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Fonctions d’une variable réelle : limite

Dans la suite, on considère des fonctions f définies sur une partie de R, à valeurs réelles. On notera Df
le domaine de définition de f . On se limitera au cas des fonctions dont le domaine de définition est une
réunion finie d’intervalles.

Dans la suite, R désigne R ∪ {+∞} ∪ {−∞}.

1 Notions très succinctes sur la topologie de la droite réelle

1.1 Notion de voisinage

On dit que V ⊂ R est un voisinage du point a ∈ R, ou encore que V ∈ V(a), l’ensemble des
voisinages de a, s’il existe h > 0 tel que ]a− h, a+ h[ ⊂ V , autrement dit si V contient un intervalle ouvert
de centre a.

On dit que V ⊂ R est un voisinage de +∞ (resp. −∞) (ou encore que V ∈ V(+∞) (resp. V(−∞))) s’il
existe A ∈ R tel que ]A,+∞[ ⊂ V (resp. ]−∞, A[ ⊂ V ).

1.2 Adhérence d’un sous-ensemble de la droite réelle

L’adhérence X d’une partie X de R est définie par

X =
{
a ∈ R | il existe une suite (xn)n∈N ∈ XN telle que a = lim

n→∞
xn
}
.

Exemple 1.1. Adhérence d’un intervalle ouvert ou semi-ouvert : ]−∞, a[ = ]−∞, a], ]a, b] = [a, b], etc.

On dit qu’un point a ∈ R est adhérent à une partie X de R s’il existe une suite (xn)n∈N ∈ XN telle que
a = lim

n→∞
xn.

Exemple 1.2. On a : +∞ est adhérent à l’intervalle [0,+∞[ ; 0 est adhérent à l’ensemble ]− 1, 0[∪]0, 2].

1.3 Propriété vérifiée au voisinage d’un point

On dit qu’une fonction f possède une propriété (P) au voisinage d’un point a ∈ R si a est un point
adhérent au domaine de définition de f et s’il existe V ∈ V(a) tel que f vérifie la propriété (P) sur l’ensemble
V ∩Df . Notons que V ∩Df contient un ensemble de la forme suivante : ]a− h, a+ h[, ]a− h, a[∪ ]a, a+ h[,
]a− h, a[, ]a, a+ h[ si a est fini, un intervalle de la forme ]A,+∞[ si a = +∞ et un intervalle de la forme
]−∞, A[ lorsque a = −∞.

2 Limite d’une fonction : définitions et propriétés de base

2.1 Définitions

Dans toute la suite, lorsque nous dirons qu’une fonction est définie au voisinage de a, nous sous-entendrons
qu’elle peut éventuellement ne pas être définie au point a lui-même.
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2.1.1 Limite finie lorsque la variable tend vers une valeur finie

Soit ` ∈ R. On dit que la fonction f tend vers (ou admet une limite) ` au point a lorsqu’elle est
définie au voisinage du point a (sauf éventuellement au point a lui-même) et qu’elle vérifie

∀ε > 0, ∃η > 0 : ∀x ∈ Df , |x− a| < η =⇒ |f(x)− `| < ε (1)

On dira aussi f(x) tend vers ` quand x tend vers a.

Exemple 2.1. La fonction f : x 7→ 4x+ 1 tend vers 5 en 1.
PLe montrer à l’aide de la définition ci-dessus en remarquant que |4x+ 1− 5| = 4 |x− 1|.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2.1.2 Limite finie lorsque la variable tend vers l’infini

Soit une fonction f définie au voisinage de +∞. On dit que la fonction f tend vers ` en +∞ lorsqu’elle
vérifie

∀ε > 0, ∃A ∈ R : ∀x ∈ ]A,+∞[ |f(x)− `| < ε.

Pour une fonction f définie au voisinage de −∞, on dit de même qu’elle tend vers ` en −∞ lorsqu’elle
vérifie

∀ε > 0, ∃A ∈ R : ∀x ∈ ]−∞, A[ |f(x)− `| < ε.

Exemple 2.2. Montrons que la fonction x 7→ 5 + 1/x tend vers 5 en +∞.
Soit ε > 0.POn pose A = . . . . . .

Alors, pour tout x > A, on a |5 + 1/x− 5| = |1/x| < . . . . . . . . .

Proposition 2.1. Si une fonction f est définie au voisinage de a ∈ R et tend vers ` ∈ R en a, alors f est
bornée au voisinage de a.

Démonstration. On prend ε = 1 dans la définition ci-dessus : il existe un voisinage V ∈ V(a) tel que pour
tout x ∈ V , |f(x)− `| < 1. Ainsi, pour tout x ∈ V , |f(x)| ≤ |f(x)− `|+ |`| < 1 + |`|. La fonction f est donc
bornée sur V .

