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Chapitre 1

Nombres réels

1.1 Ensembles de nombres

1.1.1 Les entiers naturels

L’ensemble N défini par
N={0,1,2,3,...},

est 'ensemble des entiers naturels. Si I’on enléve le 0 on définit N* = {1,2,3,...} I'ensemble des entiers
naturels non nuls.

1.1.2 Les entiers relatifs

En ajoutant les entiers négatifs on définit I'ensemble des entiers relatifs par
Z=A...,-3,-2,—-1,0,1,2,3,...}.

De méme, si l'on enléve le 0, on définit Z* = {..., —3,—2,—-1,1,2,3,...} I'ensemble des entiers relatifs
non nuls.
Remarque 1.1.

1. On remarque que l’ensemble N est inclus dans l’ensemble Z, ce que l’on peut écrire de la maniére
swvante :
N C Z,

ot le symbole C se lit « est inclus dans ». En effet, tout élément de N est également élément de
Z, ce que l'on peut écrire de la maniére suivante :

si neN, alors ne€Z,

ot le symbole € se lit « appartient a ».

2. On voit immédiatement que l'inclusion réciproque est fausse, c’est-a-dire Z ¢ N, puisque par
exemple —1 € 7 alors que —1 ¢ N.

3. Attention a ne pas confondre les symboles C et € /

1.1.3 Les nombres rationnels

On définit I’ensemble des nombres rationnels Q comme ’ensemble des fractions d’entiers naturels :

Q:{%IGEZ,Z)GZ*}.
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Remarque 1.2.

1. Puisque tout entier relatif n peut étre écrit sous la forme

n = 5

n
1

on aZ C Q.
. . . / s . 1_2_ 4 _
2. Un mnombre rationnel peut étre représenté par différentes fractions, par exemple 5 = 7 =3 = ...
Plus précisément, pour a,a’ € Z et b,/ € Z*, on a

!/

a
— = — si et seulement si ab' = a'b.
b 4

Attention, lexpression « P si et seulement si Q », que l'on peut abréger en « P ssi Q » ou « P
< Q » (voir le cours d’Algébre 1), signifie deux choses : « si P est vraie alors @Q est vraie » et
« si @ est vraie alors P est vraie ».

1.1.4 Les nombres décimaux

On définit ’ensemble des nombres décimaux D de la maniére suivante :
J— a .

Il s’agit des nombres ayant une suite finie de chiffres & droite de la virgule.

Remarque 1.3.
1. Tous les éléments de D peuvent étre écrit sous forme de fraction, et donc D C Q.

2. L’inclusion réciproque est fausse, puisque certaine fractions ne peuvent étre écrites qu’avec une
mnfinité de chiffres apres la virgule, comme par exemple

é = 0.333333333333333333333333 . ..

L’ensemble D donne un réle privilégié au nombre 10 (les dix doigts des mains). Du point de vue
des mathématiciens, les ensembles Q et R sont plus importants.

1.1.5 Les nombres réels

L’ensemble R des nombres réels est I’ensemble des nombres dont 1’écriture décimale est composée
de

— un signe + ou — (généralement omis lorsque c’est le +),

— une suite finie de chiffres entre 0 et 9, ne commencant pas par 0 ou étant réduite a 0,

— une virgule,

— une suite infinie de chiffres entre 0 et 9.

Exemples 1.4. Par exemple 0, 4, —10.3, %, V2, T sont des nombres réels.

Remarque 1.5.
1. Attention avec cette définition un réel ne s’écrit pas de maniére unique, par exemple 1 = 1.0,
0=0.0=-0=—0.00, 1 =0.99999999999. ..
2. On a lUinclusion Q C R, mais l'inclusion réciproque est fausse, on ne peut par exemple pas écrire
V2 comme § avec a € Z et b € Z* (voir le cours d’Algebre 1).
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1.2 Opérations et relation d’ordre dans I’ensemble des réels
Dans l’enfance on apprend a additionner, multiplier et comparer les entiers. Ceci s’étend aux
nombres réels (résultat admis, fastidieux & démontrer).

Proposition 1.6. On peut définir sur R une addition + et une multiplication - (ou X ) qui prolongent
Uaddition et la multiplication de N et ont les propriétés suivantes :

1. commutativité : pour tous a, b dans R on a
a+b=b+a e a-b=0b-a,
2. associativité : pour tous a, b, ¢ dans R on a
a+(b+c)=(a+b)+c et a-(b-c)=(a-d)-c,

3. distributivité : pour tous a, b, ¢ dans R on a

(a+b)-c=a-c+b-c,
4. éléments neutres : pour tout a € R on a

a+0=a et a-1=a,
5. élément absorbant : pour touta € R on a

a-0=0.

Proposition 1.7. On peut définir sur R une relation d’ordre < qui prolonge la relation d’ordre sur
N et qui vérifie les propriétés suivantes :

1. réflexivité : pour tout a dans R on a

2. antisymeétrie : pour tous a, b dans R,

st a<b et b<a, alors a=0b,
3. transitivité : pour tous a, b, ¢ dans R,

st a<b et b<c alors a<ec,
4. ordre total : pour tous a,b dans R,

a<b ou b<a,
5. compatibilité avec ’addition : pour tous a, b, ¢ dans R,
st a<b alors a+c<b+ec,
6. compatibilité avec la multiplication : pour tous a, b, ¢ dans R,
st a<b et ¢c>=0, alors a-c<b-c.

Remarque 1.8. En mathématiques le « ou » est inclusif : « A ou B » signifie soit A, soit B, soit les
deuz.

a < b se lit « @ inférieur ou égal a b ». On écrit de plus, pour a, b dans R
— a > b (qui se lit « a supérieur ou égal a b ») si b < a,
— a < b (qui se lit « a strictement inférieur & b ») si a < b et a # b,
— a > b (qui se lit « a strictement supérieur a b ») si b < a.
On remarque que le contraire de a < b est a > b.
Remarque 1.9.
1. On ne peut pas soustraire des inégalités : on a 2 < 3 et 1 < 4 mais 2 —1 =1 n’est pas inférieur
ou égal 63 —4=—-1/
2. La multiplication par un réel négatif change le sens de l’inégalité : si a, b, ¢ sont des réels,

st a<b et ¢<0, alors a-c=b-c.
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1.3 Valeur absolue

Définition 1.10. Pour tout x € R, on définit la valeur absolue de x, notée |z|, de la maniére
sutvante :
xr st x>0
ol = —x si <0

Proposition 1.11. La valeur absolue vérifie les propriétés suivantes :

1. pour tout a dans R on a

la| = | — a| = Va? = max(—a,a),

2. pour tout a dans R on a
la] =0 si et seulement si a =0,

8. pour tous a, b dans R on a
|a- b = laf - [b],

4. inégalité triangulaire : pour tous a, b dans R on a
la+b| < lal + [b],

5. inégalité triangulaire inverse : pour tous a, b dans R on a
la —b| > [|a] — [b]].

Démonstration. Les trois premiers points sont des conséquences directes de la définition de la valeur
absolue.

Démontrons le point 4. Considérons deux réels a et b. D’aprés 1) on a |a + b| = max(a + b, —a — b).
Mais comme a < max(—a,a) = |a| et b < |b] on a a + b < |a| + |[b]. De méme, comme —a < |a| et
—b < |blona—a—>b< |a|l+ |b|. Ainsi

la 4+ b] = max(a + b, —a — b) < |a| + |b].

Finalement démontrons le point 5). Considérons a nouveaux deux réels a et b. D’une part d’aprés 4)
onala| = la—b+b| < |a—b|+1b| et donc |[a—b| > |a|—|b|. D’autre part on a |b| = |b—a+a| < |b—a|+]|a]
et donc |a — b| > |b| — |a| = —(|a| — |b]). On en déduit bien

la = b = max(|a| = [b], =(|a| — [b])) = [la] — [b]].

