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Exercice 1 : Logique et applications

1. Soient E et F deux ensembles, A,A′ deux parties de E et B,B′ deux parties de F .

(a) Montrer que
(A ∩A′)× (B ∩B′) = (A×B) ∩ (A′ ×B′).

(b) Est-ce que la proposition précédente reste vraie si on remplace ∩ par ∪ ? Justifier la réponse.

2. Si P et Q sont deux propositions mathématiques, on définit un nouveau connecteur logique ↑ par
P ↑Q ssi ¬(P ∧Q) (c’est-à-dire : non (P et Q)).

(a) Écrire la table de vérité de P ↑Q.

(b) Si P , Q et R sont trois propositions, est-ce que (P ↑Q) ↑R est équivalente à P ↑ (Q ↑R) ?

(c) Exprimer nonP , (P et Q) et (P ou Q) uniquement à l’aide de P , Q et du connecteur ↑.

Solution.

1. (a) Soit (a, b) ∈ (A ∩ A′) × (B ∩ B′). Donc a ∈ A ∩ A′ et b ∈ B ∩ B′. Ainsi (a, b) ∈ A × B et
(a, b) ∈ A′ ×B′, et (A ∩A′)× (B ∩B′) ⊆ (A×B) ∩ (A′ ×B′).
Réciproquement, soit (a, b) ∈ (A×B)∩(A′×B′). Alors (a, b) ∈ (A×B) et (a, b) ∈ (A′×B′). Donc
a ∈ A et b ∈ B, et a ∈ A′ et b ∈ B′. Ainsi a ∈ A∩A′ et b ∈ B ∩B′, et (a, b) ∈ (A∩A′)× (B ∩B′).
Ainsi (A×B) ∩ (A′ ×B′) ⊆ (A ∩A′)× (B ∩B′) et on a égalité.

(b) Non. Soit A = {a}, A′ = ∅, B = ∅ et B′ = {b}. Alors A×B = ∅ = A′×B′, mais (A∪A′)×(B∪B′) =
{(a, b)}.

2. (a)
P Q P ∧Q P ↑Q
V V V F
V F F V
F V F V
F F F V

(b) Non. Si P est vrai, Q et R faux, alors P ↑Q est vrai, et (P ↑Q)↑R vrai. Q↑R est vrai, et P ↑(Q↑R)
est faux.

(c) nonP est équivalent à P ↑P , puisque (P et P ) est équivalent à P . Donc (P et Q) est équivalent à
non non (P et Q), soit non(P ↑Q), soit (P ↑Q) ↑ (P ↑Q). Et (P ou Q) est équivalent à non(nonP
et nonQ) d’après de Morgan, soit (P ↑ P ) ↑ (Q ↑Q).

Exercice 2 : Les complexes

1. Calculer les racines carrées de 1+i√
2
. En déduire les valeurs de cos(π/8) et sin(π/8).

2. Soient n ∈ N et a, b ∈ R. Calculer

n∑
k=0

(
n

k

)
cos(a+ kb) et

n∑
k=0

(
n

k

)
sin(a+ kb).

3. Déterminer l’ensemble des nombres complexes z ∈ C vérifiant
∣∣∣ z−3z−5

∣∣∣ =
√
2
2 .

Solution.
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1. Soit (a+ ib)2 = 1+i√
2
. Alors

a2 − b2 =
1√
2
, 2ab =

1√
2
, et a2 + b2 =

∣∣∣1 + i√
2

∣∣∣ =

√
1

2
+

1

2
= 1.

Ainsi 2a2 = 1+ 1√
2
et a = ±

√
2
4 +

√
2
4 =

√
2+
√
2

2 . De même, 2b2 = 1− 1√
2
et b = ±

√
2
4 −

√
2
4 =

√
2−
√
2

2 .

Puisque ab > 0, on a comme racines ±
(√2+

√
2

2 + i

√
2−
√
2

2

)
. Or, 1+i√

2
= cos π4 + i sin π

4 = eiπ/4, et une

racine carrée est eiπ/8 = cos π8 + i sin π
8 . Ainsi cos π8 =

√
2+
√
2

2 et sin π
8 =

√
2−
√
2

2 .
2.

n∑
k=0

(
n

k

)
cos(a+ kb) + i

n∑
k=0

(
n

k

)
sin(a+ kb) =

n∑
k=0

(
n

k

)
ei(a+kb) = eia

n∑
k=0

(
n

k

)
(eib))k = eia(1 + eib)n

= aia
(

2eib/2
e−ib/2 + eib/2

2

)n
= aia2neinb/2 cosn

b

2

= 2nei(a+nb/2) cosn
b

2
= 2n cosn

b

2

(
cos(a+ nb/2) + i sin(a+ nb/2)

)
.

