COURS 7

Séries à termes positifs

Soit $\sum u_n$ une série réelle de terme général u_n . On dit que la série est à termes positifs si $u_n \ge 0$ pour n assez grand.

Si $\sum u_n$ est une série à termes positifs, alors la suite (S_n) est croissante (à partir d'un certain rang)

$$S_{n+1} - S_n = u_{n+1} \ge 0$$

et donc pour prouver que la série $\sum u_n$ est convergente, il suffit de montrer que la suite (S_n) est majorée.

Si $\sum u_n$ est une série quelconque (réelle ou complexe), la série $\sum |u_n|$ est une série à termes positifs et donc la convergence de cette dernière implique la convergence de la série initiale $\sum u_n$ (convergence absolue).

Proposition

Soient $\sum u_n$ et $\sum v_n$ deux séries à termes positifs. On suppose que $u_n \leq v_n$, pour n assez grand.

- Si $\sum u_n$ est divergente alors $\sum v_n$ est divergente.
- Si $\sum v_n$ est convergente alors $\sum u_n$ est convergente et

$$\sum_{n=0}^{+\infty} u_n \le \sum_{n=0}^{+\infty} v_n.$$

Exemples

On a

$$0 \le \frac{|\cos n|}{n^2} \le \frac{1}{n^2}$$

et les deux séries $\sum \frac{|\cos n|}{n^2}$ et $\sum \frac{1}{n^2}$ sont à **termes positifs**.

La série de Riemann $\sum \frac{1}{n^2}$ est convergente et donc la série $\sum \frac{|\cos n|}{n^2}$ est convergente.

En particulier, la série $\sum \frac{\cos n}{n^2}$ est convergente puisqu'elle est absolument convergente.

On a

$$0 \le \frac{1}{n} \le \frac{1}{\ln n}$$

et les deux séries $\sum \frac{1}{n}$ et $\sum \frac{1}{\ln n}$ sont à **termes positifs**.

La série harmonique $\sum \frac{1}{n}$ est divergente et donc la série $\sum \frac{1}{\ln n}$ est divergente.

Rappel: équivalence

Soient (u_n) et (v_n) deus suites. On dit qu'elles sont équivalentes à l'infini et on écrit $u_n \sim_{+\infty} v_n$, s'il existe une suite ϵ_n telle que pour n assez grand $u_n = v_n(1 + \epsilon_n)$ avec $\lim_{n \to +\infty} \epsilon_n = 0$.

Si $v_n \neq 0$ pour *n* assez grand,

$$u_n \sim_{+\infty} v_n$$
 si et seulement si $\lim_{n \to +\infty} u_n/v_n = 1$.

Théorème

Soient $\sum u_n$ et $\sum v_n$ deux séries à termes positifs. Si $u_n \sim_{+\infty} v_n$, alors les séries $\sum u_n$ et $\sum v_n$ sont de même nature (toutes les deux convergentes ou toutes les deux divergentes).

Exemple

On a

$$\ln(1+\frac{1}{2^n})\sim_{+\infty}\frac{1}{2^n}$$

et les deux séries $\sum \ln(1+\frac{1}{2^n})$ et $\sum \frac{1}{2^n}$ sont à **termes positifs**.

Comme la série $\sum \frac{1}{2^n}$ est un série géométrique convergente, on déduit que la série $\sum \ln(1+\frac{1}{2^n})$ est convergente.

Rappel: négligeabilité

Soient (u_n) et (v_n) deux suites. On dit (u_n) est négligeable devant (v_n) à l'infini et on écrit $u_n = o(v_n)$, s'il existe une suite ϵ_n telle que pour n assez grand $u_n = v_n \epsilon_n$ avec $\lim_{n \to +\infty} \epsilon_n = 0$. Si $v_n \neq 0$ pour n assez grand,

$$u_n = o(v_n)$$
 si et seulement si $\lim_{n \to +\infty} u_n/v_n = 0$.

Théorème

Soient $\sum u_n$ et $\sum v_n$ deux séries à termes positifs telles que $u_n = o(v_n)$.