1.4 Intervalles de R

Intuitivement, un intervalle de R est une partie de R « sans trou ».

Définition 1.12 (Intervalles de R). Soit I un sous-ensemble de R. On dit que I est un intervalle de
R si, pour tous x, y éléments de I, tout réel z vérifiant x < z < y est également un élément de I.

Proposition 1.13. Les intervalles I de R ont l'une des formes suivantes :
1. R

(), Pensemble vide, qui ne contient aucun élément,

)

{a}, un singleton, avec a € R,

[a,b] = {z € R: a < z < b}, un segment , avec a, b réels vérifiant a < b,

[a,b={z e R:a<z<b}, Ja,b)j={z€R: a<z<b} oula,bj={reR: a<x<b}, avec
a, b réels vérifiant a < b,

6. [a,foo[={z € R: z > a}, Ja,+oo[={r € R: z > a}, | —o0,al == {z € R: x < a} ou
| —o0,al={z €R: z < a}, avec a réel.

G o e

Remarque 1.14. Dans les points 4., 5. et 6. de la proposition précédente les réels a et b sont appelés
les bords de l’intervalle.
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1.5 Majorant, minorant, borne inférieure, borne supérieure

Définition 1.15. Soit A une partie de R et a un élément de A.

1. On dit que a est le plus grand élément de A (ou maximum de A) si et seulement si tout
be A vérifieb < a,

2. On dit que a est le plus petit élément de A (ou minimum de A) si et seulement si tout
b € A vérifie b > a.

S’il existe, le plus grand élément de A est unique, on le note max(A). De méme, s’il existe, le plus petit
élément de A est unique, on le note min(A) .
Exemples 1.16.

1. Une partie finie A de R (c¢’est-a-dire un sous-ensemble de R formé d’un nombre fini d’éléments)
a toujours un plus grand élément.

2. 1 est le plus grand élément de [0, 1].
3. N et [0,1] n’admettent pas de plus grand élément.

Définition 1.17. Soit A une partie de R et m un réel.
1. On dit que m est un majorant de A si tout élément a de A vérifie m > a.
2. On dit que m est un minorant de A si tout élément a de A vérifie m < a
Exemples 1.18.
1. 1 et 4 sont des magjorants de [0,1] et [0,1],

2. N n’a pas de majorant.

Définition 1.19. On dit qu’une partie A de R est
1. majorée si elle admet un majorant,
2. minorée st elle admet un minorant,

3. bornée si elle admet un majorant et un minorant.
Exemples 1.20.
1. [0,1] et [0, 1] sont bornés,

2. [0, 4o00[ est minoré mais n'est pas borné.
On admet le théoréme suivant.

Théoréme 1.21 (Théoréme de la borne supérieure). Toute partie A de R non-vide et majorée admet
un plus petit majorant, appelé la borne supérieure de A et noté sup(A).

Exemple 1.22. On a sup([0, 1]) = sup([0,1]) = 1.

Remarque 1.23. Ce théoréme n’est pas vrai dans Q : l'ensemble {x € Q : z < \@} est majoré mais
n‘admet pas de plus petit majorant dans Q.

De méme, si A est une partie de R non vide et minorée, alors elle admet un plus grand minorant,
appelée borne inférieure de A et noté inf(A).

Par convention, si A n’est pas majorée on note sup(A) = 400 et si A n’est pas minorée on note
inf(A) = —o0.

La proposition suivante permet de caractériser la borne supérieure dans R.

Proposition 1.24 (Caractérisation de la borne supérieure). Soit A une partie non vide et majorée
de R et M un majorant de A. Alors M = sup(A) si et seulement si pour tout € > 0 l’ensemble
ANIM — e, M| est non vide.

1. Pour deux ensembles A et B, AN B est I’ensemble formé des éléments qui sont & la fois dans A et B.
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Démonstration. Supposons tout d’abord que M = sup(A) et considérons € > 0. Alors, comme M —e <
M, M — ¢ n’est pas un majorant de A, puisque M est le plus petit des majorants. Il existe donc un
élément a de A tel que a > M —e. Puisque M est un majorant on a a < M, et donc a €|M —e, M]N A.
L’ensemble |M — e, M] N A est donc non vide.

Supposons maintenant que pour tout € > 0 'ensemble AN]M —e&, M| est non vide. On veut montrer
que sim < M alors m n’est pas un majorant de A, puisque dans ce cas M est bien le plus petit majorant
de A. Fixons m < M et posons € = M —m > 0. Par hypothése 'ensemble AN|M — e, M| = AN|m, M]
est non vide, et il existe donc un élément a de A qui vérifie m < a. m n’est donc pas un majorant de
A. O



Chapitre 2

Fonctions réelles

2.1 Fonctions et graphes

Définition 2.1. Une application f d’un ensemble de départ E dans un espace d’arrivée F est un
procédé qui associe & chaque élément x de E un unique élément f(x) de F. Une telle application est

notée
f+ FE - F

z = flx)
On appelle parfois E le domaine de f et F' le codomaine de f.

Définition 2.2. On appelle fonction réelle d’une variable réelle toute application f ayant pour
ensemble de départ une partie A de R, et ensemble d’arrivée une partie B de R :

f: A - B
z = flx)

On appelle 'ensemble A le domaine de définition de f.

Remarque 2.3. Pour simplifier, dans la suite de ce cours, on parlera simplement de fonction pour
désigner une fonction réelle d’une variable réelle (les fonctions de plusieurs variables réelles seront par
exemple abordées dans des cours ultérieurs).

Exemples 2.4. On peut considérer les fonctions suivantes :

|-]: R - R

fi R , {:U st =0
T Tz .

- R fo: R* —
— oz’ T

8~ =g

—x st x<0

Définition 2.5. Si E et F sont deux ensembles, on note EE x F le produit cartésien de E et F,
défini par
ExF={(z,y): z€ E,y€ F}.

Remarque 2.6. Pour un ensemble E on écrit E? plutét que E x E.

Définition 2.7. Si f : E — I est une fonction on appelle graphe de f [’ensemble

Gr(f)={(z, f(x)): x € E} C E x F.

Remarque 2.8.

1. Le graphe d’une fonction réelle est une partie de R?, on peut le représenter par un dessin (voir
la figure 2.1).

2. Une partie de A de R? est le graphe d’une fonction f : R — R si et seulement si toute droite
verticale intersecte A en un unique point.
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FIGURE 2.1 — Exemple de tracé du graphe d’une fonction réelle.

2.2 Fonctions injectives, surjectives, bijectives

2.2.1 Image, antécédent.

Définition 2.9. Soit f : E — F une fonction. Si x € E ety € F vérifient y = f(x), on dit que y est
Pimage de x par f, et que x est un antécédent de y par f.

Remarque 2.10. Si f : E — F, alors chaque © € E admet une et une seule image par f, alors que
y € F peut avoir un, plusieurs ou aucun antécédent par f.

Exemple 2.11. Si f: R — R est définie par f(z) = 22 pour tout x € R, —1 a pour image 1, 2 a pour
antécédents —/2 et \/2, alors que —3 n’a pas d’antécédent par f.

2.2.2 Surjectivité.

Définition 2.12. Une fonction f : E — F est dite surjective (ou une surjection) si tout élément de
F admet au moins un antécédent, autrement dit! :

f surjective < (Vy € F,3dx € E tel quey = f(x))

—104

(a) La fonction f : R — R définie pour tout (b) La fonction f: R — R définie pour tout
r € R par f(z) = 2% — 5x est surjective. r € R par f(z) = 22 n’est pas surjective.

FIGURE 2.2 — Exemples de fonctions surjective/non surjective.

Remarque 2.13. Lorsque f : R — R, f est surjective si et seulement si toute droite horizontale
intersecte Gr(f).