En prenant la partie réelle et la partie imaginaire, on obtient
n∑
k=0

(
n

k

)
cos(a+ kb) = 2n cosn

b

2
cos(a+

nb

2
) et

n∑
k=0

(
n

k

)
sin(a+ kb) = 2n cosn

b

2
sin(a+

nb

2
).

3. Sont équivalents : ∣∣∣z − 3

z − 5

∣∣∣ =

√
2

2
(z − 3)(z̄ − 3)

(z − 5)(z̄ − 5)
=

1

2

2(zz̄ − 3(z + z̄) + 9) = zz̄ − 5(z + z̄) + 25

zz̄ − (z + z̄) + 1 = 8

(z − 1)(z̄ − 1) = 8

|z − 1| = 2
√

2.

Il s’agit donc du cercle de centre d’affixe 1 et de rayon 2
√

2.

Exercice 3 : Arithmétique
1. Donner toutes les solutions dans Z du système

x ≡ 4 [6] et x ≡ 7 [9].

2. On considère la suite de Fibonacci définie par F0 = 0, F1 = 1 et Fn+2 = Fn+1 + Fn pour tout n ∈ N.
(a) Montrer que Fn et Fn+1 sont premiers entre eux pour tout n ∈ N.
(b) Montrer que Fn+1Fn−1 − F 2

n = (−1)n pour tout entier n > 0.
(c) Montrer que Fn+p = FnFp−1 + Fn+1Fp pour tout n ∈ N and p ∈ N∗.
(d) En déduire que Fn ∧ Fp = Fn ∧ Fn+p.

Solution.
1. Le système est équivalent à 6y = x−4 et 9z = x−7, d’où 6y−9z = 3, ou encore 2y−3z = 1. Il y a une

solution particulière évidente y0 = z0 = −1, ce qui donne x0 = −2. Si x est une solution quelconque,
x−x0 ≡ 0 [6] et x−x0 ≡ 0 [9], ce qui est équivalent à 6|x−x0 et 9|x−x0, soit pgcd(6, 9) = 18|x−x0,
soit x− x0 ∈ 18Z. Donc x ∈ −2 + 18Z.

2. (a) Par récurrence sur n. Initialisation : Pour n = 0 on a pgcd(0, 1) = 1, donc F0 et F1 sont premiers
entre eux.
Hypothèse : On suppose Fn et Fn+1 premiers entre eux.
Hérédité : On a Fn+2 = Fn + Fn+1. Donc pgcd(Fn+1, Fn+2) = pgcd(Fn, Fn+1) = 1.
Conclusion : Ainsi Fn et Fn+1 sont premiers entre eux pour tout n ∈ N.
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(b) Par récurrence sur n ≥ 1.
Initialisation : Pour n = 1 on a F2 = 0 + 1 = 1, et F2F0 − F 2

1 = 0− 1 = (−1)1.
Hypothèse : Fn+1Fn−1 − F 2

n = (−1)n.
Hérédité : On a

Fn+2Fn − F 2
n+1 = (Fn+1 + Fn)Fn − F 2

n+1 = F 2
n + Fn+1(Fn − Fn+1) = F 2

n + Fn+1(−Fn−1)
= F 2

n − Fn+1Fn−1 = −(−1)n = (−1)n+1.

Conclusion : Fn+1Fn−1 − F 2
n = (−1)n pour tout entier n > 0.

(c) Par récurrence sur p ≥ 1. Initialisation : Pour p = 1 on a Fn+1 = FnF0 + Fn+1F1.
Hypothèse : Fn+p = FnFp−1 + Fn+1Fp pour tout n ∈ N.
Hérédité :

Fn+p+1 = Fn+1+p = Fn+1Fp−1 + Fn+2Fp par hypothèse pour n+ 1

= Fn+1Fp−1 + (Fn + Fn+1)Fp = Fn+1(Fp−1 + Fp) + FnFp = FnFp+1−1 + Fn+1Fp+1.

