Université Claude Bernard Lyon 1 UE Analyse I
Semestre d’automne 2022-2023

Feuille 2 : Fonctions et fonctions usuelles
Correction

Exercice 1 (Injection, surjection, bijection).
Les fonctions suivantes sont-elles des injections ? Des surjections ? Des bijections ?

L. f1: R — R définie par fi(z) = z? + 1. 4. fy : R\ {g + km, k € Z} — R, définie par
2. fa: R — [1, +oo[ définie par fo(x) = 2* + 1 fa(z) = tan(z).
. +* Jafn; — LT
3. fy : [<4,-2] U [0,1] — [L,+oo[, définie par > fs : R = R™ definie par f5(z) =e :
f3(z) =2 + 1. 6. fo:R — R définie par fo(z) = e* .
Correction

1. f1 : R — R définie par fi(z) = 2 + 1 n’est ni injective, ni surjective, ni bijective.

f2 : R = [1,400[ définie par fo(z) = 2% + 1 est surjective, mais pas injective ni bijective.
f3:[—4,—-2]U[0,1] — [1, +oo[, définie par f3(z) = 2 + 1 est injective mais pas surjective ni bijective.
fa: R\ {g + km, k € Z} — R, définie par fy(x) = tan(x) est surjective mais pas injective ni bijective.

f5 : R — R™* définie par f5(x) = e” est injective, surjective et bijective. .

SR I O

fo : R — R™™ définie par fo(x) = ™ nlest ni surjective (I'intervalle |0, 1[ n’est pas couvert) ni injective
(f6(x) = fe(—x)) ni bijective.

Exercice 2 (Trinome).
Soient a # 0, b et ¢ trois réels. On note f : R — R la fonction définie par f(z) = ax® + bx + c.
1. Rappeler les variations de f en fonction du signe de a.

2. Comment s’appelle la courbe représentative de f 7 Quelle propriété de symétrie posséde-t-elle 7 Com-
ment cette symétrie se traduit-elle algébriquement ?

3. Etudier le signe de f(x) suivant les valeurs de x.

4. Tracer sur le méme graphique une courbe représentative des fonctions f : z — 22 et g :  — /z,
toutes deux définies sur RT. Pourquoi ces deux courbes sont-elles symétriques par rapport a la droite
d’équation y = x ?

Correction
1. Si a est strictement positif, alors f est décroissante sur | — oo, —b/(2a)] et croissante sur [—b/(2a), +00[.
Si a est strictement négatif, alors f est croissante sur | —oo, —b/(2a)] et décroissante sur [—b/(2a), +o0.

2. La courbe représentative de f est une parabole. Elle est symétrique par rapport a la droite d’équation
x = —b/2a. Algébriquement, cette propriété de symétrie se traduit par : pour tout réel h, on a

()1 (3)

3. On distingue suivant le signe du discriminant de f, noté A :
— Si A est strictement négatif, alors, f ne s’annule pas et, pour tout réel x, f(x) est du signe de a.
— Si A est nul, alors f n’annule en —b/(2a) et est du signe de a sur R privé de —b/(2a).

—-b—vA b+ vA
— Si A est strictement positif, alors f s’annule en r; = 5 et en ry = —brva
a

a
signe de a en dehors de l'intervalle formé par ry et ro, et du signe opposé sur l'intervalle formé

, et est du

par 71 et ro.



4. Consulter le graphique ci-dessous.
[
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Soit M un point de la courbe représentative de f et N un point de la courbe représentative de g. Il faut
montrer que le symétrique de M par rapport & la droite D d’équation y = x appartient & la courbe
représentative de g, et que le symétrique N’ de N par rapport a cette méme droite appartient a la
courbe représentative de f.

Soit A(zg,yo) un point du plan. Notons A" = (yo, zo).

Le milieu du segment [A, A’] est de coordonnées (xo ; yo’ Tot yO), donc il appartient a la droite D.

. . 1 : . -
Cette droite a pour vecteur directeur le vecteur <1), dont le produit scalaire avec le vecteur AA’ est

nul. Le point A" est donc le symétrique de A par rapport D.

