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Feuille 2 : Fonctions et fonctions usuelles
Correction

Exercice 1 (Injection, surjection, bijection).
Les fonctions suivantes sont-elles des injections ? Des surjections ? Des bijections ?

1. f1 : R → R définie par f1(x) = x2 + 1.

2. f2 : R → [1,+∞[ définie par f2(x) = x2 + 1

3. f3 : [−4,−2] ∪ [0, 1] → [1,+∞[, définie par
f3(x) = x2 + 1.

4. f4 : R\
{π
2
+ kπ, k ∈ Z

}
→ R, définie par

f4(x) = tan(x).

5. f5 : R → R+∗ définie par f5(x) = ex.

6. f6 : R → R+∗ définie par f6(x) = ex
2
.

Correction

1. f1 : R → R définie par f1(x) = x2 + 1 n’est ni injective, ni surjective, ni bijective.
2. f2 : R → [1,+∞[ définie par f2(x) = x2 + 1 est surjective, mais pas injective ni bijective.
3. f3 : [−4,−2]∪ [0, 1] → [1,+∞[, définie par f3(x) = x2 +1 est injective mais pas surjective ni bijective.

4. f4 : R\
{π
2
+ kπ, k ∈ Z

}
→ R, définie par f4(x) = tan(x) est surjective mais pas injective ni bijective.

5. f5 : R → R+∗ définie par f5(x) = ex est injective, surjective et bijective. .

6. f6 : R → R+∗ définie par f6(x) = ex
2

n’est ni surjective (l’intervalle ]0, 1[ n’est pas couvert) ni injective
(f6(x) = f6(−x)) ni bijective.

Exercice 2 (Trinôme).
Soient a ̸= 0, b et c trois réels. On note f : R → R la fonction définie par f(x) = ax2 + bx+ c.

1. Rappeler les variations de f en fonction du signe de a.
2. Comment s’appelle la courbe représentative de f ? Quelle propriété de symétrie possède-t-elle ? Com-

ment cette symétrie se traduit-elle algébriquement ?
3. Étudier le signe de f(x) suivant les valeurs de x.
4. Tracer sur le même graphique une courbe représentative des fonctions f : x 7→ x2 et g : x 7→

√
x,

toutes deux définies sur R+. Pourquoi ces deux courbes sont-elles symétriques par rapport à la droite
d’équation y = x ?

Correction

1. Si a est strictement positif, alors f est décroissante sur ]−∞,−b/(2a)] et croissante sur [−b/(2a),+∞[.
Si a est strictement négatif, alors f est croissante sur ]−∞,−b/(2a)] et décroissante sur [−b/(2a),+∞[.

2. La courbe représentative de f est une parabole. Elle est symétrique par rapport à la droite d’équation
x = −b/2a. Algébriquement, cette propriété de symétrie se traduit par : pour tout réel h, on a

f

(
−b

2a
+ h

)
= f

(
−b

2a
− h

)
.

3. On distingue suivant le signe du discriminant de f , noté ∆ :
— Si ∆ est strictement négatif, alors, f ne s’annule pas et, pour tout réel x, f(x) est du signe de a.
— Si ∆ est nul, alors f n’annule en −b/(2a) et est du signe de a sur R privé de −b/(2a).

— Si ∆ est strictement positif, alors f s’annule en r1 =
−b−

√
∆

2a
et en r2 =

−b+
√
∆

2a
, et est du

signe de a en dehors de l’intervalle formé par r1 et r2, et du signe opposé sur l’intervalle formé
par r1 et r2.
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4. Consulter le graphique ci-dessous.

Soit M un point de la courbe représentative de f et N un point de la courbe représentative de g. Il faut
montrer que le symétrique de M par rapport à la droite D d’équation y = x appartient à la courbe
représentative de g, et que le symétrique N ′ de N par rapport à cette même droite appartient à la
courbe représentative de f .
Soit A(x0, y0) un point du plan. Notons A′ = (y0, x0).

Le milieu du segment [A,A′] est de coordonnées (
x0 + y0

2
,
x0 + y0

2
), donc il appartient à la droite D.

Cette droite a pour vecteur directeur le vecteur
(
1
1

)
, dont le produit scalaire avec le vecteur A⃗A′ est

nul. Le point A′ est donc le symétrique de A par rapport D.
Revenons à M : notons x0 l’abscisse de M . L’ordonnée de M est égale à x20, et le symétrique M ′ de M
par rapport à D a pour coordonnées (x20, x0). Par définition de f , x0 est positif, donc x0 = g(x20) : le
point M ′ appartient à la courbe représentative de g.
De même, étudions N et son symétrique par rapport à D. Notons x1 l’abscisse de N . Son ordonnée est
alors égale à

√
x1, et le symétrique N ′ de N par rapport à D a pour coordonnées (

√
x1, x1). On a bien√

x1 ≥ 0 et x1 = f(
√
x1), donc N ′ appartient à la courbe représentative de f .

