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Mathématiques - CF Analyse 1

Documents et calculettes interdits

Exercice 1 : Les réels Soit A une partie non vide de R.

1. Justifier pour tout = € R l'existence du réel d(x, A) = inf{|z — a| : a € A}, appelé la distance de = a
A.

2. Calculer d(z, A) pour tout x € A.
3. Montrer que pour tous z,y € R on a d(z, A) — d(y, A) < |z —y|.

Solution.

1. A est non vide, donc X = {|z —a| : a € A} est une partie de R non-vide et minoré par 0. Elle posséde
donc un infimum.

2. Siz € A, alors pour a =z on a |xr — a|] = 0. Ainsi d(x, A) = 0 et U'infimum est atteint.
3. Soit a € A. Alors d(z, A) < |z —a| < |z —y| + |y — a|. Ainsi

d(z,A) < |z —y|+inf{ly —a| : a € A} = |z —y[ +d(y, A).

Exercice 2 : Les suites
Pour tout n € N* on pose

Up = (Zn:]t) —Inn et v, = (i;) —In(n +1).

1. En appliquant le TAF a la fonction y +— Iny sur une intervalle bien choisi, montrer que

1
pora §ln(m+1)—lnx§;

pour tout = > 0.

2. Montrer que les suites (uy,)n et (v, ), sont adjacentes. En déduire qu'’ils ont une limite commune. Elle
est appelée la constante d’Euler et notée .

3. Calculer la limite quand n — oo de

n _1)k
Z(k)

k=1
2n n 2n
1)k 1 1
Indication : g =2 — — -
k=1 k=1 2k k=1 k

Solution.

1. La fonction f : y — Iny est continue et dérivable su [z, z + 1]. D’aprés le TAF il y a ¢ €]z, x + 1] avec
1
—=fle)=flc)(z+1—2)=In(z+1) - Inz.

Puisquece]x,x+1[onaz—_ﬂ< <fdou$—+1<ln(x+1) Inz <1

2. On a d’aprés la partie 1. (avec © = n et puis avec x = n + 1) que

n+1

Uppl — Up = (;;) —In(n+1) — (Z;)+lnn:7ﬁil+lnnln(n+l)<0, et

vn+1—vn—(i) In(n +2) — (i;)—i—ln(n—kl)—le_1+1n(n+1)—ln(n+2)>0.

De plus
=Inl=0.

nh_>H010 Uy — Uy = nhngo(lnn —In(n+1)) = lnnh_>nolo T

Ainsi (up)n et (vyn)n sont adjacentes; laprés les théoréme des sites adjacentes ils ont une limite
commune.



3. On a

2n n 2n n 2n
-1k 1 1 & 1
D DU TR SraD e B
=1 k=1 k=1 k=1 k=1
n 1 2n1
= ——Inn) — ——In2n) + (Inn —In2n)
(g -m) = (X -m2n)
—( Y 1—lnn)—<2n 1—111271)+(lnn—1nn—ln2)
N k k
k=1 k=1

De plus,

1
3 . :(Z - )—2n+1—>—ln2+02—ln2.

=1 k=1

ol

Donc la limite vaut — In 2.

Exercice 3 : Fonctions réelles continues

1. Soient f,g: R — R deux fonctions réelles continues. On suppose que f est borné. Montrer que f o g
et g o f sont bornés.

2. Soit f : R — R continue, avec lim,_4+ f(2) = 00. On cherche & montrer que f atteint un minimum
sur R.

(a) Montrer que f atteint un minimum sur I,, = [-n — 1, —n] U [n,n + 1], disons pour x,, € I,,, pour
tout n € N.

(b) Montrer que lim,, o f(z,) = 0.

(¢) En déduire que la suite (f(zy)), prend une valeur minimale, et que cette valeur est le minimum

de f sur R.

Solution.