Revenons & M : notons xg I’abscisse de M. L’ordonnée de M est égale a x%, et le symétrique M’ de M
par rapport & D a pour coordonnées (22, z¢). Par définition de f, ¢ est positif, donc zg = g(x3) : le
point M’ appartient & la courbe représentative de g.

De méme, étudions N et son symétrique par rapport & D. Notons x1 I'abscisse de N. Son ordonnée est
alors égale a /71, et le symétrique N’ de N par rapport & D a pour coordonnées (1/x1,z1). On a bien
VZ1 >0 et 11 = f(\/71), donc N appartient a la courbe représentative de f.

Exercice 3 (Partie entiére).
On rappelle que 'on note E(x) la partie entiére d’un réel x.

1. Quelle est I'image de R par la fonction partie entiére ?
2. Combien vaut E(0.5)? Et E(—1.5)7

3. Tracer les courbes représentatives des fonctions x +— E(z), x — E(2z) et © — E(x/2).

Correction



1. Par définition de E, 'image d’un réel par E est un entier relatif, donc E(R) est inclus dans Z.

Réciproquement, 'image de R par la fonction partie entiére est I’ensemble Z des entiers relatifs. En
effet, pour tout entier relatif k, on a E(k) = k, donc Z est inclus dans E(R).

2. 0 est un entier relatif et 0 < 0.5 < 0+ 1, donc E(0.5) = 0.
De méme, —2 est un entier relatif et —2 < —1.5 < =2+ 1, donc E(—1.5) = —2.

8 ——
E(2x)

E(x)

E(x/2)

—2

3.

Exercice 4 (Trigo). Calculer les valeurs suivantes :
3 11 . m
1. cos <27r> 3. tan <_47r> 5. sin (ﬁ)
2. sin (_57r> 4. cos (1)
6 12
Correction
1. On 3T Zcos (25 —an) = (—E)— (f)—o
) a cos 5 = CoS 5 7| = cos 5 = cos 5) =0
1
2. On a sin <_567T> = sin (27T — 5(?) = sin <7g> = sin <7r + %) = —sin (%) = —3
11 11
3. On a tan (—;) = tan (_47r + 37r> = tan <%) =1

4. On a

et donc




Comme cos <17T—2) > 0 on en déduit

5. On a
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et comme sin (%) > 0 on en déduit

. ( T ) 2 -3
sin|— ) = ———.

12 2
Exercice 5 (Trigo - encore).

Soient x et y deux réels.

1. Exprimer les réels cos(z + y), cos(2z), sin(xz + y) et sin(2z) en fonction de cosz, sinz, cosy et sinx.

. T . (T2

2. Montrer que 1+ sinx = (cos (5) + sin <§)> .
3. Exprimer les réels cos(4x) et sin(4x) en fonction de cosx et sinx.
4. Exprimer en fonction de tanx seulement les expressions suivantes :

@) fi(z) = o’ (© folx) = 00E = cos’w

sintz + cos’ z sinz — cosx
(b) fa(z) = St 7 — cost 7 (d) fa(z) = cos’x — sinz cos z.
Correction

Soient x et y deux réels.

1. Soient x et y deux réels.
On a cos(x +y) = cosx cosy —sinx siny et cos(2x) = cos?z —sin®z =2cos’z —1=1—2sin’z.
On a également sin(z +y) = sinz cosy + cosz siny, et sin(2z) = 2sinx cosz.

2. Soit  un réel. On a

(cos (5) +0 (5))" = oo (5) 0 (5) #2000 (5) i ()

=1+4sinz.
3. Soit z un réel. On a
cos(4x) = cos(2(2x)) et sin(4z) = sin(2(2x))
= 2cos?(2z) — 1 = 2sin(2z) cos(2z)
=2(2cos’x —1)2 -1 = 4sinz cosz (2cos?z — 1)
=8costz —8coslz +1 = 8sinz cos®z — 4sinz cosx

T
4. Soit x un réel n’appartenant pas a 5 + w7, c’est-a-dire pour lequel tan x est bien défini.

