Feuille d'exercices nº 9

Continuité et dérivabilité

Exercice 1. Soient $(a,b) \in \mathbb{R}^2$ tel que $a < b, x_0 \in [a,b[$ et $f: [a,b[\to \mathbb{R}]]$. On suppose que f est continue en x_0 et que $f(x_0) > 0$. Montrer qu'il existe un intervalle ouvert I inclus dans a, b et contenant a_0 , tel que $\forall x \in I, f(x) > 0.$

Solution: f est continue en $x_0: \forall \epsilon > 0, \exists \delta > 0$ tel que:

$$|x_0 - y| < \delta \implies |f(x_0) - f(y)| < \epsilon.$$

On choisit $\epsilon = \frac{f(x_0)}{2}$ alors il existe un $\delta > 0$ tel que $\forall y \in]a, b[, |x_0 - y| < \delta \implies |f(x_0) - f(y)| < \frac{f(x_0)}{2}$

$$\implies \forall y \in]x_0 - \delta, x_0 + \delta[, f(x_0) - f(y) < \frac{f(x_0)}{2}]$$

$$\implies \forall y \in]x_0 - \delta, x_0 + \delta[0, 0 < \frac{f(x_0)}{2} < f(y)]$$

Donc, en prenant l'ouvert $I = |x_0 - \delta, x_0 + \delta| \cap |a, b|$ on a bien : $f(y) > 0 \ \forall y \in I$.

Exercice 2. Étudier la continuité des fonctions suivantes sur leur domaine de définition :

1.
$$f:[0,2] \to \mathbf{R}$$
 définie par $f(x) = \begin{cases} x^2 & \text{si } 0 \le x \le 1\\ 2x - 1 & \text{si } 1 < x \le 2. \end{cases}$

- 2. $f: \mathbf{R} \to \mathbf{R}$ définie par $f(x) = x + \frac{\sqrt{x^2}}{x}$ si $x \neq 0$, et f(0) = 1.
- 3. $f: \mathbf{R}_+ \to \mathbf{R}$ définie par $f(x) = x E\left(\frac{1}{x}\right)$ si $x \neq 0$, et f(0) = 1, où E est la fonction «partie entière».
- 4. $f: [-2,2] \to \mathbf{R}$ définie par $f(x) = x^2 \sin\left(\frac{\pi}{x}\right)$ si $x \neq 0$ et f(0) = 0.

Solution:

1. f est continue sur [0,1[et à gauche de 1 par continuité de $x\mapsto x^2$ sur ${\bf R}.$

Ensuite, f est continue sur]1,2] et à droite de 1 par continuité de $x\mapsto 2x-1$ donc il suffit de tester la limite à droite en 1 :

$$\lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} 2x - 1 = 1 = f(1).$$

Par conséquent, f est continue sur [0, 2].

2.f est continue sur \mathbf{R}^* par continuité de la fonction $x\mapsto x+\frac{\sqrt{x^2}}{x}$, il faut donc tester la continuité

Sur
$$\mathbf{R}^{+*}$$
, $f(x) = x + \frac{|x|}{x} = x + 1$, donc $\lim_{x \to 0^+} f(x) = 1 = f(1)$.

Sur
$$\mathbf{R}^{+*}$$
, $f(x) = x + \frac{|x|}{x} = x + 1$, donc $\lim_{x \to 0^+} f(x) = 1 = f(1)$.
Sur \mathbf{R}^{-*} , $f(x) = x + \frac{|x|}{x} = x - 1$, donc $\lim_{x \to 0^+} f(x) = -1 \neq f(1)$. Conclusion: f est discontinue en 0.

3. Si $x \in]1, +\infty[$ on a $\frac{1}{x} \in]0, 1[$ et donc $f(x) = xE(\frac{1}{x}) = 0$ alors, f est continue sur $]1, +\infty[$.

Si mainteanant $x \in]\frac{1}{n+1}, \frac{1}{n}]$ on a $\frac{1}{x} \in [n; n+1[$, et donc f(x) = nx. f est alors continue sur les intervalles de la forme $\left[\frac{1}{n+1},\frac{1}{n}\right]$ il nous reste maintenant qu'à tester la continuité aux points de la forme 1/n avec

 $n \in \mathbf{N}$ et en 0.

On a $\lim_{x \to (1/n)^+} f(x) = \lim_{x \to (1/n)^+} x(n-1) = \lim_{x \to (1/n)^+} \frac{n-1}{n}$ et $\lim_{x \to (1/n)^-} f(x) = \lim_{x \to (1/n)^-} xn = 1$. Donc f n'est pas continue en (1/n), $\forall n \in \mathbf{N}$.