1. Le symbole V signifie se lit « pour tout », le symbole 3 se lit « il existe ».
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2.2.3 Injectivité.

Définition 2.14. Une fonction f: E — F est dite injective (ou une injection) si tout élément de F
admet au plus un antécédent, autrement dit? :

[ injective & (V:U,:L" EE, flx)=f(@)= 2= :L").

Remarque 2.15. De maniére équivalente, puisque P = Q équivaut a (nonQ) = (nonP) (voir le
cours d’algébre 1), on a

[ injective & (Vm,x’ EE, x#2 = f(x) # f(a:’))

— f(@) = expl)

(a) La fonction f : R — R définie pour tout (b) La fonction f : R — R définie pour tout
x € R par f(x) = exp(x) est injective. x € R par f(z) = 2% n’est pas injective.

FIGURE 2.3 — Exemples de fonctions injective/non injective.

Remarque 2.16. Lorsque f : R — R, f est injective si et seulement si toute droite horizontale
intersecte Gr(f) au plus une fois.
2.2.4 Bijectivité.

Définition 2.17. Une fonction f: E — F est dite bijective (ou une bijection) si tout élément de F
admet un unique antécédent, autrement dit® :

f bijective < (Vy € F,dlx € E tel quey = f(x))

Remarque 2.18. Lorsque f : R — R, f est bijective si et seulement si toute droite horizontale
intersecte Gr(f) une et une seule fois.

Définition 2.19. Supposons la fonction f : E — F bijective. En associant a tout élément y € F
son unique antécédent par f on définit une fonction de F dans E. Cette fonction est appelée fonction
réciproque de la fonction f, et est notée f~1. Elle est caractérisée par la relation suivante :

Ve E,VyeF,y=f(z)ez=[f"(y)

Remarque 2.20. Si f : E — F est bijective de bijection réciproque f=', alors f~' : F — E est
elle-méme bijective de bijection réciproque (f~1)~1 = f. On a de plus les formules

Vo e B,y e F, fTH(f(x)) =x et f(f7'(y)) =v.

2. Le symbole = est le symbole de I'implication : P = @ signifie « si P est vraie, alors @) est vraie ».
3. Le symbole 3! se lit « il existe un unique ».
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T T T T
0.5 1.0 15 2.0

— flx) =2? 200{ — flx)=Vx

0 T T T T T T T T 0.00 T T T T
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 0 1 2 3 4

FIGURE 2.5 — La fonction f: R, — R, définie pour tout = € Ry par f(z) = 22 a pour fonction
réciproque f~!: R, — R, définie pour tout € Ry par f~1(z) = \/z.

2.3 Image directe, image réciproque.

Définition 2.21. Si f : E — F est une fonction et A est une partie de F, I'image directe de A par
f, notée f(A), est la partie de F définie par

flA) ={f(z): z € A}
En particulier, pour A = E, on appelle image de f l’ensemble Im(f) = f(FE).
Exemple 2.22. Si f : R — R est définie pour tout x € R par f(z) = %, alors £([0,1]) = [0,1],

Définition 2.23. Si f : E — F est une fonction et B est une partie de F', ’image réciproque de
B par f, notée f~1(B), est la partie de B définie par

fY(B)={z € E: f(z) € B}.

Remarque 2.24.
1. Attention, cette définition ne suppose pas que f soit bijective !

2. Si f est bijective, f~Y(B) est l’image directe de B par f~1.

Exemples 2.25. Si f : R — R est définie pour tout x € R par f(x) = 22, alors f~1([0,1]) = [-1,1],
FH-2,4) =[-2,2].
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FIGURE 2.6 — Image directe d’une partie A de R par une fonction réelle.

— Gr(f)

= fN(B)

FIGURE 2.7 — Image réciproque d’une partie B de R par une fonction réelle.

2.4 Opérations sur les fonctions.

2.4.1 Somme, produit, quotient.

Soient f: I — Ret g: I — R deux fonctions ayant le méme ensemble de départ. On définit

1. leur somme :

f+g: I — R
z o f@)+g(@)
2. leur produit :
f-g: 1 R

_>
o= fl)-glx)’

3. et, si g ne s’annule pas sur I, leur quotient :

L7
g
T

—
—

—~

(z) -
x)

Q
—~
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2.4.2 Composition.

Définition 2.26. Si E, F, G sont des parties deR et f: E — F et g : F — G des fonctions, on définit
la composition de f et g, notée g o f, part

gof: E — G
z = g(f(z) "

Exemple 2.27. Si f : R = R et g : R — R sont définies pour tout € R par f(x) = sin(x) et
glx)=x+2, alorsgof:R—>R et fog:R— R, avec pour tout v € R :

go f(z)=sin(x)+2 et fog(x)=sin(z+2).

Remarque 2.28.

1. Pour pouvoir définir g o f il faut que l’ensemble d’arrivée de f soit inclus dans l’ensemble de
départ de g.

2. Si f: E — F est une bijection, de bijection réciproque =1, alors flof =idg et fof~' =idp,
ol si A est une partie de R idg : A — A est la fonction identité de ’ensemble A, définie pour
tout x € A parida(z) = x.

2.5 Propriétés des fonctions et de leur graphe.

2.5.1 Fonction majorée, minorée, bornée.

Définition 2.29. Soit f : E — R une fonction.

1. On dit que f est majorée si f(E) est majoré, c’est-a-dire

fmajorée < IMeRVxeFE, f(x) <M.
2. On dit que f est minorée si f(FE) est minoré, c’est-a-dire

fminorée < ImeRVxe€E, f(x)=m.
8. On dit que f est bornée si elle est majorée et minorée, c’est-a-dire

fbornée < ImeR,IMeR,Vze E,m< flz) <M.

Remarque 2.30. Une fonction f : E — R est majorée si et seulement si son graphe se situe au-
dessous d’une droite horizontale, et est minorée si et seulement si son graphe si situe au-dessus d’une
droite horizontale.

2.5.2 Monotonie.
Définition 2.31. Soit I un intervalle de R et f: I — R une fonction.

1. On dit que f est croissante sur I si
Veel,Vyel, z<y= f(z) < f(y)
2. On dit que f est décroissante sur I si
Veel,Vyel, z<y= f(z) = f(y).
3. On dit que f est strictement croissante sur I si

Veel,Vyel,x<y= f(zx) < f(y).

4. go f selit « g rond f»
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4. On dit que f est strictement décroissante sur I si
Veel,Vyel, z<y= f(z)> f(y).

5. On dit que f est monotone sur I si elle est croissante sur I ou décroissante sur I.

6. On dit que f est strictement monotone sur I si elle est strictement croissante sur I ou
strictement décroissante sur I.

Remarque 2.32. 57 f: I — R est une fonction, on a les équivalences suivantes :

1. f est croissante si et seulement si toute droite passant par deux point de Gr(f) est de pente
positive.

2. f est décroissante si et seulement si toute droite passant par deux point de Gr(f) est de pente
négative.

3. f est strictement croissante si et seulement si toute droite passant par deux point de Gr(f) est
de pente strictement positive.

4. [ est strictement décroissante si et seulement si toute droite passant par deux point de Gr(f)
est de pente strictement négative.

2.5.3 Parité et périodicité.
Proposition 2.33. Soit f : R — R une fonction.

1. Si Uon définit la fonction f1: R — R pour tout x € R par fi(x) = —f(x), alors le graphe de fi
est obtenu a partir de celui de f par symétrie aziale par rapport a l'axe horizontale (Ozx).

2. St Uon définit la fonction fa : R — R pour tout x € R par fao(x) = f(—=x), alors le graphe de fo
est obtenu a partir de celui de f par symétrie aziale par rapport a l'aze verticale (Oy).
3. Si lon définit la fonction f3: R — R pour tout x € R par fs(x) = —f(—=x), alors le graphe de

f3 est obtenu a partir de celui de f par symétrie centrale par rapport a l'origine O.

