Semestre de printemps 2017-2018

Cursus préparatoire: Fondamentaux des mathématiques 2

Feuille nº 8: Matrices

Exercice 1 (*) Soient les matrices $A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}$, $B = \begin{pmatrix} a & b & c \end{pmatrix}$, $C = \begin{pmatrix} \alpha \\ \beta \\ \gamma \end{pmatrix}$. Exercice 8 Soit $A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{pmatrix}$.

Parmi les produits AB, BA, AC, CA, BC, CB, lesquels ont un sens? Calculez-les.

Exercice 2 On considère les deux matrices suivantes :

$$A = \begin{pmatrix} 2 & 3 & -4 & 1 \\ 5 & 2 & 1 & 0 \\ 3 & 1 & -6 & 7 \\ 2 & 4 & 0 & 1 \end{pmatrix}, \qquad B = \begin{pmatrix} 3 & -1 & -3 & 7 \\ 4 & 0 & 2 & 1 \\ 2 & 3 & 0 & -5 \\ 1 & 6 & 6 & 1 \end{pmatrix}$$

Calculer AB et BA. Que remarque-t-on?

Exercice 3

- 1. Soient $A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 3 & 1 & 1 \end{pmatrix}$, $B = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$ et $C = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 1 \\ 0 & -1 & -1 \end{pmatrix}$.
 - (a) Montrer que AB = AC, a-t-on B = C? A peut-elle être inversible?
 - (b) Déterminer toutes les matrices F telles que AF = 0.
- 2. Soit $A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \\ -1 & 4 \end{pmatrix}$. Déterminer toutes les matrices B telles que $BA = I_2$.
- 3. Soient A et B deux matrices carrées $n \times n$ telles que $AB = A + I_n$. Montrer que A est inversible et déterminer son inverse (en fonction de B).

Exercice 4 On considère la matrice $A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$. Calculer A^n pour tout $n \in \mathbb{N}$.

Exercice 5 Soit $A = \begin{pmatrix} 13 & -8 & -12 \\ 12 & -7 & -12 \\ 6 & -4 & -5 \end{pmatrix}$. Calculer A^n pour tout $n \in \mathbb{N}$. Montrer ensuite que A est inversible et calculer A^n pour tout $n \in \mathbf{Z}$.

Exercice 6 Avec la formule du binôme, calculer A^n pour $n \ge 3$, où $A = \begin{pmatrix} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix}$.

Exercice 7 Soit m un réel non nul. On pose $A = \begin{pmatrix} 0 & m & m^2 \\ 1/m & 0 & m \\ 1/m^2 & 1/m & 0 \end{pmatrix}$.

- 1. Calculer (A+I)(A-2I).
- 2. Soit $B = \frac{1}{3}(A+I)$ et $C = \frac{1}{3}(A-2I)$. Calculer B^2 et C^2 . En déduire une expression simple de B^n et C^n pour tout entier n > 1.
- 3. En déduire que pour tout entier $n \ge 1$, $A^n = 2^n B + (-1)^{n+1} C$.

- 1. Calculer A^2 , A^3 et $A^3 A^2 + A I$.
- 2. Montrer que A est inversible et exprimer A^{-1} en fonction de I, A et A^2 .
- 3. Exprimer A^4 et A^5 en fonction de I, A, et A^2 .
- 4. Montrer que pour tout $n \in \mathbf{Z}$, il existe a_n, b_n, c_n tels que $A^n = a_n I + b_n A + c_n A^2$.

Exercice 9 (*) Les matrices suivantes sont-elles échelonnées?

Exercice 10 (*) Calculer le rang des matrices suivantes :

$$A = \begin{pmatrix} 1 & 1 & 3 & 10 & 1 \\ 1 & 2 & 1 & 4 & 7 \\ 1 & 3 & 4 & 13 & 8 \\ 1 & 4 & 2 & 7 & 14 \end{pmatrix} \; ; \; B = \begin{pmatrix} 1 & -1 & 2 & 2 \\ 2 & 1 & -1 & 2 \\ 1 & 1 & 0 & 2 \\ 0 & 1 & 1 & 2 \end{pmatrix} \; ; \; C = \begin{pmatrix} 0 & 0 & 2 & 1 \\ 0 & 1 & -1 & 0 \\ -1 & 0 & 3 & 1 \\ 0 & -1 & -2 & -1 \end{pmatrix}.$$

Exercice 11 (*) Calculer, lorsqu'ils existent, les inverses des matrices suivantes :

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \qquad \begin{pmatrix} 1 & 2 & 1 \\ 1 & 2 & -1 \\ -2 & -2 & -1 \end{pmatrix} \qquad \begin{pmatrix} 1 & \bar{\alpha} & \bar{\alpha}^2 \\ \alpha & 1 & \bar{\alpha} \\ \alpha^2 & \alpha & 1 \end{pmatrix} (\alpha \in \mathbf{C}) \qquad \begin{pmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 1 & \cdots & \cdots & 1 \\ 0 & 1 & \ddots & & \vdots \\ & \ddots & \ddots & \ddots & \vdots \\ & \cdots & 0 & 1 & 1 \\ 0 & & \cdots & 0 & 1 \end{pmatrix} \qquad \begin{pmatrix} 1 & 2 & 3 & \cdots & n \\ 0 & 1 & 2 & \cdots & \vdots \\ & \ddots & \ddots & \ddots & \vdots \\ \vdots & & 0 & 1 & 2 \\ 0 & \cdots & & 0 & 1 \end{pmatrix}$$

