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Séries numériques

Dans tout le cours K est le corps des nombres réels R ou celui des nombres complexes C et | - | est la valeur
absolue ou le module.

1 Définitions et convergence des séries numériques

1.1 Définition et vocabulaire

Définition 1.1. Pour tout (un)nen € KN, on appelle série de terme général (u,)nen la suite (Sy)nen telle que :
n
vn € N, Sn:uo+u1+-~'+un:Zuk.
k=0

On en déduit que : Yn > 1, u, = Sp — Sp_1.

Notations - Vocabulaire :
1. (un)nen est appelé terme général de la série.
2. (Sp)nen est la suite des sommes partielles de la série et pour n € N, S,, est la somme partielle d’ordre n.

3. La série de terme général (u,)nen se note > u,, mais attention il s’agit d’une notation et non d’une
somme.
1.2 Convergence et divergence d’une série

Définition 1.2. Soit > uy, une série a valeurs dans K. On dit que Y, u, converge si la suite des sommes partielles
(Sn)nen converge dans K.

+00
Quand la série Y u, converge, la limite S de (Sp)nen est appelée somme de la série et est notée S = Z Uy -
n=0
+o0 N
Remarque 1.1. Attention, la notation S = Z Uy Stgnifie lim Z Up. Avant d’écrire la somme de la série,
n=0 N=too n=0

il faut donc s’assurer de sa convergence.

Définition 1.3.
1. Une série qui ne converge pas est dite divergente.

2. Soit Y uy une série convergente. Pour tout N € N, on appelle reste d’'ordre N de la série

+oo m
Ry=S5—-5y= u, = lim U
W= Si= > w= fm S w

3. Deux séries Y, u, et > v, sont dites de méme nature si elles sont toutes les deux convergentes ou bien
toutes les deuz divergentes.
Ftudier une série, c’est déterminer si elle est convergente ou divergente.

Remarque 1.2.
1. Ne jamais parler du reste d’une série divergente.

2. Soit > u, une série convergente de somme S, alors, pour tout N € N, Ry = S — Sy, par conséquent,

Ry —— 0.
N—+o00



Exemple 1.1. Une série télescopique.
On considére (up)neny = (VN + 1 — y/n)pen et on note (Sp)nen la suite des sommes partielles de la série Y uy,.
Pour tout n € N, calculer S,,, puis en déduire la nature de la série.

Il s’agit d’'un cas assez exceptionnel pour lequel on sait calculer les sommes partielles, les critéres de conver-
gence des suites s’appliquent donc. Mais en général, il faut avoir des résultats spécifiques a la convergence des
séries.

Proposition 1.1. Soit Y u, et Y v, deuz séries convergentes a valeurs dans K. Alors, pour tout (A, p) € K2,
la série Y (Auy, + pvy,) converge et de plus :

400 +oo +0o9
Z()\un+ﬂvn):)\zun+ﬂzvn
n=0 n=0 n=0

Démonstration. Pour tout n € N, S, (Au+ pv) = ASp,(u) + uSn(v), ou Sy, (u) désigne la somme partielle d’ordre
n de > uy. Les résultats sur les opérations sur les suites convergentes permettent de conclure.
O
Proposition 1.2. Soit > u, et > v, deur séries a valeurs dans K.
1. Si > uy, diverge alors, pour tout A € K*, > \u, diverge.
2. Si Y uy converge et Y vy, diverge alors Y (uy, + vy,) diverge.

Démonstration.

1. Soit A € K*, si par 'absurde > Au,, converge, alors par la proposition précédente > %(/\un) = > Un
converge, ce qui est absurde.

2. Si par 'absurde Y- (u, + v,) converge, on écrit, pour tout n € N, v, = uy, + vy, — Up. Or > (uy + vy,) et
> u, convergent, donc v, converge ce qui est contradictoire.

O]

Remarque 1.3. On ne peut rien dire de la somme de deuz séries divergentes. En effet, Y (n—n) est convergente
mais Y. (n+n) est divergente.

