Feuille d'exercices nº 9 Polynômes

Exercice 1.1 (*)

Déterminer tous les polynômes P vérifiant les relations suivantes :

- 1. $P(X^2 + 1) = P(X)$,
- 2. P(2X + 1) = P(X),
- 3. $(1-X)P'(X) P(X) = X^n$, où $n \in \mathbb{N}$,
- 4. $P'(X)^2 = 4P(X)$,
- 5. P(P(X)) = P(X).

Exercice 1.2 (*)

Montrer que le polynôme $P(X) = X^{163} - 24X^{57} - 6$ possède au moins une racine réelle, mais ne possède pas de racine rationnelle.

Exercice 1.3

Soient a, b des réels, et $P(X) = X^4 + 2aX^3 + bX^2 + 2X + 1$. Pour quelles valeurs de a et b le polynôme P est-il le carré d'un polynôme de $\mathbb{R}[X]$?

Exercice 1.4 (Polynômes de Tchebychev) (*)

On considère la suite de polynômes $P_n(x)$ définie par $P_0(X)=1, P_1(X)=X$, et pour $n \in \mathbb{N}$,

$$P_{n+2}(X) = 2XP_{n+1}(X) - P_n(X).$$

- 1. Préciser P_2, P_3, P_4 .
- 2. Déterminer le terme de plus haut degré de P_n .
- 3. Étudier la parité de P_n .
- 4. Montrer que pour tout $n \in \mathbf{N}$ et $\theta \in \mathbf{R}$, on a $P_n(\cos \theta) = \cos(n\theta)$.

Exercice 1.5 (*)

Pour chacun des polynômes suivants, dresser la liste complète des polynômes qui le divisent dans l'anneau de polynômes précisé :

- 1. X + 1 dans $\mathbf{R}[X]$,
- 2. $X^2 1 \text{ dans } \mathbf{R}[X],$
- 3. $X^2 + 1$ dans C[X],
- 4. $X^2 + 1$ dans $\mathbf{R}[X]$.

Exercice 1.6

- 1. Soient P_1, P_2 et Q trois polynômes. Montrer que $P_1 P_2$ divise $Q(P_1) Q(P_2)$.
- 2. Soit P un polynôme. Montrer que P(X) X divise P(P(X)) X.

Exercice 1.7 (*)

Quelles sont les racines (dans C, dans R et dans Q) des polynômes suivants?

- 1. $X^3 7X^2 + 14X 8$,
- 2. $X^n 1$, où n est un entier,

- 3. $X^6 4$,
- 4. $X^4 13X^2 + 36$,
- 5. $X^4 + 6X^2 + 25$.

Exercice 1.8 (*)

- 1. Soit P un polynôme à coefficients réels. Montrer que, pour tout $a \in \mathbb{C}$, on a $\overline{P(a)} = P(\overline{a})$.
- 2. Soit P,Q deux polynômes à coefficients complexes tels que P(x)=Q(x) pour tout $x\in\mathbf{R}$. Montrer que P=Q.
- 3. Soit $P \in \mathbf{C}[X]$ tel que $P(x) \in \mathbf{R}$ pour tout $x \in \mathbf{R}$. Montrer que $P \in \mathbf{R}[X]$.

Exercice 1.9 (*)

Calculer $P(X) = (X^3 - X^2 + 1)(X^2 + X + 1)$. En déduire une preuve que 100011 n'est pas un nombre premier.

Exercice 1.10

Soit P un polynôme, et soient a et b deux réels distincts. Soient λ (respectivement, μ) le reste de la division euclidienne de P(X) par X-a (respectivement, par X-b). Calculer le reste de la division euclidienne de P(X) par (X-a)(X-b). Commenter le cas $\lambda = \mu = 0$.

Exercice 1.11

Établir les identités, pour $n \in \mathbf{N}^*$

$$X^{n} - 1 = (X - 1)(X^{n-1} + X^{n-2} + \dots + X + 1),$$

$$X^{2n+1} + 1 = (X+1)(X^{2n} - X^{2n-1} + X^{2n-2} - \dots + (-1)^p X^p \dots - X + 1).$$

En déduire les résultats suivants

- 1. Si le nombre de Mersenne $M_n = 2^n 1$ est premier, alors n est premier.
- 2. Si le nombre de Fermat $F_n = 2^n + 1$ est premier, alors n est soit nul, soit une puissance de 2.

