Feuille d'exercices nº 7

Suites réelles

Exercice 1. Soit A une partie non vide de \mathbb{R} .

- 1. On note $-A = \{ -a \mid a \in A \}$.
 - (a) Montrer que inf A existe si et seulement si sup -A existe et que dans ce cas inf $A = -\sup -A$.
 - (b) Montrer que sup A existe si et seulement si inf -A existe et que dans ce cas sup $A = -\inf -A$.
- 2. Soit $B \subset A$ non vide.
 - (a) On suppose A majoré. Montrer que B possède une borne supérieure et que sup $B \leq \sup A$.
 - (b) On suppose A minoré. Montrer que B possède une borne inférieure et que inf $B \ge \inf A$.

Exercice 2. Déterminer pour les ensembles qui suivent s'ils possèdent des bornes supérieure et inférieure. Le cas échéant, donner ces bornes et décider si ce sont également des extrema.

- (1) [0,1[
- (2) $\{ (-1)^n + \frac{1}{n} \mid n \in \mathbb{N}^* \}$
- (3) $\left\{ \begin{array}{c} \frac{m}{mn+1} \mid (m,n) \in \mathbb{N} \times \mathbb{N}^{\star} \end{array} \right\}$
- $(4) \quad [0,\sqrt{2}] \cap \mathbb{Q}$

Exercice 3.

- 1. Soit $(u_n)_{n\in\mathbb{N}}$ une suite à valeurs dans \mathbb{Z} . Montrer que (u_n) converge si et seulement si elle est stationnaire.
- 2. Soit $D \subset \mathbb{Z}$ un ensemble non vide et majoré. Montrer que D possède un plus grand élément.

Exercice 4. Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle convergeant vers $\ell > 0$.

Montrer qu'il existe $N_0 \in \mathbb{N}$ tel que $\forall n \in \mathbb{N}, N \geq N_0 \Longrightarrow u_n \geq \frac{\ell}{2}$.

Exercice 5. Soit $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ deux suites réelles convergentes.

Montrer que la suite $(\max(u_n, v_n))_{n \in \mathbb{N}}$ converge.

Exercice 6. Étudier la convergence des suites suivantes :

(a)
$$(u_n) = \left(\frac{n}{n^2 + 1}\right)$$

(b)
$$(u_n) = \left(\left(n + \frac{1}{n}\right)\left(n - \frac{1}{n}\right) - n^2\right)$$

(c)
$$(u_n) = \left(\left(n + \frac{2}{n^2} \right)^3 - n^3 \right)$$

(d)
$$(u_n) = \left(\sqrt{n^2 + n} - \sqrt{n^2 + 1}\right)$$

(e)
$$(u_n) = \left(\frac{(-1)^n}{n+1}\right)$$

(f)
$$(u_n) = \left(\frac{2n^6 + 5n + 1}{n^6 - 1}\right)_{n \in \mathbb{N} \setminus \{0, 1\}}$$
.

Exercice 7. Étudier la convergence de la suite $(u_n)_{n\in\mathbb{N}^*}$ définie par :

$$\forall n \in \mathbb{N}^*, \ u_n = \sum_{k=1}^n \frac{n}{\sqrt{n^4 + k}}.$$

Exercice 8. Soit $(u_n)_{n\in\mathbb{N}}$ une suite complexe bornée et $(v_n)_{n\in\mathbb{N}}$ convergeant vers une limite $\ell\in\mathbb{C}$.

- 1. On suppose $\ell = 0$. Montrer que $(u_n v_n)_{n \in \mathbb{N}}$ converge vers 0.
- 2. Qu'en est-il si $\ell \neq 0$?

Exercice 9. Suites arithmético-géométriques.

Soit $(a,b) \in \mathbb{R}^2$ tel que $a \neq 1$ et $u^{(0)} \in \mathbb{R}$. On définit par récurrence $(u_n)_{n \in \mathbb{N}}$ telle que : $u_0 = u^{(0)}$ et, pour tout $n \in \mathbb{N}$, $u_{n+1} = au_n + b$.

