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Exercice 1 :

1. Etablir une identité de Bézout entre 871 et 377 et leur pged.

2. Donner une solution ng pour le systéme de congruences x =5 mod 871 et x =96 mod 377.

3. Donner toutes les solutions pour ce systéme.

4. Donner toutes les solutions pour le systéme de congruences x =3 mod 871 et z = 80 mod 377.
Justifier les réponses. Il suffira de donner des entiers supérieurs & 1000 sous forme d’expression numérique.
Solution.

1. Un utilise I’algorithme d’Euclide.

871 = 2-3774+117 13 = 13-(871—-2-377)—4-377 = 13-871—30-377
377 = 3-117+26 13 = 117—4-(377—-3-117) = 13-117—-4-377
117 = 4-26+13 13 = 117—4-26
26 = 2-13+0 13 = pged(871,377)
1
2. Ona%z(ﬁ?et 31—737:29. Donc 1 =13 -69 — 30 - 29. On pose

ng=96-13-67—5-30-29 = 79266.

Ceci est une solution particuliére d’aprés le cours (ou par vérification : 79266 — 5 = 79261 = 871 -29 et
79266 — 96 = 79170 = 377 - 210).

3. L’ensemble de toutes les solutions est donc

871377
871,377) - Z = ———————— - 7, = 79266 + 25259 - Z = 3489 + 25259 - Z.
o + ppem( ) M0t ecd(87L,377) + +
Tout n dans cet ensemble est une solution du systéme, puisqu’on a rajouté & mg un multiple du
ppcm(871,377), ce qui ne change pes les conguences modulo 871 ou modulo 377. Réciproquement, si
n est une solution, on a n — ng congru & 0 modulo 871 et modulo 377, donc modulo ppem(871,377),
et n — ng est un multiple de ce ppcm.

4. 80—3 = 77 n’est pas divisible par pged(7871,377) = 13. Il n’y a donc pas de solution. Plus précisément,
si n était une solution, alorsn =3 mod 13 et n =80 mod 13,d’ou3 =80 mod 13, et 13| 80—3 = 77,
une contradiction.

Exercice 2 : Soit n > 1 et w une racine primitive n-éme de 'unité.

1. Calculer le produit de toutes les racines n-émes de 1'unité.

n—1
2. Calculer Z w*P en fonction de p > 0.
k=0
n—1
3. En déduire que Z(l + wF)" = 2n.
k=0
Solution.
1. Puisque w est racine n-éme primitie, les racines n-émes de I'unité sont les Wk pour k =0,1,...,n— 1.
On a donc
n—1
H ok = wz;;;g k _ nn=1)/2
k=0

Or, si n est impair, W™ 1/2 = (M)(=D/2 = 1(v=1/2 — 1 Et si n est pair, (w"?)? = w" = 1 mais
w"/? =# 1 puisque w est une racine primitive n-éme. Ainsi w™? = —1. On obtient dans les deux cas

n—1
H wk _ (_l)n—l_
k=0



n—1
2. Sin | p alors w*? = 1 pour tout k, et Zwkp = n. Sinon, w? # 1 et
k=0

wP—1  wP—1

n—1 n n
SN Gl et W 0 L W
k=0

3. On a - . § -
;1)(1 by = kzog (0)whr = > () gm = (3)ns (0)n=2n

n
Exercice 3 : Pour n > 1 on pose H,, = Z = Montrer que H, n’est jamais un entier pour n > 1.
k=1

[Indication : Montrer par récurrence que H,, = 2:;(]7 ou p et ¢ sont impairs et k = |logyn|. Il conviendra de
distinguer le cas oil n est une puissance de 2 des autres.]

Solution. On effectue la récurrence indiquée. Initialisation : Pour n =1 on alogy,1 =0et H; = 0.7 avec
p=q=1. PournzZonalog22:1etngl—i—%:%avecpzSetqzl.

