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Séries numériques

Dans tout le cours K est le corps des nombres réels R ou celui des nombres complexes C et | · | est la valeur
absolue ou le module.

1 Définitions et convergence des séries numériques

1.1 Définition et vocabulaire

Définition 1.1. Pour tout (un)n∈N ∈ KN, on appelle série de terme général (un)n∈N la suite (Sn)n∈N telle que :

∀n ∈ N, Sn = u0 + u1 + · · ·+ un =
n∑
k=0

uk.

On en déduit que : ∀n ≥ 1, un = Sn − Sn−1.

Notations - Vocabulaire :
1. (un)n∈N est appelé terme général de la série.
2. (Sn)n∈N est la suite des sommes partielles de la série et pour n ∈ N, Sn est la somme partielle d’ordre n.
3. La série de terme général (un)n∈N se note

∑
un, mais attention il s’agit d’une notation et non d’une

somme.

1.2 Convergence et divergence d’une série

Définition 1.2. Soit
∑
un une série à valeurs dans K. On dit que

∑
un converge si la suite des sommes partielles

(Sn)n∈N converge dans K.

Quand la série
∑
un converge, la limite S de (Sn)n∈N est appelée somme de la série et est notée S =

+∞∑
n=0

un .

Remarque 1.1. Attention, la notation S =
+∞∑
n=0

un signifie lim
N→+∞

N∑
n=0

un. Avant d’écrire la somme de la série,

il faut donc s’assurer de sa convergence.

Définition 1.3.
1. Une série qui ne converge pas est dite divergente.
2. Soit

∑
un une série convergente. Pour tout N ∈ N, on appelle reste d’ordre N de la série

RN = S − SN =
+∞∑

n=N+1
un = lim

m→+∞

m∑
n=N+1

un

3. Deux séries
∑
un et

∑
vn sont dites de même nature si elles sont toutes les deux convergentes ou bien

toutes les deux divergentes.
Étudier une série, c’est déterminer si elle est convergente ou divergente.

Remarque 1.2.
1. Ne jamais parler du reste d’une série divergente.
2. Soit

∑
un une série convergente de somme S, alors, pour tout N ∈ N, RN = S − SN , par conséquent,

RN −−−−−→
N→+∞

0.
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Exemple 1.1. Une série télescopique.
On considère (un)n∈N = (

√
n+ 1−

√
n)n∈N et on note (Sn)n∈N la suite des sommes partielles de la série

∑
un.

PPour tout n ∈ N, calculer Sn, puis en déduire la nature de la série.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Il s’agit d’un cas assez exceptionnel pour lequel on sait calculer les sommes partielles, les critères de conver-
gence des suites s’appliquent donc. Mais en général, il faut avoir des résultats spécifiques à la convergence des
séries.

Proposition 1.1. Soit
∑
un et

∑
vn deux séries convergentes à valeurs dans K. Alors, pour tout (λ, µ) ∈ K2,

la série
∑

(λun + µvn) converge et de plus :
+∞∑
n=0

(λun + µvn) = λ
+∞∑
n=0

un + µ
+∞∑
n=0

vn

Démonstration. Pour tout n ∈ N, Sn(λu+ µv) = λSn(u) + µSn(v), où Sn(u) désigne la somme partielle d’ordre
n de

∑
un. Les résultats sur les opérations sur les suites convergentes permettent de conclure.

Proposition 1.2. Soit
∑
un et

∑
vn deux séries à valeurs dans K.

1. Si
∑
un diverge alors, pour tout λ ∈ K?,

∑
λun diverge.

2. Si
∑
un converge et

∑
vn diverge alors

∑
(un + vn) diverge.

Démonstration.
1. Soit λ ∈ K?, si par l’absurde

∑
λun converge, alors par la proposition précédente

∑ 1
λ(λun) =

∑
un

converge, ce qui est absurde.
2. Si par l’absurde

∑
(un + vn) converge, on écrit, pour tout n ∈ N, vn = un + vn − un. Or

∑
(un + vn) et∑

un convergent, donc
∑
vn converge ce qui est contradictoire.