On a finalement, $\forall x \in]\frac{1}{n+1}, \frac{1}{n}], \frac{n}{n+1} < f(x) \le 1$ donc $\lim_{x \to 0^+} f(x) = 1 = f(1)$ ainsi f est continue à droite en 0.

4. f est continue sur $[-2,2] \setminus \{0\}$ par continuité de la fonction $x \mapsto x^2 \sin(\frac{\pi}{x})$

Maintenant il suffit de tester la continuité en 0.

On a $|f(x)| \le x^2$ donc $\lim_{x \to 0} f(x) = 0$.

Exercice 3.

1. Montrer que si $f: \mathbf{R} \to \mathbf{R}$ est une fonction continue telle que

$$\lim_{x \to +\infty} f(x) = +\infty \text{ et } \lim_{x \to -\infty} f(x) = -\infty,$$

alors f est surjective.

- 2. Soit $P \in \mathbf{R}[X]$ un polynôme de degré impair. Montrer que P admet une racine réelle.
- 3. Donner un exemple de polynôme à coefficients réels, de degré pair, n'admettant pas de racine réelle.

Solutions:

1. f est surjective $\Leftrightarrow \forall y \in \mathbf{R}, \exists x \in \mathbf{R} \ f(x) = y$.

Soit maintenant $y \in \mathbf{R}$, comme $\lim_{x \to +\infty} f(x) = +\infty$ alors il est existe $z \in \mathbf{R}$ tel que $f(z) \ge y$, de même il existe $p \in \mathbf{R}$ tel que $f(p) \le y$. Par le théorème des valeurs intermédiares il existe $x \in \mathbf{R}$ tel que f(x) = y. 2. Soit P un polynôme de degré impair, quitte à considérer -P, on peut supposer que le coefficient dominant est strictement positive, dans ce cas on a :

$$\lim_{x\to +\infty} P(x) = +\infty \quad \lim_{x\to -\infty} P(x) = -\infty$$

Donc P est surjective (d'après la question.1), en particulier P(x) = 0 admet ou moins une solution dans \mathbf{R} .

3. $x \mapsto x^2 + 1$ ou tout simplement $x \mapsto c$, avec c une constante $\neq 0$.

Exercice 4. Montrer qu'il existe $x \in \left[\frac{3\pi}{4}, \pi\right]$ tel que

$$\tan(x) + \frac{x}{3} = 0.$$

Solutions:

On considère la fonction f définie sur $\left[\frac{3\pi}{4},\pi\right]$ dans \mathbf{R} par : $f(x)=tan(x)+\frac{x}{3}$. On a $f(\pi)=tan(\pi)+\frac{\pi}{3}=0+\frac{\pi}{3}>0$, et $f(\frac{3\pi}{4})=tan(\frac{3\pi}{4})+\frac{3\pi}{4}=\frac{sin(\frac{3\pi}{4})}{cos(\frac{3\pi}{4})}+\frac{\pi}{4}=\frac{\sqrt{2}}{2}+\frac{\pi}{4}=-1+\frac{\pi}{4}<0$. Par le théorème des valeus intermédiares, il existe $x\in\left[\frac{3\pi}{4},\pi\right]$ tel que : f(x)=0.

Exercice 5.

- 1. Soit $f:[0,1] \to \mathbf{R}$ une application continue, telle que $f([0,1]) \subset [0,1]$. Montrer que f possède un point fixe.
- 2. Soit $g:[0,1] \to [0,1]$ une application. On suppose que pour tout $(x,y) \in [0,1]^2$ tels que $x \neq y$, on a |g(x) g(y)| < |x y|. Montrer que g admet un unique point fixe.

Solutions:

- 1. On considère la fonction h définie sur [0,1] dans **R** par : h(x) = f(x) x.
- On a $h(0) = f(0) 0 \ge 0$ et $h(1) = f(1) 1 \le 0$ alors il existe $x \in [0, 1]$ tel que h(x) = 0 et par conséquent, il existe $x \in [0, 1]$ tel que f(x) = x.
- 2. On remarque que $|g(x) g(y)| \le |x y| \, \forall x \ne y$. Donc, la fonction g est 1-Lipschitzienne, ce qui implique que g est continue.

Par la question .1, g admet un point fixe, ensuite on suppose qu'elle en admette plus qu'un, soient x et y deux points fixes différents de g, on a :

$$|x - y| = |g(x) - g(y)| < |x - y|.$$

Contradiction, du coup g admet un et un seul point fixe.

Exercice 6.

- 1. Soit $f: \mathbf{R} \to \mathbf{R}$ une fonction continue et périodique. Montrer que f est bornée.
- 2. Calculer

$$\lim_{x \to +\infty} \frac{\ln(x)}{x \left(\sin^8(x) + \cos^{14}(x)\right)}.$$

Solutions:

1. Comme la fonction f est périodique (on suppose que sa période est L), il suffit de montrer qu'elle est bornée sur [0, L] pour en déduire qu'elle est bornée sur tout \mathbf{R} .

