Fondamentaux des mathématiques - DS n°2

Partie CUPGE Corrigé

Exercice 1: Pour une relation R sur un ensemble X, soit \bar{R} la relation définie par $x\bar{R}y$ ssi (xRy ou yRx).

- 1. Soit R la relation sur \mathbb{R} donnée par : xRy s'il y a $n \in \mathbb{N}$ avec y = x + n.
 - (a) Déterminer si R est une relation d'ordre, d'ordre strict, ou d'équivalence.
 - (b) Montrer que $x\bar{R}y$ ss'il y a $z\in\mathbb{Z}$ avec y=x+z. En déduire que \bar{R} est une relation d'équivalence.
- 2. Soit maintenant R une relation d'ordre sur un ensemble X.
 - (a) On suppose que pour tout $x, y \in X$, s'il y a $z \in X$ avec (xRz et yRz) ou (zRx et zRy) alors xRy. Montrer que \bar{R} est transitive. En déduire que \bar{R} est une relation d'équivalence.
 - (b) Trouver un exemple d'un ordre R sur un ensemble X pour lequel \bar{R} n'est pas une relation d'équivalence. [On remarquera que l'ordre ne peut être total.]

Solution:

- 1. (a) On a $0 \in \mathbb{N}$ et x + 0 = x, d'où xRx pour tout x, et R est reflexive. Si xRy et yRx, alors il y a $n \in \mathbb{N}$ avec y = x + n, et $m \in \mathbb{N}$ avec x = y + m. Mais alors $n = y x = -m \in \mathbb{N}$, ce qui implique n = m = 0 et x = y. Ainsi R est antisymétrique. Enfin, si xRy et yRz soient $m, n \in \mathbb{N}$ avec y = x + m et z = y + n. Alors z = x + (m + n) avec $m + n \in \mathbb{N}$, et xRz. Ainsi R est transitive, et on a bien une relation d'ordre (faible).
 - (b) On a $x\bar{R}y$ s'il y a $n\in\mathbb{N}$ tel que y=x+n ou x=y+n, donc ssi il y a $z\in\mathbb{Z}$ avec y=x+z. Puisque xRx pour tout x, on a aussi $x\bar{R}x$ pour tout x et \bar{R} est reflexive. On note que \bar{R} est symétrique par définition. Enfin, si $x\bar{R}y$ et $y\bar{R}z$, soient $m,n\in\mathbb{Z}$ avec y=x+m et z=y+n. Alors z=x+(m+n) avec $m+n\in\mathbb{Z}$, et $x\bar{R}z$. Ainsi \bar{R} est transitive, et \bar{R} est une relation d'équivalence.
- 2. (a) On a xRx pour tout x, d'où $x\bar{R}x$ pour tout x et \bar{R} est reflexive. De plus, \bar{R} est symétrique par définition. Soient donc $x\bar{R}y$ et $y\bar{R}z$. Si xRyRz ou zRyRx, alors xRz ou zRx, d'où $x\bar{R}z$. Sinon, on a (xRy et zRy) ou (zRx et zRy). Alors par hypothèse $x\bar{R}z$. Dans tous les cas $x\bar{R}z$, et \bar{R} est transitive: on a bien une relation d'équivalence.
 - (b) On pose $X = \{a, b, c\}$ avec aRa, bRb, cRc, aRb et cRb. C'est un ordre partiel où a et c sont pus petits que b, mais incomparables entre eux. Alors tous les éléments sont liés par \bar{R} sauf a et c. Puisque $a\bar{R}b\bar{R}c$, on a que \bar{R} n'est pas transitive : ce n'est pas une relation d'équivalence.

Exercice 2: Soient $(u_n)_{n\in\mathbb{N}}$ la suite réelle donnée par $u_0=2$ et $u_{n+1}=u_n$ $(1+\ln\frac{e}{u_n})$.

- 1. (Question de cours) Montrer que $1 + \ln x \le x$ pour x > 0.
- 2. Montrer que $0 < \frac{u_n}{e} \le \frac{u_{n+1}}{e} \le 1$ pour tout n.
- 3. En déduire que u_n converge.
- 4. Trouver le point fixe de $f(x) = x(1 + \ln \frac{e}{x})$, c'est-à-dire $x_0 \in \mathbb{R}$ avec $f(x_0) = x_0$.
- 5. En déduire la valeur de $\lim_{n\to\infty} u_n$.
- 6. (Bonus) Montrer que $\ln \frac{e}{u_{n+1}} \leq (\ln \frac{e}{u_n})^2$. En déduire que $\lim_{n\to\infty} \ln u_n = 1$. [On a $\ln 2 > 0,69$.]

