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Chapitre 1

Nombres réels

1.1 Ensembles de nombres

1.1.1 Les entiers naturels

L’ensemble N défini par
N = {0, 1, 2, 3, . . .},

est l’ensemble des entiers naturels. Si l’on enlève le 0 on définit N∗ = {1, 2, 3, . . .} l’ensemble des entiers
naturels non nuls.

1.1.2 Les entiers relatifs

En ajoutant les entiers négatifs on définit l’ensemble des entiers relatifs par

Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}.

De même, si l’on enlève le 0, on définit Z∗ = {. . . ,−3,−2,−1, 1, 2, 3, . . .} l’ensemble des entiers relatifs
non nuls.

Remarque 1.1.

1. On remarque que l’ensemble N est inclus dans l’ensemble Z, ce que l’on peut écrire de la manière
suivante :

N ⊂ Z,

où le symbole ⊂ se lit « est inclus dans ». En effet, tout élément de N est également élément de
Z, ce que l’on peut écrire de la manière suivante :

si n ∈ N, alors n ∈ Z,

où le symbole ∈ se lit « appartient à ».

2. On voit immédiatement que l’inclusion réciproque est fausse, c’est-à-dire Z �⊂ N, puisque par
exemple −1 ∈ Z alors que −1 /∈ N.

3. Attention à ne pas confondre les symboles ⊂ et ∈ !

1.1.3 Les nombres rationnels

On définit l’ensemble des nombres rationnels Q comme l’ensemble des fractions d’entiers naturels :

Q =
�a

b
: a ∈ Z, b ∈ Z∗

�
.
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Remarque 1.2.

1. Puisque tout entier relatif n peut être écrit sous la forme

n =
n

1
,

on a Z ⊂ Q.

2. Un nombre rationnel peut être représenté par différentes fractions, par exemple 1
2 = 2

4 = 4
8 = . . .

Plus précisément, pour a, a� ∈ Z et b, b� ∈ Z∗, on a

a

b
=

a�

b�
si et seulement si ab� = a�b.

Attention, l’expression « P si et seulement si Q », que l’on peut abréger en « P ssi Q » ou « P
⇔ Q » (voir le cours d’Algèbre 1), signifie deux choses : « si P est vraie alors Q est vraie » et
« si Q est vraie alors P est vraie ».

1.1.4 Les nombres décimaux

On définit l’ensemble des nombres décimaux D de la manière suivante :

D =
� a

10n
: a ∈ Z, n ∈ N

�
.

Il s’agit des nombres ayant une suite finie de chiffres à droite de la virgule.

Remarque 1.3.

1. Tous les éléments de D peuvent être écrit sous forme de fraction, et donc D ⊂ Q.

2. L’inclusion réciproque est fausse, puisque certaine fractions ne peuvent être écrites qu’avec une
infinité de chiffres après la virgule, comme par exemple

1

3
= 0.333333333333333333333333 . . .

L’ensemble D donne un rôle privilégié au nombre 10 (les dix doigts des mains). Du point de vue
des mathématiciens, les ensembles Q et R sont plus importants.

1.1.5 Les nombres réels

L’ensemble R des nombres réels est l’ensemble des nombres dont l’écriture décimale est composée
de

— un signe + ou − (généralement omis lorsque c’est le +),
— une suite finie de chiffres entre 0 et 9, ne commençant pas par 0 ou étant réduite à 0,
— une virgule,
— une suite infinie de chiffres entre 0 et 9.

Exemples 1.4. Par exemple 0, 4, −10.3, 1
3 ,

√
2, π sont des nombres réels.

Remarque 1.5.

1. Attention avec cette définition un réel ne s’écrit pas de manière unique, par exemple 1 = 1.0,
0 = 0.0 = −0 = −0.00, 1 = 0.99999999999 . . .

2. On a l’inclusion Q ⊂ R, mais l’inclusion réciproque est fausse, on ne peut par exemple pas écrire√
2 comme a

b avec a ∈ Z et b ∈ Z∗ (voir le cours d’Algèbre 1).
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1.2 Opérations et relation d’ordre dans l’ensemble des réels

Dans l’enfance on apprend à additionner, multiplier et comparer les entiers. Ceci s’étend aux
nombres réels (résultat admis, fastidieux à démontrer).

Proposition 1.6. On peut définir sur R une addition + et une multiplication · (ou ×) qui prolongent
l’addition et la multiplication de N et ont les propriétés suivantes :

1. commutativité : pour tous a, b dans R on a

a+ b = b+ a et a · b = b · a,
2. associativité : pour tous a, b, c dans R on a

a+ (b+ c) = (a+ b) + c et a · (b · c) = (a · b) · c,
3. distributivité : pour tous a, b, c dans R on a

(a+ b) · c = a · c+ b · c,
4. éléments neutres : pour tout a ∈ R on a

a+ 0 = a et a · 1 = a,

5. élément absorbant : pour tout a ∈ R on a

a · 0 = 0.

Proposition 1.7. On peut définir sur R une relation d’ordre � qui prolonge la relation d’ordre sur
N et qui vérifie les propriétés suivantes :

1. réflexivité : pour tout a dans R on a
a � a,

2. antisymétrie : pour tous a, b dans R,

si a � b et b � a, alors a = b,

3. transitivité : pour tous a, b, c dans R,

si a � b et b � c, alors a � c,

4. ordre total : pour tous a, b dans R,

a � b ou b � a,

5. compatibilité avec l’addition : pour tous a, b, c dans R,

si a � b alors a+ c � b+ c,

6. compatibilité avec la multiplication : pour tous a, b, c dans R,

si a � b et c � 0, alors a · c � b · c.
Remarque 1.8. En mathématiques le « ou » est inclusif : « A ou B » signifie soit A, soit B, soit les
deux.

a � b se lit « a inférieur ou égal à b ». On écrit de plus, pour a, b dans R
— a � b (qui se lit « a supérieur ou égal à b ») si b � a,
— a < b (qui se lit « a strictement inférieur à b ») si a � b et a �= b,
— a > b (qui se lit « a strictement supérieur à b ») si b < a.

On remarque que le contraire de a � b est a > b.

Remarque 1.9.
1. On ne peut pas soustraire des inégalités : on a 2 � 3 et 1 � 4 mais 2− 1 = 1 n’est pas inférieur

ou égal à 3− 4 = −1 !
2. La multiplication par un réel négatif change le sens de l’inégalité : si a, b, c sont des réels,

si a � b et c � 0, alors a · c � b · c.
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1.3 Valeur absolue

Définition 1.10. Pour tout x ∈ R, on définit la valeur absolue de x, notée |x|, de la manière
suivante :

|x| =
�

x si x � 0
−x si x < 0

.

Proposition 1.11. La valeur absolue vérifie les propriétés suivantes :
1. pour tout a dans R on a

|a| = |− a| =
√
a2 = max(−a, a),

2. pour tout a dans R on a
|a| = 0 si et seulement si a = 0,

3. pour tous a, b dans R on a
|a · b| = |a| · |b|,

4. inégalité triangulaire : pour tous a, b dans R on a

|a+ b| � |a|+ |b|,

5. inégalité triangulaire inverse : pour tous a, b dans R on a

|a− b| � ||a|− |b||.

Démonstration. Les trois premiers points sont des conséquences directes de la définition de la valeur
absolue.

Démontrons le point 4. Considérons deux réels a et b. D’après 1) on a |a+ b| = max(a+ b,−a− b).
Mais comme a � max(−a, a) = |a| et b � |b| on a a + b � |a| + |b|. De même, comme −a � |a| et
−b � |b| on a −a− b � |a|+ |b|. Ainsi

|a+ b| = max(a+ b,−a− b) � |a|+ |b|.
Finalement démontrons le point 5). Considérons à nouveaux deux réels a et b. D’une part d’après 4)

on a |a| = |a−b+b| � |a−b|+|b| et donc |a−b| � |a|−|b|. D’autre part on a |b| = |b−a+a| � |b−a|+|a|
et donc |a− b| � |b|− |a| = −(|a|− |b|). On en déduit bien

|a− b| � max(|a|− |b|,−(|a|− |b|)) = ||a|− |b||.

1.4 Intervalles de R

Intuitivement, un intervalle de R est une partie de R « sans trou ».

Définition 1.12 (Intervalles de R). Soit I un sous-ensemble de R. On dit que I est un intervalle de
R si, pour tous x, y éléments de I, tout réel z vérifiant x � z � y est également un élément de I.

