Feuille d'exercices nº 6

Nombres réels et suites réelles

<u>Exercice 1.</u> Pour chacun des ensembles qui suivent, déterminer s'ils possèdent des bornes supérieure et inférieure. Le cas échéant, donner ces bornes et décider si ce sont également des extrema.

a) [0,1[

b) $\{ (-1)^n + \frac{1}{n} \mid n \in \mathbb{N}^* \}$

c) $\left\{ \begin{array}{l} \frac{m}{mn+1} \mid (m,n) \in \mathbb{N} \times \mathbb{N}^* \end{array} \right\}$

d) $[0,\sqrt{2}]\cap \mathbb{Q}$

Solution:

- a) 0 est la borne inférieure et le minimum de l'intervalle, 1 la borne supérieure mais n'est pas un maximum puisqu'il n'est pas dans l'intervalle. En effet, la suite $u_n = 1 \frac{1}{n}, n \in \mathbb{N}^*$ est composée de terme de l'intervalle, converge vers 1 et n'est majorée par aucun réel de l'intervalle.
- b) Notons $B=\left\{ \begin{array}{ll} (-1)^n+\frac{1}{n} \mid n\in \mathbb{N}^* \end{array} \right\}$. D'une part $3/2\in B$ puisque $3/2=(-1)^2+1/2,$ et d'autre part, $\forall n\geq 2,\ 3/2\geq 1+1/n\geq (-1)^n+1/n,$ et $3/2\geq (-1)^1+1/1=0,$ donc 3/2 est la borne supérieure et le maximum de l'ensemble B. La suite $u_k=-1+\frac{1}{2k+1}, \forall k\in \mathbb{N}$ est une suite d'éléments de B puisque $-1+\frac{1}{2k+1}=(-1)^n+\frac{1}{n}$ pour n=2k+1, et cette suite converge vers -1. Or $\forall n\in \mathbb{N}^*, (-1)^n+\frac{1}{n}>-1,$ donc -1 est la borne inférieure de B et ce n'est pas un minimum.
- c) Notons $C = \left\{ \left. \frac{m}{mn+1} \; \middle| \; (m,n) \in \mathbb{N} \times \mathbb{N}^* \; \right\}$. D'une part $0 \in C$ puisque $0 = \frac{0}{0 \times 1 + 1}$, et d'autre part $\forall x \in C, \, x \geq 0$ donc 0 est la borne inférieure et le minimum de C. Remarquons que puisque $n \geq 1$, alors $\frac{m}{mn+1} \leq \frac{m}{m+1} < 1$. De plus, lorsque $m \to +\infty$, $\frac{m}{m+1} \to 1$ donc 1 est la bonne supérieure de C et n'est pas son maximum.
- d) D'une part $0 \in [0, \sqrt{2}] \cap \mathbb{Q}$, d'autre part $\forall q \in [0, \sqrt{2}] \cap \mathbb{Q}$, $q \geq 0$ donc 0 est la borne inférieure et le minimum de cet ensemble. En revanche, $\sqrt{2}$ majore cet ensemble mais n'y appartient pas. Puisque \mathbb{Q} est dense dans \mathbb{R} , pour tout $\varepsilon > 0$, il existe un rationnel dans l'intervalle $]\sqrt{2} \varepsilon, \sqrt{2}[$, et donc un élément de $[0, \sqrt{2}] \cap \mathbb{Q}$, c'est donc qu'aucun nombre plus petit que $\sqrt{2}$ majore l'ensemble, et donc $\sqrt{2}$ est la borne supérieure de $[0, \sqrt{2}] \cap \mathbb{Q}$.

Exercice 2. Soient A et B deux parties non vides de \mathbb{R} .

- 1. On note $-A = \{ -a \mid a \in A \}.$
 - a) Montrer que inf A existe si et seulement si $\sup(-A)$ existe et qu'alors inf $A = -\sup(-A)$.
 - b) Montrer que sup A existe si et seulement si $\inf(-A)$ existe et qu'alors sup $A = -\inf(-A)$.
- 2. Supposons $B \subseteq A$.
 - a) On suppose A majoré. Montrer que B possède une borne supérieure et que sup $B \leq \sup A$.
 - b) On suppose A minoré. Montrer que B possède une borne inférieure et que inf $B \geqslant \inf A$.
- 3. On note $A + B = \{a + b \mid a \in A, b \in B\}$. À quelle condition $\sup(A + B)$ existe-t-elle? Dans ce cas, l'exprimer en fonction de $\sup(A)$ et $\sup(B)$.

1.

a) Puisque A est non vide, alors

$$\begin{split} \inf A \text{ existe } &\iff \exists m \in \mathbb{R}, \forall x \in A, m \leq x \\ &\iff \exists m \in \mathbb{R}, \forall x \in A, -m \geq -x \\ &\iff \exists M \in \mathbb{R}, \forall x \in A, M \geq -x \\ &\iff \sup -A \text{ existe.} \end{split}$$

Soit $x \in -A$, $-x \in A$ donc par définition de la borne inférieure inf $A \le -x$ et donc $\forall x \in -A$, $-\inf A \ge x$, donc par définition de la borne supérieure, $\sup(-A) \le -\inf A$.

Soit $x \in A$, alors $-x \in -A$ donc $-x \leq \sup(-A)$. Donc $\forall x \in A, x \geq -\sup(-A)$, donc $-\sup(-A) \leq \inf A$. On en conclut que $\sup A = \inf A$.

b) On applique la question précédente à l'ensemble -A. On sait que $\inf(-A)$ existe si et seulement si $\sup(-(-A))$ existe. Or -(-A) = A, donc $\inf(-A)$ existe si et seulement si $\sup A$ existe. De plus $\inf(-A) = -\sup(-(-A)) = -\sup A$, d'où le résultat.

2.

- a) A est majorée, donc il existe M tel que $\forall x \in A, x \leq M$. Or $B \subset A$, donc $\forall x \in B, x \in A$ et donc $x \leq M$. Donc B est majorée et non vide et possède donc une borne supérieure. Enfin, $\forall x \in B, x \in A$ donc $\forall x \in B, x \leq \sup A$, donc $\sup B \leq \sup A$.
- b) A est minorée, et non vide, donc $\forall x \in A, x \ge \inf A$. Or $\forall x \in B, x \in A$, donc $x \ge \inf A$, donc d'une part B et minorée et non vide donc possède une borne inférieure, et d'autre part A inf A.
- 3. Montrons que $\sup(A+B)$ existe si et seulement $\sup A$ et $\sup B$ existent. On commence par le sens $\sup(A+B)$ existe $\Leftarrow \sup A$ et $\sup B$ existent.

On suppose donc que sup A et sup B existent. Alors $\forall (a,b) \in A \times B$, $a \leq \sup A$ et $b \leq \sup B$, donc $a+b \leq \sup A + \sup B$, donc A+B est majorée, non vide, et admet donc une borne supérieure. De plus, $\sup(A+B) \leq \sup A + \sup B$.

Traitons le sens direct par contraposée. Montrons donc que non(sup A et sup B existent) \Rightarrow non (sup (A + B) existe).

On suppose donc que A ou B n'est pas majorée. Puisque A et B jouent un rôle symétrique, on peut supposer que A n'est pas majorée (quitte à échanger les noms de A et B), c'est à dire qu'il existe une suite d'éléments de A que l'on note $(a_n)_{n\in\mathbb{N}}$ telle que $a_n \underset{n\to+\infty}{\longrightarrow} +\infty$. Soit $b\in B$. Alors la suite $b_n=a_n+b$ définie pour tout $n\in\mathbb{N}$, tend elle aussi vers $+\infty$ par somme des limites. Or c'est une suite d'éléments de A+B. Donc A+B n'est pas majorée, elle n'a donc pas de borne supérieure.

Reste à prouver que lorsque ces bornes supérieures existent, $\sup(A+B) \ge \sup A + \sup B$, puisqu'on a déjà montré l'inégalité inversée. Soit $(a_n)_{n \in \mathbb{N}}$ une suite d'éléments de A qui converge vers $\sup A$, et soit $(b_n)_{n \in \mathbb{N}}$ une suite d'éléments de B qui converge vers $\sup B$. Alors la suite $(a_n+b_n)_{n \in \mathbb{N}}$ est une suite d'éléments de A+B qui converge vers $\sup A + \sup B$, donc $\sup A + B \ge \sup A + \sup B$, ce qui conclut l'exercice.

Exercice 3. Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction majorée. Pour tout $y \in \mathbb{R}$, on pose :

$$f^*(y) = \sup_{x \le y} f(x).$$

- 1. Illustrer la définition de f^* par des figures rapides sur différents exemples de fonctions f.
- 2. Déterminer f^* dans le cas où f est croissante.
- 3. Étudier la monotonie de f^* .

Solution:

- 1. Notons que f^* est toujours définie puisque f est majorée, donc admet une borne supérieure sur n'importe quel sous ensemble non vide de \mathbb{R} .
- 2. Si f est croissante, alors $\forall (x,y) \in \mathbb{R}^2$, $x \leq y \Rightarrow f(x) \leq f(y)$. Ainsi $\forall y \in \mathbb{R}, f^*(y) = \sup_{x \leq y} f(x) = \max_{x \leq y} f(x) = f(y)$ donc $f^* = f$.
- 3. Montrons que f^* est croissante. Soit $z \geq y$. $f^*(z) = \sup_{x \leq z} f(x)$, donc $\forall x \leq z$, $f^*(z) \geq f(x)$. Or $\forall x \leq y$, on a que $x \leq z$ puisque $z \geq y$. Donc $\forall x \leq y$, $f^*(z) \geq f(x)$, et donc $\sup_{x \leq y} f^*(z) \geq \sup_{x \leq y} f(x)$. puisque l'expression $f^*(z)$ ne dépend pas de x, on a que $\sup_{x \leq y} f^*(z) = f^*(z)$ et donc $f^*(z) \geq f^*(y)$, c'est à dire que f^* est croissante.

Exercice 4. Soit $f:[0,1] \to [0,1]$ une fonction croissante. On veut établir que f possède un point fixe, c'est-à-dire qu'il existe $x_0 \in [0,1]$ tel que $f(x_0) = x_0$.

Posons

$$T = \{x \in [0,1] \mid f(x) \leq x\}.$$

- 1. Démontrer que T possède une borne inférieure t.
 - Démontrer que f(t) minore T.
 - Établir l'inclusion $f(T) \subset T$.
 - En déduire que t est un point fixe de f.
- 2. Ce résultat est-il toujours vrai pour une fonction croissante de [0, 1] dans [0, 1]?