2.1.3 Limite infinie

Soit une fonction f définie au voisinage de a ∈ R. On dit que f tend vers +∞ en a lorsqu’elle vérifie :

∀A ∈ R, ∃η > 0, ∀x ∈ Df , |x− a| ≤ η =⇒ f(x) ≥ A.

On note alors lim
x→a

f(x) = +∞.
Pour une fonction f définie au voisinage de +∞, on dit que f tend vers +∞ en +∞ lorsqu’elle vérifie :

∀A ∈ R, ∃B ∈ R, ∀x ∈ Df , x ≥ B =⇒ f(x) ≥ A.

Si f est maintenant définie au voisinage de −∞, f tend vers +∞ en −∞ lorsqu’elle vérifie :

∀A ∈ R, ∃B ∈ R, ∀x ∈ Df , x ≤ B =⇒ f(x) ≥ A.
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L’adaptation pour lim
x→a

f(x) = −∞ est immédiate pour a ∈ R.

2.2 Unicité de la limite

Le théorème suivant établit que la limite, lorsqu’elle existe, est unique. La démonstration, qui n’est pas
détaillée ici, est similaire à celle de l’unicité de la limite d’une suite réelle.

Théorème 2.1. Soit ` ∈ R et `′ ∈ R. Si f admet ` et `′ comme limites en a ∈ R, alors ` = `′. On note
alors ` = lim

x→a
f(x).

2.3 Lien avec les limites de suites

Théorème 2.2. Soit une fonction f définie au voisinage d’un point a ∈ R. Soit ` ∈ R. Les deux propriétés
suivantes sont équivalentes :

1. lim
x→a

f(x) = ` ;

2. toute suite (un)n∈N contenue dans Df telle que lim
n→∞

un = a vérifie lim
n→∞

f(un) = `.

Démonstration. On donne la démonstration lorsque a et ` sont finis. On laisse l’adaptation de cette démons-
tration lorsque a = ±∞ ou ` = ±∞ à effectuer comme exercice.

Montrons que (1) implique (2). Soit (un)n∈N une suite d’éléments de Df telle que lim
n→∞

un = a. Montrons
que lim

n→∞
f(un) = `.

Soit ε > 0. Il existe η > 0 tel que pour tout x ∈ Df , si |x− a| ≤ η alors |f(x)− `| ≤ ε.
Comme η > 0, il existe n0 ∈ N tel que pour tout n ≥ n0, |un − a| ≤ η. Il s’ensuit que pour tout n ≥ n0,

on a |f(un)− `| ≤ ε. Ceci exprime justement que lim
n→∞

f(un) = `.
On va maintenant montrer que (2) implique (1) en prouvant que la contraposée est vraie. Supposons

donc que f ne tende pas vers ` lorsque x→ a. Il existe ε0 > 0 tel que, pour tout η de la forme η = 1/(n+ 1)
avec n entier positif, il existe un ∈ Df vérifiant |un − a| < 1/(n+ 1) et |f(un)− `| ≥ ε0. Ceci assure que la
suite (un)n∈N est une suite d’éléments de Df qui tend vers a mais telle que (f(un))n∈N ne tende pas vers
`.

Exemple 2.3. On note f : R∗ → R, x 7→ |sin(1/x)|. La fonction f est définie au voisinage de 0. On définit
les suites (un)n∈N et (vn)n∈N par : pour tout n ∈ N, un = 1

2(n+1)π et vn = 2
(2n+1)π .

PÉtudier les limites des suites (un)n∈N,(vn)n∈N, (f(un))n∈N et (f(vn))n∈N quand n tend vers +∞.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
PQu’en déduit-on sur f ?

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2.4 Opérations sur les limites

2.4.1 Somme, produit, quotient

Théorème 2.3. Soit deux fonctions f et g définies au voisinage de a ∈ R qui tendent chacune lorsque
x→ a vers une limite finie ou infinie. Les propriétés suivantes sont vérifiées :

3



1. si f + g est définie au voisinage de a et si le résultat n’est pas une forme indéterminée, alors

lim
x→a

(f + g)(x) = lim
x→a

f(x) + lim
x→a

g(x) ;

2. si fg est définie au voisinage de a et si le résultat n’est pas une forme indéterminée, alors

lim
x→a

(fg)(x) = lim
x→a

f(x) lim
x→a

g(x) ;

3. si f/g est définie au voisinage de a et si le résultat n’est pas une forme indéterminée, alors

lim
x→a

(f/g)(x) = lim
x→a

f(x)/ lim
x→a

g(x) ;

on notera les cas particuliers suivants lorsque le dénominateur tend vers 0 ou vers +∞ en valeur
absolue

lim
x→a

1
g(x) = 0 si lim

x→a
|g(x)| = +∞ et lim

x→a

∣∣∣∣ 1
g(x)

∣∣∣∣ = +∞ si lim
x→a
|g(x)| = 0

Démonstration. Ce théorème se déduit du théorème précédent et des propriétés analogues sur les suites.

