

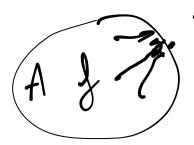
Définition

Soient $f: X \to Y$, $A \subseteq X$, $a \in \overline{A}$ et $b \in B$. On dit que f tend vers b quand x tend vers a ou la limite de f en a est b, noté $\lim_{x \to a} f(x) = b$, si

$$\forall \epsilon > 0, \exists \delta > 0, \forall x \in A, \ 0 < d_X(x, a) < \delta \implies d_Y(f(x), b) < \epsilon$$

Résultat. On a $\lim_{x\to a} f(x) = b$ ssi $\lim_{n} f(x_n) = b$ pour tout suite (x_n) de limite a avec $x_n \neq a \ \forall n$

Résultat. f est continue en a ssi $\lim_{x\to a} f(x) = f(a)$



Théorème (Prolongement par continuité)

Soit $A \subseteq X$ et $f: A \to Y$. Soit $c \in \overline{A} \setminus A$ tel que $\lim_{x \to c} f(x)$ existe. On définit $g: A \cup \{c\} \to Y$ par

$$g(x) = f(x) \text{ si } x \in A \quad et \left(g(c) = \lim_{x \to c} f(x) \right).$$

Alors, g est continue en c.

Définition

Soit (f_n) une suite de fonctions de X vers Y et soit $f: X \to Y$.

• (f_n) converge simplement vers f si $\forall x \in X$, $\lim_n f_n(x) = f(x)$, ie

$$\forall x \in X, \forall \epsilon > 0, \exists N \geq 0 \text{ tel que } \forall n \geq N, \ d_Y(f_n(x), f(x)) < \epsilon$$

$$\bigvee (x, \xi)$$

 $ightharpoonup (f_n)$ converge uniformément vers f si

$$\forall \epsilon > 0, \exists N \geq 0 \text{ tel que } \forall x \in X, \forall n \geq N, \ d_Y(f_n(x), f(x)) < \epsilon$$

Théorème

Soit (f_n) une suite de fonctions continues de X vers Y qui converge uniformément vers $f: X \to Y$. Alors, f est continue.

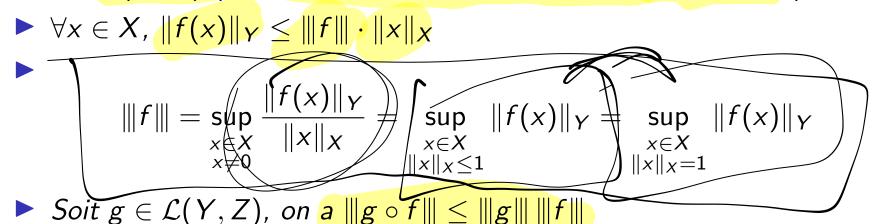
Théorème

Dans ce cas, le plus petit M qui convient est la norme subordonnée de f, dénotée $\|f\|$.

$$\mathbf{r}^{\prime\prime}\mathbf{x}$$

Théorème

Soit $f \in \mathcal{L}(X,Y)$ (= ensemble des applications linéaires continues), on a



Résultat. $\mathcal{L}(X, Y)$ avec la norme $\|\cdot\|$ est un evn

Définition

Un homéomorphisme entre deux espaces métriques $f: X \to Y$ est une bijection telle que f et f^{-1} sont continues. Dans ce cas, on dit que X et Y sont homéomorphes.

Limite pour une distance particulière

Soit d la distance usuelle sur $\mathbb{R}: \forall (x,y) \in \mathbb{R}^2$, d(x,y) = |x-y|. On considère la fonction $f: \mathbb{R} \longrightarrow \mathbb{R}$ définie par :

$$f(x) = \begin{cases} x & \text{si } x \in \mathbb{Q}, \\ 1 - x & \text{si } x \in \mathbb{R} \setminus \mathbb{Q}. \end{cases}$$

1. Montrer que l'application $\delta: \mathbb{R}^2 \longrightarrow \mathbb{R}$ définie par

$$\forall (x, y) \in \mathbb{R}^2, \quad \delta(x, y) = |f(x) - f(y)|$$

est une distance sur \mathbb{R} .

2. Déterminer, si elle existe, la limite de la suite $\left(\frac{\sqrt{2}}{n}\right)_{n\geq 1}$ pour cette distance.

Calcul de normes d'applications linéaires.