Solution:

1. On pose $f(x) = x - 1 - \ln x$. Alors f est défini et dérivable sur $]0, \infty[$, avec $f'(x) = 1 - \frac{1}{x}$. Ainsi $f'(x) \le 0$ pour $0 < x \le 1$ et $f'(x) \ge 0$ pour $x \ge 1$. Donc f a son minimum pour x = 1, avec f(1) = 1 - 1 - 0 = 0. Il en découle que $f(x) \ge 0$ et $1 + \ln x \le x$ pour x > 0.

2. Par récurrence sur n. Initialisation : On a 0 < 2 < e, d'où $0 < \frac{2}{e} = \frac{u_0}{e} \le 1$.

Hypothèse: Supposons $0 < u_n/e \le 1$ pour un certain $n \in \mathbb{N}$.

Hérédité : D'après la partie 1. on a $1 + \ln \frac{e}{u_n} \le e/u_n$, d'où :

$$\frac{u_{n+1}}{e} = \frac{u_n \left(1 + \ln \frac{e}{u_n}\right)}{e} \le \frac{u_n}{e} \frac{e}{u_n} = 1.$$

De plus, $0 < u_n/e \le 1$ implique $\ln(e/u_n) \ge 0$, et $u_{n+1}/e = u_n (1 + \ln(e/u_n)) \ge u_n/e$. L'énonce est donc démontré.

- 3. On a une suite croissante et majoré par e; elle est convergente d'après le théorème de la suite monotone.
- 4. Si $x_0 = f(x_0) = x_0 (1 + \ln \frac{e}{x_0})$, alors $\ln \frac{e}{x_0} = 0$ et $x_0 = e$. C'est l'unique point fixe.
- 5. On a $\ell = \lim_{n \to \infty} u_n = \lim_{n \to \infty} u_{n+1} = \lim_{n \to \infty} f(u_n) = f(\lim_{n \to \infty} u_n) = f(\ell)$ puisque f est continue sur $[0, \infty[$. Donc $\ell = e$ et $(u_n)_n$ converge vers e.
- 6. D'après 1. on a $\ln(1+x) \le x$ pour x > -1. Alors, en posant $x = \frac{-\ln(e/u_n)}{1+\ln(e/u_n)} > -1$, on a :

$$\ln \frac{e}{u_{n+1}} = \ln \frac{e}{u_n \left(1 + \ln \frac{e}{u_n}\right)} = \ln \frac{e}{u_n} + \ln \frac{1}{1 + \ln \frac{e}{u_n}} = \ln \frac{e}{u_n} + \ln \frac{\left(1 + \ln \frac{e}{u_n}\right) - \ln \frac{e}{u_n}}{1 + \ln \frac{e}{u_n}}$$

$$= \ln \frac{e}{u_n} + \ln \left(\frac{1 + \ln \frac{e}{u_n}}{1 + \ln \frac{e}{u_n}} - \frac{\ln \frac{e}{u_n}}{1 + \ln \frac{e}{u_n}}\right) = \ln \frac{e}{u_n} + \ln \left(1 - \frac{\ln \frac{e}{u_n}}{1 + \ln \frac{e}{u_n}}\right)$$

$$\leq \ln \frac{e}{u_n} - \frac{\ln \frac{e}{u_n}}{1 + \ln \frac{e}{u_n}} = \left(\ln \frac{e}{u_n}\right) \left(1 - \frac{1}{1 + \ln \frac{e}{u_n}}\right) = \left(\ln \frac{e}{u_n}\right) \frac{\ln \frac{e}{u_n}}{1 + \ln \frac{e}{u_n}}$$

$$= \left(\ln \frac{e}{u_n}\right)^2 \frac{1}{1 + \ln \frac{e}{u_n}} \leq \left(\ln \frac{e}{u_n}\right)^2.$$

Ainsi $0 \le \ln \frac{e}{u_n} \le (\ln \frac{e}{u_0})^{2^n} = (1 - \ln u_0)^{2^n} \le 0, 31^{2^n}$, ce qui converge vers 0. Donc $\ln u_n$ converge vers 1, et u_n converge vers e.

Exercice 3: Étudier la fonction

$$x \mapsto \ln \sqrt{\frac{x+1}{x-1}}.$$

(Donner son domaine maximal, sa parité ou périodicité éventuelle, étudier sa continuité et dérivabilité, ses limites à $\pm \infty$ et aux bornes de son domaine, ses asymptotes affines éventuelles, son tableau des variations, et dresser son graphe.)

