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Les méthodes a retenir
Cette rubrique constitue une synthése des prin-
cipales méthodes a connaitre, détaillées étape par

étape, et indique les exercices auxquels elles se

rapportent.

Elle propose un plan du chapitre, les
thémes abordés dans les exercices, ainsi
qu’'un rappel des points essentiels du cours

pour la résolution des exercices.
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Enoncés des exercices

De nombreux exercices de difficulté croissante
sont proposés pour s'entrainer. La difficulté de
chaque exercice estindiquée sur une échelle de
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Corrrigés des exercices

Tous les exercices sont corrigés de facon détaillée.
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Du mal a démarrer ?

Des conseils méthodologiques sont proposés
pour bien aborder la résolution des exercices.
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Alors que, récemment, je feuilletais I’'un des manuels de mathématiques qui servait de référence lorsque — voici
quelques décennies ! — j’étais en prépa, me revinrent en mémoire certaines sensations : a la lecture des énoncés des
exercices que j avais jadis cochés, d’une concision a la fois élégante et provocante, je me rappelais le plaisir que j’avais
éprouvé a la résolution de quelques-uns d’entre eux mais aussi, cette étrange amertume, pas encore totalement estom-
pée aujourd’hui, que j’avais ressentie en abandonnant la recherche de quelques-uns, pourtant signalés d’un simple asté-
risque, apres de vains efforts et plusieurs tentatives avortées.

Les volumes Méthodes et Exercices (pour MP d’une part, PC-PSI-PT d’autre part) que J.-M. Monier nous présente
aujourd’hui semblent tout spécialement écrits pour éviter ce traumatisme aux étudiants d’aujourd’hui et de demain.

Chacun de ces ouvrages se compose de deux parties éminemment complémentaires :

* Les méthodes constituent ce guide précieux qui permet a 1’étudiant de passer, confiant, efficacement « coaché », du
cours qu’il apprend a la recherche nécessaire et fructueuse des exercices. Si les théorémes du cours sont les outils de
I’artisan-étudiant, les méthodes et techniques proposées ici en sont les modes d’emploi. Evidemment, ces conseils
sont particulierement soignés et pertinents : ne sont-ils pas le fruit de la longue et multiple expérience de J.-M.
Monier, pédagogue avéré, interrogateur recherché et auteur apprécié de maints ouvrages reconnus ?

Pour une aide encore plus précise, chaque méthode est assortie de la liste des exercices dans lesquels sa mise en ceuvre
est souhaitable.

* Les exercices, nombreux, variés et souvent originaux, couvrent la totalité du programme, chapitre apres chapitre. Ils
répondent parfaitement & un triple objectif :
* permettre d’assurer, d’approfondir et d’affiner, pendant son apprentissage, la compréhension du cours ;
* consolider et enrichir ses connaissances par la résolution d’exercices plus substantiels et de questions plus déli-
cates ;
* réaliser des révisions efficaces et ciblées lors de la préparation des épreuves écrites ou orales des concours.

Ces exercices sont judicieusement classés en quatre niveaux de difficulté croissante, permettant ainsi aussi bien au néo-
phyte de se mettre en confiance en traitant une application directe du cours (niveau 1) qu’a I’étudiant chevronné de se
mesurer a des exercices plus difficiles et délicieusement subtils (niveau 4). On notera avec plaisir que chaque chapitre
est couvert par des exercices des quatre niveaux. L’ abandon douloureux devant une question trop abruptement posée,
dont je parlais au début, ne saurait se produire avec 1’ouvrage de J.-M. Monier : en effet, dans la rubrique « Du mal a
démarrer », il apporte a 1’étudiant(e) qui le souhaite une aide discrete, rappelant ici la méthode adéquate, donnant la
une indication précieuse, ouvrant ailleurs une piste de recherche...

Pour chaque exercice, I’auteur s’est imposé la rédaction complete et appliquée d’un corrigé clair, précis, détaillé, osons
le mot, exemplaire. S’il est louable et formateur de chercher, il est plus gratifiant de trouver ! Et, ici encore, le manuel
permet a chacun, soit de constater que sa solution est celle qui est fournie (et il en éprouve un indicible plaisir !), soit
de s’aider du corrigé pour parvenir, rassuré et guidé, a cette solution.

Qu’il me soit aussi permis d’insister sur I’ampleur de ces volumes, liée a la grande variété des exercices choisis, et qui
est rare a ce niveau d’études, en méme temps que sur leur prix trés modique !
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Préface

Ces ouvrages de consultation particulierement agréable constituent 1’outil efficace et complet qui permettra a chacun,
a son rythme mais en magnifiant ses propres aptitudes, de développer son gotit pour les mathématiques et ses compé-
tences et, tout a la fois, de forger son succes.

Quant a moi, un regret est en train de m’assaillir : pourquoi n’ai-je pas attendu la rentrée prochaine pour commencer
ma prépa ?

H. Durand,
professeur en Mathématiques Spéciales PT*
au lycée La Martiniere Monplaisir a Lyon.
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Programmes PC, PSI, PT

Chapitre 1 : Espaces vectoriels normés

* Les étudiant(e)s de PT n’ont a connaitre que le cas de R” muni de la norme euclidienne : norme euclidienne, dis-
tance associée, boules, parties ouvertes, parties fermées, parties bornées, suites dans R” ; toute suite convergente est
bornée, opérations algébriques sur les suites.

* Les étudiant(e)s de PC n’ont pas a connaitre les notions suivantes : suite de Cauchy, point intérieur, caractérisation
séquentielle des points adhérents ou des parties fermées, image réciproque d’une partie ouverte (resp. fermée) par
une application continue.

Chapitre 2 : Fonctions vectorielles d’une variable réelle

* Pour les étudiant(e)s de PT, les fonctions de ce chapitre 2 sont a valeurs dans R” muni de son produit scalaire usuel
et de la norme euclidienne associée.

Chapitre 4 : Séries

* La CNS de Cauchy de convergence d’une série a termes réels ou complexes ne concerne que les étudiant(e)s de PSI.
¢ Les étudiant(e)s de PT n’ont pas a connaitre la formule de Stirling ni le produit de deux séries numériques.

Chapitre 5 : Suites et séries d’applications

* Ce chapitre ne concerne pas les étudiant(e)s de PT.

* Les étudiant(e)s de PC n’ont pas a connaitre la notion de convergence uniforme. Son intervention est remplacée par
celle de la convergence normale ou par un théoréme sur les séries entieres. Cependant, le programme PC comporte
une étude de 1’approximation uniforme.

Chapitre 6 : Séries entieres

¢ Les programmes PC et PT, pour compenser I’absence de 1’étude de la convergence uniforme, contiennent un théo-
reme sur les séries entieres appelé théoreme de la limite radiale.

Chapitre 7 : Séries de Fourier

* Le programme PT ne comporte pas 1’étude des coefficients de Fourier exponentiels.
* Le programme PT comporte une définition de ay différente de celle figurant dans les programmes MP, PC, PSI. Nous
optons pour les formules classiques qui sont celles de ces derniers programmes, et qui donnent comme série de

Fourier trigonométrique de f : a_20 + Z (an cosnwt + by, sin nwt).
n=1
Chapitre 8 : Equations différentielles

* L’étude des systemes autonomes ne figure qu’en PC.
* Les étudiant(e)s de PT n’ont pas a connaitre la notion de wronskien.

Xl



Programmes PC, PSI, PT

X

Chapitre 9 : Fonctions de plusieurs variables réelles

* ’inégalité des accroissements finis pour une application f : U —> R de classe C! sur un ouvert convexe U de R”
ne concerne que les étudiant(e)s de PSI.

* La condition suffisante d’extrémum local pour une application f : U —> R de classe C? sur un ouvert U de R?, fai-
sant intervenir 1’expression s> — rt, ne concerne que les étudiant(e)s de PT.

Chapitre 10 : Compléments d’algébre linéaire

* Pour les étudiant(e)s de PT, la notion de somme directe n’est au programme que dans le cas de deux sous-espaces
vectoriels d’un espace vectoriel de dimension finie.

* L’étude de I’interpolation du point de vue de 1’algebre linéaire et la dualité ne sont pas au programme PT.

* Les notions de base duale et de base préduale ne sont qu’au programme PSI.

Chapitre 11: Déterminants

e L’étude du groupe symétrique et la définition et les propriétés de la comatrice ne sont qu’au programme PSIL.

Chapitre 12: Réduction des endomorphismes et des matrices carrées

* Les notions de polyndme d’endomorphisme et de polyndme de matrice carrée ne sont pas au programme PT.
* Le théoreme de Cayley et Hamilton et I’étude des idéaux de K[X] ne sont qu’au programme PSI.

Chapitre 13: Espaces préhilbertiens réels

e [’étude des formes bilinéaires symétriques et des formes quadratiques n’est pas au programme PC.
* La notion d’adjoint et la réduction simultanée ne sont qu’au programme PSI.

Chapitre 14 : Géométrie

* L’enveloppe d’une famille de droites du plan, le centre de courbure, la développée d’une courbe du plan et les déve-
loppantes d’une courbe du plan, les surfaces réglées, les surfaces développables, les courbes tracées sur une surface
et satisfaisant une condition différentielle ne sont qu’au programme PT.

* Les cylindres, cones, surfaces de révolution ne sont pas au programme PSI.



Espaces vectoriels

normes

0 Plan M ce chapitre 1 ne concerne que les filieres PC et PSI, et non la filiére PT.

Les méthodes a retenir 2

Enoncés des exercices 6

Du mal a démarrer ? 9 Thémes abordés dans les exercices

Corrigés 12 . .
*  Montrer qu'une application est une norme

* Obtention d’inégalités portant sur des normes

*  Montrer que deux normes sont (ne sont pas) équivalentes

*  Montrer qu’une partie d’un evn est (n’est pas) fermée, est (n’est pas) ouverte
* Manipulation de fermés, d’ouverts

* Calcul de la distance d’un point a une partie

e Utilisation de la continuité, du caractere lipschitzien

*  Montrer qu’une application linéaire f est continue, calculer ||| f]]|

*  Montrer qu’une partie est (n’est pas) compacte, manipulation de parties com-
pactes

e Utilisation d’une suite de Cauchy
*  Montrer qu’une application est un produit scalaire

e Déterminer I’orthogonal d’une partie d’un espace préhilbertien

Points essentiels du cours
pour la résolution des exercices

* Définition de norme, espace vectoriel normé, distance associée a une norme,
inégalité triangulaire renversée, normes équivalentes

» Définition de boule ouverte, boule fermée, parties bornées
e Définition et propriétés de : ouvert, fermé, point adhérent

* Définition de la distance d’un point x a une partie A d’un evn E, caractérisa-
tionde d(x,A) =0

» Définition et propriétés de la convergence des suites, suites extraites

e Définition et propriétés des limites, de la continuité en un point, de la conti-
nuité sur une partie

© Dunod. La photocopie non autorisée est un délit.

* Définition du caractere lipschitzien, lien entre continue et lipschitzienne



Chapitre 1 - Espaces vectoriels normés

Caractérisation des applications linéaires continues parmi les applications
linéaires, définition et propriétés de la norme |||.|||

Définition de la compacité, image continue d’un compact, équivalence des
normes en dimension finie

Définition d’une suite de Cauchy dans un evn de dimension finie, équivalen-
ce logique entre suite de Cauchy et suite convergente dans un tel evn

Définition d’un produit scalaire (réel ou complexe), d’un espace préhilbertien,
inégalité de Cauchy et Schwarz et cas d’égalité, inégalité de Minkowski et cas
d’égalité

Définition et propriétés de I’orthogonalité dans un espace préhilbertien, théo-
réme de Pythagore, procédé d’orthogonalisation de Schmidt, théoréme de pro-
jection orthogonale sur un sev de dimension finie.

Pour montrer qu’une application
N : E — R est une norme sur un

K-espace vectoriel £

Pour exprimer la distance d

Les méthodes a retenir

On abrege :

espace vectoriel en ev
sous-espace vectoriel en sev
espace vectoriel normé en evn.

Revenir a la définition.

Ne pas oublier de montrer que, pour tout x € E, N(x) existe, en par-
ticulier lorsque N (x) est donnée par une borne supérieure ou une
intégrale.

== Exercices 1.18 a), 1.19, 1.24.

Utiliser les formules :

associée a une norme sur un K-ev E

a partir de cette norme, ou pour
exprimer une norme a partir de la

distance associée d sur E

Pour établir une inégalité
faisant intervenir
une norme ||.|| sur un K-ev

V(x,y) € E?, d(x,y) = N(x —y),

Vx e E, N(x) =d(0,x).

Essayer d’appliquer 1’inégalité triangulaire :
V(x,y) € E% x4 yll < Ilxll + 11yl
ou I’inégalité triangulaire renversée :

V(xey) € B2 |lIxl =1yl < llx = Il

== Exercices 1.1, 1.23.
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Pour montrer que deux normes
N, N’ sur un K-espace vectoriel E
sont équivalentes

Pour montrer que deux normes
N, N’ sur un K-espace vectoriel £
ne sont pas équivalentes

Pour montrer
qu’une partie A d’un evn E
est fermée dans E

Pour montrer
qu’une partie {2 d’un evn E
est ouverte dans E

Les méthodes a retenir

® Lorsque E n’est pas nécessairement de dimension finie, revenir a la
définition, c’est-a-dire montrer :

A(a,p) € (Rj)z, V.x € E, aN(x) < N'(x) < SN (x).

== Exercices 1.3, 1.19, 1.24

*Si E est de dimension finie, d’apres le cours, toutes les normes
sur E sont équivalentes.

Chercher une suite ( f,,), dans E — {0} telle que :
N'(fn) N(fn)
—

+ 00 —> 4+ 00.

ou
N(fn) noo N'(fn) noo
== Exercices 1.13, 1.24.

* Si on peut faire intervenir la notion de suite, utiliser la caractérisa-
tion séquentielle des fermés :
la partie A de E est fermée dans E si et seulement si, pour toute suite
(an), dans A convergeant vers un élément x de E,ona:x € A.

== Exercices 1.2 a), 1.11, 1.12

* Essayer de montrer que :
* A est une intersection de fermés de F
* A est une réunion d’un nombre fini de fermés de E
* A est un produit cartésien d’un nombre fini de fermés

° Essayer de montrer que A est I’image réciproque d’un fermé par une
application continue.

* Si le contexte fait intervenir des ouverts, essayer de montrer que
Ce (A) est ouvert dans E.

® Revenir a la définition, c’est-a-dire montrer :
Vx e 2,3r >0, B(x;r) C Q.

° Montrer que Cr () est un fermé de E
* Essayer de montrer que :
* {2 est une réunion d’ouverts de E

== Exercice 1.4 b)

* (2 est une intersection d’un nombre fini d’ouverts de £

* Essayer de montrer que {2 est I’image réciproque d’un ouvert par
une application continue.

== Exercices 1.4 a), 1.20.



Chapitre 1 - Espaces vectoriels normés

Pour manipuler

la distance d(x,A)

d’un point x d’un K-evn E

a une partie non vide A de £

Pour montrer
qu’une application
f:XCE—F
est continue

en un point @ de X

Pour montrer
qu’une application
f:XCE—F
est continue sur X

Pour manipuler une application
f : X C E — F k-lipschitzienne

Pour calculer

la norme |||f]||

d’une application linéaire

f € L(E,F) ou E. F sont des evn
de dimensions finies

Utiliser la définition : d(x,A) = Infd(x,a),
ce qui revient a : ach
Vae A, dix,A) <d(x,a)
Vk e Ry, ((V,a €A, k<d(xa) = k< d(x,A)).
On fera souvent alors intervenir 1’inégalité triangulaire ou 1’inégalité

triangulaire renversée.
== Exercice 1.12.

° Appliquer les théoremes généraux (opératoires) relatifs a la conti-
nuité en un point.

= Exercice 1.14

* Si fest a valeurs dans un produit cartésien, montrer que chaque fonc-
tion-coordonnée de f est continue en a.
® Revenir a la définition, ¢’est-a-dire montrer :

Ve>0,3n>0,Vx € A, (dE(x,a) <= dr(f(2).f(@)) < 5).

e Utiliser la caractérisation séquentielle de la continuité, c’est-a-dire
montrer que, pour toute suite (a,), dans A convergeant vers a, la
suite ( f (an))n converge vers f (a).

° Appliquer les théoremes généraux (opératoires) relatifs a la conti-
nuité sur une partie.

== Exercice 1.5
° Montrer que fest continue en chaque point de X, en se ramenant aux

méthodes vues plus haut.
* Se souvenir que le caractere lipschitzien entraine la continuité.

Utiliser la définition :
VY (x1,x2) € X2, dp(f(x1). f(x2) < kd(x1,x2).
== Exercice 1.6

Montrer d’abord qu’il existe M € R tel que :
VxeE, [[fllr < Mllx|lg,

et on a alors ||| f]]] < M, ou, par définition :
ILfllF
NANl= Sup ————= Sup [|f)llF.
xeE—foy |Ixlle xeB(0:1)
On peut espérer, si M a été convenablement obtenu, que 1’on ait :

AN =M.

On cherchera donc xg € E — {0} de facon que

Ilf (o)l 7

[1xoll£

== Exercice 1.7, 1.17.

=M.
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Pour montrer

qu’une partie X d’un evn E
de dimension finie

est compacte

Pour montrer

qu’une suite (#,), d’un evn E
de dimension finie

est de Cauchy

Pour montrer qu’une application
@ : E x E—> R est un produit
scalaire, ou E est un K-ev

Pour relier un produit scalaire
¢ :E xE — K et la forme
quadratique ¢ : E —> R associée

Pour obtenir des inégalités
dans un contexte
d’espace préhilbertien (E, (. |.))

Pour manipuler
des orthogonaux de parties
dans un espace préhilbertien

(E.(.1))

Les méthodes a retenir

° Essayer de faire apparaitre X comme image directe d’un compact
par une application continue.

° Essayer de montrer que X est fermée et bornée.

== Exercices 1.8, 1.15, 1.21.

Revenir a la définition, c¢’est-a-dire montrer :

p=N
Ve>0,3IN eN, V(p,q) € N?, ({

= d(up,uy) <5).
q=N

== Exercice 1.9.

Revenir a la définition.

== Exercice 1.22.

Utiliser la formule qui exprime ¢ a 1’aide de ¢ :

Vx e E, ¢(x) = p(x,x),

ou, si K = R, une des formules exprimant ¢ a I’aide de ¢ :

1
V(x,y) € E%, p(x,y) = §(¢><x +y) — p(x) — d(»)).

V(x,y) € E% p(x,y) = —(p(x +y) — d(x — ).

B —

Utiliser I’inégalité de Cauchy et Schwarz :

V(xy) € B2 I Iyl < Hlxll Iyl

ou I'inégalité de Minkowski, c’est-a-dire 1’inégalité triangulaire pour
la norme associée au produit scalaire :

V(x,y) € E% flx 4yl < Jlxll + 11yl

* Revenir a la définition de I’orthogonal d’une partie A de E :
At={xeE;VaeA, (x|a)=0}.

e Utiliser les propriétés ensemblistes (globales) de 1’orthogonalité :

*x AC B= A+ > B*

* AL = (Vect(4))"

* AC A EX={0}, {0}t =E

x AN AL {0}

== Exercice 1.16.

* Se rappeler que, d’apres le théoreme de projection orthogonale sur

un sev de dimension finie, si F est de dimension finie, alors :
F®F+t=E.
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=mmme Fnonceés des exercices

o

— 1.3
— 1.4
— 1.5

Inégalité sur des normes

Soient (E,|].||) unevn, x,y,z,t € E. Montrer :

llx =yl +llz =]l < e =zl + 1y = el + e — o]l + 1y — 2]l

Une partie est-elle fermée, est-elle ouverte ?

On note E le R-ev des applications continues bornées de R dans R, muni de ||.||-

a) Est-ce que F = {f eEE;VxeR, f(x) > O} est fermée dans £ ?

b) Est-ce que U = {f cE;VxeR, f(x) > 0} est ouverte dans E ?

Exemple de deux normes équivalentes

On note E = C'([0; 1]; R) et vy,1; les applications de E dans R définies, pour toute f € E,
| |
par: v (f) =|f(0)] +2/ [f'Olde,  va(f) =210 +/ [f'(®)]dr.
0 0

Montrer que v; et v, sont des normes sur E et qu’elles sont équivalentes.

Somme d’une partie et d’un ouvert

Soient E un evn, {2 un ouvert de E.
a) Montrer que, pour tout a € E, la partie {a} + 2 = {a +x;x¢€ !2} est un ouvert de E.

b) En déduire que, pour toute partie A de E, la partie A + 2 = {a +x; (a,x) € Ax Q} est un
ouvert de E.

Fonction continue a deux variables

Soient E,F,G des evn, ACE telle que A#@, BCF telle que B# O, et
f:+A— G, g: B— G deux applications.

Onnote: w:A X B — G, (x,y) —> @(x,y) = f(x)+ g().

Montrer que ¢ est continue sur A X B si et seulement si : f est continue sur A et g est continue
sur B.

Exemple d’application lipschitzienne

Soit (a,b) € (R;)>. On munit R> de la norme ||.||; définie, pour tout (x,y) € R?, par :
lxr.x)h = x|+ %], On note  f:R* — R, (x1.x) —> f(x1.x%) = (axp, bxy).
Montrer que f est lipschitzienne.

Exemple de calcul de la norme subordonnée d’une application linéaire
en dimensions finies

On note f : R? — R, (x;,x5) —> 2x; — 3x,. Vérifier que f est linéaire et calculer ||| f]||
lorsque R? est muni de ||.||o et R est muni de |.|.



© Dunod. La photocopie non autorisée est un délit.

Enoncés des exercices

Une partie est-elle compacte, non compacte ?

sin x

. L i 0
On considere I'application f : R — R, x +— f(x) = x sLox £ et on note :

1 si x=0

1
A:{xeR;f(x):O}, B:{xeR;f(x)}E}.
Est-ce que A est compacte ? Est-ce que B est compacte ?

Suite proche d’une suite de Cauchy

Soient (E,||.||) un evn, d la distance associée a ||.||, (#,)nen, (V,)neny deux suites dans E telles
que : d(u,,v,) —> 0. Montrer que, si I'une des deux est de Cauchy, alors I’autre 1’est aussi.
noo

Caractérisation de 1’égalité de deux boules pour deux normes

Soient £ un K-evn, Ny, N, deux normes sur £. On note, pour tout i € {1,2} :
B ={x € E; Ni(x) < 1}, B ={x € E; Ni(x) < 1},

qui sont la boule ouverte et la boule fermée de E, de centre 0, de rayon 1, pour la norme N;.
Montrer :

(Z)Bi:B£<:>N1:N2 b) By = B, <= N, = N,.

Exemple de partie fermée dans un espace de fonctions

On note E le R-ev des applications de [0; 1] dans R bornées, muni de la norme ||. ||, €t on consi-
dereA={f€E;Vxe[0;1], /W >2+ f(n)}.

Montrer que A est une partie fermée, non bornée, de E.
Exemple de calcul de la distance d’un point a une partie
Onnote E = C([0; 1]; R), muni de ||.||c.
1
a)OnnoteA:{feE; fO)=1 et / f= }
0

1) Montrer que A est une partie fermée de E.

2) Calculer d(0,A). Cette distance est-elle atteinte ?

1
b)MémesquestionspourB:{feE;f(O):O et /f:l}.
0

Exemple de trois normes deux a deux non équivalentes
On note E = C? ([0; 1]; R) et N, N, N les applications de E dans R définies, pour toute

feE, par:

Noo(f) = SUP] [f Ol NL(H) =110+ S[lépl] Lf' ol

xe[0;1

NL(f) = 1O+ O]+ 5;3}1] Lf ().
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a) Montrer que N, N, N sont des normes sur E.

b) Comparer les normes Noo, N/, N2, pour la relation d’équivalence entre normes.

Exemple d’application continue
X

Soit (E,|].]]) un evn. On considere I’application f : E — E, x +—> f(x) = 1+ Ix[]?
x

1
Montrer : a) f est continue sur E b) f(E) = B’(O; z)

Exemple de partie compacte de R?

La partie £ = [(x,y) eR?; X2(x — D(x =3) + Y’ (> —4) = 0} de R? est-elle compacte ?

Exemple de sev F d’un ev préhilbertien E,
tel que F* ne soit pas un supplémentaire de F dans E

1

On note E =C([0;1]; R), muni du produit scalaire (f,g) —>< f,g >:/ fg et on
0

considere F = {f € E; f(0) =0}.

Montrer: a) F* ={0} b)F@®F' £E.

Exemple de calcul de la norme subordonnée d’une application linéaire

en dimension finie

Soient n € N*, A = (g;;);; € M,,(C), f I'’endomorphisme de M,, ;(C) représenté par A dans la
base canonique. Calculer la norme subordonnée de f lorsque M,, | (C) est muni, au départ et a 1’ar-
rivée, de ||.||;.

Exemple de norme sur R?, détermination d’une boule

[x 4+ ty|
Onnote N : R? — R, (x,y) —> Sup ———.
(x,y) ,eu51+t+t2

a) Montrer que N est une norme sur R?.

b) Représenter graphiquement la boule By (0; 1) = {(x, y) € R?; N(x,y) < l} dans le plan
usuel.

¢) Calculer I’aire (dans le plan usuel) de By (0; 1).

Exemple de deux normes équivalentes

On note E le R-ev des applications f :[0; 1] — R de classe C! sur [0; 1] et telles
que f(0)=0. Pour feE, on note N(f)= Sup |f(x)|+ Sup [f'(x)] et
]

xel0;1] xe[0;1
v(f) = Sup |f(x)+ f'(x)|. Montrer que N et v sont des normes sur E, et qu’elles sont équi-

x€[0;1]
valentes.

Séparation de deux fermés disjoints par deux ouverts disjoints

Soient £ un evn, F,G deux fermés de E tels que F N G = &. Montrer qu’il existe deux ouverts
UVdeEtelsque: FCU, GcCV, UNV=g.
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Du mal a démarrer ?

— '[241 Applications continues de limites infinies en +00 et en —o0

Soit f : R —> R une application continue. Montrer que les trois propriétés suivantes sont deux a
deux équivalentes :

(i) L’image réciproque par f de tout compact de R est un compact de R

() lim|f] = +o0 et lim|f]| = +oo
@ (b = ot = 420) s (1 £ = o i = ).

— |42 Exemple de norme issue d’un produit scalaire

Onnote E = C'([0; 1]; R) et N : E —> R I’application définie par :

1 :
Vfek, N(f)=(f0 f’2+f<0>f<1>) .

Montrer que N est une norme sur E.

— Inégalité sur des normes

Soient (E,||.||) unevn, x,y € E — {0}. Démontrer : ‘

___H 20l —yll
el Tyl Max Q] 1yID

— Exemple de norme paramétrée par une fonction

Onnote £ = C([O; l],R) et, pour p € E, Ny : E —> R D'application définie par :

VfeE, Nyo(f)=Ifello-
a) Montrer que Ny est une norme sur E si et seulement si (¢~ ({0}))° =

b) Montrer que Ny et|| - || sont des normes sur E équivalentes si et seulement si ooy =o

— [ 2457| Endomorphismes continus tels que z ov —vou =e

Soit E un evn distinct de {0}. On note e = Id.
On suppose qu’il existe (u,v) € (LC(E))2 telque: uov—vou=e.
a)Montrer: Vn e N, uov"™ —v" ' ou=m+ )"

b) Endéduire : Vn € N, (n + DI[[v" I < 2 [l 0] V" []].

c) Conclure.

mssee Du mal a démarrer ?

m Appliquer convenablement, plusieurs fois, I'inégalité tri- b) Montrer que U n'est pas ouvert, en trouvant f € U telle que,
angulaire. pourtoute € RY, B(f;e) ¢ U.

a) Utiliser, par exemple, la caractérisation séquentielle des 1) Montrer que v; est une norme sur E en revenant a la
fermés. définition d’'une norme.
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2) De méme pour v;.
3) Remarquer que, pour toute f € E :

vi(f) < 2012(f) et n(f) < 2vi(f).

a) Considérer, par exemple, pour a € E fixé, la translation
de vecteur —a :

T, E—E, y—y—a.
b) Exprimer A + 2 a l'aide des {a} + 2, a € A.

1) Si ¢ est continue sur A x B, exprimer fa l'aide de ¢,
pour déduire que fest continue sur A.

2) Si f'est continue sur A et g est continue sur B, exprimer ¢ a
l'aide de f,g et des projections canoniques, pour déduire que ¢
est continue sur A x B.

Evaluer, pour (x1,%2), (y1,y2) € R?:

[1f Ger,x2) = f 1,y

Pour (x1,x2) € R?, majorer convenablement | f (x;,x2)| a
I'aide de Max (|xi|,|x2]), et chercher (xj,x2) # (0,0) de facon
qu'il y ait égalité.

1) A n'est pas bornée.
2) B est fermée et bornée.

Majorerd(v),,v,) enintercalantu, et u, et utiliser les deux
hypothéses :la suite (u,),en est de Cauchy et d (u,,v,) —> 0.
noo

a) * Un sens est immédiat.

* Si B{ = B}, pour x € E — {0}, considérer

1
X, qui est
, , Ni(x)
dans B}, donc dans B;.

b) + Un sens est immédiat.

1
+Si By = By, pour x € E — {0}, considérer Wx, qui n'est
X
pas dans B, donc pas dans B;. !

1) Utiliser, par exemple, la caractérisation séquentielle des
fermés.

2) Montrer:Vt € [2; +oof, e =2 +1.

En déduire que toute application constante supérieure ou égale
a2estdans A.

a) 1) Utiliser, par exemple, la caractérisation séquentielle
des fermés.

2) « Montrer :d(0,A) > 1.

»Considérer f : [0; 1] — R, x+—— 1 —2x.

b) 1) Comme en a)1).

2) » Montrer: d(0,B) > 1.

+ Considérer, pour tout n € N*, une application g, continue, affi-
ne par morceaux, constante égale a 1 sauf pres de 0, telle que
gn(0) = 0. Déduire d(0,B) = 1.

» Montrer que d(0, B) n'est pas atteinte, en raisonnant par l'ab-
surde.

a) Revenir a la définition d'une norme.

b) 1) Remarquer d’abord :
Vf€E, Noo(f) < NG(f) < NG(f).
en utilisant I'inégalité des accroissements finis.

2) Trouver une suite (f,), dans E — {0} telle que, par exemple,

NiU)
Noo(fn) wey
b) )R VieR o]
marquer : , —— < -,
emarque + Ty S 3

1

et déduire l'inclusion f (E) C B/<0; >
2) Réciproquement, pour y € B’(O; 5) fixé, chercher A € R
pour que f(Ay) = y.

1) Montrer que E est fermée, comme image réciproque
d'un fermé par une application continue.
2) Montrer que E est bornée, en utilisant les coordonnées
polaires par exemple.

a) Soit g € F+. Considérer I'application

f:00;1] — R, x — xg(x)

qui est dans F, et traduire < f,g >=0.

Pour X = '(x1,...,x,) € M,,.1(C), majorer convenablement

[1.£(X)||1 en faisant intervenir || X||;.
n

Ayant obtenu le coefficient M = Max Z'aiil’ chercher
ISjsn

X # 0 de fagon que : || f(X) [l = M||X|]:-

a) + Montrer d’abord, pour tout (x,y) € R?, I'existence de
[x + zy|

m est bor-

N (x,y),en montrant que l'application r —>
née sur RR.

* Revenir a la définition d’'une norme.

b) Transformer la condition N(x,y) < 1 en:

X +ty

VieR, —1< ——~2_
S 442

puis utiliser les résultats sur les trindbmes réels.

¢) Calculer I'aire comme intégrale double de la constante 1.
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1) Montrer que N et v sont des normes. Pour montrer
I'implication v (f) =0 = f =0, utiliser la résolution d'une
équation différentielle.

2) « Montrer : VfeE, v(f)<N).
« Pour f € E, considérer
g:[0;1] — R, x+—e* f(x),
exprimer g’, puis déduire des majorations de [g(x)],

[ £, |f/(x)], alaide de v (f).

Considérer I'application
¢ E— R, x+—dx,G)—d(x,F)

et les parties U = ¢~ 1 (]0; +o0[), V = ¢~ !(] — 00; 0[) de E.

(i) = (ii) : Appliquer I'hypothése au compact [—A ; A],
pour A € RY fixé.

(iif) = (iii) : Utiliser le théoréme des valeurs intermédiaires.

(i) = (i) : Soit K un compact de R. Il existe A € R tel que:
K C [—A; A]. Appliquer I'hypothése pour déduire que £~ (K)
est borné, puis est compact.

Vu I’exposant% et le carré dans l'intégrale, on peut conjec-
turer que N soit une norme associée a un produit scalaire.
Montrer que l'application ¢ : E x E —> R définie, pour tout
(f.g) € E x E par:

! 1
o9 = [ 18+ @e) + fDe0)

est un produit scalaire et que N est la norme associée a ¢.

Du mal a démarrer ?

Dans le premier membre de I'inégalité demandée, interca-

ler, par exemple, m puis utiliser I'inégalité triangulaire et les
y
roles symétriques de x et y.

a) Montrer que, pour ¢ € E fixée, N, vérifie une partie de la
définition d’une norme.

1) Supposer (47! ({0}))° = @. Montrer qu'alors :

VfeE, (No(f)=0= f=0).
2) Supposer (¢~!({0}))° # @.Construire un élément f de E tel
que: f#0 et Ny(f)=0.
b) Soit ¢ € E fixée.
1) Supposer ¢~ ({0}) = &. Montrer qu’alors N, et ||.||« sont

. o 1
equwalentes, en faisant intervenir —.
12

2) Supposer ¢~ 1({0}) % @. Construire alors une suite (fy)nen-
[ fnlloo

dans E — {0} telle que : —
Ohtelleque: 3 ) 7o

a) Récurrence sur n.
b) Utiliser a) et la sous-multiplicativité de |||.]]].

¢) * Montrer, en utilisant a), qu’on ne peut pas avoir :

VneN, v"#0.

« Considérer I'ensemble {n € N; v" = 0}, son plus petit élé-
ment, et obtenir une contradiction a l'aide de b)}.

On conclut qu'il n’existe pas de tel couple (u,v).

11



12

On applique I'inégalité triangulaire, de deux fagons a
chaque fois, pour majorer ||x — y|| et pour majorer ||z — || :

{le—yll S e =zl + Iz =yl
e =yl < flx =2+ [lr =yl
lle =2l < llz — x|+ []x — 2]
e

llz =2l < llz = Il + [y —7ll.

Ensuite, on additionne ces quatre inégalités, on simplifie par
un coefficient 2, et on obtient I’inégalité voulue :

[lx =yl + llz — 2]
Sl =zl + 1y — el + lx —2ll + [y —zll.

a) Nous allons montrer que F est fermé dans E en uti-
lisant la caractérisation séquentielle des fermés.

Soient (f,)nen une suite dans F, et f € E tels que f, — f
dans (£, [].[|oo0)-
Ona:VxeR, |fi(x) = fOI < fa = flloo —>0,

donc : Vx eR, f,(x)— f(x).

Comme, par hypothese :
VxeR,VneN, f,(x) >0,

il s’ensuit, par passage a la limite dans une inégalité lorsque
I’entier n tend vers I’infini :

Vx eR, f(x) =0,
etdonc: f € F.

On conclut que F est fermé dans E.

b) Nous allons montrer que U n’est pas ouvert dans £, en trou-
vant f € U telle que, pour toute € R* , onait: B(f; ) ¢ U.

Considérons f : R — R, x — f(x) = ——.
x>+ 1
Il est clair que f est continue et bornée, donc f € E.

Soit & € R*. fixé.

