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PARTIE COMMUNE

L’étudiant attachera la plus grande importance à la clarté, à la précision et à la concision de la

rédaction. Il veillera à justifier soigneusement toutes ses réponses. Si un étudiant est amené à

repérer ce qui peut lui sembler être une erreur d’énoncé, il le signalera sur sa copie et devra pour-

suivre sa composition en expliquant les raisons des initiatives qu’il a été amené à prendre.

Les exercices sont indépendants et peuvent donc être traités dans n’importe quel ordre. Au cours

d’un exercice, lorsqu’un étudiant ne peut répondre à une question, il lui est vivement recommandé

de poursuivre en admettant le résultat qui lui était demandé de démontrer.

Durée : 1h30. Les calculatrices ne sont pas autorisées.

Exercice 1 : Questions de cours

1. Montrer qu’une suite convergente est bornée.
Solution : Soit (un)n∈N une suite convergente ; notons ℓ sa limite. Par définition, il existe
N ∈ N telle que |un − ℓ| < 1 pour tout n ≥ N (ce qui peut se réécrire ℓ − 1 < un < ℓ + 1).
Notons alors AN := {u0, · · · , uN−1} l’ensemble constitué des N premiers éléments de la suite
(un). Il en résulte que (un) est minorée par m := min (min(AN ), ℓ− 1) et majorée par M :=
max (max(AN ), ℓ+ 1).

2. On considère une suite (un) définie par une relation de récurrrence de la forme un+1 = f(un)
pour tout n ∈ N, où f est une fonction réelle continue. Montrer que si (un) converge, alors elle
converge vers un point fixe de f .
Solution : Supposons que (un) converge vers ℓ ∈ R. On a un+1 = f(un) pour tout n ∈ N.
En passant à la limite dans l’égalité précédente, on a ℓ = lim

n→+∞
f(un). La fonction f étant

continue, on a lim
n→+∞

f(un) = f

(

lim
n→+∞

un

)

= f(ℓ), d’où le résultat.

3. Montrer que pour tous nombres complexes z1, z2, on a : |z1 + z2|
2 = |z1|

2 + 2Re(z1z̄2) + |z2|
2.

Solution :

|z1 + z2|
2 = (z1 + z2) (z1 + z2) = z1z1 + z1z2 + z2z1

︸︷︷︸

z1z2

+z2z2 = |z1|
2 + 2Re(z1z̄2) + |z2|

2 .

Exercice 2 : Soit z ∈ C \ {1}. Montrer que |z| = 1 si et seulement si
1 + z

1− z
est imaginaire pur.

Solution :
1 + z

1− z
=

(1 + z)(1 − z)

|1− z|2
=

1 + z − z − zz

|1− z|2
=

1− |z|2

|1− z|2
+ 2i

Im(z)

|1 − z|2
.

On obtient alors immédiatement Re

(
1 + z

1− z

)

= 0 ⇔ |z|2 = 1.

Exercice 3 : On considère la suite (un) définie par

{
un+1 = eun − 2 , ∀n ≥ 0
u0 ∈ R

1. Soit f : R −→ R définie par f(x) = ex − 2. Etudier les variations de g : R −→ R définie par
f(x)− x. En déduire que f admet deux points fixes a1 et a2 tels que a1 < 0 < a2.
Solution : Pour tout x ∈ R, g(x) = ex−2−x. g est dérivable sur R comme somme de fonctions
dérivables, et on a g′(x) = ex − 1 pour tout x ∈ R. On en déduit que g est décroissante sur
] − ∞, 0] et croissante sur [0,+∞[. D’autre part, lim

x→±∞
g(x) = +∞ et g(0) = −1. On en

déduit l’existence de deux réels a1 < 0 < a2 tels que g(a1) = g(a2) = 0. On note alors que
g(a1,2) = 0 ⇔ f(a1,2) = a1,2 et donc a1 et a2 sont des points fixes de f .



2. Montrer par récurrence que si u0 ∈ {a1, a2}, la suite (un) est stationnaire.
Solution : Supposons par exemple u0 = a1. On a alors u1 = f(u0) = f(a1) = a1 car a1
est un point fixe de f . Un raisonnement par récurrence élémentaire permet de montrer que
f(un) = a1 pour tout n ∈ N.

3. Montrer que l’intervalle ]a1, a2[ est stable par f (on rappelle qu’un intervalle I est stable par

f si f(I) ⊂ I).
Solution : On a f(a1) = a1 et f(a2) = a2. f étant croissante sur cet intervalle, on a f(x) > a1
et f(x) < a2 pour tout x ∈]a1, a2[, ce qui permet de conclure.