Exercice 1.12 (*)

Pour quels entiers n le polynôme $X^{2n} + X^n + 1$ est-il divisible par $X^2 + X + 1$ (dans $\mathbf{R}[X]$)?

Exercice 1.13 (*)

Factoriser les polynômes suivants en polynômes irréductibles

- 1. $X^n + X^{n-1} + \cdots + 1$ dans C[X],
- 2. $X^{11} + 2^{11}$ dans C[X] puis dans R[X],
- 3. $X^4 + 4$ dans $\mathbf{C}[X]$ puis dans $\mathbf{R}[X]$, et enfin dans $\mathbf{Q}[X]$,
- 4. $X^4 j \text{ dans } \mathbf{C}[X], \text{ où } j = \exp(2i\pi/3).$
- 5. $X^8 + X^4 + 1$ dans $\mathbf{R}[X]$.
- 6. $X^5 1$ dans $\mathbf{R}[X]$.

Exercice 1.14 (*)

Soit
$$P = (X^2 - X + 1)^2 + 1$$
.

- 1. Vérifier que i est racine de P.
- 2. En déduire alors la décomposition en produit de facteurs irréductibles de P sur $\mathbf{R}[X]$ et sur $\mathbf{C}[X]$.

Exercice 1.15

Soit $a \in \mathbb{R}$, $n \in \mathbb{N}$, et le polynôme $P(X) = (\cos a + X \sin a)^n$. Calculer le reste de la division euclidienne de P(X) par $X^2 + 1$.

Feuille d'exercices nº 9 BIS

Encore des polynômes

Sauf précision contraire, tous les polynômes considérés seront à coefficients complexes.

Exercice 2.1

Déterminer un polynôme P de degré 5 tel que P(X) + 1 soit divisible par $(X - 1)^3$ et P(X) - 1 soit divisible par $(X + 1)^3$.

Exercice 2.2 (*)

On rappelle que $j = e^{\frac{2i\pi}{3}}$

Soit le polynôme $P = X^8 + 2X^6 + 3X^4 + 2X^2 + 1$.

- 1. Montrer que j est racine de ce polynôme. Déterminer son ordre de multiplicité.
- 2. Décomposer P en facteurs irréductibles dans $\mathbb{C}[X]$ et dans $\mathbb{R}[X]$ (on pourra utiliser judicieusement le fait que P est pair).

Exercice 2.3

Soit le polynôme réel $P(X) = X^6 + 4X^5 + 8X^4 + 10X^3 + aX^2 + 4X + 1$. On suppose que -1 est une racine de P.

- 1. Déterminer a.
- 2. Montrer que -1 est racine double de P.
- 3. Montrer que j est racine multiple de P.
- 4. Factoriser P en facteurs irréductibles, d'abord dans $\mathbb{C}[X]$ puis dans $\mathbb{R}[X]$.

Exercice 2.4

Soit θ un réel, et n un entier supérieur ou égal à 2. Démontrer (sans le calculer) que le reste de la division euclidienne de $X^n \sin \theta - X \sin n\theta + \sin(n-1)\theta$ par $X^2 - 2X \cos \theta + 1$ est nul.

Exercice 2.5 (*)

Soient les polynômes $A(X) = X^5 - X^4 + 2X^3 + 1$ et $B(X) = X^5 + X^4 + 2X^2 - 1$. Calculer leur PGCD unitaire. En déduire un couple de polynômes (U_0, V_0) vérifiant l'identité de Bézout. Déterminer tous les couples de polynômes (U, V) vérifiant cette identité.

Reprendre l'exercice avec $A(X) = X^4 - X^3 + 2X^2 - 2X + 1$ et $B(X) = X^3 - X^2 + 2X - 1$.

Exercice 2.6 (*)

Soit n et m deux entiers. Calculer le PGCD unitaire des polynômes $X^n - 1$ et $X^m - 1$.