Proposition 1.13. Les intervalles I de R ont l’une des formes suivantes :
1. R,
2. ∅, l’ensemble vide, qui ne contient aucun élément,
3. {a}, un singleton, avec a ∈ R,
4. [a, b] = {x ∈ R : a � x � b}, un segment , avec a, b réels vérifiant a < b,
5. [a, b[= {x ∈ R : a � x < b}, ]a, b] = {x ∈ R : a < x � b} ou ]a, b[= {x ∈ R : a < x < b}, avec

a, b réels vérifiant a < b,
6. [a,+∞[= {x ∈ R : x � a}, ]a,+∞[= {x ∈ R : x > a}, ] − ∞, a] == {x ∈ R : x � a} ou

]−∞, a[= {x ∈ R : x < a}, avec a réel.

Remarque 1.14. Dans les points 4., 5. et 6. de la proposition précédente les réels a et b sont appelés
les bords de l’intervalle.
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1.5 Majorant, minorant, borne inférieure, borne supérieure

Définition 1.15. Soit A une partie de R et a un élément de A.

1. On dit que a est le plus grand élément de A (ou maximum de A) si et seulement si tout
b ∈ A vérifie b � a,

2. On dit que a est le plus petit élément de A (ou minimum de A) si et seulement si tout
b ∈ A vérifie b � a.

S’il existe, le plus grand élément de A est unique, on le note max(A). De même, s’il existe, le plus petit
élément de A est unique, on le note min(A) .

Exemples 1.16.

1. Une partie finie A de R (c’est-à-dire un sous-ensemble de R formé d’un nombre fini d’éléments)
a toujours un plus grand élément.

2. 1 est le plus grand élément de [0, 1].

3. N et [0, 1[ n’admettent pas de plus grand élément.

Définition 1.17. Soit A une partie de R et m un réel.

1. On dit que m est un majorant de A si tout élément a de A vérifie m � a.

2. On dit que m est un minorant de A si tout élément a de A vérifie m � a.

Exemples 1.18.

1. 1 et 4 sont des majorants de [0, 1] et [0, 1[,

2. N n’a pas de majorant.

Définition 1.19. On dit qu’une partie A de R est

1. majorée si elle admet un majorant,

2. minorée si elle admet un minorant,

3. bornée si elle admet un majorant et un minorant.

Exemples 1.20.

1. [0, 1] et [0, 1[ sont bornés,

2. [0,+∞[ est minoré mais n’est pas borné.

On admet le théorème suivant.

Théorème 1.21 (Théorème de la borne supérieure). Toute partie A de R non-vide et majorée admet
un plus petit majorant, appelé la borne supérieure de A et noté sup(A).

Exemple 1.22. On a sup([0, 1]) = sup([0, 1[) = 1.

Remarque 1.23. Ce théorème n’est pas vrai dans Q : l’ensemble {x ∈ Q : x <
√
2} est majoré mais

n’admet pas de plus petit majorant dans Q.

De même, si A est une partie de R non vide et minorée, alors elle admet un plus grand minorant,
appelée borne inférieure de A et noté inf(A).

Par convention, si A n’est pas majorée on note sup(A) = +∞ et si A n’est pas minorée on note
inf(A) = −∞.

La proposition suivante permet de caractériser la borne supérieure dans R.

Proposition 1.24 (Caractérisation de la borne supérieure). Soit A une partie non vide et majorée
de R et M un majorant de A. Alors M = sup(A) si et seulement si pour tout ε > 0 l’ensemble
A∩]M − ε,M ] 1 est non vide.

1. Pour deux ensembles A et B, A ∩B est l’ensemble formé des éléments qui sont à la fois dans A et B.
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Démonstration. Supposons tout d’abord que M = sup(A) et considérons ε > 0. Alors, comme M−ε <
M , M − ε n’est pas un majorant de A, puisque M est le plus petit des majorants. Il existe donc un
élément a de A tel que a > M−ε. Puisque M est un majorant on a a � M , et donc a ∈]M−ε,M ]∩A.
L’ensemble ]M − ε,M ] ∩A est donc non vide.

Supposons maintenant que pour tout ε > 0 l’ensemble A∩]M−ε,M ] est non vide. On veut montrer
que si m < M alors m n’est pas un majorant de A, puisque dans ce cas M est bien le plus petit majorant
de A. Fixons m < M et posons ε = M −m > 0. Par hypothèse l’ensemble A∩]M − ε,M ] = A∩]m,M ]
est non vide, et il existe donc un élément a de A qui vérifie m < a. m n’est donc pas un majorant de
A.



Chapitre 2

Fonctions réelles

2.1 Fonctions et graphes

Définition 2.1. Une application f d’un ensemble de départ E dans un espace d’arrivée F est un
procédé qui associe à chaque élément x de E un unique élément f(x) de F . Une telle application est
notée

f : E → F
x �→ f(x)

.

On appelle parfois E le domaine de f et F le codomaine de f .

Définition 2.2. On appelle fonction réelle d’une variable réelle toute application f ayant pour
ensemble de départ une partie A de R, et ensemble d’arrivée une partie B de R :

f : A → B
x �→ f(x)

.

On appelle l’ensemble A le domaine de définition de f .

Remarque 2.3. Pour simplifier, dans la suite de ce cours, on parlera simplement de fonction pour
désigner une fonction réelle d’une variable réelle (les fonctions de plusieurs variables réelles seront par
exemple abordées dans des cours ultérieurs).

Exemples 2.4. On peut considérer les fonctions suivantes :

f1 : R → R
x �→ x

,
f2 : R∗ → R

x �→ 1
x

,
| · | : R → R

x �→
�

x si x � 0
−x si x < 0

.

Définition 2.5. Si E et F sont deux ensembles, on note E × F le produit cartésien de E et F ,
défini par

E × F = {(x, y) : x ∈ E, y ∈ F}.

Remarque 2.6. Pour un ensemble E on écrit E2 plutôt que E × E.

Définition 2.7. Si f : E → F est une fonction on appelle graphe de f l’ensemble

Gr(f) = {(x, f(x)) : x ∈ E} ⊂ E × F.

Remarque 2.8.

1. Le graphe d’une fonction réelle est une partie de R2, on peut le représenter par un dessin (voir
la figure 2.1).

2. Une partie de A de R2 est le graphe d’une fonction f : R → R si et seulement si toute droite
verticale intersecte A en un unique point.

9
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x

f(x)

Figure 2.1 – Exemple de tracé du graphe d’une fonction réelle.

2.2 Fonctions injectives, surjectives, bijectives

2.2.1 Image, antécédent.

Définition 2.9. Soit f : E → F une fonction. Si x ∈ E et y ∈ F vérifient y = f(x), on dit que y est
l’image de x par f , et que x est un antécédent de y par f .

Remarque 2.10. Si f : E → F , alors chaque x ∈ E admet une et une seule image par f , alors que
y ∈ F peut avoir un, plusieurs ou aucun antécédent par f .

Exemple 2.11. Si f : R → R est définie par f(x) = x2 pour tout x ∈ R, −1 a pour image 1, 2 a pour
antécédents −

√
2 et

√
2, alors que −3 n’a pas d’antécédent par f .

2.2.2 Surjectivité.

Définition 2.12. Une fonction f : E → F est dite surjective (ou une surjection) si tout élément de
F admet au moins un antécédent, autrement dit 1 :

f surjective ⇔
�
∀y ∈ F, ∃x ∈ E tel que y = f(x)

�
.

−3 −2 −1 0 1 2 3

−10

−5

0

5

10
f(x) = x3 − 5x

(a) La fonction f : R → R définie pour tout
x ∈ R par f(x) = x3 − 5x est surjective.

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0

−1

0

1

2

3

4

f(x) = x2

(b) La fonction f : R → R définie pour tout
x ∈ R par f(x) = x2 n’est pas surjective.

Figure 2.2 – Exemples de fonctions surjective/non surjective.

Remarque 2.13. Lorsque f : R → R, f est surjective si et seulement si toute droite horizontale
intersecte Gr(f).

1. Le symbole ∀ signifie se lit « pour tout », le symbole ∃ se lit « il existe ».
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2.2.3 Injectivité.

Définition 2.14. Une fonction f : E → F est dite injective (ou une injection) si tout élément de F
admet au plus un antécédent, autrement dit 2 :

f injective ⇔
�
∀x, x� ∈ E, f(x) = f(x�) ⇒ x = x�

�
.