Définition 2.34. Soit I un intervalle de R symétrique par rapport a O (c’est-a-dire tel que © € I si
et seulement si —x € I), et f: I — R une fonction.
1. On dit que f est paire si pour tout x € I on a f(—x) = f(x).

2. On dit que f est impaire si pour tout x € I on a f(—x) = —f(x).
Corollaire 2.35. Si I un intervalle de R symétrique par rapport a O et f : I — R est une fonction,
alors

1. f est paire si et seulement si le graphe de f est symétrique par rapport & l'axe verticale (Oy),

2. f est impaire si et seulement si le graphe de f est symétrique par rapport a Uorigine O.
Définition 2.36. Soit f : R — R une fonction et T un réel strictement positif. On dit que f est

périodique de période T si
Ve eR, f(x+T) = f(x).

Proposition 2.37. Soit f : R — R une fonction et T un réel strictement positif. f est pemodzque de
période T si et seulement si le graphe de f est invariant par translation de vecteur T7, ou i est un
vecteur unitaire engendrant ’axe horizontale (Ox).

2.6 Limite en un point, continuité, dérivabilité.

Les notions de limite et continuité de fonctions seront abordées plus en détails dans le chapitre 5,
celle de dérivabilité sera abordée plus en détails dans le cours d’Analyse 2.
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2.6.1 Limite en un point.

Définition 2.38. Soient I un intervalle de R ou une union d’intervalles de R®, f : I — R une
fonction, xg € R un élément de I ou d’un bord de I et £ € R. On dit que f admet une limite £ au point
xo, et on note lim f(x) =4, si

T—T0

Ve>0,30>0,Ve el, |z—xo|<d=|f(x)—¢ <e.

Exemple 2.39. Si f : R — R est définie pour tout x € R par f(z) =1+ 22, lin%f(x) =1.
T—

2.6.2 Continuité.
Définition 2.40. Soit I un intervalle de R, f: I — R une fonction et zg € I.

1. Pour xg € I, on dit que f est continue en xg si l'i)m f(x) = f(zo).
T—x0
2. On dit que f est continue sur I si elle est continue en tout point de I.

Exemple 2.41. Si f : R — R est définie pour tout x € R par f(z) = 22, f est continue sur R.

2.6.3 Dérivabilité.

Définition 2.42. Soient I in intervalle de R, f : I — R une fonction et xg € I. On dit que f est

dérivable au point xg si la fonction taur d’accroissement x +— %:j;gwo) définie sur I\ {zo} admet

une limite au point xg. Cette limite est appelée dérivée de f au point xg et est notée f'(xg).

Remarque 2.43. Si une fonction f est dérivable en xg, alors f'(x) est la pente de la droite tangente
a Gr(f) au point (xg, f(xo))-

Les résultats suivants seront démontrés dans le cours d’Analyse 2.
Proposition 2.44. Soient I un intervalle de R et f : I — R une fonction dérivable en tout point de
1.

1. f est croissante sur I si et seulement si f'(x) = 0 pour tout x € I.

2. [ est décroissante sur I si et seulement si f'(x) < 0 pour tout x € 1.

3. Si f'(x) > 0 pour tout x € I, alors f est strictement croissante sur I.

4. St f'(x) <0 pour tout x € I, alors f est strictement décroissante sur I.
Proposition 2.45. Soient I est un intervalle de R et f: I — R et g: I — R deux fonctions dérivables
enz €.

1. f+ g est dérivable en = et

(f +9)(x) = f'(z) + g'(2).
2. fg est dérivable en x et
(f9)'(z) = f(x)g(z) + f(z)g'(z).

8. Si g ne s’annule pas en x, 5 est dérivable en x et

(f)' (2) f'(x)g(z) = f(2)g'(x)
g

Proposition 2.46. Soient I, J des intervalles de R, f: 1 — J, g: J — R des fonctions et x € I tel
que f est dérivable en x et g est dérivable en f(x). Alors go f est dérivable en x et

(9o f)(x) = f'(x)g (f(2)).

5. Pour deux ensembles A et B, I'union de A et B, notée AU B, est I’ensemble des éléments qui sont dans A ou dans
B.



Chapitre 3

Fonctions usuelles

3.1 Fonctions polynomiales

Soient n € N et ag, ..., a, des réels avec a,, # 0. La fonction

f: R — R
T — ap+ a1z + a4 ...+ apa”

est une fonction polynomiale de degré n. Cette fonction est dérivable sur R, de dérivée satisfaisant,

pour tout z € R,
f(z) = a1 + 2a2z + 3asx? ...+ napa™ L.

Cas particuliers :

1. lorsque n = 0 on obtient les fonctions constantes (pour a € R) :

f: R - R
r = a

Le graphe de f défini ainsi est une droite horizontale.

2. lorsque n = 1 on obtient les fonction affines (pour a,b € R avec a # 0) :

f: R — R
r — ar+b’

Le graphe de f défini ainsi est une droite, et f est strictement croissante sur R si et seulement
sia>0.

3. lorsque n = 2 on obtient les fonctions trindéme (pour a,b,c € R) :

f: R — R
xr — ar’+br+c’

Le graphe de f défini ainsi est une parabole.

3.2 Fonction partie entiére
Pour tout x € R il existe un unique entier, noté E(x) et appelé partie entiére de z, vérifiant
E(z) <z <E(z)+1.

E(x) est le plus grand entier inférieur ou égal & z, E(x) 41 est le plus petit entier strictement supérieur
ax.

Exemples 3.1. On a E(1) =1, E(7) =3, E(—7) = —4.

17
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On définit la fonction partie entiére comme suit :

E: R - R
x — E(z)’

E est croissante sur R mais pas strictement, est discontinue en tout point de Z, et dérivable de dérivée
nulle sur R\ Z.

Remarque 3.2. La fonction

est périodique de période 1 sur R.

2.0 4

0.5

T T T T T T T T
-1.0 —0.5 010 0.5 1.0 15 2.0 2.5 3.0

FIGURE 3.1 — Graphe de la fonction partie entiére.

3.3 Fonctions trigonométriques

tan(p) = 220

FIGURE 3.2 — Définition géométrique des fonction cos, sin et tan & I’aide d’un cercle de rayon 1.
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Proposition 3.3. Les fonctions cos, sin et tan ont les propriétés suivantes.

cos sin tan
Domaine de définition : R R R\{(2k+1)3: ke Z}
Parité : paire | impaire mpaire
Période : 27 27 T
P . . 2 1
Dérivée : sin — oS 1+ tan® = —

1.00

— f(z) = sin(x)

i

— f(z) = cos(z) [

0.50

0.25

10.0 4

FIGURE 3.3 — Graphes des fonctions cos, sin et tan.

Les formules suivantes (et d’autres) sont démontrées dans le cours d’Algebre 1.

Proposition 3.4. Pour tout x € R on a

cos’z +sin’x =1,

cos(—x) = cos, sin(—z) = —sinz,
cos(m —x) = —cosx, sin(m —x) =sinz,
cos(m+x) = —cosx, sin(m+x)=—sinz,
cos (g —x) = sin zx, sin (g —x) = cos T,
cos (g—kx) = —sinx, sin (%—Fx) = Cosx

Proposition 3.5. Pour tous a,b € R on a
cos(a +b) = cosacosb —sinasinb,
sin(a + b) = sina cosb + sin b cos a.

En particulier, pour a =b on a

cos(2a) = cos’a — sina = 2cos’a — 1 = 1 — 2sin%q,

sin(2a) = 2 cosasina.
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Remarque 3.6. Les fonctions cos et sin prennent les valeurs remarquables suivantes.