- Si la série $\sum v_n$ est convergente, alors la série $\sum u_n$ est convergente.
- Si la série $\sum u_n$ est divergente, alors la série $\sum v_n$ est divergente.

Exemple

On a

$$\lim_{n \to +\infty} \frac{e^{-n}}{1/n^2} = \lim_{n \to +\infty} \frac{n^2}{e^n} = 0$$

et la série $\sum \frac{1}{n^2}$ est une série (de Riemann) à termes positifs convergente.

Donc la série $\sum e^{-n}$ est convergente.

Théorème

Soit $f:[0,+\infty[\to\mathbb{R}$ une fonction décroissante, positive et intégrable sur tout intervalle borné [0,a] où a>0 (par exemple si f est continue). Posons

$$I_n = \int_0^n f(x) \ dx.$$

Alors la série de terme général $u_n = f(n)$ est convergente si et seulement si $\lim_{n \to +\infty} I_n$ est finie.

Exemple : séries de Riemann

Appliquons ce théorème pour montrer que la série de Riemann $\sum \frac{1}{n^{\alpha}}$ est convergente si et seulement si $\alpha > 1$.

La série $\sum \frac{1}{n^{\alpha}}$ peut se réécrire sous la forme $\sum \frac{1}{(1+n)^{\alpha}}$. On considère l'application $x \mapsto \frac{1}{(1+x)^{\alpha}}$ qui satisfait les conditions du théorème. On a

$$\int_0^n \frac{1}{(1+x)^\alpha} \ dx = \left\{ \begin{array}{ll} \frac{(1+n)^{1-\alpha}-1}{1-\alpha} & \text{si } \alpha \neq 1, \\ \ln(1+n) & \text{si } \alpha = 1. \end{array} \right.$$

On en déduit

$$\lim_{n\to +\infty} \int_0^n \frac{1}{(1+x)^\alpha} \ dx = \left\{ \begin{array}{ll} +\infty & \text{ si } \alpha \leq 1, \\ \frac{1}{1-\alpha} & \text{ si } \alpha > 1. \end{array} \right.$$

Exemple : séries de Bertrand

Soient α et β deux réels. On appelle série de Bertrand la série réelle à termes positifs suivante

$$\sum_{n>2} \frac{1}{n^{\alpha} (\ln n)^{\beta}}.$$

Alors la série de Bertrand est convergente si et seulement si $\alpha > 1$ ou $(\alpha = 1 \text{ et } \beta > 1)$.

En effet, on peut appliquer le théorème précédent en utilisant la fonction $x\mapsto \frac{1}{x^{\alpha}(\ln x)^{\beta}}$.

Théorème (Règle de D'Alembert)

Soit $\sum u_n$ une série à termes positifs avec $u_n > 0$ pour n assez grand. Supposons que

$$\lim_{n\to+\infty}\frac{u_{n+1}}{u_n}=\ell\in\mathbb{R}.$$

- Si $\ell < 1$, alors la série $\sum u_n$ est convergente.
- Si $\ell > 1$, alors la série $\sum u_n$ est divergente (grossièrement).
- Si $\ell=1$, on ne peut pas conclure.

Si $\ell=1$, on ne peut pas conclure, ce qui revient à dire qu'il existe des séries avec $\ell=1$ et qui sont convergentes et qu'il existe des séries avec $\ell=1$ et qui sont divergentes.

Exemple

Soit $\sum u_n$ la série de terme général $u_n = \frac{n!}{n^n}$. On a

$$\lim_{n \to +\infty} \frac{u_{n+1}}{u_n} = \lim_{n \to +\infty} \frac{(n+1)!/(n+1)^{n+1}}{n!/n^n} = \lim_{n \to +\infty} \frac{(n+1)n^n}{(n+1)^{n+1}}$$
$$= \lim_{n \to +\infty} (\frac{n}{n+1})^n = 1/e < 1$$

et donc la série $\sum \frac{n!}{n^n}$ converge.