Proposition 1.3. Soit (z,)nen une suite de nombres complexes, on pose pour tout n € N, z, = x, + iy,, ot
zn € R et y, € R. Alors la série > z, converge si et seulement si les deux séries > x, et Y.y, convergent et

dans ce cas :
—+00 —+00 “+o00
D=2 Tnti) yn
n=0 n=0 n=0

Démonstration. D’apres les résultats vus sur les suites de nombres complexes, (Sy,(2))neny = (Sn(z) +iSn(Y))nen
converge si et seulement si (S, (2))nen €t (Sn(y))nen convergent, d’ou le résultat. O

1.3 Premiers critéres de convergence sur les séries

Proposition 1.4 (Condition nécessaire de convergence). Si Y. u, est une série convergente alors lim w, = 0.
—+00

Démonstration. %\ .........................................................................................



Remarque 1.4.
1. La réciproque est fausse (penser d la série Z% sur laquelle on reviendra).

2. Ce résultat donne un moyen de montrer qu’une série est divergente : si (un)neny ne converge pas vers 0
alors > u, diverge.

Exemple 1.2. Y (—1)" diverge, Y +/n diverge. ..

Proposition 1.5 (Critére de Cauchy). Soit > u, une série a valeurs dans K. La série Y u, converge si et

m

seulement st : Ve >0, AN e N, Vm >n > N, Z up| <€ .
k=n+1

Démonstration. On applique le critere de Cauchy a la suite des sommes partielles de la série :

Zun converge <= (Sp)nen converge <= (S, )nen est une suite de Cauchy
< Ve>0,AINeN, Vm>n> N, |S,, — Sp| <e

m

& Ve>0,INeN, Vm>n>N, | Y wu<e.
k=n+1
O
Exemple 1.3.
On considére la série de terme général (1/n)pen+ dont on note (Sp)nen+ la suite des sommes partielles.
Montrons d’abord que, pour tout n € N*, Sop, — S, > % Soit n € N*,
2n 1
S2n - Sn = Z 7
k=n-+1
Or, pour tout k € [n+1,2n], % > %, aimsi :
2n
1 1 1
Ebn _'5% > E:: — = — XNn=_.
M 2n  2n 2
2n
D’ou : VN € N, dn > N, Sy, — S, = % > % Donc Z% ne vérifie pas le critere de Cauchy, ainsi elle
k=n+1

diverge.

1.4 Convergence absolue

Définition 1.4. Soit > u, une série d valeurs dans K. On dit que 3 u, est absolument convergente si la série
> |up| converge.

Proposition 1.6. Toute série absolument convergente est convergente.

Démonstration. Soit une série Y u, absolument convergente. Comme Y |u,| converge, elle vérifie le critére de
Cauchy. Ainsi :

m
Ve >0, INeN, Ym>n> N, Z lugl| < e.
k=n+1
Soit m>n> N, on a:
m m m
Z ug| < Z lug| = Z lug|| < e.
k=n+1 k=n+1 k=n+1

Donc Y u, vérifie le critére de Cauchy, par conséquent, elle converge.



Remarque 1.5.
1. Ce résultat donne une méthode pour se ramener a des séries d termes positifs.

2. La réciproque de cette proposition est fausse.

Loy . Ly —1)n—1
Par exemple, on considére la série de terme général (un)nens = ((#

neN*
e (ette série n’est pas absolument convergente car la série E% diverge.
e On justifiera d la fin du cours qu’il s’agit une série convergente (critére des séries alternées).

Définition 1.5. Soit > u, une série convergente telle que Y |uy| diverge, alors la série Y u, est dite semi-
convergente.
2 Un premier exemple : les séries géométriques
Il s’agit d’un exemple pour lequel les sommes partielles peuvent étre calculées.
Définition 2.1. Pour tout a € C, la série de terme général (a™)nen est appelée série géométrique.

Proposition 2.1. Soit a € C, la série y_ a™ converge si et seulement si |a| < 1 et dans ce cas :

+oo
San—
n=0 —a

Démonstration. %\Faz’re la preuve en commencant par le cas ou a = 1.

3 Séries a termes positifs
Définition 3.1. On dit que la série Y u, est a termes positifs si : ¥n € N, u, € R,.

Remarque 3.1.
1. Si (up)nen est positive a partir d’un certain rang, les résultats de ce paragraphe sont encore vrais.

2. La convergence d’une série Y u, a4 termes négatifs est équivalente a la convergence de la série Y (—uy,)
qui est a termes positifs. Ainsi les résultats de ce paragraphe permettent d’étudier les séries dont le terme
général est de signe constant (d partir d’un certain rang).