Remarque 1.3. On ne peut rien dire de la somme de deux séries divergentes. En effet,
∑

(n−n) est convergente
mais

∑
(n+ n) est divergente.

Proposition 1.3. Soit (zn)n∈N une suite de nombres complexes, on pose pour tout n ∈ N, zn = xn + iyn, où
xn ∈ R et yn ∈ R. Alors la série

∑
zn converge si et seulement si les deux séries

∑
xn et

∑
yn convergent et

dans ce cas :
+∞∑
n=0

zn =
+∞∑
n=0

xn + i
+∞∑
n=0

yn

Démonstration. D’après les résultats vus sur les suites de nombres complexes, (Sn(z))n∈N = (Sn(x)+ iSn(y))n∈N
converge si et seulement si (Sn(x))n∈N et (Sn(y))n∈N convergent, d’où le résultat.

1.3 Premiers critères de convergence sur les séries

Proposition 1.4 (Condition nécessaire de convergence). Si
∑
un est une série convergente alors lim

n→+∞
un = 0.

Démonstration.P . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Remarque 1.4.
1. La réciproque est fausse (penser à la série

∑ 1
n sur laquelle on reviendra).

2. Ce résultat donne un moyen de montrer qu’une série est divergente : si (un)n∈N ne converge pas vers 0
alors

∑
un diverge.

Exemple 1.2.
∑

(−1)n diverge,
∑√

n diverge. . .

Proposition 1.5 (Critère de Cauchy). Soit
∑
un une série à valeurs dans K. La série

∑
un converge si et

seulement si : ∀ε > 0, ∃N ∈ N, ∀m > n ≥ N ,

∣∣∣∣∣∣
m∑

k=n+1
uk

∣∣∣∣∣∣ ≤ ε .

Démonstration. On applique le critère de Cauchy à la suite des sommes partielles de la série :∑
un converge ⇐⇒ (Sn)n∈N converge ⇐⇒ (Sn)n∈N est une suite de Cauchy

⇐⇒ ∀ε > 0, ∃N ∈ N, ∀m > n ≥ N, |Sm − Sn| ≤ ε

⇐⇒ ∀ε > 0, ∃N ∈ N, ∀m > n ≥ N,

∣∣∣∣∣∣
m∑

k=n+1
uk

∣∣∣∣∣∣ ≤ ε.

Exemple 1.3.
On considère la série de terme général (1/n)n∈N∗ dont on note (Sn)n∈N∗ la suite des sommes partielles.
Montrons d’abord que, pour tout n ∈ N∗, S2n − Sn ≥ 1

2 . Soit n ∈ N∗,

S2n − Sn =
2n∑

k=n+1

1
k
.

Or, pour tout k ∈ Jn+ 1, 2nK, 1
k ≥

1
2n , ainsi :

S2n − Sn ≥
2n∑

k=n+1

1
2n = 1

2n × n = 1
2 .

D’où : ∀N ∈ N, ∃n ≥ N , S2n − Sn =
2n∑

k=n+1

1
k ≥

1
2 . Donc

∑ 1
n ne vérifie pas le critère de Cauchy, ainsi elle

diverge.

1.4 Convergence absolue

Définition 1.4. Soit
∑
un une série à valeurs dans K. On dit que

∑
un est absolument convergente si la série∑

|un| converge.

Proposition 1.6. Toute série absolument convergente est convergente.

Démonstration. Soit une série
∑
un absolument convergente. Comme

∑
|un| converge, elle vérifie le critère de

Cauchy. Ainsi :

∀ε > 0, ∃N ∈ N, ∀m ≥ n ≥ N,

∣∣∣∣∣∣
m∑

k=n+1
|uk|

∣∣∣∣∣∣ ≤ ε.
Soit m > n ≥ N , on a : ∣∣∣∣∣∣

m∑
k=n+1

uk

∣∣∣∣∣∣ ≤
m∑

k=n+1
|uk| =

∣∣∣∣∣∣
m∑

k=n+1
|uk|

∣∣∣∣∣∣ ≤ ε.
Donc

∑
un vérifie le critère de Cauchy, par conséquent, elle converge.
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Remarque 1.5.
1. Ce résultat donne une méthode pour se ramener à des séries à termes positifs.
2. La réciproque de cette proposition est fausse.