2.4.2 Composée

On rappelle d’abord la définition de la composée g ◦ f de deux fonctions f et g. Soit f : Df → R et
g : Dg → R. La composée g ◦ f est la fonction qui à x associe g(f(x)). Pour que g(f(x)) soit bien défini, il
faut que x soit dans l’ensemble de définition de f et que f(x) soit dans l’ensemble de définition de g. Ainsi,
l’ensemble de définition de la fonction g ◦ f est Dg◦f = {x ∈ Df | f(x) ∈ Dg} et on a

g ◦ f :
Dg◦f −→ R

x 7−→ g(f(x))
qu’on peut décomposer en

x
f7−→ f(x) g7−→ g(f(x))

x
g◦f7−−−−−−−−−→ g(f(x))

Théorème 2.4. Soit a et b deux points de R. Soit g une fonction telle que lim
y→b

g(y) = ` ∈ R et f une

fonction définie au voisinage de a à valeurs dans Dg et telle que lim
x→a

f(x) = b, alors

lim
x→a

g(f(x)) = `.

Démonstration. Soit une suite (xn)n∈N de points de Df telle limn→∞ xn = a. Comme f est à valeurs dans
Dg, la suite (f(xn))n∈N est une suite de points de Dg. De plus, comme lim

x→a
f(x) = b, on a lim

n→∞
f(xn) = b.

Il s’ensuit que lim
n→∞

g(f(xn)) = `. Ceci étant vrai quelle que soit la suite (xn)n∈N vérifiant les conditions
précédentes, on démontre ainsi le théorème.

Exemple 2.4. On étudie dans cet exemple la limite de la fonction u : x 7→ ln
(
1− 1

x

)
lorsque x→ +∞.

PDéterminer f et g deux fonctions simples telles que u = g◦f , puis le domaine de définition de u. Vérifier
que u est définie au voisinage de +∞.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

PÉtudier la limite de u(x) quand x→ +∞ .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2.5 Critère d’encadrement

On détermine souvent qu’une fonction converge en un point en l’encadrant par deux fonctions plus
simples qui convergent vers la même limite.

Proposition 2.2. Soit f, g, h trois fonctions définies au voisinage d’un point a ∈ R vérifiant f ≤ g ≤ h au
voisinage de a. Si lim

x→a
f(x) = lim

x→a
h(x) = ` ∈ R, alors lim

x→a
g(x) = `.

En particulier, si f et g sont telles que |f | ≤ g au voisinage de a et si lim
x→a

g(x) = 0, alors lim
x→a

f(x) = 0.

Exemple 2.5.PÉtudier la limite de f : x 7→ x sin
(1
x

)
lorsque x→ 0.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2.6 Limite à droite et à gauche

Dans toute la suite de cette partie, a désignera un point de R. Soit une fonction f définie au voisinage
de a. On dit que f admet ` ∈ R comme limite à droite (resp. gauche) en a s’il existe h > 0 tel que f
soit définie sur ]a, a+ h[ (resp. ]a− h, a[) et que la restriction de f à ]a, a+ h[ (resp. ]a− h, a[) admette `
comme limite lorsque x → a. On note alors lim

x→a+
f(x) = ` (resp. lim

x→a−
f(x) = `). D’autres notations sont

aussi utilisées : lim
x→a
x>a

f(x) = ` (resp. lim
x→a
x<a

f(x) = `) ou encore f(a+) = ` (resp. f(a−) = `).

Exemple 2.6.

1. On a lim
x→0±

1/x = ±∞.

2.PMontrer que lim
x→0±

x

|x|
= ±1.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Proposition 2.3. Soit une fonction f vérifiant : il existe h > 0 tel que ]a− h, a[ et ]a, a+ h[ soient tous
deux inclus dans Df . Alors, lim

x→a
f(x) = ` ∈ R si et seulement si lim

x→a+
f(x) = lim

x→a−
f(x) = `.

Exemple 2.7. On définit la fonction f : R→ R par f(x) = e−1/x si x > 0 et f(x) = 0 si x < 0.
PÉtudier la limite de f(x) quand x→ 0.
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

En utilisant la propriété de la borne inférieure, on montre le résultat suivant sur l’existence de limites à
droite et à gauche en tout point pour une fonction monotone sur un intervalle. C’est l’analogue de celui sur
les limites des suites monotones. On ne détaille pas la preuve ici.

Théorème 2.5. Soit I un intervalle et f : I → R une fonction monotone (c’est-à-dire croissante ou
décroissante). Alors f admet une limite à droite et une limite à gauche en tout point de I.

Dans ce chapitre il faut savoir démontrer sans indication :
— Le résultat sur la composition des limites (théorème 2.4) ;
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