Exercice 3 (Partie entière).
On rappelle que l’on note E(x) la partie entière d’un réel x.

1. Quelle est l’image de R par la fonction partie entière ?

2. Combien vaut E(0.5) ? Et E(−1.5) ?

3. Tracer les courbes représentatives des fonctions x 7→ E(x), x 7→ E(2x) et x 7→ E(x/2).

Correction
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1. Par définition de E, l’image d’un réel par E est un entier relatif, donc E(R) est inclus dans Z.
Réciproquement, l’image de R par la fonction partie entière est l’ensemble Z des entiers relatifs. En
effet, pour tout entier relatif k, on a E(k) = k, donc Z est inclus dans E(R).

2. 0 est un entier relatif et 0 ≤ 0.5 < 0 + 1, donc E(0.5) = 0.
De même, −2 est un entier relatif et −2 ≤ −1.5 < −2 + 1, donc E(−1.5) = −2.

3.

Exercice 4 (Trigo). Calculer les valeurs suivantes :

1. cos

(
3π

2

)
2. sin

(
−5π

6

) 3. tan

(
−11π

4

)
4. cos

( π

12

)
5. sin

( π

12

)

Correction

1. On a cos

(
3π

2

)
= cos

(
3π

2
− 2π

)
= cos

(
−π

2

)
= cos

(π
2

)
= 0.

2. On a sin

(
−5π

6

)
= sin

(
2π − 5π

6

)
= sin

(
7π

6

)
= sin

(
π +

π

6

)
= − sin

(π
6

)
= −1

2
.

3. On a tan

(
−11π

4

)
= tan

(
−11π

4
+ 3π

)
= tan

(π
4

)
= 1

4. On a √
3

2
= cos

(π
6

)
= cos

(
2 · π

12

)
= 2 cos2

( π

12

)
− 1,

et donc

cos2
( π

12

)
=

2 +
√
3

4
.
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Comme cos
( π

12

)
> 0 on en déduit

cos
( π

12

)
=

√
2 +

√
3

2
.

5. On a

sin2
( π

12

)
= 1− cos2

( π

12

)
=

2−
√
3

4
,

et comme sin
( π

12

)
> 0 on en déduit

sin
( π

12

)
=

√
2−

√
3

2
.

Exercice 5 (Trigo - encore).
Soient x et y deux réels.
1. Exprimer les réels cos(x+ y), cos(2x), sin(x+ y) et sin(2x) en fonction de cosx, sinx, cos y et sinx.

2. Montrer que 1 + sinx =
(
cos
(x
2

)
+ sin

(x
2

))2
.

3. Exprimer les réels cos(4x) et sin(4x) en fonction de cosx et sinx.
4. Exprimer en fonction de tanx seulement les expressions suivantes :

(a) f1(x) = cos2 x

(b) f2(x) =
sin4 x+ cos4 x

sin4 x− cos4 x

(c) f3(x) =
sin3 x− cos3 x

sinx− cosx

(d) f4(x) = cos2 x− sinx cosx.

Correction
Soient x et y deux réels.
1. Soient x et y deux réels.

On a cos(x+ y) = cosx cos y − sinx sin y et cos(2x) = cos2 x− sin2 x = 2 cos2 x− 1 = 1− 2 sin2 x.
On a également sin(x+ y) = sinx cos y + cosx sin y, et sin(2x) = 2 sinx cosx.

2. Soit x un réel. On a(
cos
(x
2

)
+ sin

(x
2

))2
= cos2

(x
2

)
+ sin2

(x
2

)
+ 2 cos

(x
2

)
sin
(x
2

)
= 1 + sinx.

3. Soit x un réel. On a

cos(4x) = cos(2(2x)) et sin(4x) = sin(2(2x))

= 2 cos2(2x)− 1 = 2 sin(2x) cos(2x)

= 2(2 cos2 x− 1)2 − 1 = 4 sinx cosx (2 cos2 x− 1)

= 8 cos4 x− 8 cos2 x+ 1 = 8 sinx cos3 x− 4 sinx cosx

4. Soit x un réel n’appartenant pas à
π

2
+ πZ, c’est-à-dire pour lequel tanx est bien défini.

(a)

f1(x) = cos2 x =
cos2 x

sin2 x+ cos2 x

=
1

tan2 x+ 1
.