Exercice 12 (*) Déterminer sous quelles conditions les systèmes suivants admettent une solution :

$$\begin{cases} x - y + 2z + 2t = a \\ 2x + y - z + 2t = b \\ x + y + 2t = c \end{cases}; \begin{cases} y + z = a \\ x + z = b \\ x + t = c \end{cases}$$

Exercice 13 Résoudre, en fonction du paramètre $m \in \mathbb{C}$, les systèmes suivants d'inconnues complexes :

$$\begin{cases} x - y + z = m \\ x + my - z = 1 \\ x - y - z = 1 \end{cases}; \begin{cases} mx + y + z = 1 \\ x + my + z = m \\ x + y + mz = m^2 \end{cases}; \begin{cases} mx + y + z + t = 1 \\ x + my + z + t = m \\ x + y + mz + t = m + 1 \end{cases}$$

Exercice 14 (*)

1. On considère l'application linéaire $f: \mathbf{R}^3 \to \mathbf{R}^4$ définie par

$$f(x, y, z) = (x + 2y + y, 3x + 4y + z, 5x + 6y + z, 7x + 8y + z).$$

Écrire la matrice de f dans les bases canoniques de \mathbb{R}^3 et de \mathbb{R}^4 , puis calculer une base du noyau et une base de l'image de f. Donner des équations cartésiennes définissant Im f.

2. Idem avec $g: \mathbf{R}^4 \to \mathbf{R}^4$ définie par

$$q(x, y, z, t) = (2x + 2y - z + 7t, 4x + 3y - z + 11t, -y + 2z - 4t, 3x + 3y - 2z + 11t).$$

3. Idem avec $\varphi: \mathbf{R}_2[X] \to \mathbf{R}_2[X]$ définie par $\varphi(P) = (2X+1)P - (X^2-1)P'$.

Exercice 15 Reprendre les exercices 3 et 4 de la feuille 6, et les exercices 3, 6 (questions 1 à 3), 7 et 8 (questions 1 à 3) de la feuille 7 en utilisant les techniques matricielles.

Exercice 16 Soit E un espace vectoriel de dimension 3, muni d'une base $\mathscr{B} = (e_1, e_2, e_3)$. On considère l'endomorphisme u de E dont la matrice dans \mathscr{B} est

$$M = \begin{pmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{pmatrix}.$$

- 1. Montrer que $u^2 = u$.
- 2. Déterminer une base de $\operatorname{Im} u$ et une base de $\ker u$.
- 3. Montrer que $E = \operatorname{Im} u \oplus \ker u$.
- 4. Écrire la matrice de u dans une base adaptée à cette somme directe.

Exercice 17 Soit u l'endomorphisme de \mathbb{R}^3 dont la matrice dans la base canonique est donnée par

$$A = \begin{pmatrix} 1 & 1 & -1 \\ 2 & 2 & -3 \\ 0 & 0 & 1 \end{pmatrix}$$

- 1. Montrer que ker u est une droite, et en donner une base a.
- 2. On note b = (1, 1, 1) et c = (1, 2, 0). Montrer que (a, b, c) est une base de \mathbb{R}^3 et expliciter la matrice de u dans cette base.
- 3. On note E le sous-espace vectoriel de \mathbb{R}^3 engendré par b et c.
 - (a) On note $v = u_{|E} : E \to \mathbf{R}^3$. Expliciter la matrice de v de (b, c) dans (a, b, c).
 - (b) Montrer que cela a un sens de considérer $w: E \to E$ l'induit de u sur E, et écrire la matrice de w dans la base (b, c).

Exercice 18 (*) Soit E un espace de dimension 3, et $e = (e_1, e_2, e_3)$ une base de E. On note $f = (f_1, f_2, f_3)$, où

$$f_1 = e_1 + 2e_2 - 2e_3, f_2 = 4e_1 + 7e_2 - 6e_3, f_3 = -3e_1 - 5e_2 + 5e_3.$$

- 1. Montrer que f est une base de E, et écrire la matrice de passage de e vers f.
- 2. Soit $v \in E$ le vecteur de matrice $\begin{pmatrix} 1 \\ 1 \\ -2 \end{pmatrix}$ dans f. Quelle est sa matrice dans e?
- 3. Soit $w \in E$ le vecteur de matrice $\begin{pmatrix} 1 \\ 1 \\ -2 \end{pmatrix}$ dans e. Quelle est sa matrice dans f?

Exercice 19 Soit u l'endomorphisme de \mathbb{R}^3 dont la matrice dans la base canonique (e_1, e_2, e_3) de \mathbb{R}^3 est :

$$M = \left(\begin{array}{ccc} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & -3 & 3 \end{array}\right).$$

- 1. Montrer que u est un automorphisme de \mathbb{R}^3 et déterminer u^{-1} .
- 2. Déterminer une base $(\varepsilon_1, \varepsilon_2, \varepsilon_3)$ de \mathbf{R}^3 telle que $u(\varepsilon_1) = \varepsilon_1$, $u(\varepsilon_2) = \varepsilon_1 + \varepsilon_2$ et $u(\varepsilon_3) = \varepsilon_2 + \varepsilon_3$.
- 3. Déterminer la matrice de passage P de (e_1, e_2, e_3) à $(\varepsilon_1, \varepsilon_2, \varepsilon_3)$, ainsi que P^{-1} .
- 4. En déduire $u^n(e_1)$, $u^n(e_2)$ et $u^n(e_3)$ pour tout $n \in \mathbf{Z}$.