Exercice 2.7 (*)

Soient A, B et C des polynômes. Montrer que si A et B divisent C, et que A et B sont premiers entre eux, alors AB divise C.

Exercice 2.8

Montrer que, pour tout $n \in \mathbf{N}^*$, on a

$$\prod_{k=0}^{n-1} (X^2 - 2X\cos(2k\pi/n) + 1) = (X^n - 1)^2.$$

Exercice 2.9 (*)

Soit $n \in \mathbb{N}$, $n \ge 1$, et soient z_1, \ldots, z_n des nombres complexes (pas nécessairement distincts). On pose $e_0 = 1$ et, pour k compris entre 1 et n:

$$e_k = \sum_{1 \le j_1 < j_2 < \dots < j_k \le n} z_{j_1} z_{j_2} \cdots z_{j_k}.$$

Voici quelques valeurs des e_k :

$$e_0 = 1$$
, $e_1 = z_1 + z_2 + \dots + z_n$, $e_2 = (z_1 z_2 + z_1 z_3 + \dots + z_1 z_n) + (z_2 z_3 + \dots + z_2 z_n) + \dots + (z_{n-1} z_n)$, $e_{n-1} = z_2 \cdots z_n + z_1 z_3 \cdots z_n + \dots + z_1 \cdots z_{n-1}$, $e_n = z_1 z_2 \cdots z_n$.

1. Pour n=2 (resp. n=3), écrire explicitement e_1 , e_2 (resp. e_1 , e_2 , e_3) et montrer que

$$(X-z_1)(X-z_2) = X^2 - e_1X + e_2$$
 (resp. $(X-z_1)(X-z_2)(X-z_3) = X^3 - e_1X^2 + e_2X - e_3$).

2. Pour n quelconque, montrer que l'on a :

$$\prod_{j=1}^{n} (X - z_j) = \sum_{k=0}^{n} (-1)^k e_k X^{n-k} .$$

- 3. Sachant que 2i et 3-i sont des racines de $X^3 + (i+1)X^2 (8+4i)X 4 + 28i$, calculer la troisième racine complexe de ce polynôme.
- 4. Pour $n \in \mathbb{N}$, $n \ge 2$, déterminer sans calcul $\sum_{1 \le j \le n} e^{2\pi i j/n}$ et $\sum_{1 \le j \le k \le n} e^{2\pi i (j+k)/n}$.

Exercice 2.10

Soit $P(X) = X^4 + 12X - 5$. Décomposer ce polynôme en facteurs irréductibles dans $\mathbf{R}[X]$, en sachant qu'il admet deux racines dont la somme vaut 2.

Exercice 2.11

Quels sont les polynômes $P \in \mathbf{C}[X]$ tels que P' divise P?

Exercice 2.12 (*)

- 1. Factoriser le polynôme $X^2 X + 1$ dans $\mathbb{C}[X]$.
- 2. Soit n un entier naturel. Montrer que $(X-1)^{n+2} + X^{2n+1}$ est divisible par $X^2 X + 1$.

Exercice 2.13 (*)

Soit $P \in \mathbf{C}[X]$ défini par $P(X) = X^3 + 3X^2 + 2X + i.$

- 1. Déterminer les racines du polynôme dérivé P'.
- 2. Montrer que P n'admet aucune racine réelle.
- 3. Déduire des questions précédentes que P admet 3 racines distinctes dans \mathbb{C} , notées α, β et γ .
- 4. Calculer $\alpha + \beta + \gamma$, $\alpha^2 + \beta^2 + \gamma^2$ et $\alpha^3 + \beta^3 + \gamma^3$.

Exercice 2.14

Factoriser le polynôme $2X^3 - (5+6i)X^2 + 9iX + 1 - 3i$, sachant qu'il a une racine réelle.

Exercice 2.15

Soit $P(X) = (X+1)^n - e^{2ina}$ (où $n \in \mathbb{N}$ et $a \in \mathbb{R}^*$) Factoriser P dans $\mathbb{C}[X]$ (Indication : il pourra être utile d'utiliser, en le justifiant, que pour $\alpha \in \mathbb{R}$ on a $1 - e^{i\alpha} = 2ie^{i\alpha/2}\sin(\alpha/2)$).