Remarque 2.15. De manière équivalente, puisque P ⇒ Q équivaut à (nonQ) ⇒ (nonP ) (voir le
cours d’algèbre 1), on a

f injective ⇔
�
∀x, x� ∈ E, x �= x� ⇒ f(x) �= f(x�)

�
.

−2 −1 0 1 2

−1

0

1

2

3

4

5

6

f(x) = exp(x)

(a) La fonction f : R → R définie pour tout
x ∈ R par f(x) = exp(x) est injective.

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0

−1

0

1

2

3

4

f(x) = x2

(b) La fonction f : R → R définie pour tout
x ∈ R par f(x) = x2 n’est pas injective.

Figure 2.3 – Exemples de fonctions injective/non injective.

Remarque 2.16. Lorsque f : R → R, f est injective si et seulement si toute droite horizontale
intersecte Gr(f) au plus une fois.

2.2.4 Bijectivité.

Définition 2.17. Une fonction f : E → F est dite bijective (ou une bijection) si tout élément de F
admet un unique antécédent, autrement dit 3 :

f bijective ⇔
�
∀y ∈ F, ∃!x ∈ E tel que y = f(x)

�
.

Remarque 2.18. Lorsque f : R → R, f est bijective si et seulement si toute droite horizontale
intersecte Gr(f) une et une seule fois.

Définition 2.19. Supposons la fonction f : E → F bijective. En associant à tout élément y ∈ F
son unique antécédent par f on définit une fonction de F dans E. Cette fonction est appelée fonction
réciproque de la fonction f , et est notée f−1. Elle est caractérisée par la relation suivante :

∀x ∈ E, ∀y ∈ F, y = f(x) ⇔ x = f−1(y).

Remarque 2.20. Si f : E → F est bijective de bijection réciproque f−1, alors f−1 : F → E est
elle-même bijective de bijection réciproque (f−1)−1 = f . On a de plus les formules

∀x ∈ E, ∀y ∈ F, f−1(f(x)) = x et f(f−1(y)) = y.

2. Le symbole ⇒ est le symbole de l’implication : P ⇒ Q signifie « si P est vraie, alors Q est vraie ».
3. Le symbole ∃! se lit « il existe un unique ».
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−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0

−4

−3

−2

−1

0

1

2

3

4f(x) = x3

Figure 2.4 – La fonction f : R → R définie pour tout x ∈ R par f(x) = x3 est bijective.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
0

1

2

3

4

f(x) = x2

0 1 2 3 4
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00 f−1(x) =
√
x

Figure 2.5 – La fonction f : R+ → R+ définie pour tout x ∈ R+ par f(x) = x2 a pour fonction
réciproque f−1 : R+ → R+ définie pour tout x ∈ R+ par f−1(x) =

√
x.

2.3 Image directe, image réciproque.

Définition 2.21. Si f : E → F est une fonction et A est une partie de E, l’image directe de A par
f , notée f(A), est la partie de F définie par

f(A) = {f(x) : x ∈ A}.

En particulier, pour A = E, on appelle image de f l’ensemble Im(f) = f(E).

Exemple 2.22. Si f : R → R est définie pour tout x ∈ R par f(x) = x2, alors f([0, 1]) = [0, 1],
f([−2, 1]) = [0, 4], Im(f) = R+.

Définition 2.23. Si f : E → F est une fonction et B est une partie de F , l’image réciproque de
B par f , notée f−1(B), est la partie de B définie par

f−1(B) = {x ∈ E : f(x) ∈ B}.

Remarque 2.24.

1. Attention, cette définition ne suppose pas que f soit bijective !

2. Si f est bijective, f−1(B) est l’image directe de B par f−1.

Exemples 2.25. Si f : R → R est définie pour tout x ∈ R par f(x) = x2, alors f−1([0, 1]) = [−1, 1],
f−1([−2, 4]) = [−2, 2].
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Gr(f)

A

f(A)

Figure 2.6 – Image directe d’une partie A de R par une fonction réelle.

Gr(f)

B

f−1(B)

Figure 2.7 – Image réciproque d’une partie B de R par une fonction réelle.

2.4 Opérations sur les fonctions.

2.4.1 Somme, produit, quotient.

Soient f : I → R et g : I → R deux fonctions ayant le même ensemble de départ. On définit

1. leur somme :
f + g : I → R

x �→ f(x) + g(x)
,

2. leur produit :
f · g : I → R

x �→ f(x) · g(x) ,

3. et, si g ne s’annule pas sur I, leur quotient :

f
g : I → R

x �→ f(x)
g(x)

.
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2.4.2 Composition.

Définition 2.26. Si E,F,G sont des parties de R et f : E → F et g : F → G des fonctions, on définit
la composition de f et g, notée g ◦ f , par 4

g ◦ f : E → G
x �→ g(f(x))

.

Exemple 2.27. Si f : R → R et g : R → R sont définies pour tout x ∈ R par f(x) = sin(x) et
g(x) = x+ 2, alors g ◦ f : R → R et f ◦ g : R → R, avec pour tout x ∈ R :

g ◦ f(x) = sin(x) + 2 et f ◦ g(x) = sin(x+ 2).

Remarque 2.28.

1. Pour pouvoir définir g ◦ f il faut que l’ensemble d’arrivée de f soit inclus dans l’ensemble de
départ de g.

2. Si f : E → F est une bijection, de bijection réciproque f−1, alors f−1◦f = idE et f ◦f−1 = idF ,
où si A est une partie de R idA : A → A est la fonction identité de l’ensemble A, définie pour
tout x ∈ A par idA(x) = x.

2.5 Propriétés des fonctions et de leur graphe.

2.5.1 Fonction majorée, minorée, bornée.

Définition 2.29. Soit f : E → R une fonction.

1. On dit que f est majorée si f(E) est majoré, c’est-à-dire

f majorée ⇔ ∃M ∈ R, ∀x ∈ E, f(x) � M.

2. On dit que f est minorée si f(E) est minoré, c’est-à-dire

f minorée ⇔ ∃m ∈ R, ∀x ∈ E, f(x) � m.

3. On dit que f est bornée si elle est majorée et minorée, c’est-à-dire

f bornée ⇔ ∃m ∈ R, ∃M ∈ R, ∀x ∈ E,m � f(x) � M.

Remarque 2.30. Une fonction f : E → R est majorée si et seulement si son graphe se situe au-
dessous d’une droite horizontale, et est minorée si et seulement si son graphe si situe au-dessus d’une
droite horizontale.

2.5.2 Monotonie.

Définition 2.31. Soit I un intervalle de R et f : I → R une fonction.

1. On dit que f est croissante sur I si

∀x ∈ I, ∀y ∈ I, x � y ⇒ f(x) � f(y).

2. On dit que f est décroissante sur I si

∀x ∈ I, ∀y ∈ I, x � y ⇒ f(x) � f(y).

3. On dit que f est strictement croissante sur I si

∀x ∈ I, ∀y ∈ I, x < y ⇒ f(x) < f(y).

4. g ◦ f se lit « g rond f»
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4. On dit que f est strictement décroissante sur I si

∀x ∈ I, ∀y ∈ I, x < y ⇒ f(x) > f(y).

5. On dit que f est monotone sur I si elle est croissante sur I ou décroissante sur I.

6. On dit que f est strictement monotone sur I si elle est strictement croissante sur I ou
strictement décroissante sur I.

Remarque 2.32. Si f : I → R est une fonction, on a les équivalences suivantes :

1. f est croissante si et seulement si toute droite passant par deux point de Gr(f) est de pente
positive.

2. f est décroissante si et seulement si toute droite passant par deux point de Gr(f) est de pente
négative.

3. f est strictement croissante si et seulement si toute droite passant par deux point de Gr(f) est
de pente strictement positive.

4. f est strictement décroissante si et seulement si toute droite passant par deux point de Gr(f)
est de pente strictement négative.

2.5.3 Parité et périodicité.

Proposition 2.33. Soit f : R → R une fonction.

1. Si l’on définit la fonction f1 : R → R pour tout x ∈ R par f1(x) = −f(x), alors le graphe de f1
est obtenu à partir de celui de f par symétrie axiale par rapport à l’axe horizontale (Ox).

2. Si l’on définit la fonction f2 : R → R pour tout x ∈ R par f2(x) = f(−x), alors le graphe de f2
est obtenu à partir de celui de f par symétrie axiale par rapport à l’axe verticale (Oy).

3. Si l’on définit la fonction f3 : R → R pour tout x ∈ R par f3(x) = −f(−x), alors le graphe de
f3 est obtenu à partir de celui de f par symétrie centrale par rapport à l’origine O.