€
Considérons I’application g = f — er

Ona: geE. IIf —gll=7 <&
donc g € B(f; €).

Mais g ¢ U car g(x) —+> —% < 0, donc g prend des valeurs
X—> 400

<0.

= Corrigés des exercices

Cecimontre : Ve € R}, B(f.e) ¢ U,

et on conclut que U n’est pas ouvert dans E.

1) « 1l est clair que, pour toute f € E, v(f) existe.

* On a, pour tout @ € R et toute f € E :
1
vi(af) = [(af)(0)] +2/0 [(af) ()] dt

1
= lof [f(O)] + 2IOZI/ |f'®]dt = |alvi (f).
0
* On a, pour toutes f,g € E :

v(f+8)

1
= |(f+g)(0)|+2/0 I(f + ) (®)]dt
1
=1f(0) + ()] +2/0 |f'@) + &' dt

1
<qun+mwm+2/(uvn+mhmm
0

1
=<U@N+2A|fﬂﬂm)
1
+<mm»+zﬁ|gUMM)

=v1(f) +vi(g9).

* Soit f € E telle que v (f) = 0.

1
On a alors : |f(0)|+2/ | f'()|dt =0,
0

1
donc £(0) = 0 et / Lf' ()| dt = 0.
0

Puisque | f’| est continue et > 0, il en résulte f' = 0, donc f
est constante, f = f(0) = 0.

Ceci montre que v; est une norme sur E.

2) De méme, v, est aussi une norme sur E.

De maniere plus générale, pour tout (a,b) € (Rj)z,
1
I’application f +——> a| f(0)| + b/ | f/(2)| dt
0
est une norme sur E.

3) On a, pour toute f € E : %ul(f) < n(f) < 2u(f),

donc les normes v; et v, sur E sont équivalentes.



a)Soit a € E.
Considérons I’application 7_, : E — E, yr—y —a
qui est la translation de vecteur —a.
Ona,pourtouty € E:yefal+ R <= y—ac
donc: {a}+02={yeE; 1.0 en}=11N0.
Ainsi, {a} + {2 est I’'image réciproque de I’ouvert {2 par I’ap-

plication continue 7_,, donc {a} + 2 est un ouvert de E.

b)Soit A C E. Ona:A+(z=U({a}+Q).

acA

Ainsi, A + (2 est une réunion d’ouverts de E, donc est un ou-
vert de E.

1) Supposons ¢ continue sur A X B.

Puisque B # @, il existe b € B. On a alors :

VxeA, f(x)=pb)—gb).
Comme ¢ est continue sur A X B, par composition,

I’application x — ©(x,b) est continue sur A, puis, par ad-
dition d’une constante, f est continue sur A.

De méme, g est continue sur B.

2) Réciproquement, supposons f continue sur A et g continue
sur B.
Notons: pr,: Ex F — E, (x,y)— x,
pr,: EXF — F, (x,y)F—y

les deux projections canoniques, qui, d’apres le cours, sont conti-
nues sur £ x F.

@ = fopr +gopn,

donc, par composition, ¢ est continue sur £ X F.

On a alors :

Soient (¢1,%2), (1,y2) € B2, On a:
[|f@1.x2) = FO1y)||, = |[(@x2.bx1) — (ay2.by1)| ]
= ||(axz — ay,, bx; — byy)||,
= [|(atx2 = y2), by — y0)|l
= la(xa — y2)| + |b(x1 — y1)| = alxa — ya| +blx; — 31| .
En notant k = Max (a,b) € R, on adonc :
|| f &1.x2) = fOry2)] |, < klxa = yal + klxy — yi
= k||Ger = yi. x2 — w2 |, = k| |x1.x2) — G132 |-

On conclut que f est lipschitzienne.

* Il est clair que I’application
iR — R, (x1,x) — 2x; — 3x,

est linéaire.

On a donc, par définition de la norme subordonnée :

| f (x1,%2)]
NFll= Sup =
(x1,x2)€R2—{(0,0)} [1Cer,%2) [ |oo
* On a, pour tout (x1,x;) € R?:
| f (1,20 = [2x1 — 3x2] < 22| + 3|x2]
q < SMax (|xq],|x2]) = 51[Ce1,x2) [|oo-

Il en résulte, d’apres la définition de la norme subordonnée :
A< S

* De plus, en notant X = (1,—1), ona X # (0,0) et:
fCOl _ S

IXlloo 1

On conclut : ||| f]|| = 5.

Par théoremes généraux, f est continue sur R*, et,

sin x
—,1=70),

comme f(x) =

f est continue en 0, donc f est continue sur R.

Tracons d’abord I’allure de la courbe représentative de f :

_M-n» ol 5 -n\/nx

1)On a: A =nZ* donc A n’est pas bornée, donc n’est pas
compacte.

1
2)ePuisque B = ' <[5 ; +00 D que f est continue et que

|:§ ; +oo|:, est fermé dans R, d’apres le cours, B est fermée

dans R.

*On a, pourtoutx € R :

sin x

x| > 2= |f )] = <

1
X

donc : B C [—2; 2], donc B est bornée.

Ainsi, B est une partie fermée bornée de R, donc B est
compacte.
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Supposons, par exemple, que (¢, ),y est de Cauchy.
Soite > 0.
Puisque d(u,,v,) — 0, il existe N, € N tel que :
noo

Yn > Ny, du,,v,) < %
D’autre part, puisque (#,),cn est de Cauchy, il existe N, € N
tel que :

€

3

Notons N = Max (N;,N,;) € N. On a alors, pour tout

(p.q) e N’telquep > Netq > N :

Vp2=N, Vg 2= Noy d(up,ug) <

d(vy,v,) < d(vp,up) + dup,ug) +d(ug,v,) <3= =¢.

W m

Ceci montre que (v,),en est de Cauchy dans E.

a) * Limplication Ny = N, = B = B} est évidente.
* Réciproquement, supposons B| = Bj.

Soit x € E tel que x # 0.

* Considérons y = x.Ona:

Ny (x)

1 1
) = Nl(N.(x)x) AT))

donc y € B; = B, d’ou N>(y) < 1.

Ni(x) =1,

Mais : Nz(y) = N2< Nz(x).

;x) _ L
M) T MW

On a donc : No(x) < 1, d’ou: Na(x) < Ny(x).

Ni(x)
+ Puisque N, et N, jouent des roles symétriques, on a aussi
Ni(x) < Na(x), d’ol: Ny (x) = Na(x).
Enfin, pour x = 0, I’égalité N, (x) = N,(x) est triviale.
On conclut : Ny = N,.
b) » L’'implication N; = N, = B, = B, est évidente.
* Réciproquement, supposons B; = B;.

Nous allons adopter la méme méthode que dans la solution
de a).

Soit x € E tel que x # 0.

* Considérons y = x. On a alors N;(y) =1, donc

Ni(x)

y & Bi=By,dou Np(y) > 1.
Mais N,(y) = ;Nz(x), d’ou N>(x) = N;(x).

Ni(x)
+ Puisque N, et N, jouent des roles symétriques, on a aussi
Ni(x) < Na(x), d’oti: Ny (x) = Na(x).
Enfin, pour x = 0, I’égalité N;(x) = N,(x) est triviale.
On conclut : Ny = N,.

1) Nous allons montrer que A est une partie fermée de £
en utilisant la caractérisation séquentielle des parties fermées.

Soient (f,,)qen une suite dans A, f € E tels que f, — fdans
noo

(E,]]-llo0) -
On a, pour tout x € [0; 1] :

1faC) = FOOIS o = fllo — 0,

donc : f,(x) — f(x).
D’autre part :
Vx e[0;1],VneN, e"® >24 f,(x).

On déduit, par passage a la limite dans une inégalité lorsque
I’entier n tend vers I’infini :

Vxel[0;1], ¢/® =24+ f(x),

etdonc: f € A.

Ceci montre que A est une partie fermée de E.
2) e Montrons : V¢ € [2; +oo[, e =2 +¢t.
L’ application

p:[2;4+00[— R, t+— o) =¢" — 2+1)

est dérivable et, pour toutz € [2; +oof :
PYt)=¢e—-1>0,

donc ¢ est strictement croissante.
De plus : p)=¢e*—4>0.
On déduit : Vit e[2;+ool, o) =0,

d’ou I’inégalité voulue.

e Soient? € [2; +ool et f; : [0; 1] — R, x —— ¢ ’applica-
tion constante égale a z. On a alors :

Vieitool (ficd et IIfill=ll=1),

ce qui montre que A n’est pas bornée.

a) 1) Nous allons montrer que A est une partie fermée
de E, en utilisant la caractérisation séquentielle des fermés.

Soient (f,,),<n une suite dans A, f € E tels que f, —> fdans
(E,I-llo0) -
*Ona:|f,(0) = fFOI<Ifu = fllo —0,

donc : £, (0) — f(@0).

Mais:Vn e N, f,(0)=1, dou: f(0)=1.



*Ona:

/Olfn—folf‘=‘/ol(fn—f)’

1
<f0 lfo = IS A= 0lfs = flloo —0,

1 1
donc : / f,,—>/ f.
0 nee Jo

1 1
Mais: Vn € N, / fn=0, dOﬂCi/ f=0.
0 0

On déduit : f € A.

On conclut que A est une partie fermée de E.

2)Soitf € A.

Ona:||f —0llx=Ilfllo = [fO)] =1,
donc : d0,A) 2 |If = 0llx = 1.

e Lapplication f : [0; 1] — R, x — 1 —2x
estdans A et: d(0,1) = || fllo = 1.

On conclut : d(0,A) = 1, et cette borne est atteinte, par f
ci-dessus et représentée graphiquement ci-apres.

y

b) 1) On montre que B est une partie fermée de £ par la méme
méthode qu’en a) 7).
2)eSoitf € B.Ona:
1 1
1 =/0 f S/O 1< A=0lfllc = Il = Ollscs

donc : d(0,B) > 1.

* Considérons, pour tout n € N*, I’application

gn : [0; 1] — R définie, pour tout x € [0; 1], par :

S | =

na,x si 0<x <
gn(x) = s

a, si — <x <

S
—_

1
ou a, est a calculer pour que / @ = Il
0

Ona:

1 a, 2n
gh=l—=a——=1aq,= 5
0 2n — 1

2n

Onaalors:Vn e N*, g, € Bet:

2n
||gn_0||oo:an: > 1,
2n — 1 noo

d’ou I’on conclut : d(0,B) > 1.

* Supposons qu’il existe f € B telle que d(0,B) = || f]]c-
Ona:

1 1
< - = - = —_ =
0\/0(||f||oo ) = 1flle /Of 1-1=0,

donc, puisque ||f|loc — f est continue et >0, on a :
[1flloo — f =0, f =1|flleo, f st une constante.

1
Mais f(0) = 0, donc f = 0, contradiction avec / f=1
0

Ceci montre que d (0, B) n’est pas atteinte.

a) * D’abord, E est bien un R-ev, et Ny, N/, N/, sont
définies, car, si f € E, alors f, f, f” sont continues sur le seg-
ment [0; 1], donc sont bornées, d’ou I’existence de

Neo (), N (), N (f) -
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Nous allons montrer que N7, est une norme sur E, les preuves

pour Ny, et N/ étant analogues et plus simples.

* On a, pour toutes f,g € E :

NL(f+8)

=I(f + 9O +I(f + ) 'O + S[%p” I(f + 8" ()]

(£ O]+ 1gO1) + (11O + 18 0)])

+ Sup (If"()l +1g"()l)

x€l0:1]
L(IFO+1gO)1) + (11O + 18" O)])

+ Sup [f"(x)[+ Sup lg" ()]

xe[0:1]

=(1f O+ 1f'©)] + Sup |f"(x)I)

xel0;1]
+ (16O +1g' ) +x§[%ﬁ] lg" (x)1)
=N () + NL(®).
*On a, pour tout @« € R et toute f € E :
N (af) = [(aH O]+ [(af) ) +x§;ég] (e f) ()]
= lal | f O]+ lal [£/(0)] + |06|X§[13;I:] Lf" ()] = laING(f) -

* Soit f € E telle que N, (f) =0.
On aalors : [ f(0)| +]f"(0)| + Sup |f"(x)| =0,
— ——

x€[0;1]
>0 =20 —_—
>0
donc £(0) =0, £/(0) =0, Sup |f"(x)| =0.
xel0;1]

Il en résulte £ = 0. Il existe donc (a,b) € R? tel que :

Vx e[0;1], f(x)=ax+b.

f0)=0 a=0
<:>{ dod f = 0.

f(0)=0 b=0

On conclut : No, N/, N2, sont des normes sur E.

De plus : {

b)1)eSoitf € E.
Pour tout x € [0; 1], d’apres I'inégalité des accroissements finis,
appliquée a fsur [0; x],ona:

Lf () = £ < x Sup [f/(1)] <

te[0;x]

1 Sup [f'(D],
xel0;1]

puis :

IF 1 =[£O) + (f&x) = fO)]
SO+ 1f ) — fO)]
S IfFOf+ Sup Lf'O] = N ().

tel0;1

Il en résulte : Noo (f) < N ().
eDeméme:V feE, N_(f)<NL().

2) Montrons que les normes Noo, N/, NZ, sont deux a deux
non équivalentes :

Considérons la suite ( f,,),en+ d’applications de [0; 1] dans R
définies, pour tout n € N*, par :

Vx e€[0;1], fu(x)= sin(mnx).

On a, pour toutn € N*, f, € E et, pour tout x € [0; 1] :
Jfu(x) = sin(mnx), f,(x) = 7ncos (mnx),
1 x)

= —7°n” sin (7nx) ,

d’ou, pour tout n € N* :

Noo(f;z) =1, N;Q(fn) =Tn, Né;(fn) =Tn +7r2n2
Il s’ensuit :
N/ n N// "
Oo(f)=7m 00, fo(f)=1+7m—>+oo,
Noo(fn) wew Noo(,fn) noo
N >
oc(f _ +772n2 + 0.
Noo(fn noo

NL(f) NL(F) NGO
Noo(f)" Ni(f)" Noo(f)
nés lorsque f décrit E — {0}, donc les normes N, N.,, N,
sont deux a deux non équivalentes.

Ainsi, les rapports ne sont pas bor-

a) Lapplication
X
L+ ||x|?
est continue par opérations sur les applications continues.
[1x1] 1

_ B = =
[f Ol = e S 2

1 —(1-0?

t
car : Vt€R+,m_§:m\

dou: f(E)C B/<0; %)

f1E—E, x— f(x)=

b)I)Ona: VxekE,

1
2) Réciproquement, soit y € B’(O; —).

2
Cherchons A € R pour que f(Ay) =y.Ona:
Ay
f) =y ———5 =
L+ 1Ayl
— IyIPA® =2 +1=0.



Si y = 0, on peut choisir A = 0.
Supposons y £ 0. ’équation du second degré précédente, d’in-
connue A € R, admet au moins une solution puisque son dis-

criminant 1 — 4||y||> est > 0, car ||y|| <

Ceci montre : B( 1) C f(E).
B’ 0'l
(0:3)

Le résultat est apparent dans le cas £ = R muni de la norme
|.| usuelle :

On conclut : f(E) =

Remarque :

y A

LW
X !

Représentation graphique de f : x —

1 1 1
—;=|=B10;=).
22 2

=Y

X
1+ x2

On aici: f(R) = [—

1) L’application
fiRP—R, (x,y)— 2*@x—DE—3)+y’(*—4)
est continue et {0} est fermé dans R, donc E = £~'({0}) est

fermé dans R?, comme image réciproque d’un fermé par une
application continue.

2) Montrons que E est bornée, en utilisant les coordonnées po-
laires.

Notons, pour (x,y) € R?: p = \/x2 4 y2.
On a, pour tout (x,y) € R?:
(x,y) €E & x* —4x* +3x> +y* — 4y =0

— xt 4yt = 4xd —3x2 + 42,
d’ou, pour tout (x,y) € E :

= (¢ +y)? =x* + 2% +y* <26:* +)%)

=2(4x® — 3x? +4y%) < 2(4p° +4p?) =8p° + 8p°.
En supposant p >

pt < 16p°, d’ou: p < 16.

Ceci montre : V (x,y) € E, \/m < 16,

donc E est bornée.

1, on a dong, si (x,y) € E :

Ainsi, E est une partie fermée bornée de R?, qui est un evn de
dimension finie, donc E est compacte.

a) Soit g € F*.
Considérons I’application
f:00;1] — R, x — f(x) =xg(x).
Onaf € F,donc:

1 1
0=<f,g>=/0 f(X)g(x)dx=fO (5P e

Comme x —> x(g(x)) est continue et > 0, on déduit :

Vxel0;1], x(g)’ =

puis : Vx €]0;1], g(x)=0.
Comme g est continue en 0, il en résulte g = 0.
On conclut : F+ = {0}.

b)Onadonc: F® Ft =F @ (0} =F.

Il est clair que F # E, puisque I’application constante égale
a 1 estdans E et n’est pas dans F.

On conclut : F @ F+ # E.

Par commodité typographique, un élément de M, ; (C)
peut étre noté en ligne au lieu de colonne.

,X”) € Mn.l((c) :

||f(X)||1—Z(Zal,x,\\ (Da,,ux,)
:Z(Z|ai,~|)|xj|<(11\4<Ja<>512|ai,-|)2|x,-|
=1 i=I SIS j=1

1) On a, pour tout X = (xy,...

—_—
notée M
= M||X||:-

Ceci montre que la norme subordonnée de f, notée ||| f|||, vé-
rifie : || f]l < M.

2) Montrons qu’il existe X # 0 réalisant des égalités dans la
chaine d’inégalités précédentes.

,n}telque: M = Z iy |-

i=1

Il existe jo € {1,...

Considérons X = (0,...,0,1,0,...,0), dont toutes les coordon-
nées sont nulles, sauf la jo-eme qui est égale a 1.

On a alors, d’une part,||Xo|; =1,
f(Xo) = (aijy,..»njy), donc :

et, d’autre part,

IFGOI =D lail = M
i=1

ILFCON _

Ainsi: X #0Oet
X1y

n
Finalement : = Ma ( i )
I1£11l = Max Zl i

=

17



a) * Existence :
Soit (x,y) € R%.
Premiére méthode :

x+t .
ﬁ, est continue sur R, car
1+7+1¢2

le trindme réel 147+ ¢> est de discriminant < 0, et
fry(2) e 0. Il existe donc 7y € [0; +oof tel que :
. 11— 00

L’application f, , : t —>

Vie]—o00;—1] U lty; +ool, [fiy@I < 1.

Ensuite, f étant continue sur le segment [—1 ; 7], d’apres un
théoreme du cours, f est bornée sur ce segment. Il existe donc
A e R; tel que :

Vie[—to;tl, [fiy@®)] < A.
En notant M = Max (1,A) € R, , on a donc :
VieR, [fi,OI<M.

Ainsi, fy, estbornée, donc N(x,y) = Sup f; ,(#) existe.
teR

Deuxieme méthode :

Soit (x,y) € R%. On a, pour tout € R tel que [¢| < 1:

|x + ty|
147412

x| + e[yl x|+ 1yl
1+t+22 1

= |x[+ Iyl

et, pour tout 7 € R tel que [¢t| > 1 :

[x +1y]

el eyl (xl+ Dl
1+t+22

1+t+22 2
x4+ Iy

=T < Ixf+ 1yl

X+t
Dou : VieR, - ylz < Jxl =+ Iyl

1+r+4+1¢
[x 4+ ty|

m, est bornée, donc

Ainsi, I’application t € R —

N(x,y) = Sup f,, (1), existe.
teR

* On a, pour tous (x,y), (x',y) € R? :
N((x.y) + (.y))

=Nx+x',y+y)

|(x +x) +t(y +y)|
= Sup
reR 1+t+1¢2

lx +ty| + |x" + £y’

N

Sup

teR 14142
lx +2y| |x" +ty’|

< Su + Su
= teﬂ£1+l+l‘2 reﬂ£1+l+lz

= N(x.y) + N('y).

* On a, pour tout @ € R et tout (x,y) € R?:
N(a(x,y)) = N(ax,ay)

t t
_guplar il o el

= —— = |a|N(x,y).
teR 1+t+t2 tER1+t+t2 |CV| (xy)

* On a, pour tout (x,y) € R?:

[x +ty|
N(x,y) =0 VieR, ———— =0

<— (Vt eR, x+ty= 0) <~ (x,y) = (0,0).
On conclut que N est une norme sur R
b) Soit (x,y) € R%. Ona:
(x,y) € By(0; 1)

< N(x,y) <1

[x 4+ ty|
< Sup ——
e SPTIPICI

|x + ty|
<— Ve R, ——
1+t+£2
—VteR, —(Q+t+)<x+ty <141+
{VteR, P+A—yi+1-x) =0
=

VieR, 2+ +y)t+(1+x)

VoWV

0
{(l—y)2—4(1—x)<0
(1+y)?—4(1+x) <0.

Ainsi, By (0; 1) est la partie du plan comprise entre les deux

paraboles (voir schéma ci-apres) :
P: (y—12=—4x—-1), OQ: G+1)>=4x+1).

b) Les points d’intersection des deux paraboles P et Q ont pour
ordonnées —/3 et +/3. Laire S de B} (0; 1) est donnée, par
exemple, par I’intégrale double :

1 (1—4,\‘)2

V3
S:[ﬂ (/ﬁyzl dx>dy

V3 2 2
_ 0=y d+y
_[ﬁ<l 1 ) —|—1)dy

_/\/?3y2d_3 y3~/§
“Ls\272)Y T 27 6] 4




y 4
3
1
B'\(0; 1)
_B
-1 2 1
0 3 x
2

1) Montrons d’abord que N et v sont des normes sur E.

Pour f € E, N(f) etv(f) existentdans R car fet f’ sont conti-
nues sur le segment [0; 1], donc bornées.

Les propriétés, pour tous o de R, f, g de E :

N(af) = |aIN(f). af) = lefv(f)

N(f+8 < N()+ N, U(f +8) S v(f) +u(g)

sont immédiates.

Soit f € E.

Si N(f) =0, alors Sup |f(x)| =0, donc f =0.
x€[0;1]

Supposons v(f) = 0. Alors f + f' = 0, donc il existe A € R
tel que :

Vx € [0;1], f(x)=Ae™"

Comme f(0) = 0, on déduit A\ = 0, puis f = 0.
Ainsi, N et v sont des normes sur E.
2)Soitf € E.Ona:

Vxe[0; 1], [f)+ £ @] < If@]+ 1 @) < N,
d’ou : v(f) < N(f).
3)Soit f € E.

Considérons 1’application g : [0; 1] — R, qui est de
x—>e¥ f(x)

classe C! sur [0; 1].

On a, pour toutz de [0; 1] :
lg' )] = [e'(f@) + f'©®)| < er(f),
puis, pour tout x de [0; 1] :

8] = VO () dt

< /O "8 & < xer() < en(F),
dob:  [f()| =e g < lg)| < er(f).
Et: Lf' @) = [(fx) + f'(x) — f)

<|f@+ @]+ 1@ < A +eu(f).
Dou: Vx e[0;1], |f)|+|f )< A+2e)v(f),
N(f) < (1+2e)u(f).

v(f) SN < A +20)u(f),
donc N et v sont des normes équivalentes.

donc :

Onamontré: V f € E,

Considérons I’application ¢ : E —> R définie par :

VxeE, ¢kx)=dx,G)—dx,F),

et les parties U = '(10; +o0), V = (] — o0;0[)

de E.

On sait que, pour toute partie non vide A de E, 1’application
x —> d(x,A) est continue (et méme : 1-lipschitzienne), donc
 est continue. Comme ]0 ; +o00[ et ] — oo ; O[ sont des ouverts
de R, il en résulte que U et V sont des ouverts de E.

Soit x € F.D’une part, d(x,F) = 0. D’autre part, x ¢ G (car
FNG=2)et G est fermé, donc d(x,G) > 0. Il en résulte
p(x) > 0, c’est-a-dire x € U. Ceci montre : F C U.

De méme: G C V.
Enfin, il est clairque U NV = &.

(i) = (i) :
Supposons que I’'image réciproque par f de tout compact de R
est un compact de R.
Soit A € RY. Puisque [-A; A] est un compact de R,
f~'([—A; A]) estun compact de R, donc est bornée. Il existe
donc B € R tel que :
f7'(~A; A C [-B; B].

On obtient, pour tout x € R :

x| >B=>x ¢ [-B; Bl=x ¢ f'(-A; AD
= f(x) ¢[-A;A]l = |f(®)| > A.
On a montré :

x<—-B=|fx)|>A
VA>0,dB>0,Vx eR,
x>B=|f(x)|> A,

etonconclut: lim|f|=+oc0 et lim|f|= +oo.
—00 +o00
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(ii) = (iii) :
Supposons :  lim|f| =400 et lim|f|= +o0.
—00 +00
Soit A € R7 . Il existe B € R} tel que :
Vx<—-B, |fx)|>A,
c’est-a-dire :

Vxe]—oo;—B[, (f(x) <—A ou f(x)>A).
S’il existe (x1,x,) €] —o00; —B[? tel que f(x;) < —A et
f(x2) > A, alors, comme f est continue sur | — oo; — B[,
d’apres le théoreme des valeurs intermédiaires, il existerait
x3 €] —o00; —b[ tel que f(x3) = 0, contradiction.

On a donc :

(Vx <-—-B, f(x) < —A) ou (Vx <—B, f(x)> A),

etonconclut: limf =—oco ou limf = +o0.
—00 —00
Deméme: Ilimf=—oco0 ou limf = 4o0.
+00 +00

(iii) = () :

Supposons : lim f = —oc0 ou limf =400
—00 —00

et: lim f = —oco ou limf = 4o00.
+0o0 +00

Il est clair qu’alors : 1_iI£|f| =+00 ou ligcl |f| = o0,
c’est-a-dire : (iil) = (ii).
Soit K un compact de R. Alors, K est borné, donc il existe
A eR] telque: K C[-A; A].
D’apres I’hypothese, il existe B € RY tel que, pour toutx € R :

| > B = [f(x)] > A,
d’ou, par contraposition, pour tout x € R :
xef(K)= fx) e K =|f()| <A

— |x| < B<= x € [-B; B].

Ceci montre : f~'(K) C [—B; B], donc f~!(K) est borné.

D’autre part, puisque f est continue et que K est fermé (car com-
pact), f~1(K) est fermé.

Ainsi, f~'(K) est un fermé borné de R, donc, d’apreés le cours,
f~Y(K) estun compact de R.

Nous allons montrer que N est la norme associée a un
produit scalaire.

Considérons I’application ¢ : E x E —> R définie, pour tout
(f.g) € E x E, par:

1 1
0(f.8) =/0 f’g/+E(f(O)g(l)Jrf(l)g(O)),

obtenue a partir de N en « dédoublant » le role de f dans

(N(H).

* ] est clair que ¢ est symétrique et est linéaire par rapport a

la deuxieme place.

I
*Soitf € E.Ona: o(f,f)= / F7+ FO) f().
0

En utilisant I’inégalité de Cauchy et Schwarz pour des intégrales,

ona:

(r=ro) = ( [ o)

([ )L

d’ou :
1

o(ff) = / £24 FO £
0

> () = £O) + FO £(1)
= (f())’ = FO £ + (F©O)

2 3(r )
- (rw-L2) IV NS

En particulier, ceci montre que, pour toute f € E, laracine car-

rée proposée dans 1’énoncé existe.

* Avec les mémes notations, supposons ¢ ( f, f) = 0. On aalors :

o\ 3(FO)
(r- L9y 20O _,
—_————— —
>0 >0
donc : f(l)—@:O et f(0)=0,
dot : FO)=0 et f(1)=0,

1
puis : / fP=e(f,/)=FOf1)=0-0=0.
0

Comme f” estcontinue et > 0, on déduit "> = 0, puis f' = 0,
donc f est constante, puis f = f(0) = 0.

Ceci montre que ¢ est un produit scalaire sur £, et Nest la norme

associée a @, donc N est une norme sur E.

On a, par I'inégalité triangulaire, en intercalant par

Y

X X
exemple —, entre ——, et — :
il [xl™ [yl



IXII IIyIIH
X y
< A A
T ||y||H ||y||'
! ’II I+ —=II Il
= | —— - x—y
[lxIl yll ||y||
[yl = 11|
= Q+—I|x—yll
[yl [yl
[ly — x|l 2(lx = yll
< 7+—|I W= ———
[yl [yl [yl
Par roles symétriques, on a aussi :
‘ ~ H 2|lx =yl
[xll Hyll [1x]]
2||lx —
On conclut : ‘———H H bl
[xll iyl Max (| |x|[,1y1])
a) Soit ¢ € E.

Puisque fp est continue sur le segment [0; 1], f¢ est bornée,
et donc Ny, (f) existe dans R.

On a, pour tous o de R et f,g de E :

Ny(af) = [lafolleo = lal [| folleo = [alNy(f)
No(f+9 = |(f+¢l, = fe+sel,

S f@lloo + 1180 = Np(f) + Np(8)-

1) Supposons (¢~ ({0})" = @
Soit f € E telle que N,(f) =0 ;onadonc fo =0.
Supposons f £ 0. 11 existe xo € [0; 1] tel que f(xp) = O.

Puisque f est continue en X, il existe un intervalle /, inclus

dans [0; 1] et de longueur > O, telque: Vx € I, f(x) #O.

Onaalors: Vx € I, p(x) =0,

ce qui contredit (4,0*1({0}))O =0

Ceci montre f = 0,

donc: VfeE, (Ny(f)=0= f=0),

et finalement, N, est une norme sur E.

(D) # 2.

Alors ((,0*1 ({O})) °, étant un ouvert non vide de [0; 1], contient

2) Supposons (¢~

au moins un intervalle [«; 5] tel que o < . On a ainsi :

Vx €la; 0], px)=0.

Considérons 1’application f : [0; 1] —> R définie par :

0 si 0<x<aoufg<x<l
. a+p
fy={*—a si a<x < >
B—x i a;’ﬁgxgﬁ.
y
B-a
5 f
o a a+f 1 x

2
Onaalors f € E, f # 0, et foo =0 donc Ny,(f) =0.

Ceci montre que N, n’est pas une norme sur E.

Finalement, N, est une norme sur E si et seulement si

(') =2

b) Soit ¢ € E.
b) 1) Supposons ¢~ ({0}) = @, c’est-a-dire :
Vx e[0;1], @) #0.
Alors, (¢7'({0}))” = @, donc, d’aprés a), N, est une norme
sur E.
Ona: VfekE, Np(f)=Ilfello < Ifllsllplloo-

D’autre part, puisque ¢ € E et que ¢ ne s’annule en aucun point,

1
— existe dans E, d’ou :
®

1
VieE, |Iflle= H; wa

1 1
< H—H [Ifelleo = H—H Nip(f).
# lloo Pl

On a montré :

1 -1
VfeE, (H—H ) 1 f1loe < Np(f) < Hlpllool [ f1lo0
# lloo
etdonc N, et || - ||« sont équvalentes sur E.
2) Réciproquement, supposons que N, et || - || soient des

normes sur £ équivalentes.

D’apres a), on a déja (o' ({0})" =

Supposons ¢~ ({0}) £ @. Il existe donc xy € ' ({0}), c’est-
a-dire tel que ¢(xp) = 0.

Soit n € N*. Puisque ¢ est continue en x, et que @ (xg) =0,

il existe > O tel que :

1

le()] < —
n’

Vx € [xg—n; xo +nlN[0; 1],

21
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Considérons I’application f;, : [0; 1] —> R définie par :

. 0<x<x—7n
0 si
ou xp+n<x<1
X —xo+ .
ful) = T“" si xo—n < x < x
Xo+1N—X

si xg < x < xp+7.
n

On aalors f,, € E, || fullo = 1, et, pour tout x de [0; 1] :

1
[fa ) ()] < lp()] < ~ st [x = xol <

Sa(X)p(x) =0 si|x —xo| =,
1
donc : No(f) = 1 fatlloo < e
Ainsi, || f4 [l — L et Np(f,) — 0,donc || - || et Ny,

ne sont pas équivalentes.

y
1
Hix)
| Y=p)
1
n
Xg— N X0 Xyt n
0 0
/ 1 X
— 1 (
n
Finalement, N, et | - || sont des normes équivalentes si et seu-

lement si ' ({0}) = @.

a) Récurrence sur n.
* La propriété est vraie pour n = 0, par hypothese :
uov—vou=v=n0
* Supposons que la propriété soit vraie pour unn € N fixé :

uov"™ — vl oy =+ .

On a alors :

uov"? —v" oy
=@ov™ — v owov+ v ouov—v"?ou
=@ov™ — v ow)ov+v" ' o@wov—vou)

=+ ov+v"oe = (n 420",

ce qui montre la propriété pour n + 1.

On conclut, par récurrence sur 7 :

VneN, uov™ — vl ou=mn+10".

b) Rappelons que LC(E) est un espace vectoriel normé, pour

la norme |||.||| définie, pour tout f € LC(E), par :
A= Sup [If Il
[Ix[I<1

et que cette norme est sous-multiplicative, ¢’est-a-dire que :
V f.g € LC(E), g o fIII < Mgl NIAII-

On a donc, pour toutn € N :
(n + D[[[v"[]]
= [ll(n + Dv"|l| = |llu o v™" — v oul||
< w0 ™ |1+ (1[0 o ul||
< el IR TR TR L ]
= 2|[lulll 11Tl "1

c) ¢ Si, pour toutn € N, v" # 0, alors on déduit :

Vo eN, n+ 1< 2(ulll v,

contradiction.
e [l existe donc n € N tel que v" = 0.

L’ensemble {n € N; v" = 0} est une partie non vide de N, donc
admet un plus petit élément, noté n.

Comme v = e #0,car E #{0},ona:ng > 1.
Appliquons la formule de @) any — 1 alaplace den :

o v — v oy = nev™l,

Comme v™ = 0 etng #= 0, on déduit v™~! = 0, contradiction
avec la définition de ny.

On déduit une contradiction et on conclut qu’il n’existe pas (u,v)
convenant.

Autrement dit :

V (u,v) € (LC(E))’, uov—vou+e.



Fonctions vectorielles

d’'une variable reéelle

B Plan MR Themes abordés dans les exercices

Les méthodes a retenir 24 e Résolution d’équations fonctionnelles
Enoncés des exercices 28 * Existence et calcul éventuel d’une dérivée premiere, d’une dérivée n-eme
Du mal a démarrer ? B5 e Séparation des zéros d’une équation
Corrigés 39 e Obtention d’inégalités a une ou plusieurs variables réelles
e Obtention d’inégalités portant sur des intégrales
e Calculs d’intégrales
e Détermination de limites de suites liées a des intégrales
e Recherche de limites d’intégrales
+  Etude et représentation graphique d’une fonction définie par une intégrale, le
parametre aux bornes
e Calculs de limites, d’équivalents, de développements limités, de développe-
ments asymptotiques
e Développement limité, développement asymptotique d’une fonction réci-
proque
e Limite, équivalent, développement asymptotique d’une intégrale dépendant
d’un parametre
* Limite, équivalent, développement asymptotique des solutions d’une équation
a parametre.
Points essentiels du cours
pour la vésolution des exewvcices
e Propriétés des fonctions ayant des limites finies ou des limites infinies, pour
% les opérations algébriques et pour I’ordre usuel
i *  Propriétés générales des fonctions continues
é *  Propriétés générales des fonctions monotones
‘g e Théoréeme des valeurs intermédiaires, théoréme de la bijection monotone,
g théoreme de continuité sur un compact
§ * Définition de la lipschitzianité ; lien avec la continuité
é « Définition et propriétés algébriques de la dérivabilité, de la dérivée, de la déri-
3 vée n-eme, formule de Leibniz
E * Théoreme de Rolle, théoreme des accroissements finis, inégalité des accrois-
© sements finis
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Chapitre 2 - Fonctions vectorielles d’une variable réelle

*  Propriétés algébriques et propriétés relatives a 1’ordre, pour les intégrales

* Les méthodes usuelles pour transformer I’écriture d’une intégrale : intégration
par parties, changement de variable, relation de Chasles

* Les propriétés de I’application x +—— / f()dt
Xo

e Formule de Taylor avec reste intégral, inégalité de Taylor et Lagrange, formu-
le de Taylor et Young

e Propriétés des fonctions ou des suites ayant une limite finie ou une limite infi-
nie, pour les opérations algébriques et pour I’ordre usuel

* Equivalents et développements limités usuels, a savoir par coeur

* Notion de développement asymptotique.

mmmse | es méthodes a retenir

Pour montrer qu’une fonction
est paire,

est impaire,

est périodique

Pour résoudre

une équation fonctionnelle,
sans hypothese de régularité
sur la fonction inconnue

Pour résoudre
une équation fonctionnelle
avec hypothese de continuité

24

Revenir aux définitions.
== Exercices 2.16, 2.31.