0 19161 %3 3
V3 | V2| 1
COS(H) 1 5 5 5 0
; L[ V2 | V3
Sln(@) 0 5 5 5 1
tan(f) || 0 @ 1 | V3 | N on défini
On remarque que pour la fonction cos on pourrait écrire dans [’ordre @, @, @, g, @.
3.4 Fonctions trigonométriques réciproques
On remarque que les fonctions suivantes sont bijectives :
i T T
sin : [—5,5} — [-1,1], cos : [0, 7] — [—1,1], tan :}—5,5[%R.
On peut définir leur bijection réciproque.
Définition 3.7. 1. On appelle arc-sinus et on note arcsin : [—1,1] — [—g, g] la fonction réci-

proque de la restriction de la fonction sinus a [—%, %] On a alors les égalités suivantes :

T T

arcsin(sinz) =z Vx € [—5, 5} et sin(arcsiny) =y Vy e [-1,1].

2. On appelle arc-cosinus et on note arccos : [—1,1] — [0, 7] la fonction réciproque de la restric-
tion de la fonction cosinus a [0,7]. On a alors les égalités suivantes :

arccos(cosx) =x Vz €[0,m] et cos(arccosy) =y Vye[-1,1].
3. On appelle arc-tangente et on note arctan : R — ]—g, g[ la fonction réciproque de la restric-
tion de la fonction tangente a ]—%, 5 [ On a alors les égalités suivantes :

m™ T

arctan(tanx) = Vo € ]—5, 5[ et tan(arctany) =y VyeR.

Remarque 3.8. Attention, les égalités arccos(cosz) = x, arcsin(sinz) = x et arctan(tanz) = x ne
sont pas vraies pour tout x € R. Par exemple arccos(cos(3m)) = arccos(—1) = 7.

Proposition 3.9.
1. La fonction arcsin est dérivable sur | — 1,1[ et satisfait, pour tout x €] — 1, 1],
1

V1—22

2. La fonction arccos est dérivable sur] — 1, 1] et satisfait, pour tout x €] — 1,1],

arcsin’(z) =

1
V1—22

8. La fonction arctan est dérivable sur R et satisfait, pour tout x € R,

arccos’ () = —

1

arctan’(z) = T2
x
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301 — f(2) = arc.cos(x) — f(x) = arcsin(z) *]

== f(@) = cos(a) —- f@=sin@) | .

- o

T T T T T T T T
-2.0 -1.5 -1.0 —0.5 0j0 0.5 1.0 15 2.0

84
— [f(z) = arctan(z)

-== [f(x) = tan(z)

o

T
10.0

S
|
S

T T T T 6
10.0 75 5.0 2.5 _#0)

FIGURE 3.4 — Graphes des fonctions arccos, arcsin et arctan.

Démonstration. On admet que ces fonctions sont dérivables (elles sont dérivables car fonctions réci-
proques de fonctions dérivables de dérivée ne changeant pas de signe, ce résultat sera démontré dans

le cours d’Analyse 2).
Calculons la dérivée de arcsin. Pour z €] — 1, 1] on a 'identité

sin(arcsin x) = x.

En dérivant on obtient
arcsin’(x) cos(arcsinz) = 1.

On a de plus cos?(arcsin z) + sin?(arcsin x) = 1 et comme arcsinx € ]—g, g[ on a cos(arcsinz) > 0 et

donc
cos(arcsinx) = \/1 — sin?(arcsinz) = /1 — 22,

ce qui donne le résultat.
Le calcul de la dérivée de arccos est similaire. Calculons maintenant la dérivée de arctan. Pour

x € R on a l'identité
tan(arctan x) = z.

En dérivant, on obtient
arctan’(z)(1 + tan®(arctanz)) = 1,

et comme tan?(arctanz) = 22 et 1 4+ 22 > 0 on en déduit bien

1
1+ 22

arctan’(x) =
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3.5 Fonctions exponentielle et logarithme

On admet le théoréme suivant.

Théoréme 3.10. Il existe une unique fonction f : R —]0,00[ dérivable sur R vérifiant f(0) = 1 et
pour tout r € R

f'(z) = f(=).

Cette fonction est appelée fonction exponentielle et est notée

exp: R — ]0,00]
x — exp(z)’

Remarque 3.11. On note souvent €* au lieu de exp(x).

Proposition 3.12. Pour tous z,y € R et n € N on a

1.
exp(z +y) = exp(z) exp(y),
2, (@)
oy &xp@
exp(z — y) xp(7)’
3.

n

exp(n) = (exp(a))"

Proposition 3.13. On a les limites suivantes :

mll)r_noo exp(z) = 0, xEI-Poo exp(x) = +o0.

Remarque 3.14. Comme on le verra dans le chapitre 5, lim,_, o f(x) = +o00 signifie
VM eR,FJAeRVzeR,z > A= f(x) > M,

alors que lim,_,_ f(x) = £ signifie
Ve>0,3A e R, Vz e Rz < A= |f(z) —{ <e.

Proposition 3.15. La fonction exponentielle est strictement croissante sur R, c’est une bijection de
R dans ]0, oof.

On peut donc définir la bijection réciproque de la fonction exponentielle.

Définition 3.16. On définit la fonction logarithme népérien et on note In :)0, co[— R la bijection
réciproque de la fonction exponentielle. On a donc les égalités suivantes :

In(exp(z)) =z VreR et exp(ln(y) =y Vy€]0,o0l.

Proposition 3.17. Pour tous z,y €]0,00[ et n € N on a

1.

In(zy) = In(x) + In(y),
2.

In <gyg> = In(z) — In(y),
3.

In(z") = nln(z).
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FIGURE 3.5 — Graphes des fonctions exp et In.

Proposition 3.18. On a les limites suivantes :

limIn(z) = —0c0 et lim In(z) = +oco.
z—0 T—4-00
x>0
Remarque 3.19. Si I est un intervalle, f: I — R une fonction et xo un bord de I, lim f(z) = —oo
T—T0
x>x(Q

signifie

VM eR,I6 >0,V el, xo<z<zo+06= f(x)<M.

Proposition 3.20. La fonction In est dérivable et strictement croissante sur ]0,+oo[, avec pour tout
x €0, 400]
1
In'(z) = —.
() = -
Démonstration. Comme pour les fonction trigonométriques réciproques on admet que In est dérivable.

Calculons sa dérivée. Pour tout = €]0,+00] on a exp(Iln(z)) = =, et donc en dérivant on obtient
In’(x) exp(In(x)) = 1,

ce qui implique le résultat puisque exp(In(z)) = > 0.

3.6 Fonctions hyperboliques

Définition 3.21. On définit sur R les fonctions cosinus hyperbolique (notée cosh), sinus hyper-
bolique (notée sinh) et tangent hyperbolique (notée tanh) comme suit : pour tout x € R

cosh(z) = @ sinh(z) = % tan(z) = EEZE((?) _ :z J‘r Z:z
Proposition 3.22. Les fonctions cosh, sinh et tanh ont les propriétés suivantes.
cosh sinh tanh
Domaine de définition : R R R
Parité : paire | impaire impaire
Dérivée : sinh cosh 1 — tanh?
Limite en +o00 : 400 400 1
Limite en —oo : 400 —0 -1




CHAPITRE 3. FONCTIONS USUELLES 24

FIGURE 3.6 — Graphes des fonctions cosh, sinh et tanh.

Proposition 3.23. Pour tous z,y € R on a

cosh?(x) — sinh?(z) = 1,

cosh(z) + sinh(x) = e* et cosh(z) —sinh(z) = e %,

cosh(z + y) = cosh(z) cosh(y) + sinh(x) sinh(y),

sinh(z + y) = cosh(z) sinh(y) + sinh(z) cosh(y),

cosh(2z) = cosh?(z) 4 sinh?(z) = 1 4 2sinh?(z) = 2 cosh?(z) — 1,
sinh(2x) = 2 cosh(x) sinh(x).