Solution:

- 1. T est une partie non vide de $\mathbb R$ puisque $1 \in T$, qui est minorée par 0, donc T admet une borne inférieure que l'on note t.
 - Pur tout $x \in T$, $t \le x$, on a donc $f(t) \le f(x)$ puisque f est croissante, or $x \in T$ donc $f(x) \le x$, donc $f(t) \le x$, c'est à dire que f(t) minore T.
 - Soit $y \in f(T)$, c'est à dire que $\exists x \in T, f(x) = y$. Puisque $x \in T, y = f(x) \le x$, donc puisque f est croissante, $f(y) \le f(x) = y$, donc $g \in T$, donc $g \in T$.
 - Nous venons de montrer en particulier que $f(t) \in T$. Puisque c'est un minorant de T, c'est que inf T = f(t), donc t = f(t) et c'est donc un point fixe.
- 2. Non! La fonction définie par $f(x) = \frac{1+x}{2}$ est croissante et n'a pas de point fixe dans l'intervalle [0,1]. La preuve précédente échoue parce que l'ensemble T est vide et n'a donc pas de borne inférieure!

Exercice 5. On appelle nombre dyadique tout nombre rationnel de la forme $\frac{m}{2^n}$, avec $m \in \mathbf{Z}$ et $n \in \mathbb{N}$. Démontrer que l'ensemble des nombres dyadiques est dense dans \mathbb{R} .

Solution : Soit]a,b[un intervalle non vide de \mathbb{R} , c'est à dire tel que a < b. Montrons qu'il existe un nombre dyadique dans l'intervalle]a,b[. Puisque la suite de terme général $u_n = \frac{1}{2^n}$ converge vers 0, il existe $n \in \mathbb{N}$ tel que $\frac{1}{2^n} < b - a$, c'est à dire $2^nb - 2^na > 1$. C'est donc qu'il existe un entier $m \in \mathbb{Z}$ tel que $2^na < m < 2^nb$. Et donc $a < \frac{m}{2^n} < b$. L'ensemble des nombres dyadiques est donc dense dans \mathbb{R} .

Exercice 6.

- 1. Soit $(u_n)_{n\in\mathbb{N}}$ une suite à valeurs dans \mathbb{Z} . Montrer que (u_n) converge si et seulement si elle est stationnaire, c'est-à-dire si elle est constante à partir d'un certain rang.
- 2. Soit $D \subset \mathbb{Z}$ un ensemble non vide et majoré. Montrer que D possède un plus grand élément.

Solution:

- Si (u_n) est stationnaire à partir du rang n₀, alors ∀ε > 0 et ∀n ≥ n₀, |u_n u_{n₀}| = 0 < ε, donc (u_n) converge vers u_{n₀}. (Et ceci est vrai même si (u_n) est à valeur dans ℝ).
 Réciproquement, si (u_n) converge vers l∈ ℝ, alors ∃n₀ ∈ ℕ tel que ∀n ≥ n₀, |u_n l| ≤ 1/4. En particulier, on a donc que |u_n u_{n₀}| ≤ |u_n l| + |l u_{n₀} ≤ 1/2. Or dans l'intervalle [u_{n₀} 1/2, u_{n₀} + 1/2] il n'existe qu'un seul entier : u_{n₀}. Donc pour tout n ≥ n₀, u_n, qui est un entier dans cet intervalle, ne peut être que u_{n₀}. La suite est donc stationnaire.
- 2. Puisque D est une partie de \mathbb{R} non vide et majorée, D possède une borne supérieure d. Montrons que $d \in D$ et que c'est donc le plus grand élément de D. Soit (d_n) une suite d'éléments de D qui converge vers D. Puisque c'est une suite d'éléments de \mathbb{Z} , alors d'après la question précédente elle est stationnaire. Il existe donc $n_0 \in \mathbb{N}$ tel que $d_{n_0} = d$ et donc $d \in D$.

Exercice 7. Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle convergeant vers $\ell\in\mathbb{R}_+^*$. Montrer qu'il existe $N_0\in\mathbb{N}$ tel que $\forall n\in\mathbb{N},\ n\geq N_0\Longrightarrow u_n\geq\frac{\ell}{2}$.

Solution : Par définition, $\forall \varepsilon > 0, \exists n_0 \in \mathbb{N}, \forall n \geq n_0, |u_n - \ell| \leq \varepsilon$. On choisit $\varepsilon = \ell/2$ et l'on a donc qu'il existe $n_0 \in \mathbb{N}$ tel que $\forall n \geq N_0, |u_n - \ell| \leq \ell/2$ et donc $\ell - \ell/2 \leq u_n - \ell \leq \ell + \ell/2$ et donc $\ell = \ell/2$.

Exercice 8. Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle bornée et $(v_n)_{n\in\mathbb{N}}$ convergeant vers une limite $\ell\in\mathbb{R}$.

- 1. On suppose $\ell = 0$. Montrer que $(u_n v_n)_{n \in \mathbb{N}}$ converge vers ℓ .
- 2. Est-ce toujours vrai si $\ell \neq 0$?

Solution:

- 1. La suite $(u_n)_{n\in\mathbb{N}}$ est bornée, il existe donc $M\in\mathbb{R}_+^*$ tel que $|u_n|\leq M$. Soit $\varepsilon>0$. Puisque $v_n\underset{n\to+\infty}{\longrightarrow}0$, c'est qu'il existe $n_0\in\mathbb{N}$ tel que pour tout $n\geq n_0$, on ait $|v_n|\leq\frac{\varepsilon}{M}$ puisque $\frac{\varepsilon}{M}>0$. Ainsi pour tout $\varepsilon>0$, $\exists n_0\in\mathbb{N}, \forall n\geq n_0, |u_nv_n|=|u_n||v_n|\leq M\frac{\varepsilon}{M}=\varepsilon$, ce qui est la définition de (u_nv_n) converge vers 0.
- 2. Non! La suite définie par $u_n = (-1)^n$ est bornée par 1, la suite définie par $v_n = 1$ converge vers 1, mais le produit des deux n'a pas de limite.

Exercice 9. Soient $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ deux suites réelles convergentes. Étudier la convergence de la suite $(\max\{u_n,v_n\})_{n\in\mathbb{N}}$ de deux manières différentes :

- 1. en commençant par chercher une expression simple de $\max\{x,y\}$ en fonction de x et y pour tous $x,y \in \mathbb{R}$ (Indication : on pourra s'intéresser à $\max\{x,y\} + \min\{x,y\}$ et $\max\{x,y\} \min\{x,y\}$);
- 2. en revenant à la définition de la limite.

Solution:

1. Si x < y, alors $\max\{x,y\} + \min\{x,y\} = y + x$. Si au contraire, x > y, alors $\max\{x,y\} + \min\{x,y\} = x + y$. Si x = y bien entendu, $\max\{x,y\} + \min\{x,y\} = x + y$. Donc dans tous les cas, $\max\{x,y\} + \min\{x,y\} = x + y$. De même, $\max\{x,y\} - \min\{x,y\} = |x-y|$, pour s'en convaincre, il suffit de tester les trois cas.

Or

$$\max\{x,y\} = \frac{\max\{x,y\} + \min\{x,y\} + \max\{x,y\} - \min\{x,y\}}{2},$$

et donc

$$\max\{x,y\} = \frac{x+y+|x-y|}{2}.$$

Ainsi puisque les suites $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ convergent, en notant respectivement leurs limites u et v, par somme de limites et continuité de la valeur absolue, la suite $(\max\{u_n,v_n\})_{n\in\mathbb{N}}$ converge vers $\frac{u+v+|u-v|}{2}=\max\{u,v\}$.

- 2. Soit $\varepsilon > 0$, et notons u et v les limites de (u_n) et (v_n) . Distinguons deux cas :
 - Si u = v, puisque (u_n) et (v_n) convergent toutes les deux vers u, on a d'une part

$$\exists n_1 \in \mathbb{N}, \forall n \geq n_1, |u_n - u| \leq \varepsilon,$$

et d'autre part

$$\exists n_2 \in \mathbb{N}, \forall n \ge n_2, |v_n - u| \le \varepsilon$$

et donc si $n \ge n_1$ et $n \ge n_2$, c'est à dire si $n \ge n_3 = \max\{n_1, n_2\}$, on a à la fois $u_n \in [u - \varepsilon, u + \varepsilon]$ et $v_n \in [u - \varepsilon, u + \varepsilon]$ donc $\max\{u_n, v_n\} \in [u - \varepsilon, u + \varepsilon]$ et donc en conclusion,

$$\forall \varepsilon > 0, \exists n_3 \in \mathbb{N}, \forall n \geq n_3, |\max\{u_n, v_n\} - \max\{u, v\}| \leq \varepsilon,$$

c'est à dire $(\max\{u_n, v_n\})_{n \in \mathbb{N}}$ converge vers $\max\{u, v\}$.

— si $u \neq v$, alors par symétrie du problème, supposons que u > v. Alors puisque (u - v)/2 > 0 on a d'une part

$$\exists n_4 \in \mathbb{N}, \forall n \geq n_4, |u_n - u| \leq (u - v)/2,$$

et d'autre part

$$\exists n_5 \in \mathbb{N}, \forall n \ge n_5, |v_n - v| \le (u - v)/2,$$

et donc $\forall n \geq \max\{n_4, n_5\}$, on a $v_n \leq (u+v)/2 \leq u_n$ et donc $\max\{u_n, v_n\} = u_n$ à partir du rang $n_6 = \max\{n_4, n_5\}$. De ce fait, les deux suites partagent la même limite et donc $(\max\{u_n, v_n\})_{n \in \mathbb{N}}$ converge vers $u = \max\{u, v\}$.