* Raisonner par condition nécessaire, puis condition suffisante : si
une fonction f convient, essayer d’obtenir 1’expression de f (x) pour
tout x, puis étudier la réciproque.

Pour obtenir des conditions nécessaires sur f, appliquer 1’hypothe-
se a des cas particuliers. Si, par exemple, I’hypothese est vraie pour
tout (x,y), appliquer I’hypothese a (x,0), a (0,y), a (x,x), etc.

== Exercices 2.2, 2.3, 2.17

* Essayer de faire apparaitre, dans 1’équation fonctionnelle, une fonc-
tion auxiliaire ¢ telle que, par exemple, ¢ o ¢ = Id, et appliquer
I’hypothese a x, a ¢(x).

== Exercice 2.30.
On peut essayer, par changement de variables ou changement de

fonction inconnue, de se ramener a la recherche des applications
g : R — R continues telles que :
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Pour montrer
qu’une application est continue

Pour obtenir une inégalité plus
renforcée qu’une inégalité initiale

Pour calculer
la dérivée n-eme d’une fonction f
en tout point d’un intervalle /

Pour établir une inégalité
portant sur une variable réelle

Pour montrer I’existence de zéros
pour une dérivée

ou pour des dérivées successives
d’une fonction a valeurs réelles.

Pour établir une inégalité
portant sur deux variables réelles

Les méthodes a retenir

V(x,y) R glx+y) =gx)+g(»)

qui sont les applications linéaires de R dans R, c’est-a-dire les appli-
cations g : x —> Ax, A € R fixé.

* Voir les méthodes a retenir dans le volume Exercices PCSI-PTSI.
* Se rappeler :
(lipschitzienne) = (continue).

== Exercice 2.42.

Essayer d’appliquer le théoreme du cours : toute application continue
sur un compact et a valeurs réelles est bornée et atteint ses bornes.

== Exercice 2.41.

S’assurer d’abord (souvent par un théoréme sur les opérations) que f
est n fois dérivable sur /.

¢ Si f est une fraction rationnelle, utiliser une décomposition en élé-
ments simples, éventuellement en passant par les nombres com-
plexes.

= Exercice 2.4

* Appliquer les formules sur les dérivées n-emes d’une combinaison
linéaire ou d’un produit de deux fonctions (formule de Leibniz)

* Voir les méthodes a retenir dans le volume Exercices MPSI.

o Etudier les variations d’une fonction, apres avoir éventuellement
remplacé I’inégalité voulue, par équivalence logique, par une inéga-
lité plus commode.

== Exercice 2.5.

Utiliser le théoreme de Rolle ou le théoreme des accroissements finis.

== Exercice 2.18.

* Fixer une des deux variables et étudier une fonction de I’autre
variable.

== Exercice 2.19
¢ Essayer de ramener la question a la monotonie d’une fonction d’une
variable réelle.

== Exercice 2.20 a).
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Chapitre 2 - Fonctions vectorielles d’une variable réelle

Pour établir I’existence
d’une constante
réalisant une inégalité,
sans pouvoir calculer
une telle constante

Pour étudier Sup (f, g2), Inf (f, 2),
ouf,g: X — R sont
des applications a valeurs réelles

Pour étudier ou résoudre
une inéquation différentielle
ou une inéquation intégrale

Pour étudier
I’intégrale d’un produit

Pour obtenir une inégalité
portant sur des intégrales

* Essayer d’appliquer le théoréeme : toute application continue sur un
compact et a valeurs réelles est bornée et atteint ses bornes.

== Exercice 2.41

* Faire apparaitre deux normes sur un espace vectoriel de dimension
finie, et utiliser le théoréme affirmant que ces deux normes sont
alors équivalentes.

== Exercice 2.21.

Essayer d’utiliser :

* la définition : Vx € X,
(Sup (f.8))(x)
(Inf (f,8))(x)

= Max (f(x).g(x)),
= Min (f(x),8(x))

* les formules :

Sup (f’g) =

Inf(f,g) =

(f+g+1f—2gl),
(f+g—1f—2gl).

== Exercice 2.32 a).

NN R NG YN

Essayer d’utiliser une fonction auxiliaire, de maniere a se ramener a
une inéquation différentielle du type : Vx € X, g'(x) >0
qui traduit que g est croissante.

== Exercice 2.33.

Essayer d’utiliser une intégration par parties.

= Exercice 2.7.
Essayer d’appliquer les propriétés sur les intégrales, relatives a
I’ordre :

esia<<betsif,g:

vérifient f < g, alors : / / g

<betsif:]

hf\</b|f|

°sia<betsif,g:[a;b] — K sont continues par morceaux sur
[a; b], alors (inégalité de Cauchy et Schwarz) :

\/j?g\? (/ah|f|2)(/ah|g|2).

== Exercices 2.9, 2.34.

[a; b] — R sont continues par morceaux et

°si a a;b] — K est continue par morceaux sur

[a; b], alors :
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Pour calculer I’intégrale
d’une fonction continue
sur un segment, dans un exemple

Pour changer la forme

de I’écriture d’une intégrale,
ou pour calculer ou évaluer
une intégrale

Pour amener une intégrale
ayant des bornes différentes
de celles qui interviennent
dans I’énoncé

Pour trouver la limite, lorsque
Pentier n tend vers I’infini,
d’une sommation

indexée par un entier £,
portant sur un terme
dépendant de k et n

Pour étudier ou dériver

une intégrale

dépendant d’un parametre,

le parametre étant aux bornes

Les méthodes a retenir

Se reporter aux méthodes a retenir pour le calcul des intégrales et des
primitives, volume Exercices PCSI-PTSI.

== Exercices 2.25, 2.26.

Appliquer les méthodes de calcul d’intégrales et de primitives :

* primitives usuelles

¢ linéarité de I’intégration
e relation de Chasles

* changement de variable
* intégration par parties.

On se ramene alors a la formule fondamentale de 1’analyse :

b
/ F)dx = F(b) - F(a),

ou f est continue sur [a ; b] et F est une primitive de f.
On peut quelquefois exploiter un changement de variable qui échan-
ge les bornes.

Essayer d’appliquer la relation de Chasles, ou d’effectuer un change-
ment de variable.

Essayer de se ramener a une somme de Riemann, et utiliser le
théoréme du cours : si f : [a; b] —> K est continue par morceaux,
alors les sommes de Riemann de f tendent vers l’intégrale de f,
c’est-a-dire :

b—a < b— b
(e ) [
n =0 n noo a
A cet effet :

*si une somme de Riemann v, ressemble a u, proposé, former

u, — v, et essayer de montrer que u,, — v, —> 0
noo

= Exercice 2.39

¢ s’il s’agit d’un produit, se ramener a une somme en prenant le loga-
rithme.
= Exercice 2.10.

Utiliser le résultat du cours : si u,v : I —> R sont de classe C' sur
un intervalle I et si f : J —> K est continue sur un intervalle J tel
que u(l) C J etv(I) C J, alors I’application
v(x)
G: I — K, x+— f(@)dt

u(x)
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Pour trouver
une limite d’intégrale

Pour obtenir
un développement limité

Pour obtenir la limite ou

un développement asymptotique
d’une racine d’une équation
dépendant d’un parametre

est de classe C! sur [ et :
Vxel, G'(x)= fv))v'(x) — f(u@x))u'(x).

== Exercice 2.27.

* On peut conjecturer la limite, qui est souvent, dans les exemples
simples, I’intégrale de la limite, et montrer que la différence entre
I’intégrale de 1’énoncé et la limite conjecturée tend vers 0.

* Si I’essentiel de I’intégrale est concentré en un point, essayer de
faire intervenir une continuité en ce point.

= Exercice 2.43.

* Voir aussi I’utilisation du théoréme de convergence dominée dans le
chapitre 5.

e Utiliser les DL(0) usuels et les opérations sur ces DL(0) : tronca-
ture, dérivation, primitivation, addition, loi externe, multiplication,
composition, inverse. Se ramener, si nécessaire, au voisinage de 0
par transformation de 1’écriture.

¢ Essayer d’anticiper 1’ordre auquel développer certaines parties de
I’écriture, afin d’arriver au bon ordre pour le développement limité
demandé.

== Exercices 2.12, 2.24, 2.28.

e Commencer par montrer 1’existence et I’unicité de la racine a étu-
dier, dans un certain intervalle.

e Utiliser I’équation elle-méme pour essayer d’obtenir la limite
(si elle existe) de la racine.

e Etudier la différence entre la racine et sa limite, et réitérer si néces-
saire.

== Exercices 2.14, 2.15, 2.35, 2.45.

=mmme Fnoncés des exercices

— Inégalités sur des bornes inférieures et des bornes supérieures de f, g, f + g, et de leurs

moyennes

Soient X un ensemble non vide, f,g : X —> R des applications bornées. On note :

m(f)=Iff), M(P)=Sup (), w(f) =

(m(f)+M(f)),

N =

et de méme pour g.
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Enoncés des exercices

m(f+g) <m(f)+ Mg <M(f+g)
a) Montrer :

m(f+g < M(f)+m(g) < M(f+g).
b) En déduire :  m(f +g) < p(f) +p(g) < M(f +8).

2,72 Exemple d’équation fonctionnelle
Trouver toutes les applications f : R — R telles que :

V(x,y) € R, f(x+e')=x+e/O.

Exemple d’équation fonctionnelle
Trouver toutes les applications f : R — R telles que :
Vy) €R: FO0)+ f) = f(#) + f(3x).
74" | Dérivées successives de Arctan, détermination de leurs zéros
On considere I'application f : R — R, x — f(x) = Arctanx.

a) Montrer que f est de classe C* sur R, et calculer £ (x) pour tout (n,x) € N* x R. On fera
intervenir les nombres complexes.

b) Résoudre, pour tout n € N — {0,1} I’équation £ (x) = 0, d’inconnue x €]0; +oo[.

7251 | Inégalité 2 une variable par étude des variations d’une fonction

2
Montrer : Vx € [0; +o0[, €' = (%) .

747 Recherche d’une fonction proche de deux fonctions données

Trouver une application f : [0; 1] — R continue telle que :
1 1
f (f) —x)*dx <1072 et / (f(x) —x*)dx <1072,
0 0

Lemme de Lebesgue pour une fonction de classe C' sur un segment

Soient (a,b) € R® tel que a < b, f : [a; b] —> C declasse C' sur [a; b].

Montrer : f(x) eMdx — 0.

a A—>+o0

2.8 Equivalents simples de sommations

n

1
a) Montrer : ; % nf;olnn.
n—1
b) En déduire un équivalent simple de u,, = Z
k=1

1
——, lorsque I’entier n tend vers 1’infini.
k(n— k) o "

2201 Inégalité sur des intégrales

Soient (a,b) € R tel que a < b, f,g,h : [a; b] — R, continues.
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s () ([ )Y ([ )

e 22 (1 Limite d’un produit
1
= 2n+k\"
Trouver lim <l_[ nt ) .
noo \ 11 3n+k
— Etude de dérivabilité en un point, pour une fonction définie par une intégrale
X2 l
Onnote f : R — R, x|—>f(x)=f (sint)Arctan1 5 dr.
0 X

Montrer que f est dérivable en O et calculer f'(0).

— 72172 Exemple de calcul de développement limité
) C a1 tan x
Former le développement limité a I’ordre 2 en O de f : x — Arctan,/ —.
X

— 721153 Exemple de calcul de limite

Trouver lim (2sinx)™%,

x— ¢

— 741" Développement asymptotique d’une racine d’une équation dépendant d’un parameétre

entier

eX
a) Montrer que, pour tout n € N*, I’équation 1 4+ x + — = 0, d’inconnue x €] — oo ; 0], admet
n

une solution et une seule, notée x,,.

b) Montrer que la suite (x,),en+ converge et déterminer sa limite.

¢) Former un développement asymptotique de x, a la précision o| — |, lorsque I’entier n tend vers

n

I’infini.
— 215 Limite, équivalent, développement asymptotique d’une racine d’une équation

dépendant d’un parametre entier

a) Montrer que, pour tout n € N*, I’équation cos x = nx, admet, dans [0 ; 1], une solution et une

seule, notée x,,.

b) Montrer x, —> 0, puis x, ~ —.

noo noo n
- . 1 . o
¢) Trouver un équivalent simple de x, — —, lorsque I’entier n tend vers I'infini.
n

— 72111} Condition pour une périodicité

Soit f : R —> R une application non injective, telle qu’il existe une application g : R> — R
telle que : ¥ (x,y) € R%, f(x +) = g(f(x).y).

Montrer que f est périodique.
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2.18

AL

2.20

2.21

2.22

2.23

2.24

Enoncés des exercices

Exemple d’équation fonctionnelle sur deux fonctions

Soient f,g : R — R des applications telles que :
Y (x,y) € R?, f(x +g(y)) =2x+y+5.

Calculer, pour tout (x,y) € R?, g(x + f(y)).

Etude d’une fonction C* ayant une infinité de zéros s’accumulant en 0

Soit f: [0; 400[—> R de classe C™ telle qu’il existe une suite (x,),cy dans ]0; +oo[ telle
que:x, —> Oet (Vn eN, f(x,) = O). Montrer : Vk € N, f(k)(O) =0.

Minimum d’une fonction de deux variables réelles
On considere I"application f : [0; +0o[>—> R, (x,y) — 1 +x%y + xy* — 3xy.

Montrer : V (x,y) € [0; +00[%, f(x,y) = 0, et étudier le cas d’égalité.

Inégalités a une, deux, trois variables, faisant intervenir des logarithmes

N x  In(l+x)
a) Montrer, pour tout (x,y) e R*telque0 <x <y:— < ———.
y In(1+y)

b) En déduire, pour tout (x,y,z) e R* telque 0 < x <y < z:

P (In(1 + x))*

vz I+ +2)

¢) Déduire, pour tout ¢ € J1; 4o00[ : (t — D?In(t + 1) In(t +2) < 1(t + D(In7)%.

Inégalité issue d’une comparaison qualitative

Soit n € N*. Montrer qu’il existe C € R, tel que, pour tout P € R,[X] :

(P(=D)* + (P' (@) + (P"(1)’ < c/ (P(x))’ dx.

-1

Limite d’une intégrale pour une fonction périodique

Soient (a,b) € R*>telque a < b, T € R*, f : R —> C T-périodique et continue par morceaux.

b
Trouver lim f f(nx)dx.

Calcul de la distance d’une fonction a une partie

On note E le R-ev des applications [0; 1] —> R continues par morceaux, muni de |[|.||co,

12 1
<P1[0;1]—>R,xn—>xet:F:{feE;/ f= f},
0 12

Calculer d(p, F), distance de ¢ a F.

Exemple de calcul de développement limité

1 2

Incosx  sin2x’

Former le développement limité a 'ordre 2en O de f : x +—
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Exemple de calcul d’une intégrale d’intégrale

a 1 1
Soit a €]0; +oo[. Calculer I (a) = / </ o dx)) dy.
L 0o X y

Exemple de calcul d’une intégrale

'«/l—l—x—«/l—xdx
o VI+x+/T—x

Calculer I =

742470 Etude d’une fonction définie par une intégrale avec le parameétre aux bornes

o . (1 +12)
On considere I'application f : ]0; +00[— R, x — f(x) = — dr.

Etudier f: définition, classe, dérivée, variations, étude en 0, étude en 400, tracé de la courbe repré-
sentative.

1
Montrer: f(x) =3 (nx)>+ 0O <;)
x—> 400

Développement limité d’une intégrale dépendant d’un parametre aux bornes

X Lt
Former le développement limité a I'ordre 3en 1 de f : x —> / 67 dr.
1

7224 Exemple de calcul de limite

. 1 1
Trouver lim — .

x—0\ (sinxshx)? (tanxthx)?

22511} Exemple d’équation fonctionnelle

Trouver toutes les applications f : R — {—1,1} — R telles que :

VxeR—(—1,1}, f(j:?) +f<3+x) —x

1—x

Condition pour une périodicité
a) Soit f : R — R bornée telle qu’il existe (a,b) € (R’jr)2 tel que :
VxeR, fb+a+b)+fx)=fx+a)+ f(x+Db).
Montrer que f est a-périodique et b-périodique.

b) Soit f : R — R telle que, pour tout x € R :

OIS et f<x + 5) +F) = f(x + é) + f(x N ;) ,

1
Montrer que f est E-périodique.

72572 Condition pour que |u| soit dérivable, pour que Sup (f, g) soit dérivable
Soit I un intervalle de R, d’intérieur non vide.
a) Soit u : I —> R dérivable sur /. Montrer que |u| est dérivable sur [ si et seulement si :

Vxel, (u(x) =0=u'(x) = O).
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2.33

2.34

2.35

2.36

2.37

2.38

Enoncés des exercices

b) Soient f,g : I —> R dérivables sur /.
Onnote ¢ : I —> R, x —> p(x) = Max (f(x), g(x)).
Trouver une CNS sur f, g, f’, g’ pour que ¢ soit dérivable sur 1.

Résolution d’une inéquation différentielle

Soient a € R, f : [a; +00o[—> R dérivable telle que f(a) = 0.

On suppose qu’il existe A € R, tel que : Vx € [a; +oof, |f'(x)] < Alf(x)].
Montrer : f = 0.

Calcul de bornes inférieures de fonctionnelles quadratiques

Soit A € R*.Onnote E = {f € C'([0;11;R); f£(0) =0, (1) = A}.

1 1
Trouver les bornes inférieures de { / f?: feE } etde { f f*. feE }
0 0

Limite d’une racine d’une équation a parametre entier

n
. X .
a) Montrer que, pour tout n € N*, 1’équation E 1+ % = 2n, d’inconnue x € [0; o0,
k=1
admet une solution et une seule, notée x,,.

b) Montrer : x, —— 4+ o0.
noo

Limite d’une sommation
1 k\"
Trouver 1r}or£1 . ; (l + ;) .

Etude d’une inéquation intégrale

Soient f : [0; 1] —> R continue et a valeurs 2> 0, (a,b) € (Rj)z.

On suppose : Vx € [0; 1], (f(x))2<a+b/ f(t)de.
0
X b )
Montrer: Vx € [0; 1], f(t)dt<ﬁx+zx.
0

Développement limité d’une fonction réciproque

Soient  un intervalle ouvert de R, contenant 0, f : I — R une application de classe C' telle que

FO)=0etf'(0)=1.

a) Montrer qu’il existe deux intervalles ouverts U, V de R, contenant 0, tels que f réalise une
bijection de U sur V.

Onnoteencore f : U — V, x +— f(x).

b) On suppose que f admet un développement limité a I’ordre 3 en 0, de la forme :
fx) =x+ax?+bx* +o(x?),

ol (a,b) € R? est fixé.

Montrer que f~' admet un développement limité 2 I’ordre 3 en 0, et préciser celui-ci.
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] Equivalent simple d’une sommation

P . 1

Trouver un équivalent simple de u,, = Z N

k=1 ln(l + 7>
n

e s —! Etude de fonctions vérifiant une équation faisant intervenir la loi o

lorsque I’entier n tend vers I'infini.

a) Existe-t-il une bijection f : R —> R telle que : Vx € R, f(shx) =ch(f(x))?

b) Existe-t-il une bijection continue f : R —> R telleque : V x € R, f(sinx) = cos (f(x)) ?

e ———] 2451 Décollement d’une fonction de deux variables
Soit f : [0; 1] — C une application.

On suppose qu’il existe a € ]0; 1] tel que :
V) €05 17, (Ix =yl = a = [f(0) = fFO)] < [x = yl).
Montrer qu’il existe C € [0; 1[ tel que :

V) €017, (Ix—yl = a=|f(x) — fOI < Clx —yl).

o — — — Etude de continuité pour une fonction définie comme borne supérieure

Soient (a,b) € R* tel que a < b,n € N*, fy,...,f, : [a;b] —> C bornées.

n

PEFAG)

k=0

Onnote g: R — R, x —> g(x) = Sup
relasb]

Montrer que g est continue sur R.

e s —! 74- %7 Limite d’une suite d’intégrales

1
Soit f : [0; 1] — R continue. Déterminer lim / n?(x" — x") £ (x) dx.
noo 0

s s s s Développement asymptotique d’une intégrale dépendant d’un parameétre entier

Former un développement asymptotique, lorsque l’entier n tend vers 1infini, de

! 1
I, = / (x" +x""2) In(1 + x") dx, 2 la précision 0(—3)
0 n

o — —] 72251 Etude asymptotique de la racine d’une équation dépendant d’un parametre entier
n
On note, pour toutn € N* : P, = H(X — k).
k=0
a) Montrer que, pour tout n € N*, il existe u,, € ]0; 1[ unique tel que P, (u,) = 0.
, - 1
b) Etablir : Vn € N*,
) 2 i

k=0

=0.

c) En déduire : u, —— 0.
n oo

d) Trouver un équivalent simple de u, lorsque 1’entier n tend vers I’infini.
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Du mal a démarrer ?

o — — — 2.46 Développement asymptotique du terme général d’une suite définie par une relation de
récurrence
U, 1
On considere la suite (u,),> définie paru; e Ry et:Vn =1, u,yy = — + —-
n o n

a) Montrer : u, ~ —-
noo N

1
b) Former un développement asymptotique de u,, a la précision 0(—3> , lorsque I’entier n tend
n

vers 1’infini.

mmmse Dy mal a démarrer ?

a) Ecrire des inégalités convenables pour tout x € X, puis fonction proche de ces deux-la, par exemple leur moyenne
passer a une borne inférieure ou a une borne supérieure. x 4+ x2

arithmétique, f : x —

1) Soit f convenant. En appliquant I'hypothéese convena- .

blement, déduire que festdelaformex — x +a,0uaelR Puisque fest supposée de classe Cllfaire une ipp.
est fixé. Déduire ensuite a = 0.
a) Utiliser une comparaison somme/intégrale, a I'aide de la
2) Réciproquement, tester f : x —> x.

1) Soit f convenant.

1
fonction x — —.
X

1 )
Déduire : Vx eR, f(x)= f(3x), b) Décomposer =B en éléments simples.
is: vV R? _ (XY Appliquer convenablement l'inégalité de Cauchy et
puis : ) eR", fn=r g . e
2 Schwarz, plusieurs fois éventuellement.
et conclure que fest constante. En prenant le logarithme, amener une somme de Riemann.
2) Ne pas oublier d'étudier la réciproque. Former le taux d'accroissement de f entre 0 et x, pour

x € R* puis en chercher la limite.

a) Pour calculer £ (x), calculer d’abord f’(x) et utiliser

une décomposition en éléments simples dans C[X].On obtient, , tan x
pour tout (n.x) € N* x R : Former d'abord le DL>(0) de x — / _en partant du

; 1 1 DL5(0) de tan x.
P = 5(—1)"_1(11 - W(m - W) Considérer g : R — R, u — Arctan (1 +u) et former le
DL,(0) de g a partir du DL,(0) de g’ par primitivation.

S\
b) L'équation se raméne a : (x i 1) = . Composer enfin les DL (0).
X 1
Repérer la forme indéterminée.

Faire intervenir les racines n-¢mes de 1 dans C. Prendre le logarithme et effectuer le changement de variable

k =
On obtient : — cotan ~—~, k € {1,...,n — 1}. i
n

Etudier les variations d’une fonction, aprés avoir éven- a) Pour n € N* fixé, étudier les variations de
tuellement transformé l'inégalité demandée en une autre x

e
inégalité logiquement équivalente et plus commode. fnil—00;0] - R, x+—1+4+x+ o
[ 27 il sagit de trouver £ de facon que les carrés des distances b)Montrer: 1 +x, —— 0.

2

de fax —> x etax —> x~ soient petites.On peut essayer une o) Etudier x,, 4 1.
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a) Pour n € N* fixé, étudier les variations de
fn:[0;1] — R, x —> cosx —nx.

b) Partir de : cos x,, = nx,.
1

¢) Noter y, = x,, — — et reporter dans cos x, = nx.
n

Montrer qu'il existe (a,b) € R? tel que:
a<b et f(a)= f(),
puis montrer:Vy e R, f(a+y) = f(b+y).
Montrer qu'il existe A € R tel que:
VieR, f(t)=2t+x
puis déduire g(y) pour tout y € R.
Calculer enfin g(x + f(y)).

Montrer d'abord f(0) = 0.

Montrer qu’on peut remplacer (x,),eN par une suite vérifiant
les mémes conditions et qui soit, de plus, strictement décrois-
sante. Appliquer convenablement le théoréeme de Rolle et en
déduire f/(0) = 0.
Réitérer.

Pour x € [0; +oo[ fixé, étudier les variations de

g:[0;+oo[— R, yr— f(x,y).

Distinguer les cas: x > 3, x < 3.

a) Etudier les variations de :

In(1 + x)
T .

f:10; +o0[— R, x —>

b) Appliquer a) a (x,y) eta (x,z).
c) Appliquerb)a (r — 1,¢,t+ 1).

Montrer que I'application
1

N:R,[X] — R, P> (/ (P(x))de)%

-1
est une norme, et que les applications de R, [X]dans R définies
par:
P+ P(—1), P+ P'(0), P+—— P’(1)

sont linéaires continues.

Effectuer le changement de variable u = nx, puis décou-

per l'intervalle [na ; nb] en sous-intervalles consécutifs de
longueur T (sauf le dernier, par exemple), pour utiliser la 7-
périodicité de f.

1/2 1
1) Pour f € E, majorer f, et minorer / f, alaide
0 172

ENT

de [|¢||oo. Déduire : || f — ¢l|oo =

2) Chercher f € E, si elle existe, de facon que l'on ait
1
f = llee = ik

Remarquer d'abord :

1 2 2 2

R et — & =5
Incosx x—0 x2 sin2x x—0 x2

Déterminer 'ordre auquel développer In cosx et sin2x pour
obtenirle DL,(0) de f.

1
dx
* Pour y €]0; +oo fixé, calculer —_-—.
y €10; +oo[ [ox2+y2

. . 1
« Pour exploiter ensuite la présence de — et de a aux bornes
a

1
d’une intégrale, utiliser le changement de variable u = —, qui
y

échange les bornes, ce qui fournit une deuxieme évaluation de
1(a).

» Combiner ces deux expressions de I (a) et se rappeler :
1 /4
Yu €]0; +oo[, Arctanu + Arctan — = 7
u

Transformer I'expression sous l'intégrale, par exemple en
utilisant une expression conjuguée (quitte a supposer tempo-
rairement x # 0). Utiliser ensuite le changement de variable

y=+/1—x2.
* Montrer d’abord que, pour tout x € ]0; +oo[, f(x) existe.

+ Montrer que fest de classe C! sur]0; +-oo[ et exprimer f/(x)
pour tout x €]0; +o0o[, en utilisant le théoréme du cours sur la
dérivée d’'une intégrale avec parametre aux bornes. En déduire
le tableau de variation de f.On fera intervenir un réel « solution
d’une équation polynomiale. Calculer (a la calculatrice ou a I'ai-
de d'un logiciel de calcul) une valeur approchée de o et une
valeur approchée de f(«).

» Montrer que fadmet une limite finie en 0 et déterminer cette
limite. Montrer ensuite que l'application f (prolongée en 0 par
continuité) est alors de classe C! sur [0; +oo[ et calculer f7(0).

* Pour I'étude en +o0, en décomposant In(1 + %) par mise en
facteur de 2, obtenir f(x) = 3(nx)? + B(x), ou B(x) est une
intégrale dépendant de x et pour laquelle on montrera

1
B(x) = O(x—z)

« Terminer par le tracé de la courbe représentative de f.

Faire un changement de variable par translation pour se
ramener au voisinage de 0, c'est-a-dire considérer :

g:]1—00;0] — R, ur— f(+u).

Montrer que g est de classe C! sur ] —1;+oo[, former le
DL (0) de g/, puis le DL3(0) de g.
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Transformer |'écriture de facon a se ramener a la
recherche d'un équivalent simple de 1 — cosxchx lorsque
x —> 0. Pour obtenir cet équivalent, utiliser des DL4(0) de
cosx etdechux.

Considérer l'application

x—3

‘R —{-1 R, .
1} {-1} — x|—>x+1

Montrer que ¢ envoie R — {—1,1} dans lui-méme.

3
Remarquer que 1 X =g@op(x), etcalculerp oo p(x).
— X
a) Considérer I'application
g R—R, x+— f(x+a)— fx).
Montrer que g est b-périodique.

Calculer f(x +a) — f(x), fx+a+b)— f(x+a), ...,

f(x+a+nb)— f(x +a+(n— l)b) pour tout n € N*,
Sommer et utiliser le fait que g est bornée.
En déduire que fest a-périodique.

b) Remarquer : 1,11

der s T T

a) 1) Supposer |u| dérivable sur .
Soit x € I tel que u(x) = 0.

En étudiant le taux d’accroissement de |u| entre x et x + &, pour
h € R* tel que x + h € I,déduire u'(x) = 0.

2) Réciproquement, supposer :
Vxel, (u(x)=0= u'(x)=0).

Soit x € I.Montrer que u est dérivable en x, en séparant en trois
cas: u(x) >0, u(x) <0, u(x) =0.

b) Se rappeler que :

1
VY (a,b) € R?, Max (a,b) = 5(a +b+la—b|).

Considérer I'application
g:[0; +oo[— R, x —> e’z’\x(f(x))2

et étudier les variations de g.

1
1) » Pour toute f € E,minorer/ f/z,en utilisant I'inéga-
0
lité de Cauchy et Schwarz.

« Chercher fy € E, si elle existe, de facon que I'inégalité obtenue
ci-dessus soit une égalité.

2) Trouver une suite (f,)nen+ dans E telle que :

1
/ fn2 — 0.
0 n oo

Du mal a démarrer ?

a) Etudier, pour n € N* fixé, les variations de

fu:[0; +00o[— R, x — (Z '1+%>—2n.
=1

b) Utiliser I'inégalité classique

V(a,b) e Ry)?, Va+b<Ja++b,

n
. . . L. .
puis un équivalent simple de E E,a I'aide d'une comparaison
k=1
somme/intégrale.

Faire intervenir une exponentielle. Montrer, par exemple a
I'aide de la formule de Taylor avec reste intégral :

[N

X

Vx €[0; 4o0f, x—7 <In(l+x) <x.

En déduire, pour tout n € N* :

1l
eZn—Ee
n

k=1

1 & k\" 1 & c
< - =) €= _
\z( +) <Gy

n

S
SRS

. k . q a “
Pour terminer, calculer en, qui est une sommation géomé-
k=1
trique.

Considérer I'application
X
g:[0;1] — R, xn—)a—i—b/ f()dr
0

8'(x)
2/8(x

<

et montrer:Vx € [0; 1], S

j
NS

Intégrer de 0 a x.
a) Montrer que fest strictement croissante au voisinage de 0.
b) Raisonner par condition nécessaire et condition suffisante.

- Supposer que f~! admet un DL3(0), nécessairement de la
forme: flM =y+yy*+8°+ o 0(y3) et reporter dans
y—>

x = f(f(x)),plutdt que dans y = f(ffl(y)),pourobtenir
y et é en fonction de (a,b).

« Réciproquement, montrer, avec les valeurs de y et § obtenues
ci-dessus en fonction de (a,b), que f~'(y) — (v + By> + y»?)
estun o(y?).

n
_ 1
Considérer, pour toutn € N* : v, = E T
k=1 »n

n
« En utilisant

k=1
comparaison somme/intégrale, obtenir un équivalent simple
dev,:

— ~ Inn, qui s'obtient, par exemple, par une
k noo

v, ~ nlnn.
noo

37



Chapitre 2 - Fonctions vectorielles d’une variable réelle

38

* Montrer que I'application

1 1

:10; 1 R, _
¢:10;1] — x'—>ln(1+x) 5

admet une limite finie en 0, et en déduire que ¢ est bornée.
Majorer alors convenablement |u,, — v,|.
a) Supposer qu'il existe f convenant.
Déduire f(R) C R, contradiction.
b) Supposer qu'il existe fconvenant.
Déduire f ([—1; 1]) = [—1; 1],
puis (f(—=1), f(D) € {(=1,1), (1,—D}.

Evaluer alors f(sin 1) et f(—sin 1) pour obtenir une contradic-
tion.

Noter E = {(x,y) € [0; 11*; |x — y| > a} et

F:E—R, (x,y)— M‘
X

Montrer que E est compact et que F est continue sur E.

« Montrer d’abord, pour tout (x,y) € R? ettout? € [a; b] :
2 . .
l8G) — g1 < D 1x' = ¥l filloo-
i=1

+ En déduire que g est lipchitzienne sur tout segment
[-A; A]l, A € Ry, et conclure.

On peut conjecturer, a cause de la présence de x", que la
partie essentielle de la fonction sous I'intégrale est concentrée
prés de 1, donc que l'intégrale proposée I, se comporte de
facon analogue a l'intégrale

1
Iy =/ @™ — x™th £(1) dx.
0

Calculer J,.

Former |1, — J,|.Pour ¢ > 0 fixé, décomposer l'intervalle [0; 1]
en[0;1—nlet[l —n; 1],0un vientde la continuité de fen 1,
de facon a majorer I'intégrale de 0 a 1 — 7 (en utilisant le fait que
festbornée) et l'intégrale de 1 — i a 1 (en utilisant la continui-
téde fen 1).

Considérer J, = /1 2x" 'n(1 + x™) dx, qui ressemble
al,. ’

D’une part, calculer J,,.

D’autre part, évaluer 1, — J,,.

a) Utiliser le théoréme de Rolle et compter les zéros du
polynéme P, .

4
b) Utiliser la formule du cours relative a T lorsque P € K[X]

est scindé sur K.

n
1
¢) Dans Z , isoler le terme d'indice k = 0.
= k—uy

n
1
d) Dans E , isoler le terme d'indice k = 1.
ok

a) « S'assurer d'abord que, pour tout n > 1, u, existe et
u, = 0.

+ Montrer : u, <u,—;+1 et déduire, par sommation,

uy < uy + (n— 1), puis déduire, successivement, que (1), est

. C D . U
bornée, que u, < ;,ou C est une constante, que u, < r?,ou

) 1 .
D est une constante, et enfin que u, ~ —, par un raisonne-
noo n

ment correct sur les équivalents.

1 1
b) Remplacer u, par 2 + o(n—2>, dans I'expression de u,+1,

puis décaler I'indice.



= Corrigés des exercices

a)l)*Ona:
VxeX, m(f+g) < f(x)+gl) < f(x)+M(g),
d’ou, en passant a la borne inférieure lorsque x décrit X :
m(f+g) <m(f)+M(Q).

e Puisque — f et —g sont bornées, on a, en appliquant le ré-
sultat précédent a (— f,—g) a la place de (f,g) :

m(—f—g <m(—f)+M(—g).
Mais :
m(—f —g) = Igf(—f -8 = —Sgp(f +2)

=-M(f+g)
et m(=f) =—=M(f), M(=g) = —m(g),
—M(f +¢8) < —M(f) —m(g),
M(f) +m(g) < M(f +g).