Définition 2.34. Soit I un intervalle de R symétrique par rapport à O (c’est-à-dire tel que x ∈ I si
et seulement si −x ∈ I), et f : I → R une fonction.

1. On dit que f est paire si pour tout x ∈ I on a f(−x) = f(x).

2. On dit que f est impaire si pour tout x ∈ I on a f(−x) = −f(x).

Corollaire 2.35. Si I un intervalle de R symétrique par rapport à O et f : I → R est une fonction,
alors

1. f est paire si et seulement si le graphe de f est symétrique par rapport à l’axe verticale (Oy),

2. f est impaire si et seulement si le graphe de f est symétrique par rapport à l’origine O.

Définition 2.36. Soit f : R → R une fonction et T un réel strictement positif. On dit que f est
périodique de période T si

∀x ∈ R, f(x+ T ) = f(x).

Proposition 2.37. Soit f : R → R une fonction et T un réel strictement positif. f est périodique de
période T si et seulement si le graphe de f est invariant par translation de vecteur T�i, où �i est un
vecteur unitaire engendrant l’axe horizontale (Ox).

2.6 Limite en un point, continuité, dérivabilité.

Les notions de limite et continuité de fonctions seront abordées plus en détails dans le chapitre 5,
celle de dérivabilité sera abordée plus en détails dans le cours d’Analyse 2.
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2.6.1 Limite en un point.

Définition 2.38. Soient I un intervalle de R ou une union d’intervalles de R 5, f : I → R une
fonction, x0 ∈ R un élément de I ou d’un bord de I et � ∈ R. On dit que f admet une limite � au point
x0, et on note lim

x→x0

f(x) = �, si

∀ε > 0, ∃δ > 0, ∀x ∈ I, |x− x0| � δ ⇒ |f(x)− �| � ε.

Exemple 2.39. Si f : R → R est définie pour tout x ∈ R par f(x) = 1 + x2, lim
x→0

f(x) = 1.

2.6.2 Continuité.

Définition 2.40. Soit I un intervalle de R, f : I → R une fonction et x0 ∈ I.

1. Pour x0 ∈ I, on dit que f est continue en x0 si lim
x→x0

f(x) = f(x0).

2. On dit que f est continue sur I si elle est continue en tout point de I.

Exemple 2.41. Si f : R → R est définie pour tout x ∈ R par f(x) = x2, f est continue sur R.

2.6.3 Dérivabilité.

Définition 2.42. Soient I in intervalle de R, f : I → R une fonction et x0 ∈ I. On dit que f est
dérivable au point x0 si la fonction taux d’accroissement x �→ f(x)−f(x0)

x−x0
définie sur I \ {x0} admet

une limite au point x0. Cette limite est appelée dérivée de f au point x0 et est notée f �(x0).

Remarque 2.43. Si une fonction f est dérivable en x0, alors f �(x0) est la pente de la droite tangente
à Gr(f) au point (x0, f(x0)).

Les résultats suivants seront démontrés dans le cours d’Analyse 2.

Proposition 2.44. Soient I un intervalle de R et f : I → R une fonction dérivable en tout point de
I.

1. f est croissante sur I si et seulement si f �(x) � 0 pour tout x ∈ I.

2. f est décroissante sur I si et seulement si f �(x) � 0 pour tout x ∈ I.

3. Si f �(x) > 0 pour tout x ∈ I, alors f est strictement croissante sur I.

4. Si f �(x) < 0 pour tout x ∈ I, alors f est strictement décroissante sur I.

Proposition 2.45. Soient I est un intervalle de R et f : I → R et g : I → R deux fonctions dérivables
en x ∈ I.

1. f + g est dérivable en x et
(f + g)�(x) = f �(x) + g�(x).

2. fg est dérivable en x et
(fg)�(x) = f �(x)g(x) + f(x)g�(x).

3. Si g ne s’annule pas en x, f
g est dérivable en x et

�
f

g

��
(x) =

f �(x)g(x)− f(x)g�(x)
(g(x))2

.

Proposition 2.46. Soient I, J des intervalles de R, f : I → J , g : J → R des fonctions et x ∈ I tel
que f est dérivable en x et g est dérivable en f(x). Alors g ◦ f est dérivable en x et

(g ◦ f)�(x) = f �(x)g�(f(x)).

5. Pour deux ensembles A et B, l’union de A et B, notée A∪B, est l’ensemble des éléments qui sont dans A ou dans
B.



Chapitre 3

Fonctions usuelles

3.1 Fonctions polynomiales

Soient n ∈ N et a0, . . . , an des réels avec an �= 0. La fonction

f : R → R
x �→ a0 + a1x+ a2x

2 + . . .+ anx
n

est une fonction polynomiale de degré n. Cette fonction est dérivable sur R, de dérivée satisfaisant,
pour tout x ∈ R,

f �(x) = a1 + 2a2x+ 3a3x
2 . . .+ nanx

n−1.

Cas particuliers :

1. lorsque n = 0 on obtient les fonctions constantes (pour a ∈ R) :

f : R → R
x �→ a

.

Le graphe de f défini ainsi est une droite horizontale.

2. lorsque n = 1 on obtient les fonction affines (pour a, b ∈ R avec a �= 0) :

f : R → R
x �→ ax+ b

.

Le graphe de f défini ainsi est une droite, et f est strictement croissante sur R si et seulement
si a > 0.

3. lorsque n = 2 on obtient les fonctions trinôme (pour a, b, c ∈ R) :

f : R → R
x �→ ax2 + bx+ c

.

Le graphe de f défini ainsi est une parabole.

3.2 Fonction partie entière

Pour tout x ∈ R il existe un unique entier, noté E(x) et appelé partie entière de x, vérifiant

E(x) � x < E(x) + 1.

E(x) est le plus grand entier inférieur ou égal à x, E(x)+1 est le plus petit entier strictement supérieur
à x.

Exemples 3.1. On a E(1) = 1, E(π) = 3, E(−π) = −4.

17
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On définit la fonction partie entière comme suit :

E : R → R
x �→ E(x)

.

E est croissante sur R mais pas strictement, est discontinue en tout point de Z, et dérivable de dérivée
nulle sur R \ Z.

Remarque 3.2. La fonction
f : R → R

x �→ E(x)− x
.

est périodique de période 1 sur R.

−1.0 −0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

f(x) = E(x)

Figure 3.1 – Graphe de la fonction partie entière.

3.3 Fonctions trigonométriques

θ

cos(θ)

sin(θ)

tan(θ)

tan(θ) = sin(θ)
cos(θ)

Figure 3.2 – Définition géométrique des fonction cos, sin et tan à l’aide d’un cercle de rayon 1.
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Proposition 3.3. Les fonctions cos, sin et tan ont les propriétés suivantes.

cos sin tan

Domaine de définition : R R R \
�
(2k + 1)π2 : k ∈ Z

�

Parité : paire impaire impaire

Période : 2π 2π π

Dérivée : sin − cos 1 + tan2 = 1
cos2

−10 −5 0 5 10

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00
f(x) = cos(x)

−10 −5 0 5 10

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00
f(x) = sin(x)

−6 −4 −2 0 2 4 6

−10.0

−7.5

−5.0

−2.5

0.0

2.5

5.0

7.5

10.0
f(x) = tan(x)

Figure 3.3 – Graphes des fonctions cos, sin et tan.

Les formules suivantes (et d’autres) sont démontrées dans le cours d’Algèbre 1.

Proposition 3.4. Pour tout x ∈ R on a

cos2 x+ sin2 x = 1,

cos(−x) = cosx, sin(−x) = − sinx,

cos(π − x) = − cosx, sin(π − x) = sinx,

cos(π + x) = − cosx, sin(π + x) = − sinx,

cos
�
π
2 − x

�
= sinx, sin

�
π
2 − x

�
= cosx,

cos
�
π
2 + x

�
= − sinx, sin

�
π
2 + x

�
= cosx.

Proposition 3.5. Pour tous a, b ∈ R on a

cos(a+ b) = cos a cos b− sin a sin b,

sin(a+ b) = sin a cos b+ sin b cos a.

En particulier, pour a = b on a

cos(2a) = cos2 a− sin2 a = 2 cos2 a− 1 = 1− 2 sin2 a,

sin(2a) = 2 cos a sin a.
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Remarque 3.6. Les fonctions cos et sin prennent les valeurs remarquables suivantes.