Exercice 10. Étudier la convergence de la suite $(u_n)_{n\in\mathbb{N}^*}$, dont le terme général est donné par :

a)
$$u_n = \frac{n}{n^2 + 1}$$
,

b)
$$u_n = \left(n + \frac{2}{n^2}\right)^3 - n^3$$
,

c)
$$u_n = (n + \frac{1}{n})(n - \frac{1}{n}) - n^2$$
,

d)
$$u_n = \sqrt{n^2 + n} - \sqrt{n^2 + 1}$$
, e) $u_n = \frac{(-1)^n}{n+1}$,

e)
$$u_n = \frac{(-1)^n}{n+1}$$
,

f)
$$u_n = \frac{2n^6 + 5n + 1}{n^6 - 2}$$
,

g)
$$u_n = (-1)^n n$$
,

h)
$$u_n = \frac{2^n - 3^n}{2^n + 3^n}$$
,

i)
$$u_n = \sqrt[n]{n}$$
,

j)
$$u_n = 2 + \frac{\sin(n) - 4}{n^2}$$
,

$$k) u_n = n^{\frac{1}{\ln n}},$$

l)
$$u_n = \frac{(-5)^n + n}{3^n - 1}$$
,

$$\mathbf{m}) u_n = \frac{n!}{n^n}.$$

Solution:

a) $\forall n \in \mathbb{N}^*, 0 \leq u_n \leq \frac{n}{n^2} = \frac{1}{n}$ donc par le théorème des gendarmes, $u_n \xrightarrow[n \to +\infty]{} 0$.

b) $\forall n \in \mathbb{N}^*, u_n = n^3 + 3n^2 \frac{2}{n^2} + 3n \frac{4}{n^4} + \frac{8}{n^6} - n^3 = 6 + \frac{12}{n^3} + \frac{8}{n^6}$ donc par somme de limites $u_n \underset{n \to +\infty}{\longrightarrow} 6$.

c) $\forall n \in \mathbb{N}^*, u_n = n^2 + 1 - 1 - \frac{1}{n^2} - n^2 = \frac{-1}{n^2} \text{ donc } u_n \underset{n \to +\infty}{\longrightarrow} 0.$

d) $\forall n \in \mathbb{N}^*, u_n = \frac{(\sqrt{n^2 + n} - \sqrt{n^2 + 1})(\sqrt{n^2 + n} + \sqrt{n^2 + 1})}{\sqrt{n^2 + n} + \sqrt{n^2 + 1}} = \frac{n - 1}{n\sqrt{1 + \frac{1}{n}} + n\sqrt{1 + \frac{1}{n}}} = \frac{1 - \frac{1}{n}}{\sqrt{1 + \frac{1}{n}} + \sqrt{1 + \frac{1}{n}}} \text{ et donc par somme}$ et produit de limites, $u_n \xrightarrow{n \to +\infty} \frac{1}{2}$

e) $\forall n \in \mathbb{N}^*, \frac{-1}{n+1} \le u_n \le \frac{1}{n+1}$ donc par le théorème des gendarmes, $u_n \underset{n \to +\infty}{\longrightarrow} 0$.

f) $\forall n \in \mathbb{N}^*, u_n = \frac{2 + \frac{5}{n^5} + \frac{1}{n^6}}{1 - 2 \frac{1}{\kappa}}$ donc par somme et produit de limites, $u_n \xrightarrow[n \to +\infty]{} 2$.

g) La suite (u_n) n'a pas de limite, puisque $u_{2n} \xrightarrow[n \to +\infty]{} +\infty$, mais $u_{2n+1} \xrightarrow[n \to +\infty]{} -\infty$, limites qui ne sont pas égales.

h) $\forall n \in \mathbb{N}^*, u_n = \frac{(2/3)^n - 1}{(2/3)^n + 1}$, or |2/3| < 1 donc la suite géométrique de terme $(2/3)^n$ converge vers 0, et donc par somme et produit de limites, $u_n \xrightarrow[n \to +\infty]{} -1$.

i) $\forall n \in \mathbb{N}^*, u_n = n^{1/n} = e^{\frac{1}{n}} \ln(n)$. Par croissance comparée, $\frac{1}{n} \ln(n) \underset{n \to +\infty}{\longrightarrow} 0$, et donc par composition de limites, $u_n \xrightarrow[n \to +\infty]{} 1$.

j) $\forall n \in \mathbb{N}^*, 2 - \frac{5}{n^2} \le u_n \le 2 - \frac{3}{n^2}$, donc par le théorème des gendarmes, $u_n \xrightarrow[n \to +\infty]{} 2$.

k) $\forall n \in \mathbb{N}^*, u_n = e^1$ donc la suite est constante et converge vers son unique valeur, e.

l) $\forall n \in \mathbb{N}^*, u_n = \frac{(-5/3)^n + \frac{n}{3^n}}{1 - (1/3)^n}$. Par propriétés des suites géométriques, $(1/3)^n \xrightarrow[n \to +\infty]{} 0$, par croissance comparée, $\frac{n}{3^n} \xrightarrow[n \to +\infty]{} 0$, et la suite $(5/3)^n \xrightarrow[n \to +\infty]{} +\infty$. Ainsi la suite par somme et produit de limites, $u_{2n} \xrightarrow[n \to +\infty]{} +\infty$, et $u_{2n+1} \xrightarrow[n \to +\infty]{} -\infty$. Les limites n'étant pas égales, la suite (u_n) n'a pas de limite.

m) $\forall n \in \mathbb{N}^*, 0 \le u_n = \frac{1 \times 2 \times ... \times n}{n \times n \times ... \times n} \le \frac{1}{n}$ donc d'après le théorème des gendarmes, $u_n \xrightarrow[n \to +\infty]{} 0$.

Exercice 11. Étudier la convergence de la suite $(u_n)_{n\in\mathbb{N}^*}$ définie pour $n\in\mathbb{N}^*$ par

$$u_n = \sum_{k=1}^{n} \frac{1}{\sqrt{n^2 + k}}.$$

Solution : Puisque la fonction $x \mapsto \frac{1}{\sqrt{x}}$ est décroissante sur \mathbb{R}_+^* , pour tout $n \in \mathbb{N}^*$ on a

$$\sum_{k=1}^{n} \frac{1}{\sqrt{n^2 + n}} \le u_n \le \sum_{k=1}^{n} \frac{1}{\sqrt{n^2}}$$

donc

$$\frac{n}{n\sqrt{1+1/n}} \le u_n \le \frac{n}{n}$$

c'est à dire

$$\frac{1}{\sqrt{1+1/n}} \le u_n \le 1$$

Puisque $\frac{1}{\sqrt{1+1/n}} \underset{n \to +\infty}{\longrightarrow} 1$, d'après le théorème des gendarmes $u_n \underset{n \to +\infty}{\longrightarrow} 1$.

Exercice 12. Pour tout $n \in \mathbb{N}$, posons

$$u_n = \sqrt{n} - |\sqrt{n}|.$$

- 1. Étudier la convergence des suites $(u_{n^2})_{n\in\mathbb{N}}$ et $(u_{n^2+n})_{n\in\mathbb{N}}$.
- 2. En déduire que la suite $(u_n)_{n\in\mathbb{N}}$ ne converge pas .

Solution:

1. Pour tout $n \in \mathbb{N}$, $u_{n^2} = \sqrt{n^2} - \lfloor \sqrt{n^2} \rfloor = n - n = 0$, et

$$\begin{split} u_{n^2+n} &= \sqrt{n^2+n} - \lfloor \sqrt{n}^2 + n \rfloor \\ &= \sqrt{n^2+n} - n & \text{car } n^2 \le n^2 + n < (n+1)^2, \\ &= n \left(\sqrt{1+\frac{1}{n}} - 1 \right) = n \frac{1+\frac{1}{n}-1}{\sqrt{1+\frac{1}{n}}+1} = \frac{1}{\sqrt{1+\frac{1}{n}}+1}. \end{split}$$

Par somme, produit et composition de limites, $u_{n^2+n} \xrightarrow[n \to +\infty]{} 1$. Puisque $(u_n)_{n \in \mathbb{N}}$ a deux sous suites qui convergent vers des valeurs différentes, alors elle ne converge pas.

Exercice 13. Irrationalit'e de e.

Pour tout
$$n \in \mathbb{N}^*$$
 on pose $u_n = \sum_{p=0}^n \frac{1}{p!}$ et $v_n = \sum_{p=0}^n \frac{1}{p!} + \frac{1}{n!}$.

- 1. Montrer que les suites (u_n) et (v_n) convergent vers la même limite.
- 2. Posons $e=\lim_{n\to +\infty}u_n$. Nous allons démontrer que e est un nombre irrationnel en raisonnant par l'absurde. Supposons qu'il existe deux entiers naturels $p,q\geqslant 1$ tels que $e=\frac{p}{q}$.
 - Établir l'encadrement $u_n < e < v_n$ pour tout $n \in \mathbb{N}^*$.
 - Vérifier que $q!u_q$ et $q!v_q$ sont deux nombres entiers consécutifs.
 - Conclure le raisonnement.

1. Pour tout $n \in \mathbb{N}^*$, on a :

$$u_{n+1} - u_n = \frac{1}{(n+1)!} > 0$$

et

$$v_{n+1} - v_n = \frac{1}{(n+1)!} + \frac{1}{(n+1)!} - \frac{1}{n!} = \frac{1}{n!} \left(\frac{2}{n+1} - 1 \right) \le 0 \text{ car } 2 \le n+1,$$

donc la suite (u_n) est croissante et la suite (v_n) est décroissante. De plus $v_n - u_n = \frac{1}{!n} \underset{n \to +\infty}{\longrightarrow} 0$ donc les suites (u_n) et (v_n) sont adjacentes. Ainsi, elles convergent vers la même limite.

- 2. Puisque la suite (u_n) est strictement croissante, pour tout $n \in \mathbb{N}^*$, $u_n < e$. Puisque la suite (v_n) est strictement décroissante à partir du rang 2, alors pour tout $n \in \mathbb{N}^*$, $e < v_n$.
 - Puisque $q!u_q = \sum_{p=0}^q \frac{q!}{p!} = (p+1) \times \ldots \times q$, la quantité $q!u_q$ est donc un entier. De plus, $q!v_q = q!u_q + \frac{q!}{q!} = q!u_q + 1$, donc $q!v_q$ est un entier égal $q!u_q + 1$.
 - Puisque $u_q < e < v_q$, on a donc $q!u_q < (q-1)!p < q!u_q + 1$, l'entier (q-1)!p est donc compris strictement entre deux entiers consécutifs ce qui est impossible. Ainsi, e n'est pas rationnel.

Exercice 14.