2) Puisque f et g ont des roles symétriques, on a aussi, en échan-
geant f et g dans les résultats précédents :

m(f +g) < m(g)+ M(f)
et M(g) +m(f) < M(f + g,

d’ou les encadrements demandés :
m(f+g) <m(f)+M(Q <M(f+g)
m(f +g) < M(f) +m(g) < M(f + g).

b) En additionnant, puis en divisant par 2, on obtient :

m(f+g) < pu(f)+pg < M(f+g).

d’ou :

c’est-a-dire :

1) Soit f convenant.

* On a alors, en appliquant I’hypothese a (x —e”, y) :
Vx,y) €eR% f(x) = f((x —e) +e&) = (x — &) + e/,
En particulier, en remplagant y par O :

VyxeR, f(x)=x—1+¢/9.

Ilexistedonc a e R telque:Vx e R, f(x) =x+a.

* On a, alors, pour tout y € R, en appliquant I’hypothese a
0,y) : f(O+e") =0+e/ cest-a-dire: e +a = e,
d’ou: e’ —1)=a.

En appliquant ceci a deux valeurs de y, différentes entre elles,

par exemple y = 0, y = 1, on déduit a = 0, et donc :

Vx eR, f(x)=x.

2) Réciproquement, il est évident que 1’application
f R — R, x — x convient.

On conclut qu’il y a une solution et une seule, f = Idg.

1) Soit f convenant.
En appliquant I’hypothese a (x,x), on obtient :
VxeR, f(x)=f(3x).

En reportant dans 1’hypothese, on a alors :
xX+y
Vay) eR, f() = f<T) :

En appliquant ceci a (2¢,0), on a :
VieR, f(0O)=f@),
donc f est constante.

2) Réciproquement, il est évident que toute application constante
convient.

On conclut que I’ensemble S des applications cherchées est :
S={f:R—R, x+— C; CeR}.
a)D’apres le cours, f : x —> Arctan x estde classe C*
surRetona:Vx eR, f(x)= ——.
f&) x2+1
En utilisant une décomposition en éléments simples, on obtient,
en passant par les nombres complexes :

VxeR, £ i 1 1
X x) == — .
’ 2\x+i x—1i

D’ou, par une récurrence immédiate, pour tout n € N* :

£ = 500 = D - )
2 x4+ (x—1i"

b) Soit n € N* fixé tel que n 2> 2. On a, pour tout x € R :

1 1
(n) — _ —
! (x)—0<:>(x+i)n (x_i)n_o

x—1i\"
— ( ) =1.
x+1
2k )
En notant, pour toutk € {0,...,n — 1}, 6; = —W,etwk = e‘e“,
n

x—1i\"
=) =1
(%)

< dke{0,...,n

ona:

x—i
-1}, — =
} P Wk
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< dke{0,....n—1}, x —1 =wx +iwg
<— dke{0,....n—1}, (1 —w)x =11 +wy)
1+w/\
<— dkefl,....n—1}, x=1i
l—wk
Et:
i 9k
4w | 14e'% 622COS O
11 :11 i91(:1 e =—cotan3.
Bl ¢ —elF2i sme"

> 2,1’ensemble S,

des solutions de 1’équation f®(x) =0, d’inconnue x € R,
est :

On conclut que, pour toutn € N tel quen >

km
S,lz{—cotan— ke {l,. n—l}}.
n

Commencons par transformer I’équation proposée en une
inéquation équivalente et plus commode :

ex\?
Vx el[0;4oo], e = <7>

& Vxel0;+4oo[, 42> x>

< Vxe€l0;+oo[, 2In2+ (x —2) > 2Inx,
le cas x = 0 étant d’étude immédiate.
Considérons 1’application
f:10;4+00o[— R, x +— f(x) =2In2+x—2—2Inx.

11 est clair que f est dérivable sur ]0; +o0f et :

Vrel0:dool, fy=1-2=2"2
X X
On en déduit les variations de f :
X 0 2 ~+o00
1(x) = 0 +
f(x) +00 AW 0 /. +00

Comme f(2) = 0, on obtient :

Vx €]0; +oof, f(x) =0

ce qui établit I’inégalité demandée.
Puisqu’il s’agit de trouver une application « proche » de

x —> x et de x —> x?2, on peut essayer leur moyenne arith-

1
métique, f : x —> E(x + x?). On a alors :

1 2 1 2 2

f (f(x)—x) dx:/ (x—l—x —x) dx
0 0 2

1 2\ 2 1

— 1

=/0 (x 2x ) dx:Z/O (% —2x° + x*) dx

RIS 24+x51_11 11
413 5], 4\3 25
1
=— <107

120 ~

et

Ainsi, f : [0; 1] — R, x —> 2y , convient.

Soit A €]0; +o0of fixé.
Effectuons une intégration par parties, pour des applications
de classe C' sur [a; b] :

b .
f.ﬂmehd4

ei/\x b b ) ei/\x
= [f(x)i/\:L—/af(x)i)\dx‘

B f(b)ei/\b_f(a)ei/\a 1 b , o

b
< |J‘()|+|f(a)| f|f()|dx

9 1
(If(b)l + [ f(a)] +/ [f' (ol dx)X

— 0.
A—> 400

On conclut :

a) 11 s’agit d’un étude classique.

On va effectuer une comparaison somme/intégrale.

1
L’application f :]0; +0o[—> R, x —— —, est continue et
X

décroissante sur |0 ; +o0o[, donc :
VneN,Vxen;n+1], — <
n
Il s’ensuit, en intégrant :

Vn e N*,

n+1
puis, en sommant :
—~ 1

Vn e N¥, — <
;k—i—l -



On a, pour tout n € N*, en utilisant la relation de Chasles :
n k+1 1
Do L
=1 Je X
n

D’ou, en notant H,, = Z
k=1

n+1 1
n+1
:/ —dx =[Inx]""' =In(n +1).
1 X

1
i

VneN', H—1<In(n+1) <H,,
ouencore:Vn e N — {1}, In(n+1) <H, <1+ Inn.

Comme

noo

1
ln(n—{—l):lnn—{—ln(l—{—f):ln—{— o(l) ~ Inn
n noo

et 14+ Inn ~ Inn,
noo

n

on déduit, par encadrement : Z
=1

b)Soitn € N tel quen > 2.

=H, ~ Inn.
noo

x| —

On a, pour toutk € {1,...,n — 1}, par exemple a I’aide d’une
décomposition en éléments simples :

11 1+ 1
kn—k)  n\k n—k)°

D’ou, pour toutn > 2 :

n-l 1 128 /1 1
“":Zk(n—k)zﬁz<%+n—k>

k=1 k=1

B 1 n—1 1 +n—1 1 B 2 n—1 1
T n k n—=k) kn-k n k’

k=1 k=1 k=1

En utilisant le résultat de a), on déduit :
2 2 1 2
U, ~—Inn—1)=—(Inn+In(1-— - ~ —Inn.
noo N n n neo n

Appliquons deux fois I’inégalité de Cauchy et Schwarz,
en faisant intervenir /g, qui est continue, puisque g est conti-
nue et a valeurs > 0 :

( / h fgh)4 - ( [ b(fﬁ>2(¢§h>2)4

Notons, pour toutn € N* :

1
" n k)"
n = 0.
. <H3n+k> -

k=1

On a, pour toutn € N* :

k
n n 2+—
1 2 k 1
I, =-3 a2 =23 2,
nte 3n+k n& 34K
n

.. X .
Lapplication [0; 1] — R, x +—— In ——, est continue sur
X
le segment [0; 1], donc, d’apres le cours sur les sommes de
1

Riemann : Inu,, —— In
noo 0 3 X

dx.

On calcule cette intégrale, notée / :
1 1
I:/ ln(2+x)dx—/ In (3 + x) dx
0 0
=[@+x) In 2+x) - 2+n)],

~[B+0) I G+x) -G+

=(B3m3-3)-(2mh2-2)
—(4m4-4-(3m3-3)

=6In3—101n 2.
Comme I’exponentielle est continue sur R, on déduit :
I _ 46ln3-10ln2 _

36
U, ——> € =e —.
noo 210

D’abord, pour tout x € R, f(x) existe comme intégrale
d’une application continue sur un segment.

On a, pour tout x € R* :

2]
— (0 1 [* g
SO - O] _ 7/‘ (sint) Arctan —— dt
=0 xJ 1+ x?
IR t
< - | sinz| |Arctan —— | dt
= il 4 57
i
g —/ 1- E dr = I)C.
X Jo 2 2
— f(0
1l en résulte, par encadrement :L(];() —5 0,
E = =

ce qui montre que f est dérivable en 0 et que : f'(0) = 0.

[tan x .
D’abord, f : x —> Arctan,/ ——, est définie, au
X
[ —{0}.

. T
moins, sur | — > ;

ST

41



42

™
Comme tanx ~ x, on a f(x) — Arctan]l = —, donc
x—>0 x—0 4

. s
f admet un prolongement continu en 0, en notant f(0) = 1

De plus, il est clair que f est paire.
On calcule des développements limités en O :

tan x

x3 5
tanx=x+?+o(x3), =l+?+0(x2),

1
[t Z 2
an x _ <1+X_+0(x2)>

X 3

_1+1)C2+ (2)_1+12+ (2)
= 23 oxX ) = 6)C o(xX").

2
Ainsi:  f(x) = Arctan (1 n % + 0(x2)>.

Considérons I’application

g:R— R, u+— gu) =Arctan (1l +u).
I est clair que g est de classe C! sur IR, et on a, pour tout
ueclk:

, 1 1 11
EW =T aTm?  2xmtE -2 7
I+u+ —

2

1 | 1 1
_5( —u+0(u))—§—§u+0(u)-

Il en résulte, par primitivation pour une application de classe C'
dont la dérivée admet un DL (0) :

2
g@)=mm+%u—li+mw%

22
1 1
= g <k i Zuz + o(u?).
On déduit, par composition, le DL,(0) de f:
fo="1 12 oy =T Loy oe
x_4 26 o(x =7 12x o(x?).

Il s’agit d’une forme indéterminée 1°°.

Notons, pour x au voisinage de % 1 f(x) = (2sinx)™".

On a, par le changement de variable t = x — T _ 0:

m
x— ¢

In (f(x))

(tan3x) In (2 sin x)

(ol +4)) o )

1 1 3
= ln(2~—cost+2~§sint)

" tan3t 2

= ! ln(cost—i—x/gsint)

" tan3t
1
= ——In (1 3t t
0 n (1++/3t+0(1))
1 1
~ — —V3f = ——,
1—0 3tf J3

a) Soitn € N*,

Considérons 1’application
X

Jfoil=00;0] — R, xn—)fn(x)=1+x+e;.
n
L’application f, est dérivable sur ] — co; 0] et :
Vxel—00:0], fir)=1+—>0.
n

On dresse le tableau de variation de f, :

X —o0 X, 0

1) I
fn(x) —o0 /’ 0 /'

T
4 =
n

Puisque f, est continue et strictement croissante sur I’intervalle
] —00;0] et que I’on a

. 1

lim f, = —oo0 < Oetf,(0) = 1+ — > 0, d’apres le théoreme
s n

de la bijection monotone, [’équation f,(x)=0,
d’inconnue x € | — 0o ; 0], admet une solution et une seule,
notée x,,.

De plus, comme f,(0) # 0,ona: x, # 0.

Xn l
b) On a, pour toutn € N* : [1 + x,| = — < —,
n n
donc:1+x, —— 0, dou:x, —— — 1.
n oo n oo
c)Ona: nx, +1)=—" ——» —e7!,
n oo
-1
donc : Xp+1~——.
noo n

On conclut au développement asymptotique suivant, a la pré-

- (1) 1 1
cision o| — :x,,:—l———i—a(— .
n en noo\p

a) Soitn € N*,
Considérons I’application

fuil051] — R, x > cosx —nx.



L’application f, est dérivable sur [0; 1] et :
Vxe[0;1], filx)=—sinx—n< -—n<0.

On dresse le tableau de variation de f,, :

X 0 1
S () =
fux) | 1 . cosl—n

Puisque f, est continue et strictement décroissante sur 1’in-
tervalle [0; 1] et que :
f,00=1>0 et f,(1)=cosl—n<0,

d’apres le théoreme de la bijection monotone, 1’équation
fu(x) =0, d’inconnue x € [0; 1], admet une solution et une
seule, notée x,,.

COS X,

b)eOna: |x,| = <-—0,
n noo
donc: x, —— 0.
noo
. COS X, 1
¢ Ensuite : i = ~ —,
n noon

1
¢) Notons, pour toutn € N* : y, = x,, — .

1 1
Puisque x, ~ —, onadéja:y, = o(—).
noo n n
Ona:

1 1
cos (— +y,,> = COSX, = nx, :n(— +y,,> =1+ny,,
n n

d’ou
1 2 1
nyn=COS<—+yn)—1“——<—+ Yn ) -
n noo 2 \n N noo  2p2
—
—0 :0(%)
d : !
onc : noo_27n3.
1 1
On conclut : Xp—— ~ —

Puisque f n’est pas injective, il existe (a,b) € R? tel
que: a <betf(a)# f(b).Onaalors :

VyeR, fla+y) =g(f@),y) =g(f®).y)=fb+y).

En notantc =a — b > 0, on a donc :

VzeR, fic+2)=f(la—b)+z)= fla+ (—b+72)
=f(b+(-b+2)=f(2).

On conclut que f est c-périodique.

En remplacant y par 0, on a :

Vi eR, f(x+g0)=2x+5,

puis :
ViR, f0)=f((t—g0)+50)

=2(t — g(0)) +5 =2t + (5 — 28(0)).
Ilexistedonc A €e Rtelque:Vr e R, f(r) =2+ \.

* On a donc, en remplacant, dans 1’hypothese, f par son ex-
pression obtenue ci-dessus :

V(x,y) eR% 2x +y+5= f(x +g()
=2(x+g() + A =2x +2g(») + A,

d’ou : VyeR, g(y) = %y+¥.
On déduit :
3 1 5—-X
Vx.y) eR? g(x+ f(») = 5(X+f(y))+T
1 S5—-X 1 5

Puisque : x, ——> O et (Vn € N, x, €]0; +00]),

on peut extraire de la suite (x,),en une suite strictement dé-
croissante et de limite 0.

I1 existe donc une suite (u,),cN, Strictement décroissante, de
limite O, telleque : Vn e N, f(u,) = 0.

y

y=fx)

P : Yo
O| u, Uy oy U Uy X

Puisque f est continue en 0, on déduit : f(0) = 0.

D’autre part, d’apres le théoreme de Rolle, puisque f est déri-

vable sur ]0;4oo[, pour chaque n €N, il existe

U, € Jupyy ; uyl telque: f'(v,) = 0. On construit ainsi une suite

(Vn)nen, strictement décroissante, de limite 0, telle que :
VneN, f'(v,)=0.

D’apres 1’étude précédente, appliquée a f” a la place de f, on

déduit : f'(0) =0.
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En réitérant le raisonnement, ou par une récurrence, on
conclut : Vk € N, f“‘)(O) =0.

1) Inégalité :
Soit x € [0; +o0].
Notons g : [0; +oo[—> R D’application définie, pour tout
y €0; 4oof, par: g(y) = f(x,y) = 1 + x>y + xy* = 3xy.
L application g est dérivable sur [0; o0 et :
Yy el[0;+ool, g(y)=x>+2xy —3x =x(x +2y —3).
1" cas :x >3
On a alors : Vye[0;+4o0[, g'(y) =0,
donc g est croissante.
Comme g(0) = 1, on déduit :

Vy e[0;+ool, g(») =g0) =1>0.

2¢cas :0< x <3

On dresse le tableau de variations de g :

y 0 3—x P
2
g = 0 4
8(y) N /

3
On calcule le minimum de g, obtenu en
3—x
N2

= 14+x*y+xy>—3xy

= l+xyx+y—3)

3— 3—
= 1+x x<x+ x_3>

2 2
_ 1_*_3x—x2 x—3
- 2 2

= %(4—x(x — 3)2)

1
= Z(—x3+6x2—9x+4)

= i(—x + D2 —5x +4)

= i(—x+1)(x—1)(x—4)
1 2

= —-(x—1D"@—-x)=0.
4 S—

>0

Finalement : ¥ (x,y) € [0; +0o[%, f(x,y) = 0.

2) Etude du cas d’égalité
* Supposons qu’il y ait égalité dans I’inégalité de 1’énoncé.
D’apres 1), on a alors nécessairement :
3—x
x23 y=—— 80=0,
d’ou,comme4 —x >0 :x=1,puisy = 1.
* Réciproquement : f(1,1) =1+1+1-3 =0.

On conclut qu’il y a égalité si et seulement si :
(x,y) =(1,1).

a) Considérons I’application

f:10; +oo[— R, x — f(x) = h1(1+x)

L’application f est dérivable sur ]0; 4+oo[ et, pour tout
x €]0; +o0[ :

1 X
'‘@)y)=—=|———In(l .
f/@) x2<1+x n( +x)>
Considérons 1’application
g:[0;+oo[— R; x+— gx) = S In(1+x).
14+x

L’application g est dérivable sur [0; +oo[ et, pour tout
x €[0; +o0o[ :

1
T+x

$O= e

x [<0

T+ | <0 si x£0.
Il en résulte que g est strictement décroissante sur [0 ; +ool.
Comme g(0) = 0, on en déduit :
Vx €]0; +oo[, gx) <0,

donc : Vx €]0; +oo[, f'(x)<O.

Il en résulte que f est strictement décroissante.

On a donc, pour tout (x,y) €]0; +oo[? :

x<y= f(y) < f®
In(1+ y) _ In(1 + x) X

y X y
b) Soit (x,y,z) e R3 telque 0 < x < y < z.

In(1 4 x)
In(l +y)

Appliquons le résultat de a) a (x,y) eta (x,z) :
x In(1+x) X

< e
y In(1+y) z

In(1 + x)
In(1+7z2)°

d’ou, par multiplication (pour des nombres tous > 0) :

x? (In(1 + x))*
vz Imd+ynd+to)

c) Soit t €]0; +oo[. Appliquons le résultat de b) a
x=t—1€]0;+oo[,y=t,z=1t+1:



(t—1)?
t(t+1)

(Int)?
In(t + 1)In(r+2)°

d’ou, les dénominateurs étant > O :

(t—1D>In(t+ D) In@t +2) < 1@t + D(In1)>.

Notons, pour abréger, E = R, [X] et confondons poly-
ndme et application polynomiale sur [—1; 1].
D’apres le cours, 1’application
1

(P(x))* dx)%

N:E—)R,P|—>(/

=il
est une norme sur E.

Considérons les applications u,v,w : E —> R définies, pour
tout P € E, par:

u(P) = P(=1), v(P)=P'(0),

Il est clair que u,v,w sont linéaires.

w(P) = P'(1).

Puisque E est de dimension finie, u,v,w sont donc continues
et il existe a,b,c € R, tels que, pour tout P € E :

lu(P)| < aN(P), [v(P)| < bN(P), |w(P)| < cN(P).
On a alors, pour tout P € E :
(P=D)*+ (P'©@)" + (P"())’
= (u(P))’ + (v(P))* + (w(P))’

<@+ + (NP

En notant C = a® + b* + ¢2, on a donc, pour tout P € E :

1
+(P"(1) < c/ (P(x)) dx

1

(P(=1))* + (P' ()

Soit n € N*.

On a, par le changement de variable u = nx :
b 1 nb
I,,=/ f(nx)dx:—/ fw)du.
a n na

b —
Notons N = E(n( = )> € N, (qui dépend de n) de sorte

que: na+ NT <nb<na+ (N+1DT.

On a, par la relation de Chasles :

1 N-1 na+(k+1)T nb
I, = —<Zf f ) du + f f@) du> ;
n k=0 v na+kT na+NT

Puisque f est T-périodique, on déduit :

1 N-1 T nb
In = = d +/ d )
n <k2:;/0 A na+NT AV

N T 1 nb
:—f f(u)du—!——f f(u)du.
n Jo n Jpa+NT

D’une part, d’apres la définition de N :

b—a 1 _ E < b—a

T n n = T
donc, par théoreme d’encadrement :
N b—a

- — 5

n noo T

)

D’autre part :

1 nb 1 nb
el <s [T il
N Jua+NT n Jpa+NT

1 na+(N+1)T 1 T
<—/ |f(u)|du=;/ |f ()] du —— 0.
o 0 noo

N Jpa+NT

b b—a b
On conclut : / f(nx)dx —— T/ f(u)du.

1)Soit f € E.

On va essayer de minorer || f — ¢|| par une constante conve-
nable.

*Ona:

/01/2f=/01/2(s0+(f—90))2/01/2<p+/01/2(f—so).

12 12 1
Dusepats [ (£ =)< [ 1f =1 < 317 =l
0 0
172 172 x2 12 1
D’autre part : / = xdx—[ ] ==
0 0 8
On a donc : / f<§+—||f ©lloo-
*Ona:
1
/ / (6+(f—9) = / -9
1/2 1/2 1/2 /2
D’une part :
1 1 1
(f—eo)?—f 1 =l > =5 11F = gl
/2 12
D’autre part :
! ! X2 1 1 3
/(p:[ xdx:[—] =-—c==.
12 12 21y, 2 8 8
3 1
On a donc : f == EHf_(plloc-

On déduit, puisque f € E :

1 1 2 ! 301
— — — oo> = > = == — 59 o
8+2||f ol //0 f /uzf/S [1f —ll

2
) s 1
D’ou : ||f_‘p||oo>z~
. 1
Il en résulte : d(p,F) =Inf||f —¢lle = .
feE 4
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2) Considérons I’application f : [0; 1] —> R définie, pour tout
x €[0; 1], par:

1 1
x+- si 0<x< =
4 2
fx) =
1 1
X_Z si §<x<1
y
1
3
4
1
2
1
4
1 1 3 (e
4 2 4
— y=9¢(x)

—y=flx)

1

1/2 1
1l est clair que : fEE,/ f=/ Fllf =@l = 5.
0 1/2 4

1
On conclut : d(p,F) = 7

Si on effectue un DL, (0) (n = 2) de In cosx, comme

In cosx ~ cosx—1 ~ —x—,
x—0 x—0 2
—1
ce DL, (0) sera de la forme :
2
In cosx = 5 4+t a,x" +o(x"),
d’ou :
1 2 _ o1
Incosx _F(l +0 = 28,077 +0(x" )
2 n—2 n—2
——;(l—i—-w—i—b,,x + o(x ))
2 n—4 n—4
=—F+---—2bnx +o(x"77).

Comme on veutun D L,(0) de f, il faut prendre n de facon que
n—4 =2, c’est-a-diren = 6.

Ona:

- L= L) o
720 Tag T 24 )t TV
.X2 x4 x6 6
= T7 T s tow)
et:
sin%x
X3 x5 s 2
= (’“‘z+m+0(“)
4
_ a2 ¥ i i 6 6
-7 3+<36+60>x +o)
4 6
_ 2 6
= i 3—1—45 + o(x”).
D’ou :
fx)
B 1 . 7
oyt x6+(6) 2 x4+2x6+(6)
————— — +o(x Xt —— - —— L o(x
2 12 45 3 45
2 1+ 2 2 as)
= —| — — + — +ol»
x2 6 ' 45

In cos x
2 4

6
X X X 6
ln(l 5 720+0(x ))

x2+x4 x© 1/x*  x°
2 24 720 2\ 4 24

A= o)
— =+ —+olx
345

1
1+ gxz + o(xz).



* On a, pour tout y € ]J0; +oo[ fixé, par le changement

. X
de variable z = —:

/1 dx /‘ ydz 1/% Ly
—_— = _— - —az
o X2+y*  Jo y2+yr oy 1+2

1 D 1
= —[Arctanz]; = — Arctan —.
y y y

* On déduit :

“ 'odx “1 1
[(a):/:l‘ (/0 m)dy:/% ;Arctan;dy.

1
Mais, par le changement de variable # = —, qui échange les
y

bornes, on a :

z du 4]
I(a) = u Arctanu| — — )= — Arctanu du .
# u Lou

D’ou, par addition :
21 (a)

“1 “1 1
=/ —Arctanydy—i—f — Arctan — dy
1y 1Yy y

a

“1 1
= f — (Arctan y + Arctan —) dy
1y y

1
On conclut : I(a) = ﬂ;a
L applicati LHx—VI-% o conti
application x —> —————— est continue
= VI+x+J/1—x

sur le segment [0; 1], donc son intégrale / existe.
On a, pour tout x € ]0; 1], par utilisation d’une expression
conjuguée :

ST = JT=3% _ (\/l—i-x—\/l—x)z
Vitx+/T—x (A+x)—-(1-x
2-2J/T—x2 1-/1—x2
B 2x - X
1—(—x?% X

a1+ VT=R2) 1+ VT2

et cette derniere expression est aussi valable pour x = 0.

On a donc :

1
X
=] —— dx.
./0 1+ /1 —x2
Effectuons le changement de variable y = +/1 — x2.

Onaalors x> = 1 — y?, xdx = —ydy, d’ou:

014 1 1 1
e e e
 1+y o L+ 0 I+y

=[y-Imd+y],=1- 2

/=

» [’application

In(1 + £2
g :10; +oo[— R, tr—)g(t):g

est continue sur O ; +o00[, done, pour tout x € ]0; +ool, g est
continue sur le segment joignant x et x2, ce qui montre que 1’in-

x2 l 1 [2
tégrale f'(x) = / 2 dr existe.

2 sont de

e Puisque les applications x — x et x —> x
classe C! sur]0; +oo[ et a valeurs dans ]0 ; +oo et que g est
continue sur 0 ; +o0o[, d’apres le cours, f est de classe C! sur
10; +o0[ et, pour tout x € ]0; 4o0[ :

4 2
fie = B0, BOQHaD,

X
1

= —(2In(1 +x*) — In(1 + x%)).
X

D’apres les théoremes généraux, cette derniere fonction est de

classe C* sur ]0; 400, donc fest de classe C* sur ]0; +ool.

On a, pour tout x € ]0; 400 :

f'x)=0

2In(1+x* —In(1+x* =0

1+xH*=1+x2

B4t —x2=0

Tttt

4267 —1=0.
Notons

P:[0;+oo[— R, x —> P(x) =x%+2x* — 1.
L’application P est dérivable sur [0; +oo[ et :

>0
Vx e[0;4oo[, P'(x)=6x>+4x
>0 si x>0.
On dresse le tableau de variation de P :
X 0 400
P'(x) +
Px)|—1 Vi 400

Puisque P est continue et strictement croissante sur I’intervalle
[0; 400, etque 'ona P(0) = -1 <0 et P(x) — o0,

X—>+00

d’apres le théoréeme de la bijection réciproque,
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il existe « € [0; +oo[ unique tel que I’on ait P(a) = 0, et on

dispose du signe de P(x) selon la position de x par rapport

aa.

La calculatrice fournit une valeur approchée de « :
a>~0,673...

On en déduit le signe de f’(x)et le tableau de variation de f :

X 0 e} +o00
S = 0 4
f) N !

La calculatrice fournit une valeur approchée de f () :
f(a) =~ —0,107...

o Etude en 0 :
Comme: VYue[0;+4oco[, 0 <In(1+u) <u,
on a, pour tout x €10; 1] :

xl 1 IZ x
og—f(x)zfz wdrgﬁzdr

27 2 — x*
-[5].-==

Il s’ensuit, par le théoréeme d’encadrement : f (x) —>00.
X—>

On peut donc prolonger f en 0 par continuité en posant
f(0) =0.
De plus :

) = ! (2In(1 + x*) — In(1 + x?))
X
= %( —x2%+ 0 () =-x+o(x) —0.

Comme f est continue sur [0 ; +o00[, que f est de classe C'su
10; oo et que f”(x) :OO, d’apres le théoreme limite de la
dérivée, f est de classe C' sur [0; +oo[et f/(0) = 0.

* Etude en +00 :

On a, pour tout x € [1; 4o0[ :

2

2
“ In(1 + £2) =) 1
= — it = —In(#2(1+=))ar
f) [ ; /X e +t2
o] 1
=[ —<Zlnt+ln(1+—2>>dt
.t t
 Int 2 1
=2f —dt—i—/ —In(1+—=)dr.
.t .t 12

notée A(x) notée B(x)

Ona:

A@) =[] = (In ()’ = (Inx)?
= 4(Inx)?> — (Inx)> = 3(Inx)>.

438

D’autre part :

1
donc : B(x)= 0 (—2>
x—>+o00 \ X
.. 2 1
Ainsi : f(x)=3(lnx)"+ O =
x—> 400 \ X
En particulier : f (x) - +00,
3(lnx)?
GO N 1L E)
X x—> 400 X x—>+00

Ceci montre que la courbe représentative de f admet,
lorsque x — +o00, une branche parabolique de direction
asymptotique x'x.
e Valeurs remarquables :
f) =0 et f'(1)=1n2=~0,693...
e Tracé de la courbe représentative de f :
y

v =fix)

a
fla) \ |/1 .

Considérons I’application g : ] — 1 ; +oo[— R définie,
pour toutu € ] — 1; 4o0[, par:

I+u .t

e :/1 a,

obtenue en notant # = x — 1 dans 1’expression de f(x), de
facon que la variable («) tende vers O lorsque x tend vers 1.

e[
Puisque 7 — 7 est de classe C* sur ]0; +oo[, d’apres le

cours, g est de classe C* sur | — 1; +oo[ et :

14u

Yuel]l—1; . ) = i
u el +oof, g'(uw) T u

On va former le DL, (0) de g’, puis primitiver pour obtenir le
DL5(0) deg.Ona:

"(u) =ee"
g () T+ a

. (1 ”_2 2 . 2 2
=@ +u+2+0(u)>(1 u—+u +0(u))

u? 2 ) 2
=@ l+?+o(u) =e—|—§u +o(u”).



On déduit, par primitivation, pour une fonction de classe C'
dont la dérivée admet un DL, (0) :

3
g(u) = g(0) +eu+ %% +o@d).

1 vt
Et: g(O):/ ertZO.
1
On conclut :

u=x—1—0.
x—>1

f&)=eu-+ %,f +o@?),

On a, tout ——=; = —{0}:
napourouxe] 5 2|: {0}

1 1

(tan x th x)?2
1 (1
sin 2x sh’x
Pour le dénominateur : sin 2x sh>x ~ x*.

x—0

fx) =

(sinx shx)?

cos >x ch’x).

On va chercher un équivalent simple du numérateur.

On remarque :
1 — cos?x ch’x = (1 — cosxchx)(1 + cosx chx)

et: 1+ cosx chx —>027E0.

On va chercher un DL4(0) de 1 — cos x chx, pour en avoir
un équivalent simple :

1 — cosxchx
2 A P 4
=1—|1-—=+ = 1+ —+ —
( ) +24+0(x ))( A ) +24+0(x ))
1 1
=1- (1 — 6x4 A 0(x4)> = 6)64 +o(xh).

a 1

11
On a donc : f(x)x;Ox—A‘gx -2=§
et on conclut : f(x) —>O 3

* Considérons I’application
x—3

p:R—{-1,1} — R, x— o) = .
x+1

On a, pour toutx € R — {—1,1} :

-3
p)=le= " = 1e=4=0,

x+1

impossible, et, d’autre part :
x—3
o(x) = T

<—xr—-3=—x—-1l<x=1,

impossible.
Ainsi: Vx e R — {—1,1}, o(x) e R—{-1,1}.

On peut donc considérer 1’application, encore notée ¢, de
R — {—1,1} dans lui-mé&me, définie par :
=3
VxeR—{-1,1}, xX)= ——.
=L1L o) =+ "

Calculons, pour toutx € R — {—1,1}, les itérées de ¢ en x, pour
la loi de composition, notées ! (x), ©B(x),. .. :

WP(x) = p(p))

x—=3
_p(x) =3 x41 °  —2x—6 3+x
_cp(x)+1_x—3+l_ 2x—2  1—x’
X1
P = o)
3+x
O S -
T+l 3+x 4+
1+1
7

¢ /) Soit f convenant.

On a donc :
VxeR—{-L1} f(p)+ f(#" ) =x.
Appliquons ceci a x, o(x), a P (x) :
fle®) + f(e?@) =x  E
FEP @) + f) = o) E,
F@x) + fp@) = o (x) Es.

En effectuant £, + E3 — Ey, on élimine f (p(x)) etf (¢ (x)),
et on obtient f(x), d’ou :

1
fo =3 <so(x) + P (x) — x)
1x3+7x

1/x-3 " 3+x
= — —Xx | = - .
2\x+1 1—x 2 1—x?
2) Réciproquement, un calcul direct (un peu long sans logiciel

de calcul formel) montre que I’application f trouvée en /)
convient.

On conclut qu’il y a une application f et une seule conve-
nant :
x3 +7x

1
f:R—={-1,1} — R, xn—)f(x)zz T2

a) Considérons
g:R—R, x+— f(x+a)— f(x).
On a, d’apres I’hypothese de 1’énoncé :

VxeR, gx+b)=f(x+a+b)— f(x+b)
=fx+a)— f(x) =gkx),

donc g est b-périodique.
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On a alors, pour toutn € N ettoutx € R :
fx+a)— fx) =gkx)
fGxt+a+b)— f(x+b) =gx+b) =g

fGx+a+nb)— f(x+a+ n—1b)=gx)
d’ou, par sommation et télescopage :
fx+a+nb) — f(x)=ngx).
On déduit, puisque f est bornée, pour toutx € R :

£ G +atnb) = f@] _ 20l

n n noo

lg(x)| = 0

)

donc : VxeR, gx)=0,

c’est-a-dire : Vx eR, f(x+a)= f(x).

Ceci montre que f est a-périodique.

Par roles symétriques dans les hypotheses, on conclut que fest
aussi b-périodique.

b) L’application f vérifie les hypotheses de a), puisqu’elle est

1 13
= @HFbh==

1
bornée, =—,b= .
ornée, avec a G 7 )

1 1
D’apres a), on déduit que f est g-périodique et que f est 7

1 11 |
périodique. Comme 26T il en résulte que f est o

périodique, I’ensemble des périodes de f formant, d’apres le
cours, un sous-groupe additif de R.

a) 1) Supposons |u| dérivable sur /.
Soit x € I tel que u(x) = 0.
u| (e + h) — |u|(x)

Ona: Tmlul(x),

et:

G k) = ful () fuGet )] fuGe B —u)

h h h
— |u'(x)]
u(x +h) —u(x) h—>0+
=sgn(h)|——
h — —|u'(x)].
h—0—
On a donc |u/(x)| = —|u’(x)|, d’ou u'(x) = 0.

Cecimontre : Vx € I, (u(x) =0=>u'(x) =0).
2) Réciproquement, supposons :

Viel, (u(x)=0= u'(x)=0).
Soitx € 1.

*Siu(x) > 0, alors, comme u est continue en X (car dérivable
en X), au voisinage de X, |u| coincide avec u, donc |u| est dé-
rivable en x.

*Siu(x) < 0, alors de méme, au voisinage de x, |u| coincide
avec —u, donc |u| est dérivable en x.

* Siu(x) = 0, alors, par hypothese, u’(x) = 0, donc :

|u(x +h) — Iul(X)‘ _ lutx + 1)

h |7
h) —
— M — [u/(x)| =0,
h h—0
donc : —lul(x+h2—|u|(x) —>00,

ce qui montre que |u| est dérivable en x, et que de plus
lul'(x) = 0.