Théorème (Règle de Cauchy)

Soit $\sum u_n$ une série à termes positifs. Supposons que

$$\lim_{n\to+\infty}\sqrt[n]{u_n}=\ell\in\mathbb{R}.$$

- Si $\ell < 1$, alors la série $\sum u_n$ est convergente.
- Si $\ell > 1$, alors la série $\sum u_n$ est divergente (grossièrement).
- Si $\ell=1$, on ne peut pas conclure.

Preuve.

• Supposons $\ell < 1$. Alors il existe un $\epsilon > 0$ tel que $\ell < \ell + \epsilon < 1$. Pour n assez grand

$$-\epsilon \leq \sqrt[n]{u_n} - \ell \leq \epsilon$$
, et donc $u_n \leq (\ell + \epsilon)^n$.

Comme la série de terme général $(\ell + \epsilon)^n$ est convergente, on conclut par comparaison que la série $\sum u_n$ est convergente.

• Supposons $\ell > 1$. Alors il existe un $\epsilon > 0$ tel que $1 + \epsilon < \ell$. Pour n assez grand

$$-\epsilon \le \sqrt[n]{u_n} - \ell \le \epsilon$$
, et donc $(\ell - \epsilon)^n \le u_n$.

Comme $\ell - \epsilon > 1$, on a $\lim_{n \to +\infty} (\ell - \epsilon)^n = +\infty$ et par comparaison $\lim_{n \to +\infty} u_n = +\infty$ et donc la série $\sum u_n$ est (grossièrement) divergente.

La règle de Cauchy est bien adaptée à l'étude des séries dont le terme général contient des puissances.

Exemple

Soit $\sum u_n$ la série de terme général $u_n=(rac{n}{n+1})^{n^2}$. On a

$$\lim_{n\to +\infty} \sqrt[n]{(\frac{n}{n+1})^{n^2}} = \lim_{n\to +\infty} (\frac{n}{n+1})^n = 1/e < 1$$

et donc la série $\sum (\frac{n}{n+1})^{n^2}$ converge.

Définition

Une série dont le terme général s'écrit, pour n assez grand, sous la forme $u_n = (-1)^n v_n$ avec $v_n \ge 0$, s'appelle une série alternée.

Exemple

La série harmonique alternée $\sum \frac{(-1)^n}{n}$.

Exercice

Montrer qu'une série $\sum u_n$ est alternée si et seulement si pour n assez grand $u_n=(-1)^n|u_n|$.

Théorème (Règle des séries alternées)

Soit $\sum (-1)^n v_n$ une série alternée $(v_n \ge 0)$. Supposons que

- la suite (v_n) est décroissante,
- $\lim_{n\to+\infty} v_n = 0$.

Alors

- la série $\sum (-1)^n v_n$ est convergente,
- soit S la somme de la série et posons

$$R_n = S - S_n = \sum_{k=n+1}^{+\infty} u_k = u_{n+1} + u_{n+2} + \cdots$$

appelé le reste d'ordre n de la série. Alors R_n a le signe de u_{n+1} et

$$|R_n| \leq |u_{n+1}|.$$

Exemple

La série harmonique alternée $\sum \frac{(-1)^n}{n}$ est convergente.

II. Suites et séries de fonctions

II. 1. Suites de fonctions

Une suite de fonctions est la donnée d'une suite

$$f_1, f_2, \cdots, f_n, \cdots$$

de fonctions définies sur une partie de $\mathbb R$ ou de $\mathbb C$ et à valeurs dans $\mathbb R$ ou $\mathbb C$.

Rappel

 \mathbb{K} désigne \mathbb{R} ou \mathbb{C} .

Définition 1

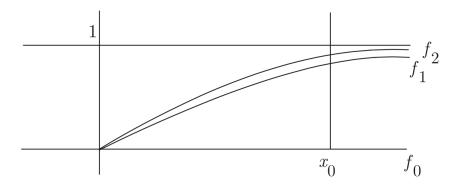
Soit $D \subseteq \mathbb{K}$. Une suite de fonctions de D dans \mathbb{K} est la donnée pour tout $n \in \mathbb{N}$, d'une application $f_n : D \mapsto \mathbb{K}$.

