Le Petit Fermat

Lemme. Soit p un nombre premier, et 0 < k < p un entier. Alors p divise $\binom{p}{k}$.

Démonstration : On a que $\binom{p}{k} = \frac{p!}{k! \, (p-k)!}$ est un entier. Donc $k! \, (p-k)!$ divise $p! = p \, (p-1)!$. Or, $k! \, (p-k)!$ est un produit de facteurs < p, et donc premier avec p. Ainsi $k! \, (p-k)!$ est premier avec p. D'après le lemme de Gauss, $k! \, (p-k)!$ divise (p-1)!, et p divise $\frac{p \, (p-1)!}{k! \, (p-k)!} = \frac{p!}{k! \, (p-k)!} = \binom{p}{k}$. \square

Théorème (Petit Théorème de Fermat). Soit p premier, et $n \in \mathbb{N}$. Alors $n^p \equiv n \mod p$. Si $\operatorname{pgcd}(n,p) = 1$, alors $n^{p-1} \equiv 1 \mod p$.

Démonstration : Par récurrence sur n. L'énoncé est trivial si n=0 ou n=1. On suppose donc que $n^p\equiv n$ mod p. Alors

$$(n+1)^p = 1 + \sum_{k=1}^{p-1} {p \choose k} n^k + n^p \equiv 1 + n^p \equiv 1 + n = n+1 \mod p,$$

où la première équivalence découle du lemma ci-dessus, et la deuxième équivalence est l'hypothèse de récurrence.

Ainsi $n^p \equiv n \mod p$ pour tout $n \in \mathbb{N}$.

Si de plus $\operatorname{pgcd}(n,p)=1$, alors comme p divise $n^p-n=n$ $(n^{p-1}-1)$, d'après le lemme de Gauss p divise $n^{p-1}-1$, et $n^{p-1}\equiv 1 \mod p$. \square