Démonstration. Pour la premiére égalité il suffit de voir que pour z,y € R on a

2x —2x 2eTe—T 2x —2x — 2eTe™®
coshQ(ac)—sinhz(:c):e te 4+ S 1 °° -1

La deuxiéme ligne est obtenue par un calcul immédiat. Pour la troisiéme on a pour z,y € R

R e I

cosh(z) cosh(y) = 1 ,
Tty _ L, x—Y _ ,—TtyY —r—y
sinh(z) sinh(y) = ¢ ¢ 46 re ,

et donc
e$+y _|_ e_(a:"’y)

cosh(z) cosh(y) + sinh(z) sinh(y) = = cosh(z).

2
Le reste est obtenu & 1’aide de calculs similaires.
O
3.7 Fonctions puissance
Définition 3.24.
1. Pour a € N on définit
*=zg-x-...-x VreR,
- —-

a fois

avec la convention x° = 1. La fonction x — x® est polynomiale, elle est paire si a est pair,
impaire St a est impaair.
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2. Pour a € Z\ N on définit

1
x

3. St a=1/n avec n € N*, % est la racine n-ieme de x (l'unique y tel que y" = x). Sin est pair
elle est définie pour tout x > 0, si n est impair elle est définie pour tout x € R.

4. Sia €R on définit
z% = exp(aln(z)) Vo eR].

Remarque 3.25. La définition du point 4. généralise les définitions des points précédents lorsque
r € RY. En effet on a par exemple, pour x € RY et a €N,

exp(aln(z)) = (exp(ln(z))* =z -z -... .

Proposition 3.26. Les propriétés suivantes sont vraies dans tous les cas, pour x,y,a,b, € R tels que

x®, 2, 2% et y@ existent (et x # 0 pour le denier point) :

(1)a — 1’ 7% . CEb — :L,a—l—b’ (:Ca)b — xab7 (J:y)a — :ana, =

Proposition 3.27. Pour tout a € R, la fonction x +— z% est dérivable sur R’ , de dérivée x ax® 1.

Remarque 3.28. Il faut faire attention a ne pas confondre les fonctions puissances définies sur |0, o[
par f(x) = z* = exp(aln(z)) avec a € R, et les fonctions g, variantes de la fonction exponentielle,
définies sur R par g(z) = b* = exp(In(b)x), pour b > 0.

3.8 Croissance comparée

La résultat suivant sera démontré dans le cadre des suites dans le chapitre 4.

Théoréme 3.29. Pour tous a,b,c € R* |

lim exp(;m:) = +00,
Tr—+00 X
lim exp(az) _ 400,
o= (In(2))"
et
b
lim = +00



Chapitre 4

Suites réelles

4.1 Définitions

Définition 4.1. On appelle suite réelle une application de N dans R. On note (up)nen la fonction qui
associe a tout n € N le réel u,,.

Exemple 4.2. On définit la suite (un)nen par
YneN, wu,=2n+1.

Définition 4.3. Pour deux suites (tun)nen €t (Vn)nen et un réel X on peut définir
1. la somme (uy, + Uy )nen,
2. le produit (unvp,)nen,

3. la multiplication par un réel (Auy,)pen-

Remarque 4.4. On peut ne pas définir une suite sur N mais sur N*, ou sur ’ensemble des entiers
supérieurs ou égauz G 2... On note alors (Un)n > 1, (Un)n > 2...

Définition 4.5. On dit qu’une suite (up)nen est
1. croissante si
Vn S N, un+1 > u?’L?

2. décroissante si
Vn € Nu Un+1 < Un,

3. monotone si elle est croissante ou décroissante,
4. majorée si
dIM eR,VneN, wu, <M,

5. minorée si
IneR,VneN, wu,>m,

6. bornée si elle est majorée et minorée.

Remarque 4.6. Si une suite (up)nen est croissante et sim = n on a uy, = u,. A Uinverse si elle est
décroissante et St m =N on @ Uy, < Uy,

Définition 4.7. Une propriété P(n) dépendant de n € N est dite vraie & partir d’un certain rang
5%
dN e N,Vn e N, n > N = P(n)est vraie.

Exemple 4.8. On considere la suite (up)n =1 définie par
VnelN, wu,=2"—10n.
On auy=1, uy = —8, ug = —16, donc cette suite n’est pas croissante. Mais pour n € N on a
Upt1 — Up = 22" —10n — 10 — (2" — 10n) = 2" — 10,

et comme 2™ — 10 > 0 deés que n > 4, cette suite est croissante & partir d’un certain rang.

26
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4.2 Suites classiques

Définition 4.9. Une suite (up)nen est dite arithmétique de progression r € R si elle est définie
par la relation de récurrence
Upt1 = Up +7, Vn e N,

Remarque 4.10. Si (up)nen est une suite arithmétique de progression r € R on a, pour tout n € N,

n(n + 1)7“‘

n
Up = ug +nr, et Zuk:(n—}—l)uo—i— 5

k=0

Définition 4.11. Une suite (un)nen est dite géométrique de raison g € R* si elle est définie par
la relation de récurrence
Un+1 = qUp, \V/’I’L € N.

Remarque 4.12. Si (un)nen est une suite géométrique q € R on a, pour tout n € N,

n Lo
= oy . ) (n+Due sig=1
n=q"ug, e upk =9 _
=0 g T Uo  sinon

Définition 4.13. Une suite (up)nen est dite arithmético-géométrique de paramétres g € R* et
r € R si elle est définie par la relation de récurrence

Upt1 = QU + 7, VYn € N.

Remarque 4.14. Soit (uy)nen une suite arithmético-géométrique de parametres g € R* et r € R.
1. Siq=1 (up)nen est une suite arithmétique.
2. Siq# 1, Uéquation d’inconnue a € R
a=gqa+r

a comme unique solution

et on a
Un+l_a:qun+r_(qa+’r)ZQ(UH_Q))

donc la suite (u, — a)pen est une suite géométrique de raison q. Ainsi pour tout n € N
Up =a+u, —a=a+q"(u —a),

et
n n n+1 _ 1

up = (a+ (ur —a)) :(n—i—l)a—i—qi(uo—a).
k=0 k=0

g—1
Remarque 4.15. Les suites classiques présentées dans cette section sont des erxemples simples de
suites dites récurrentes d’ordre 1, un,41 €tant défini comme une fonction de uy,. Les suites récurrentes
apparaissent naturellement dans le calcul de complexité d’algorithmes définis eux-méme par récurrence,
la complexité d’un algorithme correspondant au nombre d’opérations élémentaires nécessaires G sa mise
en euvre.

Par exzemple, pour calculer n!, on peut calculer (n — 1)!, et le multiplier par n. Mais pour calculer
(n — 1)! on peut calculer (n — 2)! et le multiplier par n — 1, etc... Il s’agit d’un algorithme récursif. Si
l’on note uy, le nombre d’opérations (ici multiplications) nécessaires pour calculer n!, on a simplement
Unt1 = Up + 1 et ug =0, (up)n >1 est une suite arithmétique.

Pour Uexemple classique des tours de Hanoi (voir la page Wikipedia dédiée), la complexité est
arithmético-géométrique, Un+1 = 2uy + 1.
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4.3 Convergence de suite

Définition 4.16. Soit (up)nen une suite et £ € R. On dit que la suite (up)nen tend vers £ (ou a
pour limite £) si
Ve>0,AN eN,YneN, n>N = |u, — ¢ <e.

On note alors up, — £ ou lim wu, = /.
n—-+0o n—-+o00

Remarque 4.17.
1. L’ordre est important dans les quantificateurs, dans la définition précédente N dépend de €.

2. Comme |u, — | < € équivaut a uy, € [{ — e, + €], dire que la suite (u,)nen tend vers £ revient
a dire que pour tout € > 0 lintervalle [( — e,0 + €] contient les termes de (up)nen @ partir d’un
certain rang.