θ 0 π
6

π
4

π
3

π
2

cos(θ) 1
√
3
2

√
2
2

1
2 0

sin(θ) 0 1
2

√
2
2

√
3
2 1

tan(θ) 0
√
3
3 1

√
3 N on défini

On remarque que pour la fonction cos on pourrait écrire dans l’ordre
√
4
2 ,

√
3
2 ,

√
2
2 ,

√
1
2 ,

√
0
2 .

3.4 Fonctions trigonométriques réciproques

On remarque que les fonctions suivantes sont bijectives :

sin :
�
−π

2
,
π

2

�
→ [−1, 1], cos : [0,π] → [−1, 1], tan :

�
−π

2
,
π

2

�
→ R.

On peut définir leur bijection réciproque.

Définition 3.7. 1. On appelle arc-sinus et on note arcsin : [−1, 1] →
�
−π

2 ,
π
2

�
la fonction réci-

proque de la restriction de la fonction sinus à
�
−π

2 ,
π
2

�
. On a alors les égalités suivantes :

arcsin(sinx) = x ∀x ∈
�
−π

2
,
π

2

�
et sin(arcsin y) = y ∀y ∈ [−1, 1].

2. On appelle arc-cosinus et on note arccos : [−1, 1] → [0,π] la fonction réciproque de la restric-
tion de la fonction cosinus à [0,π]. On a alors les égalités suivantes :

arccos(cosx) = x ∀x ∈ [0,π] et cos(arccos y) = y ∀y ∈ [−1, 1].

3. On appelle arc-tangente et on note arctan : R →
�
−π

2 ,
π
2

�
la fonction réciproque de la restric-

tion de la fonction tangente à
�
−π

2 ,
π
2

�
. On a alors les égalités suivantes :

arctan(tanx) = x ∀x ∈
�
−π

2
,
π

2

�
et tan(arctan y) = y ∀y ∈ R.

Remarque 3.8. Attention, les égalités arccos(cosx) = x, arcsin(sinx) = x et arctan(tanx) = x ne
sont pas vraies pour tout x ∈ R. Par exemple arccos(cos(3π)) = arccos(−1) = π.

Proposition 3.9.

1. La fonction arcsin est dérivable sur ]− 1, 1[ et satisfait, pour tout x ∈]− 1, 1[,

arcsin�(x) =
1√

1− x2
.

2. La fonction arccos est dérivable sur ]− 1, 1[ et satisfait, pour tout x ∈]− 1, 1[,

arccos�(x) = − 1√
1− x2

.

3. La fonction arctan est dérivable sur R et satisfait, pour tout x ∈ R,

arctan�(x) =
1

1 + x2
.



CHAPITRE 3. FONCTIONS USUELLES 21

−1 0 1 2 3

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0 f(x) = arccos(x)

f(x) = cos(x)
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f(x) = arctan(x)

f(x) = tan(x)

Figure 3.4 – Graphes des fonctions arccos, arcsin et arctan.

Démonstration. On admet que ces fonctions sont dérivables (elles sont dérivables car fonctions réci-
proques de fonctions dérivables de dérivée ne changeant pas de signe, ce résultat sera démontré dans
le cours d’Analyse 2).

Calculons la dérivée de arcsin. Pour x ∈]− 1, 1[ on a l’identité

sin(arcsinx) = x.

En dérivant on obtient
arcsin�(x) cos(arcsinx) = 1.

On a de plus cos2(arcsinx) + sin2(arcsinx) = 1 et comme arcsinx ∈
�
−π

2 ,
π
2

�
on a cos(arcsinx) > 0 et

donc
cos(arcsinx) =

�
1− sin2(arcsinx) =

�
1− x2,

ce qui donne le résultat.
Le calcul de la dérivée de arccos est similaire. Calculons maintenant la dérivée de arctan. Pour

x ∈ R on a l’identité
tan(arctanx) = x.

En dérivant, on obtient
arctan�(x)(1 + tan2(arctanx)) = 1,

et comme tan2(arctanx) = x2 et 1 + x2 > 0 on en déduit bien

arctan�(x) =
1

1 + x2
.
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3.5 Fonctions exponentielle et logarithme

On admet le théorème suivant.

Théorème 3.10. Il existe une unique fonction f : R →]0,∞[ dérivable sur R vérifiant f(0) = 1 et
pour tout x ∈ R

f �(x) = f(x).

Cette fonction est appelée fonction exponentielle et est notée

exp : R → ]0,∞[
x �→ exp(x)

.

Remarque 3.11. On note souvent ex au lieu de exp(x).

Proposition 3.12. Pour tous x, y ∈ R et n ∈ N on a

1.
exp(x+ y) = exp(x) exp(y),

2.
exp(x− y) =

exp(x)

exp(y)
,

3.
exp(nx) = (exp(x))n.

Proposition 3.13. On a les limites suivantes :

lim
x→−∞

exp(x) = 0, lim
x→+∞

exp(x) = +∞.

Remarque 3.14. Comme on le verra dans le chapitre 5, limx→+∞ f(x) = +∞ signifie

∀M ∈ R, ∃A ∈ R, ∀x ∈ R, x � A ⇒ f(x) � M,

alors que limx→−∞ f(x) = � signifie

∀ε > 0, ∃A ∈ R, ∀x ∈ R, x � A ⇒ |f(x)− �| � ε.

Proposition 3.15. La fonction exponentielle est strictement croissante sur R, c’est une bijection de
R dans ]0,∞[.

On peut donc définir la bijection réciproque de la fonction exponentielle.

Définition 3.16. On définit la fonction logarithme népérien et on note ln :]0,∞[→ R la bijection
réciproque de la fonction exponentielle. On a donc les égalités suivantes :

ln(exp(x)) = x ∀x ∈ R et exp(ln(y)) = y ∀y ∈]0,∞[.

Proposition 3.17. Pour tous x, y ∈]0,∞[ et n ∈ N on a

1.
ln(xy) = ln(x) + ln(y),

2.
ln

�
x

y

�
= ln(x)− ln(y),

3.
ln(xn) = n ln(x).
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Figure 3.5 – Graphes des fonctions exp et ln.

Proposition 3.18. On a les limites suivantes :

lim
x→0
x>0

ln(x) = −∞ et lim
x→+∞

ln(x) = +∞.

Remarque 3.19. Si I est un intervalle, f : I → R une fonction et x0 un bord de I, lim
x→x0
x>x0

f(x) = −∞

signifie
∀M ∈ R, ∃δ > 0, ∀x ∈ I, x0 < x < x0 + δ ⇒ f(x) � M.

Proposition 3.20. La fonction ln est dérivable et strictement croissante sur ]0,+∞[, avec pour tout
x ∈]0,+∞[

ln�(x) =
1

x
.

Démonstration. Comme pour les fonction trigonométriques réciproques on admet que ln est dérivable.
Calculons sa dérivée. Pour tout x ∈]0,+∞[ on a exp(ln(x)) = x, et donc en dérivant on obtient

ln�(x) exp(ln(x)) = 1,

ce qui implique le résultat puisque exp(ln(x)) = x > 0.

3.6 Fonctions hyperboliques

Définition 3.21. On définit sur R les fonctions cosinus hyperbolique (notée cosh), sinus hyper-
bolique (notée sinh) et tangent hyperbolique (notée tanh) comme suit : pour tout x ∈ R

cosh(x) =
ex + e−x

2
, sinh(x) =

ex − e−x

2
, tan(x) =

sinh(x)

cosh(x)
=

ex − e−x

ex + e−x
.

Proposition 3.22. Les fonctions cosh, sinh et tanh ont les propriétés suivantes.

cosh sinh tanh

Domaine de définition : R R R

Parité : paire impaire impaire

Dérivée : sinh cosh 1− tanh2

Limite en +∞ : +∞ +∞ 1

Limite en −∞ : +∞ −∞ −1
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Figure 3.6 – Graphes des fonctions cosh, sinh et tanh.

Proposition 3.23. Pour tous x, y ∈ R on a

cosh2(x)− sinh2(x) = 1,

cosh(x) + sinh(x) = ex et cosh(x)− sinh(x) = e−x,

cosh(x+ y) = cosh(x) cosh(y) + sinh(x) sinh(y),

sinh(x+ y) = cosh(x) sinh(y) + sinh(x) cosh(y),

cosh(2x) = cosh2(x) + sinh2(x) = 1 + 2 sinh2(x) = 2 cosh2(x)− 1,

sinh(2x) = 2 cosh(x) sinh(x).