Solution : Pour que la racine carrée soit définie est strictement positive, il faut $\frac{x+1}{x-1} > 0$, donc numérateur et dénominateur de même signe. Ainsi $x \in]-\infty, 1[\cup]1, \infty[=D]$, ce qui est le domaine maximal de f. On a

$$f(-x) = \ln \sqrt{\frac{-x+1}{-x-1}} = \ln \sqrt{\frac{x-1}{x+1}} = -\ln \sqrt{\frac{x+1}{x-1}} = -f(x);$$

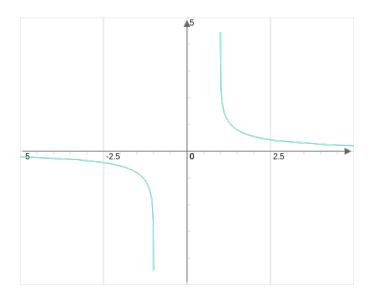
la fonction f est donc impaire. Pour la fonction dérivée, on calcule :

$$f'(x) = \frac{1}{\sqrt{\frac{x+1}{x-1}}} \frac{1}{2\sqrt{\frac{x+1}{x-1}}} \frac{(x-1) - (x+1)}{(x-1)^2} = \frac{-1}{(x+1)(x-1)} = \frac{-1}{x^2 - 1}.$$

La fonction f est ainsi dérivable, donc continue, sur D. On note que f' < 0 sur D. Ceci implique que f est strictement croissante, et ne peut pas être périodique. On a :

$$\lim_{x \to +\infty} f(x) = \ln 1 = 0,$$

puisque $\lim_{x\to\pm\infty}\frac{x+1}{x-1}=1$. De plus, $\lim_{x\to-1^-}\frac{x+1}{x-1}=0$, ce qui implique $\lim_{x\to-1^-}f(x)=-\infty$. Enfin, $\lim_{x\to1^+}\frac{x+1}{x-1}=\infty$, ce qui donne $\lim_{x\to1^+}f(x)=\infty$. Ainsi on a des asymptôtes verticales x=-1 et x=+1 en ± 1 , et des asymptôtes horizontales y=0 en $\pm\infty$. Ce qui donne la table de variations suivante :



Exercice 4:

- 1. (Question de cours) Énoncer la propriété d'Archimède pour R.
- 2. Montrer la propriété d'Archimède pour $\mathbb R$ est équivalent au principe suivant :
 - Pour tout $x \in \mathbb{R}$, si $|x| < \frac{1}{n}$ pour tout $n \in \mathbb{N}^{\times}$, alors x = 0.

Solution:

- 1. La propriété d'Archimède pour $\mathbb R$ est le suivant :
 - Pour tout x > 0 et $y \in \mathbb{R}$ il y a $n \in \mathbb{N}$ avec $nx \geq y$.
- 2. Supposons la propriété d'Archimède pour \mathbb{R} , et soit $x \in \mathbb{R}$ avec $|x| < \frac{1}{n}$ pour tout $n \in \mathbb{N}^{\times}$. Supposons pour une contradiction que $x \neq 0$. Alors |x| > 0, et par la propriété d'Archimède il y a $n \in \mathbb{N}$ avec $n |x| \geq 1$. Donc $|x| \geq \frac{1}{n}$, une contradiction.

Réciproquement, supposons que pour tout $x \in \mathbb{R}$, si $|x| \leq \frac{1}{n}$ pour tout $n \in \mathbb{N}^{\times}$ alors x = 0. Soit x > 0 et $y \in \mathbb{R}$. Alors $\frac{x}{|y|+1} > 0$, ce qui par contraposée implique qu'il y a $n \in \mathbb{N}^{\times}$ tel que $|\frac{x}{|y|+1}| \geq \frac{1}{n}$. Alors $nx = n|x| \geq |y| + 1 \geq y$. Ainsi \mathbb{R} a la propriété d'Archimède.

Exercice 5: Soit $f: X \to Y$ une application.

- 1. Montrer pour tout $A, B \subseteq X$ on a $f[A \cap B] \subseteq f[A] \cap f[B]$.
- 2. Montrer que si f est injective, alors on a égalité.
- 3. Montrer que si f n'est pas injective, il y a $A, B \subseteq X$ tel que $f[A \cap B] \neq f[A] \cap f[B]$.

Solution:

- 1. Soit $y \in f[A \cap B]$. Il y a donc $x \in A \cap B$ avec f(x) = y. Alors $x \in A$ et $x \in B$, ce qui implique que $y = f(x) \in f[A]$ et $y = f(x) \in f[B]$. Ainsi $y \in f[A] \cap f[B]$, ce qui montre l'inclusion.
- 2. Soit f injective, et considérons $y \in f[A] \cap f[B]$. Alors $y \in f[A]$ et il y a $x \in A$ avec f(x) = y, et $y \in f[B]$ et il y a $x' \in B$ avec f(x') = y. En particulier f(x) = f(x'); par injectivité on a x = x'. Donc $x \in A \cap B$, et $y = f(x) \in f[A \cap B]$.
- 3. Si f n'est pas injective, il y a $x \neq x'$ dans X avec f(x) = f(x') = y. On pose $A = \{x\}$ et $B = \{x'\}$. Alors $f[A] = \{y\} = f[B]$ et $f[A] \cap f[B] = \{y\}$. Mais $A \cap B = \emptyset$, et $f[A \cap B] = f[\emptyset] = \emptyset \neq \{y\}$.