1. Soit Y majornat et y minorant de im f (qui existent puisque f est borné). D’aprés le théoréme du
maximum g atteint un maximum M et un minimum m sur [y, Y]. Alors im (go f) = g[im f] C ¢|[[y, Y]].
Donc m < (go f)(x) < M pour tout x € R, et go f) est borné. Trivialement, im (f o g) C im f. Donc
y < (fog)(x) <Y pour tout x € R et fog est borné.

2. (a) Puisque f est continue sur R, d’aprés le théoréme du maximum il atteint un minimum en y, €
[-n — 1, —n] et un minimum en z, € [n,n + 1]. Si f(y,) < f(2z,) on pose x,, = y,, sinon on pose
Ty = zn. Alors f atteint un minimum en z,, sur I,.

(b) On pose ug, = Yy €t ugpt1 = 2zp. On a y, — —o0 et z, — 00 ; puisque lim, 1~ f(x) = 00 on a
limy, 00 f(Yn) = 00 et limy, 00 f(2,) = 00. Donc limy, o f(un) = 00. Or, (2,), est suite extraite
de (up)n. Ainsi limy, o0 f(25,) = 0.

(¢) Soit M = f(xg). Puisque limy,_,~ f(z,) = 00, il y a N € N tel que f(x,) > M pour n > N. Or,
f(z) > f(xn) > M pour tout z € I,. Ainsi f(z) > M pour tout x € R\|] — N, N[. D’apreés le
théoréme du maximum f atteint un minimum m sur [—N, N|, et m < M = f(xg). Ainsi m est le
minimum de f sur R.

Exercice 4 : Fonctions réelles dérivables
On considére la fonction f : z — e~ /% sur R .

1. Montrer que f est prolongeable en une fonction de classe C! sur R, notée f.

2. Montrer que pour tout n € N il existe un polynéme P, € R[X] pour lequel f(z) = Pn(%)e_l/x
pour tout x > 0. Indication : Calculer P,41 en fonction de F,.

3. Montrer que chaque f (n) et prolongeable sur R
4. En déduire que f est de classe C* sur Ry.



Solution.
1. Comme composition de fonctions dérivables, f est dérivable, donc continue sur R*. On calcule
lim, .o+ f(z) = limy,_oe¥ = 0 avec y = —1/x. Puis on a f'(z) = 671/9;?12, ce qui est continue
sur R% . De plus,

e—l/x
lim f'(z) = lim —— = lim y?e¥ =0
z—0+ z—0t I Yy——00
avec y = —1/x, d’aprés les croissances comparées. D’aprés le théoréme de la prolongation dérivable,

f est prolongeable en f: R, — R avec f(0) = 0, et la dérivée f’ est continue en 0, donc sur R

2. Par récurrence sur n. Initialisation : On a Py(X) =1 et Pi(X) = X2
Hypothese : f)(z) = Pn(%)e_l/w pour un polynéme P, € R[X].

Heéredité -
1 1. -1 1 1
(n+1) _ (f(n)y/ _ SN ,—1 N feiN Tt —1/x \,—1l/z -
FD @) = () @) = (Pa(D)e ™) = Py(o) e 4 Pa()e o
1.-1 o1y 1w L i/
(Pﬁ(;)ﬁ‘FPn(;)ﬁ)@ / :PnJrl(;)e /=,

avec P 1(X) = —P/(X)X? 4+ P,(X)X?2.
Conclusion : Pour tout n € Nil y a P, € R[X] avec f(™(z) = Pn(%)efl/x.

3. On a lim,_,g+ f™(2) = lim,_,q+ Pn(%)e_l/x = limy oo Pp(—y)e? = 0 d’aprés les croissances com-
parées, avec y = —1/x. D’apres le théoréme de la prolongation par continuité, f (") est prolongeable
sur Ry et y est continue.

4. D’apreés le théoréme de la prolongation dérivable, la prolongation par continuité de f("+1) en 0 est la

dérivée de la prolongation par continuité de f () en 0. Donc f est n-fois dérivable pour tout n, et de
classe C* sur R;.