Par exemple, on considère la série de terme général (un)n∈N? =
(

(−1)n−1

n

)
n∈N?

.
• Cette série n’est pas absolument convergente car la série

∑ 1
n diverge.

• On justifiera à la fin du cours qu’il s’agit une série convergente (critère des séries alternées).

Définition 1.5. Soit
∑
un une série convergente telle que

∑
|un| diverge, alors la série

∑
un est dite semi-

convergente.

2 Un premier exemple : les séries géométriques
Il s’agit d’un exemple pour lequel les sommes partielles peuvent être calculées.

Définition 2.1. Pour tout a ∈ C, la série de terme général (an)n∈N est appelée série géométrique.

Proposition 2.1. Soit a ∈ C, la série
∑
an converge si et seulement si |a| < 1 et dans ce cas :

+∞∑
n=0

an = 1
1− a

Démonstration.PFaire la preuve en commençant par le cas où a = 1.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Exemple 2.1.PDéterminer la nature de la série
∑

(1/2)n et, le cas échéant, calculer sa somme.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3 Séries à termes positifs
Définition 3.1. On dit que la série

∑
un est à termes positifs si : ∀n ∈ N, un ∈ R+.

Remarque 3.1.
1. Si (un)n∈N est positive à partir d’un certain rang, les résultats de ce paragraphe sont encore vrais.
2. La convergence d’une série

∑
un à termes négatifs est équivalente à la convergence de la série

∑
(−un)

qui est à termes positifs. Ainsi les résultats de ce paragraphe permettent d’étudier les séries dont le terme
général est de signe constant (à partir d’un certain rang).

3. Les critères de convergence pour les séries à termes positifs permettent aussi d’étudier la convergence
absolue.
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3.1 Propriété importante des séries à termes positifs

Théorème 3.1. Soit
∑
un une série à termes positifs. Alors la série

∑
un converge si et seulement si la suite

de ses sommes partielles (Sn)n∈N est majorée.

Démonstration.P . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3.2 Critères de comparaison

En utilisant le théorème 3.1 on démontre le résultat suivant :

Proposition 3.1. Soit
∑
un et

∑
vn deux séries à termes positifs.

On suppose qu’il existe N ∈ N tel que, pour tout n ≥ N , un ≤ vn.
1. Si

∑
vn converge alors

∑
un converge.

2. Si
∑
un diverge alors

∑
vn diverge.

Exemple 3.1.PÉtudier la nature des séries
∑ 1

n2 et
∑ 1

(n+1)n .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Exemple 3.2.PÉtudier la nature des séries
∑ cosn

2n et
∑ sinn

2n .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3.3 La règle de D’Alembert

Proposition 3.2. Soit
∑
un une série à termes strictement positifs telle que lim

n→+∞

un+1
un

= ` ∈ [0,+∞].

1. Si ` < 1 la série
∑
un converge.

2. Si ` > 1 la série
∑
un diverge.

Démonstration. L’idée de la preuve est de comparer la série à une série géométrique.
1. Si ` < 1, on choisit λ tel que ` < λ < 1.

Montrons d’abord qu’il existe n0 ∈ N tel que, pour tout n ≥ n0,
un+1
un
≤ λ.

Posons ε = λ− ` > 0, comme un+1
un
−−−−−→
n→+∞

`, il existe n0 ∈ N tel que, pour tout n ≥ n0,
∣∣∣∣un+1
un
− `
∣∣∣∣ ≤ ε.

Ainsi, pour tout n ≥ n0,
un+1
un
≤ `+ ε = λ.

On va maintenant en déduire que : ∀n ≥ n0, un+1 ≤ λn−n0+1un0 .
On raisonne par récurrence.
• D’après ce qui précède un0+1

un0
≤ λ, d’où un0+1 ≤ λun0 car un0 > 0, le résultat est donc vrai pour n = n0.