Pour cela, on considère la fonction h définie sur [0, L] par $x \mapsto f(x)$. h est continue et définie sur un segment, donc par le théorème du maximum h atteint son maximum, ensuite, comme $\max -h = -\min h$, en appliquant le théorème du maximum à -h on trouve que le minimum de h est aussi atteint, donc h est bornée ce qui implique que f est bornée sur [0, L] puir sur \mathbf{R} tout entier.

2. Soit $g: \mathbf{R} \to \mathbf{R}$ définie par $x:\mapsto sin^8(x) + cos^{14}(x)$, g est continue et périodique, par la question 1. elle est bornée donc minorée, montrons que ce monorant $\neq 0$. Supposons qu'il existe $y \in \mathbf{R}$ tel que g(y) = 0, cela implique : sin(y) = 0 et cos(y) = 0, ce qui n'est pas possible car $sin^2(y) + cos^2(y) = 1, \forall y \in \mathbf{R}$. Par conséquent, il existe m > 0 tel que $g(x) \geq m, \forall x \in \mathbf{R}$.

$$0 \le \lim_{x \to +\infty} \frac{\ln(x)}{x \left(\sin^8(x) + \cos^{14}(x)\right)} = \lim_{x \to +\infty} \frac{\ln(x)}{x g(x)} \le \lim_{x \to +\infty} \frac{\ln(x)}{x m} = 0.$$

Exercice 7. Montrer que la fonction $f: \mathbf{R} \to \mathbf{R}, x \mapsto x^2$ n'est pas uniformément continue.

Solutions:

Dire que f n'est pas uniformément continue équivaut à dire que $\exists \epsilon > 0, \forall \delta > 0, \exists (x,y) \in \mathbf{R}^2$ on a : $|x-y| < \delta$ et $|f(x)-f(y)| \geq \epsilon$. Ici, $f(x)-f(y)=x^2-y^2=(x-y)(x+y)$. On fixe $\epsilon > 0$. Soit $\delta > 0$. Nous montrerons qu'il existe x,y>0 tels que $|x^2-y^2| \geq \epsilon$ bien que $|x-y| < \delta$. On notera $\delta' = |x-y|$. Alors $0 < \delta' < \delta$. Si $x = \frac{\epsilon}{\delta'}$ et $y = \frac{\epsilon}{\delta'} + \delta'$ alors $|x-y| = \delta' < \delta$ et

$$|x^2 - y^2| = |x - y||x + y| = \delta'(\frac{\epsilon}{\delta'} + \frac{\epsilon}{\delta'} + \delta') = 2\epsilon + (\delta')^2 \ge \epsilon.$$

<u>Exercice 8.</u> Le but de cet exercice est de déterminer l'ensemble des applications $f: \mathbf{R} \to \mathbf{R}$ continues qui vérifient la condition

$$(*): \qquad \forall (x,y) \in \mathbf{R}^2, \ f(x+y) = f(x) f(y).$$

Soit f vérifiant (*).

- 1. Montrer que : $\forall n \geq 2, \forall (x_1, \dots, x_n) \in \mathbf{R}^n, f(x_1 + \dots + x_n) = f(x_1) \cdots f(x_n)$.
- 2. Quelles sont les valeurs possibles pour f(0)?
- 3. On suppose qu'il existe $x_0 \in \mathbf{R}$ tel que $f(x_0) = 0$. Que peut-on dire de f? On suppose désormais que f ne s'annule pas.
- 4. Montrer qu'il existe $\alpha \in \mathbf{R}_{+}^{\star}$ tel que pour tout $n \in \mathbf{N}$, $f(n) = \alpha^{n}$.
- 5. Montrer que : $\forall k \in \mathbf{Z}, f(k) = \alpha^k$.
- 6. Montrer que : $\forall r \in \mathbf{Q}, f(r) = \alpha^r$.
- 7. Conclure.

Solutions:

1. On procède par récurrence, soit (P_n) : $\forall (x_1, \ldots, x_n) \in \mathbf{R}^n$, $f(x_1 + \cdots + x_n) = f(x_1) \cdots f(x_n)$. Initialisation : pour n = 2, d'après (*), $\forall (x_1, x_2) \in \mathbf{R}^2$ $f(x_1 + x_2) = f(x_1) + f(x_2)$. Hérédité : On suppose que (P_n) est vraie et on démontre que (P_{n+1}) est vraie :

Soit $(x_1, ..., x_{n+1}) \in \mathbf{R}^{n+1}$, on :

$$f(x_1 + x_2 + \dots + x_{n+1}) = f((x_1 + x_2 + \dots + x_n) + x_{n+1})$$

$$= f(x_1 + x_2 + \dots + x_n) + f(x_{n+1}) \quad par(*)$$

$$= f(x_1)f(x_2)\dots f(x_n)f(x_{n+1}) \quad par(P_n).$$

Conclusion: $\forall n \geq 2, \ \forall (x_1, \dots, x_n) \in \mathbf{R}^n, \ f(x_1 + \dots + x_n) = f(x_1) \dots f(x_n)$. 2. D'après (*), on a $f(0+0) = f(0) = f(0)f(0) = f(0)^2, \implies f(0) \{0,1\}$.

