Math Analyse III automne 2018 Feuille 2 : Fonctions de plusieurs variables réelles

Exer. 2.1 On décrit ci-dessous quelques ensembles dans \mathbb{R} , \mathbb{R}^2 , ou \mathbb{R}^3 .

- (a) Pour chaque ensemble A ci-dessous, faire un dessin représentant la région concernée, et déterminer si A est : ouvert, fermé, borné, convexe, compact.
- (b) Déterminer l'intérieur, l'adhérence, et la frontière de chaque ensemble.

Parties de \mathbb{R} :

$$[a,b] ext{ où } a \leq b, a,b \in \mathbb{R}; \quad [a,b[ext{ où } a < b, a,b \in \mathbb{R}; \quad \mathbb{N}; \quad \left\{ rac{i-1}{i} : i \in \mathbb{N}^*
ight\}.$$

Parties de \mathbb{R}^2 :

$$\{(x,y) \in \mathbb{R}^2 : y = x^2\}; \{(x,y) \in \mathbb{R}^2 : 0 < x < y < 1\}; \{(x,y) \in \mathbb{R}^2 : |x-2| \ge 1\}$$

Parties de \mathbb{R}^3 :

$$\{(x,y,z) \in \mathbb{R}^3 : z > 2\}$$
; une partie finie de \mathbb{R}^3 ; $\{(x,y,z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 \le 1, z < 0\}$.

Exer. 2.2 Quelle est l'adhérence de l'ensemble \mathbb{Q} des nombres rationnels (dans la droite \mathbb{R})?

Exer. 2.3 Cet exercice concerne des ensembles A dans \mathbb{R}^2 .

(a) Trouver trois fermés différents A tels que

int
$$A = \{(x,y) : x^2 + y^2 < 1\} \cup \{(x,y) : (x-3)^2 + y^2 < 1\}.$$

- (b) Montrer qu'un ensemble A satisfaisant les conditions de la partie (a) de l'exercice n'est pas convexe.
- (c) Trouver trois ouverts différents A tels que fr $A = \{(x,y) : y = 0\}$. (On peut montrer qu'il y en a que trois.)
- (d) Prouver qu'il n'existe aucun ouvert A dans \mathbb{R}^2 dont l'adhérence est une droite.

Exer. 2.4

- (a) Soit $N : \mathbb{R}^n \to \mathbb{R}$ une fonction définie sur \mathbb{R}^n . Énoncer les conditions que doit satisfaire la fonction $x \mapsto N(x)$ afin de constituer une *norme* sur \mathbb{R}^n .
- (b) Soit $\|\cdot\|$ une norme sur \mathbb{R}^n . Montrer que ses boules unité fermée et ouverte (relativement à la norme $\|\cdot\|$) sont convexes.
- (c) Prouver que la fonction $(x,y) \mapsto \theta(x,y) := |y-x| + 2|x|$ est une norme sur \mathbb{R}^2 .

Exer. 2.5 Sachant que le point $(x,4,z) \in \mathbb{R}^3$ appartient au segment déterminé par les points (-3,3,1) et (0,6,2), trouver x et z.

Exer. 2.6 Prouver qu'exactement un des ensembles suivants dans \mathbb{R}^2 est convexe :

$$\{(x,y): y \ge x^2, 0 \le x \le 1\}, \{(x,y): y \le x^2, 0 \le x \le 1\}.$$

Exer. 2.7 (a) L'intérieur d'un ensemble dans \mathbb{R}^n peut-il consister d'un singleton?

(b) Trouver un ensemble A dans \mathbb{R}^2 d'intérieur non vide dont la frontière consiste d'un singleton.

Exer. 2.8 Soit A un ensemble dans \mathbb{R}^n qui est à la fois ouvert et fermé.

- (a) Prouver que A est soit l'ensemble vide, soit l'espace \mathbb{R}^n .
- (b) En déduire que la frontière d'une partie non vide et bornée est toujours non vide.

Exer. 2.9 Déterminer le domaine naturel D de chacune des fonctions suivantes, et le classifier : ouvert, fermé, ni l'un ni l'autre, convexe, borné, compact.