(b) On suppose de plus pour cette question que | sinx| ≠ | cosx|, c’est-à-dire que x n’appartient pas
non plus à

π

4
+

π

2
Z. On a :

f2(x) =
sin4 x+ cos4 x

sin4 x− cos4 x
=

tan4 x+ 1

tan4 x− 1
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(c) On suppose de plus pour cette question que sinx ̸= cosx, c’est-à-dire que x n’appartient pas non
plus à

π

4
+ πZ. On a :

f3(x) =
sin3 x− cos3 x

sinx− cosx
=

cos3 x (tan3 x− 1)

cosx (tanx− 1)

= cos2 x
tan3 x− 1

tanx− 1

=
1

1 + tan2 x

(
tan2 x+ tanx+ 1

)
(d)

f4(x) = cos2 x− sinx cosx = cos2 x(1− tanx)

=
1− tanx

1 + tan2 x

Exercice 6 (Trigo - toujours !).

1. Rappeler les formules d’addition de sin(a+ b) et cos(a+ b).
2. Résoudre l’équation, d’inconnue x :

sinx =
1

2
.

3. Montrer qu’il existe un réel θ tel que, pour tout réel y,

sin(y + θ) =

√
2

2
sin y +

√
2

2
cos y.

4. En déduire l’ensemble des solutions de l’équation, d’inconnue y :

sin y + cos y =

√
2

2
.

Correction

1. Soient a et b deux réels. On a

sin(a+ b) = sin a cos b+ cos a sin b et cos(a+ b) = cos a cos b− sin a sin b

2. Soit x un réel. On a sinx =
1

2
si et seulement si x ≡ π

6
[2π] ou x ≡ 5π

6
[2π]

3. Soit y et θ deux réels. On a sin(y + θ) = cos θ sin y + sin θ cos y.
On remarque qu’en choisissant θ = π/4, on obtient :

sin
(
y +

π

4

)
=

√
2

2
sin y +

√
2

2
cos y.

4. Soit y un réel. On remarque que

sin y + cos y =
√
2

(√
2

2
sin y +

√
2

2
cos y

)
=

√
2 sin

(
y +

π

4

)
On a donc sin y+cos y =

√
2

2
si et seulement si sin

(
y +

π

4

)
=

1

2
. L’ensemble des solutions de l’équation

sin y + cos y =

√
2

2
est donc

{
π

6
− π

4
+ 2kπ,

5π

6
− π

4
+ 2kπ, k ∈ Z

}
.

Exercice 7 (Composition).

1. Soient I, J et K des parties de R et f : J → K et g : I → J . Montrer que si f et g sont toutes les deux
monotones, alors f ◦ g est également monotone. Pouvez-vous préciser son sens de variation en fonction
de ceux de f et de g ?

2. Écrire les fonctions suivantes comme la composée de deux fonctions et en déduire leur sens de variation.
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(a) x 7→ (1 + 2x)2 ; (b) x 7→ 1

1 + x2
; (c) x 7→ exp(x2 − 1).

Correction

1. Le plus simple est probablement de distinguer quatre cas suivant les sens de variation de f et g. On
remarque alors que f ◦ g est croissante si f et g sont toutes les deux croissantes ou toutes les deux
décroissantes, et que f ◦ g est décroissante si l’une est croissante et l’autre décroissante.

2. Les décompositions proposées ne sont pas uniques ! Chacune des décompositions proposées fait inter-
venir la fonction carré, qui est bien entendu décroissante sur R− et croissante sur R+.

(a) Soit h1 : x 7→ (1 + 2x)2. Cette fonction peut s’écrire comme la composée de la fonction (affine et
croissante) x 7→ 1 + 2x par la fonction carré y 7→ y2. La fonction carré étant croissante sur R+ et
décroissante sur R−, on en déduit que h est croissante sur [−0.5,+∞[ et décroissante ]−∞,−0.5].

(b) Soit h2 : x 7→ 1

1 + x2
. Cette fonction peut s’écrire comme la composée de la fonction carré par la

fonction y 7→ 1/(1 + y) qui est décroissante sur R+. La fonction h2 est donc croissante sur R− et
décroissante sur R+.

(c) Soit h3 : x 7→ exp(x2 − 1).

Exercice 8 (Image directe, image réciproque).
Soit f : R → R la fonction x 7→ x2, et E la fonction partie entière.
Déterminer les ensembles suivants :

1. f([0, 3]).

2. f−1([0, 4])

3. f−1([−1, 4])

4. f−1([
√
2, 4])

5. sin([0, π])

6. sin−1

({
1

2

})
7. sin−1

([
−1

2
,
1

2

]) 8. tan−1 ([−1, 1]).

9. E([−1.5, 1.5]).

10. E−1([−1, 1] ∪ {2}).

Correction
Soit f : R → R la fonction x 7→ x2, et E la fonction partie entière.
Déterminons les ensembles suivants :

1. f([0, 3]) = [0, 9].