On conclut que |u| est dérivable en x, pour tout x € /, donc
|u| est dérivable sur /.

b) On a, pour tout x € [ :
p(x) = Max (f(x), g(x))
1
=S (f® +800) +1/() = g@)).

Comme f et g sont dérivables sur /, il s’ensuit que ¢ est déri-
vable sur / si et seulement si | f — g| Dest.

En appliquant le résultatde a) a f — g alaplace de u, on conclut
que ¢ est dérivable sur / si et seulement si :

Viel, (fx) =gx) = f'(x) =g®).

D’apres I’hypothese, on a, pour tout x € [a; +o0[ :

FOf@ <IF@NF@ISAFOR = Mf(x)”

Considérons I’application
g:la;+oo[— R, x —> g(x) = e’”‘(f(x))z.

Puisque f est dérivable sur [a ; +00[, g I’est aussi, et, pour tout
x €la;+oo[ :

g0 =26 (f/(0) f(x) = Mf(0))7) <0.

Il en résulte que g est décroissante sur [a ; +-00] .

Mais il est clair, par sa définition, que g > 0, et on a
— 2

g(a) = e 2(f (@)’ =0.

Il en résulte g = 0, puis f> = 0 et donc f = 0.

a)e*Soitf € E.

On a, d’apres I'inégalité de Cauchy et Schwarz :

(L) <(L o))
Mais : /O.lf’ = f(1)— f(0) = A.

On a donc :



* Considérons I’application particuliere :
fo:[0;1] — R, t > Ar.

1 1
OnafgeEet:[ 0’2=/)\2=/\2.
0 0

1
On conclut : Inf / 2=\,

feE Jo

et cette borne inférieure est atteinte (au moins) pour I’appli-
cation fj définie plus haut.

b) Considérons, pour tout n € N* :
fu:[0;1] — R, x —> Ax".

Ilestclairque: Vn e N*, f, € E.

Etona:
x2ntl 1 /\2
/ n_/)\zz"dx P 0.
2I’l+l 2}’l+l noo
1
On conclut : Inf / fr=0.
f€E Jo

a) Soit n € N*. Considérons 1’application

fu:[0; +oo[— R, x —> (Z /1+£)—2n.
k=1 k

L application f, est dérivable (donc continue) sur [0 ; +o0o[
1

— Z _k > 0,
k=1 2./1 f
V + k
donc f;, est strictement croissante sur [0 ; +o00][.
Deplus: f,(0) =n —2n = —n < 0 et f,,(x) —+> +00.

et:Vx e [0; +oof, fu(x)

D’apres le théoreme de la bijection monotone, il existe donc
X, € [0; +o00[ unique tel que f, (x,) = 0.

b)Onsait:  V(a,b) € (Ry)?, Va+b<Jat+b
(ce que I’on peut redémontrer en développant les carrés).

On a donc, pour tout n € N* :

2n—z\/7 S 1+\/:)=n+\/x_”§%.

Evaluons E «/— , par comparaison d’une somme a une inté-
grale.

——, est continue et décroissante sur
x

L’application x —>

[1; +oo[, donc :

=, 1 "1
—<1+/ —dr
LS
=1+12Vil] =14+2(/n—1) =24/n— 1< 24/n.

On déduit : 2n < n+ Jx,2/n,
donc /x, > £, puis x, > %
On conclut : X, ——> + 00

noo

Remarquons d’abord que, dans les conditions de
k n 1
I'énoncé : 0 < — < —=- —— 0,
n? n? n noo

k\" k
et que, d’autre part : (1 4F —2> = exp (n In (1 I _2>>
n n

2

e Montrons : Vx € [0; 400, x — % <In(l+x) <x

Soitx € [0; +o0[. En appliquant la formule de Taylor avec reste
intégrala o : t — In(1 +¢) sur [0; x],ona:

* =
(xl‘ ) e

P(x) = p(0) + ¢'(0)x +/
0

c’est-a-dire : In (1 + x) = x — / (x —1)
0

fx(x—z)dr
0
_[_ (x—’)z]x_ﬁ
7, 2

<In(l+x) <x

———dr
(1+1)?
Mais :

*ox—t
< — dr <
\/o (I+02

()

Onadonc:x—%

e Soitn € N*,

k
Appliquons le résultat précédent a — a la place de x, pour tout
n

kefl,...,n}:
k 2 k k
. ko1 k k
d’ou : ;—7<ln<l+ﬁ><ﬁ,

donc, en multipliant par n
k 1 k k
———<nh(l+—=)< -,
n 2n n? n
puis, en passant aux exponentielles :

k n
eée’%<<l+—2) Len.
n

On déduit, en sommant pour k allant de 1 a n, puis en divisant
parn :

IS IS (1 A) <15

RES
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On a, par sommation géométrique :

I\n
ik 1 (e”) —1 1 €— 1
E en = E en = @7 : =en — s

k=1 er — 1

. 1
puis, comme e — 1 ~ —:
noo n

—>e—l

—Zen =en(e— 1)

On conclut, par le théoréeme d’encadrement :

1 n
- 1+
2 (

en =

k)"
— ) —e—1.
P

noo

Considérons
g:[0;1] — R, x+— gx) :a—f—b/ f(@)de.
0
Puisque f est continue sur [0; 1], g estde classe C'sur[0; 1]
et: Vx e[0;1], gx)=bf(x).
De plus, d’apres I’hypothese de 1I’énoncé :

Vxel0;1], gx) =2a=>0.

On déduit : Vx e[0;1], gx) <bJ/gx),
. g (x) b
S: v 0;1
puis x €[l 1, 2\/?
En intégrant sur [0; x], pour tout x € [0; 1] :
A 0) I
/0 2./g(t) dr = [ g(t)]o
=Vg) —vg0) =ygk) -
On a donc : g(x)—ﬁé/xédz:b—x,
0 2 2
N bx\?
d’ou : gx) < (ﬁ—l— 7) 2

c’est-a-dire :

X b2
a+b/ f(l)dt=g(x)<a+\/5bx+zx2
0

/ f@de <

a) Puisque f'(0) = 1 > 0 et que f” est continue en 0, il
existen > Otelque: Vx €] —n;nl, f'(x) >0,

b
et on conclut : Jax + 4x

donc f est strictement croissante sur | — n; n[.

Notons U =]—mn;ql et V= fU)=1-fm; fL.
Puisque f(0) = 0, on aalors f(—n) <0 < f(n).

Enfin, puisque f est continue et strictement croissante sur 1’in-
tervalle U, d’apres le théoreme de la bijection monotone, fréa-
lise une bijection de U sur V.

b) 1) Supposons que f~' admette un DL3(0) :

O =a+By+w +0'+ o 7).

On a alors o = f~'(0), et, puisque f~! est dérivable en 0,
d’apres le cours, 8= (f~1)/(0). Mais £(0) = 0 et f'(0) = 1,
donc f~1(0) = 0 et

1 1 1

71/0: — - — =1
SR (1 o) o1

Le DL3(0) de f~' est donc de la forme :
O =y+1+6° +007).
Ona,pourx € U :
x=f(fw)
= f! (x +ax® + bx> + 0(x3))
= (x +ax>+bx>) + v(x + ax® + bx3)?
+ 6(x +ax®> +bx)? +o(x?)
= (x + ax® + bx®) + y(x® + 2ax>) + 6x> + o(x?)
=x+ (a+ x>+ (b + 2va + 0)x> + o(x>).
Par unicité du DL3(0) de x — x, on déduit :
a+v=0
d’ou : {
b+2va+6=0 0 =2a*> —b.

v=-a

eci u s ue la valeu ue ci- u
2) Réciproquement, montrons que la valeur obtenue ci-dessus
pour (7,9) convient, ¢’est-a-dire montrons :

o) =y —ay* + 2a®> =)y’ +0(y*) .
Notons x = f~!(y), de sorte que y = f(x) et x —>00.
y—)
Ona:
7o) = (y —ay* + 2a® — b)y’)
= x-— ((x + ax? + bx’) — a(x + ax* + bx>)?
+ 2a® — b)(x 4+ ax? + bx*)> + o(x3))
= x— ((x + ax* + bx?) — a(x® + 2ax>)
+ (2d* = b)x’ + o(x?))

= ok’ = o(y3),carx ~0y.
y—>

On conclut que f~! admet un DL3(0) et que :

') =y —ay* + 2a* — b)y* +yg0(y3).



Considérons, pour tout n € N* :
Z 3 - ;

* On sait, par comparaison somme/mtegrale (cf, par exemple,

n

1
exercice 2.8) : — ~ Inn,
Dt

donc: v, ~nlnn.
noo

* Notons, pour tout n € N* :

n 1 1
wn:un_vnzz<—k—?).
k=1 ™ p (1 <= —) =
n n
Considérons I’application
1 1
©:10;1] — R, x»—><p(x)=m_;_

On a, au voisinage de 0 pour la variable x :

x2+ 2
—(x—g o(x))

x — In(1 + x)
plx) = =
xIn(1+x) xIn(1+x)
2
% +old
== — 1
x2 4+ o(x?) 2 +of ) 02
On peut donc compléter ¢ par continuité en 0, en posant
1
p0) = = L’apphcatlongp [0; 1] — R ainsi construite est

contmue sur le segment [0 ; 1], donc, d’apres un théoreme du
cours, ¢ est bornée. Il existe donc M € R+ tel que :

Vx €[0;1], le()] <

Onaalors: Vn € N*, Vk € {1,...,n},

d’ou, en sommant pour k allant de 1 an :

23

k=1

n

<2

k=1

VneN, |w, = < Mn.

)

On obtient : u, = v, + O(n) et v, ~ nlnn, donc:

Ceci montre : u, — v, = O (n).
noo

u, ~nlnn.
noo

a) Supposons qu’il existe f convenant.
On a alors, pour tout x € R :

f(x) = f(sh(Argshx)) = ch (f(Argshx)) € Ry,
contradiction, puisque, par exemple, f n’atteint pas —1.
On conclut qu’il n’existe pas de f convenant.

b) Supposons qu’il existe f convenant.
* *Soitr € [—1;

f(t) = f(sinx) = cos (f(x)) € [-1;1].

1]. Notons x = Arcsint.On a :

* Réciproquement, soit # € [—1; 1]. Notons y = Arccosu.
Puisque f est bijective, il existe x € R tel que y = f(x).
Onaalors : u = cosy = cos (f(x)) = f(sinx).

Comme sinx € [—1; 1], ceci montre :
Yuel[-1;1],3ve[-1;1], u= f(v).

Ceci établit que fréalise une bijectionde [—1; 1] sur[—1; 1].
Comme f est continue, d’apres un exercice classique, f est stric-
tement monotone.

- {f(—1)=—1 {f(—1>=1
En particulier : ou
S =1 S =-
1l existe donc € € {—1,1} tel que :
f(=1)=— et f(l)=¢e.

*Ona:f(sinl) = cos(f(1)) = cose et:

f(=sinl) = f(sin(=1)) = cos (f(—1))

= cos(—¢) = cose,

donc : f(sinl) = f(—sinl).
Comme f est injective, il s’ensuit sinl = —sinl, d’ou
sin 1 = 0, contradiction.
On conclut qu’il n’existe pas de f convenant.
Notons E = {(x,y) cl0;11%;]x —y| = a}.
* Montrons que E est compact.
y
1
E
E
a
o a 1 X

Considérons 1’application
0 R — R, (x,y) — |x —y]|.
Onadonc: E = ¢ !([a; +oa]).
Ainsi, E est I'image réciproque du fermé [a ; +-o0[ par I’ap-

plication continue ¢, donc E est fermé dans R, ce qui se voit
aussi sur le schéma.
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D’autre part, E est borné, puisque E C [0; 1]%.
Ainsi, E est une partie fermée bornée de R?, qui est un R-es-

pace vectoriel normé de dimension finie, donc E est compact.

 Considérons d’autre part I’application

F:E—R, (x,y)— F(x,y)z‘%g(y)’.

L’application F est définie et continue sur E, puisque le dé-
nominateur x — y ne s’annule pas.

Puisque F est continue sur le compact E et est a valeurs
dans R, d’apres le cours, F est bornée et atteint ses bornes.

Notons C = Sup F(x,y) € Ry.

(x,)€E
Il existe (xp,y0) € E tel que : C = F(xp,y0) < 1.
On conclut :

3C €0 1[, Y (x,y) € [0; 1,
(Ix=yl>a=If(x) = fFMI < Clx —yl).

* Soit (x,y) € R%.

On a, pour tout ¢ € [a; b], en utilisant I’inégalité triangulaire
renversée, puis I’inégalité triangulaire :

‘ PRGBS IAG! ’
i=0 i=0

< il:xiﬁ(t)—i:y[ﬁ(t) = il:(x[—y[).ﬁ(t)
= i:(xi -y fim] < i:lxi =y I1fi @)
< anlxi =¥ 1 filloo-
*Soit A € R;. -

On a, pour tout (x,y) € [—A; A]*:
i—1

=y Yy
k=0

i—1
<l =y ) Iyl < — ylia
k=0

Vie{l,....n}, |x' —y|=

d’ou, en sommant :

n n
Yol =y filleo < I =31 ) I filloi A7
i=1 i=1

noté M
On obtient, pour tout (x,y) € [—A; A]*:

‘ Y XAO|- )Y O < Mix—yl,

i=0 i=0

etdonc: | > x'fi(1)| < | Dy O]+ Mlx —yl.
i=0 i=0

En passant aux bornes supérieures lorsque 7 décrit [a; b],
on déduit : gx) < g(y) + Mlx — yl,

gx) —g(y) < Mlx — yl.
En appliquant ceci a (y,x) a la place de (x,y), on a aussi :
g(y) —gx) < Mlx —yl,
lg(x) — g < M|x —yl.

d’ou :

et donc :

On a a montré :
VAeR,, IM R, V(x,y) € [—A: A%,

1g(x) =g < Mlx — y|.
Ainsi, g est M-lipschitzienne sur [-A ; A], donc g est conti-
nue sur [—A ; A].
Puisque g est continue sur [—A ; A] pour tout A € R, on
conclut que g est continue sur R.

Pour tout n € N*, notons :

1
I, =/ n?(x" — x") £ (x) dx
0
1
et considérons : J, = / n2(x" — x" £ (1) dx.
0

1) On calcule J,,, pour tout n € N* :

n+1 n+2 1
annz[x = ]f(l)

n+1 n+2],
s 1 1 D= n? 1
=" (n+1_n+2>f( )= ernmrn!
On a donc : J, —— f(D).

D’autre part, pour tout n € N* :
1
=l =| [ G = ar (7w - r) ey
0

1
</ (" — x| £@) — (D] dx.
0
Soit € > 0 fixé.

* Puisque f est continue en 1, il existe n > 0 tel que :
Vxell—n:1l, |[f(x)—f)|<e.

On a alors, pour tout n € N* :
1
/ R — )| £ — £ dx
I-n

I I
< &‘/ n?(x" — x"dx < 5/ n?(x" — x" 1y dx
1-1n 0

712

=—e— <Le¢
n+D@n+2)

* D’autre part, puisque f est continue sur le segment

[0; 1], d’apres le théoreme fondamental, f est bornée, d’ou, pour

n e N*:



1—n
/ "2 — x| £ — FD)]dx
0
1—n
< / 2" — 221 f oo dx
0

1—-n
< f P332 f 1o dx
0

Pan! :|1_7]
n+ 1l1o

_ 20| flloo(1 = )"+
n+1 noo

= 207/ f oo

par prépondérance classique.

Il existe donc N € N tel que :

1—n
>N,/ 20— | f) - ()] dx <
0

On a donc, par addition :

1
n>N, / n?(x" —
0

I, —J, —— 0.
noo

Y| f )~

Ceci montre :

Enfin: 1, = (I, — J,) + J, —— 0+ f(1) = f(1).

Considérons, pour toutn € N tel que n > 2 :

1
J, =/ 2x" n(1 + x™) dx,
0

qui ressemble a /, et semble plus accessible a un calcul.

*On a, pour toutn € N tel quen > 2 :
IIn - Jn|

1
f (xn _ 2)6"71 +x)l*2) In (1 +xn) dx'
0

1
/ X" = 1)%In (14 x") dx
0

1
f x"2(x — D?In (1 4+ x") dx
0

N

1
f x"2(x — 1)*> In 2dx
0

1
= In 2[ (x" = 2" 4 x”*z) dx
0

n+1 n n—1 71
= m2|t— 22 42
n+1 n n—1]1,

1 2 1
= In2 - —+
n+1 n n-—1

21n2
n—Dnn+1)’

1
donc: I,—J,= 0O (—3>
noo \ N

f()|dx < 2e

* D’autre part, pour toutn > 2 :

1
J, _/ 2x"'n (1 4+ x™) dx

1

uln (14 u)du

SIN

0

1 1
— uln(l+u) /0u21+udu>

/
o Lo
(an—[——u+ln(1+M)])

1 1 1
=—(lh2—(-—-1+1In2 = —.
n(n (2 +hn )) 2n

1 1
Onconclut: 7, =J,+ (I, — J,) = o + 0 (—)

n noo n3

Slr—i

Slr—i

a) Le polyndme P, est dérivable sur R et s’annule en
0,1,...,n, donc, d’apres le théoreme de Rolle, P, s’annule en

au moins n points xi,. . . ,x, tels que :

O<xi<l<...<x,<n.

Comme deg (P,) = n, on a la tous les zéros de P,.
En particulier, il existe u,, € ]0; 1[ unique (c’est le x; dans les

notations précédentes) tel que P, (u,) = 0.

b) On a, puisque P, = H(X —k) :
k=0

P, L 1
P, ;X—k’
n 1 P/
d’ou : =—| =" n) = —
ou Zk—u,, (P”)(u)

k=0

Pl(u,)
P(u,)

¢) Isolons, dans le résultat précédent, le terme d’indice O :
1 < 1 =
_— = > =,
Un kZl: k — Un - kZl: k

D’autre part, par comparaison somme/intégrale, puisque 1’ap-

L 1 . .
pllcatlon x —> —, est décroissante et continue, on montre
X

n

1
(cf. aussi I’exercice 2.8) : Z A ~ Inn.
= noo

1
Dou: — —— 400, etdonc: un—>0
U, noo

d) Reprenons I’étude précédente, en isolant aussi le terme d’in-
dice 1 :
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"1 1 SN 1 n
- < —= = e
=k o un S k—u L—u, 4 k—u,
1 2, 1 S
< = —.
\l—un+zk—l 1—u,,+k=lk

n—1
1 1
O:E—~l —1D=1 In{l—-) ~ Inn.
na k=1kmon(n ) nn+ n( n) nn

—> 1, caru, ——> 0.
1—14,, noo noo

Enfin :

. 1
On obtient, par encadrement : — ~ Inn,
u, noo

eton conclut: u, ~ —.
noo Inn

a) * Une récurrence immédiate montre que, pour tout
n € N*, u, existeetu,, > 0.
. U, 1
eOna:Vne N, 0<un+1=—+—2 <u, +1,
n o n
ou encore, par décalage d’indice, pour toutn > 2 :
Uy < Up—1 4 1 .
On a, en réitérant :
Uy < Up—1 + 1

Un—1 g Up— + 1

u, Sup+1,
d’otl, en sommant et en simplifiant :
u, Sup+(n—1).
On reporte alors cette inégalité dans la définition de la suite :
1 uy+(n—1 1
Zir@ =) , 1

U,
Vn22 0Suppn=—+— < >
n n n n

1 1
<M1+1—;+E<M1+1.

I1 en résulte que la suite (u,),>; est bornée.
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eIl existedonc M € R, telque:Vn > 1, u, < M.

D’ou, en reportant dans la définition de la suite :

U, 1 M 1 M 1 M+1
0SuU =2 b—<—+ < —+-=
n o n n o n n o n n
M+ 1
et donc, par décalage : Vn > 2, u, < +1 .
n—
On déduit, en reportant encore :
Un 1 M+ 1 1
0< n = ) —_— =,
S Gzl n n?  ann—=1 n?

ce qui montre :

Uy, 1 1 1 1
Alors: Uy =—+—==0(=|+= ~ =
n

n? n3 n% noo n2’
. z 9 3 1 1
puis, par décalage d’indice : u, ~ ——— ~ .
noo (n— 1)2 noo }’lz
b)On a:
u, 1
Upp1 = — + —
" n n?

d’ou, par décalage d’indice :

R 1 1
""_(n—1)2+(n—1>3+0<(n—1)3>
RN AR A 1
—;( z) *E( 2> “(?3)
1 2 1 1 1




Integration sur un

intervalle quelconque

B Plan MR Themes abordés dans les exercices

Les méthodes a retenir 58 e Intégrabilité ou non-intégrabilité d’une application f : I —> C, ou [ est un

Enoncés des exercices 60 intervalle quelconque

Du mal a démarrer ? 68 » Existence et calcul d’intégrales sur un intervalle quelconque

*  Pour une intégrale dépendant d’un parametre, détermination de la limite, d’un

Corrigés 74 .. . p .
équivalent simple, d’un développement asymptotique

e Détermination de la nature d’une intégrale impropre

+ FEtude de la continuité et de la classe pour une fonction définie par une inté-
grale dépendant d’un parametre

e Calcul de certaines intégrales dépendant d’un parametre

+ FEtude et représentation graphique d’une fonction définie par une intégrale
dépendant d’une parametre

Points essentiels du cours
pour la résolution des exercices

e Définition et propriétés de I’intégrabilité sur un intervalle quelconque, pour les
fonctions a valeurs dans R, pour les fonctions a valeurs dans C. En particu-
lier, le théoréme de majoration, le théoreme d’équivalence, les exemples de
Riemann en +o00, en 0, en a,a € R, les regles x“ f(x) en +00 et en O, les
exemples du cours sur le logarithme et I’exponentielle

e Les inégalités sur les intégrales de fonctions intégrables
* Larelation de Chasles

* Le changement de variable pour des intégrales sur un intervalle quelconque
* La définition de la convergence et de la divergence pour les intégrales
—+00 i
. . sinx
impropres, et I’exemple classique / —dx
X

1
* Les théoremes de continuité et de dérivation sous le signe intégrale, avec hypo-
these de domination ou hypothese de domination locale

© Dunod. La photocopie non autorisée est un délit.
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Chapitre 3 « Intégration sur un intervalle quelconque

= | ¢s méthodes a retenir

Pour étudier ’intégrabilité

d’une application f : I — C,

ou / est un intervalle semi-ouvert,
par exemple fermé a gauche et
ouvert a droite,

I =la;b[, —0c0 <a<b< 40

Pour étudier ’intégrabilité
d’une application f : I — C,
ou / est un intervalle ouvert,

I =Ja;b[, —co<a<b<+

Pour étudier

P’existence d’une intégrale
et calculer cette intégrale,
dans un exemple

58

S’assurer d’abord que f est continue par morceaux sur /.

° Le plus souvent, procéder pour | f| & une étude locale en b, par uti-
lisation du théoréme de majoration ou de minoration, du théoréeme
d’équivalence, de larégle x“ f (x) ou d’une regle analogue, par com-
paraison a I’exemple de Riemann ou a un exemple du cours.

== Exercices 3.1 a) a f), 3.7, 3.9, 3.10 a), 3.11 a),
3.12,3.13 a), 3.20 a), 3.28, 3.41, 3.48 a)

® S’il existe g : I —> R, continue par morceaux, > 0, intégrable
sur [, telle que | f] < g, alors fest intégrable sur /, sans que I’on ait
besoin d’effectuer une étude locale en une extrémité de /.

== Exercices 3.2, 3.36, 3.39.

S’assurer que f est continue par morceaux sur /.

* Le plus souvent, procéder pour | f| a une étude locale en a et a une
étude locale en b. Par définition, f est intégrable sur Ja ; b[ si et seu-
lement s’il existe ¢ € Ja ; b[ tel que f soit intégrable sur ]a ; c] et sur
[c; bl.

== Exercices 3.1 ¢g) ai),3.13b)ad), 3.14, 3.16 b, )

® S’il existe g : I —> R, continue par morceaux, > 0, intégrable
sur I, telle que | f| < g, alors fest intégrable sur 7, sans que 1’on ait
besoin d’effectuer des études locales en les extrémités de 7.

== Exercices 3.5, 3.6, 3.16 a), 3.21 a).

En regle générale, séparer 1’existence et le calcul.

* Pour I’existence, voir les méthodes ci-dessus. Le plus souvent, un
argument qualitatif (comparaison avec des fonctions usuelles) per-
met de montrer I’intégrabilité.

® Pour le calcul, dans les cas simples, passer par un calcul de primi-
tives.

Un changement de variable peut étre fait directement.
Mais, pour une intégration par parties, on procedera d’abord sur un
segment, puis on fera tendre une borne vers la valeur indiquée.

== Exercices 3.3a)ae), 3.4, 3.8,
3.13,3.16 ¢) a f), 3.17, 3.26, 3.34

° Dans certains exemples, un changement de variable qui échange les
bornes permet de calculer I’intégrale ou de se ramener a une autre
intégrale.

w= Exercices 3.14, 3.15, 3.16 a), b), 3.34, 3.36, 3.37.



© Dunod. La photocopie non autorisée est un délit.

Pour trouver
la limite d’une intégrale
dépendant d’un parametre

Pour trouver

un équivalent simple
d’une intégrale

dépendant d’un parametre

Pour trouver

un développement asymptotique
d’une intégrale

dépendant d’un parametre

Pour étudier la nature
d’une intégrale impropre

Les méthodes a retenir

Essayer de :

° conjecturer la limite, qui est souvent, dans les exemples simples,
I’intégrale de la limite, et montrer que la différence entre 1’intégrale
de I’énoncé et la limite conjecturée tend vers 0

w= Exercices 3.10 b), 3.20 b), 3.21 b), 3.29 ¢), 3.41

° former une intégrale qui ressemble a I'intégrale de 1’énoncé et est
plus simple que celle-ci, puis montrer que leur différence tend
vers 0

== Exercice 3.18

® se ramener a une étude de continuité, et utiliser le théoreme de conti-
nuité sous le signe intégrale

== Exercices 3.19, 3.27.

En général, on aura d’abord trouvé la limite de cette intégrale, cette

limite étant presque toujours 0 ou +o00.

Essayer de :

° se ramener a une recherche de limite d’intégrale, par changement de
variable ou intégration par parties

== Exercices 3.10 c), 3.22

° former une intégrale ressemblant a 1’intégrale de 1’énoncé et qui est
plus simple que celle-ci, puis montrer que leur différence est négli-
geable devant I’une des deux, ce qui établira que ces deux intégrales
sont équivalentes, et calculer I’intégrale simple

== Exercice 3.52

e utiliser une intégration par parties et montrer que la nouvelle inté-
grale est négligeable devant le crochet

== Exercices 3.11 b), 3.42 a).

* Si le parametre est aux bornes, se ramener a une recherche de déve-
loppement limité (éventuellement par changement de variable) et
utiliser le théoréme sur la dérivation pour les développements limi-
tés.

== Exercice 3.23

® Si le parametre est a 'intérieur de 1’intégrale, on peut essayer de
transformer I’écriture de 1’intégrale.

== Exercice 3.43.

On peut souvent se ramener a 1’étude de l’intégrale impropre

~+ gin x ) )
—dx, a € R, par développement asymptotique, ou par
1 X

changement de variable, ou par intégration par parties.

== Exercices 3.24, 3.25.
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Chapitre 3 « Intégration sur un intervalle quelconque

60

Essayer d’appliquer le théoréme de continuité sous le signe intégrale,

Pour montrer P P . A
ou le théoreme de dérivation sous le signe intégrale.

qu’une application définie
par une intégrale a parametre == Exercices 3.29 b), 3.30 a 3.33.
est continue,

est de classe C!,

est de classe C*

Essayer d’utiliser le théoreme de dérivation sous le signe intégrale,
. . oF
qui donne, sous certaines hypothéses, f'(x) = / B—(X,t) dr.
] 0X

° Il se peut que cette dernicre intégrale soit calculable, d’ou I’on

déduira I’expression de f’(x) par un calcul de primitive.
Pour calculer

certaines intégrales 4 parameétre, == Exercice 3.47

fx) = / F(x,r)dt * Il se peut que f(x) ressemble a f (x) et que f satisfasse une équation

! différentielle linéaire du premier ordre, que 1’on essaiera de
résoudre.

== Exercices 3.49, 3.50.

* Il se peut aussi que f satisfasse une équation différentielle linéaire du
second ordre.

=mmme Fnonceés des exercices

— Exemples faciles d’études d’intégrabilité

Etudier I'intégrabilité des applications suivantes :

a)f:x|—>%(\/x2+x+l—\/x2—x+l) sur [1; 4+o00[

b)fix s SIXECOSX 10+ ool ) res M Gl oo
T X ——————— sur[0; c)f :x —— sur[l;
Va3 +1 Va3 +1
x2+1 14+x
A f ixr— 50— 0;1 X —— 0:1
) f i s os ] e)f ix = —= s surl0: ]
Nr 10; 1] ) f ! 1=1; 10
X = = sur jUg X —— sur]—1;
T e M g ime
. 1 2 ,—x
h)f:x|—>& sur |0 ; +o0o[ i)f:x|—>+x76 sur | — oo ; +00l.
X3+X4 x2+672x
— Exemple facile d’étude d’intégrabilité
. EE
Etudier I’existence de / sin —| dx.
0 X
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3.3

3.5

3.7

3.10

3.11

Enoncés des exercices

Exemples faciles d’existence et calcul d’intégrales sur un intervalle quelconque

Existence et calcul des intégrales suivantes :

+o00 1 +o00 x4
— 4 b —— dx
a)fo Grhax+2) )/o X0+ 1
+oo ohy 1 X2 i
d d ——dx In(1 — 3x + 2x?) dx.
C)/m anax )/om “’)/o nil = 2 e

Exemple de calculs d’intégrales liées a I’intégrale de Gauss

+00
. 2
Existence et calcul, pour toutn € N, de [, = / x"e™ dx.
0

Lien entre les intégrabilités de f et de /2, lorsque f est bornée

Soient / un intervalle de R, f : I —> C continue par morceaux et bornée. Montrer que, si f> est
intégrable sur I, alors f 1’est aussi (ol f> désigne f - f). Le résultat subsiste-t-il si on ne suppose
pas que f est bornée ?

Intégrabilité par encadrement

Soient / un intervalle de R, f,g,h : I —> R continues par morceaux. On suppose que f et /1 sont
intégrables sur / et que f < g < h. Montrer que g est intégrable sur /.

Une norme sur R? définie 2 partir d’une intégrale sur un intervalle quelconque
+oo
Montrer que I’application N : R? — R, (x,y) —> / |x +tyle™"dr
0

est une norme sur R
Calcul direct d’une intégrale sur un intervalle, avec parametre

too s g \?
a) Existence et calcul, pour tout a € R, de I (a) = / (— — —2> dx
1 X X

b) Déterminer Inf I (a), et Inf I (a).
acR acl

Intégrabilité par majoration
a 1
Soit £ : [1; +00[—> R continue telle que : ¥ (a,x) € [1; +oo[>, 0 < f(x) < =+t
X a

Montrer que f est intégrable sur [1; 4-00].

Equivalent d’une intégrale dépendant d’un paramétre entier

+o0 —X
. e
On note, pour tout n € N*, sous réserve d’existence : I, = /
0 n—+x

a) Montrer, pour tout n € N*, I’existence de /,,.

L 1
b) Etablir : I, —— 0. c) Montrer : I, ~ —.

noo noo 1

Equivalent d’une intégrale dépendant d’un paramétre entier
1

+0o0
On note, pour tout n € N, sous réserve d’existence : [, = f —dx.
poxn(L+x?)
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— 3.12
— 3.13
— 3.14
— 3.15
— 3.16
— 317

a) Montrer, pour tout n € N, I'existence de /,.

b) A I'aide d’une intégration par parties, trouver un équivalent simple de 1, lorsque I’entier n tend
vers I’infini.

Exemple d’étude d’intégrabilité
Trouver tous les P € R[X] tels que I'application f : x +—— / P(x) — x2+x+1
soit intégrable sur [0 ; 4+-o00].

Exemples d’existence et calcul d’intégrales sur un intervalle quelconque

Existence et calcul des intégrales suivantes :

+o00 1
a —— dx b dx
),/1 xa/x2+x+1 )foo (X2+x+1)2
C)/+°°x—Arctanxdx )/‘ Cl4x

0 x3 «/x(l—x

Exemples d’existence et calcul d’intégrales sur un intervalle quelconque,
par changement de variable qui échange les bornes

Existence et calcul des intégrales suivantes :
+o0o 1 +o00 Inx +00 In
a)/ dx b)/ — _dx,aeR: c)/ NELLEN
0 @ DET+x+1) 0 X tal o (422

Exemple de calcul d’une intégrale de fonction a valeurs complexes

270 dx
Calculer I = _
o 1+ cosx

Exemples de calcul direct d’intégrales a parametre

Existence et calcul éventuel des intégrales suivantes :

+00 1
a ——dx, aeR b , ael0; 40
)/0 A+ ) )/ T e sl

T
m sin2x
dx, (a,b) €ll; 2

C),/o (a — cosx)(b — cosx) (@.b) €115 Fool

Foo 1 sina
d —dx, R —dx, R
)/:oo x2 —2xcosa+1 L ae 6)/00 chx — cosa L ae

1

1
A mdx‘, ae]O,l[

5

Exemple de calcul d’une intégrale de fonction a valeurs complexes

+o00

Existence et calcul, pour z € C, de I (z) = / e“e I dr.

o0
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Enoncés des exercices

Limite d’une intégrale a parametre, le parametre étant aux bornes

. 3 gint
Trouver lim ——dr.
x—0% Jo, sh™t

51/ E) Limite d’une intégrale 2 paramétre

. +00 (l‘ +2)x—l
Trouver lim —_—
x—0 J; (t + 1)x+!

Limites d’une intégrale a parametre
+00 t3

V1 +t4

a) Montrer que, pour tout x € ]0; +o0o[, I'intégrale f (x) = e dt existe.

b) Déterminer les limites de fen 0 et en +-00.

Equivalent d’une intégrale 4 paramétre

Soient f : [0; +00[—> R continue, > 0, intégrable sur [0; +oo[, g : [0; +00[—> R, conti-
nue, > 0.

+o0
On note, pour tout A € ]0; +00[, sous réserve d’existence : ¢(\) = / e
0 8

a) Montrer que, pour tout A € ]0; +00[, ¢(\)existe.
2. 1 +0oo
b) Etablir que, si de plus g est bornée, alors : ¢(\) N ~ X / I
—>+00 0

Equivalent d’une intégrale 3 parameétre

/2 .
Trouver un équivalent simple de / e ¥ dt, lorsque x —> +00.
0

Développement asymptotique d’une intégrale a parametre,
le parametre étant aux bornes

dr
NGESE

2

X

Former un développement asymptotique de f :x+— f a la précision
X

1
0(7) , lorsque x —> +00.
X

Exemple de nature d’une intégrale impropre

—+o0

. e . sinx
Déterminer la nature de 1’intégrale impropre /

- (m—ﬁ)dx.

Exemple de nature d’une intégrale impropre

—te sinx
Déterminer la nature de I’intégrale impropre / ——dx.
-0 X + /X sinx

Calcul d’intégrales liées a ’intégrale de Gauss

+00
Soient a € R, P € R[X]. Montrer I’existence de I = / e’XZP(x + a)dx, et exprimer / a

I’aide des dérivées successives de P en a.
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— Limite d’une intégrale a parametre

ll_tx

Déterminer lim dr.

x—0tJo 1 —1t

— Etude d’intégrabilité pour une fonction définie par une intégrale 4 paramétre

Soit a €]0; +o0[ fixé.

