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Licence 3 - Maths pour I’Enseignement Analyse réelle

Fonctions d’une variable réelle : limite

Dans la suite, on considere des fonctions f définies sur une partie de R, a valeurs réelles. On notera Dy
le domaine de définition de f. On se limitera au cas des fonctions dont le domaine de définition est une
réunion finie d’intervalles.

Dans la suite, R désigne R U {400} U {—o0}.

1 Notions tres succinctes sur la topologie de la droite réelle

1.1 Notion de voisinage

On dit que V' C R est un voisinage du point a € R, ou encore que V € V(a), ’ensemble des
voisinages de q, s'il existe h > 0 tel que Ja — h,a + h[ C V, autrement dit si V' contient un intervalle ouvert
de centre a.

On dit que V' C R est un voisinage de +00 (resp. —oo) (ou encore que V' € V(400) (resp. V(—o0))) s’il
existe A € R tel que A, 400 C V (resp. |—o0, A[ C V).

1.2 Adhérence d’un sous-ensemble de la droite réelle

L’adhérence X d’une partic X de R est définie par

X = {a € R | il existe une suite (2, )nen € XN telle que a = ILm :cn} )
n o

Exemple 1.1. Adhérence d’un intervalle ouvert ou semi-ouvert : |—o0o,a| = |—o0,al, |a,b] = [a,b], etc.

On dit qu'un point a € R est adhérent & une partie X de R s’il existe une suite (x,)nen € XN telle que

a= lim z,.
n—o0

Exemple 1.2. On a : +oo est adhérent d l'intervalle [0, 4o00[; O est adhérent a l’ensemble | — 1,0[U]0, 2].

1.3 Propriété vérifiée au voisinage d’un point

On dit qu’une fonction f posséde une propriété (P) au voisinage d’un point a € R si a est un point
adhérent au domaine de définition de f et s’il existe V' € V(a) tel que f vérifie la propriété (P) sur 'ensemble
V NDy. Notons que V N'Dy contient un ensemble de la forme suivante : |a — h,a + h[, Ja — h,a[U]a,a + hl,
la — h,al, Ja,a + h[ si a est fini, un intervalle de la forme A, +o00[ si a = +00 et un intervalle de la forme

|—00, A] lorsque a = —oc0.

2 Limite d’une fonction : définitions et propriétés de base

2.1 Définitions

Dans toute la suite, lorsque nous dirons qu’une fonction est définie au voisinage de a, nous sous-entendrons

qu’elle peut éventuellement ne pas étre définie au point a lui-méme.



2.1.1 Limite finie lorsque la variable tend vers une valeur finie

Soit ¢ € R. On dit que la fonction f tend vers (ou admet une limite) ¢ au point a lorsqu’elle est

définie au voisinage du point a (sauf éventuellement au point a lui-méme) et qu’elle vérifie
Ve>0,I>0: Ve eDy, [x—a|<n = |f(x)—{ <e (1)

On dira aussi f(x) tend vers ¢ quand x tend vers a.

Exemple 2.1. La fonction f:x+— 4z + 1 tend vers 5 en 1.

N\ Le montrer & Iaide de la définition ci-dessus en remarquant que |4z + 1 — 5| =4 |z — 1].

2.1.2 Limite finie lorsque la variable tend vers I’infini

Soit une fonction f définie au voisinage de +o00. On dit que la fonction f tend vers ¢ en +oo lorsqu’elle
vérifie
Ve >0, JAe R :Vz € JA, oo |f(z) — 1] <e.

Pour une fonction f définie au voisinage de —oo, on dit de méme qu’elle tend vers £ en —oo lorsqu’elle
vérifie

Ve >0, dJA e R:Vz € ]—00,A] |f(z)— /| <e.

Exemple 2.2. Montrons que la fonction x — 5+ 1/ tend vers 5 en +oo.
Soit e > 0. %\ On pose A=......
Alors, pour tout © > A, on a |5+ 1/z =5 =|1/z| < .........

Proposition 2.1. Si une fonction f est définie au voisinage de a € R et tend vers £ € R en a, alors f est

bornée au voisinage de a.