4. Montrer que si u0 ∈]a1, a2[, alors (un) converge vers un réel que l’on précisera.
Solution : Soit u0 ∈]a1, a2[. L’intervalle ]a1, a2[ étant stable par f , on a u1 = f(u0) ∈]a1, a2[.
Une récurrence immédiate permet d’établir que un ∈]a1, a2[ pour tout n ∈ N. On en déduit
que (un) est bornée. De plus, pour tout x ∈]a1, a2[, on a g(x) < 0, c’est à dire f(x) < x. On en
déduit que un+1 = f(un) < un pour tout n ∈ N et la suite (un) est donc décroissante. Etant
minorée (par a1), elle converge.
On sait (question de cours) que si (un) converge, elle converge vers un point fixe de f . Il n’y
a donc que deux possibilités : a1 ou a2. Or, nous avons vu que f(un) ≤ u0 < a2 pour tout
n ∈ N, ce qui proscrit une convergence vers a2. On en déduit que (un) converge vers a1.

5. Etudier la convergence de (un) dans les cas u0 ∈]−∞, a1[ et u0 ∈]a2,+∞[.
Solution : Soit u0 ∈]−∞, a1[. Un raisonnement similaire au précédent montre que cet inter-
valle est stable par f . De plus, pour tout x ∈] −∞, a1[ on a g(x) > 0, c’est à dire f(x) > x.
On déduit de ceci que la suite (un) est croissante et majorée (par a1). Elle converge donc vers
un point fixe de f , qui ne peut être que a1.
Considérons enfin le cas u0 ∈]a2,+∞[. Par un raisonnement analogue on montre que (un) est
alors croissante. Si elle était majorée, elle convergerait (vers un point fixe de f , donc a1 ou
a2). Mais ceci ne peut se produire car a1 < a2 < u0 ≤ f(un) pour tout n ∈ N. Ainsi, (un) est
croissante et non majorée, donc elle diverge vers +∞.

Exercice 4 :

1. Soit A et B deux ensembles de cardinal fini et f : A −→ B bijective. Montrer que Card(A) =
Card(B).
Solution : Notons n = Card(A) et m = Card(B). On pose A = {a1, · · · , an}.
On a f(A) = {f(a1), · · · , f(an)} ⊂ B. Or, f étant bijective, elle est donc injective et f(A)
contient n éléments (les f(ai) sont tous distincts). On en déduit que m ≥ n. De même, en
raisonnant sur la fonction réciproque de f , on a n ≥ m, d’où l’on tire l’égalité Card(A) =
Card(B).

Soit E un ensemble non vide de cardinal fini n ∈ N
∗. On note P(E) l’ensemble des parties de E. On

considère a un élément de E, et l’application suivante :

ϕ : P(E) −→ P(E)

X 7−→

{
X ∪ {a} si a /∈ X
X \ {a} si a ∈ X

2. Soit X ∈ P(E). Déterminer ϕ ◦ ϕ(X).
Solution : Si a ∈ X, alors ϕ(X) = X \ {a}. Par suite, a /∈ ϕ(X) par construction, et donc
ϕ(ϕ(X)) = ϕ(X) ∪ {a} = (X \ {a}) ∪ {a} = X. Un raisonnement analogue permet d’établir
que ϕ(ϕ(X)) = X dans le cas où a /∈ X.

3. En déduire que ϕ est bijective et déterminer son inverse.
Solution : On déduit de ce qui précède que ϕ est bijective, de réciproque ϕ−1 = ϕ.

On note à présent P le sous-ensemble de P(E) constitué des parties de E ayant un cardinal pair et
I celui constitué des parties de E de cardinal impair.

4. Montrer que ϕ(P) = I.
Solution : Soit X ∈ P. On a donc Card(X) = 2p avec p ∈ N. En revenant à la définition
de ϕ, on a immédiatement Card(ϕ(X)) = 2p − 1 si a ∈ X (en effet, si a ∈ X, on retire cet
élément), ou Card(ϕ(X)) = 2p+ 1 si a /∈ X (si a /∈ X, on rajoute cet élément). Dans tous les
cas, le cardinal de ϕ(X) est impair, c’est à dire ϕ(X) ∈ I. On a donc l’inclusion ϕ(P) ⊂ I. Il
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reste à établir l’inclusion réciproque.
Considérons donc Y ∈ I, et posons X = ϕ(Y ). Par un raisonnement similaire au précédent,
X ∈ P, et on a ϕ(X) = ϕ ◦ ϕ(Y ) = Y , ce qui signifie que Y ∈ ϕ(P). Par suite, I ⊂ ϕ(P) et on
a l’égalité demandée.

5. En déduire que
∑

q ∈ N

2q ≤ n

(
n
2q

)

=
∑

q ∈ N

2q + 1 ≤ n

(
n

2q + 1

)

.

Solution : Rappelons d’abord que pour tout entier p ≤ n, la quantité

(
n
p

)

représente le

nombre de parties à p éléments de E. Le cardinal de P, qui correspond au nombre de parties

de E contenant un nombre pair d’éléments, est donc donné par la quantité
∑

q ∈ N

2q ≤ n

(
n
2q

)

, et

pour des raisons similaires le cardinal de I est égal à
∑

q ∈ N

2q + 1 ≤ n

(
n

2q + 1

)

. D’après la question

1, ϕ étant bijective, on a Card(P) = Card(I), ce qui donne le résultat demandé.
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