Notation. On notera $(f_n)_{n\in\mathbb{N}}$ ou $(f_n)_n$ ou (f_n) la suite de fonctions.

Exemple 1

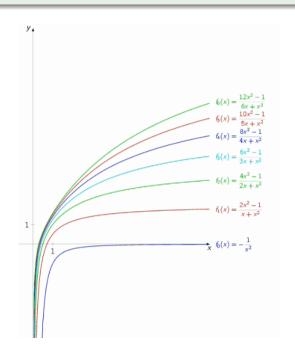
Soit $D=[0,+\infty[$. Pour tout $n\in\mathbb{N}$ et $x\in D$, on pose

$$f_n(x)=\frac{nx}{1+nx}.$$



Exemple 2

$$f_n: \left\{ \begin{array}{ccc}]0,+\infty[& \to \mathbb{R} \\ x & \mapsto & f_n(x) = \frac{2nx^2-1}{nx+x^2}. \end{array} \right.$$



Exemple 3

$$f_n: \left\{ \begin{array}{ccc}]0,+\infty[& \to \mathbb{R} \\ x & \mapsto & f_n(x)=\cos(nx). \end{array} \right.$$

Exemple 4

$$f_n: \left\{ \begin{array}{ccc} \mathbb{R} & \to & \mathbb{R} \\ x & \mapsto & f_n(x) = x^n. \end{array} \right.$$

Pour les suites de fonctions, on dispose de plusieurs formes de convergence.

On commence par la plus simple

On a vu qu'une suite numérique peut converger (ou non) vers une limite finie ℓ . De la même manière, on peut étudier la converge d'une suite de fonctions et voir si elle peut s'approcher (converger) (ou non) d'une fonction "limite".

Soit $x_0 \in D$ fixé. Alors la suite $(f_n(x_0))_{n \in \mathbb{N}}$ est une suite numérique dont on peut étudier la convergence.

Si pour tout $x \in D$, la suite $(f_n(x))_{n \in \mathbb{N}}$ est convergente, alors on peut définir une fonction limite f par

$$f: \left\{ egin{array}{ll} D &
ightarrow \mathbb{K} \ x &
ightarrow & f(x) = \lim_{n
ightarrow + \infty} f_n(x). \end{array}
ight.$$

Définition 2

Soient $D \subseteq \mathbb{K}$ et (f_n) une suite de fonctions définie sur D et à valeurs dans \mathbb{K} .

On dit que (f_n) converge simplement sur D, si pour tout $x \in D$, la suite numérique $(f_n(x))$ est convergente dans \mathbb{K} .

Si (f_n) converge simplement sur D, alors la fonction f définie par

$$f: \left\{ \begin{array}{ccc} D & \to & \mathbb{K} \\ x & \mapsto & f(x) = \lim_{n \to +\infty} f_n(x) \end{array} \right.$$

est appelée la limite simple de la suite (f_n) sur D.

Exemple 1 (suite)

Reprenons l'exemple

$$f_n: \left\{ egin{array}{ll} [0,+\infty[&
ightarrow \mathbb{R} \\ x &
ightarrow & f_n(x) = rac{nx}{1+nx}. \end{array}
ight.$$

On a:

- pour $x \in]0, +\infty[$, $\lim_{n \to +\infty} \frac{nx}{1 + nx} = 1$,
- $\bullet \text{ pour } x = 0, \lim_{n \to +\infty} f_n(0) = 0.$

Donc (f_n) converge simplement sur $[0, +\infty[$ vers la fonction f définie par

$$f: [0, +\infty[\to \mathbb{R}, \ f(x) = \left\{ egin{array}{ll} 1 & ext{si } x
eq 0, \\ 0 & ext{si } x = 0. \end{array}
ight.$$

Exemple 2 (suite)