2. f−1([0, 4]) = [−2, 2]

3. f−1([−1, 4]) = [0, 2]

4. f−1([
√
2, 4]) = [−2,−

√
42] ∪ [

4
√
2, 2].

5. sin([0, π]) = [0, 1].

6. On utilise le fait que la fonction sin est de période 2π et que π/6 et 5π/6 sont les 2 réels x de [−π, π]

tels que sinx = 1/2. On a donc : sin−1

({
1

2

})
=

{
π

6
+ 2kπ,

5π

6
+ 2kπ, k ∈ Z

}
.

7. On utilise la périodicité de la fonction sin et le fait que sin[−π/6, π/6] = [−1/2, 1/2] et sin[5π/6, 7π/6] =
[−1/2, 1/2]. On obtient :

sin−1

([
−1

2
,
1

2

])
=
⋃
k∈Z

[
−π

6
+ 2kπ,

π

6
+ 2kπ

]⋃ ⋃
k∈Z

[
5π

6
+ 2kπ,

7π

6
+ 2kπ

]
.

8. On utilise la périodicité de la fonction tan, sa monotonie sur ]−π/2, π/2[ et le fait que tan[−π/4, π/4] =
[−1, 1]. On en déduit :

tan−1 ([−1, 1]) =
⋃
k∈Z

[
−π

4
+ kπ,

π

4
+ kπ

]
.

9. E([−1.5, 1.5]) = {−2,−1, 0, 1}.
10. E−1([−1, 1] ∪ {2}) = E−1({−1, 0, 1, 2} = [−1, 3[.

Exercice 9 (Réciproque de fonctions circulaires).
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1. Soit f = cos |[2π,3π], la restriction de la fonction cosinus à l’intervalle [2π, 3π].
Exprimer f−1 : [−1, 1] → [2π, 3π] en utilisant les fonctions arccos et/ou arcsin.

2. Soit g = cos |[π,2π], la restriction de la fonction cosinus à l’intervalle [π, 2π].
Exprimer g−1 : [−1, 1] → [π, 2π] en utilisant les fonctions arccos et/ou arcsin.

Correction

1. La fonction cos est 2π-périodique, donc pour tout réel x, on a cos(x− 2π) = cosx.
La fonction arccos a pour ensemble image l’intervalle [0, π], donc pour tout x de [2π, 3π], on a

x = 2π + arccos(cos(x)) = 2π + arccos(f(x))

La fonction réciproque de f est donc la fonction f̃ définie sur [−1, 1] par f̃(t) = 2π + arccos(t).
2. Soit t un réel de [−1, 1]. Notons u = arccos(t). On sait que u appartient à [0, π], que cos(u) = cos(2π−u),

et que 2π − u appartient à [π, 2π].
On a donc g−1(t) = 2π − arccos(t).

On a donc, pour tout t ∈ [−1, 1], g−1(t) = 2π − arccos(t)

Exercice 10 (Réciproque de fonctions circulaires : Calcul).
Calculez les valeurs suivantes :

1. arcsin

(
1

2

)
.

2. arcsin

(
−
√
3

2

) 3. arctan

(√
3

3

)

4. arctan (−1)

5. arcsin

(
sin

(
2π

3

))

6. arctan

(
tan

(
9π

4

)) 7. sin

(
arcsin

(√
2√
5

))

8. tan (arctan(3)).

Correction

1. arcsin

(
1

2

)
=

π

6
.

2. arcsin

(
−
√
3

2

)
= −π

3

3. arctan

(√
3

3

)
=

π

6

4. arctan(−1) = −π

4

5. arcsin

(
sin

(
2π

3

))
=

π

3

6. arctan

(
tan

(
9π

4

))
=

π

4

7. sin

(
arcsin

(√
2√
5

))
=

√
2√
5

8. tan(arctan(3)) = 3.

Exercice 11 (Dérivée).
Calculer là où cela est possible les dérivées des fonctions suivantes :

1. f1 : x 7→ sin2 x

2. f2 : x 7→ sin(x2)

3. f3 : x 7→ cos2(3x)

4. f4 : x 7→ tan(x2)

5. f5 : x 7→ 1− x

2 + x

6. f6 : x 7→
√
1− x2

7. f7 : x 7→ e2x+1

8. f8 : x 7→ ln(1 + x4)

9. f9 : x 7→ ln

∣∣∣∣1 + x

1− x

∣∣∣∣
10. f10 : x 7→ ln | cosx|

Correction

1. La fonction sin est définie et dérivable sur R, et la fonction carré aussi. La fonction f1 est donc définie
et dérivable sur R. Par les résultats sur les dérivées des fonctions composées, on a, pour tout réel x,
f ′
1(x) = 2 cosx sinx = sin(2x).

