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Le sujet comporte 4 exercices indépendants.

Exercice 1. On considère la suite (un)n∈N une suite d’entiers naturels définie par{
u0 = 14,
un+1 = 5un−6, n ∈ N.

1. Calculer u1, u2 et u3.
2. Calculer un+2 en fonction de un pour tout n ∈ N.
3. (a) Pour tout n ∈ N, en déduire que un+2 ≡ un [4].

(b) Montrer par récurrence sur k, que pour tout k ∈ N, u2k ≡ 2 [4].
(c) Bonus : en déduire que pour tout k ∈ N, u2k+1 ≡ 0 [4].

4. Pour tout n ∈ N, montrer que un =
5n+2 +3

2
.

5. Montrer que pour tout entier m≥ 2, 5m ≡ 25 [100].
6. En utilisant les deux questions précédentes, en déduire que, pour tout n ∈ N,

2un ≡ 28 [100].
7. Montrer que pour tout n ∈ N, un ≡ 14 [50].
8. Montrer que pour tout n ∈ N, un ≡ 14 [100] ou un ≡ 64 [100]

9. En utilisant les questions 3 et 8, montrer que pour tout k ∈ N, u2k ≡ 14 [100]
Bonus : montrer également que u2k+1 ≡ 64 [100].

10. En déduire que les deux derniers chiffres de un sont 14 si n est pair et 64 si n est
impair.

Solution.
1. u1 = 5 ·14−6 = 64, u2 = 5 ·64−6 = 314 et u3 = 5 ·314−6 = 1564.
2. un+2 = 5un+1−6 = 5(5un−6)−6 = 25un−36.
3. (a) Un+2 = 25un−36≡ un [4] puisque 25 = 4 ·6+1≡ 1 [4] et 36 = 4 ·9≡ 0 [4].

(b) Par récurrence. Initialisation : u2·0 = u0 = 14 = 4 · 3 + 2 ≡ 2 [4]. Hérédité :
Supposons u2k ≡ 2 [4]. D’après la partie (a) on a u2(k+1) = u2k+2 ≡ u2k ≡ 2 [4].
Ainsi u2k ≡ 2 [4] pour tout k ∈ N.

(c) D’après la partie (b) on a u2k+1 = 5u2k−6≡ 5 ·2−6 = 4≡ 0 [4].
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4. Par récurrence. Initialisation : u0 = 14 = (50+2 +3)/2.
Hérédité : Supposons un = (5n+2 +3)/2. Alors

un+1 = 5un−6 = 5
5n+2 +3

2
−6 =

5(n+1)+2 +15
2

−6 =
5(n+1)+2 +3

2
.

Ainsi l’énoncé est vrai pour tout n ∈ N.
Alternative. Il s’agit d’une suite récurrente d’ordre 1. On calcule le point fixe :
u = 5u− 6 donne 4u = 6 et u = 3

2 . On considère alors la suite vn = un− u = un− 3
2 .

On a v0 = 14− 3
2 = 25

2 , et

vn+1 = un+1−u = 5un−6−u = 5(vn +u)−6−u = 5vn +(5u−6−u) = 5vn.

Ainsi vn est une suite géométrique avec vn = 5nv0 = 5n 25
2 = 5n+2

2 , et

un = vn +u =
5n+2

2
+

3
2
=

5n+2 +3
2

.

5. Par récurrence. Initialisation : 52 ≡ 25 [100]. Hérédité : Supposons m ≥ 2 et 5m ≡
25 [100]. Alors 5m+1 = 5 ·5m ≡ 5 ·25 = 125≡ 25 [100].
Ainsi l’énoncé est vrai pour tout m ∈ N.

6. On a 2un = 5n+2 +3≡ 25+3 = 28 [100].
7. On a 2un−28 = 100z pour un z ∈ Z, et donc un−14 = 50z. Ainsi un ≡ 14 [50].
8. Si un−14 = 50z, soit z = 2z′ est pair ; alors un−14 = 100z′ et un ≡ 14 [100].

Soit z = 2z′−1 est impair, et un−14 = 100z′−50, d’où un ≡ 14+50 = 64 [100].
9. Puisque 4 | 100, si un ≡ 14 [100] alors un ≡ 14 ≡ 2 [4], et si un ≡ 64 [100] alors un ≡

64≡ 0 [4]. Dans le premier cas n doit être pair, et dans le deuxième cas n doit être
impair d’après la partie 3.(b) et (c). D’après 8. on est toujours dans un des deux
cas. Ainsi u2k ≡ 14 [100] et u2k+1 ≡ 64 [100].

10. Les deux dernières chiffres d’un entier m forment le reste de m lors de la division
euclidienne de m par 100, et donc l’unique entier entre 0 et 99 congru à m modulo
100. Ainsi les deux dernières chiffres de un sont 14 si n est pair, et 64 si n est
impair.

Exercice 2. Calculer pgcd(A,B) avec A,B ∈ R[X ] définis par

A = X3−X2−X−2 et B = X5−2X4 +X2−X−2.

Solution. On applique l’alorithme d’Euclide.

X5−2X4 +X2 −X−2 |X3−X2−X−2
X5 −X4−X3−2X2 X2−X
−X4+X3+3X2 −X−2
−X4+X3 +X2+2X

2X2−3X−2
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Le premier reste (sous forme unitaire) est donc X2− 3
2X−1.

X3 −X2 −X−2
∣∣X2− 3

2X−1
X3−3

2X2 −X X + 1
2

1
2X2 −2
1
2X2−3

4X−1
2

3
4X−3

2

Le deuxième reste (sous forme unitaire) est donc X−2.