+oo I
a) Montrer, pour tout x € ]0; +oo[, ’existence de f (x) = / P dr.
ef —
X

b) Est-ce que f est intégrable sur ]0; +oo[ ?

— Etude d’une intégrale 2 paramétre
s .
2 sin(xt
On note, sous réserve d’existence, pour x € R : f(x) = / ,( ; ) dr.
0 sSin
a) Montrer que f est définie sur R.
b) Etablir que fest de classe C' sur R. c) Déterminer lim+ f(x).
x—0
— Utilisation de la continuité pour une intégrale a parametre
iy
2
On note, pour tout x € [0; +oo[ : f(x) = / t*costdr.
0
o 3

Montrer qu’il existe ¢ € [0; +oo[ tel que : f(c) = vk

— 5151 | Etude compléte d’une fonction définie par une intégrale 4 paramétre

Etude et représentation graphique de la fonction f d’une variable réelle donnée par :
™

fx) = /7 Arctan (x tant) dz.
0

— Etude complite d’une fonction définie par une intégrale 2 paramétre

1

+o00
On note, sous réserve d’existence, pour x € R : f(x) = —dt.
P Fe) /. (1 + Inr)

a) Déterminer 1’ensemble de définition de f.
b) Etudier le sens de variation de f et la convexité de f.
¢) Déterminer les limites de fen 1 et en +00.

d) Tracer la courbe représentative de f.

e) Montrer : f(x) ~ l

x—+00 X

— Etude de log-convexité pour certaines transformées de Laplace

Soit f : [0; +00o[—> R continue, > 0, telle que, pour tout p € R, I’application t —> f(¢) e™?"
est intégrable sur [0 ; 4-o00].
+o00

a) Montrer que I’application F : R — R, p —> fe " de
0

estde classe C>sur R etque: V p € R, (F/(p))2 < F(p)F"(p).

b) En déduire que, si de plus f # 0, alors I’application In o F est convexe sur R.
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3.35

Enoncés des exercices

Existence et calcul d’intégrales sur un intervalle quelconque

s
7 2
Existence et calcul de : [ = / Insinxdx et J = f In cos x dx,
0 0

iy iy
7 x 7 xsinx t Arctanx
puisde:K:/ dx,L:/ —dx, M = / dx
o tanx o 1 — cosx x(1 +x2)

Utilisation d’intégrales a propos de polynomes

Soit P e R[X] telque: Vx € R, P(x) > 0.0nnoten =deg(P) etQ = Z P®.

k=0

Montrer: Vx € R, Q(x) >0

Existence et calcul d’une intégrale a parametre entier

xn—l

+00
Existence et calcul, pour n € N*, de I, = —_
pos e

Calcul d’une intégrale a parametre

+00 1 1
Existence et calcul, pour x € [0; +o00o[, de f(x) = Min <x, —, —) de.

0 NS

Liens entre les intégrabilités de trois fonctions
Soit f : [0; +00o[—> R, continue par morceaux, > 0, décroissante.

On note g,% : [0; +00[—> R les applications définies, pour tout x € [0; 400, par :
gx) = f)[sinx|,  h(x)= f(x)|cosx].

Montrer que les intégrabilités de f, g,k sont deux a deux équivalentes.

Limite pour une fonction vérifiant des conditions d’intégrabilité

Soit f : [0; +00o[—> R de classe C'. Montrer que, si 2 et /' sont intégrables sur [0 ; 400l alors

f20

Sommes de Riemann pour une fonction intégrable et monotone, exemple

a) Soit f :]0; 1] —> R continue par morceaux, décroissante, intégrable sur 0 ; 1].
1

1< k
Montrer : p Zf(;) R I

noo 0

b) Application : Déterminer 11m Z

(k + n)«/k(k ¥2n)
Limite d’une intégrale a parametre
+oo
—1
Trouver lim al dr.
x—>—00 Ji eXr —e!

Equivalent d’une intégrale 3 parameétre

e’

+o00 N
a) Montrer:/ e "dr ~
X

r—4o00  2x
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o 3.43

_

_

1

b 7
b) En déduire, pour tout (a,b) € R? tel que 0 < a < b, 1a limite de ( f e’ dl> , lorsque I’en-
a
tier n tend vers ’infini.
Développement asymptotique d’une intégrale a parametre

e —1
u

du.

1 t 1

e

Montrer:/ dt=—Inx+1+4+ o (1), oilonanotéI:/
0 X+t x—0 0

Nature d’intégrales impropres

Soit o € R. Montrer :

— 400 —>+00
L . sSin x Ccos .
e Les 1ntegrales 1mpropres a dx et o dx convergent si et seulement
1 X 1 X

sia >0

o sin x COS X L . .
* Les applications x ——> —— et x —> sont intégrables sur [1; +o0[ si et seulement si
X
a>1.

Ainsi :
—+400 — 400
sinx cosx .
ca < O=>/ —dxt/ — dx divergent
1 X7

~H® ginx ~H cosx )
‘0<a<l= —— dxet — dx sont semi-convergentes
1 X

~F sinx “tee
cl<a— / —— duxet / — d.x sont absolument convergentes.
X 1 X

Calcul de /

0 X
a) o) Montrer :

1 sin(2n—|—1)x
Vx e R — 77,V — 2kx = ————.
X € . neN 2—I—X:cos 2 sinx

7 sin(2n 4 1)x T
) En déduire : Vn € N, / —— dx = —.
0 sin x 2

b) Soient (a,b) € R? tel que a < b, ¢ : [a; b] —> R de classe C'. Montrer :
b
/ p(x)sinnx dx —— 0.

¢) a) Vérifier que Iapplication f : [0; g] —> R définie par :

1 1 . 6]0 7T:|
& -
f(x):{x sin x * 2
0 si x=0

est de classe C! sur [0; g]

i
% sin@n + 1
) En déduire : / 2sin@n A+ Dx o
0

X noo

SIE

—+00 +00 o3
) sinx sinx ™
d) En déduire que / —— dx converge et que : / —dx = -
=0 X 0 X 2
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3.46

3.49

Enoncés des exercices

+00
Calcul d’intégrales déduites de /
0

sin x T
X =

+00
On admet (cf. exercice 3.45) : / dx = =
0 X
+oo 1 — +oo . 2
a) Existence et calcul de : / % dx. / ( smx> W
0 X 0 X
oo i >\ +00 1— )\
b) Existence et calcul, pour A € R, de : / S AX dx, / w d
0 X 0 X

¢) Existence et calcul, pour (a,b) € R?, de :

% sinax sin bx 1 — cosax cosbx
2 dx, 2 dx
0 X 0 X

. T sinx
d) Existence et calcul de

oo X(T—X)

Calcul d’une intégrale a parametre,
utilisation du théoreme de dérivation sous le signe intégrale
+oo ln( x + 1‘2)

Existence et calcul éventuel, pour x € R, de f(x) = / s
0

Intégrale d’une fonction elle-méme définie par une intégrale a parametre

+00 1
a) Montrer, pour tout x € ]0; +oo[, I'existence de f (x) = / e dr.

x
+00

b) Montrer que f est continue et intégrable sur ]0; 4+-o00[, et calculer f(x)dx.
0

Calcul d’intégrales a parametre

Etablir, pour tout (a,x) de R} x R :

+o0 2

2 ™ _XxZ

/ e “cosxt dt = i e 4
0 2/a

+00 1 2 x 2
—a? a2 2
/ e “sinxtdt = —e 4 / edadr.
0 2a 0

Calcul d’une intégrale de fonction a valeurs complexes
+0o0
Existence et calcul, pour x €]0; +oo[ etz € C tel que Re (z) < 0, de / et dt.
0

Le résultat fera intervenir la fonction I d’Euler, définie par :

+oo
Vx ell;+oof, T'(x) = / e 'dr.
0

T flax) — f(bx) d

0 X

Etude de x , exemples

——+00
1. Soient f : [0; +00[—> R continue, telle que I’intégrale impropre / @ dx, converge,
1 X

et (a,b) € (R)2.
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— 400 _ b
a) Montrer que, pour tout € € ]0; +oo[, I'intégrale impropre / M dx conver-

£ X
o f(ax) fox) /f(c‘x)

geetque:
€

—+0o0 _ b
b) En déduire que I’intégrale impropre / M dx converge et que :
—0

+o00 _
J@) =S 4 o
0 X a
1I. Exemples :
a) Existence et calcul, pour (a,b) € (R7. )2, de:

+o00 +00 L—ax —bx +00
cosax — cosbx e —¢ thax — thbx
/ ——dx, / —dx, ——dx
0 0

X X 0 X

+wl Arctan (ax) g Arctan (bx) ’ dx
| ((arean @) — (Arean o)

. 2 shxr
b) Existence et calcul, pour x €] —1; 1[, de - e 'dr.
0

x¢ —xb

1
c) Existence et calcul, pour (a,b) €] — 1; +o00[?, de /
0

+00 1—e % 1 — e—bx

d) Existence et calcul, pour (a,b) €]0; +00[?, de f dx.

0 X X

Equivalent d’une intégrale A parametre
7 ¢

On note, pour tout x € [0; 1] : (x)=/ - .

P / 0o /1 —xcos?t

a) Montrer : f(x) —1>_ +00.

b) Trouver un équivalent simple de f(x) lorsque x —> 1°.

mmmse Dy mal a démarrer ?

3.1
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Dans chaque exemple, montrer d'abord I'existence, puis
effectuer le calcul.

Pour I'existence, on pourra souvent utiliser les théoremes de
majoration, d'équivalence, la regle x“ f(x) pour les fonctions
> 0.

Pour le calcul, passer par des primitives.

a) Décomposer en éléments simples.

b) Changement de variable r = x.

¢) Changement de variable r = shx.

d) Changement de variable r = Arcsinx.
e) Décomposer le

logarithme. Une primitive de

t —> Inz sur]O; +oo[,estt —> tInt — 1.

Effectuer le changement de variable r = x? et exprimer I,
a l'aide de la fonction I d’Euler défini par :

+o00
Vs €]l ; +oof, F(s):/ e dr.
0

Se rappeler (exercices classiques) F(%) = /7 ,et:
Vs €]0;+oo[, I's+1)=sT(s).
1) Remarquer : | 2| < || fllool 1.
2) Considérer, par exemple: f : x €]0; 1] — x—3/4,

Considérer g — feth — f.

Vérifier d'abord I'existence de N (x,y), par exemple par la
regle t* f(¢) en +o0.

Revenir a la définition d'une norme.

a) 1) Existence : f,(x) ~ =
xX—>+00 X

2
2) Calcul :Réponse:I(a) =1 —a + %

b) Mettre I (a) sous forme canonique.
1"¢ méthode : Remplacer a par x* et choisir A.
2¢ méthode : Déterminer, pour x € [1; +oo[ fixé, la borne infé-

. a 1 5 L , .
rieure de — + —.par étude de variation d’une fonction de a.
X a

a)Ona:0 < f(x) <e™™.

b) Majorer convenablement.
—X

+00
©
¢) Puisque I, ressemble a J, = / —— dx, étudier I, — J, et
0 n
calculer J,,.

a) En +o00 :f;, (x)

i s
x—>+o0 xn12

Du mal a démarrer ?

b) On obtient, par intégration par parties sur [1; X], puis en fai-
sant tendre X vers 400 :
1 2

= —
2m—1) n—-1""

I

+00 x—n+2 1
U:Jy = ———— dx. MontrerJ, = O( — |.
ou:J, ./1. (1+x2)2 ontrer J, <n>

Montrer que, si fest intégrable sur [1; +oo[, alors P est de
degré 4 et de coefficient dominant égal a 1, puis montrer, par
exemple en utilisant une expression conjuguée, que P est de la
forme :

P(x) = &2 +x+ l)2+c, ceR.
Chercher alors un équivalent de f(x) lorsque x — +o0.

Dans chaque exemple, montrer d'abord I'existence, puis
effectuer le calcul.

Pour l'existence, on pourra souvent utiliser les théoremes de
majoration, d'équivalence, la regle x f(x) pour les fonctions
> 0.

1
a) Changement de variable £ = —, mise sous forme canonique
X
du trindme 2 +417+1, puis changement de variable
2t 1
u = o
V3

b) Mise de x> 4 x + 1 sous forme canonique, puis changement
2x +1

3

+00

de variable r =

Pour calculer J :/ dr, utiliser une ipp.

1
—ee (@2 AP
¢) Utiliser une intégration par parties et se ramener au calcul de
/ dr is dé ition en éléments simpl
————, puis décomposition en éléments simples.
A +12 p p p

d) Mise de x (1 — x) sous forme canonique, puis changement de
variabler = 2x — 1.

Montrer d'abord I'existence.

Pour le calcul, utiliser un changement de variable qui échange
les bornes.

. X . by
Changement de variable = tan > On se raméne a calcu-

+o00 1 +o00 tZ
lerA = — df,et B = — dr.
/0 14 ¢4 /0 144

Montrer A = B par le changement de variable u = =

Former A + B et utiliser la factorisation de 1 + X* dans R[X].
Montrer d'abord I'existence, puis effectuer le calcul.

Pour I'existence, on pourra souvent utiliser les théorémes de majo-
ration, d'équivalence, la regle x“ f (x) pour des fonctions > 0.
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Pour le calcul, utiliser des primitives ou un changement de
variable qui échange les bornes.

a) Changement de variable t =

—_ %=

b) Changement de variable r = —, puis remarquer :
X

1 1
X X
1-X2

m en éléments simples et se

¢) Décomposer

2
X

ramener au calcul de J(c) = / ——,cell; +ool.

0 C— Ccosx

X

Changement de variable ¢ = tan P
d) Réponse :
+ L'intégrale existe si et seulementsia € R — nZ

T
*I(a) = ——,si a €]0; [, I est paire, 2z-périodique.
sina

e) Réponse :
* L'intégrale existe si et seulement sia € R — 2nZ

*I(a) =2m —2a si a €]0; ], I estimpaire et I est 2-pério-
dique.
f) Mise sous forme canonique de x(1 — x), changements de

u
variabler = 2x — 1, u = Arccost, v = tan 7
1)Noterz = x +1iy, (x,y) € R? et calculer [e¥ e7!|.
Serappeler:Vu € C, |e*| = eR¢®,

2) Utiliser la relation de Chasles.

sint 1 . s
Comme — ~_= considérer les intégrales
sh“t t—0 t
3% sint # ]
fx) = ——dr et g(x) = — dt, calculer g(x) et mon-
2r  shot ot

trer f(x) — g(x) X:)()O.
Utiliser le théoreme de continuité sous le signe intégrale.
a) Regle t“ f () en +o0.

b) 1) En O : minorer f(x).

2) En 400 :majorer f(x).
a) Théoreme de majoration.

1 [t
b) Montrer : ‘qb()\) 3 f‘ = o (o)

—>+00

par une majoration convenable.

/2 .
L'intégrale I (x) = / e—xsint g,
0

/2 .
ressemble a J (x) = / e S costdr.
0

1
Montrer I (x) — J(x) = 0(—3>, en utilisant :
P

Yue[0;m/2], %u < sinu < u.
D’autre part, calculer J (x).
Utiliser le changement de variable u = ; etseramenerala
recherche d'un DL(0) en notant y = %
EnO :f(x)xjm 0.

En +o0 :utiliser un développement asymptotique.

. —+% sinx .
On sait que dx converge, cf. exercice 3.44 ou 3.45.
1 X

En +o0 : utiliser un développement asymptotique.

sin x

Jx

dx, diverge, cf. exercice 3.44.

—+00
On sait que l'intégrale / dx converge et que l'inté-
1

| +%0 sin2x
rale
g : :

Pour I'existence, utiliser la regle x* f(x) en £oo.

Pour le calcul, utiliser la formule de Taylor pour les polynémes et

+00
0o —h A/ TT
la valeur de I'intégrale de Gauss :/ e dx = -
0

Utiliser le théoréme de continuité sous le signe intégrale.

a) Utiliser la regle t* f(¢) en +o0.

b) « Montrer que f est continue sur ]0; +oo[ (et méme de
classe C).
+ En 0 : montrer que f'a une limite finie en 0.

+ En 400 : utiliser une majoration convenable.

a)

b) Utiliser le théoréeme de dérivation sous le signe intégrale.

sin xt

- — X.
sint 1—0
¢) Majorer convenablement.
3
1) Vérifier : £ (0) < 7 < f().

2) Montrer que fest continue, en utilisant le théoréme de conti-
nuité sous le signe intégrale, et utiliser le théoréme des valeurs
intermédiaires.

1) Obtenir Déf (f) = R.

2) festimpaire.
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3) Montrer que f est continue sur [0; +o0o[, par le théoréme de
continuité sous le signe intégrale.

4) En utilisant le théoreme de dérivation sous le signe intégrale,
montrer que f est de classe C! sur ]0; +oo[, exprimer f(x)
comme intégrale, et en déduire le sens de variation de f.

5) Concavité, a I'aide de f”(x), comme en 4).
6) En 0, montrer, par une minoration convenable :
f(x) — 4o0.
x—>0F
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1
NfM) =~ f'a) = >

b/
8) En 400, utiliser le changement de variable u = 7~ t, pour

2
obtenir:f (x) = ﬂT — f(%)

9) Tracer la courbe représentative de f.

a) Etude en +o00, en redémontrant I'exemple de Bertrand,
dans le cas en question.

Réponse : Déf (f) =11 ; +oof.
b) Utiliser le théoreme de dérivation sous le signe intégrale.
¢) 1) Etude en 1 : minorer convenablement f(x).
2) Etude en +o0 : majorer convenablement £ (x).
e) Changement de variable u = %, puis utilisation du théoréme
de continuité (en 0) sous le signe intégrale.
a) 1) Utiliser le théoréme de dérivation sous le signe inté-
grale, deux fois.
2) Utiliser I'inégalité de Cauchy et Schwarz.

b) Calculer (In o F)”.

a) Etudede I et J :
1) Existence :
Montrer f(x) ~ L In x et déduire I'existence de 1.
x—>0

b g
Par le changement de variable 1 = 5~ x, I'existence de J se
raméne acellede I,etI = J.

2) Calcul :
Considérer 21 = I + J, puis changement de variable u = 2x.
Réponse :1 = J = 7% In2.

b) Etude de K :

Du mal a démarrer ?

1) Existence :
X o om0 A . T
Montrer que —— a une limite finie en 0 et une limite finie en —.
tanx 2
2) Calcul :
Utiliser une intégration par parties, pour se ramener a /.
s
Réponse: K = —1I = 7 In2.
¢) Etude de L:
Utiliser des formules de trigonométrie pour se ramener a K.
Réponse: L = 4K =2m In2.
d) Etude de M :

Partir de K et faire le changement de variable u = tantz.

Réponse: K = % In2.

Remarquer :%(e"‘Q(x)) =—e *P(x),
+o00
etdéduire:Vx e R, Q(x) = e"/ e ' P(r)dt.

1

x—>+00 x2°

1) Existence : f,, (x)
2) Calcul :

1" méthode :

En utilisant une intégration par parties, obtenir une relation
entre I, et I,,—1.

2¢ méthode :

Changement de variable ¢ = x + 1, développement par la for-
mule du binéme de Newton, et calcul d'intégrales.

I s'agit, pour x € [0; +o00[ fixé et ¢ décrivant ]0; +oo[, de
1 1
wa

Séparerencasselonx:x =0,0<x <1, 1 < x.

déterminer le plus petit des trois réels x,

Dans chaque cas, calculer le minimum en question, puis calculer
S ).

2/x si x <1
Réponse :f (x) = ; 1

- = si x> 1.
X

1) Majorer g et h a l'aide de f.

2) Si g est intégrable sur [0;+oo[, utiliser l'inégalité
sin?x < |sinx| et la décroissance de f pour déduire que
x —> f(x)sin?x et x — f(x)cos2x sont intégrables sur
[0 +o0l.



Chapitre 3 « Intégration sur un intervalle quelconque
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Montrer que ff” est intégrable sur [0 ; +oo[ et en dédui-
re que f2 admet une limite finie L en 400, puis montrer que
cette limite L est nécessairement nulle, et conclure.

a) Comparer somme et intégrale pour déduire :

! 122k =%
vn>2, Afé;;f<z)</0 f.
1t
x4+ D/xx+2)

1) Montrer d’abord que, pour tout x € ] — oo ; O[, l'inté-
grale proposée existe.

b) Appliquera)af : x —>

2) Utiliser le changement de variable u = — x, puis minorer
convenablement.

Réponse : +o0.

a) En utilisant une intégration par parties, obtenir, pour
toutx €]0; 4o0| :

+0o0 e—xz 1 +00 o=t
/ e dr = —7/ ——dr.
b 2x 2 s i

b) Utiliser le changement de variable u = /n t.

Pour x €]0; 1] fixé, a I'aide du changement de variable
u =t + x,obtenir:

1 t x+1 Lu —1
[ < dt:e—*'/ dute (nx+1)— Inx).
X u

u

Montrer que u —> ,est intégrable sur ]0; 2].
Séparerencas:a > 1,0 <a <1, ¢ <O0.
1) Traiter d’abord le cas o > 1.

2) Pour le cas 0 < o < 1, utiliser une intégration par parties et
I'étude du cas précédent.

3) Dans le cas o < 0, montrer que les intégrales proposées
divergent grossierement.

a) a) Passer, par exemple, par les nombres complexes et
une sommation géométrique.

B) Montrer d'abord que l'intégrale proposée existe.
Utiliser «).

b) Utiliser une intégration par parties.

¢)a) - fest C'sur]0; /2]

* Montrer f(x) —>O f(0) par utilisation de DL(0) ou d’équiva-
x—>
lents.

» Montrer que f” a une limite finie en 0, par utilisation de DL(0).
Conclure a l'aide du théoreme limite de la dérivée.

B) Utiliser a) o) et b).

u
d) Par le changement de variable x = ——, montrer :
2n + 1
@3 giny T
/ dy —— —.
0 u noo 2

D’autre part (cf. exercice 3.44), montrer que l'intégrale impropre

—>+00 o1

sin x

dx, converge.
0 X

T 1 — cosx
a) a) Montrer I'existence de / — dx.
0 X

Pour le calcul, utiliser une intégration par parties.

+% 7 sinx \ 2
B) Pour / < ) dx, se ramener a la précédente par le
0 X

changement de variable r = 2x.

b) Attention : A n’est pas nécessairement 2> 0.

Si A > 0, utiliser le changement de variable x = %
L'étude du cas 1 = 0 est immédiate.

Pour A < 0, utiliser un argument de parité.

¢) Utiliser des formules de trigonométrie circulaire pour se
ramener a des intégrales précédentes.

d) 1) Montrer I'existence, par des études en —o0, 0, 7, +-00.
2) Utiliser une décomposition en éléments simples.
1) Existence :
Montrer que f(x) existe si et seulement six > 0.
2) Calcul :

a) Utiliser le théoreme de dérivation sous le signe intégrale,
pour montrer que fest de classe C! sur]0; +-oo[ et que :

dr
(x+2)(1+12)°

B) Utiliser le théoreme de continuité sous le signe intégrale

+00
Vx €]0; 400, f/(x)=/
0

pour montrer que fest continue en 0.

y) Calculer I'intégrale donnant f’(x) et obtenir :

v el0s eol, S0 = g

8) Réponse:Vx € [0; +oo[, f(x)=mIn(l+ ﬁ).
a) Regle t* f(¢) en +00.

b) 1) Montrer que fest continue, et méme C!, comme primitive
d’une application continue.
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2) Majorer convenablement f (x), pour x € [1; 4+o0[, et déduire
que f'est intégrable sur ]0; +oof.

3) Utiliser le théoréme de Fubini sur les intégrales doubles.

Grouper les deux études, en passant par les nombres
complexes.

Pour a €]0; +oo[ fixé, appliquer le théoreme de dérivation
sous le signe intégrale pour déduire que

+o00 > .
fixr— / e el dr
0
est de classe C! sur R et que :
+00 2 i
Vx eR, f’(x):/ e 7 re' dr.
0

Al'aide d’une intégration par parties, montrer que f satisfait une
EDL1. Résoudre celle-ci en utilisant la méthode de variation de
la constante.

Séparer enfin partie réelle et partie imaginaire.

1) Existence :

Procéder a une étude en 0 et a une étude en +oo.

Ne pas oublier que :Vz € C, [e7| = eR¢@,
2) Calcul :
Noter u = —Ré (z) > 0, v = Im (z), de sorte que :

+00 +00 X
/ tx—lezt dr = / tx—le—utelvt dr.
0 0

Appliquer le théoreme de dérivation sous le signe intégrale
pour montrer que g : v —> / eV gy

0
est de classe C! sur R et exprimer g’(v) par une intégrale.

A l'aide d’une intégration par parties, montrer que g satisfait
une EDL1.Résoudre celle-ci et déduire g.

Du mal a démarrer ?

l.a) Pour 0 < ¢ < X fixés obtenir, par des changements de

variable et |a relation de Chasles :

f f(ax) G )

o[ A

b) Utiliser le théoreme de continuité sous le signe intégrale pour

b
montrer:/ @dz — &dt

e—01 Jq t

Faire tendre X vers +o0.

Il.a) « Montrer que les intégrales impropres

— 400 —>+00 o—X ——+00
COos X e 1 —thx
dx, — dx, dx
/1 x f] x f1 x

convergent, et appliquer le résultat de /. b).
2
T
« Considérer f : x —> i (Arctanx)?.

b) Remplacer sh (x7) par son expression a l'aide d'exponen-
tielles, et se ramener a la deuxiéme intégrale de a).

¢) Par le changement de variable t =e™*, se ramener a la
deuxiéme intégrale de a).

d) A l'aide d'une intégration par parties, se ramener a la deuxié-
me intégrale de a).

a) Utiliser le changement de variable u = tan ¢, puis minorer
convenablement.
L du

montrer: f(x) ~ g(x),

x— 1"

b) En notant g(x) =

. . 1 du
puis, en considérant h(x) = / _—,
0 V1 —x+u?

montrer: g(x) ~  h(x). Calculer i(x).
x—1-

1
Réponse:f(x) ~ —=In(l—x).
x—>1- 2
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a) * L’application

f:xr—>1(\/x2+x+1—\/x2—x+l>
x

est continue sur [1; +oo[, et f = 0.
o Etude en +00 :

On a, en utilisant une expression conjuguée :

1 (P+x+1)—x>—x+1)

fx) =-
X2+ x+14+/x2—x+1

2 2

RN/ B oy R

1
—

D’apres I’exemple de Riemann en +o0 et le théoréme d’équi-
valence pour des fonctions 2> 0, on conclut :
fn’est pas intégrable sur [1 ; +o00[.

sinx + cosx

b) » L'application f : x +— est continue sur

x3+1
[0; +ool.
o Etude en +00 :
On a, pour tout x € [1; +oof :
| sinx + cos x| 2 2
[f ol = < < =5

N N = B

D’apres I’exemple de Riemann en +o00 (3/2 > 1) et le théo-
reme de majoration pour des fonctions 2> 0, on déduit que | f|
est intégrable sur [1 ; +-00[, donc sur [0 ; +00[, puis, par défi-
nition, on conclut : f est intégrable sur [0 ; +-o00[.

Inx

x3+1

c) * Lapplication f :x+— est continue sur

[1;4oo,etf > 0.
o Etude en +00 :

1
Ona: f(x) ~ o

x—>+00 x3/2
——

notée g(x)
Inx

. 5/4 —
Et: X g(x)—xl/z‘x::oo

0,

par prépondérance classique.

D’ol, au voisinage de +00 :  x>/4g(x) < 1,

. 1
puis: 0< g(x) < =i
X
D’apres I’exemple de Riemann en +00 (5/4 > 1) et le théo-
réme de majoration pour des fonctions > 0, g est intégrable

= Corrigés des exercices

sur [1 ; +o0o[, puis, par théoreme d’équivalence pour des fonc-
tions 2> 0, on conclut : f est intégrable sur [1 ; 4+o0[.

241
d)* L application f : x — xz L est continue sur |0 ; 1],
X<+ x
etf > 0.
e Etude en 0 :

1 1
Ona: f(X)x:O\/;: T

D’apres I’exemple de Riemann en 0 (1/2 < 1) et le théoreme
d’équivalence pour des fonctions 2> 0, on conclut : f est inté-
grable sur ]J0; 1].

e) e L’application f : x —— est continue sur |0 ; 1],

1+x
Vx +x?
etf > 0.
o Etude en 0 :
1 1

Ona: f(x)'\’_’)"o+ ﬁ = m

D’apres I’exemple de Riemann en 0 (1/2 < 1) et le théoreme
d’équivalence pour des fonctions 2> 0, on conclut : f est inté-
grable sur ]J0; 1].

f) * Lapplication f : x — est continue sur |0; 1],

x
x3 4 x?
et f < 0. Considérons g = —f > 0.

o Etude en 0 :
Ona: g(r)= —Inx —Inx
na: g(x = P a0 2
——

notée h(x)
On a, pourtoutx €]0; 1/e] : —Inx > 1,
1
donc: h(x) > = > 0.
X
D’apres I’exemple de Riemann en 0 (2 > 1) 1’application
1
X =, n’est pas intégrable sur |0 ; 1]. D’apres le théoreme
X
de minoration pour des fonctions 2> 0, il s’ensuit que / n’est
pas intégrable sur |0 ; 1], puis, par théoreme d’équivalence pour

des fonctions > 0, g n’est pas intégrable sur ]0; 1]. Enfin,
comme f = —g, on conclut que fn’est pas intégrable sur J0; 1].

g) ¢ L’application f :x+— est continue sur

1
V1 —x°
1—1;1[,etf > 0.



s Etude en 1 :
Ona:
1
JT—x6 VA = x2)(1 + x2 + x*)
1
B VA —=x)A +x)(A + x2 + x4
ORI S S S
1 JT—x)-2-3 6 A—x)/?

D’apres I’exemple de Riemann en 0 (1/2 < 1) et le théoreme

d’équivalence pour des fonctions > 0, on déduit que f est in-
tégrable sur [0; 1[.

fx) =

o Etude en —1 :

Comme f est paire et que f est intégrable sur [0; 1[, il s’en-
suit que f est intégrable sur | — 1; 0].

Puisque festintégrable sur ] — 1; 0] etsur [0; 1[, on conclut :
festintégrable sur | —1; 1[.

sin x
h) * L’application X —> ——— est continue sur
& / N
10; +oo[.
e Etude en 0 :
| sin x| [x] 1
Ona: |[f(X)]= —— ~ = —.

Vi Fxtx—0 /3 xl2
D’apres I’exemple de Riemann en 0 (1/2 < 1) et le théoreme
d’équivalence pour des fonctions 2> 0, | f| est intégrable sur
10; 1], donc, par définition, f est intégrable sur ]0; 1].
* Etude en +00 :

| sin x| 1
Ona: X)) = — < —.
ol= === <5
D’apres I’exemple de Riemann en +00 (2 > 1) et le théoréme
de majoration pour des fonctions 2> 0, | f| est intégrable sur

[1; 4-o00[, donc, par définition, f est intégrable sur [1; +o0[.

Puisque festintégrable sur ]0; 1] et sur [1 ; 4+o00[, on conclut :
f est intégrable sur ]0 ; +o0[.

) B 1+x%e™™ )
i) » L’application x —> ———— est continue sur
x2 RS 672,\

]—o00; 4oo[,etf = 0.
o Etude en —00 :
Ona:

1+ x%e™™ x’e™ :

G =——— > = 7T
xZ 4 672): X—>—00 672x [
notée g(x)
et: x’g(x) =x*e* — 0,
X—>—00

donc, au voisinage de —oco : x’g(x) < 1,

1
puis: 0 < g(x) < -
X

D’apres I’exemple de Riemann en —oo (2 > 1) etle théoreme
de majoration pour des fonctions > 0, g est intégrable sur
] — 0o ; —1], puis sur ] — 0o ; 0]. Par théoreme d’équivalence
pour des fonctions = 0, il s’ensuit que f est intégrable sur
1 —o00;0].

* Etude en 400 :

1+x2e* 1
Ona: f(x)= 55— ~ —,
x2 —+ e~2X x—>+o0 x2
car x’¢™ —> 0, par prépondérance classique.

x—>+00
D’apres I’exemple de Riemann en +00 (2 > 1) et le théoréme
d’équivalence pour des fonctions > 0, il s’ensuit que f est in-
tégrable sur [0 ; +oof.

Puisque f est intégrable sur ] — 0o ; 0] et sur [0; +oo[, on
conclut : f est intégrable sur | — oo ; +00[.

1

X

LT .
L’application f : x —— ’ sin —| , estcontinuesur ]0; 1]
X

et:Vx €]0; 1], |f(x)| < 1.

Ainsi, f est continue et bornée sur I’intervalle borné O ; 1], donc,
d’apres le cours, f est intégrable sur ]0; 1], et on conclut que
I’intégrale proposée existe.

a) 1) Existence :

e L'application f :x +—— est continue sur

x+D(x+2)
[0; o0, et f = 0.
o Etude en +00 :
Ona: f(x) ~ -

x—+00 X
D’apres I’exemple de Riemann en +00 (2 > 1) et le théoréme
d’équivalence pour des fonctions > 0, il s’ensuit que f est in-
tégrable sur [0; +o0l.
1

——— dx existe.
G+DE+2)

+00
On conclut que I’intégrale /
0

2) Calcul :
On a, a I’aide d’une décomposition en éléments simples im-
médiate, pour X € [0; o0 :

| erverme=f G =2)
= (— - — &
o x+D(x+2) o \x+1 x+2

=[G+ —Inx+2],
=InX+1)—In(X+2)+ In2

X+1
= In L) +In2 — In2.
+2 X— 400
+00 1
On conclut : f ——————dx = In2.
o G+DE+2)
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b) 1) Existence :

* L’application f : x — , est continue sur [0 ; 400,
etf = 0.

o Etude en +00 :

X
x104+1

o 1

Ona: f(x) = mx_';oog.
D’apres I’exemple de Riemann en +o00 (6 > 1) et le théoréeme
d’équivalence pour des fonctions > 0, f est intégrable sur
[0; +ool.

On conclut que I'intégrale proposée existe.

2) Calcul :

On a, par le changement de variable t = x° :

+oo 4 +ool d
/ x_dxzf 1odu
o x041 o Sur+1

1 400
= g[ArCtan uly” =

| —
ST
—
S

c) 1) Existence :

.. chx .
e L’application f:x+——> —— est continue sur

ch2x
] — 00 ; +oo[, paire, et f > 0.
o Etude en +00 :
Ona:
chx et +e* & .
f&x) = = =

T ch2x | e 4 e x—too 2F

D’apres le cours, 1’application x — e™* est intégrable sur
[0; 4o0l, donc, par théoreme d’équivalence pour des fonctions
= 0, festintégrable sur [0; +o00].

* Etude en —oco :

Comme f est paire et intégrable sur [0 ; +o0[, f est aussi in-
tégrable sur | — 0o ; 0].

Puisque f est intégrable sur | — 0o ; 0] et sur [0; oo, f est
intégrable sur | — 0o ; +00].

2) Calcul :

Ona:

/‘*m chx dx_f*°° chx o
oo Ch2x ) 142sh%x
L e
t=shx o 1422 , _ 53, ) V21402

= L[Arctanu]Jroo = L(E - (— E)) =L
=7 ==7G"{"3))=7

d) 1) Existence :

2

X
V1 —x2

e L’application f :x — est continue sur [0; 1],

etf = 0.

o Etude en 1 :
Ona:

P 1 1
VA=) T +x) =—1 /2 (1-x)7?

D’apres I’exemple de Riemannen 1 (1/2 < 1) et le théoréme

fx) =

d’équivalence pour des fonctions 2> 0, fest intégrable sur]0; 1],
donc I'intégrale proposée existe.