1. On considère l'application linéaire $\phi: \mathcal{C}([0;1],\mathbb{R}) \to \mathbb{R}$ définie par

$$\phi(u) = \int_0^1 x \, u(x) \, dx.$$

Calculer la norme de ϕ pour $\mathcal{C}([0;1],\mathbb{R})$ muni de la norme $\|\cdot\|_{\infty}$. Même question avec la norme $\|\cdot\|_{1}$.

2. On considère l'application linéaire $\psi: \mathbb{R}[X] \to \mathbb{R}$ définie par

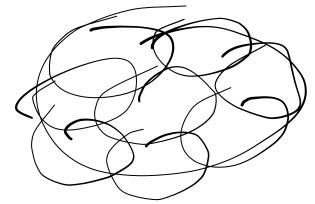
$$\psi(P)=P'(0).$$

Calculer la norme de ψ pour $\mathbb{R}[X]$ muni de la norme $\|P\| = \sup_{x \in [0;1]} |P(x)|$.

§1.3 Compacité

Définition

Soit (X, d) un espace métrique.



- Propriété de Borel-Lebesgue. Soit $(U_i)_{i\in I}$ des ouverts de X tels que $\bigcup_{i\in I}U_i=X$ (recouvrement d'ouverts), il existe $I_0\subseteq I$ fini tel que $\bigcup_{i\in I_0}U_i=X$.
- Propriété de Bolzano-Weierstrass. Tout suite d'éléments de X admet une sous-suite convergente.

Lo dans X

Théorème

Ces deux propriétés sont équivalentes pour un espace métrique. Un espace avec ces propriétés est un espace compact

Résultat. Les compacts de R sont les fermés bornés

Résultat. Soit X un espace compact et $(U_i)_{i \in I}$ un recouvrement d'ouverts de X. Alors il existe r > 0 tel que $\forall x \in X$, $\exists i \in I$ avec $B(x,r) \subset U_i$

Proposition

- Un sous-espace compact d'un espace métrique est fermé
- Une intersection arbitraire de compacts est compacte
- Une union finie de compacts est compacte
- Un fermé d'un espace compact est compact

Théorème

- 1. Borne atteinte. Soit X compact et $f: X \to \mathbb{R}$ continue. Alors f est bornée et elle atteint ses bornes. De plus, f est uniformément continue (aussi vrai si on remplace \mathbb{R} par Y métrique).
- 2. Riesz. Soit E un evn. Alors, E est de dimension finie ssi $B_f(0,1)$ est compacte.
- 3. **Produit de compacts**. Le produit de deux espaces compacts avec la distance produit est un espace compact

Proposition

Soit $n \geq 1$, alors toutes les normes sur \mathbb{R}^n (resp. sur \mathbb{C}^n) sont équivalentes

Définition

Définition

8-1(205) = v awer-fami 8-1(213) = v ouvert levné 1/01/-d

Soit (X,d) un espace métrique. On dit que X est connexe si, pour tout ouvert U et V avec $X = U \cup V$ et $U \cap V = \emptyset$, on a $(U, V) = (X, \emptyset)$ ou X = U (\emptyset, X) .

V = X \ U farmé

Proposition

- ➤ X est connexe ssi les seuls ouverts-fermés sont X et ∅
 - X est connexe ssi toute fonction continue $f: X \to \{0,1\}$ est constante
- L'image d'un connexe par une fonction continue est connexe_
- Soit $A \subseteq X$ connexe et $A \subseteq B \subseteq \overline{A}$ alors B connexe En particulier, l'adhérence d'un connexe est connexe
- Le produit de deux espaces connexes est connexe

Théorème (Connexité dans \mathbb{R})

Les connexes de \mathbb{R} sont les intervalles. En conséquence, si $f: \mathbb{R} \to \mathbb{R}$ est continue et si I est un intervalle, alors f(I) est un intervalle (théorème des valeurs intermédiaires) $\begin{cases}
f(A, f(b)) \\
f(b) f(b)
\end{cases}$ Définition

Soit $x \in X$ espace métrique. La composante connexe C(x) de x est la réunion des connexes de X contenant x. C'est le plus grand connexe contenant x. En particulier, C(x) est fermé.

Résultat. On utilise : une union (arbitraire) de connexes d'intersection non vide est connexe

Théorème

Soient $x, y \in X$. Alors C(x) = C(y) ou $C(x) \cap C(y) = \emptyset$. En particulier, X est l'union (disjointe) de composantes connexes.