Démonstration. Pour la première égalité il suffit de voir que pour x, y ∈ R on a

cosh2(x)− sinh2(x) =
e2x + e−2x + 2exe−x

4
− e2x + e−2x − 2exe−x

4
= 1.

La deuxième ligne est obtenue par un calcul immédiat. Pour la troisième on a pour x, y ∈ R

cosh(x) cosh(y) =
ex+y + ex−y + e−x+y + e−x−y

4
,

sinh(x) sinh(y) =
ex+y − ex−y − e−x+y + e−x−y

4
,

et donc

cosh(x) cosh(y) + sinh(x) sinh(y) =
ex+y + e−(x+y)

2
= cosh(x).

Le reste est obtenu à l’aide de calculs similaires.

3.7 Fonctions puissance

Définition 3.24.

1. Pour a ∈ N on définit
xa = x · x · . . . · x� �� �

a fois

∀x ∈ R,

avec la convention x0 = 1. La fonction x �→ xa est polynomiale, elle est paire si a est pair,
impaire si a est impair.
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2. Pour a ∈ Z \ N on définit

xa =
1

x−a
∀x ∈ R∗.

3. Si a = 1/n avec n ∈ N∗, xa est la racine n-ième de x (l’unique y tel que yn = x). Si n est pair
elle est définie pour tout x � 0, si n est impair elle est définie pour tout x ∈ R.

4. Si a ∈ R on définit
xa = exp(a ln(x)) ∀x ∈ R∗

+.

Remarque 3.25. La définition du point 4. généralise les définitions des points précédents lorsque
x ∈ R∗

+. En effet on a par exemple, pour x ∈ R∗
+ et a ∈ N,

exp(a ln(x)) = (exp(ln(x)))a = x · x · . . . · x.

Proposition 3.26. Les propriétés suivantes sont vraies dans tous les cas, pour x, y, a, b,∈ R tels que
xa, xb, xab et ya existent (et x �= 0 pour le denier point) :

(1)a = 1, xa · xb = xa+b, (xa)b = xab, (xy)a = xaya, x−a =
1

xa
.

Proposition 3.27. Pour tout a ∈ R, la fonction x �→ xa est dérivable sur R∗
+, de dérivée x �→ axa−1.

Remarque 3.28. Il faut faire attention à ne pas confondre les fonctions puissances définies sur ]0,∞[
par f(x) = xa = exp(a ln(x)) avec a ∈ R, et les fonctions g, variantes de la fonction exponentielle,
définies sur R par g(x) = bx = exp(ln(b)x), pour b > 0.

3.8 Croissance comparée

La résultat suivant sera démontré dans le cadre des suites dans le chapitre 4.

Théorème 3.29. Pour tous a, b, c ∈ R∗
+,

lim
x→+∞

exp(ax)

xb
= +∞,

lim
x→+∞

exp(ax)

(ln(x))c
= +∞,

et

lim
x→+∞

xb

(ln(x))c
= +∞.



Chapitre 4

Suites réelles

4.1 Définitions

Définition 4.1. On appelle suite réelle une application de N dans R. On note (un)n∈N la fonction qui
associe à tout n ∈ N le réel un.

Exemple 4.2. On définit la suite (un)n∈N par

∀n ∈ N, un = 2n+ 1.

Définition 4.3. Pour deux suites (un)n∈N et (vn)n∈N et un réel λ on peut définir
1. la somme (un + vn)n∈N,
2. le produit (unvn)n∈N,
3. la multiplication par un réel (λun)n∈N.

Remarque 4.4. On peut ne pas définir une suite sur N mais sur N∗, ou sur l’ensemble des entiers
supérieurs ou égaux à 2... On note alors (un)n � 1, (un)n � 2...

Définition 4.5. On dit qu’une suite (un)n∈N est
1. croissante si

∀n ∈ N, un+1 � un,

2. décroissante si
∀n ∈ N, un+1 � un,

3. monotone si elle est croissante ou décroissante,
4. majorée si

∃M ∈ R, ∀n ∈ N, un � M,

5. minorée si
∃m ∈ R, ∀n ∈ N, un � m,

6. bornée si elle est majorée et minorée.

Remarque 4.6. Si une suite (un)n∈N est croissante et si m � n on a um � un. A l’inverse si elle est
décroissante et si m � n on a um � un.

Définition 4.7. Une propriété P (n) dépendant de n ∈ N est dite vraie à partir d’un certain rang
si

∃N ∈ N, ∀n ∈ N, n � N ⇒ P (n)est vraie.

Exemple 4.8. On considère la suite (un)n � 1 définie par

∀n ∈ N, un = 2n − 10n.

On a u0 = 1, u1 = −8, u2 = −16, donc cette suite n’est pas croissante. Mais pour n ∈ N on a

un+1 − un = 2 · 2n − 10n− 10− (2n − 10n) = 2n − 10,

et comme 2n − 10 � 0 dès que n � 4, cette suite est croissante à partir d’un certain rang.

26
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4.2 Suites classiques

Définition 4.9. Une suite (un)n∈N est dite arithmétique de progression r ∈ R si elle est définie
par la relation de récurrence

un+1 = un + r, ∀n ∈ N.

Remarque 4.10. Si (un)n∈N est une suite arithmétique de progression r ∈ R on a, pour tout n ∈ N,

un = u0 + nr, et
n�

k=0

uk = (n+ 1)u0 +
n(n+ 1)

2
r.

Définition 4.11. Une suite (un)n∈N est dite géométrique de raison q ∈ R∗ si elle est définie par
la relation de récurrence

un+1 = qun, ∀n ∈ N.

Remarque 4.12. Si (un)n∈N est une suite géométrique q ∈ R on a, pour tout n ∈ N,

un = qnu0, et
n�

k=0

uk =





(n+ 1)u0 si q = 1

qn+1−1
q−1 u0 sinon

.

Définition 4.13. Une suite (un)n∈N est dite arithmético-géométrique de paramètres q ∈ R∗ et
r ∈ R si elle est définie par la relation de récurrence

un+1 = qun + r, ∀n ∈ N.

Remarque 4.14. Soit (un)n∈N une suite arithmético-géométrique de paramètres q ∈ R∗ et r ∈ R.

1. Si q = 1 (un)n∈N est une suite arithmétique.

2. Si q �= 1, l’équation d’inconnue a ∈ R
a = qa+ r

a comme unique solution
a =

r

1− q
,

et on a
un+1 − a = qun + r − (qa+ r) = q(un − a),

donc la suite (un − a)n∈N est une suite géométrique de raison q. Ainsi pour tout n ∈ N

un = a+ un − a = a+ qn(u0 − a),

et
n�

k=0

uk =
n�

k=0

�
a+ (uk − a)

�
= (n+ 1)a+

qn+1 − 1

q − 1
(u0 − a).

Remarque 4.15. Les suites classiques présentées dans cette section sont des exemples simples de
suites dites récurrentes d’ordre 1, un+1 étant défini comme une fonction de un. Les suites récurrentes
apparaissent naturellement dans le calcul de complexité d’algorithmes définis eux-même par récurrence,
la complexité d’un algorithme correspondant au nombre d’opérations élémentaires nécessaires à sa mise
en œuvre.

Par exemple, pour calculer n!, on peut calculer (n− 1)!, et le multiplier par n. Mais pour calculer
(n− 1)! on peut calculer (n− 2)! et le multiplier par n− 1, etc... Il s’agit d’un algorithme récursif. Si
l’on note un le nombre d’opérations (ici multiplications) nécessaires pour calculer n!, on a simplement
un+1 = un + 1 et u1 = 0, (un)n � 1 est une suite arithmétique.

Pour l’exemple classique des tours de Hanoï (voir la page Wikipedia dédiée), la complexité est
arithmético-géométrique, un+1 = 2un + 1.
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4.3 Convergence de suite

Définition 4.16. Soit (un)n∈N une suite et � ∈ R. On dit que la suite (un)n∈N tend vers � (ou a
pour limite �) si

∀ε > 0, ∃N ∈ N, ∀n ∈ N, n � N ⇒ |un − �| � ε.

On note alors un −→
n→+∞

� ou lim
n→+∞

un = �.

Remarque 4.17.
1. L’ordre est important dans les quantificateurs, dans la définition précédente N dépend de ε.
2. Comme |un − �| � ε équivaut à un ∈ [�− ε, �+ ε], dire que la suite (un)n∈N tend vers � revient

à dire que pour tout ε > 0 l’intervalle [�− ε, �+ ε] contient les termes de (un)n∈N à partir d’un
certain rang.