• Soit n ≥ n0 tel que un+1 ≤ λn−n0+1un0 .
Or un+2

un+1
≤ λ, comme un+1 > 0 on a :

un+2 ≤ λun+1 ≤ λ× λn−n0+1un0 = λn−n0+2un0 .
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Donc : ∀n ≥ n0, un+1 ≤ λn−n0+1un0 .
Pour conclure, on utilise le premier théorème de comparaison. Les séries sont à termes positifs et

∑
λn

est une série géométrique convergente, donc, par comparaison,
∑
un converge.

2. Si ` > 1, on choisit λ tel que ` > λ > 1. Comme un+1
un

−−−−−→
n→+∞

`, il existe n0 ∈ N tel que, pour tout

n ≥ n0,
un+1
un
≥ λ (prendre ε = `− λ > 0 dans la définition de la convergence).

Ainsi : ∀n ≥ n0,
un+1
un0

≥ λn−n0+1 ou encore un+1 ≥ λn−n0+1un0 .

Les séries sont à termes positifs et
∑
λn est une série géométrique divergente, donc, par comparaison,∑

un diverge.

Remarque 3.2. La règle de d’Alembert ne permet pas de conclure quand ` = 1.
PEssayer, par exemple, de l’appliquer aux séries de terme général (1/n)n∈N? et (1/n2)n∈N? .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3.4 La règle de Cauchy

Proposition 3.3. Soit
∑
un une série à termes strictement positifs telle que lim

n→+∞
n
√
un = ` ∈ [0,+∞].

1. Si ` < 1 la série
∑
un converge.

2. Si ` > 1 la série
∑
un diverge.

Démonstration. Comme pour la règle de d’Alembert, on compare la série à une série géométrique.
1. Si ` < 1, on choisit λ tel que ` < λ < 1. Comme n

√
un −−−−−→

n→+∞
`, il existe n0 ∈ N tel que, pour tout

n ≥ n0, n
√
un ≤ λ (prendre ε = λ− ` dans la définition de la convergence).

Ainsi : ∀n ≥ n0, 0 < un ≤ λn, comme
∑
λn converge, par comparaison,

∑
un converge.

2. Si ` > 1, on choisit λ tel que ` > λ > 1. Comme n
√
un −−−−−→

n→+∞
`, il existe n0 ∈ N tel que, pour tout

n ≥ n0, n
√
un ≥ λ (prendre ε = `− λ dans la définition de la convergence).

Ainsi : ∀n ≥ n0, un ≥ λn, comme
∑
λn diverge, par comparaison,

∑
un diverge.

Remarque 3.3. La règle de Cauchy ne permet pas de conclure quand ` = 1.
PEssayer, par exemple, de l’appliquer aux séries de terme général (1/n)n∈N? et (1/n2)n∈N? .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Exemple 3.3.PPosons, pour tout n ∈ N, un =
(
n+ 1
2n+ 5

)n
. Étudier la nature de la série

∑
un.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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3.5 Critères de comparaison utilisant les équivalences

Proposition 3.4. Soit
∑
un et

∑
vn deux séries à termes positifs.

On suppose que un = o(vn), alors :
1. Si

∑
vn converge alors

∑
un converge et Rn(u) = o(Rn(v)).

2. Si
∑
un diverge alors

∑
vn diverge et Sn(u) = o(Sn(v)).

Remarque 3.4. Ce théorème justifie l’utilisation des développements limités ou des développements asympto-
tiques pour étudier la nature de certaines séries.

Proposition 3.5. Soit
∑
un et

∑
vn deux séries à termes positifs telles que un ∼+∞ vn. Alors

∑
un et

∑
vn sont

de même nature, de plus :
1. Si

∑
un et

∑
vn convergent alors Rn(u) ∼

+∞
Rn(v).

2. Si
∑
un et

∑
vn divergent alors Sn(u) ∼

+∞
Sn(v).

Exemple 3.4.PÉtudier la série de terme général (un)n∈N? = (ln(1 + 1/n))n∈N? .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Remarque 3.5. Ne pas oublier que les séries doivent être à termes positifs pour appliquer ces résultats de
comparaison.

4 Des séries de références

4.1 Les séries exponentielles

Théorème 4.1 (Définition de l’exponentielle). Pour tout z ∈ C, la série
∑ zn

n! est absolument convergente (et
donc convergente) et sa somme est notée :

ez =
+∞∑
n=0

zn

n! .