3. Pour une suite (up)nen €t £ € R, (up)nen ne tend pas vers £ si
Je>0,VNeN,IneN, n>=N et|u,—{ >e.

Exemple 4.18. La suite (un)nen définie pour n € N par u, = n%rl tend vers 0. En effet, pour € > 0

on a |u, — 0| <e dés quen > % — 1, on peut donc prendre N = E (%)

_ 1
~ ntl
Définition 4.19.
1. On dit qu’une suite (un)peny converge (ou est convergente) s’il existe £ € R tel que (up)neN
tend vers £. Ainsi une suite (un)nen converge si et seulement si
HeR,Ve>0,INeNVReEN, n>=N=|u,— /¢ <e¢,
ce qui équivaut a

HeR,Ve>0, {neN: |u,—L >e} estde cardinal fini.

2. On dit qu’une suite (up)nen diverge (ou est divergente) si elle n’est pas convergente. Ainsi une
suite (un)nen diverge si et seulement si

VeeR,Fe >0,VN eN,IneN, n>N et|u, — ¥ >e¢,
ce qui équivaut a
VleR,3e >0, {neN: |u,—{ >c} est de cardinal infini.

Exemple 4.20. La suite (un)nen définie pour tout n € N par u,, = (—=1)" diverge. En effet, pour tout
£ >0 on a pour tout k € N

1
gk =l =] =1L =1+L> 7,

donc Uensemble {n € N : |u, — £| > 1/2} est de cardinal infini. De méme, pour £ < 0 on a pour tout

ke N
1

53
et donc 'ensemble {n € N: |u,, — €| > 1/2} est de cardinal infini.

gy — (] = |1 — 1] =1—1>

Théoréme 4.21 (Unicité de la limite). La limite d’une suite (un)nen, si elle existe, est unique. Autr-
ment dit si pour £1,0o € R on a u, —> {1 etu, —> L1, alors 1 = {ls.

n—-+4o0o n—-+4o0o
Démonstration. Soient 1,0 € R et une suite (u,)pen qui tend vers ¢1 et fo. Il suffit de montrer que
pour tout € > 0 on a |¢; — l3| < &, puisque que cela implique bien que 1 = £5.

Soit € > 0. Comme u,, — ¥£7 il existe N7 tel que
n——+oo

VneN, n>=N = |u, — ] <

| ™
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De méme, comme u,, —> {5 il existe No tel que
n—-+o0o

€

VneN, n>Ny= |u, — Ll <§-

Définissions N = max (N1, N2). Comme N > Nj et N > N on en déduit bien, en utilisant I'inégalité
triangulaire, que

|01 — L] = [l1 —un — (f2 — up)|

< |0 —un| + [l2 — un|
<€+€

T2 2

<L e

Théoréme 4.22. Toute suite convergente est bornée.

Démonstration. Soit (up)pen une suite qui converge vers £ € R. On veut montrer que ’ensemble
{Jun| : n € N} est majoré. Puisque (uy)nen converge vers £ il existe N € N tel que pour tout n € N
on a

n>N=|u, -/ <1

Donc, par inégalité triangulaire inversée, pour tout n > N on a
|| = €] < flun| = [€l] < lun — €] <1,

et ainsi, pour tout n > N on a |u,| < |¢] + 1. De plus 'ensemble {|uy,| : n € {0,...,N —1}} est de
cardinal fini et est donc majoré par M = max(|ugl,...,|un—1]). Au final on a bien montré que pour
tout n € Non a

|up| < max(M, |£] +1).

4.4 Opérations sur les limites

Théoréme 4.23. Soient deuz suites (up)nen €t (Un)nen, deux réels 1 et o tels que uy, —+> ly et
n—-+0oo

v, — ¥lo et deux réels a et b. Alors
n—4oo

auy, + bu, n_>—+>oo aly + bls.

Démonstration. Ce résultat est évident si a = b = 0. Supposons maintenant que |a| + [b] > 0 et
considérons € > 0. Comme u,, — /{1 il existe N1 € N tel que pour tout n € N,

n——+oo
€
> N, = -0 < ——.
n = Ivy |Un 1|\ ]a|—|—\b\
De méme, comme v, — {5 il existe No € N tel que pour tout n € N,
n—-+o0o
€
> No = — by < ——.
n = INg |Un 2‘ X ’CL‘ T ‘b‘

Mais alors, en définissant N = max (N, Na), pour tout n > N on obtient, en utilisant I'inégalité
triangulaire,

|awy, + bv, — (aly + bla)| = |a(uy — €1) + b(v, — £2)]
< allup — £a| + [b] vy, — Lo
€ €

< +|b
el TP

N

E.
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Théoréme 4.24. Soient deux suites (up)nen €t (Un)nen et deuz réels €y et by tels que uy, —+> ly et
n—-+0oo

v, — ¥o. Alors
n—-4oo

UpVpy — l145.
n—-+00

Démonstration. Comme la suite (uy)nen converge elle est bornée et il existe donc M > 0 tel que
|un| < M pour tout n € N. De plus comme u,, — ¢ il existe N1 € N tel que pour tout n € N,

n—-+o0o
> Np = | 4] < c
n Uy — _—
= 1 n 1l X |12’+M7
et de méme, comme v, j l9, il existe Ny € N tel que pour tout n € N,
n——+0oo
n = Ny = vy, — la| < c
= 1V2 n 2] X M‘i“lz‘

En définissant N = max (N1, N3), pour tout n > N on obtient

|unvn, — l1la] = |un(vy, — €2) + la(uy, — £1)|
< |unH'Un - 62‘ + MQHun - €1|
€ €

M + |4
M + |4 | 2’J\4+|f2|

N

VAN
™

O

Théoréme 4.25. Soit une suite (up)nen et un réel £ # 0 tel que uy, —+> ? . Alors u, est non nul a
n—-+0o0

partir d’un certain rang et on a de plus
1 1

Uy n—r+oo £

Démonstration. Commengons par montrer que u, est non nul a partir d’'un certain rang. Comme
u, — £ il existe N7 € N tel que pour tout n € N,
n——+oo

14
n>N1:>]un—€|<‘2’.

Mais alors, pour tout n > Ny on a

14
61 un] < 1]~ uall < J0 = ] < 2,

¢ . , R . .
et donc |uy,| > |2—‘ pour tout n > Nj. On a donc bien montré que u, est non nul a partir d’un certain

rang.
Montrons maintenant que ui — %. Considérons € > 0. Comme u,, — £ il existe Ny € N tel
n n—-+00 n—-+0oo
que pour tout n € N,
e

En définissant N = max (N1, N3) on obtient alors, pour tout n > N,

2
1 1'_|un—€| Ep

unl 10T g

u, L
0

Remarque 4.26. Si une suite (un)nen converge vers un réel £ alors (Jun|)nen converge vers |€| (c’est
une conséquence directe de l'inégalité triangulaire inverse).
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4.5 Limites de suites et inégalités

Théoréme 4.27. Soient (up)nen €t (Vn)nen deuz suites vérifiant u, < vy, pour tout n € N, et {1, Lo
des réels tels que up, — f1 etv, — {lo. Alors £y < bs.

n—-+o00 n—-+o0o
Démonstration. 11 suffit de montrer que ¢5 — #1 > — ¢ pour tout € > 0.

Soit € > 0. Comme u,, —> ¥#1 et v, — ¥{o il existe N1, No € N tels que pour tout n € N on a
n—-+oo n—-+00

£
nz=z N = u,— 1t 2 mt

et
n = Ny = v, — ¥y <

€
5
Mais alors, en définissant N = max (N1, N2),on a fo > — 5 +wvy et —f1 > — § — vy, ce qui implique,
comme vy —uy = 0,
lo—l1 > —e+uvy —un = —E¢.

O
Remarque 4.28. Attention ce résultat n’est pas vrai pour des inégalités strictes, par exemple u, =
—%H et v, = n%rl vérifient u, < v, pour tout n € N et nEIfoou" = ngrfoovn =0.