2) Calcul :

On a, par le changement de variable

t = Arcsinx, x = sint, dx = costdt :

/l x2 i /-7T/2 Sinzt . /71'/2 ) 21 i
— = — COS = sin
0o 1 —x2 0 cost 0

_/‘”/Zl—cos2t P t  sin2¢ mz_ﬂ
— Iy 2 T2 4 |, 4

e) 1) Existence :

* L’application
fixr— In(l —3x +2x%) = In (A —=x)1 —2x))
est continue sur [0; 1/2[.
* Par le changement de variable ¢ = % — x, I’existence et le cal-

1/2
culde I = / In(1 — 3x +2x%)dx se raménent & 1’exis-
0

0
tence et au calculde J = / In(z + 2¢%) dr.

12—

notée g(r)
Ona: g(t) = Int+ In(1+ 2¢) ~ Int < 0.
t—>0

D’apres le cours, ’application  —> —Int est intégrable sur
]0; 1]. Par théoréme d’équivalence pour des fonctions 2> 0, —g
est donc intégrable sur ]0; 1], puis g ’est aussi, et enfin, par
changement de variable, f est intégrable sur [0; 1/2].

2) Calcul :

On a, en calculant des primitives sur [0; 1/2] :
f In(l —3x +2x%)dx = f (In(1 — x) + In(1 — 2x)) dx
=/1n(1—x)dx+/ In (1 — 2x)dx

= —(1 —=x)In(l —x) — (1 —x))

—%((1 —2x)In(l —2x) — (1 — 2x))

= —(1—x)In(l —x) — %(1 —2x)In(l — 2x) + % —2x,



donc :

1/2
/ In(1 — 3x + 2x%) dx
0

1 3 =
= [ —(1—x) ln(l—x)—i(l—Zx) ln(1—2x)+§—2x]

0

1
=—-In2—-1.
2

Par le changement de variable

1
r=x2, x=\/;, dx = ——dt,

24/t

I’existence et le calcul de I, se rameénent a 1’existence et au
calcul de

+00 1 1 +00
anf te —dr = —/ 7 e dr.
0 NG 2 Jo

D’apres I’étude de la fonction I' d’Euler, puisque
n—1
2

n—1 .
t—>t 2 e’ estintégrable sur ]0; +oof et :

1 n+1
J,==-T .
(")

Sin estimpair,n =2p + 1, p € N, alors :

1
= —3 > —1, pour tout n e N, I’application

1
I, =

1
=T )= -p!.
2 (p+1) 7P

Sin estpair,n =2p, p € N, alors :

I—ll" —|—1
11—2 p 2

En utilisant la formule du cours :
Vx €]0; oo, F'(x +1) =xI'(x),

on déduit :

12p—-D@p—-3)---1

T2 2 vE
1 @2p)! . 2p!
= 2@z V" T 2V

1) Puisque f est bornée, on a :
Vxel, |20 =1f@F < [1fllel f@],
L2 < N fllool £1-

ou encore :

Comme f est intégrable sur /, par définition, | f| 1’est aussi,
puis || f]ls| f] I’est aussi.

Tl en résulte, par théoréme de majoration pour des fonctions = 0,
que | f 2| est intégrable sur /, et enfin, par définition, on conclut

que f? est intégrable sur 1.

2) Le résultat ne subsiste pas si on ne suppose pas f bornée.
Par exemple, pour I =]0; 1] et f :x —> x~¥/* d’apres
I’exemple de Riemann en 0, f est intégrable sur J0; 1] (car
3/4 < 1), mais f2 : x —> x /2
(car3/2 > 1).

n’est pas intégrable sur ]J0 ; 1]

Puisque f < g < h,ona:0< g — f < h— f.Comme
feth sontintégrables sur /, par différence, i — festintégrable
sur I. Par théoreme de majoration pour des fonctions > 0, il
en résulte que g — f est intégrable sur /. Enfin, comme
g=1(g— f)+ fetque g — fet fsontintégrables sur /, par
addition, on conclut que g est intégrable sur /.

1) Existence :
Soit (x,y) € R2.

—t

e L’application fy, :t+— |x +ty|e™" est continue sur

[0; 4o0l, et fry = 0.
* Etude en +00 :
Ona: t2f, (1) =1t*x +tyle” t::ooO,
par prépondérance classique.

D’ou, pour ¢ assez grand : tzf”(t) <1,
1
etdonc: 0< fi,(t) < a2

D’apres I’exemple de Riemann en +00 (2 > 1) et le théoreme
de majoration pour des fonctions > 0, I’application f, ,

est intégrable sur [0;+4oo[, donc [’intégrale

+00
N(x,y) = / lx +ty|e™" dt existe.
0

2) Inégalité triangulaire :

On a, pour tous (x1,y;), (x2,y2) € R? :

N((x1y1) + (x2.32))

= N1+ x2,y1 + y2)

+00

:/ |(x1 + x2) + 1 (y1 + y2)| e ds
0
400

:f |Gt 2391) + (2 + 2y2) | €7 de
0

+o00
</ (Ix1 + ty1] + |x2 + 1y2]) e~ dr
0
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+oo +00
= / lxy + tyrfe™ dr + / |x2 + ty,| e”" dr
0 0

= N(x1,y1) + N(x2,y2).

3) Positive homogénéité :

On a, pour tout « € R et tout (x,y) € R?:

+00
N(a(x,y)) = N(ax,ay) = / lax + tay|e™" dt
0

+00
= |a|/ |x +tyle"dt = |a|N(x,y).
0

4) Non-dégénérescence :
Soit (x,y) € R2. Ona:
N(x,y) =0

=i

= Vit € [0; +o0,

|x+ty|e T odr=0

continue et 2 0

|x +tyle" =0
< Vte[0;4oo[, x+1y=0
<~ (x,y) = (0,0).

On conclut que N est une norme sur R?.

a) 1) Existence :

2
1 a .
e L’application f, : x —> (; -2 est continue sur

[1;4o0[,etf, =0

1
e On a :fa(x)x:ﬂ(};. D’apres 1’exemple de Riemann

en 400 (2 > 1) et le théoreme de majoration pour des fonc-
tions > 0, f, est intégrable sur [1 ; +oo[, et donc I (a) existe.

2) Calcul :
On a

) /*“1 a 2d /*w 1 2a+a2 q
a) = ——— ) dx = — —— 4+ — |dx
1 w 1 S B

1 a a® a’
= -—-—4+—=-— =1- —.
|: x—'—x2 3x3} a+3

b) D’apres a ), I(a) est un trindbme du second degré en a.
Mettons-le sous forme canonique :

a? L,
I(a):l—a—l—?:g(a —3a + 3)

On déduit :

3 1 . 3 .
1) ggﬂgl(a) =) I(E) = 7 atteint en a = 2’ (et en ce point
seulement)

1
2) IanI(a) =I(1)=12) = 3 atteintena = l etena =2
ae

(et en ces deux points seulement).

1" méthode :

En remplagant a par x)‘, ou A €]0; +oo[ est a choisir ulté-

rieurement, on a :

1 1
2t

Vx e[l;4oo, 0< fx) <

Essayons de trouver A de fagonque:2 — A > 1 et2\ > 1.Pour
3
A= T par exemple, on a :

1

Vxe[l;4oo[, 0 f(x) < —; 5/ W

D’apres I’exemple de Riemann en 400 (5/4 > 1et3/2 > 1),
par addition, et d’apres le théoreme de majoration pour des fonc-
tions 2> 0, on conclut que f est intégrable sur [1 ; +-o00].

2¢ méthode :

Soit x € [1; +oof fixé.

Essayons de choisir le meilleur a € [1; +oo[ réalisant 1’in-
égalité de I’énoncé.

Considérons I’application

p:[1;4o0[— R, a+— ¢(a) =

a 1
—2+;.

L application ¢ est dérivable sur [1; 4-o0[ et :

2
Va e [l;+oo[, ¢ (a) = 25
a’
On dresse le tableau de variations de ¢ :
a 1 @x2)'/3 +o0
¢'(a) - 0 +
p(a) N\ /
Et:
2 2\1/3 1
o) =2 ;
X ((2x2)1/3)
21/3 1 2
— — —2/3
= Y ppan =3 ap

Onadonc: Vx e[l;+oo[, 0< f(x) <3.27%3

X473

D’apres I’exemple de Riemann en +00 (4/3 > 1) et le théo-
reme de majoration pour des fonctions > 0, on conclut que f
est intégrable sur [1; +00[.



a) Soitn € N*,

=7

e L'application f, : x —> est continue sur [0 ; +oo[.
x

=7

*Ona:0< f,(x) =

—X
<e™.

D’apres le cours, 1’application x —— e~ est intégrable sur
[0; +o00[. Par théoréme de majoration pour des fonctions 2> 0,
il en résulte que f, est intégrable sur [0; +oo[, donc

+00 e
1, :/ dx existe.
0 n—+x
b)On a:
+00 e~ +00 e
01, = f dx < / dx
0 n+x 0 n
1 —x7+00
= —[—elj5==——0,
n n noo
d’ou, par théoreme d’encadrement : , —— 0.
noo
e e
¢) Comme ressemble, pour n grand et x fixé, a —, for-
n+x n
mons :
+00 e +00
o[-
0 n 0 n+x
+00 xe
S /
notée J

Ainsi :

1 J 1 1
1n_—‘<—2, donc : In——=0(—2>,puist
n n n n

1 1
IL,=—+0 (—2) , que I’on peut affaiblir en :
n n

1
Iy = =,

a) Soitn € N.

L’application f, :x est continue sur

—_—
X (1 + x2)

[1;+oo[, = 0,et: f(x) ~ donc, d’apres 1’exemple
X—>

+o0 xn+2’
de Riemann en +00 (n + 2 > 1) et le théoreme d’équivalence
pour des fonctions 2> 0, f;, est intégrable sur [1; 4+o00[, et on
conclut que 7, existe.

b)Soitn € N tel quen > 2.

On a, par une intégration par parties pour des applications de
classe C!, pour tout X € [1; +oo[ :

X 1 X 1
/ —dxz/ s
L x"(1 + x2) l 1+ x2
—2x

ol 1 X X e-ntl
- = - [ S e
—n+114+x%], ;1 —n+1 1+ x2)?

2 X x—n+2

(14 x%)?

X—n+1 1 N 1
2(n—1)

T —n+114+Xx2

n—1
On déduit, en faisant tendre X vers +00 :
1 2 +o0 x—n+2
— / dx
2m—1) n-—1J (1 + x2)?2
—_—

notée J,

I, =

On a, pour $\bas n \geq 4$:

+oo - x 3 +00 1
0<J, < e dx = = ,
S /1 * * |:—n+3]l n—3

1
donc : J,,:O(—),puis:
n
. 1 @ 1 1 1
" 2(n—1) n?) noo 2(n —1) noo 2n°

Soit P e R[X].
Sideg (P) <

f(x)

3, alors
=/ P(x)—

donc f n’est pas intégrable sur [0 ; +00[.

Sideg (P) = 5, alors, pour que f soit définie au voisinage de
400, le coefficient dominant de P doit étre > 0, et on a

f&x)=vPx) -

intégrable sur [0 ; +o00].

@P+x+1) — —o0,
xX—>+00

@ +x+1) —+> ~+o00, donc f n’est pas
X—> 400

Supposons dorénavant deg(P)=4,

P = iaka,
k=0

ays € R*,ao,...,a3 e R.

Si as < 0, alors f'n’est pas définie au voisinage de +00. Nous

supposons donc a4 > 0.
Siay # Lalors f(x) ~ (Jaz — 1)x?

n’est pas intégrable sur [0 ; +-o00[.

—> =00, donc f
—> 400

Nous supposons dorénavant as = 1.

On a alors, en utilisant une expression conjuguée :

_ 2 PO = (P 4x+1)?
fx)=+vPx)—(x +x+1)_m+(x2+x+l)'
D’une part, / P(x) + @ 4+x+1 - 2x2.

D’autre part, g : x —> P(x) — (x> + x + 1)? est un poly-

nome de degré < 3. Si ce polyndme g est de degré >

il existe A € R* et € {1,2,3} tels que g(x) =
X—>+00

1, alors
Ax¢, d’ou

flx) ~

x—>+o00 2 _x2’
de Riemann en 400 et le théoréme d’équivalence pour des fonc-

tions > 0, | f|n’est pas intégrable sur [0 ; +o0[, et donc fn’est
pas intégrable sur [0 ; +ool.

< 1, donc, d’apres I’exemple
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Nous supposons donc que g est de degré < 0, c’est-a-dire qu’il
existe ¢ € R tel que :

Vx e[0;4oo[, P(x)— P +x+1>=c.
Si ¢ =0, alors f =0, donc f estintégrable sur [0; +-o0[.

Si ¢ #0, alors f(x) ~

B 5 e
donc, d’apres I’exemple
x—>+oo 2x2

de Riemann en 400 et le théoreme d’équivalence pour des fonc-
tions 2> 0, |f| estintégrable sur [0; +oo[, et donc f estin-
tégrable sur [0 ; +o00[.

Enfin :

Vx €[0;4+oo[, P(x) >0
— Vxe[0;400], >+x+1D>+¢c=0
& l+c=>0.
On conclut que 1’ensemble des P convenant est
[P=X*+X+1>+c; ce[-1;+oo[},
ou encore, en développant :

{P=X'+2X"+3X*+2X +d; d €[0; +ool}.

a) 1) Existence :

1

e L’application f :x — est continue sur

xVxZHx+1
[1;4oo[,etf = 0.
o Etude en 400 :
Ona: f(x)= ; ~ i
xV/x2 4 x 1 x—too x?

D’apres I’exemple de Riemann en 00 (2 > 1) etle théoreme
d’équivalence pour des fonctions > 0, f est intégrable sur
[1; +ool.

+00
1
On conclut que I’'intégrale [ = ——— dx
d £ 1 xvxr+x+1
existe.
2) Calcul :

Commengons par éliminer le facteur x du dénominateur, a1’aide

1

du changement de variable t = — :
X

dt

2

0 1 ! 1
[ ()=
111 ! 0o V141412
== =qF1
tVt t
Effectuons une mise sous forme canonique :

Pait=(14) 2+3
- 2 4

et )30 )

] .

|

[\°}
+

t

Par le changement de variable u =

S

NG
1 3
1/4/3 /7(1_{_”2)
4
I
:/ —du
1v3 V1 +u?

= [Argshu];ﬁ/g
[ln (u++v1+ u2]ff3

In(+3+2)— In <i+i>

NERNE
_ Y32 _ 3423
= 5= S

b) 1) Existence :

* L’application f :x +— est continue sur

x2+x+1)2
] —o00; 4oo[,etf = 0.

o Etude en +00 :

Ona: f(x) ~

. xi“ . D’apres I’exemple de Riemann en =00
(4 > 1) etle théoreme d’équivalence pour des fonctions = 0,
festintégrable sur | — co; —1] etsur [1; 4-o0[, donc festin-
tégrable sur | — 0o ; 4-00[.

+o00 1

On conclut que 'intégrale I = / dx existe.

oo (X2 4+ x+1)2
2) Calcul :

Par mise sous forme canonique :

W axtl= (x4 2+§
a 2 4
_3( .8 +12—31+ 2x +1)°
4\ "3\""2) )T g ) )

2x + 1
V3

Effectuons le changement de variable ¢ =

1_/+oo dx
e 24 x 412



V3

_ /+oc le
- (%(ﬂ 2 1))

+00
Par parité¢ : J = 2/
0

sf/
o A 2+ 1) 1)2

notée J
L4
@+ 1y

Par primitivation par parties :

/ e _ 1 /t “2
2+1 241 (12 + 1)2

t
=——4+2 | ———dt
P /(r2+1)2

ot +2f dr / dr
T2+ 2+ 1 @ +12)’

d’ou
! +/ dr ! + Arctan ¢
= = rctant .
2+ 2+1 2+1 241
) t +00 e
On déduit: J = | —— + Arctant = —,
241 @ 2
et on conclut: / 8ﬁ Sﬁ T_ 4m/3
ut: I =——J = .
9 9 2 9

c) 1) Existence :

x — Arctan x

e L’application f :x +— est continue sur

P
10; +ool,et f 20

e Etude en 0 :

Ona:

Arctan x

3
. x—(x—%—l—o(f))
fx) = =

x3 x3

1
=§+0(1) T3

donc f est intégrable sur ]O; 1] (faux probleme).
o Etude en +00 :

x — Arctan x 1

Ona: f(x):T

x—stoo x2°
D’apres I’exemple de Riemann en +00 (2 > 1) et le théoreme
d’équivalence pour des fonctions > 0, f est intégrable sur
[1; +ool.

Puisque f estintégrable sur ]0; 1] et sur [1; 400, f estin-
tégrable sur ]O; +ool.

x — Arctan x

+0o0o
On conclut que I'intégrale = / 5 dx existe.
0 X
2) Calcul :

Calculons des primitives, en utilisant une primitivation par par-
ties :

— Arctan
/ r-Aarctanx o

x3

x — Arctan x 1 1
= - — 1———)—dx
2x? +/< 1+x2)2x2

x — Arctan x / 1
2x2 x2(1 + x?)

notée J(x)

On a, par calcul élémentaire ou par décomposition en éléments
simples :

1 1 1
J(x) = / (F _ m) dx = > — Arctanx + Cte.
D’ou:

1
=———d 5Arctanx +Cte .

/‘ x — Arctan x d 1 Arctan x
x3 2x 2x2

notée F(x)

Fx) — 2.
x—>+o0 4

Ona:

Pour déterminer la limite de F(x) lorsque x — 0, grou-
pons les termes de facon a résoudre la forme indéterminée :

Arctanx — x
2x2

= (= E o) - Lo() = o(1) — 0
_2—xz<<x ?—}-o(x)) x)—f—io()_o()):)().

1
F(x) = + EArctanx

On conclut: [ = [F(x)]{™ = g —0= g
d) 1) Existence :
L application f e 10; 11
e application f : x —> est continue sur ]0; 1[,
PP Jx( —x)
et f =0
o Etude en 0 :
1
Ona: f(x) NOT Pk

D’apres I’exemple de Riemann en 0 (1/2 < 1) et le théoreme
d’équivalence pour des fonctions > 0, f est intégrable sur
10; 1/2].

o Etude en 1 :

2 2
a. f(X)x:Hm:(l_x)l/z.

D’apres I’exemple de Riemannen 1 (1/2 < 1) et le théoréeme
d’équivalence pour des fonctions 2> 0, f est intégrable sur
[1/2; 1[.

Puisque f est intégrable sur ]0; 1/2] et sur [1/2; 1[, f est
intégrable sur J0; 1[.

14+ x

Jx( —x)

1
On conclut que I’intégrale I = f dx existe.
0
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2) Calcul :

On a, par une mise sous forme canonique :

x(1 —x):—x2+x :—(xz—x)

(YD

Effectuons le changement de variable 1 = 2x — 1 :

ol
«/x(l—x

14+1¢
1 1+—
—dt

\/—(l—tz)

/] 341
- dr

_1 41 =12
173 1 1 —t

> - d
f_l(zu_tz 2¢1_zz)’

2
3 1 ! 3
= [EArcsint - 5\/1 _t2i|71 = ;

=

a) 1) Existence :

1
e ’application f : x —> est continue
e f D +x+1)

sur [0; +o0o[, et f = 0.
o Etude en +00 :
a: f(x)x_?+oo e

D’apres I’exemple de Riemann en +00 (4 > 1) et le théoréeme
d’équivalence pour des fonctions 2> 0, f est intégrable sur

[0; +ool.
. +o0 dX
On conclut que l'intégrale [ = /
o P+ DEP+x+1)
existe.
2) Calcul :

1
On a, par le changement de variable ¢ = —, qui échange les
x

bornes :

+00 1
= [
o P+DE*+x+1D)

-[. (lH)(ll 1 )(‘?)

= +-+1
i t

+o00 [2
= / dr
o (@+)(A+1+12)
82

d’ou, en additionnant :

+o0 1+x 400 dx
21 = dx = —_—.
o +DE2+x+1) 0o xr+x+1

Par mise sous forme canonique :

Z+x+1 +12+3
5 AP =\x+= =
2 4

-3 362))- 30+ (5

2 1
D’ou, par le changement de variable ¢ = alus
NE]
3
+00 %dl‘ 2
21 :/ —= = —_[Arctan]’™
3 3 1//3
U3 2112 3
4( +17)
2 (m wm\ 27
J3\2 6) /33
et on conclut I T
n conclut : = ——.
3V3

b) 1) Existence :

Soit a € RY fixé.
Inx .
L’application f, : x ——> ———, o°stcontinue sur |0 ; +oof,
x<+a
et f,(x) <0 au voisinage de 0F, f,(x) = 0 au voisinage
de 4-00.

o Etude en 0 :

Inx
Ona: fax) ~ —.

x—0 g2

Comme x —> —Inx est > 0 etintégrable sur J0; 1], par théo-
reme d’équivalence pour des fonctions 2> 0, — f, est intégrable
sur ]0; 1], donc f; est intégrable sur ]0; 1].
e Etude en +00 :

321n In
Ona: x¥*f(x)= L L — 0,

x2 4+ a? x—+o00 x1/2 x—+oo

d’ot, pour x assez grand : x3/2f,(x) < 1

puis: 0< f,(x) <

D’apres I’exemple de Riemann en 400 (3/2 > 1) et le théo-
reme de majoration pour des fonctions > 0, f, est intégrable
sur [1; +o0l.

Puisque f, estintégrable sur J0; 1] et sur [1; +o00[, f, estin-
tégrable sur ]0; +o0f.

. T Inx .
On conclut que I'intégrale /(a) = ———— dx existe.
o x2+a?

2) Calcul :

On a, par le changement de variable ¢t = al :
a



1) /*w Inx :
a) = X
0 x*+a?

:/“’O In(at) adt:l/m lna—f—lntdt.
0 2a2+az a Jo 1+l2

In
Il est clair que ¢t —— ratz estintégrable sur [0 ; +-o00[, donc
sur [0 ; +ool.
D’autre part, d’apres /) (pour a = 1), t —> —— estinté-

grable sur ]0; +o0l.

On peut donc séparer en deux intégrales de fonctions intégrables :
1) lna/+°° 1 dt+1/‘+°° Int o
a) = — — = —
a 0 1 =+ t2 a Jo 1 —+ [2
—_—
notée J

1
Par le changement de variable u = > qui échange les bornes :

O _lnu du % Iny
+o00 1_{_72 u 0 u
u
d’ou: J =0, puis :

Ina [T dr Ina 7 lna
I = — = —[Arctant]T>®° = — —.
@ a /0 241 a [Arctan ]y 2 a

:—J,

c) 1) Existence :

iy

e application f : x —>
PP f A +x2

est continue sur |0 ; +oo[,

et f(x) <0 pourx €]0; 1], f(x) = 0 pourx € [1;+ool.
o Etude en 0 :
Ona: flx)= Y*Inx

—0,
(14 x)2 x—0
donc f estintégrable sur ]JO; 1] (faux probleme).

o Etude en +00 :

) _ Vxlnx In x
a5 )= (l—|—x)2‘c—>+oo X3

notée g(x)

Et: x*g(x) =

—
]/4 x—>+too

donc, au voisinage de +00 : x5/4g(x) <1,

dou: 0<glx) <

D’apres I’exemple de Riemann en 400 (5/4 > 1) et le théo-
reme de majoration pour des fonctions positives, g est inté-
grable sur [1; +oo[, puis, par le théoreme d’équivalence pour
des fonctions 2> 0, f est intégrable sur [1 ; +oof.

Puisque f estintégrable sur ]O; 1] et sur (1; 4+o0o[, f estin-
tégrable sur ]O; +o0f.

+00 In
On conclut que I’intégrale I = / VxIn dx existe.

o (d+x?
2) Calcul :

Eliminons I’intervention de \/x, par le changement de variable
t =%, x =t dx =2tdr:

+00 1 +00
_/ /X Inx G / 2tInt T
o (I+x)? o (I+12)?

+o00 2[
=2/ tInt——dr
0 (2 + 1)?

On a, par primitivation par parties pour des applications de

classe C! :
/tlt 2 dr llt /(H—l ) ——
nt——— n n
>+ 1)
tint v t+/ Int dr
= rctan —dr.
IR IR
tint
D’une part: ——— + Arctant — 0,
1+ 12 1—0
tint T
———— + Arctant —.
1+t2+ rctan :> 5

D’autre part, I’application # —— est intégrable sur

Int
IEE
10 ; +o0l, par la méme démarche (par exemple) que plus haut.

On déduit, en passant aux limites :

+oo ll’
1=7r—2/ LI
o 1+

notée J

1
Par le changement de variable u = o

du /‘+°° Inu g ;
s I Y qu=—
u? o 1+u? ’

I =m.

qui échange les bornes :

—Inu

0
= =
u?

+ool+

donc J =0, et on conclut :

1) Existence :

L’application x — est continue sur le segment

i+ cosx

2m 1

[0; 27], donc I’intégrale [ =/ — dx existe.
o 14 cosx
2) Calcul :
’r 1

On a, par 27-périodicité : [ = / —_—

_r 14 cosx

. . x . N
puis, par le changement de variable ¢ = tan > qui amene une

intégrale de fonction intégrable :
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2dt

+0o0
=
—00 .

1+

1+ 2
1 —1?

1+12

/+oo dr
e G D+ = D2

2 /+°" dt
i1

00 1_{_%__112
i+1

( ')/M &
. _dr
I T

+°Ol—it2
=(1—1
( 1)\/;00 T

dt

[2

231 ')/+Oo Sl U
= =1l .
parité 0 1 —+ [4

Puisque les applications

> ——— et t —>
1+1¢4

sont intégrables sur [0; +-00[, on peut
grales :

2

1+t

séparer en deux inté-

+o0 1 +o00 [2
I =2(1—i ——dr —i —dr ).
( 1)</0 1414 1f0 1+ )

notée A

notée B

1
e Par le changement de variable u = T qui échange les bornes,

ona:

0 1 du +o0 M2
A= —— ) = ——du=8B8B.
f 1( uz) ./0 EN

+o0 l-I— .
ut
* D’autre part :

+oo 1 t2 1
A+B= / i dion=1—
o L+t* " parité 2

Factorisons t* + 1 dans les réels :

fl=E+ 1) —22= 2 — V2t

tv2
t—>
L+14
] — 00; 4+o0] et est impaire, on a :

Comme |’application

1/+°°z2—ﬁr+1
— = dr

A+B=—
+ 2 ) 4+ 1

-3/

+ool t2
/ LA
oo 11

+ D@ +V2t+1).

est intégrable sur

+00 1

—dt
o 2+2t+1

Par mise sous forme canonique :

2\* 1
12+\/§t+1=<t+§> +3

N —

2\ 1
1 +2(r+ %) } = S[1+ev2+ 17,
D’ol, par le changement de variable u = 1+/2 + 1 :

1/+oo 1 1d
A+ B=— - ——=du
1

2 —0o0 5(1 MZ)«/E

T
= —[Arctanu]*? = —.
V2 V2
™
Onadonc: A=B et A4+B=—,
N
d’ot il
ou = = —,
2V2
™
Enfin: I =2(1—-i)(A—iB)=2(1 —i)>*—— = —im/2.
2V2
a) Soit a € R.
1) Existence :
1

L’application f, : x est continue sur

—_
1+ x2)(1 + x2)

10; +o0[,etona:
Vx el0;4oof, 0< fulx) < Tre2

Puisque x — est intégrable sur [0 ; 4+o0[, donc sur

Il 4 52
10 ; +o0[, par théoreme de majoration pour des fonctions > 0,
fa estintégrable sur ]0; 4-o0l.

|

——— dx existe.
(I +x)(1 +x)

+00
On conclut que [ (a) = /
0
2) Calcul :
Soit a € R fixé.

1
On a, par le changement de variable ¢ = —, qui échange les
X

bornes :

RRACHCHIN

“+00 ta
== / 7(”,
o @+ D@E+1)

d’ou, par addition :

+o00 1 a
21(a) =/ _ e g
o (A+x2)(1+x9)

+00 1 T
:/ —— dx = [Arctanx|§> = —.
0 1+X2 2

+o0 1 T
On conclut : / — dx = —.
0 (1 4+ x2)(1 + x9) 4



b) Soit a € RY.
1) Existence :

e L’application f, : x —> —12 est continue sur

10; +o0[, et f, = 0.

o Etude en 0 :

Ona: f,(x) ):>0 0, donc f, estintégrable sur ]JO; 1] (faux
probleme).

e Etude en +00 :

1
fa(x) x—f:%—oo ;
en +oo (2> 1) et le théoreme d’équivalence pour des
fonctions > 0, f, estintégrable sur [1; +ool.

On a: D’apres 1’exemple de Riemann

Puisque f, estintégrable sur O; 1] et sur [1; 400, f, est
intégrable sur ]0; +oo[. On conclut que I’intégrale
+00
1
I(a) =f ———— dx existe.
)
a+|x— -
X

2) Calcul :

1
On a, par le changement de variable ¢ = —, qui échange les
X

bornes :

g 1
1(a)=/ —_—
+ooa2+<1

+o0 5
puis, par addition : 21 (a) = / — Gy,
0 2

1 1
On remarque : d(x — —) = <1 4 _2> dx.
X X

1
L’application ¢ :]0; +oo[— R, x —> x — — est de
X

1
classe Clet: Vx e€]0;+oo[, ©'(x) =1+ —
X

donc ¢ est strictement croissante sur 0 ; 400 .

On a alors, en effectuant le changement de variable u = x — —:
X

+00 1
21 = — du.
(a) [m P

Par le changement de variable v = 4 :
a

+oo
2 (a) = / d

2 )
o ac+a-v

1 [t 1 1
= — / —— dv = —[Arctanv] 'Y = T
a) o 1402 a a

On conclut :

+o0
Va €]0; 4o0l, / —_— 5
0 2 1)2 2a
a” + (x— —
X

¢) Soit (a,b) €11 ; +o0[.

1) Existence :
L application f, sin”x t
application f,; : x —> es
PP ’ (a — cosx)(b — cosx)

continue sur le segment [0; ], donc 'intégrale proposée

™ sin2x
I(a,b) :/ dx existe.
o (a— cosx)(b— cosx)

2) Calcul :

1 — cos’x

Ona: Vxel0;n], foprlx)= @ — cosx)(b — cosx)’

Effectuons la décomposition en éléments simples de
1 —X?

(a =X)(b-X)

mérateur par le dénominateur, la partie entiere est égale a —1.

1l existe (a, 3) € R? tel que :

dans R[X]. Par division euclidienne du nu-

1-Xx? e J5}
8 =l ———o
(a —X)(b —X) a—X b-X
Pour calculer o, on multiplie par a — X puis on remplace X
1— 2
par a, et on obtient: « = a .
b—a
1 —b?
De méme: (= .
a—b

D’ou:
I(a.b) /" PPl S b S P
a,b) = — X
0 b—aa—cosx a—bb— cosx
+17a2/W 1 dx+17b2/ﬂ 1 .
=—7 X
b—a Jy a— cosx a—>b Jyo b— cosx

o T dx
Considérons, pour ¢ € [1; +o0[ : J(c) =
0

Cc— COSX

On a, par le changement de variable # = tan %, qui amene des
intégrales de fonctions intégrables :
+oo | 2dt
J = R E— e —
© /0 1—12 1412
e—
il 4 i

+00 9)
o =D+ (+Dr?

2 s 1
-—= a
c—1 0 1 C_lz

2 [o—1 c+ 1\
Arctan —t
c—1Vc+1 c—1 /1,

85
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d’ou :
1(a,b)

1 — a? s 1 — b? T

=TT b—a «/a?—lJr a—>b /b2 —1

-t (WP TV o)

" w(b* — a?)

= =1r

(b—a)(vVb* =1+ a*—1)
(b + a)

— T+
VbE—1++a? -1

a+b—~a?—1—-b>—1
V@ —1+V/2 -1

=T

d) Notons, pour a € R, f, la fonction définie par

1

x2 —2xcosa+1°

fa(x) =

1) Existence :
Soit a € R.
e Le discriminant du trindme réel x> —2xcosa + 1 est
A =4cos’a — 4 = —4sin’a.

1 1
2—2x+1_ (x-D2
donc, d’apres I’exemple de Riemannen 1 (2 > 1), f, n’est pas

Si a=0 [27n], alors f,(x) =

intégrable sur [1; +oo[, donc ne I’est pas non plus sur
] —o0; tool.

1 1
22+l @+
donc, comme plus haut, f, n’est pas intégrable sur
] —o00; +o0l.

Si a =7 [2n], alors f,(x) =

Supposons dorénavant a # 0 [r], c’est-a-dire A < 0.
L application f, est alors continue sur | — 00 ; +00].
o Etude en £00 :
1

Ona: f,(x) ~ — = 0.D’aprés I’exemple de Riemann

x—>=oo x2
en 00 (2 > 1) et le théoreme d’équivalence pour des fonc-
tions > 0, f, est intégrable sur | — co; —1] et sur [1; +o0],
puis sur | — 0o ; +o0l.

+o00 1
lut : D’intégrale [ = _
On conclu intégrale I (a) /;OO Y oxcosa 1

existe si et seulement si a € R — 7Z.

2) Calcul :

Il est clair que I’application / : a — I (a) est 2m-périodique
et paire.

On peut donc supposer : a € ]0; 7[.

On a, par mise sous forme canonique :

x> —2xcosa+ 1= (x — cosa)’ + sin’a

2
= sin2a|:1 + (ﬂ) :|
sina

) X — cosa
Effectuons le changement de variable t = ——:

TES sina
1) = /

— at
oo SinZa(l +£2)

sina

™

1
= —[Arctan?]*2 = ——.
sina sina

. ™ .
Finalement : I (a) = ——, si a € 10; «[,
sina
complétée par parité et 2-périodicité.

e) 1) Existence :

Soit a € R.

Considérons la fonction f, : x —> ——.
chx — cosa

e Sicosa =1, c’est-a-dire si a € 2n/Z, alors :

1 2
chx — 1 x—0x2 =

Ja(x) =

D’apres ’exemple de Riemann en 0 (2 > 1) et le théoreme
d’équivalence pour des fonctions 2> 0, f, n’est pas intégrable
sur ]J0; 1], donc ne I’est pas non plus sur | — oo ; 400 .

* Supposons cosa # 1, c’est-a-dire a € R — 27Z. Alors, I’ap-
plication f, estcontinue sur R, paire, > 0 et :

1 1 »
fix) = —— — 2.

chx — cosa r—+x chx x—+

Comme I’application x —> e™* est intégrable sur [0 ; +-o0[,
par théoreme d’équivalence pour des fonctions 2> 0, f, estin-
tégrable sur [0; +ool, puis, par parité, f, estintégrable sur
] —o00; 0], etenfin f, estintégrable sur | — 0o ; +o0l.

s sina

On conclut que I’intégrale 1 (a) :/ —dx
s ¢chx — cosa

existe si et seulement si a € R — 27Z.

2) Calcul :
Soit a € R — 27Z.

Il est clair que I’application / : a — I (a) est2m-périodique
et impaire.

On peut donc supposer a € ]0; 7].
Sia =m,alors I(a) =0.

Supposons a # .