(a)
$$f(x,y) = \sqrt{4 - x^2 - y^2}$$
 (b) $f(x,y) = \left\{ \frac{1 - x^2}{y^2 - 1} \right\}^{1/2}$ (c) $f(x,y,z) = \ln(xyz)$

Exer. 2.10 Soient $\alpha, \beta > 0$. Déterminer, suivant les valeurs de α, β , si la fonction $f : (\mathbb{R}^{+*})^2 \to \mathbb{R}$ \mathbb{R} définie par $f(x,y) = \frac{x^{\alpha}y^{\beta}}{x^2+y^2}$ admet une limite en (0,0).

Exer. 2.11 Considérons la fonction $f: \mathbb{R}^2 \to \mathbb{R}$ définie par

$$f(x,y) = \begin{cases} \frac{x^2y}{x^4 + y^2} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{sinon } . \end{cases}$$

Montrer que la restriction de f à toute droite passant par (0,0) est continue, mais que f n'est pas continue au point (0,0) (on pourra pour cela restreindre f à $\{(x,y) \in \mathbb{R}^2 \mid y = ax^2\}$).

Exer. 2.12 Étudier la continuité sur \mathbb{R}^2 des fonctions $f, g : \mathbb{R}^2 \to \mathbb{R}$ suivantes :

(a)
$$f(x,y) = \begin{cases} \cos(x+y) & \sin x + y \ge 0 \\ \cosh(x+y) & \sin x + y < 0 \end{cases}$$
 (b) $g(x,y) = \begin{cases} x^2y & \sin x < y \\ y & \sin x \ge y \end{cases}$ (c) $f(x,y) = \begin{cases} (x^2 + y^2)\sin\left(\frac{1}{xy}\right) & \sin xy \ne 0 \\ 0 & \sin xy = 0 \end{cases}$ (d) $f(x,y) = \begin{cases} 2x^2 + y^2 - 1 & \sin x^2 + y^2 > 1 \ne 0 \\ x^2 & \sin n \end{cases}$

(c)
$$f(x,y) = \begin{cases} (x^2 + y^2) \sin(\frac{1}{xy}) & \text{si } xy \neq 0 \\ 0 & \text{si } xy = 0 \end{cases}$$
 (d) $f(x,y) = \begin{cases} 2x^2 + y^2 - 1 & \text{si } x^2 + y^2 > 1 \neq 0 \\ x^2 & \text{sinon} \end{cases}$

Exer. 2.13 Soit $f: \mathbb{R}^2 \to \mathbb{R}$ une fonction qui est continue en (0,0) et qui s'annule en (0,0). Utiliser un raisonnement par l'absurde afin de prouver l'existence d'un voisinage V de (0,0)(par exemple, une boule centrée en (0,0)) tel que

$$|f(x,y)| \le 1 \,\forall (x,y) \in V.$$

Exer. 2.14 Soit C un ensemble compact dans \mathbb{R}^n et $f: C \to]0, +\infty[$ une fonction continue. Utiliser le théorème de Weierstrass afin de prouver l'existence de $\delta > 0$ tel que

$$f(x) \geqslant \delta \ \forall x \in C.$$

Exer. 2.15 Trouver l'infimum et le supremum de chacune des fonctions f, g, h sur le domaine A indiqué, et dans chaque cas déterminer si celui-ci est atteint (c-à-d, si un minimum/maximum existe):

(a)
$$A = \mathbb{R}^2_+ := \{(x, y) \in \mathbb{R}^2 : x \ge 0, y \ge 0\}; f(x, y) = e^{x+y}, g(x, y) = e^{x-y}, h(x, y) = x^2 - y \sin x$$

(b)
$$A = \{(x, y) \in \mathbb{R}^2 : x \ge 0, y > 0\}; f(x, y) = x + 1/y, g(x, y) = x/y, h(x, y) = x^2 + y^2 - 2y$$

(c)
$$A = \operatorname{int}(\mathbb{R}^2_+) = \{(x, y) \in \mathbb{R}^2 : x > 0, y > 0\}; f(x, y) = \sqrt{xy}, g(x, y) = \sin(xy), h(x, y) = \ln(xy)$$

(d)
$$A = \{(x,y) \in \mathbb{R}^2 : |x| \le 1, |y| \le 1\}; f(x,y) = x^3y^2, g(x,y) = x\cos y, h(x,y) = y/(x+2)\}$$

Exer. 2.16 Soit U un ouvert non vide dans \mathbb{R}^n , et soit $f: U \to \mathbb{R}$ une fonction.