- 1. Montrer qu'il existe $\alpha \in \mathbb{R}$ tel que $\alpha = a\alpha + b$.
- 2. Montrer que la suite $(v_n)_{n\in\mathbb{N}}=(u_n-\alpha)_{n\in\mathbb{N}}$ est une suite géométrique.
- 3. En déduire l'expression de u_n pour tout $n \in \mathbb{N}$.
- 4. Étudier la convergence de (u_n) . Indication : on distinguera les cas |a| < 1, |a| > 1 et a = -1.
- 5. Calculer, pour tout $n \in \mathbb{N}$, la somme $\sum_{k=0}^{n} u_k$.

Exercice 10. Soit $\mu \in \mathbb{R}$.

1. Montrer qu'il existe deux réels distincts a et b tels que $(u_n^a)_{n\in\mathbb{N}}=(a^n)_{n\in\mathbb{N}}$ et $(u_n^b)_{n\in\mathbb{N}}=(b^n)_{n\in\mathbb{N}}$ vérifient, pour tout $n\in\mathbb{N}$,

$$u_{n+2} = -2\mu \ u_{n+1} - \left(\mu^2 - \frac{1}{4}\right) u_n \ .$$

2. Montrer que, pour tout $(u_0, u_1) \in \mathbb{R}^2$, il existe $(\lambda_a, \lambda_b) \in \mathbb{R}^2$ tel que

$$u_0 = \lambda_a \ u_0^a + \lambda_b \ u_0^b$$
 et $u_1 = \lambda_a \ u_1^a + \lambda_b \ u_1^b$.

2

- 3. Soit $(u_n)_{n\in\mathbb{N}}$ une suite telle que, pour tout $n\in\mathbb{N},$ $u_{n+2}=-2\mu$ $u_{n+1}-\left(\mu^2-\frac{1}{4}\right)$ u_n .
 - (a) Exprimer, pour tout $n \in \mathbb{N}$, u_n à l'aide de (u_0, u_1, a, b, n) .
 - (b) Étudier la convergence de (u_n) .

Exercice 11.

1. Soit $(a,b) \in (\mathbb{R}_+^*)^2$. Montrer qu'il existe un unique $c \in \mathbb{R}$ tel que

$$18ab - 3ac - bc = 0$$

- et que, de plus, c > 0.
- 2. Il existe donc une unique suite $(u_n)_{n\in\mathbb{N}}\in(\mathbb{R}_+^*)^{\mathbb{N}}$ vérifiant : $u_0=1,\ u_1=2$ et, pour tout $n\in\mathbb{N}$,

$$18u_nu_{n+1} - 3u_nu_{n+2} - u_{n+1}u_{n+2} = 0.$$

- (a) Pour tout $n \in \mathbb{N}$, on pose $v_n = \frac{1}{u_n}$. Vérifier que (v_n) est une suite récurrente linéaire d'ordre 2.
- (b) En déduire une expression explicite de u_n pour tout $n \in \mathbb{N}$.
- (c) Discuter la convergence de (u_n) .

Exercice 12. On rappelle que

- pour tout a > 1 et tout $\alpha \in \mathbb{R}$, $\lim_{n \to +\infty} \frac{n^{\alpha}}{a^n} = 0$;
- pour tout $a \in \mathbb{R}$, $\lim_{n \to +\infty} \frac{a^n}{n!} = 0$;
- pour tout $\alpha > 0$ et tout $\beta > 0$, $\lim_{n \to +\infty} \frac{(\ln n)^{\beta}}{n^{\alpha}} = 0$.

Étudier la convergence des suites suivantes :

- (1) $(u_n) = (n(-1)^n)$
- (2) $(u_n) = \left(\frac{2^n 3^n}{2^n + 3^n}\right)$
- $(3) (u_n) = (\sqrt[n]{n})_{n \in \mathbb{N}^*}$
- (4) $(u_n) = \left(2 + \frac{\sin(n) 4}{n^2}\right)_{n \in \mathbb{N}^*}$
- (5) $(u_n) = (n^{\frac{1}{\ln n}})_{n \in \mathbb{N} \setminus \{0,1\}}$
- (6) $(u_n) = \left(\frac{(-5)^n + n}{3^n 1}\right)_{n \in \mathbb{N}^*}$
- (7) $(u_n) = ((-1)^n + \frac{1}{n})_{n \in \mathbb{N}^*}$

Exercice 13. On considère $(u_n)_{n\in\mathbb{N}}$ la suite définie par $u_0=1$ et

$$\forall n \in \mathbb{N}, \ u_{n+1} = 1 + \frac{(n+2)u_n}{2(n+1)}$$
.