3. Les critéres de convergence pour les séries d termes positifs permettent aussi d’étudier la convergence
absolue.



3.1 Propriété importante des séries a termes positifs

Théoréme 3.1. Soit > u, une série & termes positifs. Alors la série Y u, converge si et seulement si la suite
de ses sommes partielles (Sp)nen est majorée.

Démonstration. %\ .........................................................................................

3.2 Critéres de comparaison
En utilisant le théoréme [B.1] on démontre le résultat suivant :

Proposition 3.1. Soit > u, et Y v, deuzr séries d termes positifs.
On suppose qu’il existe N € N tel que, pour tout n > N, u, < vy.

1. Si> v, converge alors > u, converge.

2. 8ty uy, diverge alors ) v, diverge.

Exemple 3.1. %\Etudier la nature des séries > # et > m

Exemple 3.2. N4 Etudier 1a nature des séries > Gt et ) Sgﬁf‘.

3.3 La regle de D’Alembert

U
Proposition 3.2. Soit > u, une série a termes strictement positifs telle que 1ir41_1 ntl _ e [0, +o0].
n—+00 Uy,

1. Sil <1 la série > uy, converge.

2. Sid>1la série Y u, diverge.

Démonstration. L’idée de la preuve est de comparer la série a une série géométrique.
1. Si £ < 1, on choisit A tel que £ < A < 1.

U
Montrons d’abord qu’il existe ng € N tel que, pour tout n > ng, il

<A

n

U, -

U .
ntl £, il existe ng € N tel que, pour tout n > ng,
Up, n—-+oo

<fl+e=A

Posons e = A — £ > 0, comme

N Un+1
Ainsi, pour tout n > ny, nt

n
On va maintenant en déduire que : Vn > ng, upt+1 < /\"*"OﬂunO

On raisonne par récurrence.

e D’apres ce qui précede ol < A, d’oU Upg41 < Aup, car up, > 0, le résultat est donc vrai pour n = ng.
no

e Soit 7 > ng tel que u, 11 < AP0y,
Un4-2

Or 2 < A, comme up41 >0 on a:
Un+1

Unto < Mipr1 < A X )\"_”(’Huno = )\"_"°+2un0.



. —ng+1
Donc : Vn > ng, tpp1 < AP0y,
Pour conclure, on utilise le premier théoreme de comparaison. Les séries sont & termes positifs et > A"
est une série géométrique convergente, donc, par comparaison, Y u, converge.

U
ntl ¢, il existe ng € N tel que, pour tout
Up, n—+400

2. Si £ > 1, on choisit A tel que £ > A > 1. Comme

Un+1

n > ny, > A (prendre € = £ — A > 0 dans la définition de la convergence).

n

.. Un+1
Ainsi : Vn > ng, nt

> An=motl oy encore w1 > AT Ly,
Ung
Les séries sont a termes positifs et > A" est une série géométrique divergente, donc, par comparaison,

> uy, diverge.
O

Remarque 3.2. La régle de d’Alembert ne permet pas de conclure quand £ = 1.
Essayer, par exemple, de I’appliquer aux séries de terme général (1/n),en+ et (1/n2),enx.

3.4 La regle de Cauchy
Proposition 3.3. Soit > u, une série a termes strictement positifs telle que EIE Yu, =L € [0, 400].
n o

1. Sil <1 la série > uy, converge.

2. Sil > 1 la série Y u, diverge.

Démonstration. Comme pour la régle de d’Alembert, on compare la série a une série géométrique.

1. Si ¢ < 1, on choisit A tel que £ < A < 1. Comme Yu, — £, il existe ng € N tel que, pour tout

n—-+00

n > ng, Yu, < X\ (prendre e = X\ — ¢ dans la définition de la convergence).
Ainsi : Vn > ng, 0 < u, < A", comme >, A" converge, par comparaison, »  u, converge.

2. Si ¢ > 1, on choisit A tel que £ > X > 1. Comme u, —— ¥, il existe ng € N tel que, pour tout

n—-4o0o

n > ng, Yu, > X (prendre € = £ — X\ dans la définition de la convergence).
Ainsi : Vn > ng, up > A", comme Y, A" diverge, par comparaison, Y u, diverge.

Remarque 3.3. La régle de Cauchy ne permet pas de conclure quand £ = 1.
Essayer, par exemple, de I’appliquer aux séries de terme général (1/n),en+ et (1/n2),enx.




