Feuille d'exercices nº 2

RÉCURRENCE, SOMMES ET PRODUITS

Exercice 1. Soit $(u_n)_{n\in\mathbb{N}}$ la suite définie par $u_0=1$ et :

$$\forall n \in \mathbb{N}, \ u_{n+1} = \frac{1}{3}(u_n + 4n + 6)$$

Démontrer que pour tout $n \in \mathbb{N}$, $u_n = 2n + \frac{1}{3^n}$.

Exercice 2. Soit $(u_n)_{n\in\mathbb{N}^*}$ la suite définie par $u_1=1$ et :

$$\forall n \in \mathbb{N}^*, \ u_{n+1} = \frac{u_n}{\sqrt{u_n^2 + 1}}$$

Calculer les premiers termes de la suite, émettre une conjecture sur l'expression de u_n en fonction de n et démontrer cette conjecture par récurrence.

Exercice 3. Montrer par récurrence les assertions suivantes :

- 1. Pour tout $n \in \mathbb{N}$, $3^{2n+1} + 2^{n+2}$ est un multiple de 7.
- 2. Pour tout $n \in \mathbb{N}^*$, $3^{2n} + 2^{6n-5}$ est un multiple de 11.

Exercice 4. Écrire à l'aide du symbole \sum les expressions suivantes :

1.
$$3^4 + 3^5 + 3^6 + \dots + 3^{15}$$

2.
$$\frac{1}{2} + \frac{2}{4} + \frac{3}{8} + \frac{4}{16} + \dots + \frac{10}{1024}$$

3.
$$x + \frac{x^2}{2} + \frac{x^3}{3} + \dots + \frac{x^n}{n}$$

4.
$$2-4+6-8+...+50$$

Exercice 5. Montrer par récurrence les propriétés suivantes :

1.
$$\forall n \in \mathbb{N}^*, \sum_{k=1}^n k = \frac{n(n+1)}{2}$$

2.
$$\forall n \in \mathbb{N}^*, \sum_{k=1}^n k^2 = \frac{n(n+1)(2n+1)}{6}$$

3.
$$\forall n \in \mathbb{N}^*, \sum_{k=1}^n k^3 = \frac{n^2(n+1)^2}{4}$$

4.
$$\forall n \geq 4, \ 2^n \leq n!$$
 (avec $n! = 1 \times 2 \times 3 \times ... \times n$ pour $n \in \mathbb{N}^*$)

Exercice 6. (Formule du binôme de Newton)

1. Pour $n \in \mathbb{N}$ et $p \in [0, n]$, on note (avec la convention 0! = 1):

$$\binom{n}{p} = \frac{n!}{p! (n-p)!}.$$

Calculer $\binom{0}{0}$, $\binom{n}{n}$ et $\binom{n}{0}$ pour $n \in \mathbb{N}$.

- 2. Formule du binôme de Newton.
 - (a) Montrer que pour tous entiers n et p tels que $0 \le p \le n$:

$$\binom{n}{p} = \binom{n}{n-p}.$$

(b) Triangle de Pascal. Montrer que, pour tous entiers n et p tels que $1 \le p \le n-1$, on a

$$\binom{n}{p} = \binom{n-1}{p-1} + \binom{n-1}{p}.$$

(c) Montrer la formule du binôme de Newton : pour tout $(a,b) \in \mathbb{R}^2$ et tout $n \in \mathbb{N}$,

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}$$
.

- 3. Mise en pratique.
 - (a) Soit $n \in \mathbb{N}^*$. Simplifier les sommes $\sum_{k=0}^{n} \binom{n}{k}$ et $\sum_{k=0}^{n} \binom{n}{k} (-1)^k$.
 - (b) Montrer que pour tous entiers n et p tels que $1 \le p \le n$:

$$p\binom{n}{p} = n\binom{n-1}{p-1}.$$

(c) En déduire la somme $\sum_{k=1}^{n} k \binom{n}{k}$ pour $n \in \mathbb{N}^*$.