3

- 1. Calculer u_1 , u_2 et u_3 .
- 2. Montrer que : $\forall n \geq 2, u_n \geq 2$.
- 3. Montrer que la suite $(u_n)_{n>4}$ est décroissante.
- 4. En déduire que la suite (u_n) converge et déterminer sa limite.

Exercice 14. Irrationalité de e.

Pour tout
$$n \in \mathbb{N}^*$$
 on pose $u_n = \sum_{p=0}^n \frac{1}{p!}$ et $v_n = \sum_{p=0}^n \frac{1}{p!} + \frac{1}{n \cdot n!}$.

- 1. Montrer que les suites (u_n) et (v_n) convergent vers la même limite.
- 2. Posons $e = \lim_{n \to +\infty} u_n$. Montrer que e est irrationnel.

Exercice 15.

1. Montrer que : $\forall x \in [3, 5], 3 \le 3 + \frac{4}{x} \le 5$.

2. On définit $\varphi : [3, 5] \to [3, 5], \ x \mapsto 3 + \frac{4}{x}$.

(a) Déterminer l'ensemble des points fixes de φ .

(b) Montrer que : $\forall x \in [3, 5], |\varphi(x) - 4| \le \frac{|x-4|}{2}$.

3. On considère la suite $(u_n) \in [3,5]^{\mathbb{N}^*}$ définie par $u_1 = 5$ et, pour tout $n \in \mathbb{N}^*$, $u_{n+1} = 3 + \frac{4}{u_n}$.

(a) Montrer que (u_n) converge et donner sa limite ℓ .

(b) Déterminer un entier $N \in \mathbb{N}^*$ tel que, pour tout $n \in \mathbb{N}^*$ tel que $n \geq N$, u_n soit une valeur approchée de ℓ à 10^{-6} près.

Exercice 16. Soit $(a_n)_{n\in\mathbb{N}^*}\in(\mathbb{R}_+^*)^{\mathbb{N}}$. Pour tout $n\in\mathbb{N}^*$, on note f_n la fonction

$$f_n: \begin{array}{ccc} \mathbb{R} & \longrightarrow & \mathbb{R} \\ x & \longmapsto & 1 - \sum_{i=1}^n a_i x^i \end{array}.$$

1. Montrer que, pour tout $n \in \mathbb{N}^*$, il existe un unique $x_n \in \mathbb{R}_+$ tel que $f_n(x_n) = 0$.

2. Montrer que la suite $(x_n)_{n\in\mathbb{N}}$ est décroissante.

3. En déduire qu'elle converge.

Exercice 17.

1. Montrer que pour tout $x \ge 0$ on $a: x - \frac{1}{2}x^2 \le \ln(1+x) \le x$.

2. En déduire la limite de

$$u_n = \prod_{k=1}^n \left(1 + \frac{k}{n^2}\right).$$

Exercice 18. Somme harmonique

Pour tout $n \in \mathbb{N}^*$, on pose $u_n = \sum_{k=1}^n \frac{1}{k}$.

1. Montrer que pour tout $k \in \mathbb{N}^*$, $\int_k^{k+1} \frac{dx}{x} \leq \frac{1}{k}$.

2. En déduire la nature de la suite (u_n) .

Exercice 19. On considère $(u_n)_{n\in\mathbb{N}}$ la suite définie par $u_0=1$ et

$$\forall n \in \mathbb{N}, \ u_{n+1} = 1 + \frac{(n+2) u_n}{2(n+1)} \ .$$

4

1. Calculer u_1 , u_2 et u_3 .

2. Montrer que : $\forall n \geq 2, u_n \geq 2$.

3. Montrer que la suite $(u_n)_{n\geq 4}$ est décroissante.

4. En déduire que la suite (u_n) converge et déterminer sa limite.

Exercice 20.