Corollaire 4.29. Soient (uy)nen une suite et £ € R tel que up, —> £.
n—-+oo

1. S’il existe M € R tel que u, < M pour tout n € N, alors £ < M.

2. S’il existe m € R tel que u, = m pour tout n € N, alors £ > m.

Démonstration. 11 suffit d’appliquer le théoréme précédent en prenant une des deux suites constante.
O

Théoréme 4.30 (Théoréme dit « des gendarmes »). Soient (un)nen, (Un)nen €t (Wn)nen trois suites
vérifiant pour tout n € N
Up € Up < W

On suppose qu’il existe £ € R tel que uy, —> £ etw, —> L. Alors on a

n—+00 n—+00
Un n_}—+>oo £.
Exemple 4.31. Soit (vy)nen la suite définie pour tout n € N par v, = Sinn_ﬁ). Alors en définissant les
suites (Un)nen €t (Wn)neN par vy, = —n%rl et wy, = n%rl pour tout n € N, on a uy, njoo 0, wy njm 0

et Uy < vy < wy, pour tout n € N. On en déduit que v, —> 0.
n—-+00

Démonstration. Soit € > 0. Comme u, — fetw, — ¥, il existe N1, Ny € R tels que pour tout
n—-+o0o n—-+o0o

n € Non a
n>2N=u,—¥€> —¢,

et
n>=Ny=w, —{<Le.

Mais alors, pour tout n > max(Ny, N2) on a
E—Eéunévnéwn<€+5a

et donc pour tout n > max(Ny, Na) on a |v, — {] < e. O
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4.6 Convergence et monotonie

Théoréme 4.32. Toute suite croissante et majorée est convergente. Toute suite décroissante et minorée
et convergente.

Idée de preuve. La preuve de ce résultat est admise. L’idée, par exemple dans le cas d'une suite (uy,)nen
croissante et majorée, est de montrer que (u,)n,eny converge vers la borne supérieure de 1’ensemble
{un : n € N}, qui admet bien une borne supérieure puisqu’il est non vide et majoré (pour plus de
détails, voir par exemple [2]). O
Remarque 4.33. Attention, il existe des suite croissantes non convergentes (par exemple u, =n) et
_ =" )

des suite convergentes non monotones (par exemple u, = P

Définition 4.34. On dit que deuz suites (up)nen €t (vn)nen sont adjacentes si

1. (up)nen est croissante,
2. (vn)nen est décroissante,

3. up —v, — 0.
n—-+0o

Théoréme 4.35. Deuz suites adjacentes convergent et ont la méme limite.

Démonstration. Soient (un)nen €t (vn)nen deux suites adjacentes. Alors la suite (wp)nen définie par
Wy, = Up — Uy pour tout n € N est décroissante. En effet, pour tout n € N,

Wn41 — Wn = Unyl — Un4l — (Un - un) = Un4+1 — Un — (unJrl - un) <0,

puisque (up)nen est croissante alors que (v, )nen est décroissante. Ainsi, comme de plus w,, —+> 0,
n—-+00

on a wy = 0, c’est-a-dire u,, < v,, pour tout n € N. Mais donc u,, < vg pour tout n € N, la suite
(un)nen est donc croissante et majorée, elle converge donc vers un ¢ € R. De méme, v, > ug , la suite
(Un)nen est donc décroissante et minorée, elle converge donc vers un ¢2 € R. Finalement,

0= lim w,= lim u, — lim v, =¥ — {5,
n—-+00 n—-+o0o n—-+0o
et donc (un)nen €t (vn)nen convergent vers la méme limite. d

Exemple 4.36. Soit x € R. On définit approrimation décimale par défaut de x a 10™" prés par
E(10"x)
Up = ——~n
107
et Uapproximation décimale par exceés de x a 10~ prés par
E(10™z) 1
107 10m’
(par exzemple lapprozimation décimale par défaut de 3.17641 a 1072 pres est 3.17, alors que son ap-
proximation décimale par exces a 1072 prés est 3.18).
On a bien uy, — v, = 710% n — 0 (il s’agit en fait d’une conséquence du corollaire 4.48). De plus,
n—oo
pour n € N, comme 10 E(10™x) est un entier inférieur ou égal a 10 - 10"z = 10"z, on a

10E(10™z) < E(10"2),

n =

et donc, en divisant par 10711,
Up < Upt1-
La suite (un)nen est donc croissante. Enfin, pour n € N, comme 10(E(10"x) + 1) est un entier stric-
tement supérieur a 10 - 10"z = 10"z, on a
10(E(10™z) + 1) > B(10"z) + 1,
et donc, en divisant par 1071,
Up 2 Untl.

La suite (vn)nen est donc décroissante. Ces deur suite sont adjacentes et convergent donc vers une
méme limite. Comme u, < x < v, pour tout n € N cette limite est x.



CHAPITRE 4. SUITES REELLES 33

4.7 Suites extraites

L’idée est, étant donnée une suite (up)nen, de sélectionner certains termes de cette suite pour
définir une nouvelle suite, appelée suite extraite ou sous-suite.

Définition 4.37. On appelle une extraction une fonction ¢ : N — N strictement croissante. Si
(un)nen est une suite, une sous-suite ou suite extraite de (un)pen est une suite de la forme
(Ugp(n))nen 0U ¢ est une extraction.

Exemples 4.38. Si (up)nen est une suite, (uon)neN, (Uon+1)neN, (Uan)nen sont des sous-suites de
(un)nGN'

La démonstration de la propriété suivante est immeédiate.

Proposition 4.39. Soit (uy(y))nen une sous-suite de (un)nen-

1. Si (un)nen est croissante, (Uym))nen 'est également.

Un)neN est décroissante, (Ug(n))nen lest également.

Si (un)nen est majorée, (Uyn))nen Uest également.

Jne
Jne
Jne
Jne

Un)neN est minorée, (Ugym))nen ['est également.

.Q”T\?@N
&

S (
(
S (
Si (Un)nen converge vers un réel £, (Up(n))nen converge également vers £.

Remarque 4.40. Une suite (up)nen peut avoir une sous-suite qui converge méme si elle-méme ne
converge pas. Par exemple, si u, = (—1)" pour tout n € N, alors la suite (uan)nen converge vers 1 et
la suite (u2p+1)nen converge vers —1.

Théoréme 4.41 (Bolzano Weierstrass). Toute suite bornée admet une sous-suite convergente.

Idée de preuve. La preuve de ce résultat est admise. Une preuve possible, pour une suite (u)nen
bornée, est de construire une suite de segments emboités les uns dans les autres, de largeur tendant
vers 0, et contenant chacun une infinité de termes de (uy,)nen. Pour plus de détails voir [2]. O

Exemple 4.42. La suite (un)nen définie par u, = sin(n) pour tout n € N admet une sous-suite
convergente.

4.8 Limites infinies

Définition 4.43. Soit (un)nen une suite.

1. On dit que (up)nen tend vers +0o (ou diverge vers +00) si
VAeR,IN e NNVneN, n> N = u, > A.

On note alors u, — 400 ou lim u, = +oo.
n—-+00 n—-+o0o

2. On dit que (up)nen tend vers —oo (ou diverge vers —oo) si
VAeR,AIN e NNVvne N, n> N = u, < A.

On note alors u, — —00 ou lim wu, = —oo.
n—-4o00 n—-+4o0o

Exemple 4.44. La suite (un)nen définie par u, = n? pour tout n € N tend vers +oo. En effet si
AeR_ on au, > A pour tout n € N, alors que st A >0 on a u, > A dés quen)ﬂ.
Théoréme 4.45. Soit (uy)nen une suite croissante. Alors il y a deux possibilités :

1. soit (up)nen converge vers une limite £ € R,

2. s0it (up)nen diverge vers +00.
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