Mathématiques - DS n°2 CUPGE

Corrigé

Exercice 1 : Soit X un ensemble.

- 1. Donner un exemple d'une injection $X \to \mathcal{P}(X)$, où $\mathcal{P}(X)$ est l'ensemble des parties de X.
- 2. Définir quand deux ensembles X et Y sont équipotents.
- 3. Dans cette partie, on s'apprête à montrer que X et $\mathcal{P}(X)$ ne sont pas équipotents. Par l'absurde, on suppose que $f: X \to \mathcal{P}(X)$ est une surjection. On pose $Y = \{x \in X : x \notin f(x)\}$.
 - (a) Montrer qu'il y a $x_0 \in X$ avec $f(x_0) = Y$.
 - (b) Etudier la question si $x_0 \in f(x_0)$.
 - (c) Conclure.

Solution.

- 1. On peut prendre l'application $x \mapsto \{x\}$ de X dans $\mathcal{P}(X)$.
- 2. X et Y sont équipotents s'il y a une bijection entre les deux.
- 3. (a) f est surjectif, donc $\operatorname{im}(f) = \mathcal{P}(X)$. Comme $Y \in \mathcal{P}(X)$ il y a $x_0 \in X$ avec $f(x_0) = Y$.
 - (b) Supposons que $x_0 \in f(x_0)$. Alors $x_0 \in Y = \{x \in X : x \notin f(x)\}$. Donc $x_0 \notin f(x_0)$, une contradiction.
 - Supposons que $x_0 \notin f(x_0)$. Alors $x_0 \in \{x \in X : x \notin f(x)\} = Y = f(x_0)$, encore un contradiction.
 - (c) Les deux possibilités étant contradictoire, l'hypothèse que f soit surjectif est absurde. Ainsi X et $\mathcal{P}(X)$ ne sont pas équipotents.

Exercice 2:

1. Montrer que les propositions suivantes sont équivalentes :

a)
$$(P \text{ et } Q) \text{ ou } (Q \Rightarrow R)$$
 b) $\text{non}(P \Rightarrow Q) \text{ ou } R.$

- 2. Montrer qu'une partie $X \subseteq \mathbb{N}$ est infini si et seulement si pour tout $n \in \mathbb{N}$ il y a $x \in X$ avec $x \geq n$.
- 3. Soient $X \subseteq \mathbb{N}$ et $Y \subseteq \mathbb{N}$. Exprimer avec quantificateurs en langage formel :

Si
$$\mathbb{N} \subseteq X \cup Y$$
, alors X est infini ou Y est infini.

Vous ne pouvez quantifier que sur les entiers. Il peut être utile d'utiliser la partie 2.

Solution.

1. Par table de vérité :

P	Q	R	P et Q	$Q \Rightarrow R$	a	$P \Rightarrow Q$	$non(P \Rightarrow Q)$	b)
\overline{V}	V	V	V	V	V	V	F	V
V	V	F	V	F	V	V	F	F
V	F	V	F	V	V	F	V	V
V	F	F	F	V	V	F	V	V
F	V	V	F	V	V	V	F	V
F	V	F	F	F	F	V	F	F
F	F	V	F	V	V	V	F	V
F	$\mid F \mid$	$\mid F \mid$	F	V	V	V	F	F

Les colonnes a) et b) étant différentes, les deux propositions ne sont pas équivalentes. (Remarque : La deuxième proposition aurait dû être (non $P \Rightarrow Q$) ou R. Celle-ci est équivalente à a).)

2. D'après un théorème du cours, une partie X de $\mathbb N$ est fini si et seulement si elle est majorée. Mais x est majorée si et seulement s'il y a $n \in \mathbb N$ telle que pour tout $x \in X$ on a $x \le n$, et donc x < n + 1. L'énoncé en découle par contraposée.

Alternative. Soit X fini. Alors max X existe; si $n = 1 + \max X$, alors il n'y a pas de $x \in X$ avec $x \ge n$. Réciproquement, s'il a $n \in \mathbb{N}$ tel que pour tout $x \in X$ on a x < n, alors $X \subseteq [\![1,n]\!]$; une partie d'un ensemble est fini, donc X est fini.