2. Par les mêmes arguments, on justifie que f2 est définie et dérivable sur R. Pour tout réel x, on a :
f ′
2(x) = 2 · x · cos(x2).

3. La fonction f3 est la composée d’une fonction linéraire, de la fonction cos et de la fonction carré : elle
est donc définie et dérivable sur R. Pour tout réel x, on a : f ′

3(x) = 3 ·2 ·− sin(3x) ·cos(3x) = −3 sin(6x).
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4. La fonction tan est définie et dérivable sur tout intervalle de la forme
]
−π

2
+ kπ,

π

2
+ kπ

[
, où k est un

entier relatif, donc f4 est définie et dérivable sur l’intervalle
]
−
√

π

2
,

√
π

2

[
et sur tout intervalle de la

forme
]√

kπ − π

2
,

√
kπ +

π

2

[
, ou

]
−
√

kπ − π

2
,−
√

kπ +
π

2

[
pour k un entier naturel non nul.

La dérivée de la fonction tan étant la fonction 1 + tan2, on a, pour tout x tel que f4 est bien définie :
f ′
4(x) = 2 · x · (1 + tan2(x2))

5. f5 est définie et dérivable sur R\{−2}, et pour tout réel x différent de 2, on a f5(x) = −1+
3

2 + x
donc

f ′
5(x) = − 3

(2 + x)2

6. La fonction f6 est définie pour tout x de [−1, 1], et dérivable (au moins) pour tout x de ]− 1, 1[ : par
dérivée d’une fonction composée, on a

f ′
6(x) = −2 · x · 1

2
· (1− x2)−1/2 = − x√

1− x2
.

On peut vérifier que f6 n’est pas dérivable à gauche en 1 et à droite en −1 en étudiant le taux
d’accroissement. On a par exemple, pour tout h ∈]0, 2]

f6(1− h)− f6(1)

−h
= −

√
1− (1− h)2 − 1

h

= −
√
2h− h2

h

= −h−1/2
√
2− h

Le taux d’accroissement diverge lorsque h tend vers 0+, donc f6 n’est pas dérivable (à gauche) en 1.
De même, f6 n’est pas dérivable à droite en −1.

7. f7 est définie et dérivable sur R, et on a pour tout réel x : f ′
7(x) = 2e2x+1.

8. La fonction ln étant définie et dérivable sur [1,+∞[, la fonction f7 est définie et dérivable sur R. Pour

tout réel x, on a : f ′
7(x) =

4x3

1 + x4
.

9. La fonction f9 est définie et dérvable pour tout x différent de −1 et 1. Sa dérivée est un peu plus simple
à calculer si on utilise les propriétés de la fonction ln :
Pour tout réel x différent de 1 et −1, on a f9(x) = ln |1 + x| − ln |1− x|.

donc f ′
9(x) =

1

1 + x
− −1

1− x
=

2

1− x2
.

10. La fonction f10 est définie et dérivable pour tout x tel que cos(x) est non nul, c’est-à-dire, pour tout x
n’appartenant pas à

{π
2
+ kπ, k ∈ Z

}
.

On a alors, pour tout x ∈ R\
{π
2
+ kπ, k ∈ Z

}
, f ′

10(x) =
− sinx

cosx
= − tanx.

Exercice 12 (Fonctions hyperboliques).
Montrer que pour tous réels u et v, on a :

cosh2 u+ sinh2 v = sinh2 u+ cosh2 v = cosh(u+ v) cosh(u− v)

cosh2 u− cosh2 v = sinh2 u− sinh2 v = sinh(u+ v) sinh(u− v)

Correction
Soient u et v deux réels.
On a

cosh2 u+ sinh2 v =

(
eu + e−u

2

)2

+

(
ev − e−v

2

)2

=
1

4

(
e2u + e−2u + 2 + e2v + e−2v − 2

)
=

1

4

(
e2u + e−2u + e2v + e−2v

)
8



En échangeant le rôle de u et v dans cette dernière expression, on déduit que cosh2 u+sinh2 v = cosh2 v+
sinh2 u.

Par ailleurs, on a :

cosh(u+ v) cosh(u− v) =
1

4

(
eu+v + e−u−v

)
×
(
eu−v + ev−u

)
=

1

4

(
eu+v+u−v + eu+v+v−u + e−u−v+u−v + e−u−v+v−u

)
=

1

4

(
e2u + e2v + e−2v + e−2u

)
D’où le résultat demandé.