Hérédité : On suppose H,, = 2% avec p, ¢ impairs et k = |logy n|. Ainsi 28 <n < 281 et 28 < n 4 1.
q .
Sin+41< 2.2 alors 2]“[n+ let n+1=2¢ aveci < k et ¢’ impair. Ainsi
1 p 1 p2hig +gq

H.,.=H,+ —=—— A
n+l n+ n+1 2kg + g’ 2kqq’

Or, puisque k > i et ¢ est impair, p2k_iq' + ¢ est impair ; comme ¢, ¢ sont impairs, g¢’ aussi. Ainsi H,, ;1 est
de la bonne forme.
Sinon, n + 1 = 28+ et logy(n 4+ 1) = k + 1. Alors

B r  p 1 2p+q
e = Huot 527 = 50y + o = iy

est encore de la bonne forme puisque 2p + ¢ est encore impair.
Dans les deux cas, I’énoncé est vrai. D’apreés le principe de la récurrence H,, est de la forme indiquée pour
tout entier n. En particulier H,, n’est pas entier pour n > 1.

n
1
Exercice 4 : Pour n > 0 on pose u, = n — g cos% et v, = u, + sin —. Montrer que (up)n et (vn)n
n

k=1
convergent vers une méme limite.
2

x
[Indication : On pourra utiliser que sinz = z + o(z?) et cosz =1 — 5 + o(2?) en 0.]

1
Solution. On montre que les suites sont adjacentes. On a v, — u, = sin— — 0 pour n — oco. De plus,

1
Upt1 — Uy = 1 — cos - > 0 et la suite (uy)n est croissante. Ensuite, O(E) = o(m). Alors
1 1 L 1 1 1 n 1 1 +of 1 )
Upt1 — Up = 1 — cos sin —sin— = ——+o(—
whL T n+1 n+1 n 2mn+12 n+l n o n?
1 1 1 n—2n+1) 1
= e to(5) =5y tol3)
2(n+1)? n(n+1) n 2n(n +1) n
<ot ol)
RN (el
~— 2n(n+1) n2’’

ce qui est négatif pour n suffisamment grand. Donc (vy,), est décroissant pou n suffisamment grand. Ainsi
(un)n €t (vy)n sont adjacentes, et convergent vers une méme limite.



Exercice 5 : Soient A et B deux parties non-vides et bornées de R. On note A+ B ={a+b:a € A, b€ B}
et AB={ab:a € A, be B}.

1. Montrer que sup(A + B) = sup(A) + sup(B).

2. A-t-on toujours sup(AB) = sup(A)-sup(B) ? Quelle hypothése peut-on ajouter pour que cela soit vrai?

Solution.Soit a = sup A et b = sup B.

1. Soite>0,etz € A,ye Baveca—e¢/2<aetb—¢/2<y. Alorsx+ye A+B,etx+y>a+b—e
Ainsi sup(A + B) > a + b. Inversement, si z € A+ Bilyaxz € Aety € B avec z =z +y. Comme
r<aety<bonaz=x+4+y<a+b, dousup(A+ B) <a+b, et on a égalité.

2. Si A= B = [-1,0] alors supA = supB = 0 = sup A - sup B, mais sup(AB) = sup[0,1] =1 > 0.
Cependant, I’égalité est vraie si A et B sont positifs. Alors si xy € ABavecx € Aety€ B,onax <a
et y < b, dou zy < ab et sup(AB) < ab. Réciproquement, si @ = 0 ou b = 0 il n’y a rien & montrer
puisque A = {0} ou B = {0}. Sinon, pour ¢ > 0 suffisamment petit on trouve z € A et y € B avec

€ €
0<ag——0 t0<b — <y Al
<a 2(b—i—1)<xe < 2(a+1)<y ors
> (a ) (b g ) > ab
EST(IE 20a+1) =Y ¢

Ainsi sup(AB) > ab et on a égalité.