3.

$$\left[\forall x \in \mathbb{N} \left(x \in X \text{ ou } x \in Y\right)\right] \Rightarrow \left(\left[\forall n \in \mathbb{N} \,\exists \, x \in \mathbb{N} \left(x \in X \text{ et } x \geq n\right)\right] \text{ ou } \left[\forall \, n \in \mathbb{N} \,\exists \, x \in \mathbb{N} \left(x \in Y \text{ et } x \geq n\right)\right]\right).$$

Exercice 3: Soit $n \ge 0$ entier. Combien y a-t-il de bijections f de $\{1, \ldots, 6n\}$ dans lui-même possédant :

- 1. la propriété : n est pair $\Rightarrow f(n)$ est pair ?
- 2. la propriété : n est divisible par $3 \Rightarrow f(n)$ est divisible par 3?
- 3. ces deux propriétés à la fois?

Solution.

1. Soit X l'ensemble de bijections de $\{1, \ldots, 6n\}$ dans lui-même tel que f(n) est pair pour n pair. Alors pour $f \in X$ on a f(n) est impair pour n impair.

Soit X_i l'ensemble des bijections de $\{1,3,\ldots,6n-1\}$ dans lui-même, et X_p l'ensemble des bijections de $\{2,4,\ldots,6n\}$ dans lui-même. Alors tout $f\in X$ se décompose en un $f_i\in X_i$ et un $f_p\in X_p$; inversement un $f_i\in X_i$ et un $f_p\in X_p$ donnent un $f\in X$.

Or, le nombre de bijections d'un ensemble de cardinal p est égal au nombre de p-arrangements d'un ensemble de cardinal p, soit p!. Ainsi

$$\operatorname{card}(X) = \operatorname{card}(X_i \times X_p) = \operatorname{card}(X_i) \cdot \operatorname{card}(X_p) = ((3n)!)^2.$$

2. Soit Y l'ensemble de bijections de $\{1, \ldots, 6n\}$ dans lui-même tel que f(n) est divisible par 3 pour n divisible par 3. Alors pour $f \in X$ on a f(n) n'est pas divisible par 3 si n n'est pas divisible par 3. Soit Y_d l'ensemble des bijections de $\{3, 6, \ldots, 6n\}$ dans lui-même, et X_n l'ensemble des bijections de $\{1, 2, 4, 5, 7, \ldots, 6n - 2, 6n - 1\}$ dans lui-même. Alors tout $f \in Y$ se décompose en un $f_d \in Y_d$ et un $f_n \in Y_n$; inversement un $f_d \in Y_d$ et un $f_n \in Y_n$ donnent un $f \in Y$. Ainsi

$$\operatorname{card}(Y) = \operatorname{card}(Y_d \times Y_n) = \operatorname{card}(Y_d) \cdot \operatorname{card}(Y_n) = (2n)! \cdot (4n)!$$

3. Soit Z l'ensemble des bijections de $\{1, \ldots, 6n\}$ dans lui-même tel que f(n) est pair pour n pair et f(n) est divisible par 3 pour n divisible par 3. Soit Z_6 l'ensemble des bijections de $\{6, 12, \ldots, 6n\}$ dans lui-même, Z_2 l'ensemble des bijections de $\{n \in [1, 6n] : n \text{ impair}, 3 \text{ divise } n\}$ dans lui-même, et Z_n l'ensemble des bijections de $\{n \in [1, 6n] : n \text{ impair}, 3 \text{ divise } n\}$ dans lui-même, et Z_n l'ensemble des bijections de $\{n \in [1, 6n] : n \text{ impair}, 3 \text{ ne divise pas } n\}$ dans lui-même. Alors tout $f \in Z$ se décompose en un $f_6 \in Z_6$, un $f_2 \in Z_2$, un $f_3 \in Z_3$ et un $f_n \in Z_n$; inversement un $f_6 \in Z_6$, un $f_2 \in Z_2$, un $f_3 \in Z_3$ et un $f_n \in Z_n$ donnent un $f \in Z$. Ainsi

$$\operatorname{card}(Z) = \operatorname{card}(Z_6 \times Z_2 \times Z_3 \times Z_n)$$
$$= \operatorname{card}(Z_6) \cdot \operatorname{card}(Z_2) \cdot \operatorname{card}(Z_3) \cdot \operatorname{card}(Z_n) = n! \cdot (2n)! \cdot n! \cdot (2n)! = (n! \cdot (2n)!)^2.$$

Exercice 4 : On considère la fonction réelle

$$f: x \mapsto \frac{\sin(x)}{\sinh(x)}.$$

- 1. Donner le domaine de définition maximal.
- 2. Déterminer la parité et la périodicité de f.
- 3. Calculer les limites de f en $\pm \infty$.
- 4. Calculer la fonction dérivée de f.