- 3. On suppose qu'il existe $x_0 \in \mathbf{R}$ tel que $f(x_0) = 0$, soit $x \in \mathbf{R}$, d'après (*) on a : $f(x) = f(x x_0 + x_0) = f(x x_0)f(x_0) = 0$ donc f(x) = 0, par conséquent f est nulle sur tout \mathbf{R} .
- 4. On prenant $x_1 = \cdots = x_n = 1$ on a $f(n) = f(1)^n$ on pose $\alpha = f(1)$, comme f ne s'annule pas on a f(0) = 1, par la contraposé du TVI $f(1) = \alpha > 0$.
- 5. On a f(-1)f(1) = f(-1+1) = f(0) = 1, $\Longrightarrow f(-1) = f(1)^{-1} = \alpha^{-1}$, on prenant $x_1 = \dots = x_k = -1$ on a : $f(-k) = f(-1)^k = \alpha^{-k}$ donc $\forall k \in \mathbf{Z}, f(k) = \alpha^k$.
- 6. Soient $p \in \mathbf{Z}, q \in \mathbf{N}^*$, on a:

$$\alpha^p = f(p) = f(q(\frac{p}{q})) = f(\frac{p}{q} + \frac{p}{q} + \dots \frac{p}{q}) = f(\frac{p}{q})^q, \implies f(\frac{p}{q}) = \alpha^{\frac{p}{q}}.$$

Donc, $\forall r \in \mathbf{Q}, f(r) = \alpha^r$.

7. Soit $x \in \mathbf{R}$, par densité de \mathbf{Q} on sait qu'il existe une suite $r_i \in \mathbf{Q}$ tel que $\lim_{i \to +\infty} r_i = x$, on a alors $f(x) = \lim_{i \to +\infty} f(r_i) = \lim_{i \to +\infty} \alpha^{r_i} \lim_{i \to +\infty} \exp(r_i \alpha) = \exp(x \alpha) = \alpha^x$. Réciproquement, si $f(x) = \alpha^x$, $\forall x \in \mathbf{R}$ et $\alpha > 0$ f vérifie bien (*).

Exercice 9. Soit $a \in \mathbf{Z}$. On définit $f: \mathbf{R}^* \to \mathbf{R}, x \longmapsto x^a \cos\left(\frac{1}{x}\right)$.

- 1. À quelle condition sur a la fonction f est-elle prolongeable par continuité en 0?
- 2. Lorsqu'il existe, à quelle condition ce prolongement est-il dérivable en 0?
- 3. Dans ce cas, la dérivée de f est-elle continue en 0?

Solutions:

1. f est prolongeable par continuité si $\lim_{x\to 0} f(x)$ existe.

Si $a \ge 1$ alors on $|f(x)| \le x \xrightarrow[x \to 0]{} 0$. donc f est prolongeable pour en 0 si $a \ge 1$, et f(0) = 0.

Si $a \leq 0$, en testant la fonction f(x) sur les valeurs $\frac{1}{2n\pi}$ et $\frac{1}{2n\pi+\pi/2}$ on s'aperçoit que f n'est pas prolongeable par contuinité en 0 quand $a \leq 0$.

2. Ce prolongement est dérivable lorsque $\frac{f(x)-f(0)}{x-0}$ admet une limite.

On a : $\frac{f(x)-f(0)}{x-0} = \frac{x^a \cos\left(\frac{1}{x}\right)}{x} = x^{a-1}\cos\left(\frac{1}{x}\right)$. donc f est dérivable \Leftrightarrow , $a \ge 2$., la dérivée de f en 0 serait égale à 0 dans ce cas.

3. Supposons $a \ge 2$, on a : $f'(x) = ax^{a-1}cos\left(\frac{1}{x}\right) + x^{a-2}sin\left(\frac{1}{x}\right)$, on sait que $\lim_{x \to} ax^{a-1}cos\left(\frac{1}{x}\right) = 0$. D'autre part, $x^{a-2}sin\left(\frac{1}{x}\right)$ admet une limite que lorsque $a \ge 3$ cette limite = 0.Par conséquent f' est continue en 0 si et seulement si $a \ge 3$.