Reprenons l'exemple

$$f_n: \left\{ egin{array}{ll}]0,+\infty[&
ightarrow \mathbb{R} \ & x &
ightarrow & f_n(x) = rac{2nx^2-1}{nx+x^2}. \end{array}
ight.$$

On a, pour tout $x \in]0, +\infty[$,

$$\lim_{n \to +\infty} \frac{2nx^2 - 1}{nx + x^2} = \lim_{n \to +\infty} \frac{2n(x^2 - \frac{1}{2n})}{n(x + \frac{x^2}{n})} = \lim_{n \to +\infty} \frac{2(x^2 - \frac{1}{2n})}{(x + \frac{x^2}{n})} = 2x^2/x = 2x.$$

Donc (f_n) converge simplement vers la fonction f définie par

$$f:]0, +\infty[\rightarrow \mathbb{R}, \ f(x) = 2x.$$

Exemple 4 (suite)

Reprenons l'exemple

$$f_n: \left\{ egin{array}{ll} \mathbb{R} &
ightarrow \mathbb{R} \\ x & \mapsto & f_n(x) = x^n. \end{array} \right.$$

- Si |x| < 1, $\lim_{n \to +\infty} f_n(x) = 0$.
- Si x = 1, $\lim_{n \to +\infty} f_n(x) = 1$.
- Si |x| > 1, $\lim_{n \to +\infty} f_n(x) = +\infty$, donc $(f_n(x))$ diverge.
- Si x = -1, $f_n(x) = (-1)^n$ et donc $(f_n(x))$ n'admet pas de limite.

Donc (f_n) ne converge pas simplement sur \mathbb{R} .

Remarque

En général, la convergence simple dépend du domaine de définition D de la suite (f_n) .

Dans l'exemple précédent, (f_n) ne converge pas simplement sur \mathbb{R} . En revanche, elle converge simplement sur l'intervalle I=]-1,1] et admet comme limite (simple) l'application f définie par

$$f:]-1,1] o \mathbb{R}, \ \ f(x) = \left\{ egin{array}{ll} 0 & ext{si } x
eq 1, \ 1 & ext{si } x = 1. \end{array}
ight.$$

Supposons que (f_n) est une suite de fonctions définies de [a,b] dans \mathbb{R} , convergeant simplement vers une fonction f. Donc on suppose qu'il y a déjà une convergence simple.

Dans beaucoup d'applications, on aimerait savoir si une propriété qui est satisfaite pour toutes les fonctions f_n , serait aussi satisfaite par f.

On peut se demander si :

- la continuité de chaque f_n entraı̂ne t-elle la continuité de f ?
- chaque f_n est dérivable, f est-elle dérivable et a-t-on $f' = \lim_{n \to +\infty} f'_n$?
- chaque f_n est intégrable, f est-elle intégrable et a-t-on alors $\lim_{n\to+\infty}\int_a^b f_n(t)dt=\int_a^b f(t)dt$?

La convergence simple n'est pas suffisante. Il nous faut une notion plus forte, qui est la convergence uniforme.

Définition 3 (Convergence uniforme)

Soit (f_n) une suite de fonctions qui converge simplement sur D vers la fonction f. On dit que (f_n) converge uniformément sur D vers f si :

- la quantité $u_n = \sup_{x \in D} (|f_n(x) f(x)|)$ existe et finie pour n assez grand,
- $\bullet \lim_{n\to +\infty} u_n = 0.$

En pratique ...

Proposition 1

La suite (f_n) converge uniformément sur D vers f, si et seulement si, il existe une suite réelle (u_n) vérifiant :

- pour *n* assez grand : $\forall x \in D$, $|f_n(x) f(x)| \le u_n$,
- $\bullet \lim_{n\to+\infty}u_n=0.$

Remarque

Pour montrer la convergence uniforme de (f_n) , il faut après avoir trouvé la limite simple f, essayer de majorer $|f_n(x) - f(x)|$ en fonction seulement de n, indépendamment de x.