Démonstration.PUtiliser la règle de D’Alembert.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Application 4.1.
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Exemple 4.1. On considère la série de terme général (un)n∈N =
(

3n+n2n
n!

)
n∈N

.

Pour tout n ≥ 1, un = 3n
n! + 2 2n−1

(n−1)! , or les séries
∑ 3n

n! et
∑
n≥1

2n−1

(n−1)! convergent. Ainsi
∑
un converge comme

combinaison linéaire de séries convergentes. De plus,

+∞∑
n=0

un =
+∞∑
n=0

3n

n! + 2
+∞∑
n=1

2n−1

(n− 1)! =
+∞∑
n=0

3n

n! + 2
+∞∑
n=0

2n

n! = e3 + 2e2.

Exemple 4.2. Étudier la nature de la série
∑
e−n

2.
n2e−n

2 −−−−−→
n→+∞

0, par conséquent, il existe N ∈ N tel que, pour tout n ≥ N , 0 ≤ n2e−n
2 ≤ 1. Ainsi, pour tout

n ≥ N , 0 ≤ e−n
2 ≤ 1

n2 . Or la série
∑ 1

n2 converge (2 > 1), par le théorème de comparaison des séries à termes
positifs, on en déduit que

∑
e−n

2 converge.

4.2 Les séries de Riemann

L’étude des séries de Riemann repose sur leur comparaison avec des intégrales. Comme on ne voit pas les
intégrales dans ce cours, on ne les verra pas mais, pour votre culture, vous pouvez tout de même lire cette
section.

Proposition 4.1. Soit f : R+ → R une fonction continue et décroissante. Alors, pour tout n ∈ N?,∫ n+1

n
f(t) dt ≤ f(n) ≤

∫ n

n−1
f(t) dt.

Démonstration. Soit n ∈ N?, f est décroissante sur R+, donc sur [n, n + 1], ainsi, pour tout t ∈ [n, n + 1],
f(t) ≤ f(n). On en déduit que : ∫ n+1

n
f(t) dt ≤

∫ n+1

n
f(n) dt = f(n).

L’autre inégalité se démontre de la même manière en raisonnant sur l’intervalle [n− 1, n].

Remarque 4.1.
1.PFaire un dessin qui illustre la proposition précédente.

2.POn peut énoncer un résultat analogue dans le cas où f est croissante.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Définition 4.1. Pour tout α ∈ R, on appelle série de Riemann une série dont le terme général est
(

1
nα

)
n∈N?

.

Proposition 4.2 (Convergence des séries de Riemann). Soit α ∈ R.
1. Si α > 1 alors la série

∑ 1
nα converge.
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2. Si α ≤ 1 alors la série
∑ 1

nα diverge.

Démonstration. On commence par étudier la série
∑ 1

nα pour α ≤ 0.
Supposons α ≤ 0,

(
1
nα

)
n∈N?

ne converge pas vers 0, donc la série
∑ 1

nα est divergente.
Dans la suite, on suppose donc α > 0.
On applique maintenant la proposition précédente : la fonction t 7→ 1

tα est décroissante et continue sur ]0,+∞[.
Alors, pour tout n ≥ 2, ∫ n+1

n

dt

tα
≤ 1

nα
≤
∫ n

n−1

dt

tα
.

Soit N ≥ 2, pour α 6= 1, on déduit de l’inégalité précédente :[
t1−α

1− α

]N+1

2
=
∫ N+1

2

dt

tα
≤

N∑
n=2

1
nα
≤
∫ N

1

dt

tα
=
[
t1−α

1− α

]N
1

1
1− α

( 1
(N + 1)α−1 −

1
2α−1

)
≤

N∑
n=2

1
nα
≤ 1

1− α

( 1
Nα−1 − 1

)
: (?)