(a)

2 cos? z

(z) =cos*r = —5————
h@) sin? z + cos? x
1

- tanZx +1°

(b) On suppose de plus pour cette question que |sinz| # | cos x|, c’est-a-dire que = n’appartient pas
T
non plus a 1 + EZ' On a :

sin* 2 + cost x tan*x + 1
fa(z) = 1 =

sin

r—costx tantz—1

4



(c) On suppose de plus pour cette question que sinx # cosx, ¢’est-a-dire que x n’appartient pas non
T
plus a Z-F?TZ. On a :

sin®z —cos®z  cos®x (tandz — 1)

fa(x) = =

sinz — cosx cosz (tanzx — 1)

, tandz —1
=cos“r—m—
tanx — 1

1 2
= m (tan m—l—tanx—l—l)

fa(z) = cos®> x —sinz cosz = cos® z(1 — tan )
1—tanxz
T 14 tan’z
Exercice 6 (Trigo - toujours!).
1. Rappeler les formules d’addition de sin(a + b) et cos(a + b).
2. Résoudre I’équation, d’inconnue x :

siny = —.

2

3. Montrer qu’il existe un réel 8 tel que, pour tout réel y,

2 2
sin(y +0) = \2[ siny + \2[ COS Y.
4. En déduire I’ensemble des solutions de 1’équation, d’inconnue ¥ :
siny 4 cosy = 5

Correction

1. Soient a et b deux réels. On a

sin(a + b) =sina cosb+ cosa sinb et cos(a +b) = cosacosb —sinasinb

1 5
2. Soit x un réel. On a sinx = 3 si et seulement si x = % [27] ou x = % [27]

3. Soit y et 6 deux réels. On a sin(y + ) = cosf siny + sinf cosy.
On remarque qu’en choisissant § = 7 /4, on obtient :
)=

: V2
— sy + 7cosy.

) T
Sin (y—}—f 5

4
4. Soit y un réel. On remarque que

2 2
siny + cosy = V2 ({ siny + {cosy)

s
= Vasin(v+ )
Slny—|—4

2 1
On a donc siny+cosy = \g si et seulement si sin (y + %) =3 L’ensemble des solutions de I’équation

5
+2kﬂ,g—z+2kw,kez}.

T m

2
siny—I—cosy:\gest donc{6 1

Exercice 7 (Composition).

1. Soient I, J et K des partiesde Ret f:J — K et g: I — J. Montrer que si f et g sont toutes les deux
monotones, alors f o g est également monotone. Pouvez-vous préciser son sens de variation en fonction
de ceux de f et de g7

2. Kcrire les fonctions suivantes comme la composée de deux fonctions et en déduire leur sens de variation.



(a) = (14 2z)%; (b) z (¢) =+ exp(z? —1).

Correction

1. Le plus simple est probablement de distinguer quatre cas suivant les sens de variation de f et g. On
remarque alors que f o g est croissante si f et g sont toutes les deux croissantes ou toutes les deux
décroissantes, et que f o g est décroissante si 'une est croissante et 'autre décroissante.

2. Les décompositions proposées ne sont pas uniques! Chacune des décompositions proposées fait inter-
venir la fonction carré, qui est bien entendu décroissante sur R~ et croissante sur RT.

(a) Soit hy : &+ (1 + 2z)2. Cette fonction peut s’écrire comme la composée de la fonction (affine et
croissante) x — 1 4 2z par la fonction carré y — y%. La fonction carré étant croissante sur RT et
décroissante sur R™, on en déduit que h est croissante sur [—0.5, +00] et décroissante | — 0o, —0.5].

. 1

(b) Soit hg : x T2
fonction y — 1/(1 + y) qui est décroissante sur RT. La fonction hy est donc croissante sur R~ et
décroissante sur R,

. Cette fonction peut s’écrire comme la composée de la fonction carré par la

(¢) Soit hs : x — exp(z® — 1).

Exercice 8 (Image directe, image réciproque).
Soit f: R — R la fonction  — 2, et E la fonction partie enticre.
Déterminer les ensembles suivants :

1. f([0,3]). 4. FYV2,4) 6. sin-1 <{1}> 8. tan~! ([—1,1]).