Exemple 1 (suite)

Reprenons l'exemple

$$f_n: \left\{ egin{array}{ll} [0,+\infty[& o & \mathbb{R} \\ x & \mapsto & f_n(x) = rac{nx}{1+nx}. \end{array}
ight.$$

On a vu que (f_n) converge simplement vers f qui est définie par

$$f: D = [0, +\infty[\rightarrow \mathbb{R}, f(x)] = \begin{cases} 1 & \text{si } x \neq 0, \\ 0 & \text{si } x = 0. \end{cases}$$

Pour tout
$$x > 0$$
, $|f_n(x) - f(x)| = \left| \frac{nx}{1 + nx} - 1 \right| = \frac{1}{1 + nx}$ et $|f_n(0) - f(0)| = 0$.

On a $u_n = \sup_{x \in D} \frac{1}{1 + nx} = 1$ qui ne tend pas vers 0 quand n tend vers $+\infty$.

Donc (f_n) ne converge pas uniformément vers f sur D.

Exemple 1 (suite)

En revanche, (f_n) converge uniformément vers f sur tout intervalle de la forme $D = [a, +\infty[$ où a > 0. En effet, pour tout $x \in D$,

$$a \le x \Rightarrow 1 + na \le 1 + nx \Rightarrow \frac{1}{1 + nx} \le \frac{1}{1 + na}$$

donc en posant $u_n = \frac{1}{1 + na}$, on a

$$|f_n(x)-f(x)|\leq u_n,$$

et comme $\lim_{n\to+\infty}u_n=0$, on déduit le résultat.

Exemple 2 (suite)

Reprenons l'exemple

$$f_n: \left\{ \begin{array}{ccc} D=]0,+\infty[& \to & \mathbb{R} \\ x & \mapsto & f_n(x)=\frac{2nx^2-1}{nx+x^2}. \end{array} \right.$$

On a vu que (f_n) converge simplement vers la fonction f définie par $f:]0, +\infty[\to \mathbb{R}, \ f(x) = 2x.$ On a $|f_n(x) - f(x)| = \frac{1 + 2x^3}{nx + x^2}$. Pour tout $n \in \mathbb{N}$, on a

$$\frac{1+2x^3}{nx+x^2} \sim_{+\infty} 2x$$

et donc $\lim_{x\to +\infty} |f_n(x)-f(x)|=+\infty$.

Donc la suite (f_n) ne converge pas uniformément vers f sur D.

Exemple 2 (suite)

En revanche, (f_n) converge uniformément vers f, sur tout intervalle de la forme [a,b] où $0 < a < b < +\infty$.

En effet, on a

$$\frac{1+2a^3}{nb+b^2} \le \frac{1+2x^3}{nx+x^2} \le \frac{1+2b^3}{na+a^2},$$

donc

$$|f_n(x) - f(x)| \le u_n = \frac{1 + 2b^3}{na + a^2}$$

et comme $\lim_{n\to+\infty} u_n = 0$, on déduit le résultat.

Théorème 1

Si une suite de fonctions (f_n) converge uniformément sur D vers une fonction f et si chaque f_n est continue sur D, alors f est continue sur D.

Plus précisément, si (f_n) converge uniformément sur D vers f et si chaque f_n est continue en $x_0 \in D$, alors f est continue en x_0 et on a

$$\lim_{x\to x_0} (\lim_{n\to +\infty} f_n(x)) = \lim_{n\to +\infty} (\lim_{x\to x_0} f_n(x)).$$

Remarque

Attention, la convergence simple n'est pas suffisante pour déduire la continuité de la limite (simple). Reprenons la suite

$$f_n: \left\{ egin{array}{ll} [0,+\infty[& o & \mathbb{R} \\ x & \mapsto & f_n(x) = rac{nx}{1+nx}. \end{array}
ight.$$

dont la limite simple est $f: D = [0, +\infty[\to \mathbb{R}, \ f(x) = \begin{cases} 1 & \text{si } x \neq 0, \\ 0 & \text{si } x = 0. \end{cases}$ Chaque f_n est continue sur D (en particulier en 0), alors que f n'est pas continue en 0.