- 5. Montrer que pour tout entier $n \in \mathbb{Z}$ il y a exactement une solution a_n pour l'équation $\tan x = \tanh x$ dans l'intervalle $]-\frac{\pi}{2}+n\pi,\frac{\pi}{2}+n\pi[$.
- 6. De la partie 5., déduire le signe de f', et donner le tableau de variations de f.
- 7. Calculer $\lim_{x\to 0} \frac{\sinh x}{x}$. En déduire la limite de f en 0.
- 8. Calculer ses asymptôtes éventuelles.
- 9. Dresser le graphe de f.

Solution.

- 1. sin et sinh sont définis sur \mathbb{R} , et sinh x=0 ssi x=0. Don le domaine maximal est $D=\mathbb{R}^{\times}$.
- 2. sin et sinh sont impaires, donc f est paire. sin est périodique de période 2π mais sinh n'est pas périodique (mais tend vers $\pm \infty$), donc f n'a pas de périodicité.
- 3. $-1 \le \sin x \le 1$ pour tout x, et $\lim_{x \to \pm \infty} \sinh x = \pm \infty$. Donc $\lim_{x \to \pm \infty} f(x) = 0$.
- 4. $f'(x) = \frac{\cos x \sinh x \sin x \cosh x}{\sinh^2 x}.$
- 5. Pour tout $n \in \mathbb{Z}$, dans l'intervalle $]-\frac{\pi}{2}+n\pi, \frac{\pi}{2}+n\pi[$ la fonction $g(x)=\tan x-\tanh x$ est dérivable, avec $g'(x)=1+\tan^2 x-(1-\tanh^2 x)=\tan^2 x+\tanh^2 x>0$ pour $x\neq 0$. Donc g est strictement croissante. De plus, $\lim_{x\to n\pi\pm\pi/2}g(x)=\pm\infty$. D'après le théorème des valeurs intermédiaires, g a un unique zéro $a_n\in]-\frac{\pi}{2}+n\pi, \frac{\pi}{2}+n\pi[$. Ainsi a_n est l'unique point x dans l'intervalle où $\tan x=\tanh x$.
- 6. On pose $h(x) = \cos x \sinh x \sin x \cosh x = \cos x \cosh x (\tanh x \tan x)$ (pour $x \notin \frac{\pi}{2} + \pi \mathbb{Z}$). Le signe de f' est celui de h puisque $\sinh^2 \ge 0$. Or, h est continue. Si $\cos x = 0$, alors $\sin x \cosh x \ne 0$ et $h(x) \ne 0$. Donc h(x) = 0 ssi $\tanh x = \tan x$ ssi $x \in \{a_n : n \in \mathbb{Z}\}$. On a

$$h'(x) = -\sin x \sinh x + \cos x \cosh x - \cos x \cosh x - \sin x \sinh x = -2\sin x \sinh x.$$

Ainsi h'(x) = 0 ssi $x \in \pi \mathbb{Z}$ et le seul zéro commun de h et h' est 0. Donc h change de signe à chaque a_n y inclus en $a_0 = 0$ (par parité). Ceci donne comme tableau de variations :

7. On a $\lim_{x\to 0} \frac{\sinh x}{x} = \lim_{x\to 0} \frac{\sinh x - \sinh 0}{x-0} = \sinh'(0) = \cosh(0) = 1$. Donc

$$\lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{\sin x}{x} / \frac{\sinh x}{x} = \lim_{x \to 0} \frac{\sin x}{x} / \lim_{x \to 0} \frac{\sinh x}{x} = 1/1 = 1.$$

8. Il y a une asymptôte horizontale y = 0 en $\pm \infty$.