(a) Définir le sens de la phrase : f appartient à $C^1(U)$.

On prend n = 2, U =la boule unité ouverte de \mathbb{R}^2 , et $f(x,y) = \sin(\pi x e^{xy}) + \ln(1 - x^2 - y^2)$.

- (b) Calculer les dérivées partielles de f.
- (c) Montrer que f appartient à $C^1(U)$.

Exer. 2.17 Prouver qu'il existe un voisinage ouvert V du point $(0,0) \in \mathbb{R}^2$ tel que la fonction $g(x,y) := \tan(e^{xy})$ soit continûment dérivable sur V (c-à-d, appartienne à $C^1(V)$). Peut-on affirmer que $g \in C^1(\mathbb{R}^2)$?

Exer. 2.18 Trouver tous les points critiques des fonctions suivantes sur \mathbb{R}^2 :

(a)
$$f(x,y) = x^2 + 2y^2 - 4x + 4y - 3$$

(b)
$$g(x,y) = y^3 + x^2 - 6xy + 3x + 6y - 7$$

(c)
$$h(x,y) = 3x^2y + x^2 - 6x - 3y - 2$$

Exer. 2.19 (a) Trouver les points critiques de la fonction $f: \mathbb{R}^2 \to \mathbb{R}$ définie par

$$f(x,y) = x^3 + 4xy^2 - 3x^2 - 3y^2 + 4.$$

- (b) Montrer que f n'admet ni un minimum ni un maximum global.
- (c) Trouver le min et le max de la fonction $g(x) := x^3 3x^2 + 4x + 1$ sur l'intervalle [-1, 1].
- (d) Trouver le min et le max de la fonction f sur le pavé $A := [-1,1] \times [-1,1]$.

Exer. 2.20 Soit c > 0 et soit f la fonction sur \mathbb{R}^2 définie par f(x,y) := xy(x+y-c).

- (a) Prouver que le problème de minimiser f sur le domaine fermé A constitué du triangle avec sommets (0,0),(c,0),(0,c) et de son intérieur admet une solution.
- (b) Identifier la solution.

Exer. 2.21 Trouver le minimum de la fonction $f(x,y) := 4x^2 + 2xy - 3y^2$ sur le pavé $0 \le x \le 2, -2 \le y \le 0$.

Exer. 2.22 On cherche à identifier le point de la surface z = xy - 1 qui est le plus proche de l'origine.

- (a) Pourquoi peut-on affirmer l'existence d'un tel point ?
- (b) Le trouver.

Exer. 2.23 Trouver les extrémums de la fonction $2xy + (1 - x^2 - y^2)^{1/2}$ sur la boule unité fermée.

Exer. 2.24 Le résultat suivant (prouvé en cours) généralise le théorème de Weierstrass. Il est utile quand la compacité de l'ensemble sous-jacent fait défaut. Il porte sur la minimisation de f par rapport à l'ensemble $A \subset \mathbb{R}^n$, où $f: A \to \mathbb{R}$ est donnée.

Théorème Supposons qu'il existe un point $\bar{x} \in A$ tel que l'ensemble $E := \{x \in A : f(x) \le f(\bar{x})\}$ soit compact, et tel que f soit continue sur E. Alors f atteint un minimum sur A.

3

(a) À l'aide du théorème, prouver que la fonction $f(x,y) := \frac{12}{x} + \frac{18}{y} + xy$ atteint un minimum sur int \mathbb{R}^2_+ , le premier quadrant ouvert de \mathbb{R}^2 ; c-à-d, la partie $A := \{(x,y) \in \mathbb{R}^2 : x > 0, y > 0\}$. (On observe que le théorème de Weierstrass ne s'applique pas à cet exemple : pourquoi ?)

(b) Trouver la solution du problème d'optimisation de la partie (a).