-1 2 B
2. f_l([0,4]) | o <[_1 1D 9. E(_[1 1.5,1.5]).
3. f7([-1,4)) 5. sin([0, 7)) 279 10. E=([-1,1] U {2}).
Correction

Soit f : R — R la fonction = — 2, et E la fonction partie entiére.
Déterminons les ensembles suivants :

L. f([0,3]) = [0,9].

2. f71([0,4]) = [-2,2]

3. fH([=1,4]) = [0,2]

4. f~ 1([\f 4) = [-2, —V42] U [V2,2].

5. sin([0, 7)) = [0, 1].

6. On utilise le fait que la fonction sin est de période 27 et que 7/6 et 57/6 sont les 2 réels x de [—, 7]
tels que sinz = 1/2. On a donc : sin™*! ({;}) = {g + 2k, 5% + 2km, k € Z}.

7. On utilise la périodicité de la fonction sin et le fait que sin[—n /6, 7/6] = [-1/2,1/2] et sin[57 /6, 77 /6] =
[—1/2,1/2]. On obtient :

sin—1<[_21,;]>:U[6+21m +2kw]UU[5”+2k n +2k}

kEZ kEZ

8. On utilise la périodicité de la fonction tan, sa monotonie sur | —7/2, /2 et le fait que tan[—m /4, 7/4] =

[—1,1]. On en déduit :
tan~' ([—-1,1]) = U [4 +km, — + kiTr] .

keZ
9. E([-1.5,1.5]) = {-2,-1,0,1}.
10. E7Y[-1,11u{2}) = E"1({-1,0,1,2} = [-1,3].

Exercice 9 (Réciproque de fonctions circulaires).



1. Soit f = cos|[2x34], la restriction de la fonction cosinus a I'intervalle [27, 37].

Exprimer f~!

([-1,1] —

[27, 3] en utilisant les fonctions arccos et/ou arcsin.

2. Soit g = €08 |(,24], la restriction de la fonction cosinus a I'intervalle [r, 27].

Exprimer g~ ' : [-1,1] —

Correction

[, 27r] en utilisant les fonctions arccos et/ou arcsin.

1. La fonction cos est 2m-périodique, donc pour tout réel x, on a cos(z — 2m) = cosz.

La fonction arccos a pour ensemble image 'intervalle [0, 7], donc pour tout = de [27, 37], on a

x = 21 + arccos(cos(x)) = 27 + arccos(f(z))

La fonction réciproque de f est donc la fonction f définie sur [—1,1] par f(t) = 27 + arccos(t).

2. Soit t un réel de [—

et que 27 — u appartient a [, 27].

On a donc ¢~ (t) = 27 — arccos(t).

On a donc, pour tout ¢t € [—1,1], g~

Exercice 10 (Réciproque de fonctions circulaires :

Calculez les valeurs suivantes :

1
1. i — .
arcsin ( 5 )
! ( _\/§>
2. arcsin 5

Correction

)

1. arcsin

2. arcsin (
3. arctan (

4. arctan

DO | =

“’a

DR
N——

\ 3

4

Exercice 11 (Dérivée).
Calculer 1a ou cela est possible les dérivées des fonctions suivantes :

fi:xz—sin?x
fo @z sin(z?)

e

Correction

f3: a + cos?(3x)
fa:x— tan(z?)

3
3. arctan (\3[)

4. arctan (—1)

5. fs:ix—

6. fo:x—V1— 22

7. frix—e

o

L(t) = 2 — arccos(t)

Calcul).

e (0(2)) 1. o

arctan <tan <9;T>> 8. tan (arctan(3)).

8. fs:x— In(l+zh)

1
9. fo:x—1In 1+$

— X

10. fio: x> In|cosz|

2

1,1]. Notons u = arccos(t). On sait que u appartient a [0, 7|, que cos(u) = cos(2m—u),

)

1. La fonction sin est définie et dérivable sur R, et la fonction carré aussi. La fonction f; est donc définie
et dérivable sur R. Par les résultats sur les dérivées des fonctions composées, on a, pour tout réel x,
fi(xz) = 2cos xsinz = sin(2x).

2. Par les mémes arguments, on justifie que fo est définie et dérivable sur R. Pour tout réel x, on a :

fh(x) =2z - cos(x?).

