Partiel du 7 décembre 2022 - Durée : 1H30

La rédaction est importante, nous allons en tenir compte dans la correction.

Exercice 1 Question de cours

Énoncer et démontrer le théorème de comparaison séries/intégrales.

Exercice 2 Intégrales impropres

- 1. Calculer $\int_0^{+\infty} te^{-t} dt$.
- 2. Montrer que pour tout réel t > 0, on a

$$e^t - \cos t - t > 0$$
.

Indication : procéder à l'étude d'une fonction.

- 3. Montrer que $\int_1^{+\infty} \frac{t}{e^t \cos t t} dt$ est convergente.
- 4. Déterminer la nature de $\int_0^{+\infty} \frac{t}{e^t \cos t t} dt$.
- 5. Déterminer la nature de $\int_0^{+\infty} \frac{t \sin t}{e^t \cos t t} dt$.

Exercice 3 Irrationalité de e

Pour $n \in \mathbb{N}$, on pose $I_n = \int_0^1 x^n e^x dx$.

- 1. Montrer que pour tout $n \in \mathbb{N}$, on a $I_n > 0$.
- 2. Montrer que pour tout $n \in \mathbb{N}$, on a $I_n \leq \frac{e}{n+1}$.
- 3. Pour $n \in \mathbb{N}$, trouver une relation entre I_{n+1} et I_n .
- 4. En déduire que pour tout $n \in \mathbb{N}$, il existe des entiers relatifs a_n et b_n tels que

$$I_n = a_n e + b_n$$
.

- 5. Supposons que e est rationnel et considérons alors deux entiers naturels non nuls p et q tels que $e = \frac{p}{q}$.
 - (a) Montrer que pour tout $n \in \mathbb{N}$, on a $I_n \geq \frac{1}{a}$.
 - (b) En déduire une contradiction et conclure.