3. Pour une suite (un)n∈N et � ∈ R, (un)n∈N ne tend pas vers � si

∃ε > 0, ∀N ∈ N, ∃n ∈ N, n � N et |un − �| > ε.

Exemple 4.18. La suite (un)n∈N définie pour n ∈ N par un = 1
n+1 tend vers 0. En effet, pour ε > 0

on a |un − 0| = 1
n+1 � ε dès que n � 1

ε − 1, on peut donc prendre N = E
�
1
ε

�
.

Définition 4.19.
1. On dit qu’une suite (un)n∈N converge (ou est convergente) s’il existe � ∈ R tel que (un)n∈N

tend vers �. Ainsi une suite (un)n∈N converge si et seulement si

∃� ∈ R, ∀ε > 0, ∃N ∈ N, ∀n ∈ N, n � N ⇒ |un − �| � ε,

ce qui équivaut à

∃� ∈ R, ∀ε > 0, {n ∈ N : |un − �| > ε} est de cardinal fini.

2. On dit qu’une suite (un)n∈N diverge (ou est divergente) si elle n’est pas convergente. Ainsi une
suite (un)n∈N diverge si et seulement si

∀� ∈ R, ∃ε > 0, ∀N ∈ N, ∃n ∈ N, n � N et |un − �| > ε,

ce qui équivaut à

∀� ∈ R, ∃ε > 0, {n ∈ N : |un − �| > ε} est de cardinal infini.

Exemple 4.20. La suite (un)n∈N définie pour tout n ∈ N par un = (−1)n diverge. En effet, pour tout
� � 0 on a pour tout k ∈ N

|u2k+1 − �| = |− 1− �| = 1 + � >
1

2
,

donc l’ensemble {n ∈ N : |un − �| > 1/2} est de cardinal infini. De même, pour � � 0 on a pour tout
k ∈ N

|u2k − �| = |1− l| = 1− l >
1

2
,

et donc l’ensemble {n ∈ N : |un − �| > 1/2} est de cardinal infini.

Théorème 4.21 (Unicité de la limite). La limite d’une suite (un)n∈N, si elle existe, est unique. Autr-
ment dit si pour �1, �2 ∈ R on a un −→

n→+∞
�1 et un −→

n→+∞
�1, alors �1 = �2.

Démonstration. Soient �1, �2 ∈ R et une suite (un)n∈N qui tend vers �1 et �2. Il suffit de montrer que
pour tout ε > 0 on a |�1 − �2| � ε, puisque que cela implique bien que �1 = �2.

Soit ε > 0. Comme un −→
n→+∞

�1 il existe N1 tel que

∀n ∈ N, n � N1 ⇒ |un − �1| �
ε

2
.
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De même, comme un −→
n→+∞

�2 il existe N2 tel que

∀n ∈ N, n � N2 ⇒ |un − �2| �
ε

2
.

Définissions N = max(N1, N2). Comme N � N1 et N � N2 on en déduit bien, en utilisant l’inégalité
triangulaire, que

|�1 − �2| = |�1 − uN − (�2 − uN )|
� |�1 − uN |+ |�2 − uN |
� ε

2
+

ε

2
� ε.

Théorème 4.22. Toute suite convergente est bornée.

Démonstration. Soit (un)n∈N une suite qui converge vers � ∈ R. On veut montrer que l’ensemble
{|un| : n ∈ N} est majoré. Puisque (un)n∈N converge vers � il existe N ∈ N tel que pour tout n ∈ N
on a

n � N ⇒ |un − �| � 1.

Donc, par inégalité triangulaire inversée, pour tout n � N on a

|un|− |�| � ||un|− |�|| � |un − �| � 1,

et ainsi, pour tout n � N on a |un| � |�| + 1. De plus l’ensemble {|un| : n ∈ {0, . . . , N − 1}} est de
cardinal fini et est donc majoré par M = max(|u0|, . . . , |uN−1|). Au final on a bien montré que pour
tout n ∈ N on a

|un| � max(M, |�|+ 1).

4.4 Opérations sur les limites

Théorème 4.23. Soient deux suites (un)n∈N et (vn)n∈N, deux réels �1 et �2 tels que un −→
n→+∞

�1 et
vn −→

n→+∞
�2 et deux réels a et b. Alors

aun + bvn −→
n→+∞

a�1 + b�2.

Démonstration. Ce résultat est évident si a = b = 0. Supposons maintenant que |a| + |b| > 0 et
considérons ε > 0. Comme un −→

n→+∞
�1 il existe N1 ∈ N tel que pour tout n ∈ N,

n � N1 ⇒ |un − �1| �
ε

|a|+ |b| .

De même, comme vn −→
n→+∞

�2 il existe N2 ∈ N tel que pour tout n ∈ N,

n � N2 ⇒ |vn − �2| �
ε

|a|+ |b| .

Mais alors, en définissant N = max(N1, N2), pour tout n � N on obtient, en utilisant l’inégalité
triangulaire,

|aun + bvn − (a�1 + b�2)| = |a(un − �1) + b(vn − �2)|
� |a||un − �1|+ |b||vn − �2|
� |a| ε

|a|+ |b| + |b| ε

|a|+ |b|
� ε.
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Théorème 4.24. Soient deux suites (un)n∈N et (vn)n∈N et deux réels �1 et �2 tels que un −→
n→+∞

�1 et
vn −→

n→+∞
�2. Alors

unvn −→
n→+∞

�1�2.

Démonstration. Comme la suite (un)n∈N converge elle est bornée et il existe donc M > 0 tel que
|un| � M pour tout n ∈ N. De plus comme un −→

n→+∞
�1 il existe N1 ∈ N tel que pour tout n ∈ N,

n � N1 ⇒ |un − �1| �
ε

|l2|+M
,

et de même, comme vn −→
n→+∞

�2, il existe N2 ∈ N tel que pour tout n ∈ N,

n � N2 ⇒ |vn − �2| �
ε

M + |l2|
.

En définissant N = max(N1, N2), pour tout n � N on obtient

|unvn − �1�2| = |un(vn − �2) + �2(un − �1)|
� |un||vn − �2|+ |�2||un − �1|
� M

ε

M + |�2|
+ |�2|

ε

M + |�2|
� ε.

Théorème 4.25. Soit une suite (un)n∈N et un réel � �= 0 tel que un −→
n→+∞

� . Alors un est non nul à
partir d’un certain rang et on a de plus

1

un
−→

n→+∞
1

�
.

Démonstration. Commençons par montrer que un est non nul à partir d’un certain rang. Comme
un −→

n→+∞
� il existe N1 ∈ N tel que pour tout n ∈ N,

n � N1 ⇒ |un − �| � |�|
2
.

Mais alors, pour tout n � N1 on a

|�|− |un| � ||�|− |un|| � |�− un| �
|�|
2
,

et donc |un| � |�|
2 pour tout n � N1. On a donc bien montré que un est non nul à partir d’un certain

rang.
Montrons maintenant que 1

un
−→

n→+∞
1
� . Considérons ε > 0. Comme un −→

n→+∞
� il existe N2 ∈ N tel

que pour tout n ∈ N,

n � N2 ⇒ |un − �| � �2ε

2
.

En définissant N = max(N1, N2) on obtient alors, pour tout n � N ,

����
1

un
− 1

�

���� =
|un − �|
|un| · |�|

�
�2ε
2

|�|
2 · |�|

� ε.

Remarque 4.26. Si une suite (un)n∈N converge vers un réel � alors (|un|)n∈N converge vers |�| (c’est
une conséquence directe de l’inégalité triangulaire inverse).
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4.5 Limites de suites et inégalités

Théorème 4.27. Soient (un)n∈N et (vn)n∈N deux suites vérifiant un � vn pour tout n ∈ N, et �1, �2
des réels tels que un −→

n→+∞
�1 et vn −→

n→+∞
�2. Alors �1 � �2.

Démonstration. Il suffit de montrer que �2 − �1 � − ε pour tout ε > 0.
Soit ε > 0. Comme un −→

n→+∞
�1 et vn −→

n→+∞
�2 il existe N1, N2 ∈ N tels que pour tout n ∈ N on a

n � N1 ⇒ un − �1 � − ε

2
,

et
n � N2 ⇒ vn − �2 �

ε

2
.

Mais alors, en définissant N = max(N1, N2), on a �2 � − ε
2 + vN et −�1 � − ε

2 − vN , ce qui implique,
comme vN − uN � 0,

�2 − �1 � − ε+ vN − uN � − ε.