- 1. Montrer que pour tout $x \ge 0$ on $a: x \frac{1}{2}x^2 \le \ln(1+x) \le x$.
- 2. En déduire la limite des suites de terme général :

a)
$$u_n = (1 + \frac{1}{n})^n$$

b)
$$v_n = \prod_{k=1}^n (1 + \frac{k}{n^2}).$$

Solution:

- 1. Soit $f: x \mapsto \ln(1+x) x + \frac{1}{2}x^2$, définie sur $]-1, +\infty[$ et dérivable. On a d'une part f(0)=0 et d'autre part pour tout $x \ge 0$, $f'(x) = \frac{1}{1+x} 1 + x = \frac{1+(1+x)(-1+x)}{1+x} = \frac{x^2}{1+x} \ge 0$. La fonction f est croissante sur $[0, \infty[$ et donc pour tout $x \ge 0$, $f(x) \ge f(0) = 0$, c'est à dire que $\ln(1+x) \ge x \frac{1}{2}x^2$. De même, on dérive $g(x) = \ln(x+1) x$ pour obtenir $g'(x) = \frac{1}{x+1} 1 = \frac{-x}{x+1} \le 0$, et puisque g(0) = 0, par décroissance de g on a $\ln(x+1) \le x$ pour tout $x \ge 0$.
- 2. a) Pour tout $n \in \mathbb{N}^*$, on a $u_n = e^{n \ln(1+1/n)}$ donc puisque la fonction exponentielle est croissante, on a

$$e^{n\left(\frac{1}{n} - \frac{1}{2n^2}\right)} \le u_n \le e^{\frac{n}{n}}$$

c'est à dire

$$e^{1-\frac{1}{2n}} \le u_n \le e,$$

et donc d'après le théorème des gendarmes, $u_n \xrightarrow[n \to +\infty]{} e$.

b) On a pour tout $n \in \mathbb{N}^*$, $\ln(v_n) = \sum_{k=1}^n \ln\left(1 + \frac{k}{n^2}\right)$, et donc

$$\sum_{k=1}^{n} \left(\frac{k}{n^2} - \frac{1}{2} \frac{k^2}{n^4} \right) \le \ln(v_n) \le \sum_{k=1}^{n} \frac{k}{n^2}$$

par conséquent

$$\frac{n(n+1)}{2n^2} - \frac{n(n+1)(2n+1)}{6n^4} \le \ln(v_n) \le \frac{n(n+1)}{2n^2}.$$

On a $\frac{n(n+1)(2n+1)}{6n^4} \xrightarrow[n \to +\infty]{} 0$, et $\frac{n(n+1)}{2n^2} \xrightarrow[n \to +\infty]{} \frac{1}{2}$. Ainsi la suite $(\ln(v_n))$ converge vers $\frac{1}{2}$ et donc par composition avec l'exponentielle, la suite (u_n) converge vers $e^{1/2}$.

8

Exercice 15. Somme harmonique

Pour tout $n \in \mathbb{N}^*$, on pose $u_n = \sum_{k=1}^n \frac{1}{k}$.

- 1. Montrer que pour tout $k \in \mathbb{N}^*$, $\int_k^{k+1} \frac{\mathrm{d}x}{x} \leq \frac{1}{k}$.
- 2. En déduire la nature de la suite $(u_n)_{n\in\mathbb{N}}$.

Solution:

- 1. Pour tout $x \in [k, k+1], \frac{1}{x} \le \frac{1}{k}, \text{ donc } \int_{k}^{k+1} \frac{\mathrm{d}x}{x} \le \int_{k}^{k+1} \frac{\mathrm{d}x}{k} = \frac{1}{k}.$
- 2. On a donc pour tout $n \in \mathbb{N}^*$,

$$u_n = \sum_{k=1}^n \frac{1}{k} \ge \sum_{k=1}^n \int_k^{k+1} \frac{\mathrm{d}x}{x} = \int_1^{n+1} \frac{\mathrm{d}x}{x} = \ln(n+1) - \ln(1) = \ln(n+1) \underset{n \to +\infty}{\longrightarrow} +\infty.$$

Exercice 16. Lemme de Cesàro.

1. Soit (u_n) une suite réelle. On définit la suite (v_n) dont le terme général est la moyenne arithmétique des n premiers termes de la suite (u_n) :

$$v_n = \frac{u_1 + u_2 + \dots + u_n}{n}.$$

Montrer que si (u_n) converge vers $\ell \in \overline{\mathbb{R}}$ alors (v_n) converge également vers ℓ .

- 2. Soit (u_n) une suite réelle. On suppose que la suite $(u_{n+1}-u_n)_{n\in\mathbb{N}}$ converge vers $\ell\in\overline{\mathbb{R}}$. Démontrer que la suite $\left(\frac{u_n}{n}\right)_{n\in\mathbb{N}^*}$ converge vers ℓ .
- 3. Soit $(u_n)_{n\in\mathbb{N}}$ une suite strictement positive telle que

$$\lim_{n \to +\infty} \frac{u_{n+1}}{u_n} = \ell \in \mathbb{R}_+ \cup \{+\infty\}.$$

Démontrer que la suite $(\sqrt[n]{u_n})_{n\in\mathbb{N}^*}$ converge vers ℓ .

4. Déduire de ce qui précède

$$\lim_{n \to +\infty} \sqrt[n]{\binom{2n}{n}} \quad \text{et} \quad \lim_{n \to +\infty} \frac{n}{\sqrt[n]{n!}}.$$

(Indication: pour la seconde suite, on pourra utiliser l'exercice 14)

Solution:

1. On suppose d'abord que $\ell \in \mathbb{R}$. Soit $\varepsilon > 0$. On sait qu'il existe $n_0 \in \mathbb{N}^*$ tel que $\forall n \geq n_0, |u_n - \ell| \leq \varepsilon$. De plus, la suite $\frac{1}{n}$ converge vers 0. Donc il existe un rang n_1 tel que pour tout $n \geq n_1$ et pour tout k tel que $1 \leq k \leq n_0$ on ait $\frac{|u_k - \ell|}{n} \leq \frac{\varepsilon}{n_0}$. Ceci est possible parce qu'on a pris un nombre fini et fixé d'indices k (ou parce que la suite (u_n) converge et donc est bornée). Ainsi pour tout $n \geq \max\{n_1, n_2\}$, on a

$$v_n - \ell = \frac{1}{n} \sum_{k=1}^{n} (u_k - \ell) = \frac{1}{n} \sum_{k=1}^{n_0} (u_k - \ell) + \frac{1}{n} \sum_{k=n_0+1}^{n} (u_k - \ell)$$

9

et donc

$$|v_n - \ell| \le \frac{n_0 \varepsilon}{n_0} + \frac{n - n_0 - 1}{n} \varepsilon \le 2\varepsilon.$$

Ainsi, $v_n \xrightarrow[n \to +\infty]{} \ell$.

On suppose désormais que $l = +\infty$. Soit $M \in \mathbb{R}_+^*$. On sait qu'il existe $n_0 \in \mathbb{N}^*$ tel que $\forall n \geq n_0$, $u_n > 2M + 2$. On sait ensuite que la suite (u_n) est minorée, puisqu'elle diverge vers $+\infty$, il existe donc $m \in \mathbb{R}$ minorant la suite (u_n) et donc il existe un rang $n_1 \in \mathbb{N}^*$ tel que pour tout $n \geq n_1$ et pour tout k tel que $1 \leq k \leq n_0$ on ait $\frac{u_k}{n} \geq \frac{m}{n} \geq -\frac{1}{n_0}$, puisque $\frac{1}{n} \xrightarrow[n \to +\infty]{} 0$. Ainsi pour tout $n \neq \max\{n_1, n_2\}$, on a

$$v_n = \frac{1}{n} \sum_{k=1}^{n_0} u_k + \frac{1}{n} \sum_{k=n_0+1}^n u_k \ge \frac{-n_0}{n_0} + \frac{n-n_0-1}{n} (2M+2).$$

Puisque $\frac{n-n_0-1}{n} \xrightarrow[n \to +\infty]{} 1$, il existe un rang n_2 tel que pour tout $n \ge n_2$, $\frac{n-n_0-1}{n} > \frac{1}{2}$. Par conséquent, pour tout $n \ge \max\{n_0, n_1, n_2\}$, on a $v_n \ge M$, et donc $v_n \xrightarrow[n \to +\infty]{} +\infty$.

Si $\ell = -\infty$, alors $-u_n \xrightarrow[n \to +\infty]{} +\infty$ et donc $-v_n \xrightarrow[n \to +\infty]{} +\infty$ comme on vient de le prouver, c'est à dire que $v_n \xrightarrow[n \to +\infty]{} -\infty$.

2. Utilisons la question précédente en introduisant les suites définies pour $n \in \mathbb{N}^*$ par $a_n = u_{n+1} - u_n$ et $b_n = \frac{a_1 + \dots + a_n}{n}$. On a donc que $b_n = \frac{1}{n} \sum_{k=1}^n (u_{k+1} - u_k)$ qui est une somme télescopique : en effet, on a

$$\sum_{k=1}^{n} (u_{k+1} - u_k) = \sum_{k=1}^{n} u_{k+1} - \sum_{k=1}^{n} u_k = \sum_{k=1}^{n+1} u_k - \sum_{k=1}^{n} u_k = u_{n+1} - u_1.$$

Donc pour tout $n \in \mathbb{N}^*$, $b_n = \frac{u_{n+1} - u_0}{n}$. Or la suite $\left(\frac{u_0}{n}\right)$ est une suite qui converge vers 0, et donc la suite (b_n) a la même convergence que la suite $\left(\frac{u_{n+1}}{n}\right)$. D'après le lemme de Cesàro précédemment démontré, puisque $a_n \xrightarrow[n \to +\infty]{} \ell \in \overline{\mathbb{R}}$, on sait que $b_n \xrightarrow[n \to +\infty]{} \ell \in \overline{\mathbb{R}}$.

Puisque $\frac{n}{n+1} \underset{n \to +\infty}{\longrightarrow} 1$, par produit de limites la suite $\left(\frac{u_{n+1}}{n+1}\right)$ tend elle aussi vers $\ell \in \overline{\mathbb{R}}$, et donc la suite $\left(\frac{u_n}{n}\right)$ aussi.