3. La fonction f3 est la composée d’une fonction linéraire, de la fonction cos et de la fonction carré : elle

est donc définie et dérivable sur R. Pour tout réel z, on a : f5(x) = 3-2-—sin(3z)-cos(3z) =

—3sin(6x).



4. La fonction tan est définie et dérivable sur tout intervalle de la forme ] —g + k, g + km [, ol k est un

entier relatif, donc f; est définie et dérivable sur l'intervalle ]—\/z , \/Z [ et sur tout intervalle de la

forme } \/kﬂ' — g, \//mr + g [, ou } —\/lmr — g, —\/kﬂ'—l- g [ pour k un entier naturel non nul.

La dérivée de la fonction tan étant la fonction 1 + tan?, on a, pour tout z tel que f4 est bien définie :
fi(x) =2z (1+ tan*(z?))

5. f5 est définie et dérivable sur R\{—2}, et pour tout réel = différent de 2, on a f5(z) = -1+ o donc
x
3
/ e —
f5(1") - (2 + CL‘)2
6. La fonction fg est définie pour tout = de [—1,1], et dérivable (au moins) pour tout = de | — 1,1[ : par

dérivée d’une fonction composée, on a
x
V1—a?
On peut vérifier que fg n’est pas dérivable & gauche en 1 et & droite en —1 en étudiant le taux
d’accroissement. On a par exemple, pour tout h €]0, 2]

fe(A—h)—fe(1)  1-(1—-h)*—1

fo(x) = —Q-x-%-(l_ﬁ)—l/? _

—h h
V2h — h?

h
= —n"V2/2 -

Le taux d’accroissement diverge lorsque h tend vers 0+, donc fg n’est pas dérivable (a4 gauche) en 1.

De méme, fg n’est pas dérivable & droite en —1.

7. f7 est définie et dérivable sur R, et on a pour tout réel x : fi(z) = 2% 1.

8. La fonction In étant définie et dérivable sur [1, 400, la fonction f7 est définie et dérivable sur R. Pour
_ 43
142t
9. La fonction fy est définie et dérvable pour tout x différent de —1 et 1. Sa dérivée est un peu plus simple
a calculer si on utilise les propriétés de la fonction In :
Pour tout réel x différent de 1 et —1, on a fo(z) =In|l1 + x| —In|1 — z|.
) 1 ~1 2
done fy(w) = l+z 1—2 1—2a%
10. La fonction fi est définie et dérivable pour tout x tel que cos(z) est non nul, ¢’est-a-dire, pour tout x

tout réel =, on a : fi(z)

n’appartenant pas a {g + km, k€ Z}.

—sinz
= —tanwx.

T
On a alors, tteR{—k,keZ},’ -
n a alors, pour tout x \ 5 + km fio(z) oS T

Exercice 12 (Fonctions hyperboliques).
Montrer que pour tous réels u et v, on a :

cosh? 4 + sinh? v = sinh? u 4 cosh? v = cosh(u + v) cosh(u — v)

cosh? 1 — cosh? v = sinh? u — sinh? v = sinh(u + v) sinh(u — v)

Correction
Soient u et v deux réels.

On a

u —u\ 2 v _ —v\ 2
cosh? u + sinh? v = 64_26> + (626)

(e +e " +2+e* +e 2 —2)

(eQu +672u +620 _’_6721))

N e L e



En échangeant le role de u et v dans cette derniére expression, on déduit que cosh? u+sinh? v = cosh? v+
sinh? u.
Par ailleurs, on a :

cosh(u + v) cosh(u — v) = = (e" +e77") x (e +e" ™)

N e i

(eu-l—v—i-u—v 4 eu—i—v—i—v—u _|_€—u—v+u—v 4 e—u—v-l—v—u)

(62u +e2v +e—2v +e—2u)

D’oit le résultat demandé.
De la méme fagon, et toujours pour deux réels u et v quelconques :

U —u\ 2 v —v\ 2
cosh? u — cosh? v = (e—|—2€> - <e+26>

= % (e +2—e* —e 2 —2)
_ i (€2 4 72 — % — =)
Et :
sinh(u + v) sinh(u — v) = i (" —e V) x (" — ")
_ % (eutvtu=y _ gutvhu—u _ mumvtu—v 4 o—u—viv-u)
_ % (€2 — 2 — ™ 4 e 20)