Exercice 10. Soit f la fonction définie sur [0,1] par

$$f(x) = \begin{cases} 0 & \text{si } x = 0\\ x + \frac{x \ln(x)}{1 - x} & \text{si } 0 < x < 1\\ 0 & \text{si } x = 1. \end{cases}$$

- 1. Montrer que la fonction f est continue sur [0,1], et dérivable sur [0,1].
- 2. La fonction f est-elle dérivable en 0? En 1?
- 3. Montrer qu'il existe $c \in]0,1[$ tels que f'(c)=0.

Solutions:

- 1. On a : $\lim_{x\to 0} x \ln(x) = 0$ alors : $\lim_{x\to 0} f(x) = 0$, comme $\lim_{x\to 1} \frac{\ln(x)}{1-x} = -1$ alors : $\lim_{x\to 1} f(x) = \lim_{x\to 1} x + \frac{x\ln(x)}{1-x} = 0$. Donc f est contine sur [0,1], ensuite, f est dérivable sur [0,1[par la dérivabilité de $x\mapsto x+\frac{x\ln(x)}{1-x}$ sur [0,1[.
- 2. On a $\lim_{x\to 0^+} \frac{f(x)-f(0)}{x-0} = \lim_{x\to 0^+} \frac{x+\frac{x\ln(x)}{1-x}}{x} = \lim_{x\to 0^+} 1 + \frac{\ln(x)}{1-x} = -\infty$ alors f n'est pas dérivable en 0. Pour calculer

$$\lim_{x \to 1^{-}} \frac{f(x) - f(1)}{x - 1} = \lim_{x \to 1^{-}} \frac{x + \frac{x \ln(x)}{1 - x}}{x - 1} = \lim_{x \to 1^{-}} \frac{x(x - 1) - x \ln(x)}{(x - 1)^{2}}$$

il suffit d'appliquer la règle de l'Hopital deux fois, ce qui donne $\frac{1}{2}$. Donc, f est dérivable en 1.

3. On a f contriue sur [0,1], dérivable sur]0,1[et f(0)=f(1), alors par le théorème de Rolle, il existe $c \in]0,1[$ tel que : f'(c)=f(1)-f(0)=0.

Exercice 11. Soient un entier $n \ge 1$ et une fonction $f: \mathbf{R} \to \mathbf{R}$, n fois dérivable, et telle que $f^{(n)}$ est

continue. On suppose que f s'annule en n+1 points distincts. Montrer que f' s'annule au moins n fois, puis que $f^{(n)}$ s'annule au moins une fois.

Solutions:

Soit (P_n) : Toute fonction n fois dérivable tel que $f^{(n)}$ est continue, si f s'annule en n+1 points distincts alors $f^{(n)}$ s'annule au moins une fois.

Initialisation : Soit f une fonction 1 fois dérivable tel que $f' = f^{(1)}$ est continue, si f s'annule 2 fois en deux points distincts, supposons : f(a) = f(b) = 0, $a \neq b$ alors par le théorème de Rolle il existe $c \in]a, b[$ tel que $f^{(1)}(c) = 0$. Donc (P_1) est vérifiée.

Hérédité: supposons que (P_n) est vraie et montrons (P_{n+1}) , soit f une fonction n+1 fois dérivable tel que $f^{(n+1)}$ est continue, si f s'annule en n+2 points distincts, alors si on note ces points par $a_0, a_1, ..., a_{n+2}$ on a : sur chaque intervalle $[a_i, a_{i+1}]$ il existe $b_i \in]a_i, a_{i+1}[$ tels que $f'(b_i) = 0$ par le théorème de Rolle, la fonction f' est n fois dérivable et $(f')^{(n)} = f^{(n+1)}$ est continue, f' s'annule en n+1 points distincts (les b_i) donc par (P_n) , $(f')^{(n)} = f^{(n+1)}$ s'annule au moins une fois, d'où (P_{n+1}) est vraie.

Conclusion : Toute fonction n fois dérivable tel que $f^{(n)}$ est continue, f s'annule en n+1 points distincts alors $f^{(n)}$ s'annule au moins une fois.

Exercice 12. À l'aide du théorème des accroissements finis, montrer que pour tout t>0

$$\arctan t > \frac{t}{1+t^2}.$$

Solutions:

On sait que $arctan'(t) = \frac{1}{1+t^2}, \forall t \in \mathbf{R}, \text{ par le TAF, il existe } z \in]0,t[$ tel que l'on a

$$arctan(t) = arctan(t) - actan(0) = t(arctan'(z)) = \frac{t}{1+z^2} > \frac{t}{1+t^2}.$$

Car $\frac{1}{1+z^2} > \frac{1}{1+t^2}$.