De la même façon, et toujours pour deux réels u et v quelconques :

cosh2 u− cosh2 v =

(
eu + e−u

2

)2

−
(
ev + e−v

2

)2

=
1

4

(
e2u + e−2u + 2− e2v − e−2v − 2

)
=

1

4

(
e2u + e−2u − e2v − e−2v

)
Et :

sinh(u+ v) sinh(u− v) =
1

4

(
eu+v − e−u−v

)
×
(
eu−v − ev−u

)
=

1

4

(
eu+v+u−v − eu+v+v−u − e−u−v+u−v + e−u−v+v−u

)
=

1

4

(
e2u − e2v − e−2v + e−2u

)
On a donc bien l’égalité cosh2 u− cosh2 v = sinh(u+ v) sinh(u− v).

De plus, on utilise la relation cosh2− sinh2 = 1 :

cosh2 u− cosh2 v = 1 + sinh2 u− (1 + sinh2 v)

= sinh2 u− sinh2 v.

Ce qui permet de conclure à la double égalité.

Exercice 13 (Équation - Fonctions hyperboliques).

1. Calculer cosh

(
1

2
ln(3)

)
et sinh

(
1

2
ln(3)

)
.

2. À l’aide de la formule de calcul du cosh(a+ b), résoudre l’équation d’inconnue réelle x :

2√
3
coshx+

1√
3
sinhx = cosh(5x).

Correction

1. On a

cosh

(
1

2
ln(3)

)
=

1

2

(
e(ln 3)/2 + e−(ln 3)/2

)
et sinh

(
1

2
ln(3)

)
=

1

2

(
e(ln 3)/2 − e−(ln 3)/2

)
=

1

2

(
(31/2 + 3−1/2

)
=

1

2

(
31/2 − 3−1/2

)
=

1

2

3 + 1√
3

=
1

2

3− 1√
3

=
2√
3

=
1√
3
.
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2. Notons u =
1

2
ln(3).

Pour tous réels a et b, on a cosh(a+ b) = cosh a · cosh b+ sinh · sinh b, donc, pour tout réel x, on a

2√
3
coshx+

1√
3
sinhx = coshu · coshx+ sinhu · sinhx = cosh(x+ u).

Résoudre l’équation proposée revient donc à chercher l’ensemble des réels x tels que cosh(u + x) =
cosh(5x).
Or on sait que deux réels admettent le même cosinus hyperbolique s’ils sont égaux ou opposés.
On a donc

cosh(x+ u) = cosh(5x) ⇐⇒ x+ u = 5x ou x+ u = −5x

⇐⇒ 4x = u ou − 6x = u

⇐⇒ x =
u

4
ou x = −u

6

L’ensemble des réels x vérifiant
2√
3
coshx+

1√
3
sinhx = cosh(5x) est donc

{
ln 3

8
,− ln 3

12

}
Exercice 14 (Limite - exp).

1. Discuter en fonction de la valeur du réel a l’existence et la valeur éventuelle de la limite de an quand
n tend vers +∞.

2. À quelle condition la fonction x 7→ ax est-elle bien définie sur R ? Que pouvez-vous dire dans ce cas de
la limite de ax lorsque x tend ers +∞ ?

Correction

1. Soit a un réel.
Si a appartient à ]− 1, 1[, alors (an) tend vers 0.
Si a = 1, alors (an) est la suite constante égale à 1.
Si a > 1, alors (an) diverge vers +∞.
Si a ≤ −1, alors (an) diverge.

2. La fonction x 7→ ax est bien définie lorsque a est positif. Sa limite est la même que la limite de la suite
(an).

Exercice 15 (Limites - Opérations).
Calculer, si elles existent les limites quand x tend vers +∞ de :

1. f1 : x 7→ x2 + 2x5

1 + x4

2. f2 : x 7→ x sinx+ x2

1 + x2

3. f3 : x 7→ x
√
x+ 5

x2 + cosx

4. f4 : x 7→
√
x+ 1−

√
x− 1

5. f5 : x 7→ 1

x
ln(2x+ 3)

6. f6 : x 7→ sin
1

x
7. f7 : x 7→ x+ cosx

8. f8 : x 7→ e−x(cosh3 x− sinh3 x)

9. f9 : x 7→ x− ln(coshx).

Correction

1. Pour tout x,
x2 + 2x5

1 + x4
=

x5

x4
2 + x−3

1 + x−4
donc lim

+∞

x2 + 2x5

1 + x4
= +∞.

2. Pour tout x,
x sinx+ x2

1 + x2
=

x2

x2
1 + x−1 sinx

1 + x−2
donc lim

∞
f2(x) = 1.

3. Pour tout x ≥ 1, f3(x) est bien définie et
x
√
x+ 5

x2 + cosx
=

x3/2

x2
1 + 5x−3/2

1 + x−2 cosx
donc lim

+∞
f5(x) = 0.
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4. Pour tout x ≥ 1, f4(x) est bien définie et on a

√
x+ 1−

√
x− 1 =

(
√
x+ 1−

√
x− 1)× (

√
x+ 1 +

√
x− 1)√

x+ 1 +
√
x− 1

=

√
x+ 1

2 −
√
x− 1

2

√
x+ 1 +

√
x− 1

=
x+ 1− (x− 1)√
x+ 1 +

√
x− 1

=
2√

x+ 1 +
√
x− 1

.