Remarque 4.28. Attention ce résultat n’est pas vrai pour des inégalités strictes, par exemple un =
− 1

n+1 et vn = 1
n+1 vérifient un < vn pour tout n ∈ N et lim

n→+∞
un = lim

n→+∞
vn = 0.

Corollaire 4.29. Soient (un)n∈N une suite et � ∈ R tel que un −→
n→+∞

�.

1. S’il existe M ∈ R tel que un � M pour tout n ∈ N, alors � � M .

2. S’il existe m ∈ R tel que un � m pour tout n ∈ N, alors � � m.

Démonstration. Il suffit d’appliquer le théorème précédent en prenant une des deux suites constante.

Théorème 4.30 (Théorème dit « des gendarmes »). Soient (un)n∈N, (vn)n∈N et (wn)n∈N trois suites
vérifiant pour tout n ∈ N

un � vn � wn.

On suppose qu’il existe � ∈ R tel que un −→
n→+∞

� et wn −→
n→+∞

�. Alors on a

vn −→
n→+∞

�.

Exemple 4.31. Soit (vn)n∈N la suite définie pour tout n ∈ N par vn = sin(n)
n+1 . Alors en définissant les

suites (un)n∈N et (wn)n∈N par vn = − 1
n+1 et wn = 1

n+1 pour tout n ∈ N, on a un −→
n→+∞

0, wn −→
n→+∞

0

et un � vn � wn pour tout n ∈ N. On en déduit que vn −→
n→+∞

0.

Démonstration. Soit ε > 0. Comme un −→
n→+∞

� et wn −→
n→+∞

�, il existe N1, N2 ∈ R tels que pour tout
n ∈ N on a

n � N1 ⇒ un − � � − ε,

et
n � N2 ⇒ wn − � � ε.

Mais alors, pour tout n � max(N1, N2) on a

�− ε � un � vn � wn � �+ ε,

et donc pour tout n � max(N1, N2) on a |vn − �| � ε.
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4.6 Convergence et monotonie

Théorème 4.32. Toute suite croissante et majorée est convergente. Toute suite décroissante et minorée
et convergente.

Idée de preuve. La preuve de ce résultat est admise. L’idée, par exemple dans le cas d’une suite (un)n∈N
croissante et majorée, est de montrer que (un)n∈N converge vers la borne supérieure de l’ensemble
{un : n ∈ N}, qui admet bien une borne supérieure puisqu’il est non vide et majoré (pour plus de
détails, voir par exemple [2]).

Remarque 4.33. Attention, il existe des suite croissantes non convergentes (par exemple un = n) et
des suite convergentes non monotones (par exemple un = (−1)n

n+1 ).

Définition 4.34. On dit que deux suites (un)n∈N et (vn)n∈N sont adjacentes si
1. (un)n∈N est croissante,
2. (vn)n∈N est décroissante,
3. un − vn −→

n→+∞
0.

Théorème 4.35. Deux suites adjacentes convergent et ont la même limite.

Démonstration. Soient (un)n∈N et (vn)n∈N deux suites adjacentes. Alors la suite (wn)n∈N définie par
wn = vn − un pour tout n ∈ N est décroissante. En effet, pour tout n ∈ N,

wn+1 − wn = vn+1 − un+1 − (vn − un) = vn+1 − vn − (un+1 − un) � 0,

puisque (un)n∈N est croissante alors que (vn)n∈N est décroissante. Ainsi, comme de plus wn −→
n→+∞

0,
on a wn � 0, c’est-à-dire un � vn, pour tout n ∈ N. Mais donc un � v0 pour tout n ∈ N, la suite
(un)n∈N est donc croissante et majorée, elle converge donc vers un �1 ∈ R. De même, vn � u0 , la suite
(vn)n∈N est donc décroissante et minorée, elle converge donc vers un �2 ∈ R. Finalement,

0 = lim
n→+∞

wn = lim
n→+∞

un − lim
n→+∞

vn = �1 − �2,

et donc (un)n∈N et (vn)n∈N convergent vers la même limite.

Exemple 4.36. Soit x ∈ R. On définit l’approximation décimale par défaut de x à 10−n près par

un =
E(10nx)

10n
,

et l’approximation décimale par excès de x à 10−n près par

vn =
E(10nx)

10n
+

1

10n
,

(par exemple l’approximation décimale par défaut de 3.17641 à 10−2 près est 3.17, alors que son ap-
proximation décimale par excès à 10−2 près est 3.18).

On a bien un − vn = − 1
10n n −→

n→∞
0 (il s’agit en fait d’une conséquence du corollaire 4.48). De plus,

pour n ∈ N, comme 10E(10nx) est un entier inférieur ou égal à 10 · 10nx = 10n+1x, on a

10E(10nx) � E(10n+1x),

et donc, en divisant par 10n+1,
un � un+1.

La suite (un)n∈N est donc croissante. Enfin, pour n ∈ N, comme 10(E(10nx) + 1) est un entier stric-
tement supérieur à 10 · 10nx = 10n+1x, on a

10(E(10nx) + 1) � E(10n+1x) + 1,

et donc, en divisant par 10n+1,
vn � vn+1.

La suite (vn)n∈N est donc décroissante. Ces deux suite sont adjacentes et convergent donc vers une
même limite. Comme un � x � vn pour tout n ∈ N cette limite est x.
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4.7 Suites extraites

L’idée est, étant donnée une suite (un)n∈N, de sélectionner certains termes de cette suite pour
définir une nouvelle suite, appelée suite extraite ou sous-suite.

Définition 4.37. On appelle une extraction une fonction ϕ : N → N strictement croissante. Si
(un)n∈N est une suite, une sous-suite ou suite extraite de (un)n∈N est une suite de la forme
(uϕ(n))n∈N où ϕ est une extraction.

Exemples 4.38. Si (un)n∈N est une suite, (u2n)n∈N, (u2n+1)n∈N, (u2n)n∈N sont des sous-suites de
(un)n∈N.

La démonstration de la propriété suivante est immédiate.

Proposition 4.39. Soit (uϕ(n))n∈N une sous-suite de (un)n∈N.

1. Si (un)n∈N est croissante, (uϕ(n))n∈N l’est également.

2. Si (un)n∈N est décroissante, (uϕ(n))n∈N l’est également.

3. Si (un)n∈N est majorée, (uϕ(n))n∈N l’est également.

4. Si (un)n∈N est minorée, (uϕ(n))n∈N l’est également.

5. Si (un)n∈N converge vers un réel �, (uϕ(n))n∈N converge également vers �.

Remarque 4.40. Une suite (un)n∈N peut avoir une sous-suite qui converge même si elle-même ne
converge pas. Par exemple, si un = (−1)n pour tout n ∈ N, alors la suite (u2n)n∈N converge vers 1 et
la suite (u2n+1)n∈N converge vers −1.

Théorème 4.41 (Bolzano Weierstrass). Toute suite bornée admet une sous-suite convergente.

Idée de preuve. La preuve de ce résultat est admise. Une preuve possible, pour une suite (un)n∈N
bornée, est de construire une suite de segments emboîtés les uns dans les autres, de largeur tendant
vers 0, et contenant chacun une infinité de termes de (un)n∈N. Pour plus de détails voir [2].

Exemple 4.42. La suite (un)n∈N définie par un = sin(n) pour tout n ∈ N admet une sous-suite
convergente.

4.8 Limites infinies

Définition 4.43. Soit (un)n∈N une suite.

1. On dit que (un)n∈N tend vers +∞ (ou diverge vers +∞) si

∀A ∈ R, ∃N ∈ N, ∀n ∈ N, n � N ⇒ un � A.

On note alors un −→
n→+∞

+∞ ou lim
n→+∞

un = +∞.

2. On dit que (un)n∈N tend vers −∞ (ou diverge vers −∞) si

∀A ∈ R, ∃N ∈ N, ∀n ∈ N, n � N ⇒ un � A.

On note alors un −→
n→+∞

−∞ ou lim
n→+∞

un = −∞.

Exemple 4.44. La suite (un)n∈N définie par un = n2 pour tout n ∈ N tend vers +∞. En effet si
A ∈ R− on a un � A pour tout n ∈ N, alors que si A � 0 on a un � A dès que n �

√
A.

Théorème 4.45. Soit (un)n∈N une suite croissante. Alors il y a deux possibilités :

1. soit (un)n∈N converge vers une limite � ∈ R,

2. soit (un)n∈N diverge vers +∞.
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