3.5 Critéres de comparaison utilisant les équivalences
Proposition 3.4. Soit > u, et > v, deur séries a termes positifs.
On suppose que u, = o(vy,), alors :
1. Si Y v, converge alors Y u, converge et Ry(u) = o(R,(v)).
2. Si Y uy diverge alors Y vy, diverge et Sy (u) = o(Sp(v)).

Remarque 3.4. Ce théoréme justifie Uutilisation des développements limités ou des développements asympto-
tiques pour étudier la nature de certaines séries.

Proposition 3.5. Soit > u, et > v, deux séries d termes positifs telles que uy, 73 Vn Alors Y uy, et > v, sont
oo
de méme nature, de plus :

1. 8i Y uy, et > v, convergent alors Ry(u) R, (v).

2. 80> uy ety vy, divergent alors Sp(u) o Sn(v).

o0

“+00

Exemple 3.4. N Etudier 1a série de terme général (up)nen = (In(1 +1/n))pens-

Remarque 3.5. Ne pas oublier que les séries doivent étre a termes positifs pour appliquer ces résultats de
comparaison.

4 Des séries de références

4.1 Les séries exponentielles

Théoréme 4.1 (Définition de 'exponentielle). Pour tout z € C, la série Y. ‘;’TT,L est absolument convergente (et

donc convergente) et sa somme est notée :
+00 _n

z
e’ = ”;)ﬁ

Démonstration. %\ Utiliser la régle de D’Alembert.

Application 4.1.



Exemple 4.1. On considére la série de terme général (un)neny = (371277,‘2”) N’
: ne

_ Lo, 3n on—1 L
Pour tout n > 1, uy, = , o 2(n 1),, or les séries Y el 3,5 (=) convergent. Ainst > u, converge comme
combinaison linéaire de séries convergentes. De plus,

+00 9n +o00 gn—1 400 9n 400 on

+oo

Zun:Z——l— Z Z—+ Z _63—|—262.
n=0 n=0 n=0

Exemple 4.2. Etudier la nature de la série Ee*”Q.

n2e="’ —T> 0, par consequent il existe N € N tel que, pour toutn > N, 0 <n 2¢—n’ < 1. Ainsi, pour tout
n—-+0oo

n>N,0< e~ < 3. Or la série s -z converge (2 > 1), par le théoréeme de comparaison des séries a termes

—_n2

positifs, on en deduzt que Y e converge.

4.2 Les séries de Riemann

L’étude des séries de Riemann repose sur leur comparaison avec des intégrales. Comme on ne voit pas les
intégrales dans ce cours, on ne les verra pas mais, pour votre culture, vous pouvez tout de méme lire cette
section.

Proposition 4.1. Soit f : Ry — R une fonction continue et décroissante. Alors, pour tout n € N*,

[T assos [* s

Démonstration. Soit n € N*, f est décroissante sur R, donc sur [n,n + 1], ainsi, pour tout ¢t € [n,n + 1],
f(t) < f(n). On en déduit que :

n+1 n+1
[ rwde< [ g dt = g
n n
L’autre inégalité se démontre de la méme maniére en raisonnant sur l'intervalle [n — 1, n]. O]

Remarque 4.1.

1. %\Faire un dessin qui illustre la proposition précédente.

2. %\On peut énoncer un résultat analogue dans le cas ol f est croissante.

Définition 4.1. Pour tout a € R, on appelle série de Riemann une série dont le terme général est (n%) eNe
n *

Proposition 4.2 (Convergence des séries de Riemann). Soit a € R.

1. Sia>1 alors la série Y n% converge.



2. Sia <1 alors la série Z diverge.

Démonstration. On commence par étudier la série Z pour a < 0.

Supposons a < 0, (rTa) - 1€ converge pas vers 0, donc la série 3 L ~& est divergente.
n *

Dans la suite, on suppose donc a > 0.
On applique maintenant la proposition précédente : la fonction ¢ — t% est décroissante et continue sur |0, +00].

Alors, pour tout n > 2,
/n+1 dt 1 /” dt
T < < =,
n to T npnoe T g te

Soit N > 2, pour « # 1, on déduit de I'inégalité précédente :

o TNFL N+1 dt 1 N gt a1V
— R < —
l—«o / Z n® — /1 te l—«o .
1

N

1 1 1 1

- <Y — < — 1 :
1—a((N+)— 2a—1)_7;na_1—a<N0<—1 ) )

1. Sia> 1, d’apres (x), on a :

N1 1 1 1 1

> o < - x 1S

n:2na a—1 a—-—1 No— a—1

S

nzlna* a—1

Ainsi les sommes partielles de la série & termes positifs > n% sont majorées, donc > n% converge.