On en déduit que lim
+∞

f4(x) = 0.

5. Pour tout x > 0, on a ln(2x+ 3) = ln(x) + ln
2x+ 3

x
.

De plus, la limite en +∞ de x−1 ln(x) est nulle, et celle de ln
2x+ 3

x
est égale à ln 2.

Donc lim
+∞

f5(x) = 0.

6. Lorsque x tend vers +∞,
1

x
tend vers 0, et lorsque u tend vers 0, sinu tend vers 0.

Donc, par composition de limites, lim
+∞

sin
1

x
= 0

7. Pour tout x > 0, f7(x) = x×
(
1 +

cosx

x

)
.

La fonction cos étant bornée, le théorème des gendarmes permet de justifier que lim
+∞

cosx

x
= 0.

Donc lim
+∞

f7(x) = +∞.

NB : on peut tout aussi bien minorer f7(x) par x− 1, et utiliser une comparaison de limites.

8. On commence par expliciter f8 à l’aide de la fonction exponentielle : pour tout réel x, on a

f8(x) = e−x(cosh3 x− sinh3 x)

=
1

8
e−x

(
e3x + 3ex + 3e−x + e−3x −

(
e3x − 3ex + 3e−x − e−3x

))
=

1

8
e−x

(
6ex + 2e−3x

)
=

3

4
+

1

4
e−2x

Donc lim
+∞

f8(x) =
3

4
.

9. Pour tout réel x, coshx est strictement positif, donc f9(x) est bien défini.
Soit x un réel. On a

f9(x) = x− ln(coshx)

= x− ln
ex + e−x

2

= x− ln

(
ex
(
1 + e−2x

)
2

)
= x− ln(ex)− ln

(
1 + e−2x

)
+ ln 2

= − ln
(
1 + e−2x

)
+ ln 2

Donc lim
+∞

f9(x) = ln 2.

Exercice 16 (Fonction réciproque - Dérivée).

1. Montrer que pour tout y réel il existe un unique x réel tel que y = sinh(x), et exprimer x en fonction
de y. sinh est donc une bijection R vers R, on note sa bijection réciproque argsinh.
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2. Calculer la dérivée de argsinh.

Correction

1. Soit y un réel. Déterminons x tel que sinh(x) = y.
On a

y = sinh(x) ⇐⇒ y =
1

2
(ex − e−x)

⇐⇒ ex − e−x − 2y = 0

⇐⇒ (ex)2 − 2y × ex − 1 = 0

Il s’agit d’une équation de degré 2 en la variable X = ex : il nous faut donc déterminer les racines
positives de cette équation.
Déterminons les racines de X2 − 2yX − 1 = 0 : il s’agit d’un trinôme en X, dont le discriminnt ∆ est
égal à ∆ = 4y2 + 4 qui est toujours strictement positif.
Les racines de ce trinôme sont donc

r1 =
2y − 2

√
y2 + 1

2
= y −

√
y2 + 1 et r2 =

2y + 2
√
y2 + 1

2
= y +

√
y2 + 1.

Pour toute valeur de y on remarque que r1 est négative et r2 est positive.
En posant x = lnX, on obtient l’antécédent de y par sinh :

argsinh(y) = ln(y +
√

1 + y2).

2. La fonction argsinh est dérivable sur R comme composée de fonctions dérivables, et pour tout y réel
on a :

argsinh′(y) =

(
1 +

2y

2
√
1 + y2

)
× 1

y +
√
1 + y2

=

√
1 + y2 + y(√

1 + y2 × (y +
√
1 + y2)

)
=

1√
1 + y2

.

Exercice 17 (Fonction réciproque - Dérivée).
Donner les dérivées des fonctions suivantes, là où elles sont définies et dérivables :
1. Soit f : R → R, x 7→ arccos(cos(x)). Calculer sa dérivée f ′(x) pour tout x ∈ R \ {Zπ}.
2. Soit g : R → R, x 7→ arcsin(sin(x)). Calculer sa dérivée g′(x) pour tout x où g est dérivable.
3. x 7→ arcsin(cos(x))

4. x 7→ arccos(sin(x))

5. x 7→ arctan(tan(x))

6. x 7→ arctan(sin(x))

Correction

1. Soit f la fonction définie sur R par f(x) = arccos(cos(x)).
Cette fonction est la composée de deux fonctions continues (et définies sur des ensembles compatibles),
donc elle est bien définie et continue sur R.
La fonction x 7→ cosx est dérivable sur R, de dérivée x 7→ − sinx, et la fonction u 7→ arccosu est
dérivable sur ]− 1, 1[, de dérivée u 7→ −(1− u2)−1/2.
La fonction f est donc dérivable sur R\(πZ), de dérivée :

f ′(x) = − − sinx

−
√
1− cos2 x

=
sinx

| sinx|
= sgn(sinx).

