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Documents et calculettes interdits

Exercice 1 : Les réels Soit A une partie non vide de R.
1. Justifier pour tout x ∈ R l’existence du réel d(x,A) = inf{|x− a| : a ∈ A}, appelé la distance de x à
A.

2. Calculer d(x,A) pour tout x ∈ A.
3. Montrer que pour tous x, y ∈ R on a d(x,A)− d(y,A) ≤ |x− y|.

Solution.
1. A est non vide, donc X = {|x−a| : a ∈ A} est une partie de R non-vide et minoré par 0. Elle possède

donc un infimum.
2. Si x ∈ A, alors pour a = x on a |x− a| = 0. Ainsi d(x,A) = 0 et l’infimum est atteint.
3. Soit a ∈ A. Alors d(x,A) ≤ |x− a| ≤ |x− y|+ |y − a|. Ainsi

d(x,A) ≤ |x− y|+ inf{|y − a| : a ∈ A} = |x− y|+ d(y,A).

Exercice 2 : Les suites
Pour tout n ∈ N∗ on pose

un =
( n∑

k=1

1

k

)
− lnn et vn =

( n∑
k=1

1

k

)
− ln(n+ 1).

1. En appliquant le TAF à la fonction y 7→ ln y sur une intervalle bien choisi, montrer que
1

x+ 1
≤ ln(x+ 1)− lnx ≤ 1

x

pour tout x > 0.
2. Montrer que les suites (un)n et (vn)n sont adjacentes. En déduire qu’ils ont une limite commune. Elle

est appelée la constante d’Euler et notée γ.
3. Calculer la limite quand n→∞ de

n∑
k=1

(−1)k

k
.

Indication :
2n∑
k=1

(−1)k

k
= 2

n∑
k=1

1

2k
−

2n∑
k=1

1

k
.

Solution.
1. La fonction f : y 7→ ln y est continue et dérivable su [x, x+ 1]. D’après le TAF il y a c ∈]x, x+ 1[ avec

1

c
= f ′(c) = f ′(c) (x+ 1− x) = ln(x+ 1)− lnx.

Puisque c ∈]x, x+ 1[ on a 1
x+1 <

1
c <

1
x , d’où

1
x+1 < ln(x+ 1)− lnx < 1

x .
2. On a d’après la partie 1. (avec x = n et puis avec x = n+ 1) que

un+1 − un =
( n+1∑

k=1

1

k

)
− ln(n+ 1)−

( n∑
k=1

1

k

)
+ lnn =

1

n+ 1
+ lnn− ln(n+ 1) < 0, et

vn+1 − vn =
( n+1∑

k=1

1

k

)
− ln(n+ 2)−

( n∑
k=1

1

k

)
+ ln(n+ 1) =

1

n+ 1
+ ln(n+ 1)− ln(n+ 2) > 0.

De plus
lim
n→∞

un − vn = lim
n→∞

(lnn− ln(n+ 1)) = ln lim
n→∞

n

n+ 1
= ln 1 = 0.

Ainsi (un)n et (vn)n sont adjacentes ; l’après les théorème des sites adjacentes ils ont une limite
commune.
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3. On a
2n∑
k=1

(−1)k

k
= 2

n∑
k=1

1

2k
−

2n∑
k=1

1

k
=

n∑
k=1

1

k
−

2n∑
k=1

1

k

=
( n∑

k=1

1

k
− lnn

)
−
( 2n∑

k=1

1

k
− ln 2n

)
+ (lnn− ln 2n)

=
( n∑

k=1

1

k
− lnn

)
−
( 2n∑

k=1

1

k
− ln 2n

)
+ (lnn− lnn− ln 2)

→ γ − γ − ln 2 = − ln 2.

De plus,
2n+1∑
k=1

(−1)k

k
=
( 2n∑

k=1

(−1)k

k

)
− 1

2n+ 1
→ − ln 2 + 0 = − ln 2.

Donc la limite vaut − ln 2.

Exercice 3 : Fonctions réelles continues

1. Soient f, g : R→ R deux fonctions réelles continues. On suppose que f est borné. Montrer que f ◦ g
et g ◦ f sont bornés.

2. Soit f : R→ R continue, avec limx→±∞ f(x) =∞. On cherche à montrer que f atteint un minimum
sur R.
(a) Montrer que f atteint un minimum sur In = [−n− 1,−n] ∪ [n, n+ 1], disons pour xn ∈ In, pour

tout n ∈ N.
(b) Montrer que limn→∞ f(xn) =∞.