Démonstration. On prend € = 1 dans la définition ci-dessus : il existe un voisinage V' € V(a) tel que pour
tout z € V, |f(xz) — €] < 1. Ainsi, pour tout x € V, |f(x)| <|f(z) — €|+ |¢| < 1+ |¢|. La fonction f est donc

bornée sur V. O

2.1.3 Limite infinie

Soit une fonction f définie au voisinage de a € R. On dit que f tend vers 400 en a lorsqu’elle vérifie :
VAER, >0, Ve €Dy, |[x—a|<n = f(z)> A

On note alors %13% f(x) = +oo.

Pour une fonction f définie au voisinage de 400, on dit que f tend vers +oo en 400 lorsqu’elle vérifie :
VAeR, 3BeR, Ve €Dy, x > B = f(z) > A.
Si f est maintenant définie au voisinage de —oo, f tend vers 400 en —oo lorsqu’elle vérifie :

VAeR, dBeR, Ve €Dy, < B = f(x) > A.



L’adaptation pour li_r>n f(x) = —oc est immédiate pour a € R.
xX a

2.2 Unicité de la limite

Le théoréme suivant établit que la limite, lorsqu’elle existe, est unique. La démonstration, qui n’est pas

détaillée ici, est similaire a celle de 'unicité de la limite d’une suite réelle.

Théoréme 2.1. Soit { € R et ¢/ € R. Si f admet ¢ et ¢' comme limites en a € R, alors £ = ¢'. On note

alors £ = %1_1()1}1 f(x).

2.3 Lien avec les limites de suites

Théoréme 2.2. Soit une fonction f définie au voisinage d’un point a € R. Soit £ € R. Les deux propriétés

sutvantes sont équivalentes :

1. lim f(x) =1¢;

Tr—a

2. toute suite (un), oy contenue dans Dy telle que nh_)ngo U, = a vérifie nh_)ngo flun) =L
Démonstration. On donne la démonstration lorsque a et £ sont finis. On laisse ’adaptation de cette démons-
tration lorsque a = +o00 ou £ = 00 a effectuer comme exercice.

Montrons que (1) implique (2). Soit (uy), <y une suite d’éléments de Dy telle que Jim u, = a. Montrons
que nh_{lgo fluy) =¢.

Soit € > 0. Il existe n > 0 tel que pour tout = € Dy, si |z — a|] < nalors |f(zx) — 4] <e.

Comme 1 > 0, il existe ng € N tel que pour tout n > ng, |u, —a| < n. Il s’ensuit que pour tout n > ny,
on a |f(uy) — ¢ < e. Ceci exprime justement que nl;ngo fluy) =¢.

On va maintenant montrer que (2) implique (1) en prouvant que la contraposée est vraie. Supposons
donc que f ne tende pas vers ¢ lorsque z — a. Il existe g > 0 tel que, pour tout 1 de la forme n =1/(n+1)
avec n entier positif, il existe u,, € Dy vérifiant |u, —a| < 1/(n+ 1) et |f(un) — €] > €. Ceci assure que la
suite (un),cy est une suite d’éléments de Dy qui tend vers a mais telle que (f(un)),cy ne tende pas vers
L. O

Exemple 2.3. On note f : R* - R, z+ [sin(1/z)|. La fonction f est définie au voisinage de 0. On définit
les suites (up)nen €t (Un)nen par : pour tout n € N, u, = m et v, = m
N Btudier les limites des suites (Un)nens(Vn)nen, (f(un))nen et (f(vn))nen quand n tend vers +oo.

2.4 Opérations sur les limites
2.4.1 Somme, produit, quotient

Théoréme 2.3. Soit deur fonctions f et g définies au voisinage de a € R qui tendent chacune lorsque

x — a vers une limite finie ou infinie. Les propriétés suivantes sont vérifiées :



1. si f+ g est définie au voisinage de a et si le résultat n’est pas une forme indéterminée, alors

lim (f + 9)(2) = lim f(2) + lim g(z)

T—a T—ra

2. st fg est définie au voisinage de a et st le résultat n’est pas une forme indéterminée, alors

lim (fg)(z) = lim f(z) lim g(z) ;

T—ra r—ra

3. si f/g est définie au voisinage de a et si le résultat n’est pas une forme indéterminée, alors

lim (f/9)(x) = lim f(2)/ lim g(x) ;

Tr—a

on notera les cas particuliers suivants lorsque le dénominateur tend vers 0 ou vers +oo en valeur
absolue

= 400 si ;13}1\9(;17)] =0

1
lim — =0 s¢ lim |g(z)| = 400 et lim | —
T—a g(g;) $—>(I’ ( )| T—a g([,[;)

