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Exercice 1 :
1. Établir une identité de Bézout entre 871 et 377 et leur pgcd.
2. Donner une solution n0 pour le système de congruences x ≡ 5 mod 871 et x ≡ 96 mod 377.
3. Donner toutes les solutions pour ce système.
4. Donner toutes les solutions pour le système de congruences x ≡ 3 mod 871 et x ≡ 80 mod 377.

Justifier les réponses. Il suffira de donner des entiers supérieurs à 1000 sous forme d’expression numérique.
Solution.

1. Un utilise l’algorithme d’Euclide.

871 = 2 · 377 + 117 13 = 13 · (871− 2 · 377)− 4 · 377 = 13 · 871− 30 · 377
377 = 3 · 117 + 26 13 = 117− 4 · (377− 3 · 117) = 13 · 117− 4 · 377
117 = 4 · 26 + 13 13 = 117− 4 · 26
26 = 2 · 13 + 0 13 = pgcd(871, 377)

2. On a
871

13
= 67 et

377

13
= 29. Donc 1 = 13 · 69− 30 · 29. On pose

n0 = 96 · 13 · 67− 5 · 30 · 29 = 79266.

Ceci est une solution particulière d’après le cours (ou par vérification : 79266− 5 = 79261 = 871 · 29 et
79266− 96 = 79170 = 377 · 210).

3. L’ensemble de toutes les solutions est donc

n0 + ppcm(871, 377) · Z = n0 +
871 · 377

pgcd(871, 377)
· Z = 79266 + 25259 · Z = 3489 + 25259 · Z.

Tout n dans cet ensemble est une solution du système, puisqu’on a rajouté à n0 un multiple du
ppcm(871, 377), ce qui ne change pes les conguences modulo 871 ou modulo 377. Réciproquement, si
n est une solution, on a n − n0 congru à 0 modulo 871 et modulo 377, donc modulo ppcm(871, 377),
et n− n0 est un multiple de ce ppcm.

4. 80−3 = 77 n’est pas divisible par pgcd(7871, 377) = 13. Il n’y a donc pas de solution. Plus précisément,
si n était une solution, alors n ≡ 3 mod 13 et n ≡ 80 mod 13, d’où 3 ≡ 80 mod 13, et 13 | 80−3 = 77,
une contradiction.

Exercice 2 : Soit n > 1 et ω une racine primitive n-ème de l’unité.
1. Calculer le produit de toutes les racines n-èmes de l’unité.

2. Calculer
n−1∑
k=0

ωkp en fonction de p ≥ 0.

3. En déduire que
n−1∑
k=0

(1 + ωk)n = 2n.

Solution.
1. Puisque ω est racine n-ème primitie, les racines n-èmes de l’unité sont les ωk pour k = 0, 1, . . . , n− 1.

On a donc
n−1∏
k=0

ωk = ω
∑n−1

k=0 k = ωn(n−1)/2.

Or, si n est impair, ωn(n−1)/2 = (ωn)(n−1)/2 = 1(n−1)/2 = 1. Et si n est pair, (ωn/2)2 = ωn = 1 mais
ωn/2 6= 1 puisque ω est une racine primitive n-ème. Ainsi ωn/2 = −1. On obtient dans les deux cas
n−1∏
k=0

ωk = (−1)n−1.
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2. Si n | p alors ωkp = 1 pour tout k, et
n−1∑
k=0

ωkp = n. Sinon, ωp 6= 1 et

n−1∑
k=0

ωkp =
(ωp)n − 1

ωp − 1
=

(ωn)p − 1

ωp − 1
= 0.

3. On a
n−1∑
k=0

(1 + ωk)n =

n−1∑
k=0

n∑
p=0

(
n

p

)
(ωk)p =

n∑
p=0

(
n

p

) n−1∑
k=0

ωkp =

(
n

0

)
n+

(
n

n

)
n = 2n.

Exercice 3 : Pour n ≥ 1 on pose Hn =

n∑
k=1

1

k
. Montrer que Hn n’est jamais un entier pour n > 1.

[Indication : Montrer par récurrence que Hn =
p

2kq
, où p et q sont impairs et k = blog2 nc. Il conviendra de

distinguer le cas où n est une puissance de 2 des autres.]

Solution. On effectue la récurrence indiquée. Initialisation : Pour n = 1 on a log2 1 = 0 et H1 =
1

20 · 1
, avec

p = q = 1. Pour n = 2 on a log2 2 = 1 et H2 = 1 +
1

2
=

3

1 · 21
avec p = 3 et q = 1.