3. On introduit cette fois $a_n = \ln(u_n)$, bien définie puisque $u_n > 0$ pour tout $n \in \mathbb{N}$. On a alors que pour tout $n \in \mathbb{N}$, $a_{n+1} - a_n = \ln\left(\frac{u_{n+1}}{u_n}\right) \underset{n \to +\infty}{\longrightarrow} \ln(\ell)$ par composition des limites si $\ell \in \mathbb{R}$, et diverge vers $+\infty$ si $\ell = +\infty$. On peut donc appliquer la question précédente à la suite $\ell = 0$ sait alors que $\ell = 0$ suite $\ell =$

Or pour tout $n \in \mathbb{N}^*$, $\sqrt[n]{u_n} = e^{\frac{1}{n}\ln(u_n)} = e^{\frac{a_n}{n}}$, et par composition des limites, $\sqrt[n]{u_n} \underset{n \to +\infty}{\longrightarrow} e^{\ln(\ell)} = \ell$ si $\ell \in \mathbb{R}$, et $\sqrt[n]{u_n} \underset{n \to +\infty}{\longrightarrow} +\infty$ si $\ell = +\infty$, ce qui conclut la preuve.

4. On pose $u_n = \binom{2n}{n}$ pour tout $n \in \mathbb{N}$. Calculons:

$$\frac{u_{n+1}}{u_n} = \frac{\binom{2n+2}{n+1}}{\binom{2n}{n}} = \frac{(n!)^2}{(2n)!} \frac{(2n+2)!}{(n+1)!^2} = \frac{(2n+1)(2n+2)}{(n+1)!^2} \underset{n \to +\infty}{\longrightarrow} 4.$$

Donc d'après la question précédente, $\sqrt[n]{\binom{2n}{n}} \underset{n \to +\infty}{\longrightarrow} 4$.

De même, pour tout $n \in \mathbb{N}^*$ posons $v_n = \frac{n^n}{n!}$, et calculons :

$$\frac{v_{n+1}}{v_n} = \frac{n^n}{n!} \frac{(n+1)!}{(n+1)^{n+1}} = \left(\frac{n}{n+1}\right)^n \frac{n+1}{n+1} = \left(1 + \frac{1}{n}\right)^n \underset{n \to +\infty}{\longrightarrow} e^{-\frac{n}{n}}$$

d'après l'exercice 14. Ainsi, puisque $\frac{n}{\sqrt[n]{n!}} = \sqrt[n]{u_n}$, on sait d'après la question précédente que $\frac{n}{\sqrt[n]{n!}} \underset{n \to +\infty}{\longrightarrow} e$.

Exercice 17. Suites arithmético-géométriques.

Soit $(a,b) \in \mathbb{R}^2$ tel que $a \neq 1$ et soit $u^{(0)} \in \mathbb{R}$. On définit par récurrence $(u_n)_{n \in \mathbb{N}}$ telle que : $u_0 = u^{(0)}$ et, pour tout $n \in \mathbb{N}$, $u_{n+1} = au_n + b$.

- 1. Montrer qu'il existe $\alpha \in \mathbb{R}$ tel que $\alpha = a\alpha + b$.
- 2. Montrer que la suite $(v_n)_{n\in\mathbb{N}}=(u_n-\alpha)_{n\in\mathbb{N}}$ est une suite géométrique.
- 3. En déduire l'expression de u_n pour tout $n \in \mathbb{N}$.
- 4. Étudier la convergence de (u_n) . (Indication : on distinguera les cas |a| < 1, a > 1 et $a \le -1$).
- 5. Calculer, pour tout $n \in \mathbb{N}$, la somme $\sum_{k=0}^{n} u_k$.

Solution:

- 1. L'équation $\alpha = a\alpha + b$ est équivalente à $\alpha(1-a) = b$. Celle ci possède une solution, $\frac{b}{1-a}$ puisque $a \neq 1$.
- 2. Calculons : $\forall n \in \mathbb{N}, v_{n+1} = u_{n+1} \alpha = au_n + b (a\alpha + b) = a(u_n \alpha) = av_n$, donc (v_n) est une suite géométrique de raison a.
- 3. Par conséquent, pour tout $n \in \mathbb{N}$, $v_n = v_0 a^n = (u_0 \alpha) a^n$ et donc $u_n = v_n + \alpha = (u_0 \alpha) a^n + \alpha$.
- 4. La convergence dépend de la valeur de a, ainsi que du signe de $(u_0 \alpha)$.
 - Si $u_0 = \alpha$, alors la suite est constante égale à u_0 .
 - Si $u_0 \neq \alpha$, alors si |a| < 1 la suite converge vers α , si a > 1 alors la suite diverge vers l'infini du signe de $u_0 \alpha$, et si $a \leq -1$ alors la suite n'a pas de limite.
- 5. Calculons, pour tout $n \in \mathbb{N}$:

$$\sum_{k=0}^{n} u_k = \sum_{k=0}^{n} [(u_0 - \alpha)a^k + \alpha] = (u_0 - \alpha)\sum_{k=0}^{n} a^k + \sum_{k=0}^{n} \alpha = (u_0 - \alpha)\frac{1 - a^{n+1}}{1 - a} + (n+1)\alpha.$$

Exercice 18.

Le but de cet exercice est d'étudier la suite définie par récurrence comme suit :

$$\begin{cases} u_{n+1} = 2u_n(1 - u_n), & \forall n \ge 0, \\ u_0 \in \mathbb{R}. \end{cases}$$

- 1. Soit $f: \mathbb{R} \to \mathbb{R}$ définie par f(x) = 2x(1-x) pour tout $x \in \mathbb{R}$. Dresser le tableau des variations de f et dessiner son graphe.
- 2. Étudier le signe de f(x) x pour tout $x \in \mathbb{R}$.
- 3. Montrer que si (u_n) converge, alors elle converge vers un point fixe de f. Déterminer les points fixes de f. Que peut-on dire de la suite (u_n) si u_0 est l'un des points fixes de f?
- 4. Montrer que les intervalles] $-\infty$, 0[et]0, 1/2[sont stables par f et que f est croissante sur ces intervalles. On dit qu'un intervalle I est stable par f si $f(I) \subset I$.
- 5. On suppose que $u_0 \in]0, 1/2[$. Montrer que la suite (u_n) est alors croissante (On pourra s'aider de la question 3.) En déduire la nature de la suite (u_n) . Même question si $u_0 \in]-\infty, 0[$.
- 6. Étudier la nature de la suite (u_n) lorsque $u_0 \in]1/2, +\infty[$.

1. Puisque pour tout $x \in \mathbb{R}$, f'(x) = 2 - 4x et $\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} f(x) = -\infty$ on a :

x	$-\infty$		$\frac{1}{2}$		$+\infty$
f'(x)		+	0	_	
f(x)	$-\infty$		$\frac{1}{2}$		$-\infty$

2. $\forall x \in \mathbb{R}, f(x) - x = -2x^2 + x = x(1-2x)$. Dressons un tableau de signe :

x	$-\infty$		0		$\frac{1}{2}$		$+\infty$
x		_	0	+		+	
1-2x		+		+	0	_	
f(x)-x		_	0	+	0	_	

- 3. Si (u_n) converge vers $\ell \in \mathbb{R}$, par passage à la limite dans la relation de récurrence, on a $\ell = 2\ell(1-\ell)$ c'est à dire $\ell = f(\ell)$. D'après le tableau de signe, les points fixes de f sont 0 et 1/2. Si la suite démarre à un point fixe, puisque $u_{n+1} = f(u_n)$ pour tout $n \in \mathbb{N}$, alors (u_n) est constante.
- 4. On a déjà montré que f est strictement croissante sur ces deux intervalles. Il suffit donc de montrer que pour tout x < 0, f(x) < 0 pour montrer que $] \infty$, 0[est stable, et que $\forall x \in]0, 1/2[$, $f(x) \in]0, 1/2[$. Puisque f(0) = 0 et f(1/2) = 1/2, ceci est prouvé.
- 5. Montrons par récurrence que de façon générale si $u_0 \in I$ où I est un intervalle stable, alors $\forall n \in N, u_n \in I$ On note H_n : " $u_n \in I$. H_0 est vraie puisque $u_0 \in I$. Soit $n \in \mathbb{N}$, et supposons H_n . Puisque $u_{n+1} = f(u_n)$, et $u_n \in I$ par hypothèse de récurrence, puisque I est stable on a donc $u_{n+1} \in I$ c'est à dire H_{n+1} , ce qui conclut la récurrence.

Ainsi dans notre cas, $\forall n \in \mathbb{N}, u_0 \in]0, 1/2[$, intervalle sur lequel f(x) > x. Puisque $u_{n+1} = f(u_n)$, on a donc $u_{n+1} > u_n$. La suite (u_n) est donc strictement croissante. Elle est également majorée puisque évolue dans l'intervalle]0, 1/2[. Ainsi elle converge, et donc d'après la question 3, elle converge vers 0 ou 1/2. Puisqu'elle est croissante et $u_0 > 0$, elle converge nécessairement vers 1/2. De même, si $u_0 \in]-\infty, 0[$, c'est un intervalle stable donc $\forall n \in \mathbb{N}, u_n \in]-\infty, 0[$, intervalle sur lequel f(x) < x, donc (u_n) est décroissante. Si (u_n) était minorée, elle convergerait vers 0 ou 1/2, ce qui est impossible. Elle est donc décroissante et non minorée, c'est donc qu'elle diverge vers $-\infty$.

6. Cette fois ci, l'intervalle $]1/2, +\infty[$ n'est pas stable. Au contraire, si $u_0 \in]1/2, +\infty[$, alors d'après le tableau de variation déjà dressé, $u_1 \in]-\infty, 1/2[$, et l'on est ramené au cas précédent. Précisément, puisque f(1)=0, alors si $u_0 \in]-1/2, 1[$, $u_1 \in]0, 1/2[$ et $u_n \underset{n \to +\infty}{\longrightarrow} 1/2$, si $u_0=1$ alors $u_1=0$ et (u_n) est stationnaire à partir du rang 1, et si $u_0 > 1$, alors $u_1 \in]-\infty, 0[$ et $u_n \underset{n \to +\infty}{\longrightarrow} -\infty$.

Exercice 19.