Démonstration. Ce théoréme se déduit du théoreme précédent et des propriétés analogues sur les suites. [

2.4.2 Composée

On rappelle d’abord la définition de la composée g o f de deux fonctions f et g. Soit f : Dy — R et
g : Dy — R. La composée g o f est la fonction qui a x associe g(f(z)). Pour que g(f(x)) soit bien défini, il
faut que x soit dans I’ensemble de définition de f et que f(x) soit dans I’ensemble de définition de g. Ainsi,
'ensemble de définition de la fonction g o f est Dyor = {x € Dy | f(x) € Dy} et on a

Dypy — R , , v L fo) s g(f(2)
gof: qu’on peut décomposer en of
. — g(f(x)) r —F—— g(f(2))

Théoréme 2.4. Soit a et b deux points de R. Soit g une fonction telle que linig(y) =/ cRetf une
Yy—

fonction définie au voisinage de a a valeurs dans Dy et telle que liin f(x) =0, alors
r—a

lim g( () = ¢.

Tr—ra

Démonstration. Soit une suite (x,), .y de points de Dy telle lim, o ,, = a. Comme f est a valeurs dans

Dy, la suite (f(z5)),cy est une suite de points de D,. De plus, comme 3ljl_rg(l1 f(x) =b,on a nh_}rglo f(x,) =b.

Il s’ensuit que li_)m g(f(xn)) = L. Ceci étant vrai quelle que soit la suite (x,), oy Vvérifiant les conditions
n—oo

précédentes, on démontre ainsi le théoréme. O

Exemple 2.4. On étudie dans cet exemple la limite de la fonction u : x — In (1 — %) lorsque © — 400.
%\ Déterminer f et g deux fonctions simples telles que u = go f, puis le domaine de définition de u. Vérifier

que u est définie au voisinage de +o0.



2.5 Critére d’encadrement

On détermine souvent qu’une fonction converge en un point en ’encadrant par deux fonctions plus

simples qui convergent vers la méme limite.

Proposition 2.2. Soit f, g, h trois fonctions définies au voisinage d’un point a € R vérifiant f < g < h au
voisinage de a. Si %1151 f(z) = aljl_rg h(z) = € R, alors %1_1)1}19(@ =/

En particulier, si f et g sont telles que |f| < g au voisinage de a et si %13% g(x) =0, alors lim f(x)=0.

. 1
Exemple 2.5. % Etudier la limite de f: x +— zsin () lorsque © — 0.
x

2.6 Limite a droite et a gauche

Dans toute la suite de cette partie, a désignera un point de R. Soit une fonction f définie au voisinage
de a. On dit que f admet £ € R comme limite & droite (resp. gauche) en a s’il existe h > 0 tel que f
soit définie sur |a,a + h[ (resp. Ja — h,a]) et que la restriction de f a |a,a + h[ (resp. |a — h, a[) admette ¢
comme limite lorsque z — a. On note alors xlgﬁi f(x) = £ (resp. xligl— f(z) = £). D’autres notations sont

aussi utilisées : }gré f(x) = £ (resp. ;5% f(z) =£) ou encore f(a™) =¥ (vesp. f(a™) ={).
x>a z<a

Exemple 2.6.

1. On a lim 1/z = +o0.
z—0%

2. %\Montrer que lim L +1.

x—0%t |I”

Proposition 2.3. Soit une fonction f vérifiant : il existe h > 0 tel que Ja — h,a[ et |a,a + h[ soient tous

deux inclus dans Dy. Alors, lim f(x) = ¢ €R si et seulement si limJr () = lim f(x)="¢.
T—a r—a T—a~

Exemple 2.7. On définit la fonction f: R — R par f(x) =e /% siz >0 et f(x) =0 siz < 0.
N\ Etudier 1a limite de f(z) quand = — 0.



En utilisant la propriété de la borne inférieure, on montre le résultat suivant sur I’existence de limites a
droite et a gauche en tout point pour une fonction monotone sur un intervalle. C’est ’analogue de celui sur

les limites des suites monotones. On ne détaille pas la preuve ici.

Théoréme 2.5. Soit I un intervalle et f : I — R une fonction monotone (c’est-a-dire croissante ou

décroissante). Alors f admet une limite a droite et une limite a gauche en tout point de I.

Dans ce chapitre il faut savoir démontrer sans indication :
— Le résultat sur la composition des limites (théoréeme ;
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