Feuille d'exercices nº 7

Nombres complexes (première partie : sans la forme trigonométrique)

1. Calculs, partie réelle, partie imaginaire, conjugué, module

Exercice 1.

- 1. Calculer i^n , $n \in \mathbf{Z}$.
- 2. Calculer $(1+i)^8$.

Exercice 2.

- 1. Écrire le conjugué de $z = \frac{4-5i}{3+i}$, puis préciser sa partie réelle et sa partie imaginaire.
- 2. Soit z un complexe. Quel est le conjugué de $w = \frac{2z^2 i}{5z + 1}$?

Exercice 3.

- 1. Pour tout $z \in \mathbf{C}^*$, exprimer 1/z sous forme algébrique.
- 2. Pour tout $(a,b) \in \mathbf{R}^2 \setminus \{(0,0)\}$ et tout $(c,d) \in \mathbf{R}^2$, déterminer l'ensemble des $(x,y) \in \mathbf{R}^2$ vérifiant

$$\left\{ \begin{array}{lll} ax & - & by & = & c \\ bx & + & ay & = & d \end{array} \right..$$

Exercice 4. On note $j = -\frac{1}{2} + i\frac{\sqrt{3}}{2}$.

- 1. Soit P une fonction polynomiale à coefficients réels et z un complexe. Montrer que si P(z)=0, alors aussi $P(\overline{z})=0$
- 2. Calculer $j\bar{j}$ et $j + \bar{j}$.
- 3. En déduire j(-1-j), puis constater que j est solution de l'équation $z^2+z+1=0$. Quelle est l'autre solution?
- 4. Résoudre l'équation $z^3 = 1$.
- 5. Justifier le plus économiquement possible que $\bar{j} = \frac{1}{i} = j^2$.

Exercice 5. Déterminer l'ensemble des nombres complexes z tels que $\frac{iz-1}{z-i}$ soit réel.

Exercice 6. Résoudre $z^2 = \bar{z}$, d'inconnue $z \in \mathbb{C}$.

Exercice 7. Soit $z \in \mathbb{C}$. Montrer que |z-i| = |z+i| si et seulement si z est réel.

Exercice 8. Soient z et z' deux nombres complexes de module 1 tels que $zz' \neq -1$. Démontrer que $\frac{z+z'}{1+zz'}$ est réel, et préciser son module.

Exercice 9. Soit u, v et w trois nombres complexes tels que |u| = |v| = |w| = 1. Établir la relation :

$$|uv + vw + wu| = |u + v + w|.$$

Exercice 10.

Soit u et v deux nombres complexes distincts tous deux de module 1. Montrer que pour tout complexe z, le nombre complexe : $\left(\frac{z+uv\overline{z}-(u+v)}{u-v}\right)^2$ est un nombre réel négatif ou nul.

Exercice 11.

1. Soit $P = X^3 + aX^2 + bX + c$ un polynôme à coefficients dans \mathbf{C} . Pour quelle valeur de $t \in \mathbf{C}$ le polynôme P(X+t) est-il de la forme :

$$X^3 + 3pX + q$$

avec $p, q \in \mathbb{C}$?

- 2. Soient $p, q \in \mathbb{C}$. On s'intéresse à une méthode de calcul des racines du polynôme $R = X^3 + 3pX + q$, dite méthode de Cardan. On note α et β les deux racines, éventuellement égales, du polynôme $X^2 + qX p^3$ et $\gamma_1, \gamma_2, \gamma_3$ les trois racines cubiques de α .
 - (i) Exprimer $\alpha + \beta$ et $\alpha\beta$ en fonction de p et q.
 - (ii) Démontrer que $\gamma_k \frac{p}{\gamma_k}$ est une racine de R pour tout $k \in \{1, 2, 3\}$.
- 3. On pose : $P = X^3 + 3X^2 + 6X + 2$.
 - a) Appliquer à P le procédé de la question 1.
 - b) Déterminer les racines du polynôme R déduit de P, puis celles de P, en exploitant la méthode de Cardan de la question 2.

2. Autour des racines carrées

Exercice 12. Calculer les racines carrées des nombres complexes suivants : $\Delta_1 = 3 + 4i$, $\Delta_2 = 8 - 6i$, $\Delta_3 = -25$, $\Delta_4 = 49$, $\Delta_5 = 50i$.

Exercice 13. Résoudre les équations du second degré suivantes :

1.
$$z^2 + 2z + 10 = 0$$
 2. $z^2 - 2iz - 1 + 2i = 0$ **3**. $iz^2 + (4i - 3)z + i - 5 = 0$.