On a donc bien I'égalité cosh? u — cosh? v = sinh(u + v) sinh(u — v).
De plus, on utilise la relation cosh? — sinh? =1 :

cosh?u — cosh?v = 1 + sinh? u — (1 + sinh? v)
= sinh? u — sinh? v.
Ce qui permet de conclure a la double égalité.
Exercice 13 (Equation - Fonctions hyperboliques).
1. Calculer cosh (; ln(3)> et sinh <; ln(3)> .

2. A T'aide de la formule de calcul du cosh(a + b), résoudre I'équation d’inconnue réelle z

2 1
— coshz + —= sinh z = cosh(5x).

V3 V3

Correction

1. On a

cosh (;ln(3)> _

e(n3)/2 6*(1n3)/2> et sinh <; 111(3)) =

(31/2 1 371/2>
1

W N
+

N RN~ N~
B

Sl



1
2. Notons u = 3 In(3).

Pour tous réels a et b, on a cosh(a + b) = cosha - coshb + sin h - sinh b, donc, pour tout réel x, on a

2 1
—=coshz + —=sinhz = coshu - cosh z + sinh u - sinh x = cosh(z + u).

V3 V3
Résoudre I’équation proposée revient donc a chercher l'ensemble des réels z tels que cosh(u + x) =
cosh(5x).
Or on sait que deux réels admettent le méme cosinus hyperbolique s’ils sont égaux ou opposés.
On a donc

cosh(z + u) = cosh(bx) <= = +u =5z ou z +u = —bzx

<—4r=uou —6r=u
U U
S r=—-our=——

4 6

2 1
L’ensemble des réels x vérifiant — coshz + —= sinh z = cosh(5x) est donc

V3 V3

I3 _In3
87 12

1. Discuter en fonction de la valeur du réel a I'existence et la valeur éventuelle de la limite de a™ quand

Exercice 14 (Limite - exp).

n tend vers —+o0.

2. A quelle condition la fonction z — a® est-elle bien définie sur R ? Que pouvez-vous dire dans ce cas de
la limite de a® lorsque x tend ers +oo?

Correction

1. Soit a un réel.
Si a appartient a | — 1,1[, alors (a") tend vers 0.
Si a =1, alors (a") est la suite constante égale & 1.
Sia > 1, alors (a") diverge vers +o0.
Sia < —1, alors (a") diverge.
2. La fonction x +— a® est bien définie lorsque a est positif. Sa limite est la méme que la limite de la suite
(a").
Exercice 15 (Limites - Opérations).
Calculer, si elles existent les limites quand x tend vers o0 de :

2 5 1
x° + 2z
1. . L e 5. fs:x— — In(2x 4+ 3
h 14 24 T ( )
. 2 1
2 forx rsmz +x 6. fg:x+>sin—
14 22 T
2T +5 7. frix— x+cosx
3f3:33r—>27 8 . —z W3 - — sinh®
2 + cosz . fs @+ e *(cosh’ x — sinh” x)
4. frix—=Vr+1—vVr—1 9. fo:x+ x—In(coshz).
Correction
2 5 5 -3 2 5
2 2 2
1. Pour tout x,u:x—idonc limu:—}—oo
14 24 xt 1424 +oo 1+ 24
rsinx + 2 _ 2?14z tsinx

2. Pour tout z, donc lim fo(z) = 1.
[e.9]

1+22 22 1+g°2

T /T +5 32 14 5p73/2
2

3. Pour tout z > 1, f3(z) est bien définie et donc Em fs(z) =0.
o0

x2 + cosx 22 1+z22coszx
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4. Pour tout x > 1, f4(x) est bien définie et on a

WVr+1—Vr—1)xz+1+Vx-1)
Vol ve—1= Ver+1l+vz -1

7\/:1:4-12—\/36—12

Vo l4yz—1

r+1l-(r—-1)

CVr+l+Vz—1

_ 2

SVt leVr -1

On en déduit que lim fy(z) = 0.
+o0o

2
5. Pour tout z > 0, on a In(2z 4+ 3) = In(z) + In s 3.
T

De plus, la limite en 400 de 27" In(x) est nulle, et celle de In

est égale & In 2.