Le but de cet exercice est d'étudier la suite récurrente définie par :

$$\begin{cases} u_{n+1} = 2u_n(1 - u_n), & \forall n \ge 0, \\ u_0 \in \mathbb{R}. \end{cases}$$

- 1. Montrer que pour tout $u_0 \in \mathbb{R}$, la suite (u_n) est bien définie.
- 2. Soit $f: \mathbb{R} \to \mathbb{R}$ définie par f(x) = 2x(1-x) pour tout $x \in \mathbb{R}$. Dresser le tableau des variations de f et dessiner son graphe.
- 3. Étudier le signe de f(x) x pour tout $x \in \mathbb{R}$.
- 4. Montrer que si (u_n) converge, alors elle converge vers un point fixe de f. Déterminer les points fixes de f. Que peut-on dire de la suite (u_n) si u_0 est l'un des points fixes de f?
- 5. Montrer que les intervalles $]-\infty,0[$ et]0,1/2[sont stables par f et que f est croissante sur ces intervalles. On dit qu'un intervalle I est stable par f si $f(I) \subset I$.
- 6. On suppose que $u_0 \in]0, 1/2[$. Montrer que la suite (u_n) est alors croissante (On pourra s'aider de la question 3.) En déduire la nature de la suite (u_n) . Même question si $u_0 \in]-\infty, 0[$.
- 7. Étudier la nature de la suite (u_n) lorsque $u_0 \in]1/2, +\infty[$.

Exercice 21.

Le but de cet exercice est d'étudier la suite récurrente définie par :

$$\begin{cases} u_{n+1} = u_n(u_n^2 - 1), & \forall n \ge 0, \\ u_0 \in \mathbb{R}. \end{cases}$$

- 1. Montrer que pour tout $u_0 \in \mathbb{R}$, la suite (u_n) est bien définie.
- 2. Soit $f: \mathbb{R} \to \mathbb{R}$ définie par $f(x) = x(x^2 1)$ pour tout $x \in \mathbb{R}$. Dresser le tableau des variations de f et dessiner son graphe.
- 3. Étudier le signe de f(x) x pour tout $x \in \mathbb{R}$.
- 4. Montrer que si (u_n) converge, alors elle converge vers un point fixe de f. Déterminer les points fixes de f. Que peut-on dire de la suite (u_n) si u_0 est l'un des points fixes de f?
- 5. Montrer que l'intervalle $\left[-\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right]$ est stable par f et que f est décroissante sur cet intervalle.
- 6. On suppose que $u_0 \in [-\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}]$. Montrer que les suites (u_{2n}) et (u_{2n+1}) sont monotones et déterminer leur monotonie en fonction du signe de u_0 (On pourra étudier le signe de $(f \circ f)(x) x$ sur l'intervalle $[-\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}]$). Montrer que ces suites sont convergentes et déterminer leurs limites.
- 7. En déduire la nature de la suite (u_n) lorsque $u_0 \in [-\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}]$.
- 8. On suppose que $u_0 \in]-\sqrt{2}, -\frac{1}{\sqrt{3}}[$. Montrer qu'il existe $n_0 \in \mathbb{N}$ tel que $u_{n_0} \in [-\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}]$. En déduire la nature de la suite (u_n) lorsque $u_0 \in]-\sqrt{2}, -\frac{1}{\sqrt{3}}[$. Quelle est la nature de la suite (u_n) lorsque $u_0 \in]\frac{1}{\sqrt{3}}, \sqrt{2}[$?
- 9. Étudier la nature de la suite (u_n) lorsque $u_0 \in]-\infty, -\sqrt{2}[$ et lorsque $u_0 \in]\sqrt{2}, +\infty[$.

Exercice 22.

En suivant la démarche décrite dans les exercices 20 et 21, étudier les suites définies par $u_0 \in \mathbb{R}$ et $\forall n \in \mathbb{N}, u_{n+1} = f(u_n), \text{ où la fonction } f \text{ est donnée par :}$

1.
$$f(x) = x^2$$

2.
$$f(x) = x^2 + 1$$
,

$$3. f(x) = \sqrt{1+x},$$

4.
$$f(x) = 1 + \ln(x)$$

$$5. f(x) = e^x - 1$$

1.
$$f(x) = x^2$$
, 2. $f(x) = x^2 + 1$, 3. $f(x) = \sqrt{1+x}$, 4. $f(x) = 1 + \ln(x)$, 5. $f(x) = e^x - 1$, 6. $f(x) = \frac{1}{2+x}$.