Exercice 13. À l'aide du théorème des accroissements finis, déterminer

$$\lim_{x \to \infty} \left((x+1)e^{\frac{1}{x+1}} - xe^{\frac{1}{x}} \right).$$

Solutions:

Soit $f: \mathbf{R} \to \mathbf{R}$ définie par $x \mapsto xe^{\frac{1}{x}}$, on a : $f'(x) = e^{\frac{1}{x}} - \frac{1}{x}e^{\frac{1}{x}} = e^{\frac{1}{x}}\left(1 - \frac{1}{x}\right) \xrightarrow[x \to \infty]{} 1$.

On remarque que $(x+1)e^{\frac{1}{x+1}} - xe^{\frac{1}{x}} = f(x+1) - f(x)$, donc par le théorème des accroissements finis, il existe $c(x) \in]x, x+1[$ tel que $(x+1)e^{\frac{1}{x+1}} - xe^{\frac{1}{x}} = f'(c(x))$, par conséquent :

$$\lim_{x \to \infty} \left((x+1)e^{\frac{1}{x+1}} - xe^{\frac{1}{x}} \right) = \lim_{x \to \infty} f'(c(x)) = 1.$$

Exercice 14. Soit $f:[0,1] \to \mathbf{R}$ une fonction dérivable sur [0,1] telle que f(0)=0.

- 1. On suppose que pour $0 \le x \le 1$, on a $f'(x) \ne 0$. Montrer que f est de signe constant sur [0,1].
- 2. On suppose de plus que f' est continue sur [0,1], et que f'(x) > 0 pour $x \in [0,1]$. Montrer qu'il existe un réel m > 0 tel que pour $x \in [0,1]$, $f(x) \ge mx$.

Solutions:

- 1. On suppose que f n'est pas de signe constant sur [0,1] alors $\exists x,y \in]0,1]$ tel que f(x) < 0 et f(y) > 0, d'après le TVI, il existe $z \in [x,y], f(z) = 0$, puis en apliquant le TAF : 0 = f(z) f(0) = zf'(t) pour un certain $t \in [0,1]$, ce qui contredit le fait que $f'(x) \neq 0, \forall x \in [0,1]$.
- 2. f' est une fonction continue définie sur un segment, d'après le théorème du maximum appliqué à -f', $\max(-f')$ et atteint, comme $\max(-f')$ =- $\min(f')$ alors $\min(f')$ est aussi atteint, donc il existe $z \in [0,1]$ tel que $0 < f'(z) \le f'(x), \forall x \in [0,1]$.

Le TAF $\implies f(x)-f(0)=f(x)=xf'(l)$ pour un certain $l\in[0,1]$, d'après ce qui précède, $f(x)\geq f'(z)x$. Il suffit alors de prendre m=f'(z) pour répondre à la question.

Exercice 15. Soit $f:[0,\infty[\to [0,\infty[$ une fonction continue telle que f(x)/x a une limite réelle $\ell\in[0,1[$ quand x tend vers ∞ . Montrer que f a un point fixe.

Solutions:

On a $\lim_{x\to +\infty} \frac{f(x)}{x} < 1$, donc il existe $a\in \mathbf{R}$ tel que $\forall x\geq a, \frac{f(x)}{x}\leq 1$, donc $\forall x\geq a, f(x)\leq x$. On considère la fonction $g:\mathbf{R}^*\to\mathbf{R}^*, x\mapsto f(x)-x$, on a : $g(0)\geq 0$ car l'image de f est dans $[0,+\infty[$, ensuite, $g(a)\leq a$ car $f(A)\leq 0$. Par le TVI, il existe $c\in [0,A]$ tel que g(c)=0 et donc f(c)=c.

Exercice 16. Soit f continue sur \mathbf{R}_+ telle que, pour tout réel positif x, on ait $f(x^2) = f(x)$. Montrer que f est constante.

Solutions:

On démontre par récurrence que $f(x) = f(x^{\frac{1}{2^n}}), \forall n \in \mathbb{N}$.

Initialisation: pour n=1 on a bien $f(x)=f(x^{\frac{1}{2}})$ (car $f(x)=f(x^2)$).

Hérédité : supposons que la propriété est vraie pour $n \in \mathbb{N}$ et démontrons qu'elle l'est pour n+1, on a :

$$f(x) = f(x^{\frac{1}{2}}) = f((x^{\frac{1}{2}})^{\frac{1}{2^n}}) = f(x^{\frac{1}{2^{n+1}}}).$$

Conclusion: $f(x) = f(x^{\frac{1}{2^n}}), \forall n \in \mathbf{N}.$

Maintenant, on sait que $\lim_{n\to+\infty} x^{\frac{1}{2^n}} = 1, \forall x \in \mathbf{R}^{*,+}$, alors on a :

$$f(x) = \lim_{n \to +\infty} f(x^{\frac{1}{2^n}}) = f(1).$$

Par la continuité de f, on a alors $f(x) = f(1), \forall x \neq 0$. Ensuite, par la continuité de f on a f(0) = f(1). Enfin, f est constante sur \mathbf{R}^+ .

