Fiche de TD 3 arithmétique

exercices supplémentaires

Exercice 1 pgcd, ppcm de trois Soient a, b, c des entiers deux à deux premiers entre eux. Montrer que ppcm(a, b, c)pgcd(a, b, c) = abc. Donner un contre-exemple sinon.

Exercice 2 Nombres harmoniques

- a) On pose $H_n = 1 + 2^{-1} + ... + n^{-1}$.
- b) Montrer par récurrence sur $n \ge 2$ que

$$(\mathcal{H}_n) \quad \exists \ p_n = 1 \bmod 2, \ q_n = 0 \bmod 2, \ H_n = \frac{p_n}{q_n} \ .$$

Indication. Vérifier que $(\mathcal{H}_n) \Rightarrow (\mathcal{H}_{2n}) \Rightarrow (\mathcal{H}_{2n+1})$

c) En déduire que si $n \ge 2$, H_n n'est pas entier.

Exercice 3 Déterminer les entiers (a, b) tels que pgcd(a, b) = 18 et a + b = 360.

Exercice 4 Équations diophantiennes

a) Trouver les solutions entières de l'équation

$$6x + 10y + 15z = -1$$
.

b) Trouver les solutions entières de l'équation

$$323x + 391y + 437z = 1473 .$$

Exercice 5 Premiers mod 4

- a) Montrer qu'il existe une infinité de nombres premiers = $-1 \mod 4$. Indication. Considérer $4x_1...x_N 1$ si $x_1, ..., x_N$ sont des nombres premiers de la forme $-1 \mod 4$.
- b) Montrer qu'il existe une infinité de nombres premiers = 1 mod 4. *Indication. Considérer* $4(x_1...x_N)^2 + 1$ si $x_1, ..., x_N$ sont des nombres premiers de la forme 1 mod 4.

Exercice 6 Soit q > 1. Montrer que $\operatorname{pgcd}(q^a - 1, q^b - 1) = q^{\operatorname{pgcd}(a,b)} - 1$.

Exercice 7 Nombres de Mersenne

a) Montrer que si $M_a := 2^a - 1$ est premier, alors a aussi.

- b) Montrer que M_2, M_3, M_5, M_7 sont premiers mais non M_{11} .
- c) Soit p est un premier impair. Montrer que si q est un nombre premier tel que $q|M_p$, alors $q=1 \mod 2p$. Indication. Utiliser le petit théorème de Fermat et l'exercice précédent.
- d) Montrer que M_{13} est premier mais non M_{23} .

Exercice 8 Théorème des quatre carrés de Lagrange Démontrer que tout entier $n \in \mathbb{N}$ est somme de quatre carrés d'entiers en suivant les étapes suivantes.

a) Exprimer le produit

$$(x^2 + y^2 + z^2 + t^2)(a^2 + b^2 + c^2 + d^2)$$

comme somme de quatre carrés.

- b) Soit p premier impair. Montrer qu'il existe $x, y \in \mathbb{Z}$ tels que $x^2 + y^2 + 1 = 0 \mod p$. Indication. Calculer $|\{x^2 : x \in \mathbb{Z}/pZ\}|$ et $|\{-y^2 1 : y \in \mathbb{Z}/p\mathbb{Z}\}|$.
- c) Soit $m \in \mathbb{Z}_{>0}$ minimal tel qu'il existe des entiers x_1, x_2, x_3, x_4 tels que $x_1^2 + x_2^2 + x_3^2 + x_4^2 = mp$. Si m pair, trouver une contradiction si tous les x_i sont pairs, si tous les x_i sont impairs et si exactement deux des x_i sont pairs en calculant:

$$\left(\frac{x_1+x_2}{2}\right)^2 + \left(\frac{x_1-x_2}{2}\right)^2 + \left(\frac{x_3+x_4}{2}\right)^2 + \left(\frac{x_3-x_4}{2}\right)^2$$
.

- d) Supposons m impair > 1. Montrer qu'il existe y_i , $1 \le i \le 4$, tels que $\forall i, x_i = y_i \mod m$ et $|y_i| < \frac{m}{2}$.
- e) Vérifier que $\sum_i y_i^2 < m^2$. En déduire que $\sum_i y_i^2 = km$ pour un 0 < k < m.
- f) En utilisant la première question, montrer que

$$km^2p = \sum_i z_i^2$$

pour certains entiers z_i multiples de m.

g) Conclure.

Exercice 9 d'après le cc1 de 2022

Trouver les deux derniers chiffres de

en écriture décimale.