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Fondamentaux des mathématiques - DS n°3
PARTIE COMMUNE

L’étudiant attachera la plus grande importance a la clarté, a la précision et a la concision de la
rédaction. 1l veillera a justifier soigneusement toutes ses réponses. Si un étudiant est amené a
repérer ce qui peut lui sembler étre une erreur d’énoncé, il le signalera sur sa copie et devra pour-
sutvre sa composition en expliquant les raisons des initiatives qu’il a €t€ amené a prendre.

Les exercices sont indépendants et peuvent donc étre traités dans n’importe quel ordre. Au cours
d’un exercice, lorsqu’un étudiant ne peut répondre a une question, il lut est vivement recommandé
de poursuivre en admettant le résultat qui lui €tait demandé de démontrer.

Durée : 1h30. Les calculatrices ne sont pas autorisées.

Exercice 1 : Questions de cours

1. Montrer qu’une suite convergente est bornée.
Solution : Soit (u,)nen une suite convergente ; notons ¢ sa limite. Par définition, il existe
N € N telle que |u, — ¢] < 1 pour tout n > N (ce qui peut se réécrire £ — 1 < u,, < £+ 1).
Notons alors Ay := {ug, -+ ,un—1} 'ensemble constitué des N premiers éléments de la suite
(un). Il en résulte que (u,) est minorée par m := min (min(Ay),¢ — 1) et majorée par M :=
max (max(Apn), ¢+ 1).

2. On considéere une suite (uy,) définie par une relation de récurrrence de la forme u, 1 = f(uy)
pour tout n € N, ot f est une fonction réelle continue. Montrer que si (u,,) converge, alors elle
converge vers un point fixe de f.

Solution : Supposons que (u,) converge vers £ € R. On a u,4+1 = f(u,) pour tout n € N.

En passant a la limite dans I’égalité précédente, on a £ = lir4r_1 f(uy,). La fonction f étant
n——+00
continue, on a lim f(u,) = f < lim un> = f(¢), d’ou le résultat.
n—-+0oo n——+0oo

3. Montrer que pour tous nombres complexes z1, 29, on a : |21 + 22|? = |21|? + 2Re(21 %) + |22|%
Solution :

|21 + 22|2 = (21 + 22) (21 + 22) = 2171 + 2122 + 2271 +22722 = |Z1|2 + 2Re(z122) + |Zz|2 .

{

2122

est imaginaire pur.

Exercice 2 : Soit z € C\ {1}. Montrer que |z| = 1 si et seulement si

Solution :
142z (Q1+2)(1-2) 1+z—-zZ-—2Z 1—|z|2+2,1m(z)
— — = 1 .
1—2 |1 — 2| 11— 2|2 |1 — 2| 1 — 22

1
On obtient alors immédiatement Re <1 Tz

>:0<:>|z|2:1.
Upyr =€ —2,Vn >0

Exercice 3 : On considére la suite (u,) définie par {
ug € R

1. Soit f : R — R définie par f(z) = e* — 2. Etudier les variations de g : R — R définie par
f(z) — z. En déduire que f admet deux points fixes a; et ay tels que a; < 0 < aq.
Solution : Pour tout x € R, g(x) = ¢ —2—x. g est dérivable sur R comme somme de fonctions
dérivables, et on a ¢'(z) = e* — 1 pour tout € R. On en déduit que g est décroissante sur
] — 00,0] et croissante sur [0,4o0c[. D’autre part, xll)rinoog(x) = 400 et g(0) = —1. On en

déduit existence de deux réels a; < 0 < ay tels que g(a;) = g(az) = 0. On note alors que
g(a12) =0 < f(a12) = a1z et donc a; et ay sont des points fixes de f.



2. Montrer par récurrence que si ug € {ay,as}, la suite (u,) est stationnaire.
Solution : Supposons par exemple ug = a1. On a alors u; = f(up) = f(a1) = a1 car a3
est un point fixe de f. Un raisonnement par récurrence élémentaire permet de montrer que
f(un) = ay pour tout n € N.

3. Montrer que l'intervalle |aj, as[ est stable par f (on rappelle qu’un intervalle I est stable par
fsif(I)clI).
Solution : On a f(a1) = a; et f(a2) = ag. f étant croissante sur cet intervalle, on a f(z) > a1
et f(z) < ay pour tout x €Jay, as[, ce qui permet de conclure.