Exer. 2.25 Soit $f: \mathbb{R}^n \to \mathbb{R}$ une fonction continue, et soit A une partie dans \mathbb{R}^n .

- (a) Montrer que $\inf_{x \in A} f = \inf_{x \in \operatorname{adh} A} f$.
- (b) Qu'en est-il de l'éventuelle égalité entre $\inf_{x \in A} f$ et $\inf_{x \in \text{int } A} f$?

Exer. 2.26

(a) Montrer que les fonctions

$$f(x,y) = 5xy, f(x,y) = e^x \sin y, f(x,y) = \arctan(y/x), f(x,y) = \ln(x^2 + y^2)$$

sont toutes solution de l'équation aux dérivées partielles (edp) de Laplace $f_{xx} + f_{yy} = 0$.

(b) Trouver une fonction h telle que $h_x = x + y$ et $h_y = x + 3$.

(c) Soit
$$f = x_1^3 x_2^5 x_3^7 x_4^{13}$$
. Trouver $\frac{\partial^6 f}{\partial x_1 \partial x_3 \partial x_1^2 \partial x_4 \partial x_2}$.

Exer. 2.27 On prend $f(x, y, z) = x^2 \cos(y^3 + z^2)$. Pourquoi sait-on que $f_{zyxxyxyy} = 0$, sans rien calculer? Sait-on aussi que $f_{xyyzzzy} = 0$? (Expliquer)

Exer. 2.28 Une certaine function $f \in C^1(\mathbb{R}^2)$ satisfait

$$f_x = 3x + ay^2$$
, $f_y = bxy + 2y$, $f_y(1,1) = 3$.

Trouver a et b. Trouver ensuite une fonction f qui satisfait les conditions données; est-elle unique?

Exer. 2.29 Y a-t-il une fonction $f \in C^1(\mathbb{R}^2)$ telle que $f_x = e^x \cos y$ et $f_y = e^x \sin y$?

Exer. 2.30 On suppose que u = F(x, y, z) et z = f(x, y), où les fonctions sont de classe C^2 . Trouver une formule qui exprime $\partial u/\partial x$ en fonction des dérivées partielles de F et f. De même pour $\partial^2 u/\partial x^2$.

Exer. 2.31

(a) Soit φ une fonction dans $C^2(\mathbb{R})$, et soit Ω un ouvert compris dans $\mathbb{R}^2 \setminus \{(0,y) : y \in \mathbb{R}\}$. Montrer que la fonction $z = x\varphi\left(\frac{y}{x}\right)$ est solution de l'équation aux dérivées partielles

$$\frac{\partial^2 z}{\partial x^2} \cdot \frac{\partial^2 z}{\partial y^2} = \left(\frac{\partial^2 z}{\partial x \partial y}\right)^2 \quad (x, y) \in \Omega.$$

(b) Soit f une fonction dans $C^2(\mathbb{R}^2)$. Montrer que si $y \in C^2(\mathbb{R})$ est définie implicitement comme une fonction de x par l'équation f(x,y) = 0, où $f_y \neq 0 \ \forall (x,y)$, alors on a

$$\frac{d^2y}{dx^2} = -\frac{f_x^2 f_{yy} - 2f_x f_y f_{xy} + f_y^2 f_{xx}}{f_y^3}.$$

Géométrie différentielle

Exer. 2.32 On s'intéresse à la courbe de niveau \mathcal{C} suivante dans \mathbb{R}^2 :

$$\mathcal{C} = \{(x, y) \in \mathbb{R}^2 : x^3 + xy + 2y^3 = 4\}.$$

- (a) Trouver l'équation de la droite tangente à C au point (1,1).
- (b) Trouver l'équation de la droite qui est normale à \mathcal{C} au point (1,1).
- (c) Prouver que C n'admet aucun point où la droite tangente est verticale ou horizontale.

Exer. 2.33 Trouver l'équation du plan tangent, ainsi que de la droite normale, à la surface $x^2yz + 3y^2 = 2xz^2 - 8z$ au point (1,2,-1).