Conclusion : Fn+p = FnFp−1 + Fn+1Fp pour tout n ∈ N and p ∈ N∗.
(d) Puisque Fn+p = FnFp−1+Fn+1Fp, tout diviseur commun de Fn et Fp divise Fn+p. Réciproquement,

tout diviseur commun d de Fn+p et Fn divise Fn+1Fp. Or, Fn ∧ Fn+1 = 1 d’après (a). Puisque
d|Fn, on a d ∧ Fn+1 = 1 ; d’après le lemme de Gauss d|Fp. Ainsi Fn ∧ Fp = Fn ∧ Fn+p.

Exercice 4 : Polynômes

1. Soit P ∈ R[X] tel que P (x) ≥ 0 pour tout x ∈ R.
(a) Montrer que les racines réelles de P sont de multiplicité paire.

(b) Pour α ∈ C \ R, écrire (X − α)(X − ᾱ) comme somme de deux carrés de polynômes dans R[X].

(c) Montrer que si Si, Ti ∈ R[X] pour i < n, alors il y a Un, Vn ∈ R[X] avec
∏
i<n(S2

i +T 2
i ) = U2

n+V 2
n .

Indication : (S2 + T 2)(S′2 + T ′2) = (SS′ + TT ′)2 + (ST ′ − S′T )2 ; ensuite faire une récurrence.

(d) En déduire qu’il existe U, V ∈ R[X] tels que P = U2 + V 2.

2. Soit n ∈ N∗. Soit R le reste de la division euclidienne du polynôme P (X) = Xn + X + 1 par le
polynôme (X − 1)2, donc P = (X − 1)2Q+R.

(a) Quel est le degré de R ? On posera R =
∑d

k=0 akX
k où d = deg(P ).

(b) Calculer P ′ en termes de Q, Q′ et les ai.

(c) Évaluer P et P ′ en 1 et en déduire R.

Solution.

1. (a) Soit β une racine réelle de P , et supposons P = (x− β)nQ avec Q(β) 6= 0 et n impair. Puisque Q
n’a qu’un nombre fini de racines, il y a ε > 0 tel que le signe de Q(x) est constant sur ]β− ε, β+ ε[.
Or, le signe de (1 − β)n change en β puisque n est impair. Donc P change de signe en β, ce qui
contredit P ≥ 0. Ainsi la multiplicité de toute racine réelle est paire.

(b)
(X − α)(X − ᾱ) = X2 − (α+ ᾱ)X + |α|2 = (X − Re(α))2 + |α|2 − Re(α)2

= (X − Re(α))2 +
√
|α|2 − Re(α)2

2
.

Notons que |Re(α)| < |α|, donc la racine carrée existe dans R.
(c) Par récurrence sur n ≥ 1. Initialisation : Pour n = 1 on prend U0 = S0 et V0 = T0.

Hypothèse : On suppose qu’il y a Un, Vn ∈ R[X] avec
∏
i<n(S2

i + T 2
i ) = U2

n + V 2
n .

Hérédité : ∏
i<n+1

(S2
i + T 2

i ) =
∏
i<n

(S2
i + T 2

i ) · (S2
n + T 2

n) = (U2
n + V 2

n )(S2
n + T 2

n)

= (UnSn + VnTn)2 + (UnTn − VnSn)2.

Conclusion : L’énoncé est vrai.
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(d) D’après (a) le produit
∏
j(X−βj) où les βi parcourent les racines réelles (avec multiplicité) est de

la forme Q(X)2. Puisque les racines dans C\R viennent par couple de racines conjuguées, d’après
(b) le produit

∏
i(X−αi) (où les αi parcourent les racines complexes) est de la forme

∏
i(S

2
i +T 2

i ) ;
d’après (c) c’est de la forme U2 + V 2, pour des polynômes réelles U et V . Le coefficient dominant
de P doit être positif (sinon P (a) < 0 pour a suffisamment grand) et a une racine carrée a. Ainsi

P (X) = cd(P )
∏
j

(X − βj)
∏
i

(X − αi) = a2Q(X)2(U(X)2 + V (X)2) = (aQU)2 + (aQV )2.

2. (a) Puisque deg(X − 1)2 = 2 on a deg(R) < 2. Ainsi R(X) = aX + b.

(b) P ′ = 2(X − 1)Q+ (X − 1)2Q′ +R′ = 2(X − 1)Q+ (X − 1)2Q′ + a.

(c) 3 = P (1) = R(1) = a+ b. De plus, P ′(X) = nXn−1 + 1, d’où n+ 1 = P ′(1) = a. Ainsi a = n+ 1
et b = 2− n, et R(X) = (n+ 1)X + 2− n.
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