4. Montrer que si ug €]ay, as, alors (u,) converge vers un réel que 1'on précisera.

Solution : Soit uy €]ay, az|. L'intervalle |a;, az| étant stable par f, on a u; = f(ug) €la1, az.
Une récurrence immédiate permet d’établir que u,, €]ai,as] pour tout n € N. On en déduit
que (uy) est bornée. De plus, pour tout = €]ay, as[, on a g(x) < 0, c’est a dire f(z) < z. On en
déduit que up+1 = f(un) < u, pour tout n € N et la suite (u,) est donc décroissante. Etant
minorée (par aj), elle converge.

On sait (question de cours) que si (u,) converge, elle converge vers un point fixe de f. Il n’y
a donc que deux possibilités : a; ou ag. Or, nous avons vu que f(u,) < ug < ag pour tout
n € N, ce qui proscrit une convergence vers ag. On en déduit que (u,) converge vers aj.

5. Etudier la convergence de (u,) dans les cas ug €] — 0o, a1] et uy €]ag, +0|.

Solution : Soit ug €] — 0o, a;[. Un raisonnement similaire au précédent montre que cet inter-
valle est stable par f. De plus, pour tout z €] — 00, a1[ on a g(x) > 0, c’est a dire f(z) > x.
On déduit de ceci que la suite (uy,) est croissante et majorée (par a;). Elle converge donc vers
un point fixe de f, qui ne peut étre que a;.

Considérons enfin le cas ug €|ag, +00[. Par un raisonnement analogue on montre que (uy,) est
alors croissante. Si elle était majorée, elle convergerait (vers un point fixe de f, donc a; ou
az). Mais ceci ne peut se produire car a; < az < ug < f(uy) pour tout n € N. Ainsi, (uy) est
croissante et non majorée, donc elle diverge vers +oc.

Exercice 4 :

1. Soit A et B deux ensembles de cardinal fini et f : A — B bijective. Montrer que Card(A) =
Card(B).
Solution : Notons n = Card(A) et m = Card(B). On pose A = {ay,--- ,a,}.
On a f(A) = {f(a1),---, f(an)} C B. Or, f étant bijective, elle est donc injective et f(A)
contient n éléments (les f(a;) sont tous distincts). On en déduit que m > n. De méme, en
raisonnant sur la fonction réciproque de f, on a n > m, d’ou lon tire 1'égalité Card(A) =

Card(B).

Soit £ un ensemble non vide de cardinal fini n € N*. On note P(E) I’ensemble des parties de E. On
considere a un élément de F, et 'application suivante :

p: PE) — P(E)

XU{a}siag¢ X
X = {X\{a}siaGX

2. Soit X € P(FE). Déterminer ¢ o p(X).
Solution : Si a € X, alors p(X) = X \ {a}. Par suite, a ¢ ¢(X) par construction, et donc
e(p(X)) = e(X)U{a} = (X \{a}) U{a} = X. Un raisonnement analogue permet d’établir
que p(p(X)) = X dans le cas ou a ¢ X.
3. En déduire que ¢ est bijective et déterminer son inverse.
Solution : On déduit de ce qui précede que ¢ est bijective, de réciproque ¢! = .
On note a présent P le sous-ensemble de P(E) constitué des parties de E ayant un cardinal pair et
I celui constitué des parties de E de cardinal impair.

4. Montrer que ¢(P) =1
Solution : Soit X € P. On a donc Card(X) = 2p avec p € N. En revenant a la définition
de ¢, on a immédiatement Card(p(X)) =2p —1si a € X (en effet, si a € X, on retire cet
élément), ou Card(p(X)) =2p+1sia ¢ X (si a ¢ X, on rajoute cet élément). Dans tous les
cas, le cardinal de p(X) est impair, c’est a dire ¢(X) € I. On a donc l'inclusion ¢(P) C I. 1l



reste & établir I'inclusion réciproque.

Considérons donc Y € I, et posons X = ¢(Y). Par un raisonnement similaire au précédent,
X eP,etonap(X)=¢pop(Y)=Y, ce qui signifie que Y € ¢(P). Par suite, I C p(P) et on
a I’égalité demandée.

P ny n
. En déduire que Z <2q> = ZN <2q n 1) .
q€

geN
2g<n 2q+1<n

Solution : Rappelons d’abord que pour tout entier p < n, la quantité (Z) représente le
nombre de parties a p éléments de E. Le cardinal de [P, qui correspond au nombre de parties

. 14 ) s n
de E contenant un nombre pair d’éléments, est donc donné par la quantité Z ( ), et

2
qg€eN 1
2g<n
pour des raisons similaires le cardinal de I est égal a Z 2 +1) D’apres la question
qgeN 1
2¢+1<n

1, ¢ étant bijective, on a Card(P) = Card(l), ce qui donne le résultat demandé.