Donc lim f5(z) = 0.
—+00
1
6. Lorsque x tend vers 400, — tend vers 0, et lorsque u tend vers 0, sinu tend vers 0.
T

" o |
Donc, par composition de limites, Em sin— =0
o T

COSJZ‘)

7. Pour tout z > 0, fr(z) =z x <1 +
x
cos X
La fonction cos étant bornée, le théoréme des gendarmes permet de justifier que lim = 0.
T

Donc lim f7(z) = +oc.
+oo
NB : on peut tout aussi bien minorer f7(x) par z — 1, et utiliser une comparaison de limites.

8. On commence par expliciter fg a ’aide de la fonction exponentielle : pour tout réel z, on a

fs(z) = e *(cosh® z — sinh® )

1
= ge_m (639” +3e% +3e T 43 — (639” —3e® +3e7 " — 6_3’”))
1
= ge_x (6€$ + 26_3$)
31 g,
VRS
Done lim fy(z) = >
onc lim fs(z) = 7.

9. Pour tout réel x, coshz est strictement positif, donc fo(x) est bien défini.

Soit z un réel. On a

fo(x) = x — In(cosh x)
e’ +e”

2

o n <e‘” (1—&-625’3))
2

=z—In(e") —In(1+e ") +1n2
=—In(1 —i—e_zx) +1In2

=z —1In

Donc lim fy(z) = In2.
+o00

Exercice 16 (Fonction réciproque - Dérivée).

1. Montrer que pour tout y réel il existe un unique x réel tel que y = sinh(z), et exprimer x en fonction
de y. sinh est donc une bijection R vers R, on note sa bijection réciproque argsinh.
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2.

Calculer la dérivée de argsinh.

Correction

1.

Soit y un réel. Déterminons x tel que sinh(z) = y.

On a
1

y =sinh(z) <=y = i(ex —e ")

— e —e T -2y=0
= (") —2yxe®—1=0

Il s’agit d’'une équation de degré 2 en la variable X = ¢” : il nous faut donc déterminer les racines
positives de cette équation.

Déterminons les racines de X2 — 2yX —1 = 0 : il s’agit d’un trinéme en X, dont le discriminnt A est
égal & A = 4y? + 4 qui est toujours strictement positif.

Les racines de ce trindme sont donc

2y —2¢/y? + 1 2y +2/y2 +1
TIZMZQ_‘/Q2+1 et 1”2:%:3/4—«’3/24—1.

2

Pour toute valeur de y on remarque que 71 est négative et ro est positive.
En posant = In X, on obtient 'antécédent de y par sinh :

argsinh(y) = In(y + 1 + y?).

. La fonction argsinh est dérivable sur R comme composée de fonctions dérivables, et pour tout y réel

on a :

2y

1
argsinh’(y) = (1 + > X
2¢/1+ y? y+1+y?
B V1It+tyr+y
(\/1+3/2 X (y+\/1+y2))
1

V7

Exercice 17 (Fonction réciproque - Dérivée).
Donner les dérivées des fonctions suivantes, 1a ou elles sont définies et dérivables :

AR

Soit f: R — R, z + arccos(cos(z)). Calculer sa dérivée f'(z) pour tout x € R\ {Zr}.
Soit g : R — R, & + arcsin(sin(z)). Calculer sa dérivée ¢’(x) pour tout z ol g est dérivable.
x > arcsin(cos(x))
x + arccos(sin(x))
x +— arctan(tan(x))
(

x — arctan(sin(x))

Correction

1.

Soit f la fonction définie sur R par f(z) = arccos(cos(x)).

Cette fonction est la composée de deux fonctions continues (et définies sur des ensembles compatibles),

donc elle est bien définie et continue sur R.