2. Sia<1lalorsa—1<0,dapres (%) on a :

N
1 1 1 1
_ < _
1_a<(N_|_1)a1 2a1)—zna’

ainsi en faisant tendre N vers +oo, on obtient :

N1
S L e
rs n% N—+oo

donc la série Z diverge.

3. Si a =1, on reprend les inégalités précédentes, d’ou :

N o N dqt
In(N+1)—1n2 = — < — < — =InN—-Inl=InN.
V4D -m2= [ F <Y S [ omNoml—mw

Ainsi Z & — +00, donc la série Z diverge.
n=2 N—+o00

4.3 Les séries de Bertrand
Définition 4.2. Pour tout (o, ) € RZ%, on appelle série de Bertrand une série dont le terme général est

(R ) o

Proposition 4.3 (Convergence des séries de Bertrand). Soit (o, ) € R?, la série de terme général (m) -
n>

converge si et seulement si o >1 ou (o =1 et f>1).

Démonstration. Admis. O



5 Séries a termes quelconques : ’exemple des séries alternées

Les criteres de convergence des séries a termes positifs permettent d’étudier la convergence absolue d’une
série ce qui implique qu’elle converge. Mais on a parfois a étudier des séries qui ne sont pas absolument conver-
gentes mais qui convergent (séries semi-convergentes).

Dans cette partie on étudie le cas particulier des séries alternées.

Définition 5.1. Soit > u,, une série a termes réels. On dit que Y u, est alternée lorsque (—1)" u,, est de signe
constant.
Ainsi uy, s'écrit : u, = (—1)"0, ou u, = (—1)"" v, avec Vn € N, v, > 0.

Proposition 5.1 (Critére des séries alternées ou de Leibniz). Soit Y (—1)"v, une série alternée (pour tout
n €N, v, >0). On suppose que (vy)nen est une suite décroissante qui converge vers 0.
Alors la série Y_(—1)"v, converge et, pour tout n € N, le reste d’ordre n, R,,, vérifie |Ry,| < vpi1 .

n

Démonstration. Pour tout n € N, on note S,, la somme partielle d’ordre n de la série Y (—1)"vy,.

Montrer d’abord que les suites (San)nen €t (San+1)nen sont adjacentes.

Donc (S2p)nen et (San+1)nen sont adjacentes, elles convergent vers la méme limite. Ainsi (Sy),en converge,
c’est-a-dire que la série Y (—1)"v,, converge.

Estimation du reste : notons S la somme de la série, alors :
Vn €N, Sopp1 <5 < Sopta < Sop.

Soit n € N, |Ray| = |S — Sap| = Son — S < Sop — Sopt1 = —(—1)2"vgy 11 = vopig.
De plus, soit n € N, |Ropt1| =[S — Sont1] = S — Sont1 < Sont2 — Sont1 = (1) v, 40 = vopia.
Par conséquent, pour tout n € N, |R,| < vp41.

(="

Exemple 5.1. Pour tout o > 0, les séries Z —— sont convergentes.
n>1

Exemple 5.2. N Justifier que &N 4 1 DY

n nlnn Yoo M

%Mon‘crer que la série > et LT diverge.

n nlnn

10



Dans ce chapitre il faut savoir démontrer sans indication :
— Le terme général d’une série convergente converge vers 0 (proposition ;
— Le critére de convergence des séries géométriques (proposition ;
— Le criteére de convergence des séries a termes positifs (théoreme ;

— La convergence de la série exponentielle (théoréme [4.1)) ;
— Le critére de convergence des séries alternées

p.1).

: la convergence sans 'estimation des restes (proposition

11



	Définitions et convergence des séries numériques
	Définition et vocabulaire
	Convergence et divergence d'une série
	Premiers critères de convergence sur les séries
	Convergence absolue

	Un premier exemple : les séries géométriques
	Séries à termes positifs
	Propriété importante des séries à termes positifs
	Critères de comparaison
	La règle de D'Alembert
	La règle de Cauchy
	Critères de comparaison utilisant les équivalences

	Des séries de références
	Les séries exponentielles
	Les séries de Riemann
	Les séries de Bertrand

	Séries à termes quelconques : l'exemple des séries alternées