Le but de cet exercice est d'étudier la suite définie par récurrence comme suit :

$$\begin{cases} u_{n+1} = u_n(u_n^2 - 1), & \forall n \ge 0, \\ u_0 \in \mathbb{R}. \end{cases}$$

- 1. Soit $f: \mathbb{R} \to \mathbb{R}$ définie par $f(x) = x(x^2 1)$ pour tout $x \in \mathbb{R}$. Répéter pour f l'étude des questions 1 à 3 de l'exercice précédent.
- 2. Montrer que l'intervalle $\left[-\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right]$ est stable par f et que f est décroissante sur cet intervalle.
- 3. On suppose que $u_0 \in [-\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}]$. Montrer que les suites (u_{2n}) et (u_{2n+1}) sont monotones et déterminer leur monotonie en fonction du signe de u_0 (On pourra montrer que pour $x \in [-\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}]$, on $a |f(x)| \leq |x|$). Montrer que ces suites sont convergentes et déterminer leurs limites.
- 4. En déduire la nature de la suite (u_n) lorsque $u_0 \in [-\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}]$.
- 5. On suppose que $u_0 \in]-\sqrt{2}, -\frac{1}{\sqrt{3}}[$. Montrer qu'il existe $n_0 \in \mathbb{N}$ tel que $u_{n_0} \in [-\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}]$. En déduire la nature de la suite (u_n) lorsque $u_0 \in]-\sqrt{2}, -\frac{1}{\sqrt{3}}[$. Quelle est la nature de la suite (u_n) lorsque $u_0 \in]\frac{1}{\sqrt{3}}, \sqrt{2}[$?
- 6. Étudier la nature de la suite (u_n) lorsque $u_0 \in]-\infty, -\sqrt{2}[$ et lorsque $u_0 \in]\sqrt{2}, +\infty[$.

Solution:

1. On pour tout $x \in \mathbb{R}$, $f'(x) = 3x^2 - 1$ qui satisfait $f(x) = 0 \iff x = \pm \frac{1}{\sqrt{3}}$ et $f(x) < 0 \iff x \in]-\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}[$ et l'on a également $\lim_{x \to +\infty} f(x) = +\infty$ et $\lim_{x \to -\infty} f(x) = -\infty$. Ainsi,

x	$-\infty$		$-\frac{1}{\sqrt{3}}$		$\frac{1}{\sqrt{3}}$		$+\infty$
f'(x)		_	0	+	0	_	
f(x)	$-\infty$		$\rightarrow \frac{2}{3\sqrt{3}}$		$-\frac{2}{3\sqrt{3}}$		+∞

De plus $\forall x \in \mathbb{R}, f(x) - x = x^3 - 2x = x(x^2 - 2)$. Dressons un tableau de signe :

x	$-\infty$		$-\sqrt{2}$		0		$\sqrt{2}$		$+\infty$
x		_		_	0	+		+	
$x^2 - 2$		+	0	_		_	0	+	
f(x)-x		_	0	+	0	_	0	+	

Enfin, si (u_n) converge vers $\ell \in \mathbb{R}$, par passage à la limite dans la relation de récurrence, on a $\ell = f(\ell)$. D'après le tableau de signe, les points fixes de f sont $-\sqrt{2}$, 0 et $\sqrt{2}$. Si la suite démarre à un point fixe, puisque $u_{n+1} = f(u_n)$ pour tout $n \in \mathbb{N}$, alors (u_n) est constante.

2. On a déjà démontré que f est décroissante dans cet intervalle. D'après le tableau de variation la fonction f y est donc stable si $\left[-\frac{2}{3\sqrt{3}},\frac{2}{3\sqrt{3}}\right] \subset \left[-\frac{1}{\sqrt{3}},\frac{1}{\sqrt{3}}\right]$ ce qui est le cas puisque $2/3 \le 1$.

13

3 et 4. Puisque f(0)=0, on remarque plus précisément que $f([-\frac{1}{\sqrt{3}},0])=[0,\frac{2}{3\sqrt{3}}]$ et $f([0,\frac{1}{\sqrt{3}}])=[0,\frac{2}{3\sqrt{3}}]$ $[-\frac{2}{3\sqrt{3}},0]$. De fait $f\circ f([[-\frac{1}{\sqrt{3}},0]])\subset [-\frac{1}{\sqrt{3}},0]$ et $f\circ f([0,\frac{1}{\sqrt{3}}])\subset [0,\frac{1}{\sqrt{3}}]$, donc les deux intervalles sont stables pour $f \circ f$ qui satisfait à la fois $u_{2(n+1)} = f \circ f(u_n)$ et $u_{2(n+1)+1} = f \circ f(u_{2n+1})$. Puisque $\sqrt{2} \ge \frac{1}{\sqrt{3}}$, on sait donc que f(x) - x est positif sur l'intervalle $[-\frac{1}{\sqrt{3}}, 0]$ et donc $f(f(x)) \ge 1$ $f(x) \ge x$ également sur ce même intervalle, et de même que f(f(x)) - x est négatif sur l'intervalle $[-\frac{1}{\sqrt{3}},0].$

Ainsi si $u_0 \in [0, \frac{1}{\sqrt{3}}]$, alors la suite (u_{2n}) évolue dans l'intervalle $[0, \frac{1}{\sqrt{3}}]$ et est donc suite décroissante minorée, donc convergente, et ce nécessairement vers 0. De plus la suite (u_{2n+1}) évolue dans l'intervalle $\left[-\frac{1}{\sqrt{3}},0\right]$, c'est donc une suite croissante majorée, donc converge également vers 0, et de fait, $u_n \xrightarrow[n \to +\infty]{} 0$.

Si $u_0 \in [-\frac{1}{\sqrt{3}}, 0]$ les rôles de u_{2n} et u_{2n+1} sont inversés, mais la conclusion reste la même, les deux sous suites convergent vers 0, la suite (u_n) converge donc vers 0 pour tout $u_0 \in [-\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}]$.

- 5. Si $u_0 \in]-\sqrt{2}, -\frac{1}{\sqrt{3}}[$, d'après le tableau de signe alors $u_1=f(u_0)>u_0.$ Deux cas se produisent alors : soit $u_1 \in]-\sqrt{2}, -\frac{1}{\sqrt{3}}[$, et l'on peut répéter le raisonnement pour u_1 , soit $u_1 \notin]-\sqrt{2}, -\frac{1}{\sqrt{3}}[$ et alors d'après le tableau de variations de $f, u_1 \in [-\frac{1}{\sqrt{3}}, \frac{2}{3\sqrt{3}}] \subset [-\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}].$ Deux occurrences surviennent donc : soit $\exists n_0 \in \mathbb{N}$ tel que $u_{n_0} \in [-\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}]$, soit $\forall n \in \mathbb{N}, u_n \in \mathbb{N}$ $]-\sqrt{2},-\frac{1}{\sqrt{3}}[$. Dans ce cas, (u_n) serait une suite croissante majorée donc convergente, or elle ne pourrait converger que vers $-\sqrt{2}$, 0 ou $\sqrt{2}$, ce qui sont trois possibilités absurdes. Cette occurrence
- 6. (cf exercice précédent) Sur l'intervalle $]-\infty,-\sqrt{2}[$ on a f(x)< x et donc par récurrence, la suite (u_n) est décroissante. Puisqu'elle ne peut converger que vers des valeurs qui ne lui sont pas accessibles, c'est que $u_n \xrightarrow[n \to +\infty]{} -\infty$. De même, sur l'intervalle $]\sqrt{2}, +\infty[$ on f(x) > x et donc la suite (u_n) est croissante, et ne pouvant pas converger, c'est qu'elle diverge vers $+\infty$.

Exercice 20.

En suivant la démarche des exercices 18 et 19, étudier les suites définies par $u_0 \in \mathbb{R}$ et $\forall n \in \mathbb{N}$, $u_{n+1} = f(u_n)$, où la fonction f est donnée par :

a)
$$f(x) = x^2$$
,

b)
$$f(x) = x^2 + 1$$
,

est donc impossible et nécessairement, $\exists n_0 \in \mathbb{N}$ tel que $u_{n_0} \in [-\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}]$.

c)
$$f(x) = \sqrt{1+x}$$
,

d)
$$f(x) = 1 + \ln(x)$$
, e) $f(x) = e^x - 1$,

e)
$$f(x) = e^x - 1$$
.

f)
$$f(x) = \frac{1}{2+x}$$
.

Pour certaines valeurs de u_0 , la suite (u_n) peut ne pas être définie à partir d'un certain rang.

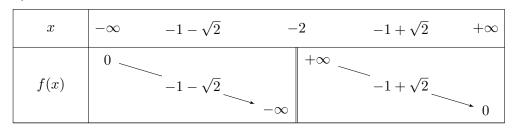
Solution: Rédaction PARTIELLE s'appuyant sur les exercices précédents.

- a) La fonction f a deux points fixes, 0 et 1. Elle est décroissante sur \mathbb{R}^- et croissante sur \mathbb{R}_+ . Enfin, $f(x) \leq x \iff x \in [0,1]$. L'intervalle [0,1] est donc stabilisé. L'intervalle [-1,0] est envoyé dans l'intervalle [0,1], et l'intervalle $]-\infty,-1[$ est envoyé dans l'intervalle $[1,+\infty[$, qui lui aussi est stabilisé. De fait, si $|u_0>1|$ la suite (u_n) est croissante à partir du rang 1 et ne pouvant pas converger vers un point fixe de f tend donc vers $+\infty$. Si $u_0 = |1|$ alors la suite est stationnaire à partir du rang 1 donc converge vers 1. Enfin, si $|u_0| < 1$, la suite est décroissante à partir du rang 1 et est bornée donc converge vers 0 (puisque 1 n'est pas accessible).
- b) Puisque l'équation f(x) = x n'a pas de solution, f(x) > x pour tout $x \in \mathbb{R}$. Ainsi la suite (u_n) est croissante et ne peux converger puisque f n'a pas de point fixe, donc diverge vers $+\infty$.