Hérédité : On suppose Hn =
p

2kq
avec p, q impairs et k = blog2 nc. Ainsi 2k ≤ n < 2k+1, et 2k < n+ 1.

Si n+ 1 < 2k · 2, alors 2k - n+ 1 et n+ 1 = 2iq′ avec i < k et q′ impair. Ainsi

Hn+1 = Hn +
1

n+ 1
=

p

2kq
+

1

2iq′
=
p2k−iq′ + q

2kqq′
.

Or, puisque k > i et q est impair, p2k−iq′+ q est impair ; comme q, q′ sont impairs, qq′ aussi. Ainsi Hn+1 est
de la bonne forme.

Sinon, n+ 1 = 2k+1 et log2(n+ 1) = k + 1. Alors

Hn+1 = Hn +
1

n+ 1
=

p

2kq
+

1

2k+1
=

2p+ q

2k+1q

est encore de la bonne forme puisque 2p+ q est encore impair.
Dans les deux cas, l’énoncé est vrai. D’après le principe de la récurrence Hn est de la forme indiquée pour

tout entier n. En particulier Hn n’est pas entier pour n > 1.

Exercice 4 : Pour n > 0 on pose un = n −
n∑

k=1

cos
1

k
et vn = un + sin

1

n
. Montrer que (un)n et (vn)n

convergent vers une même limite.

[Indication : On pourra utiliser que sinx = x+ o(x2) et cosx = 1− x2

2
+ o(x2) en 0.]

Solution. On montre que les suites sont adjacentes. On a vn − un = sin
1

n
→ 0 pour n → ∞. De plus,

un+1 − un = 1− cos
1

n+ 1
> 0 et la suite (un)n est croissante. Ensuite, o(

1

n2
) = o(

1

(n+ 1)2
). Alors

vn+1 − vn = 1− cos
1

n+ 1
+ sin

1

n+ 1
− sin

1

n
=

1

2(n+ 1)2
+

1

n+ 1
− 1

n
+ o(

1

n2
)

=
1

2(n+ 1)2
− 1

n(n+ 1)
+ o(

1

n2
) =

n− 2(n+ 1)

2n(n+ 1)2
+ o(

1

n2
)

≤ − 1

2n(n+ 1)
+ o(

1

n2
),

ce qui est négatif pour n suffisamment grand. Donc (vn)n est décroissant pou n suffisamment grand. Ainsi
(un)n et (vn)n sont adjacentes, et convergent vers une même limite.
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Exercice 5 : Soient A et B deux parties non-vides et bornées de R. On note A+B = {a+b : a ∈ A, b ∈ B}
et AB = {ab : a ∈ A, b ∈ B}.

1. Montrer que sup(A+B) = sup(A) + sup(B).

2. A-t-on toujours sup(AB) = sup(A)·sup(B) ? Quelle hypothèse peut-on ajouter pour que cela soit vrai ?

Solution.Soit a = supA et b = supB.

1. Soit ε > 0, et x ∈ A, y ∈ B avec a− ε/2 < a et b− ε/2 < y. Alors x+ y ∈ A+B, et x+ y > a+ b− ε.
Ainsi sup(A + B) ≥ a + b. Inversement, si z ∈ A + B il y a x ∈ A et y ∈ B avec z = x + y. Comme
x ≤ a et y ≤ b on a z = x+ y ≤ a+ b, d’où sup(A+B) ≤ a+ b, et on a égalité.

2. Si A = B = [−1, 0] alors supA = supB = 0 = supA · supB, mais sup(AB) = sup[0, 1] = 1 > 0.
Cependant, l’égalité est vraie si A et B sont positifs. Alors si xy ∈ AB avec x ∈ A et y ∈ B, on a x ≤ a
et y ≤ b, d’où xy ≤ ab et sup(AB) ≤ ab. Réciproquement, si a = 0 ou b = 0 il n’y a rien à montrer
puisque A = {0} ou B = {0}. Sinon, pour ε > 0 suffisamment petit on trouve x ∈ A et y ∈ B avec
0 < a− ε

2(b+ 1)
< x et 0 < b− ε

2(a+ 1)
< y. Alors

xy > (a− ε

2(b+ 1)
) · (b− ε

2(a+ 1)
) ≥ ab− ε.

Ainsi sup(AB) ≥ ab et on a égalité.
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