SÉANCE 6. THÉORÈME DE RESTE CHINOIS ET FONCTION INDICATRICE D'EULER

Objectifs: Théorème chinois et fonction indicatrice d'Euler.

Exercice 3 (Théorème des restes chinois) — Rappelons le théorème des restes chinois :

étant donné un nombre entier m > 1 et une factorisation $m = m_1 m_2 \cdots m_r$ en produit d'entiers $m_i > 1$ deux à deux premiers entre eux, l'application naturelle

$$f: \mathbb{Z}/m\mathbb{Z} \longrightarrow \mathbb{Z}/m_1\mathbb{Z} \times \mathbb{Z}/m_2\mathbb{Z} \times \cdots \times \mathbb{Z}/m_r\mathbb{Z}$$

$$x \mod m \longmapsto (x \mod m_1, x \mod m_2, ..., x \mod m_r)$$

est un isomorphisme d'anneaux.

- 1. Démontrez que f est bien un isomorphisme d'anneaux.
- 2. Expliquez comme construire f^{-1} .
- 3. Soit L une liste de nombres entiers. Écrire un algorithme Test(L) vérifiant si les coefficients de L sont deux à deux premiers entre eux.
- 4. Si $L = [m_1, ..., m_r]$ est une liste d'entiers premiers deux à deux premiers entre eux, écrire un algorithme Chinois (a,L) calculant, pour tout $a \in \mathbb{Z}$, les composantes de f(a).
- 5. Considérons toujours une liste $L = [m_1, ..., m_r]$ d'entiers premiers entre eux deux à deux et posons $m = m_1 m_2 \cdots m_r$.
 - (i) Soit $i_0 \in \{1, ..., r\}$. À l'aide d'une identité de Bézout bien choisie, déterminer un entier e_{i_0} tel que

$$e_{i_0} \equiv 1 \mod m_{i_0}$$
 et $e_{i_0} \equiv 0 \mod m_i$

pour tout $i \neq i_0$.

- (ii) En déduire un algorithme Chinois Inverse (L, X) associant à toute liste $X = [a_1, a_2, ..., a_r]$ de nombres entiers l'unique entier $a \in \{0, ..., m-1\}$ tel que $a \equiv a_i \mod m_i$ pour tout i.
- 6. En guise d'application, considérons $m = 100 \cdot 101 \cdot 103$. Déterminer un nombre entier a tel que $a \equiv 60 \mod 103$ et pgcd(a, m) = 1.

Exercice 4 (La fonction indicatrice d'Euler) — On rappelle que l'indicatrice d'Euler est la fonction φ qui a un entier n > 0 associe le nombre d'entiers m compris entre 1 et n et premiers à n.

- 1. Montrer que φ est une fonction *multiplicative*, c'est-à-dire qu'étant donnés $n, m \ge 1$ premiers entre eux, on a $\varphi(nm) = \varphi(n)\varphi(m)$.
 - Indication : Remarquez que pour tout entier $N \ge 1$, $\varphi(N)$ est le cardinal de l'ensemble $(\mathbf{Z}/N\mathbf{Z})^*$ des éléments inversibles de $\mathbf{Z}/N\mathbf{Z}$. Utilisez ensuite le théorème des restes chinois.
- 2. Soit p un nombre premier et $k \ge 1$ un entier. Calculez $\varphi(p)$ puis justifiez que $\varphi(p^k) = (p-1)p^{k-1}$. Soit n un entier ≥ 1 . Déduire une expression de $\varphi(n)/n$ en fonction des facteurs premiers de n.

- 3. Ecrire une fonction ListeEntiersPremiers(n) renvoyant la liste des entiers m compris entre 1 et n et premiers à n.
- 4. Ecrire une fonction Phi (n) renvoyant $\varphi(n)$.
- 5. Ecrire une version récursive PhiRecursive(n) de la fonction précédente. On pourra penser à d'abord écrire une fonction intermédiaire DecompoPartielle(n) prenant en argument n et renvoyant (p, k, m), avec p, k, m des entiers ≥ 1 tels que $n = p^k m$ et p ne divisant pas m.
- 6. Ecrire une fonction SumPhi(n) renvoyant $\sum_{d|n} \varphi(d)$. Que peut-on conjecturer sur SumPhi?
- 7. Soit *n* un entier \geq 1. Pour tout diviseur *d* de *n*, on note

$$A_d := \{1 \le k \le n; k \land n = d\}.$$

Montrez que A_d est l'ensemble des k s'écrivant $d \times \ell$ avec ℓ un entier compris entre 1 et n/d premier à n/d. En déduire le cardinal de A_d , puis que

$$\sum_{d\mid n}\varphi(d)=n.$$

- 8. En utilisant la formule de la question précédente, écrire une version récursive PhiRecursive2(n) calculant $\varphi(n)$.
- 9. Tracez l'ensemble des $\varphi(n)/n$ pour n compris entre 1 et 100.
- 10. Trouvez une suite $(a_n)_{n\geq 1}$ d'entiers telle que $\varphi(a_n)/a_n$ tende vers 1 lorsque n tend vers l'infini.
- 11. (Difficile) On note $(p_i)_{i\geq 1}$ la suite des nombres premiers ordonnés par ordre croissant et on définit $b_k = p_1 \cdots p_k$ pour tout $k \in \mathbb{N}$. Montrez que $\varphi(b_n)/b_n$ tend vers 0 lorsque n tend vers l'infini.

Indication: En remarquant que $1/(1-1/p) = \sum_{k\geq 0} 1/p^k$, justifiez que

$$\prod_{p \text{ premiers}} \frac{1}{1 - 1/p} = \sum_{n \ge 1} \frac{1}{n} = +\infty.$$