Exercice 17. Soit $f: \mathbf{R}_+ \to \mathbf{R}$ continue et admettant une limite réelle quand x tend vers ∞ . Montrer que f est uniformément continue sur \mathbf{R}_+ .

Solutions:

Supposons que $\lim f(x) = l$, soit $\epsilon > 0$, il existe $A \in \mathbf{R}$ tel que $\forall x \geq A, |f(x) - l| \leq \frac{\epsilon}{3}$, comme f st uniformément continue sur [0, A] par le théorème de Heine (car [0, A] est compacte), alors pour ce ϵ , $\exists \delta$ tel que $|x - y| \leq \delta \implies |f(x) - f(y)| \leq \frac{\epsilon}{3}$.

Soient maintenant, $x, y \in \mathbf{R}$ tel que $|x, y| \leq \delta$, si $(x, y) \in [0, A]$ on a bien $|f(x) - f(y)| \leq \epsilon/3 \leq \epsilon$, si

 $x, y \ge A$ on a $|f(x) - f(y)| \le |f(x) - l| + |f(y) - l| \le \epsilon/3 + \epsilon/3 \le \epsilon$. Finalement, si $x \le A$ et $y \ge A$ (ou le contraire), on a $|f(x) - f(y)| \le |f(x) - f(A)| + |f(A) - l| + |l - f(y)| \le \epsilon/3 + \epsilon/3 + \epsilon/3 \le \epsilon$. Conclusion: $\forall \epsilon > 0$, $\exists \delta > 0$ tel que $|x - y| \le \delta \implies |f(x) - f(y)| \le \epsilon$, par conséquent, f est uniformément continue.

Exercice 18. Soit $f:[0,1] \to \mathbf{R}$ continue et vérifiant f(0) = f(1).

- 1. Soit n un entier naturel non nul et soit a = 1/n. Montrer que l'équation f(x + a) = f(x) admet au moins une solution.
- 2. Montrer (en fournissant une fonction précise) que, si a est un réel de]0,1[qui n'est pas de la forme précédente, il est possible que l'équation f(x+a)=f(x) n'ait pas de solution.

Solutions:

1. $\forall n \in \mathbb{N}$ on définit $h: [0, \frac{n-1}{n}] \to \mathbb{R}$ par $: x \mapsto f(x + \frac{1}{n}) - f(x)$, on a

$$\sum_{i=0}^{n-1} h(\frac{i}{n}) = \sum_{i=0}^{n-1} \left(f(x + \frac{1}{n}) - f(\frac{i}{n}) \right) = f(1) - f(0) = 0,$$

Donc il existe $i, j \in \{0, 1, ...n - 1\}$ différents tels que l'on a : $h(\frac{i}{n}) \le 0$ et $h(\frac{j}{n}) \ge 0$ par suite, par le TVI il existe $c \in [\frac{i}{n}, \frac{j}{n}]$ (on suppose que j > i) tel que $h(c) = f(c + \frac{1}{n}) - f(c) = 0$.

2. Soit $a \in [0,1]$ n'étant pas de la forme $\frac{1}{n}$ pour un certain n dans \mathbf{N} . Soit $g(x) = |\sin(\frac{x\pi}{a})|$ on sait que $g(x+a) - g(x) = 0, \forall x \in [0,1]$.

Soit maintenant la fonction $P: \mathbf{R} \to \mathbf{R}$ définie par $x \mapsto g(x) - xg(1)$, on a :

$$P(x+a) - P(x) = g(x+a) - (x+a)g(1) - g(x) + xg(1) = -ag(1) \neq 0.$$

Pour P, il n'existe aucun $x \in [0,1]$ tel que P(x+a) - P(a) = 0.

Voici un exemple avec a=0.3 $\left(P(x)=|sin(\frac{x\pi}{a})|-x|sin(\frac{\pi}{a})|\right)$.

Exercice 19. Soit $f \in C^1([a,b], \mathbf{R})$ telle que $\frac{f(b)-f(a)}{b-a} = \sup\{f'(x) : x \in [a,b]\}$. Montrer que f est affine.

Solutions:

<u>cas1</u>: si sup $\{f'(x): x \in [a,b]\} = 0$, on a alors $f'(x) \le 0, \forall x \in [a,b]$ donc f est décoissante, ainsi et comme f(a) = f(b) on a alors : f est constante donc affine.