Exercice 7. (Factorisation de $a^n - b^n$)

Montrer que, pour tout $(a,b) \in \mathbb{R}^2$ et tout $n \in \mathbb{N}^*$,

$$a^{n} - b^{n} = (a - b) \times \sum_{k=0}^{n-1} a^{k} b^{n-1-k}$$
.

2

Exercice 8. Soit $x \in \mathbb{R}$ et $n \in \mathbb{N}^*$.

- 1. Calculer $S_n(x) = \sum_{k=0}^n \binom{n}{k} x^k$.
- 2. En déduire la valeur de $T_n(x) = \sum_{k=1}^n k \binom{n}{k} x^{k-1}$.
- 3. Retrouver la valeur de $\sum_{k=1}^{n} k \binom{n}{k}$ pour $n \in \mathbb{N}^*$.

Exercice 9. Calculer les sommes suivantes. On pourra admettre les résultats de l'exercice 5.

1.
$$\sum_{k=5}^{11} k$$

2.
$$\sum_{i=2}^{10} (3+5i)$$
 3. $\sum_{k=5}^{11} \frac{2^{k+1}}{3^{k-1}}$ 4. $\sum_{i=2}^{10} \frac{48}{2^i}$

3.
$$\sum_{k=5}^{11} \frac{2^{k+1}}{3^{k-1}}$$

$$4. \qquad \sum_{i=2}^{10} \frac{48}{2^i}$$

5.
$$\sum_{k=1}^{n} (2k+1)$$

6.
$$\sum_{k=1}^{n} (-1)^k$$

7. Pour
$$n \ge 3$$
, $\sum_{k=2}^{n} 5$

5.
$$\sum_{k=1}^{n} (2k+1)$$
 6. $\sum_{k=1}^{n} (-1)^k$ 7. Pour $n \ge 3$, $\sum_{k=3}^{n} 5$ 8. $\sum_{k=1}^{n} (3k^2 + 2k + 1)$

9.
$$\sum_{k=1}^{n} k(2k^2 - 1)$$

10.
$$\sum_{k=1}^{n} 5^{2k}$$

9.
$$\sum_{k=1}^{n} k(2k^2 - 1)$$
 10. $\sum_{k=1}^{n} 5^{2k}$ 11. $\sum_{k=1}^{n} (2^k + k^2 + 1)$ 12. $\sum_{k=1}^{n} \frac{3^k}{4^{k+1}}$

Exercice 10. Calculer les produits suivants :

1.
$$\prod_{k=0}^{n} 3$$

$$2. \quad \prod_{k=1}^{n} (2k)$$

$$3. \quad \prod_{k=0}^{n} (2k+1)$$

4.
$$\prod_{k=0}^{n} q^k$$

$$5. \quad \prod_{k=0}^{n} q^{2^k}$$

Exercice 11. (Sommes et produits télescopiques)

- (a) Déterminer deux réels a et b tels que pour tout $k \in \mathbb{N}$, $\frac{1}{k(k+1)} = \frac{a}{k} + \frac{b}{k+1}$
 - (b) Simplifier, pour tout $n \in \mathbb{N}^*$, la somme $\sum_{k=1}^{n} \frac{1}{k(k+1)}$.
 - (c) En déduire la limite de la suite $\left(\sum_{k=1}^{n} \frac{1}{k(k+1)}\right)_{n\in\mathbb{N}^*}$ lorsque $n\to+\infty$.
- 2. Calculer $\sum_{k=1}^{n} \ln\left(1 + \frac{1}{k}\right)$.
- 3. Calcular $\prod_{k=2}^{n} \left(1 \frac{1}{k^2}\right).$

Exercice 12. (Sommes doubles)

Calculer les sommes suivantes :

$$1. \qquad \sum_{1}^{n} \left(\sum_{j=i}^{n} \frac{1}{j} \right)$$

$$2. \quad \sum_{1 \le i, j \le n} ij$$

$$3. \quad \sum_{1 \le i \le j \le n} ij$$