Définition

Un chemin reliant x à y avec $x, y \in X$ espace métrique est une application $\gamma:[0;1]\to X$ continue avec $\gamma(0)=x$ et $\gamma(1)=y$. (On peut remplacer [0; 1] par un intervalle arbitraire [a; b])

On dit que X est connexe par arcs si, $\forall x, y \in X$, il existe un chemin reliant x et y

Résultat. Connexe par arcs \implies connexe

Résultat. L'image d'un connexe par arcs par une fon tion continue est connexe par arcs non Connext Les espaces $\mathbb R$ et $\mathbb R^2$ ne sont pas homéomorphes

Théorème

L'adhérence de l'ensemble $\{(t, \sin(1/t)) : t \in]0; 1]\}$ est compact, connexe mais pas connexe par arcs

§1.5 Complétude

Définition

 $2n-3\ell$ $3N:4n3N|2n-\ell| \le \frac{2}{2}$ $4n3N|2n-2n| \le |2n-\ell| + |2n-\ell| \le \frac{2}{2}$ Un suite (x_n) d'un espace/métriqué X est une suite de Cauchy si $\forall \epsilon > 0$,

 $\exists N \text{ tel que } \forall n, m \geq N, \not \text{ on a } d(x_n, x_m) < \epsilon$

On dit que X est complet si toute suite de Cauchy de X est convergente

Résultat. Suite convergente \implies suite de Cauchy

Résultat. Suite de Cauchy avec une sous-suite convergente est convergente (même limite)

Théorème

- Tout fermé d'un espace complet est complet
- Tout sous-espace complet est fermé
- Tout espace métrique compact est complet
- ightharpoonup Tout evn de dimension finie sur $\mathbb R$ ou $\mathbb C$ est complet

Proposition

L'espace $\mathcal{L}(X,Y)$ avec X, Y evn et Y complet, munit de la norme subordonnée $\|\cdot\|$ est complet

Théorème (Riesz-Fischer)

Soit $p \in [1; +\infty]$. Alors $(\ell^p(\mathbb{N}), \|\cdot\|_p)$ est un evn complet avec

$$\|(u_n)\|_p = \begin{cases} \left(\sum_n |u_n|^p\right)^{1/p} & \text{si } p < +\infty \\ \sup_n |u_n| & \text{si } p = +\infty \end{cases}$$

et $\ell^p(\mathbb{N}) = \{ \text{suites r\'eelles } (u_n) \text{ avec } \|(u_n)\|_p < +\infty \}.$

Théorème

Soit X un espace métrique, il existe un unique (à isométrie près) complété Y de X vérifiant $X \subseteq Y$, d_X restriction de d_Y à X, Y complet et X dense dans Y.

Yo = { (M) EX: (M) the Canchy }

/ (Mn) suite reells avec / Muly 2400)

(Un) ~ (Vn) is d(Un, Vn) =0 /= 10/N

Théorème (Prolongement des fonctions unif. continues)

Soient X et Y deux espaces métriques avec X complet. Soient $S \subseteq X$, une partie dense de X, et $f: S \to Y$ une application uniformément continue. Alors, il existe un unique prolongement de f par continuité de X vers Y.

Rappel Les applications linéaires continues sont uniformément continues.

Théorème (Point fixe des applications contractantes)

Soit X un espace métrique. Une application $f: X \to X$ est contractante s'il existe $0 < \alpha < 1$ tel que

$$\forall x, y \in X, \quad d(f(x), f(y)) \leq \alpha d(x, y).$$

Supposons que X est complet et $f: X \to X$ est contractante, alors elle admet un unique point fixe $x_* \in X$ avec $f(x_*) = x_*$. De plus, pour tout $x_0 \in X$, la suite (x_n) avec $x_{n+1} = f(x_n)$ tend vers x_* géométriquement, c'est-à-dire

$$\forall n \geq 0, \quad d(x_n, x_*) \leq \alpha^n d(x_0, x_*).$$

+ 32 02221 7 aver 1(3(x),3(0)) < x/1/2)

Une version faible du théorème de Picard.

Soit (X, d) un espace métrique compact et soit $f: X \to X$ une fonction telle que d(f(x), f(y)) < d(x, y) pour tous $x, y \in X$ avec $x \neq y$.

- 1. Montrer que f admet au plus un point fixe.
- 2. Montrer qu'il existe $z \in X$ tel que $d(z, f(z)) \le d(x, f(x))$ pour tout $x \in X$.
- 3. Montrer que z est l'unique point fixe de f.
- 4. Soit $x_0 \in X$. On définit une suite $(x_n)_{n\geq 0}$ par $x_{n+1} = f(x_n)$ pour tout $n\geq 0$.
 - Montrer que la suite $(d(x_n, z))_{n>0}$ converge vers $\ell \geq 0$
- 5. Montrer que $\ell = 0$ et donc que (x_n) converge vers z.