(c) En déduire que la suite (f(xn))n prend une valeur minimale, et que cette valeur est le minimum
de f sur R.

Solution.

1. Soit Y majornat et y minorant de im f (qui existent puisque f est borné). D’après le théorème du
maximum g atteint un maximumM et un minimumm sur [y, Y ]. Alors im (g◦f) = g[im f ] ⊆ g|[[y, Y ]].
Donc m ≤ (g ◦ f)(x) ≤M pour tout x ∈ R, et g ◦ f) est borné. Trivialement, im (f ◦ g) ⊆ im f . Donc
y ≤ (f ◦ g)(x) ≤ Y pour tout x ∈ R et f ◦ g est borné.

2. (a) Puisque f est continue sur R, d’après le théorème du maximum il atteint un minimum en yn ∈
[−n− 1,−n] et un minimum en zn ∈ [n, n+ 1]. Si f(yn) ≤ f(zn) on pose xn = yn, sinon on pose
xn = zn. Alors f atteint un minimum en xn sur In.

(b) On pose u2n = yn et u2n+1 = zn. On a yn → −∞ et zn → ∞ ; puisque limx→±∞ f(x) = ∞ on a
limn→∞ f(yn) =∞ et limn→∞ f(zn) =∞. Donc limn→∞ f(un) =∞. Or, (xn)n est suite extraite
de (un)n. Ainsi limn→∞ f(xn) =∞.

(c) Soit M = f(x0). Puisque limn→∞ f(xn) = ∞, il y a N ∈ N tel que f(xn) > M pour n ≥ N . Or,
f(x) ≥ f(xn) > M pour tout x ∈ In. Ainsi f(x) > M pour tout x ∈ R\] − N,N [. D’après le
théorème du maximum f atteint un minimum m sur [−N,N ], et m ≤M = f(x0). Ainsi m est le
minimum de f sur R.

Exercice 4 : Fonctions réelles dérivables
On considère la fonction f : x 7→ e−1/x sur R∗+.

1. Montrer que f est prolongeable en une fonction de classe C1 sur R+, notée f̄ .

2. Montrer que pour tout n ∈ N il existe un polynôme Pn ∈ R[X] pour lequel f (n)(x) = Pn( 1x)e−1/x

pour tout x > 0. Indication : Calculer Pn+1 en fonction de Pn.

3. Montrer que chaque f (n) est prolongeable sur R+

4. En déduire que f est de classe C∞ sur R+.
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Solution.

1. Comme composition de fonctions dérivables, f est dérivable, donc continue sur R∗+. On calcule
limx→0+ f(x) = limy→−∞ e

y = 0 avec y = −1/x. Puis on a f ′(x) = e−1/x 1
x2 , ce qui est continue

sur R∗+. De plus,

lim
x→0+

f ′(x) = lim
x→0+

e−1/x

x2
= lim

y→−∞
y2ey = 0

avec y = −1/x, d’après les croissances comparées. D’après le théorème de la prolongation dérivable,
f est prolongeable en f̄ : R+ → R avec f̄(0) = 0, et la dérivée f̄ ′ est continue en 0, donc sur R+.

2. Par récurrence sur n. Initialisation : On a P0(X) = 1 et P1(X) = X2.
Hypothèse : f (n)(x) = Pn( 1x)e−1/x pour un polynôme Pn ∈ R[X].
Hérédité :

f (n+1)(x) = (f (n))′(x) = (Pn(
1

x
)e−1/x)′ = P ′n(

1

x
)
−1

x2
e−1/x + Pn(

1

x
)e−1/x

1

x2

=
(
P ′n(

1

x
)
−1

x2
+ Pn(

1

x
)

1

x2
)
e−1/x = Pn+1(

1

x
)e−1/x,

avec Pn+1(X) = −P ′n(X)X2 + Pn(X)X2.
Conclusion : Pour tout n ∈ N il y a Pn ∈ R[X] avec f (n)(x) = Pn( 1x)e−1/x.

3. On a limx→0+ f
(n)(x) = limx→0+ Pn( 1x)e−1/x = limy→−∞ Pn(−y)ey = 0 d’après les croissances com-

parées, avec y = −1/x. D’après le théorème de la prolongation par continuité, f (n) est prolongeable
sur R+ et y est continue.

4. D’après le théorème de la prolongation dérivable, la prolongation par continuité de f (n+1) en 0 est la
dérivée de la prolongation par continuité de f (n) en 0. Donc f̄ est n-fois dérivable pour tout n, et de
classe C∞ sur R+.
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