<u>cas2</u>: le cas contraire, on considère la fonction $g(x) = f(x) - (x-a)\frac{f(a)-f(b)}{a-b}$, on a dans ce cas

$$\sup\{g'(x): x \in [a,b]\} = \sup\{f'(x) - \frac{f(b) - f(a)}{b - a}: x \in [a,b]\} = 0$$

g(a) = g(b) = f(a), donc g est constante d'après ce qui précède, par suite f est affine.

Exercice 20. Soit $f \in \mathcal{C}^1(\mathbf{R}_+^*)$ telle que $\lim_{x\to\infty} xf'(x) = 1$. Montrer que $\lim_{x\to\infty} f(x) = \infty$.

Solutions:

Comme $\lim_{x\to +\infty} xf'(x) = 1$ on a : $\exists r \in \mathbf{R}, \ \forall x \geq r, \ f'(x) > 0$ donc f est strictement croissante à partir d'un certain rang, donc forcément elle admet une limite.

Supposons que la limite de f est finie, notée l

On a alors d'une part $\lim_{x\to\infty} f(x) - f(y) = l - f(y)$ pour un y fixé et $x \ge y$, d'autre part : $\exists c \in [y,x]$ tel que f(x) - f(y) = (x-y)f'(c), on a :

 $\lim_{x\to\infty}\frac{x-y}{x}=1, \frac{x}{c}\geq 1$ et choisissons y tel que $\forall w\geq y$ on a $wf'(w)\geq \frac{1}{2}$, en combiannt ce qu'on a :

$$l - f(y) = \lim f(x) - f(y) = \lim (x - y)f'(c) = \lim \frac{x - y}{x} \frac{x}{c} cf'(c) \ge (\lim \frac{x - y}{x})(1)(\frac{1}{2}) \ge \frac{1}{2}$$

Ce qui donne $(l - f(y) \ge \frac{1}{2})$, $\forall y$ à partir d'un certain rang, ce qui implique en passant à la limite en y que $0 \ge \frac{1}{2}$

Donc la limite de f ne peut être finie, en conséquence : $\lim f = +\infty$.

Exercice 21. Soit $f \in C^1(\mathbf{R})$ vérifiant pour tout x réel, $f \circ f(x) = \frac{x}{2} + 3$. En remarquant que $f(\frac{x}{2} + 3) = \frac{f(x)}{2} + 3$, montrer que f' est constante, puis déterminer f.

Solutions:

On a:

$$\frac{f(x)}{2} + 3 = f \circ f(f(x)) = f \circ f \circ f(x) = f(f \circ f(x))) = f\left(\frac{x}{2} + 3\right)$$

En dérivant cette relation on obtient : $(\frac{1}{2})f'(\frac{x}{2}+3) = (\frac{1}{2})f'(x) \Longrightarrow f'(\frac{x}{2}+3) = f'(x)$. On peut montrer par récurrence que : $\forall x \in R, f'(x) = f'\left(\frac{x+6(2^n-1)}{2^n}\right)$, on a alors , $\forall x \in \mathbf{R}$:

$$f'(x) = \lim_{n \to \infty} f'(\frac{x + 6(2^n - 1)}{2^n}) = f'(6).$$

Ainsi, f' est constante sur tout **R**, donc f est de la forme $x \mapsto ax + b$,

En remplaçant dans l'équation : $f\circ f(x)=\frac{x}{2}+3,$ on trouve :

$$a = \frac{1}{\sqrt{2}}$$
 $b = \frac{3\sqrt{2}}{1+\sqrt{2}}.$

Exercice 22. Soit $f \in \mathcal{C}^1(\mathbf{R})$ vérifiant $\lim_{x\to\infty} (f(x) + f'(x)) = 0$. Montrer que $\lim_{x\to\infty} f(x) = \lim_{x\to\infty} f'(x) = 0$. (Indication : Considérer $g(x) = e^x f(x)$.)

Solutions:

Posons $g(x) = e^x f(x)$ on a : $g'(x) = e^x (f(x) + f'(x))$

Fixons c > 0, alors il existe $N, \forall x \ge N, -c \le f(x) + f'(x) \le c \text{ donc } -ce^x \le g'(x) \le ce^x$.

Cela implique que les fonctions $x \mapsto ce^x - g(x)$ et $x \mapsto ce^x + g(x)$ ont des dérivées positives pour $x \ge N$. Donc à partir de N, ces deux fonctions sont croisssantes, par suite il existe $d \in \mathbf{R}$ tel que $ce^x - g(x) \ge d$ et $ce^x + g(x) \ge d \ \forall x \ge N$.

Ainsi:

$$-c + de^{-x} < e^{-x}g(x) = f(x) < c - de^{-x}$$

ce qui implique que $\forall x \geq N, |f(x)| \leq c$. comme cela est vrai pour tout c on a donc $\lim_{x \to \infty} f(x) = 0$, par conséquent $\lim_{x \to \infty} f'(x) = 0$ aussi.