Exer. 2.34 Montrer que le point (2, 1, 1) est commun aux deux surfaces

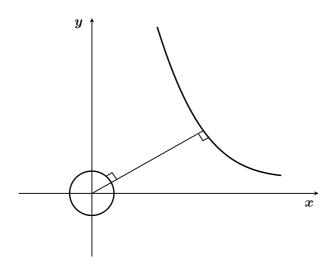
$$x^2 + y^2 + z^2 - 8x - 8y - 6z + 24 = 0$$
, $x^2 + 3y^2 + 2z^2 = 9$,

et que les surfaces sont tangentes en ce point.

Exer. 2.35 Trouver le ou les points sur la sphère $x^2 + y^2 + z^2 = 1$ qui sont le plus proche et le plus loin du point (2,1,2), en montrant que ceux-ci existent.

Exer. 2.36 Soit $f: \mathbb{R}^3 \to \mathbb{R}$ la fonction définie par f(x, y, z) := 4y - x - z. Trouver les extrémums de f sur la sphère $x^2 + y^2 + z^2 = 2$.

Exer. 2.37 Montrer que la distance minimale entre les deux courbes $x^2 + y^2 = 1$ et $x^2y = 16$ vaut $2\sqrt{3} - 1$. (Une indication graphique est donnée ci-dessous.)



Calcul différentiel du second ordre

Exer. 2.38 Soit *D* le demi-plan ouvert $\{(x,y) \in \mathbb{R}^2 : x > 0\}$. On définit $f: D \to \mathbb{R}$ par

$$f(x,y) = 2x^2 + y^2 - xy \ln x - 6y - x.$$

1. Déterminer la direction de la normale à la courbe de niveau f = -4 au point (1,1).

5

- 2. Calculer f(1+h, 1+k) approximativement, à l'ordre 1, quand (h,k) est petit.
- 3. Prouver que f admet un minimum local au point (1,3).

- 4. Quelle est la valeur de f(1+h,3+k) quand une approximation comme celle de la partie (3) est faite ?
- 5. Calculer le développement de Taylor d'ordre deux de f en (1,3). Quelle valeur approximative de f(1+h,3+k) fournit-il ?

Exer. 2.39 Trouver le développement limité d'ordre deux et autour de 0 de la fonction $x \mapsto e^x$. De même pour la fonction $u \mapsto \sin u$. Ensuite utiliser ces deux réponses afin de trouver le développements limité d'ordre deux à l'origine de la fonction $f: \mathbb{R}^2 \to \mathbb{R}$ définie par $f(x,y) = e^x \sin(x+y)$. Comparer la réponse à celle obtenue par un calcul direct.

Exer. 2.40 Déterminer le polynôme de Taylor d'ordre 2 des fonctions suivantes aux voisinages des points donnés en justifiant qu'on y a droit :

Exer. 2.41 On a vu (Exer. 2.19) que la fonction $f(x,y) = x^3 + 3xy^2 - 3x^2 - 3y^2 + 4$ n'admet ni un minimum ni un maximum global, et qu'elle possède quatre points critiques : (0,0), (2,0), (1,1), (1,-1). Classifier ces points critiques.

Exer. 2.42 Soit $f: \mathbb{R}^2 \to \mathbb{R}$ la fonction $f(x,y) = x^3 + y^3 - 3xy$. Trouver et classifier ses points critiques.

Exer. 2.43 Soit $f \in C^2(\mathbb{R}^2)$. En un certain point $P \in \mathbb{R}^2$, la matrice hessienne de f vaut

$$\begin{bmatrix} -7 & 19 \\ 19 & -59 \end{bmatrix}.$$

Autour de P, quelle est la position du graphe de la fonction par rapport à son plan tangent en P?

Fonctions convexes

Exer. 2.44 (a) Prouver que les fonctions $t \mapsto e^t$ et $t \mapsto e^{t^2}$ sont convexes sur \mathbb{R} . La convexité est-elle stricte?

(b) Démontrer que la fonction $g(t) = e^{t^3}$ n'est pas convexe sur \mathbb{R} , mais qu'elle est convexe sur chacun des intervalles $]-\infty,-1[$ et $]0,\infty[$.