Exercice 14. Résoudre l'équation suivante : $z^2 - 2\overline{z} + 1 = 0$.

Exercice 15. On considère l'équation en $z \in \mathbb{C}$ suivante : $z^3 + (1-3i)z^2 - (6-i)z + 10i = 0$.

2

- 1. Déterminer une racine réelle z_0 de cette équation.
- 2. Pour $z \in \mathbb{C}$, factoriser $z^3 + (1 3i)z^2 (6 i)z + 10i$ par $(z z_0)$.
- 3. Résoudre l'équation.

Feuille d'exercices nº 7

Nombres complexes (deuxième partie : trigonométrie)

3. Forme trigonométrique, argument

Exercice 1.

- 1. Calculer le module et un argument de $\frac{1+i\sqrt{3}}{\sqrt{3}+i}$.
- 2. Écrire sous forme trigonométrique $\left(\frac{1+i\sqrt{3}}{1-i}\right)^4$.

Exercice 2. Soient $\theta \in \mathbf{R}$ et $z = e^{i\theta}$. Déterminer la forme trigonométrique de $1 + z + z^2$.

Exercice 3. Déterminer tous les entiers $n \in \mathbb{N}$ tels que

(i)
$$(1+i)^n \in \mathbf{R}$$

(ii)
$$(\sqrt{3}+i)^n \in i\mathbf{R}$$
.

Exercice 4.

1. Soit $\theta \in]-\pi,\pi[$ et $t=\tan\left(\frac{\theta}{2}\right)$. Démontrer l'identité

$$e^{i\theta} = \frac{1+it}{1-it},$$

puis exprimer $\cos \theta$ et $\sin \theta$ en fonction de t.

- 2. En déduire, pour tout $x \in \mathbf{R}$, une simpification de $\cos(\arctan x)$ et $\sin(\arctan x)$.
- 3. Démontrer que, pour tout $z \in \mathbf{C} \setminus \mathbf{R}_{-}$,

$$arg(z) \equiv 2\arctan\left(\frac{\operatorname{Im}(z)}{\operatorname{Re}(z) + |z|}\right) \pmod{2\pi}$$

4. Racines de l'unité

Exercice 5. Résoudre en $z \in \mathbb{C}$ les équations suivantes :

1.
$$z^3 = -8i$$

3.
$$27(z-1)^6 + (z+1)^6 = 0$$
 5. $z^6 - (3+2i)z^3 + 2 + 2i = 0$

5.
$$z^6 - (3+2i)z^3 + 2 + 2i = 0$$

2.
$$z^5 - z = 0$$

4.
$$z^2\bar{z}^7 = 1$$

Exercice 6. Soit $n \in \mathbf{N}^*$.

- 1. On pose $\omega = e^{\frac{2i\pi}{n}}$. Calculer $\sum_{k=0}^{n-1} (1+\omega^k)^n$.

 (Indication: on pourra commencer par calculer $\sum_{k=0}^{n-1} (\omega^j)^k$ pour tout $j \in \{0, \dots, n-1\}$)
- 2. Calculer la somme des racines n-ièmes de l'unité.
- 3. Calculer le produit des racines n-ièmes de l'unité.

Exercice 7. Soit z un nombre complexe. Prouver les identités suivantes :

$$\sum_{k=0}^{18} \left(z - e^{2ik\pi/19} \right)^2 = 19z^2 \quad \text{et} \quad \sum_{k=0}^{18} \left| z - e^{2ik\pi/19} \right|^2 = 19(1 + |z|^2).$$

5. Angles remarquables

Exercice 8. On note $z_1 = \frac{\sqrt{6} + i\sqrt{2}}{2}$ et $z_2 = 1 + i$ puis l'on définit $z_3 = \frac{z_1}{z_2}$.

- 1. Écrire z_1, z_2 et z_3 sous forme trigonométrique.
- 2. En déduire des expressions de $\cos \frac{7\pi}{12}$ et $\sin \frac{7\pi}{12}$.

Exercice 9.

- 1. Résoudre algébriquement en $z \in \mathbb{C}$ l'équation $z^2 = (1+i)$.
- 2. En déduire des expressions de $\cos \frac{\pi}{8}$ et $\sin \frac{\pi}{8}$.

Exercice 10. On note $\omega = e^{2i\pi/5}$.