1. Si α > 1, d’après (?), on a :

N∑
n=2

1
nα
≤ 1
α− 1 −

1
α− 1 ×

1
Nα−1 ≤

1
α− 1

N∑
n=1

1
nα
≤ 1 + 1

α− 1

Ainsi les sommes partielles de la série à termes positifs
∑ 1

nα sont majorées, donc
∑ 1

nα converge.
2. Si α < 1 alors α− 1 < 0, d’après (?) on a :

1
1− α

( 1
(N + 1)α−1 −

1
2α−1

)
≤

N∑
n=2

1
nα
,

ainsi en faisant tendre N vers +∞, on obtient :

N∑
n=2

1
nα
−−−−−→
N→+∞

+∞,

donc la série
∑ 1

nα diverge.
3. Si α = 1, on reprend les inégalités précédentes, d’où :

ln(N + 1)− ln 2 =
∫ N+1

2

dt

t
≤

N∑
n=2

1
n
≤
∫ N

1

dt

t
= lnN − ln 1 = lnN.

Ainsi
N∑
n=2

1
n −−−−−→N→+∞

+∞, donc la série
∑ 1

n diverge.

4.3 Les séries de Bertrand

Définition 4.2. Pour tout (α, β) ∈ R2, on appelle série de Bertrand une série dont le terme général est(
1

nα(lnn)β
)
n≥2

.

Proposition 4.3 (Convergence des séries de Bertrand). Soit (α, β) ∈ R2, la série de terme général
(

1
nα(lnn)β

)
n≥2

converge si et seulement si α > 1 ou (α = 1 et β > 1).

Démonstration. Admis.
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5 Séries à termes quelconques : l’exemple des séries alternées
Les critères de convergence des séries à termes positifs permettent d’étudier la convergence absolue d’une

série ce qui implique qu’elle converge. Mais on a parfois à étudier des séries qui ne sont pas absolument conver-
gentes mais qui convergent (séries semi-convergentes).
Dans cette partie on étudie le cas particulier des séries alternées.

Définition 5.1. Soit
∑
un une série à termes réels. On dit que

∑
un est alternée lorsque (−1)n un est de signe

constant.
Ainsi un s’écrit : un = (−1)nvn ou un = (−1)n+1vn avec ∀n ∈ N, vn ≥ 0.

Proposition 5.1 (Critère des séries alternées ou de Leibniz). Soit
∑

(−1)nvn une série alternée (pour tout
n ∈ N, vn ≥ 0). On suppose que (vn)n∈N est une suite décroissante qui converge vers 0.
Alors la série

∑
(−1)nvn converge et, pour tout n ∈ N, le reste d’ordre n, Rn, vérifie |Rn| ≤ vn+1 .

Démonstration. Pour tout n ∈ N, on note Sn la somme partielle d’ordre n de la série
∑

(−1)nvn.
PMontrer d’abord que les suites (S2n)n∈N et (S2n+1)n∈N sont adjacentes.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Donc (S2n)n∈N et (S2n+1)n∈N sont adjacentes, elles convergent vers la même limite. Ainsi (Sn)n∈N converge,
c’est-à-dire que la série

∑
(−1)nvn converge.

Estimation du reste : notons S la somme de la série, alors :

∀n ∈ N, S2n+1 ≤ S ≤ S2n+2 ≤ S2n.

Soit n ∈ N, |R2n| = |S − S2n| = S2n − S ≤ S2n − S2n+1 = −(−1)2n+1v2n+1 = v2n+1.
De plus, soit n ∈ N, |R2n+1| = |S − S2n+1| = S − S2n+1 ≤ S2n+2 − S2n+1 = (−1)2n+2v2n+2 = v2n+2.
Par conséquent, pour tout n ∈ N, |Rn| ≤ vn+1.

Exemple 5.1. Pour tout α > 0, les séries
∑
n≥1

(−1)n

nα
sont convergentes.

Exemple 5.2.PJustifier que (−1)n
n + 1

n lnn ∼+∞
(−1)n
n .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

PMontrer que la série
∑ (−1)n

n + 1
n lnn diverge.
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Dans ce chapitre il faut savoir démontrer sans indication :
— Le terme général d’une série convergente converge vers 0 (proposition 1.4) ;
— Le critère de convergence des séries géométriques (proposition 2.1) ;
— Le critère de convergence des séries à termes positifs (théorème 3.1) ;
— La convergence de la série exponentielle (théorème 4.1) ;
— Le critère de convergence des séries alternées : la convergence sans l’estimation des restes (proposition

5.1).
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