On étudie la dérivabilité en 0 (la situation en x = kπ, pour un entier naturel k est similaire) : on calcule
le taux d’accroissement en distinguant les cas x ∈]0, π[ et x ∈]− pi, 0[ :

12



1er cas : x ∈]0, π[.
Alors arccos(cosx) = x et

arccos(cosx)− arccos(cos 0)

x− 0
=

x

x

= 1

2ème cas : x ∈]− π, 0[.
Alors arccos(cosx) = −x et

arccos(cosx)− arccos(cos 0)

x− 0
=

−x

x

= −1

Les limites à droite et à gauche du taux d’accroissement lorsque x tend vers 0 existent mais sont
différentes, donc la fonction f n’est pas dérivable en 0 (ni en kπ pour k un entier).

2. Soit g la fonction définie sur R par g(x) = arcsin(sin(x)).
Cette fonction est la composée de deux fonctions continues et définies sur des ensembles compatibles,
donc g est continue sur R.
La fonction x 7→ sinx est dérivable sur R de dérivée cosx, et la fonction u 7→ arcsinu est dérivable sur
]− 1, 1[, de dérivée u 7→ 1/

√
1− u2.

La fonction g est donc dérivable sur R\(π
2
+ πZ), et de dérivée

g′(x) =
cosx√

1− sin2 x
=

cosx

| cosx|
= sgn(cosx).

Comme dans la question précédente, on peut calculer les limites à droite et à gauche du taux d’accrois-
sement en π/2 (ou en π/2 + kπ, pour tout entier k) : on remarque que pour tout réel, sin(π/2 + h) =
sin(π/2− h).
1er cas : Soit h ∈]0, π[. On a

g(π/2 + h)− g(π/2)

h
=

arcsin(sin(π/2 + h))− arcsin(sin(π/2))

h

=
arcsin(sin(π/2− h))− (π/2)

h

=
π/2− h− π/2

h
= −1

2ème cas : Soit h ∈]0, π[. On a

g(π/2− h)− g(π/2)

−h
=

arcsin(sin(π/2− h))− arcsin(sin(π/2))

−h

=
arcsin(sin(π/2− h))− (π/2)

h

=
π/2− h− π/2

−h

= 1

Donc le taux d’accroissement de g admet des limites différentes à droite et à gauche de π/2 : g n’est
donc pas dérivable en π/2 (ni en π/2 + kπ, pour tout entier k).

3. La fonction x 7→ arcsin(cos(x)) est continue R et dérivable en tout réel x pour lequel t 7→ arcsin t est
dérivable en t = cosx, donc pour tout x /∈ πZ.
On a alors :

(arcsin(cosx))′ =
− sinx√
1− cos2 x

= − sinx

| sinx|
= −sgn(sinx).

Comme dans l’exercice précédent, on peut vérifier la non dérivabilité en kπ, pour k un entier.
On aurait aussi pu utiliser les résultats de l’exercice précédent ainsi que la relation arcsin t+arccos t =
π/2.

4. La fonction x 7→ arccos(sin(x)) est continue sur R et dérivable en tout x pour lequel t 7→ arccos t est
dérivable en t = sinx, donc pour tout x /∈ π

2
+ πZ.

On a alors :
(arccos(sinx))′ =

− cosx√
1− sin2 x

= − cosx

| cosx|
= −sgn(cosx).
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5. Soit k un entier. La fonction x 7→ tanx continue et dérivable sur ] − π

2
+ kπ,

π

2
+ kπ[, et la fonction

arctan est dérivable sur R. Donc la fonction x 7→ arctan(tanx) est continue et dérivable sur ce même
intervalle.
Pour tout x ∈]− π

2
+ kπ,

π

2
+ kπ[, on a arctan(tanx) = x− kπ, donc la dérivée de x 7→ arctan(tanx))

est constante égale à 1.
La fonction x 7→ arctan(tanx)) n’est pas dérivable en

π

2
+ kπ puisqu’elle n’est pas définie (ni prolon-

geable par continuité) en ce point.

6. Les deux fonctions t 7→ arctan t et x 7→ sinx sont définies et dérivables sur R donc la fonction x 7→
arctan(sinx) est dérivable sur R.
Pour tout réel x, on a :

(arctan(sinx))′ =
cosx

1 + sin2 x
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