En déduire la valeur de
$$\prod_{k=0}^{n-1} \sin\left(a + \frac{k\pi}{n}\right)$$
. Combien vaut $\prod_{k=1}^{n-1} \sin\left(\frac{k\pi}{n}\right)$?

Exercice 2.16

On note $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ et α_5 les racines du polynôme $P(X) = X^5 - 29X^4 + 117X^3 - 11X^2 + 4X + 1$. Écrire le polynôme unitaire de degré 5 dont les racines sont $1/\alpha_1, 1/\alpha_2, 1/\alpha_3, 1/\alpha_4$ et $1/\alpha_5$.

Feuille d'exercices nº 9 TER

Polynômes et fractions rationnelles

Exercice 3.1

Déterminer le PGCD unitaire de $X^5 + X^4 + X^3 + X^2 + X + 1$ et de $X^4 - 1$, considérés comme éléments de $\mathbb{Q}[X]$.

Exercice 3.2

Déterminer tous les polynômes de degré 3, divisibles par X-1, et tels que les restes des divisions euclidiennes par X-2, par X-3 et par X-4 soient égaux (mais certainement non nuls).

Exercice 3.3

Soit $n \in \mathbb{N}^*$, et considérons le polynôme à coefficients réels $P(X) = aX^{n+1} + bX^n + c$. Peut-on choisir a, b, c pour que P admette 1 comme racine multiple? Quel est alors l'ordre de cette racine?

Exercice 3.4

Factoriser $X^6 + X^3 + 1$ sous forme d'un produit de polynômes irréductibles de $\mathbf{R}[X]$.

Exercice 3.5

Donner une condition nécessaire et suffisante sur λ , μ pour que X^2+1 divise $X^4+X^3+\lambda X^2+\mu X+2$.

Exercice 3.6

Soit $n \in \mathbb{N}^*$. Montrer que les polynômes $1 + X + \ldots + \frac{X^n}{n!}$ et $1 + X + X^n$ n'ont que des racines simples dans \mathbb{C} .

Exercice 3.7

Soit
$$n \in \mathbb{N}^*$$
. Factoriser le polynôme $1 - X + \frac{X(X-1)}{2} + \ldots + (-1)^n \frac{X(X-1) \ldots (X-n+1)}{n!}$.

Exercice 3.8

Dans cet exercice, on cherche à déterminer tous les polynômes $P \in \mathbf{R}[X]$ tels que P(0) = 0 et $P(X^2 + 1) = P(X)^2 + 1$. Soit P un tel polynôme.

- 1. On définit une suite (u_n) par $u_0 = 0$, et $u_{n+1} = u_n^2 + 1$ pour tout $n \in \mathbb{N}$. Montrer que $P(u_n) = u_n$ pour tout $n \in \mathbb{N}$.
- 2. En déduire la valeur de P.

Exercice 3.9

Soit $n \in \mathbb{N}^*$. Factoriser dans $\mathbb{C}[X]$ le polynôme $(X+1)^n - (X-1)^n$.

Exercice 3.10

- 1. Soient p_1, p_2, p_3 et p_4 quatre entiers. Trouver deux entiers q_1 et q_2 tels que $(p_1^2 + p_2^2)(p_3^2 + p_4^2) = q_1^2 + q_2^2$. **Indication**: manipuler les nombres complexes $p_1 + ip_2$ et $p_3 + ip_4$.
- 2. Soient P_1, P_2, P_3 et P_4 quatre polynômes de $\mathbf{R}[X]$. En s'inspirant de la question précédente, trouver deux polynômes réels Q_1, Q_2 tels que $(P_1^2 + P_2^2)(P_3^2 + P_4^2) = Q_1^2 + Q_2^2$.
- 3. Soit $P \in \mathbf{R}[X]$. Montrer l'équivalence entre les deux assertions suivantes :
 - (a) Pour tout réel x, on a $P(x) \ge 0$.
 - (b) Il existe Q_1, Q_2 dans $\mathbf{R}[X]$ tels que $P = Q_1^2 + Q_2^2$.