La fonction x + cosz est dérivable sur R, de dérivée z — —sinz, et la fonction u — arccosu est

dérivable sur | — 1,1[, de dérivée u — —(1 — u?)~1/2,

La fonction f est donc dérivable sur R\(7Z), de dérivée :
—sinx _ sinx

—V1—cos?2z |sinz|

On étudie la dérivabilité en 0 (la situation en z = km, pour un entier naturel k est similaire) : on calcule
le taux d’accroissement en distinguant les cas x €]0, 7| et x €] — pi, 0] :

= sgn(sinz).

fla) =—
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ler cas : x €]0, 7]. 2¢me cas : z €] — 7,0/

Alors arccos(cosz) = x et Alors arccos(cosz) = —x et
arccos(cos ) — arccos(cos 0) _r arccos(cosx) — arccos(cos0)  —x
z-0 z z—0 T or
=1 - 1

Les limites a droite et a gauche du taux d’accroissement lorsque x tend vers 0 existent mais sont
différentes, donc la fonction f n’est pas dérivable en 0 (ni en k7 pour k un entier).

. Soit ¢ la fonction définie sur R par g(z) = arcsin(sin(z)).

Cette fonction est la composée de deux fonctions continues et définies sur des ensembles compatibles,
donc g est continue sur R.

La fonction x + sin x est dérivable sur R de dérivée cosz, et la fonction u — arcsin u est dérivable sur

| —1,1], de dérivée u — 1/@

La fonction g est donc dérivable sur R\(g + 7Z), et de dérivée

COS T COST

!
g (x) = =
V1 —sin?x | cos 7|

Comme dans la question précédente, on peut calculer les limites & droite et & gauche du taux d’accrois-
sement en 7/2 (ou en 7/2 + km, pour tout entier k) : on remarque que pour tout réel, sin(n/2 + h) =
sin(m/2 — h).

ler cas : Soit h €]0,7[. On a

= sgn(cos ).

g(m/24+h) —g(w/2)  arcsin(sin(7/2 + h)) — arcsin(sin(7/2))

h h
_ arcsin(sin(7/2 — h)) — (7/2)
h
_m/2—h—m/2
=
-1

2¢me cas : Soit h €]0,7[. On a

g(m/2 —h) —g(m/2)  arcsin(sin(mw/2 — h)) — arcsin(sin(7/2))

—h —h
_ arcsin(sin(mw/2 — h)) — (7/2)
h
_7w/2—h—7/2
="
=1

Donc le taux d’accroissement de g admet des limites différentes a droite et & gauche de 7/2 : g n’est
donc pas dérivable en /2 (ni en 7/2 + k7, pour tout entier k).

. La fonction x — arcsin(cos(z)) est continue R et dérivable en tout réel = pour lequel ¢ — arcsint est
dérivable en t = cos x, donc pour tout x ¢ wZ.

On a alors : ) )
-8 S
(arcsin(cos x)) = e ne_ —sgn(sinz).

V1 —cos?zx _|sinx\ N

Comme dans I'exercice précédent, on peut vérifier la non dérivabilité en km, pour k un entier.

On aurait aussi pu utiliser les résultats de ’exercice précédent ainsi que la relation arcsint 4 arccost =

/2.

. La fonction z +— arccos(sin(z)) est continue sur R et dérivable en tout 2 pour lequel ¢ — arccost est
b

dérivable en ¢t = sinx, donc pour tout = ¢ 5 + 7.

On a alors :
—cosx cos
(arccos(sinz)) = =

V1—¢sin?z | cos x| B
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5. Soit k un entier. La fonction z — tanz continue et dérivable sur | — 5 + k, 5 + kn[, et la fonction

arctan est dérivable sur R. Donc la fonction & — arctan(tanz) est continue et dérivable sur ce méme

intervalle.
™ ™
Pour tout z €] — 5 + km, = + kx[, on a arctan(tanx) = x — k7, donc la dérivée de x — arctan(tanz))

2
est constante égale a 1.

T
La fonction = +— arctan(tanx)) n’est pas dérivable en 5 + km puisqu’elle n’est pas définie (ni prolon-
geable par continuité) en ce point.

6. Les deux fonctions ¢t — arctant et z — sinz sont définies et dérivables sur R donc la fonction = —
arctan(sin x) est dérivable sur R.

Pour tout réel z, on a :
cos T

arctan(sinz)) = ————
( ( ) 1+sin?x
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