X2−3
2X−1 |X−2

X2−2X X + 1
2

1
2X−1
1
2X−1

0

Puisque le troisième reste est 0, on a pgcd(A,B) = X−2.
Alternative. On devine A(2) = 8−4−2−2 = 0. Ainsi X−2 divise A. On divise :

X3−X2−X−2 = (X−2)(X2 +X +1).

Or, les racines de X2 +X + 1 sont les racines primitives troisièmes de l’unité j et j2.
Ainsi

B = (X−2)(X− j)(X− j2).

On évalue B aux points 2 et j. On a B(2) = 32−2 ·16+4−2−2 = 0 et

B( j) = j2−2 j+ j2− j−2 = 2 j2−3 j−2 = 2(−1
2
− i

√
3

2
)−3(−1

2
+ i

√
3

2
)−2 6= 0.

Alors B( j2) = B( j̄) = B( j) 6= 0. Ainsi le seul facteur irréductible de A qui divise B est
X−2, et pgcd(A,B) = X−2.

Exercice 3. Considérons l’application f : R∗+→ R définie par par f (x) = e1/x.
1. Justifier que cette application est dérivable sur son domaine de définition, et

calculer f ′ sur ce domaine.
2. Montrer que la dérivée f ′ est croissante sur R∗+.
3. Rappeler le théorème des accroissements finis.
4. Fixons x > 0.

(a) Utiliser ce théorème pour montrer qu’il existe c ∈]x,x+1[ tel que

f (x)− f (x+1) =
e1/c

c2 .

(b) D’après la question 2, montrer alors que

e1/(x+1)

(x+1)2 ≤
e1/c

c2 ≤
e1/x

x2 .
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(c) En utilisant les deux questions précédentes, montrer que

x2e1/(x+1)

(x+1)2 ≤ x2(e1/x− e1/x+1))≤ e1/x.

5. En déduire lim
x→+∞

x2(e1/x− e1/(x+1)).

Solution.
1. Pour r ∈ R la fonction x 7→ xr de R∗+ dans R∗+ est derivable avec dérivée x 7→ rxr−1

(ici on a r = −1), et la fonction x 7→ ex de R dans R∗+ est dérivable avec dérivée
x 7→ ex. Ainsi leur composition f est dérivable, avec f ′(x) =−e1/xx−2.

2. f ′ est encore dérivable comme produit de fonctions dérivables, et pour x ∈ R∗+ on
a

f ′′(x) = e1/xx−2x−2− e1/x (−2)x−3 = e1/x(x−4 +2x−3)> 0.

Ainsi f ′ est croissante.
3. Théorème des accroissements finis (TAF) : Soit a < b = et f : [a,b]→ R continue

sur [a,b] et dérivable sur ]a,b[. Alors il y a c ∈]a,b[ tel que f ′(c) = f (b)− f (a)
b−a .

4. (a) Pour x > 0 la fonction f est continue sur [x,x+ 1] et dérivable sur ]x,x+ 1[.
D’après le TAF il y a donc c ∈]x,x+1[ tel que

−e1/c

c2 = f ′(c) =
f (x+1)− f (x)
(x+1)− x

= f (x+1)− f (x).

Ainsi f (x)− f (x+1) = e1/c

c2 .
(b) Puisque f ′ est croissante, − f ′ est décroissante, et

e1/(x+1)

(x+1)2 =− f ′(x+1)≤ e1/c

c2 =− f ′(c)≤ e1/x

x2 =− f ′(x).

(c) En multipliant avec x2 > 0 et en substituant l’égalité de la partie (a) on
obtient

x2e1/(x+1)

(x+1)2 ≤ x2 e1/c

c2 = x2 ( f (x)− f (x+1)) = x2 (e1/x− e1/x+1))≤ e1/x.

5. D’après le théorème des gendarmes,

1= 1·e0 = lim
x→∞

x2

(x+1)2 lim
x→∞

e1/(x+1)= lim
x→∞

x2e1/(x+1)

(x+1)2 ≤ lim
x→∞

x2(e1/x−e1/(x+1))≤ lim
x→∞

e1/x = e0 = 1.

La limite vaut donc 1.
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Exercice 4. Les questions 1 et 2 de cet exercice sont indépendantes.
1. Résoudre iz2 +2z+(1− i) = 0 dans C.
2. On considère le complexe z = 1+ i

√
3.

(a) Calculer z+ z et z− z.
(b) Écrire z sous forme exponentielle.
(c) Calculer z5 + z5.
(d) Calculer z5− z5.

Solution.
1. Le discriminant vaut ∆ = 22−4 · i · (1− i) = 4−4i+4i2 =−4i = 4e−iπ/2.

Si δ = 2e−iπ/4 =
√

2(1− i), alors (±δ )2 = ∆, et les deux solutions sont

z1 =
−2+δ

2i
= i−

√
2

2
(1+ i) =−

√
2

2
+ i(1−

√
2

2
) et z2 =

−2−δ

2i
=

√
2

2
+ i(1+

√
2

2
).

2. (a) z+ z̄ = 2Re(z) = 2 et z− z̄ = 2iIm(z) = 2i
√

3.

(b) z = 2(1
2 + i

√
3

2 ) = 2(cos(π

3 )+ isin(π

3 )) = 2eiπ/3.
(c) et (d). On a

z5 = 25ei5π/3 = 32(cos(5
3π)+ isin(5

3π)) = 32(cos(−1
3π)+ isin(−1

3π))

= 32(cos(π

3 )− isin(π

3 )) = 16z̄.

Ainsi z5+ z̄5 = 2Re(z5) = 32Re(z̄) = 32 et z5− z̄5 = 2iIm(z5) = 32iIm(z̄) =−32i
√

3.
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