Pour certaines valeurs de u_0 , la suite (u_n) peut ne pas être définie à partir d'un certain rang.

Exercice 23.

Montrer que:

$$\sqrt{1 + \sqrt{1 + \sqrt{1 + \cdots}}} = 1 + \frac{1}{1 + \frac{1}{1 + \cdots}}$$

Exercice 24. Calcul approché de \sqrt{a} .

Soit a > 0 et (u_n) la suite définie par $u_0 > 0$ et $\forall n \in \mathbb{N}, u_{n+1} = \frac{1}{2} \left(u_n + \frac{a}{u_n} \right)$.

- 1. Étudier la convergence de la suite (u_n) .
- 2. On pose pour tout $n \in \mathbb{N}$, $v_n = \frac{u_n \sqrt{a}}{u_n + \sqrt{a}}$. Calculer v_{n+1} en fonction de v_n , puis v_n en fonction de v_0 et n.
- 3. Montrer que, si $u_0 > \sqrt{a}$, on a $|u_n \sqrt{a}| \le 2u_0 \cdot v_0^{2^n}$. Ainsi, u_n réalise une approximation de \sqrt{a} à la précision $2u_0.v_0^{2^n} \to 0$.

Exercice 25.

Montrer que l'équation $xe^x = n$ possède pour tout $n \in \mathbb{N}$, une unique solution x_n dans \mathbb{R}_+ . Étudier la limite de (x_n) .

Exercice 26.

Soit n un entier naturel et E_n l'équation $x + \tan x = n$ d'inconnue $x \in]-\pi/2,\pi/2[$.

- 1. Montrer que l'équation E_n possède une solution unique notée x_n .
- 2. Montrer que la suite (x_n) converge et déterminer sa limite.

Exercice 27.

Soit n un entier naturel non nul et E_n l'équation : $x^n \ln x = 1$ d'inconnue $x \in \mathbb{R}_+^*$.

- 1. Montrer que l'équation E_n admet une unique solution x_n , et que $x_n \ge 1$.
- 2. Montrer que la suite (x_n) est décroissante. En déduire qu'elle converge et calculer sa limite.

6

Exercice 28. Lemme de Cesàro¹.

1. Soit (u_n) une suite réelle ou complexe. On définit la suite (v_n) dont le terme général est la moyenne arithmétique des n premiers termes de la suite (u_n) :

$$v_n = \frac{u_1 + u_2 + \dots + u_n}{n}.$$

Montrer que si (u_n) converge vers l alors (v_n) converge également vers l.

- 2. Soit (u_n) une suite réelle strictement positive. On suppose qu'il existe un réel α tel que $u_{n+1}^{\alpha} u_n^{\alpha} \rightarrow l$ avec $l \neq 0$. Montrer qu'alors l > 0 et que $u_n \sim \sqrt[\alpha]{nl}$.
- 3. Étudier la suite définie par $u_0 \in \mathbb{R}_+^*$ et pour tout $n \in \mathbb{N}$, $u_{n+1} = u_n + \frac{1}{u_n^2}$. Donner un équivalent simple de u_n lorsque $n \to +\infty$.
- 4. Étudier la suite définie par $u_0 \in \mathbb{R}$ et pour tout $n \in \mathbb{N}$, $u_{n+1} = \sin(u_n)$. Donner un équivalent simple de u_n lorsque $n \to +\infty$.

Exercice 29.

Soit (u_n) une suite réelle minorée. On suppose que (u_n) est sous-additive, c'est-à-dire qu'elle vérifie la propriété :

$$u_{n+m} \le u_n + u_m, \quad \forall (n,m) \in \mathbb{N}^2.$$

Montrer que la suite $\left(\frac{u_n}{n}\right)$ converge vers inf $\left\{\frac{u_k}{k}, k \in \mathbb{N}^*\right\}$.

Exercice 30.

Soit (u_n) une suite réelle. Montrer que (u_n) converge vers $l \in \mathbb{R}$ si, et seulement si de toute sous-suite de (u_n) , on peut extraire une sous-sous-suite qui converge vers l.

^{1.} Ernesto Cesàro. Naples 1859 - Torre Annunziata 1906. Mathématicien italien.