- c) La fonction f est définie sur $I = [-1, +\infty[$, donc on se restreint à $u_0 \in I$. L'équation f(x) = x a une unique solution, qui est $\varphi = \frac{\sqrt{5}+1}{2}$. Puisque f est croissante sur I, f stabilise les deux intervalles $[-1, \varphi]$ et $[\varphi, +\infty[$,. Dans l'intervalle $[-1, \varphi]$, $f(x) \geq x$, et dans l'intervalle $[\varphi, +\infty[$, $f(x) \leq x$. Ainsi si $u_0 \in [\varphi, +\infty[$ la suite est décroissante et minorée donc converge vers le point fixe φ . Ainsi quel que soit $u_0 \in I$, $u_n \xrightarrow[n \to +\infty]{} \varphi$.
- d) Puisque f est définie sur $I =]0, +\infty[$, on se restreint à $u_0 \in I$. L'équation f(x) = x a une unique solution, qui est 1. Puisque f est croissante, l'intervalle $[1, +\infty[$ est donc stabilisé. Sur I entier on a $f(x) \le x$ donc la suite (u_n) est toujours décroissante. Ainsi si $u_0 \in [1, +\infty[$, elle converge vers 1. En revanche, si $u_0 < 1$, alors la suite étant décroissante et ne pouvant pas converger, il existe un rang n tel que $u_n < e^{-1}$, et alors $u_{n+1} < 0$ et donc la suite n'est plus définie à partir de ce rang.
- e) La fonction f est croissante sur \mathbb{R} . De plus l'équation f(x) = x a une unique solution, 0. Les intervalles \mathbb{R}_- et \mathbb{R}_+ sont donc stabilisés. De plus, sur \mathbb{R}_- on a $f(x) \geq x$, et sur \mathbb{R}_+ , $f(x) \geq x$ également. Donc la suite (u_n) est toujours croissante. Ainsi si $u_0 \in \mathbb{R}_-$, alors $u_n \xrightarrow[n \to +\infty]{} 0$, et si $u_0 > 0$, alors $u_n \xrightarrow[n \to +\infty]{} +\infty$.
- f) La fonction f a deux points fixes, $-1 \sqrt{2}$ et $-1 + \sqrt{2}$. Dressons le tableau de variation de $x \mapsto f(x) x$:

x	$-\infty$	$-1-\sqrt{2}$	-2	$-1+\sqrt{2}$	$+\infty$
f(x) - x	$+\infty$	0	$-\infty$	0	$-\infty$

et celui de f:



On voit donc que l'intervalle] $-2, +\infty$ [est stabilisé. Or f y est décroissante, donc $f \circ f$ stabilise les intervalles] $-2, -1 + \sqrt{2}$] et $[-1 + \sqrt{2}, +\infty[$. Sur ces intervalles, $f \circ f$ est croissante et donc l'étude de f(x) - x nous donne que si $u_0 \in]-2, +\infty[$, les suites (u_{2n}) et (u_{2n+1}) sont monotones, celle évoluant dans l'intervalle $]-2, -1 + \sqrt{2}]$ est croissante, et l'autre est décroissante. Donc les deux convergent vers $-1 + \sqrt{2}$, et donc $u_n \xrightarrow[n \to +\infty]{} -1 + \sqrt{2}$.

Le comportement de la suite pour $u_0 < -2$ est très long à étudier!

Exercice 21.

- 1. Montrer que : $\forall x \in [3, 5], 3 \le 3 + \frac{4}{x} \le 5$.
- 2. On définit $\varphi:[3,5] \to [3,5], \ x \mapsto 3 + \frac{4}{x}$.
 - a) Déterminer l'ensemble des points fixes de φ .
 - b) Montrer que : $\forall x \in [3, 5], \, |\varphi(x) 4| \leq \frac{|x-4|}{2}.$

- 3. On considère la suite $(u_n) \in [3,5]^{\mathbb{N}^*}$ définie par $u_1 = 5$ et, pour tout $n \in \mathbb{N}^*$, $u_{n+1} = 3 + \frac{4}{u_n}$.
 - a) Montrer que (u_n) converge et donner sa limite ℓ .
 - b) Déterminer un entier $N \in \mathbb{N}^*$ tel que, pour tout $n \in \mathbb{N}^*$ tel que $n \geq N$, u_n soit une valeur approchée de ℓ à 10^{-6} près.

- 1. Pour tout $x \in [3, 5]$, on a $3 \le x \le 5$ donc $\frac{1}{5} \le \frac{1}{x} \le \frac{1}{3}$ et ainsi $3 + \frac{4}{5} \le 3 + \frac{4}{x} \le 3 + \frac{4}{3}$. Puisque $3 \le 3 + \frac{4}{5}$ et $3 + \frac{4}{3} \le 5$, a on bien $3 \le 3 + \frac{4}{x} \le 5$.
- 2. a) On résout pour $x \in [3, 5]$,

$$\varphi(x) = x \Longleftrightarrow 3 + \frac{4}{x} = x \Longleftrightarrow x^2 - 3x - 4 = 0 \Longleftrightarrow x = \frac{3 \pm 5}{2} \Longleftrightarrow x = 4.$$

- b) Calculons pour $x \in [3,5], |\varphi(x)-4| = \left|3+\frac{4}{x}-4\right| = \left|\frac{4-x}{x}\right| \leq \frac{|x-4|}{3} \leq \frac{|x-4|}{2} \text{ car } x \geq 3.$
- 3. a) En appliquant la question précédente à u_n , on a donc pour tout $n \in \mathbb{N}^*$, $|u_{n+1}-4| \leq \frac{1}{2}|u_n-4|$. Ainsi la suite $v_n = |u_n-4|$ vérifie $v_{n+1} \leq \frac{1}{2}v_n$. Par une récurrence immédiate, ceci donne que $v_n \leq v_1 \frac{1}{2^{n-1}}$. Puisque $v_n \geq 0$, alors $v_n \xrightarrow[n \to +\infty]{} 0$, c'est à dire $u_n \xrightarrow[n \to +\infty]{} 4$.
 - b) On cherche $N \in \mathbb{N}^*$ tel que $|u_N 4| \le 10^{-6}$, c'est à dire $v_n \le 10^{-6}$, c'est à dire $v_1 2^{-N+1} \le 10^{-6}$. Or $u_1 = 5$ donc $v_1 = 1$ et donc en appliquant le logarithme, $(-N+1)\ln(2) \le -6\ln(10)$, c'est à dire $N \ge \frac{6\ln(10)}{\ln(2)} + 1$. N'importe quel entier supérieur à ce nombre convient, et par exemple 21 convient.

Exercice 22. Calcul approché de \sqrt{a} .

Soit a > 0 et (u_n) la suite définie par $u_0 > 0$ et $\forall n \in \mathbb{N}, u_{n+1} = \frac{1}{2} \left(u_n + \frac{a}{u_n} \right)$.

- 1. Donner l'ensemble de définition et le tableau de variations de la fonction $\varphi: x \mapsto \frac{1}{2} \left(x + \frac{a}{x} \right)$.
- 2. Étudier la convergence de la suite (u_n) .
- 3. On pose pour tout $n \in \mathbb{N}$, $v_n = \frac{u_n \sqrt{a}}{u_n + \sqrt{a}}$. Calculer v_{n+1} en fonction de v_n , puis v_n en fonction de v_0 et n.
- 4. Montrer que, si $u_0 > \sqrt{a}$, on a $|u_n \sqrt{a}| \le 2u_0 \cdot v_0^{2^n}$.

Ainsi, u_n réalise une approximation de \sqrt{a} à la précision $2u_0.v_0^{2^n}$.

Solution:

1. En raison du terme $\frac{1}{x}$, l'ensemble de définition de φ est \mathbb{R}^* . Elle est dérivable sur cet ensemble et $\forall x \in \mathbb{R}^*, \varphi'(x) = \frac{1}{2} - \frac{a}{2x^2}$. On résout $\phi'(x) = 0 \iff x^2 = a \iff x = \pm \sqrt{a}$, et $\phi'(x) < 0 \iff x \in]-\sqrt{a}, \sqrt{a}[\setminus\{0\}]$. Après le calcul des limites, on a donc

x	$-\infty$		$-\sqrt{a}$	(0		\sqrt{a}		$+\infty$
$\varphi'(x)$		+	0	_		_	0	+	
$\varphi(x)$	$-\infty$		$-\sqrt{a}$	$-\infty$	$+\infty$		\sqrt{a}		. +∞

- 2. On remarque tout d'abord que pour tout x > 0, $\varphi(x) > 0$, donc par récurrence, pour tout $n \in \mathbb{N}$, $u_n > 0$. Ensuite, on remarque que l'intervalle $[\sqrt{a}, +\infty[$ est stable puisque $\varphi([\sqrt{a}, +\infty[) = [\sqrt{a}, +\infty[$. Enfin, $\varphi(]0, \sqrt{a}[) = [\sqrt{a}, +\infty[$, et donc pour tout $n \ge 1$, $u_n \in [\sqrt{a}, +\infty[$. Or $\varphi(x) x = \frac{a-x^2}{2x}$ et donc sur l'intervalle $[\sqrt{a}, +\infty[$, on a $\varphi(x) x \le 0$, donc la suite (u_n) est décroissante à partir du rang 1. Elle est donc décroissante et minorée, donc converge vers un point fixe de f. D'après le tableau de variation f a deux points fixes, $\pm \sqrt{a}$. Puisque $u_n > 0$ pour tout $n \in \mathbb{N}$, c'est que $u_n \xrightarrow[n \to +\infty]{} \sqrt{a}$.
- 3. On a pour tout $n \in \mathbb{N}$,

$$v_{n+1} = \frac{u_{n+1} - \sqrt{a}}{u_{n+1} + \sqrt{a}} = \frac{u_n + \frac{a}{u_n} - 2\sqrt{a}}{u_n + \frac{a}{u_n} + 2\sqrt{a}} = \frac{(u_n - \sqrt{a})^2}{(u_n + \sqrt{a})^2} = v_n^2.$$

Par récurrence, on montre alors que pour tout $n \in \mathbb{N}$, $v_n = v_0^{2^n}$. Notons que $|v_0| < 1$ donc $v_n \underset{n \to +\infty}{\longrightarrow} 0$.

4. Si $u_0 > \sqrt{a}$, alors pour tout $n \in \mathbb{N}$, $u_n > \sqrt{a}$. On a donc pour tout $n \in \mathbb{N}$,

$$\frac{|u_n - \sqrt{a}|}{v_0^{2^n}} = \frac{u_n - \sqrt{a}}{v_n} = u_n + \sqrt{a} \le u_0 + \sqrt{a} \le 2u_0$$

puisque la suite (u_n) est décroissante, et $u_0 > \sqrt{a}$.

On a donc montré que $|u_n - \sqrt{a}| \le 2u_0 v_0^{2^n}$.

Exercice 23.

Montrer que :

$$\sqrt{1 + \sqrt{1 + \sqrt{1 + \cdots}}} = 1 + \frac{1}{1 + \frac{1}{1 + \cdots}}$$

Solution : Notons
$$a = \sqrt{1 + \sqrt{1 + \sqrt{1 + \cdots}}}$$
 et $b = 1 + \frac{1}{1 + \frac{1}{1 + \cdots}}$.