- 1. Quelle relation simple lie les nombres $\cos(\frac{2\pi}{5})$ et $\omega + \frac{1}{\omega}$?
- 2. Justifier l'identité $\left(\omega + \frac{1}{\omega}\right)^2 + \left(\omega + \frac{1}{\omega}\right) 1 = 0$.
- 3. Calculer $\cos(\frac{2\pi}{5})$.

6. D'autres applications à la trigonométrie

Exercice 11. Réduction de $a \cos x + b \sin x$.

1. Soit a et b deux réels. Démontrer qu'il existe $r \in \mathbb{R}_+$ et $\theta \in \mathbb{R}$ tels que

$$\forall x \in \mathbf{R}, \ a\cos x + b\sin x = r\cos(x - \theta).$$

2. Déterminer l'ensemble des $x \in \mathbf{R}$ qui vérifient $\cos x + \sin x = 1$.

Exercice 12. Linéariser chacune des expressions $\cos(2\varphi)$, $\sin(3\varphi)$ et $\cos(5\varphi) \cdot \sin(3\varphi)$.

Exercice 13. Pour tout $n \in \mathbb{N}$ et tout $\theta \in \mathbb{R}$, calculer

$$\sum_{k=0}^{n} \cos(k\theta) \quad \text{et} \quad \sum_{k=0}^{n} \sin(k\theta) \ .$$

2

Feuille d'exercices nº 7

Nombres complexes (troisième partie : géométrie)

7. Polygones

Exercice 1. Soit u et v deux nombres complexes. Établir l'identité suivante, dite « du parallélogramme » :

$$|u+v|^2 + |u-v|^2 = 2(|u|^2 + |v|^2).$$

Pourquoi ce nom?

Exercice 2. Soit a, b, c et d quatre nombres complexes distincts qui vérifient les deux relations :

$$a+c=b+d$$
 et $a+ib=c+id$.

Que peut-on dire du quadrilatère formé des quatre points ayant ces nombres complexes pour affixes?

Exercice 3. Soit a, b et c trois nombres complexes qui sont affixes de trois points qui forment dans le plan un triangle équilatéral. Montrer que :

$$\left(\frac{a-c}{b-c}\right)^3 = 1.$$

Exercice 4. Soit θ un nombre réel, avec $0 \le \theta \le \pi$.

- 1. Déterminer l'ensemble des solutions complexes de l'équation : $z^6 2z^3 \cos \theta + 1 = 0$.
- 2. Pour quelles valeurs de θ ces solutions sont-elles les sommets d'un hexagone régulier?

8. Transformations affines

Exercice 5. On rappelle l'identification canonique entre \mathbb{R}^2 et \mathbb{C} via l'application affixe et sa réciproque :

$$\mathbf{R}^2 \to \mathbf{C}$$

 $(x,y) \mapsto x + iy$ et $\mathbf{C} \to \mathbf{R}^2$
 $z \mapsto (\operatorname{Re} z, \operatorname{Im} z)$.

1. Identifier les transformations du plan ayant l'écriture complexe suivante :

$$f_1(z) = z + 3 - 2i$$
, $f_2(z) = e^{i2\pi/7}z$, $f_3(z) = e^{i2\pi/3}z - 1$, $f_4(z) = 3z - 5 + i$, $f_5(z) = (2 + 2i)z + 3i$.

- 2. Donner l'écriture complexe des transformations du plan suivantes :
 - (a) La translation du vecteur d'affixe -2 + i;
 - (b) La symétrie centrale du centre i;

- (c) La rotation d'angle $\pi/6$ et de centre 1;
- (d) L'homothétie de rapport 3 et de centre d'affixe 1 + 2i.;
- (e) La similitude de rapport 2 et d'angle $\pi/3$ et de centre 1+i.
- 3. Décrire géométriquement et déterminer la nature des similitudes correspondant aux applications suivantes :

$$\varphi_1: z \mapsto \left(\frac{1}{2} + i\frac{\sqrt{3}}{2}\right)z + 3; \qquad \varphi_2: z \mapsto i\bar{z}.$$

- 4. Démontrer que la composée de deux symétries est une translation ou une rotation.
- 5. Démontrer que la composée de deux rotations est une translation ou une rotation.

Exercice 6. Soit s une similitude directe telle que s(2-i)=1 et s(-1+2i)=1+6i. Déterminer l'homothétie h et la rotation r telles que $s=h\circ r$. Donner l'affixe du point fixe de s.

