définie par $\varphi(x_1, \ldots, x_n) = a_1x_1 + \cdots + a_nx_n$. On munit \mathbf{R} de la norme valeur absolue.

Montrer que φ est continue pour chacune des trois normes $\|.\|_{\infty}$, $\|.\|_{1}$ et $\|.\|_{2}$ et déterminer dans chacun des trois cas sa norme subordonnée.

Exercice 9. On note E l'espace vectoriel des fonctions continues de [0,1] vers \mathbf{R} , qu'on munit de la norme $\|.\|_{\infty}$. On munit \mathbf{R} de la norme valeur absolue.

Pour toute $u \in E$, on pose $\Psi(u) = \int_0^{1/2} u(t) dt - \int_{1/2}^1 u(t) dt$.

- 1. Montrer que Ψ est une forme linéaire continue sur E avec $\|\Psi\| \leq 1$.
- 2. Pour chaque $n \ge 3$, on note u_n la fonction continue qui vaut 1 sur l'intervalle $\left[0, \frac{1}{2} \frac{1}{n}\right]$, vaut -1 sur l'intervalle $\left[\frac{1}{2} + \frac{1}{n}, 1\right]$ et est affine sur l'intervalle $\left[\frac{1}{2} \frac{1}{n}, \frac{1}{2} + \frac{1}{n}\right]$.

 En calculant (ou minorant) les $|\Psi(u_n)|$, montrer que $||\Psi|| = 1$.

Exercice 10.

On note E l'espace vectoriel des fonctions continues de [0,1] vers \mathbf{R} . On munit \mathbf{R} de la norme valeur absolue. On considère sur E la forme linéaire φ définie par $\varphi(f) = f(0)$.

Montrer que selon qu'on munisse E de la norme $\|.\|_{\infty}$ ou de la norme $\|.\|_1$, la forme linéaire φ est continue ou discontinue.

Exercice 11.

On note E l'espace vectoriel des fonctions continues de [0,1] vers \mathbf{R} , qu'on munit de la norme $\|.\|_1$.

Pour toute $f \in E$ et tout x de [0,1] on pose $(\mu(f))(x) = \int_0^x f(t) dt$.

- 1. Montrer que μ est une application linéaire de E dans E, puis que μ est continue avec $\|\mu\| \le 1$.
- 2. Pour chaque $n \ge 1$, on note f_n la fonction définie sur [0,1] par $f_n(t) = n(1-t)^{n-1}$. Utiliser les fonctions f_n pour déterminer la norme de μ .

<u>Exercice 12.</u> On considère $F = \ell^{\infty}(\mathbf{R})$ l'espace vectoriel des suites réelles bornées. Dans cet exercice, il est commode de noter une suite réelle x de la façon suivante :

$$x: \mathbf{N} \to \mathbf{R}, \ n \mapsto x(n).$$

On munit F de la norme $||x||_{\infty} = \sup_{n \in \mathbb{N}} |x(n)|$.

Pour toute x dans F et tout n entier naturel, on pose $(\Delta(x))(n) = x(n+1) - x(n)$.

Montrer que Δ définit une application linéaire de F dans lui-même, puis montrer que Δ est continue et expliciter sa norme.

Exercice 14. Dans cet exercice et le suivant, les intervalles de \mathbf{R} sont munis de la métrique usuelle et les parties de \mathbf{C} de la métrique induite par la métrique usuelle sur \mathbf{C} .

Donner un exemple d'homéomorphisme entre :

- 1. Les intervalles [a, b] et [c, d], où a, b, c et d sont quatre réels qui vérifient a < b et c < d.
- 2. L'intervalle]-1,1[et \mathbf{R} .
- 3. L'intervalle $]0, \frac{\pi}{2}[$ et le quart de cercle $\{z \in \mathbb{C} \mid |z| = 1, \operatorname{Re}(z) > 0, \operatorname{Im}(z) > 0\}.$
- 4. L'ensemble \mathbf{R} et le cercle épointé $\{z \in \mathbf{C} \mid |z| = 1, z \neq -1\}$. (La formule $f(t) = \frac{1+it}{1-it}$ est suggérée).

Exercice 15. Montrer que l'application définie par $f(\theta) = e^{i\theta}$ est une bijection continue de $[0, 2\pi[$ sur le cercle $\{z \in \mathbb{C} \mid |z| = 1\}$ mais n'est pas un homéomorphisme.

Exercice 16. Soit X un ensemble et soit d_1 et d_2 deux distances sur X. Montrer que les distances d_1 et d_2 sont topologiquement équivalentes si et seulement si l'application identique est un homéomorphisme entre (X, d_1) et (X, d_2) .

Exercice 17. On munit \mathbb{R}^2 de la distance euclidienne usuelle, puis on définit φ de \mathbb{R}^2 vers \mathbb{R}^2 par :

$$\varphi(u) = \begin{cases} (0,0) & \text{si} \quad u = (0,0) \\ \frac{\|u\|_{\infty}}{\|u\|_{2}} u & \text{si} \quad u \neq (0,0) \end{cases}$$

- 1. Montrer que φ est bijective en exhibant son inverse.
- 2. Montrer que $\|.\|_2$ et $\|.\|_{\infty}$ sont équivalentes sur \mathbf{R}^2 . En déduire que $u \mapsto \|u\|_{\infty}$ est continue puis que φ et φ^{-1} sont continues en tout point de $\mathbf{R}^2 \setminus \{(0,0)\}$.
- 3. Montrer que φ et φ^{-1} sont continues en (0,0).
- 4. Utiliser φ pour montrer que le carré $\{u \in \mathbf{R}^2 \mid ||u||_{\infty} \leq 1\}$ et le disque $\{u \in \mathbf{R}^2 \mid ||u||_2 \leq 1\}$ sont homéomorphes.