Analyse (non nécessaire ici) : Admettons que ces expressions aient un sens. Alors $a^2=a+1$, et $1+\frac{1}{b}=b$, ce qui donne puisque $b\neq 0$, que $b^2=b+1$. Résolvons l'équation $x^2-x-1=0$. On calcule $\Delta=1+4=5$, donc cette équation a deux solutions réelles qui sont $\frac{1\pm\sqrt{5}}{2}$. Or $\frac{1-\sqrt{5}}{2}<0$, donc si a et b existent, alors $a=b=\frac{1+\sqrt{5}}{2}$. On note $\varphi=\frac{1+\sqrt{5}}{2}$.

Synthèse : Prouvons désormais que a et b ont bien un sens. On définit les suites par récurrence $u_{n+1} = f(u_n)$ et $v_{n+1} = g(v_n)$ avec $u_0 = 1$, $v_0 = 1$, $f(x) = \sqrt{1+x}$, et $g(x) = 1 + \frac{1}{x}$. Puisque f est croissante sur \mathbb{R}_+ , alors \mathbb{R}_+ est stable. De plus, sur cet intervalle, $f(x) - x \ge 0 \iff x \le \varphi$, et puisque φ est un point fixe de f, alors $[1, \varphi]$ est stable par f donc la suite (u_n) est croissante et majorée et converge vers un point fixe de f dans cet intervalle, à savoir φ . Donc $a = \lim_{n \to +\infty} u_n$ existe et l'on vient de remontrer que $a = \varphi$.

On montre pour g que $g \circ g$ est une fonction qui stabilise les intervalles $[0, \varphi[$ et $]\varphi, +\infty[$, et telle que $g \circ g(x) - x \ge 0 \iff x \le \varphi$. Par conséquent, les suites (v_{2n}) et (v_{2n+1}) sont monotones, l'une croissante et majorée, l'autre décroissante et minorée. Elles convergent donc chacune vers un point fixe de $g \circ g$, qui ne peut être que φ . Ainsi, $b = \lim_{n \to +\infty} v_n = \varphi$.

Exercice 24. Soit $(a_n)_{n\in\mathbb{N}^*}\in(\mathbb{R}_+^*)^{\mathbb{N}^*}$. Pour tout $n\in\mathbb{N}^*$, on note f_n la fonction

$$f_n: \begin{array}{ccc} \mathbb{R} & \longrightarrow & \mathbb{R} \\ x & \longmapsto & 1 - \sum_{i=1}^n a_i x^i \end{array}$$

- 1. Montrer que, pour tout $n \in \mathbb{N}^*$, il existe un unique $x_n \in \mathbb{R}_+$ tel que $f_n(x_n) = 0$.
- 2. Montrer que la suite $(x_n)_{n\in\mathbb{N}}$ est décroissante.
- 3. En déduire qu'elle converge.

Solution:

- 1. Pour tout $n \in \mathbb{N}^*$, la fonction f_n est dérivable, et $\forall x \in \mathbb{R}_+, f'_n(x) = -\sum_{i=1}^n ia_i x^{i-1}$. Puisque pour tout $n \in \mathbb{N}^*, a_n > 0$, alors $\forall x \in \mathbb{R}_+, f'_n(x) < 0$, et donc f_n est strictement décroissante sur \mathbb{R}_+ . Puisque $f_n(0) = 1$ et $f_n(x) \xrightarrow[x \to +\infty]{} -\infty$, alors f_n réalise une bijection de \mathbb{R}_+ dans $]-\infty, 1]$. Donc il existe un unique $x_n \in \mathbb{R}_+$ tel que $f_n(x_n) = 0$.
- 2. On a pour tout $n \in \mathbb{N}^*$ et pour tout $x \in \mathbb{R}_+$, $f_{n+1}(x) = f_n(x) = -a_{n+1}x^{n+1} \le 0$. Donc $0 = f_{n+1}(x_{n+1}) \le f_n(x_{n+1})$. De plus, f_n est décroissante sur \mathbb{R}_+ et donc $f_n(x_{n+1}) \le 0 = f_n(x_n) \Longrightarrow x_{n+1} \le x_n$. La suite (x_n) est donc décroissante.
- 3. Cette suite est décroissante et minorée par 0, donc elle converge.

Exercice 25.

Soit n un entier naturel et E_n l'équation $x + \tan x = n$ d'inconnue $x \in]-\pi/2,\pi/2[$.

- 1. Montrer que l'équation E_n possède une solution unique notée x_n .
- 2. Montrer que la suite (x_n) converge et déterminer sa limite.

Solution:

- 1. Posons $f(x) = x + \tan x$ pour tout $x \in I =]-\pi/2, \pi/2[$. Cette fonction est dérivable sur cet intervalle et $f'(x) = 2 + \tan^2(x)$. Puisque f'(x) > 0 sur l'intervalle I et que $f(x) \xrightarrow[x \to -\pi/2]{} -\infty$ et $f(x) \xrightarrow[x \to -\pi/2]{} -\infty$ et $f(x) \xrightarrow[x \to -\pi/2]{} +\infty$ par somme de limites, f réalise donc une bijection de I dans \mathbb{R} . Ainsi pour tout entier naturel n, l'équation $E_n : f(x) = n$ admet une unique solution.
- 2. On a pour tout $n \in \mathbb{N}$, $f(x_{n+1}) = n+1 > n = f(x_n)$. Puisque f est croissante, c'est que $x_{n+1} > x_n$. Ainsi la suite (x_n) est croissante, et majorée puisque évoluant dans l'intervalle I. Par conséquent, elle converge vers $\ell \in [-\pi/2, \pi/2]$. Or si $\ell \in]-\pi/2, \pi/2[$, par continuité de la fonction f, $f(x_n) \xrightarrow[n \to +\infty]{} f(\ell)$, ce qui est absurde puisque $f(x_n) = n \xrightarrow[n \to +\infty]{} +\infty$. C'est donc que $x_n \xrightarrow[n \to +\infty]{} \pi/2$.

Exercice 26.

Soient I un intervalle et $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions de I dans \mathbb{R} . On suppose que, pour tout $n\in\mathbb{N}$:

- l'équation $f_n(x) = 0$ d'inconnue $x \in I$ admet une unique solution x_n ;
- la fonction f_n est strictement croissante sur I;
- pour tout $x \in I$, $f_n(x) \leq f_{n+1}(x)$.

- 1. Conjecturer, à partir d'un dessin, le sens de monotonie de la suite $(x_n)_{n\in\mathbb{N}}$.
- 2. Démontrer rigoureusement cette conjecture.
- 3. Application : considérer la suite des fonctions f_n définies sur \mathbb{R}_+^* par $f_n(x) = x^n \ln(x) 1$.

- 2. Montrons que la suite (x_n) est décroissante. Soit $n \in \mathbb{N}$. On sait d'une part que $f_n(x_n) = f_{n+1}(x_{n+1}) = 0$. De plus, $f_n(x_{n+1}) \leq f_{n+1}(x_{n+1})$, par hypothèse, donc $f_n(x_{n+1}) \leq f_n(x_n)$. Puisque f_n est strictement croissante sur I, c'est donc que $x_{n+1} \leq x_n$. Donc la suite (x_n) est décroissante.
- 3. On pose donc $f_n(x) = x^n \ln(x) 1$, pour tout x > 0. Pour tout $n \in \mathbb{N}$, c'est une fonction dérivable et $f'_n(x) = nx^{n-1}\ln(x) + x^{n-1} = x^{n-1}(1+n\ln(x))$. En particulier, cette quantité est du signe de $1 + n\ln(x)$ sur \mathbb{R}^*_+ . Or $1 + n\ln(x) \ge 0 \iff \ln(x) \ge \frac{-1}{n} \iff x \ge e^{-1/n}$ car la fonction exponentielle est croissante. On cherche un intervalle I sur lequel toutes les fonctions f_n sont strictement croissantes. Puisque $e^{-1/n} < 1$ pour tout $n \in \mathbb{N}^*$, alors l'intervalle $I = [1, +\infty[$ convient. De plus, $f_n(1) = -1$ et $f_n(x) \xrightarrow[x \to +\infty]{} + \infty$ donc f_n réalise une bijection de $[1, +\infty[$ dans $]-1, +\infty[$ et en particulier l'équation $f_n(x) = 0$ admet une unique solution dans $I = [1, +\infty[$. De plus, sur cet intervalle, $f_{n+1}(x) f_n(x) = x^{n+1}\ln(x) 1 x^n\ln(x) + 1 = x^{n-1}\ln(x)(x-1) \ge 0$, donc $f_{n+1}(x) \ge f_n(x)$ pour tout $x \in I$. D'après la question 2, on sait alors que la suite (x_n) des solutions de $f_n(x) = 0$ existe et est décroissante. De plus, puisque I est minoré, elle est convergente.

Exercice 27.

Montrer que l'équation $xe^x = n$ possède pour tout $n \in \mathbb{N}$, une unique solution x_n dans \mathbb{R}_+ . Étudier la convergence de la suite (x_n) .

Solution : On pose pour tout $x \in \mathbb{R}$, $f(x) = xe^x$. La fonction f est dérivable sur \mathbb{R} et $f'(x) = e^x + xe^x = (1+x)e^x$. Pour tout $x \ge 0$, on a f(x) > 0. De plus, f(0) = 0 et $f(x) \underset{x \to +\infty}{\longrightarrow} +\infty$, et donc f réalise une bijection de l'intervalle $[0, +\infty[$ dans $[0, +\infty[$. Ainsi pour tout $b \in \mathbb{N}$, l'équation f(x) = n possède une unique solution dans $[0, +\infty[$.

On a pour tout $n \in \mathbb{N}$, $f(x_{n+1}) = n+1 > n = f(x_n)$. Puisque f est croissante, c'est que $x_{n+1} > x_n$. Ainsi la suite (x_n) est croissante. Ainsi soit elle converge vers $\ell \in \mathbb{R}_+$, soit elle diverge vers $+\infty$. Or si $\ell \in \mathbb{R}_+$, par continuité de la fonction f, $f(x_n) \underset{n \to +\infty}{\longrightarrow} f(\ell)$, ce qui est absurde puisque $f(x_n) = n \underset{n \to +\infty}{\longrightarrow} +\infty$. C'est donc que $x_n \underset{n \to +\infty}{\longrightarrow} +\infty$.