Exercice 7. Rappeler ou découvrir l'expression en terme de nombres complexes des transformations suivantes :

- 1. La translation de vecteur $v \in \mathbf{C}$.
- 2. L'homothétie de centre $a \in \mathbf{C}$ et de rapport $\lambda \in \mathbf{R}^*$.
- 3. La rotation de centre $a \in \mathbf{C}$ et d'angle $\theta \in \mathbf{R}$.
- 4. La symétrie par rapport à un axe passant par $a \in \mathbf{C}$ et faisant un angle $\theta \in \mathbf{R}$ avec l'axe réel.

Exercice 8. On dit qu'un ensemble d'applications E est stable par composition si $f \circ g \in E$ pour toutes applications $f, g \in E$. Les ensembles suivants de transformations planes sont-ils ou non stables par composition?

- 1. L'ensemble des translations?
- 2. L'ensemble des homothéties?
- 3. L'ensemble des homothéties de rapport strictement supérieur à 1?
- 4. L'ensemble des homothéties et des translations?
- 5. L'ensemble des symétries par rapport à des droites?
- 6. L'ensemble des rotations?
- 7. L'ensemble des symétries et des rotations?
- 8. L'ensemble des symétries, des rotations et des translations?
- 9. L'ensemble des similitudes directes?
- 10. L'ensemble des similitudes directes et des translations?

Exercice 9. On se place dans le plan complexe. Soit j le nombre complexe de module 1 et d'argument $\frac{2\pi}{3}$. Soit r la transformation du plan, qui, à un point M d'affixe z, associe le point M_0 d'affixe $z_0=jz+3$.

- 1. Déterminer les points invariants (fixes) de r, et la nature de la transformation r.
- 2. Soit M un point d'affixe z. Calculer l'affixe du point $r^2(M)$, où on note $r^2 = r \circ r$, et déterminer la nature de la transformation r^2 .
- 3. Soit M un point d'affixe z. Calculer l'affixe du point $r^3(M)$, où on note $r^2 = r \circ r \circ r$. Que peut-on dire de la transformation r^{-1} du plan?

Exercice 10. On indentifie \mathbb{R}^2 et \mathbb{C} . On considère la transformation $f: \mathbb{C} \to \mathbb{C}$ définie, pour $z \in \mathbb{C}$, par

$$f(z) = 2\overline{z} + 3 - 4i.$$

- 1. Calculer le(s) points fixe(s) de f.
- 2. Donner une équation cartésienne du cercle C de centre 1-i et de rayon 2.
- 3. Calculer f(1-i). En déduire une équation cartésienne de l'image de C par transformation f.
- 4. Quelle est la nature de l'application f?

Exercice 11. Soient f et g les deux transformations du plan complexe définies par f(z) = -z - 2i et g(z) = 2z - 1 - i.

- 1. Déterminer les points fixes de f et g.
- 2. Démontrer que f et g sont deux homothéties dont on donnera le centre et le rapport.
- 3. Démontrer que $f \circ q$ est une homothétie dont on donnera le centre et le rapport.
- 4. Démontrer que ces trois centres sont alignés.

9. Quelques ensembles de points

Exercice 12. Pour chacune des relations suivantes, déterminer l'ensemble des nombres complexes z qui la vérifient :

1.
$$|(1-i)z - 3i| = 3$$
 3. $\operatorname{Re}(1-z) \leqslant \frac{1}{2}$ 5. $|1 - \frac{1}{z}|^2 = 2$ 7. $\left|\frac{z-3}{z-5}\right| = 2$ 2. $|1-z| \le 1/2$ 4. $\operatorname{Re}(iz) \leqslant \frac{1}{2}$ 6. $\left|\frac{z-3}{z-5}\right| = 1$ 8. $\left|\frac{z-3}{z-5}\right| < 2$

3.
$$\operatorname{Re}(1-z) \leqslant \frac{1}{2}$$

5.
$$\left|1 - \frac{1}{z}\right|^2 = 2$$

7.
$$\left| \frac{z-3}{z-5} \right| = 2$$

2.
$$|1-z| \le 1/2$$

4.
$$\operatorname{Re}(iz) \leqslant \frac{1}{2}$$

$$6. \left| \frac{z-3}{z-5} \right| = 1$$

$$8. \left| \frac{z-3}{z-5} \right| < 2$$

Exercice 13. Montrer que, dans le plan complexe, l'ensemble $\left\{\frac{1}{1+it}, t \in \mathbf{R}\right\}$ est contenu dans le cercle de centre 1/2 et de rayon 1/2. Est-ce le cercle tout entier?

3