Exer. 2.45 Montrer que la fonction $x \mapsto 1/(1+e^x)$ est convexe sur \mathbb{R}_+ . La fonction est-elle convexe sur \mathbb{R} ?

Exer. 2.46 Prouver que la fonction $(x,y) \mapsto xy$ n'est convexe sur aucune boule dans \mathbb{R}^2 , mais que les fonctions $(x,y) \mapsto x^2 + y^2$ et $(x,y) \mapsto x^2 + y^2 + xy$ sont convexes sur \mathbb{R}^2 .

Exer. 2.47 Montrer que les trois fonctions suivantes sont séparément convexes en x (pour chaque y) et en y (pour chaque x): $\exp(x+y)$, $\exp(xy)$, $\exp x + \exp y$.

Lesquelles sont des fonctions convexes sur \mathbb{R}^2 ? (Moralité : la convexité ne se vérifie pas une coordonnée à la fois.)

6

Exer. 2.48 Le DL d'ordre deux en P = (1,2) d'une fonction $f \in C^2(\mathbb{R}^2)$ est donné par $1 + x + 2y + 3xy + 5y^2 + o((x-1)^2 + (y-2)^2)$.

- (a) Écrire le DL en forme polynomiale canonique (c-à-d, en puissances de x-1 et y-2).
- (b) Trouver f(P), $\nabla f(P)$, et $\nabla^2 f(P)$, et écrire le DL en forme matricielle.
- (c) La fonction f est-elle convexe autour du point P?

Exer. 2.49 Est-ce que la fonction f de l'Exer. 2.38 est convexe sur son domaine D?

Exer. 2.50 On sait que le DL d'ordre deux en (0,0) d'une certaine fonction $h \in C^2(\mathbb{R}^2)$ est donné par $h(x,y) = 1 + x + 2y + xy + o(x^2 + y^2)$.

- (a) Trouver le DL d'ordre deux en (0,0) de 1/h (justifier son existence).
- (b) Prouver que la fonction 1/h est convexe dans une boule autour de (0,0), mais que ceci n'est pas le cas pour h.

Exer. 2.51 Soit $Q = (\mathbb{R}_+^*)^2 := \{(x,y) \in \mathbb{R}^2 : x > 0, y > 0\}$ le premier quadrant ouvert, et soit $f: Q \to \mathbb{R}$ la fonction définie par $f(x,y) = \frac{16}{xy} + 4x + 3y^2 - 2e^{1-y}$.

On s'intéresse au problème (P) de minimiser la fonction f sur l'ensemble Q.

- 1. Prouver que la fonction $\varphi(t) := 3t^2 2e^{1-t}$ est convexe sur l'intervalle $]0, +\infty[$.
- 2. Prouver que la fonction g(x,y) := 1/(xy) est strictement convexe sur Q.
- 3. Déduire la convexité stricte de f sur Q à partir de (1) et (2).
- 4. Vérifier que le point (2,1) est un point critique de f.
- 5. Expliquer comment la solution du problème (P) s'ensuit.

Exer. 2.52 Soit $M = [m_{ij}]$ une matrice $n \times n$ qui est symétrique. On définit la fonction $f : \mathbb{R}^n \to \mathbb{R}$ par $f(x) := (Mx) \cdot x = \langle x, Mx \rangle$. (Rappel : un point dans \mathbb{R}^n , lorsqu'il fréquente des matrices, est une colonne $n \times 1$.) Alors f est la *forme quadratique* associée à la matrice M.

- (a) Montrer que $f(x) = \sum_{i,j=1}^{n} m_{ij} x_i x_j$ et prouver que $\nabla f(x) = 2Mx$.
- (b) On sait que $||x||_2^2 = \langle x, x \rangle$; en déduire de la partie (a) que $\nabla ||x||_2^2 = 2x$.
- (c) Déterminer $\nabla^2 f(x)$.
- (d) Prouver que f est convexe ssi $f(x) \ge 0 \ \forall x$.
- (e) Prouver que f est strictement convexe lorsque M est définie positive.

Exer. 2.53 Soit $f \in C^1(\mathbb{R}^n)$ une fonction convexe. Prouver que f ne peut pas admettre exactement deux points critiques.