On a alors :

+00 g
I(a) = / N R

w Chx — cosa

uED sina
= - dx
—o € te

— cosa
2

TED 2e* sina
oo €+ 1 —2e*cosa

Effectuons le changement de variable

) dr
t=¢", x = Int, dx=7:

1) /*w 2sina i
a) = _—m—m——
o t2—2tcosa+1

On a, par mise sous forme canonique :

1> —2tcosa+ 1= (r — cosa)’ + sin’a

2 [ (z— cosa>2i|
=sin‘a|ll+|—— .
sina

s . . t — cosa
D’ou, par le changement de variable © = ——:
sina
1) /+°° 2sin’a du
a) = e ———
—cotana Slnza(l + uz)
— +
= 2[Arctanu]"3,

2(; — Arctan (—cotan a))

1
= 7 + 2Arctan
tana

=7+ 2(% — Arctan (tana))

T
=7r+2<§—a) = 27w —2a,

et cette derniere expression est aussi valable pour a = .
On conclut: /(a) = 27 — 2a, complétée par imparité et par
27-périodicité.
f) 1) Existence :
Soit @ €]0; 1[ fixé.
1
T (taovid-n

e L’application f; : x est continue

sur J0; 1[, et f, = 0.
o Etude en 0 :
1
Ona: f,(x) ~ 0TI D’apres I’exemple de Riemann en 0
x—0 X
(1/2 < 1) etle théoreme d’équivalence pour des fonctions > 0,
fa estintégrable sur ]0; 1/2].

e Etude en 1 :

Ona: f,(v) L

na: f, ~ —
Vi 1ra A=)~

D’apres I’exemple de Riemannen 1 (1/2 < 1) et le théoréme
d’équivalence pour des fonctions 2> 0, f, est intégrable sur
[1/2; 1].

Puisque f, est intégrable sur ]0; 1/2] etsur [1/2; 1[, f, estin-
tégrable sur ]0; 1[.

1

1
On conclut que I'intégrale 1 (a) = / — dx
E c o (I +ax)y/x(1—x)

existe, pour tout a € [0; 1[.
2) Calcul :

On a, par mise sous forme canonique :

x(1—x)=—x’+x=—@*—x)
[(=3) =3]=3-(-3)
= = = = —— | =—-—\|\X— =
2 4 4 2
[1-(-3)]
=—|1—(x—= .
4 2

d’ou, par le changement de variable t = 2x — 1 :

I1(a) = 1 ! Lo
@ = > t+1\1 2
l+a— |)=v1—12

2

Puis, par le changement de variable

u = Arccost, t = cosu, df = —sinudu :
0 .
— sin
I(a):f u du
. cosu+1Y\ |
(l—l—aT) sinu

g 2
0o 24+a-+acosu

9 u 9 N sg
Par le changement de variable v = tan > qui amene une inté-

grale de fonction intégrable :

+00 P
I(a) = S S
0 1— U2
24+a+a

1402

+00 2
:/ 2 &
o (A+a)+?
2 vED 1
/ dv
I+aJo 1+ ! v’
1+4+a

2 v +o00
—[+/1 + a Arctan (—)]
1+a[ J1+a) |,

2
- V1+a

Onconclut: Ya €]0;1[, I(a) =

s

T+a

ST

™
1+

S
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1) Existence :
Soitz € C. Notons z = x +1iy, (x,y) € R%.
~I"est continue sur R et :
et 5i >0

et 5i ¢ <0.

L application f, : t —> e“e

VieR, |fi(n)] =ee ! = {

D’apres le cours, I’application ¢ —> e“~ estintégrable sur
[0; 4+o0o[ si et seulement si x —1 < 0, et I’application
t —> e" D! est intégrable sur ] — 0o ; 0] si et seulement si

x+1>0.

Il en résulte que f; est intégrable sur R si et seulement si :
x—1<0etx+1>0,cest-a-dire: —1 <x < 1.

2) Calcul :
SoitzeC,z=x+iy, (x,y) e R?>telque -1 <x < 1.

On a alors :

+o00
1(2) :/ eIl gy

+00
/ ee’ dr + f ee " dt

+o00
(drl)t dr +/ e(zfl)t dr
0

e+t 0 ee=Dt +o0

[Z ] [Z—l]o
1 o 2

z+1 z—1  1-z22

3 sint
Pour tout x €]0; 400, f(x)= / -
o sht

comme intégrale d’une application continue sur un segment.

dr existe

sin ¢ 1 2
Comme —— ~ —, considérons g(x) = —dr.
sht t— 2

0t .
3 3
*Ona: g(x)_[lnt]z"zl > lni.
D'autre part : f(x) — g(x) /3x<sm 1>dt
e D’autre part : f(x) — g(x) = — ==
P . 2x sh?z t
.. sintg 1 )
Lapplication ¢ : ¢ +—— s est continue sur J0; 1]
sh~t
et, au voisinage de 0 :
140 1 t+o01?) 1
(t +0(t2))2 t t+o(?) t
1+o(t I 1 I o
= o0 1oy -1 =29 o),
t(l+o@) t ¢ t

donc: (1) —>00.
—>

Puisque ¢ admet une limite finie en 0, ¢ est intégrable sur ]0; 1],
donc :

3x 3x 2x
/ p(t)dr = / w(t)dr — / p()dt — 0.
2 0 0 x—0

g

Ainsi : f(x) —gx) —>007
ou encore : fx) —gx) =o0(1).
On obtient :
3
fx)=(f&x) —gx) +g(x) =0o()+ In S
. ¥ sins 3
On conclut : lim / ——df =In—.
x—0F Jo, Shzt 2
Considérons 1’application
N . @ +2*
F:[—1;1]x[1l;400[— R, (x,t) —> W

e L’application F est continue par rapport a x et continue par
morceaux (car continue) par rapport a z.

* On a, pour tout (x,7) € [—1; 1] x [1; 400 :

(l’ 4L z)x—l
(l L 1)x+1

x—1
_ t+2 1 < 1 gl
t+1 (t + 1)2 @+ 2

o 1 . .
et ’application ¢ —— 2 est continue par morceaux (car conti-

|F(x,0)] =

nue), > 0, intégrable sur [1 ; +ool.
Ainsi, F vérifie HD.

D’apres le théoreme de continuité sous le signe intégrale, avec
HD, il s’ensuit que, pour toutx € [—1; 1], ’application F(x,-)
est intégrable sur [1;+oo[, et que I’application

+00
fixr— / F(x,t)dt estcontinue sur [—1; 1].
1

En particulier :

f@) =, f(0). Et:

+oo —1 +00
£0) = / (U / __
1 1+ 1 L G+ D +2)

+oo 1 1
, tH1 142

t 1 +00
=|In + = —lng = lné.
t+2], 3 2

o0

[in¢+ D= e+ 2)]1+

+o00 t 2 x—1 3
On conclut :  lim L dt =In—.
x—0 J, (r+ 1)“‘+1 2

a) Soit x € 10; +o0].
13

—
1+ 14

e ™ est continue sur

e L’application g, : ¢

[0; 4-o0[, et g, = 0.



o Etude en +00 :
Ona:

i .
g (1) = e ~ e — 0,

/1 < l‘4 t—>+00 t—>+00

donc, au voisinage de +00 : ?g.(t) <1,

1
dou: 0K g, (1) < 7

D’apres I’exemple de Riemann en +00 (2 > 1) et le théoreme
de majoration pour des fonctions > 0, g, est intégrable sur
[0; 4+o00[, et on conclut que, pour tout x €]0; +oo[,

e “dr existe.

+oo 3

o= [ A=

b) 1) Etude en 0 :

Soitx €]0; +oo[.On a:
Hoo 43

= —xtd
Jfx) : Trﬁe t

+00 13

+00 3
e M drt >f
1 VI+1* =~ i V214
1 +o00 1 +o00
= — te™dr > —/ e M dr
Al el

1 e—xt +00
= — = — —
ﬁ[—X]l xy/2 x—0*

f(x) — Hoo.
xX—>+00

e M dr

+o00,

donc :

2) Etude en +00 :
Soitx €]0; +00[.On a:

+00 t3
0< f(x) = f e dt
0

V1414
+o0 +oo sy 3 du
é/ e dr = / <—> e —
0 u=xt Jq X X
1 +o00
_ 3 . —u
=— wedu — 0,
X 0 Je==rEd)
donc : f(x) — 0.
x—> 400

a) Soit A €10; +o0l.

L’application s est continue sur [0 ; +o00[.
A+g

1
0< )\——{—g < X f. Puisque f est intégrable sur

[0; +oo[, d’apres le théoreme de majoration pour des

On a :

fonctions > 0, est intégrable sur [0 ; +00[.

f
At g

On conclut que, pour tout A €]0; +oo[, ’intégrale

+00
~ f
¢<A)—f0 v

b) On suppose, de plus, que g est bornée.

existe.

On a, pour tout A € ]0; +oof :

b5 =1 (5

_/*°° fo gl [+°° f
- ~
0 AA+g) A 0 A+g

gl
DY

¢(>\)=)\ o (6MV).

—>+00

1 400
O lut : A o~ = .
n conclut :  ¢( )/\Hﬂo)\/o i

Soitx € [1; +ool.
/2 .
Lintégrale I (x) = / e " dr existe comme intégrale de
0
fonction continue sur un segment.

/2
Considérons J(x) :/ e """ costdt, qui ressemble
0

al(x).

*Ona:

0< I(x)— J(x)

/2 . /2 . t
= / e (1 — cost)dt = f e "2 gin?= dr .
0 0 2

notée K (x)
. 2 .
Onsait: Vx €[0;7/2], —u < sinu < u.
™

D’une part :

w2 2 t 2 1 @ 2
K (x) </ e"‘?Z(—) dr = —/ e Tt ds.
0 2 2 Jo

2x
Par le changement de variable u = —1:
m

1 X 2 3 X
K(x) < —/ e (™) D= T / we ™ du.
2 Jo 2x ) 2x 16x3 J,

D’apres I’étude de la fonction I d’Euler par exemple, 1’appli-

cation u —> u’e "

est intégrable sur [0; +oo[, et :
X +o0o
0< / ure " du < / e du=T(3)=21=2.
0 0

3
K(x) < .

1
Ix)—J&x)= O <7>
x—>+00 \ X~

1l en résulte :

donc :
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* On calcule J(x), par le changement de variable v = sint :

/2 . 1
J(x) = / e M costdt = f e dv
0 0

|:e“’i|l e —1 1—e™*
= = = ,
—x —x X

1 1
dou: Jx)=—4+ o (—)
X

x—+00 \ X

Enfin :

1(x) = (1(x) = J(x)) + J(x)
1 1 1 1 1
X X X~ X X

/2 . 1
On conclut : / e Mdr ~ —
0

x—+00 X ’

2

Pour tout x € [1; +oo[, f(x) = / existe

dr
Vit + 1

comme intégrale d’une application continue sur un segment.

On va se ramener au voisinage de 0, par un changement de va-
riable, de facon a pouvoir utiliser les DL (0) usuels.

Soit x € [1; +o0l.

1
On a, par le changement de variable u = " :

2 1
< dr 2 2 T du
ro= [ Ny L L
RV AR 1 1 L 1+ u?

X _ +l XZ
Considérons les applications

1
VT4 u*

p:R— R, ur—

Y du
F:R—>]R,y|—>F(y)=/ —_—
o 1+u*
Puisque ¢ est continue sur R et que F est une primitive de ¢

sur R, F estde classe C' surR et F' = .

Par opérations, ¢ admet un DL,;(0) :

= (14+u*2

1
pu) = \/ﬁ

_ AN A YA 1
_1+< 2>u +2!< 2)( 2) +o(u")

1 3
=1- Eu“ + gug +o(u').

Par primitivation, F' admet donc un DL,(0) :
1y 3y° 2
F(y)=F(© -4 -
6)) ©) +y 25+89+0(y)

_ 1 5 1 9 12
=Y~ 10’ +ﬁy +o(y ).

Enfin :

f(x)—F(l ~r(L
T \x 57
|1 1 1+1 l+ 1 1 11 i 1
Tlx T 10 T2 TOGe X2 10x0 O\Ge

111 1
X2 100 240 T Tox +xﬁ+m(ﬁ>'

*Ona:

{ Vxel0;m/2],

>x=0
Vx e [n/2; 400, x+ cosx > x —1>0,

X + cosx

sin x

donc I’application f: x —> NG (Vx + cosx — /x),
x

est continue sur |0 ; +o00[.

o Etude en 0 :

Ona: S i:\/}_)0

Jx 0 Jx x—0
et «/x—f—cosx—ﬁ—i)l,donc: fx) —>OO.
X—> xX—>

Il en résulte que f est intégrable sur ]J0; 1] (faux probleme).
* Etude en +00 :
En utilisant une expression conjuguée et des développements

asymptotiques :

sin x (
Jx
sin x COS X

VX Jx+ cosx + /x

sin x cos x 1

fx)= VX F cosx — \/x)

COS x

1+ + 1

sin x cos x 1

1
S 0(—)
X
sin x cos x 1 -
=——[1+ 0| -
2x X
si 1
_ sinxcosx (1 +0<_>)
2x X

sin x cos 1
_ sinxcosx +0<_

2x
1 sin2x 1
= = ol — ).
2 2x + <x2>




.. sin ¢
D’apres un exemple du cours, 1’application # —— — est
d’intégrale convergente sur [1 ; +o00[, donc, par le changement

. L sin 2x
de variable t = 2x, I’application x ——

estd’intégrale
convergente sur [1/2; +o0[.

D’autre part, il existe a > 0 et C € Ry tels que :

1 C
0(?)\%‘

D’apres I’exemple de Riemann en +00 (2 > 1) et le théoreme

Vx > a,

, est

1
de majoration pour des fonctions > 0, x —> ‘0 (—2>
X

1
intégrable sur [a ; +00[, donc x — O (—2> I’est aussi.
X

1 .

Il en résulte que x — O (—2> est d’intégrale convergente
X

sur [1; +oof.

Par combinaison linéaire, on conclut que f est d’intégrale conver-

gente sur [1; +o00[.

~+% sinx

—0 ﬁ

Finalement, I’intégrale

(Vx4 cosx — /x)dx

converge.

* Considérons 1’application
u:[0;+oo[— R, x —> x + /x sinx.

Six €]0; 7], alors sinx = 0, donc u(x) = x > 0.

Six € [7; 400, alors :

u(x) 2 x —J/x=J/x(/x-1>0.
Vx €]0; +oof, u(x) >0,

donc I’application

Ceci montre :

sin
f:0; +oo[— R, x +— _smr
X + 4/x sinx
est continue sur ]0 ; +o0].

e Etude en +00 :

On a, en utilisant des développements asymptotiques :

sin x

_ sinx <1+ sinx>_2
VX + /x sinx Vx Jx
_ sin x ] 1 sinx B 1
a \/; 2 ﬁ x—+o00 \ X

sinx 1 sin’x 1
SRREE TN ro(—).
Jxooo2 x x3/2

+ D’aprés un exemple du cours (cf. aussi exercice 3.44),

7t ginx
dx converge.
1

Jx

fx) =

sinx 1 — cos2x 1
* Comme = = — —
X 2x 2x 2x

—+00
/ —dx diverge et que, d’apres un exemple classique,
1 X

~+ cos2x
/ > dx converge, par opération (raisonnement par
1 X

—>—+00 2

sin “x

I’absurde, par exemple), / dx diverge.
1

* [l existe a € [1; +oof et C € R, tels que :

1 C
o)

D’apres I’exemple de Riemann en 400 (3/2 > 1) et le théo-
|
)

—+00
/ o (W) dx converge absolument, donc converge.
1 X

Vx €la;+ool,

reme de majoration pour des fonctions 2> 0, x —— ‘ 0] (

est intégrable sur [a ; +-00[, donc

Par addition de deux convergentes et d’une divergente, on dé-

+00
duit que I’intégrale f(x)dx diverge.
1

1
f(x)dx.

—0

Il n’est pas alors utile d’étudier

=S sin x

~0 /x4 /x sinx

On conclut que I’intégrale dx diverge.

1) Existence :
Soit O € R[X].
e L’application f : x ——> e Q(x) est continue sur R.
*Ona: x*f(x) = (x*Q)) e — 0,
x—>+o0
par prépondérance de I’exponentielle sur les polyndomes.

On a donc, pour |x| assez grand : [x>f(x)| < 1, d’ou :

1
0SIf™I S =
X
(2 > 1) et le théoréme de majoration pour des fonctions 2> 0,
| f| estintégrable sur] — oco; —1] etsur [l ; +oo[, donc f est

intégrable sur R.

D’apres I’exemple de Riemann en £o00

Ceci montre que, pour tout polyndme Q de R[X], I’intégrale

+00
/ e Q(x)dx existe.

%)
+o0

En particulier, I’intégrale [ = / e’sz(x + a) dx existe.

—00

2) Expression de I :

En utilisant la formule de Taylor pour les polyndmes et en no-
tant N = deg (P),ona:

91



92

_ > NP(k)(a)k
= f (RS

N
p(k>
E (a) e_"zx" dx

k=0 =e9
N————

notée I,

ou les intégrales /i, existent, d’apres /).

g s 9 2k . . .
Si k est impair, comme x —> e~ x“ est impaire et intégrable

sur R,ona [; =0.
Supposons k pair, k = 2p, p € N.

2 . . »
Alors, comme x —> e ¥ x¥ est paire et intégrable sur R,
ona:

+o00 2
Ik=2/ eixXZde.
0

Cette derniere intégrale a été calculée dans 1’exercice 3.4 (par
intégration par parties et relation de récurrence), donc :

_ @2p+ D!
©= o NS

2p+1
=S e,
4

Finalement :

ou N = deg(P).

Nous allons essayer d’appliquer le théoréme de conti-
nuité sous le signe intégrale.

Considérons I’application :

1—¢

1—t°

* I’ est continue par rapport a x et continue par morceaux (car
continue) par rapport a ¢

* On a, pour tout (x,7) € [0; 1/2]x]0; 1[ :

F:[0;400[ x]0; I[— R, (x,t) —>

11—t  1—1¢2 1
Fx’[ = < = <
| F(x,0)] = S 1= 7z S

il

et I’application constante 1 est continue par morceaux, > 0,
intégrable sur I’intervalle borné ]0; 1[.
Ainsi, F vérifie HD sur [0; 1/2]x]0; 1[.
D’apres le théoreme de continuité sous le signe intégrale, avec
HD, I’application
L g

1—1t

dt

f:[0;1/2] — R, xr—>f(x)=/
0

est continue sur [0; 1/2].
En particulier : f'(x) —>0 f£(@©0) =0.
1

On conclut :  lim

x—0 Jo —

1 —t*
dt = 0.

a) Soit x € 10; +o0.
* Lapplication g : 7+ —
el —

est continue sur [x ; +00[,

> 0.
e Etude en +00 :
3 ta+2
Ona: t°g@t) = ] t:wo,
donc, pour ¢ assez grand :  t?g(t) < 1,

puis: 0< g(t) < —

D’apres I’exemple de Riemann en +00 (2 > 1) et le théoreme
de majoration pour des fonctions > 0, g est intégrable sur
[x ; 4o0[.

On conclut que, pour tout x € ]0; +o00[,

+o00 14
f(X)=[ 71

b)ePuisque g : 1 +—

dr existe.

a

T est continue sur ]0 ; +oo[, I’ap-
el —

plication G : x — / g(t)dr estdeclasse C'sur]0; +oo,
1

donc a fortiori G est continue sur |0 ; +oo[.

Enfin, comme, pour tout x € ]0; 4+o0[ :

1 +oo +00
fx) =/ g(t)dt+/ g(t)dtz—G(x)Jr/ g(r)dr,
X 1 1

f est continue sur ]0; +o0[.
o Etude en 0 :
t{l la

Ona: g(t) = ~ — =l
mait pi=——— o

D’apres I’exemple de Riemannen 0 (a — 1 > —1) et le théo-
reme d’équivalence pour des fonctions 2> 0, g est intégrable
sur [0; 1].

1 1
1l en résulte : / g(t)dt —>0/ g(1)dr,
x =y

+oo +00
puis: f(x) = / g()dt —>0/ g(t)dr.
X *—YJo

Ainsi, f admet une limite finie en 0, donc f est intégrable sur
10; 1] (faux probleme).

e Etude en +00 :

t¢ ¢
Ona: e/? ~ — 0,
et —1 —>+00 et/Z t—>+o00
tﬂ
donc, pour ¢ assez grand : e'? T 1,
el —

1 ”
. —
puis : e g e

On déduit, pour x assez grand :



+00 Jad +o00
ogﬂn:/ d_lmgf e /2 dr

=[- 26_’/2]:’0 =2e /2,

Comme x —> e /2

est intégrable sur [1; +o0[, par théo-
réme de majoration pour des fonctions > 0, f est intégrable
sur [1; +oof.

Puisque f estintégrable sur ]J0; 1] et sur [1; +oo[, f estin-
tégrable sur ]0; +o0l.

a) Soitx € R.

sin (xt)

* [’application g, : t —> est continue sur 0 ; 77/2].

sin ¢

xt
*Ona: g,(t) ~ —=ux, dou: g () — x,
t—0 t—0

donc g, estintégrable sur JO; 7w/2] (faux probleme).
On conclut que f est définie sur R.

b) Nous allons essayer d’appliquer le théoreme de dérivation
sous le signe intégrale.

sin (xt)

Notons F : Rx]0; 7/2] — R, (x,t) —> —
sin

*Pourtoutx € R, F(x,-) estintégrable sur |0 ; /2] d’apres a).

t cos (xt)

oF
3 D (x,t) — existe sur Rx 0 ; m/2], est conti-
X

nue par rapport a x, continue par morceaux (car continue) par
rapport a .
YueR, |sinu| < |ul
* Rappelons : 2u
Yu e [0;7/2], sinu > —.
™
Soit a € R, fixé.

On a donc, pour tout (x,7) € [—a; a]x]0; 7/2] :

oF | sin (x1)| |xt| s m

—,0)| = —F— L == < =

‘Bx(x )‘ sint 2t 2|x|\2a
T

. . ™ . z P 2
et ’application constante Ea est intégrable sur I’intervalle borné

10; 7/2].
.. OF .
Ainsi, — vérifie HDL.
ax
D’apres le théoreme de dérivation sous le signe intégrale, f
estde classe C! sur R et :

t cos (xt) dr

/2
Vx eR, f'(x) :/
0

sin ¢

¢) Comme plus haut, on a :

/w/z sin (xt) dt‘ P /w/2 | sin (x1)| dr
) < (el
0 0

sin ¢ sin ¢

If )] =

2 |xt| mlx| ™2 x|
< ——dr = dr = — 0,
o A 2 )

™

donc: f(x) —>00.

/2
Pour tout x € [0; 400, f(x) = / t* cost dr existe
0

comme intégrale d’une application continue (continue par
morceaux si x = 0) sur un segment.

/2 3
I)Ona: f(O):/ costdt:[sint]g/2=1>z
0
et
/2 /2
f(l):/ tcostdr = [tsint]g/z—/ sinz dr
0 1pp 0
™ /2 v 3
_T ar="_1<2,
> + [cost], 2 < 1

. .3 .
Ainsi, T est compris entre deux valeurs de f.
2) Montrons que f est continue sur [0 ; 400, en essayant d’uti-
liser le théoreme de continuité sous le signe intégrale.
F :[0; 400[x[0; /2] — R, (x,t) —> t" cost.

I’ est continue par rapport a x et continue par morceaux (car
continue) par rapport a z.

e Soit a € [0; +o0].
On a, pour tout (x,#) € [0;a] x [0; 7/2] :

Notons

a
: m
|F(x,t)] = |t" cost| =t cost <t < (E)

et I’application constante (g) est intégrable sur le segment
[0; 7/2].

Ainsi, F vérifie HDL.

D’apres le théoreme de continuité sous le signe intégrale, on
déduit que f est continue sur [0; +ool.

3) Puisque f est continue sur 1’intervalle [0; +oo[ et que

3
) > 7 > f(1), d’apres le théoreme des valeurs intermé-

3
diaires, il existe ¢ € ]0; 1[ tel que : f(c) = T

1) Ensemble de définition :
Soitx € R.

L’application g, : # —> Arctan (x tan?) est continue sur
[0; 7/2].

o Etude en )2 :
/2 si x>0
Ona: g.(t) — 0 si x=0
t—T/2
—m/2  si x <O,

donc g, estintégrable sur [0; 7/2[ (faux probleme).
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On conclut: Déf(f) =R.
2) Parité :
Ona:Vx eR, f(—x)=—f(x),donc f estimpaire.
On peut donc se limiter, dans la suite de 1’étude, a x 2> 0.
3) Continuité :
Notons
F :[0; 400[x[0; 7/2[— R, (x,t) —> Arctan (xtant) .
e F est continue par rapport a x et continue par morceaux (car
continue) par rapport a z.

* On a, pour tout (x,#) € [0; +00[x[0; 7/2[ :
|F(x,t)| = !Arctan(xtant)| < g,

et ’application constante /2 est intégrable sur I’intervalle borné
[0; 7/2[.

Ainsi, F' vérifie HD.

D’apres le théoreme de continuité sous le signe intégrale,
f est continue sur [0 ; 4+o00[.

4) Classe C', variations :

Gardons les notations de 3).

e Pour tout x € [0; +o0[, F(x,-) estintégrable sur [0; 7/2[
d’apres /).

F s tant

) > ————
dx 1 + x2tan’t
est continue par rapport a x, continue par morceaux (car conti-
nue) par rapport a f.

existe sur [0 ; +o00[x[0; 7/2[,

* Soit (a,b) € R? tel que 0 < a < b.
On a, pour tout (x,#) € [a; b] x [0;7: 2[ :

tan ¢ tan ¢
1 4+ x2tan?s = 1+ a?tan®s
—

8F( 9
-,
0x

notée ¢, (1)
L’ application , est continue par morceaux (car continue), 2> 0,
intégrable sur [0; 7/2[ car
tant 1

pult) ~ =

3 _ >
—m/2 a’tan’t  a’tant —m/2

(faux probleme).
. . OF .
Ainsi, ™ vérifie HDL sur ]0; +oo[x[0; 7/2[.
5

D’apres le théoreme de dérivation sous le signe intégrale, avec
HDL, f estde classe C' sur]0; +oof et :

Vx €l0; +ool, f'(x) /m ant
X 5 oQl, ) = SR
o 1+ x%tan’t

Puisque 1’application est continue sur [0; 7/2[,

1 + x2tan’s
> 0, et n’est pas ’application nulle, on a :

Vx €]0; +oo[, f'(x)>0.

Comme, de plus, f est continue en 0, on conclut que f est
strictement croissante sur [0 ; +o00].

5) Classe C?, convexité :
Par la méme démarche qu’en 4), on montre que f est de

classe C? sur ]0; +oof et que :

2x tan’t
X tan <O,

+00
Vx el0; . flx) =— —————dr
x €]0; +oof, f7(x) /O + x2tanr) O S

donc f est concave sur ]0; +ool.
6) Etude en 0 :
1" méthode :

On a, pour tout x €]0; +oo[ :

/2 tant Arctan % tant
X) = ——dt > ——dr
Fe) /0 1+ x2tan’t ,/0 1 + x2tan’t
Arctan &
X tant 1 Avm 4
> / —— dr = ——[Incos t]omm x
0 2 2

1 1 1
= ——In cos Arctan — = — = In ——
2 X 2 1

donc: f’(x) — +00.
x—>0

* 2¢ méthode :
Nous allons exprimer f’(x) pourx € ]0; +o0o[, sans symbole
d’intégrale, ce qui permettra d’étudier f”(x) lorsque x —> 0.

Soit x €10 ; +o00[.

On a, par le changement de variable u = tan? :

I )_/‘”/2 tant _/‘*” u du
Y= 0 “J L+ x2u214u?’

——— ar
1 + x2tan’t
puis, par le changement de variable v = ©?, dv = 2u du :

, _l —+00 dv
“’”‘2/0 A+ +v)°

Pour x # 1, on effectue une décomposition en éléments
simples :
1 a b

- , ,b) e R?.
AToX0+% 112X T 1gx: @D €

En multipliant par 1 + x>X, puis en remplagant X par ==
X
. 1 x2
onobtient: a = ——— = ———.
! x2—1



En multipliant par 1 + X, puis en remplacant X par —1, on ob-

1
tient: b = .
1 —x2
D’ou :
1 €S 52 1
! = — — — — @l
Fe 2(x2—1)_/0 (1+x2v 1+v) v
1 1+x%0]*>*
= n
2(x2—1) I+v |,
:7lnx2:ln—x.
2(x2—1) x2—1

Il s’ensuit :  f/(x) —> 00
x—>0

La courbe représentative de f admet Oy pour demi-tangente
en O.

7) Valeurs remarquables :

Ona:
/2 /2 2772 2
S =/ Arctan (tant) dt =/ tdr = | = _ T
0 0 2 |, 8
et:

tan ¢

/2
‘(1) = ——dt
£ /0 1 + tan’t

2 [ smra= 2]
2 ) 2 1, 2

8) Etude en +00 :

/2
= / sin ¢ cos ¢ dt
0

Transformons 1’écriture de f(x), pour x € ]0; +oo[ fixé, par
le changement de variable u = /2 — ¢ :

/2
fx)= / Arctan (xtant) dr
0
/2 X
= f Arctan du
0 tan u
T2 (7 tan u
= — — Arctan ) du
0 2
2 /2 1 2 1
:ﬂ——/ Arctan | —tanu du:l—f—.
4 0 X 4 X

fo) — =

xX—>+00 4

Comme f(y) —0>+ 0, on déduit :

La courbe représentative de f admet donc une asymptote
s 4 2 7T2
d’équation y = T

9) Tracé de la courbe représentative de f :

y
P2
4

y=flx)

a) Soitx € R.

e L’application g, :t est continue sur

—> —
t*(1+1nt)
[1;4o00[,etg, = 0.

1
*Ona:g.(t) ~ .
na g()t—>+oo t*Int

D’apres I’exemple de Bertrand en +oo, 1’application

hy:t —

In est intégrable sur [2; +o00[ si et seulement
n

si x > 1. Redémontrons-le.

* Six > 1, alors, comme

x+1
on a, pour ¢ assez grand, t 2 h,(t) < 1,

1
donc: 0 < h () < —-
1

D’apres I’exemple de Riemann en 400 (’(zil > 1) et le théo-

réme de majoration pour des fonctions > 0, &, est intégrable
sur [2; +ool.

1—x
* Six < 1, alors, comme 7 h,(t) =

—> Ho00,
Int t—+oo

1
on a, pour f assez grand, f h,(t) = 1, donc h,(t) > n > 0.

D’apres I’exemple de Riemann en 400 et le théoréeme de mi-
noration pour des fonctions 2> 0, &, n’est pas intégrable sur
[2; +ool.
* Six = 1, comme

X

——df =[Inln¢]y = InlnX — Inln2 — +oo0,
2 tint X—+o00

h, n’est pas intégrable sur [2; +oo].
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On déduit que 4, est intégrable sur [2; +o0[ si et seulement
six > 1.Par théoréeme d’équivalence pour des fonctions > 0,
g, est intégrable sur [1; +oo[ si et seulement si x > 1.

On conclut que f(x) existe si et seulement si x € ]1; 4o00[,
ou encore : Déf (f) =]1; 4o0[.

b) Nous allons essayer d’appliquer le théoreme de dérivation
sous le signe intégrale.

Notons

1

F:]1; 1; R — .
11 +oo[x[l; +00o[— R, (x,1) —> ~d + D)

e Pour toutx €]1; +oo[, F(x,-) estintégrable sur[1; +ool,
d’apres a).

oF COnt) e (—Int)t
ax 1+ 1Int
est continue par rapport a x, continue par morceaux (car conti-
nue) par rapport a z.

e Soita €]1;+00[.Ona:

existe sur ]1 ; +0o[x[1 ; o0,

VY (x,t) € [a; +oo[X[]; +o0,

Int
1+Int

oF ;
‘a(x,z)‘ = [ G

et r —> ¢~“ est continue par morceaux (car continue), > 0,
intégrable sur [1; +oo[, car a > 1.

D
Ainsi, — vérifie HDL.
dax
D’apres le théoreme de dérivation sous le signe intégrale, pour
oF
tout x €]1; +oof, a—(x,-) est intégrable sur [1; +oo[, f
X

est de classe C! sur ]1; +oo] et, pour tout x €]1; +oof :

f') /m LR
X)) =— :
1 1+lnt

Int

—
1+Int
[1; +oo[, = 0, et n’est pas I’application nulle, on a :

=iz

Puisque I’application f+—— est continue sur

Vx ell;+oo, f'(x) <0,

donc f est strictement décroissante sur ]1; +o0][.
De méme, on montre, par le méme raisonnement, que f est
de classe C? sur |1 ; 4-o0[ et que :
+ 2
® (Inn)* _,
1+1Int

Vx e]l; +ool, f"(x) :/
1

De plus: Vx €]1; +oo[, f"(x) >0,
donc f est convexe.

¢)* Etude en 1 :

On a, pour tout x € ]1; o0 :

+o0 1 +o0 1
f(x):/ —dz}/ —
. *(I+1np) . t*(1+1Inp)

+00 1 +00 1
> d = e d
- /e t*2Int  u=ht /1 e 2u "

1 +00 ef(x—l)u 1 +o00 e v
= —/ du = —/ dv.
2 /i u v=x—-Du 2J:1 v

—v

e
L’application s : v — est continue sur |0 ; +oo[, = 0,

intégrable sur [1; +oo[, car 0 < h(v) < e, et non inté-
grable sur ]J0; 1], car h(v) ~ 0o
v—0

+00 L.—v
Il en résulte : /
x—1

puis :

dv — +o0,

x— 1t
f) =, T

e Etude en +00 :
Ona:

< +00 1 < +o0 1
0< - - a ~
Fx) /1 TR /1 r

t—x+l +oo 1
= = 0,
[—x—i—l]l _x—lx—_H—)oo

d’ou : fx) — 0.

X—>+00

d)

y=fx)

o 1 X

e¢) Essayons de nous ramener a la recherche d’une limite.
Soit x € ]1; +oo[. On a, par le changement de variable

) 1 1
u=t", t=ux, dt = —ux""

X
+oo 1
F) :/1 ratmn

du :

| 1
+oo —u-x 1 +o0 2

=/ — X _du= ff ——du.

: u(l—l—%lnu) i 1+;lnu
Considérons I’application

uX-2
H:[0;1 1; R, (X, _
[05 I[x[1; +oo[— R, (X,u) —> T+ Xing



* H estcontinue par rapport a X et continue par morceaux (car
continue) par rapport a u.

e Soit a € [0; 1].
On a, pour tout (X,u) € [0;a] x (1; 4o0[ :

X2

u
HXu)| = —— <u*?2<u"?,
[H(X,u)| 1—|—Xlnu\u xu
et u —> u*? est intégrable sur [1 ; +ool.

Ainsi, H vérifie HDL.

D’apres le théoreme de continuité sous le signe intégrale, 1’ ap-
+o0

plication 4 : X —> H(X,u)du estcontinuesur[0; 1.
1

En particulier :

+o00 uX—Z
N du=hx
fl T+ Xing 2 =h&X)

+00
— h(O):/ uldu=[—u'If* = 1.
X—0 1

+0o0 u%—z
11 en résulte : / — du — 1,
1 1 + = Inu x—>+00
1
etonconclut: f(x) ~ —.
x—>+00 X

a) 1) Nous allons essayer d’appliquer le théoreme de dé-
rivation sous le signe intégrale.

Notons
G:R x[0; +oo[— R, (p,t) —> f(t)e .

*Pourtoutp € R, G(p,-) estintégrable sur [0; +oo[ par hy-
pothese.

k

G
e Pour toutk € {1,2}, = (p,t) — (=)  f (1) e P estdé-

ap
finie sur R x [0; +o0[, continue par rapport a p, continue par
morceaux (car continue) par rapport a z.

*On a, pour toutk € {1,2} ettout a € R :

k

G
Y (p,t) € [a; +oo[x[0; 4o0ol, W(p,t)

= f@le” <t f@)e™

= e (If@0le™ ).

notée @y , ()

=|(=0) fye”

L’application £ : ¢ +—> tfe™" est continue sur [0; +oo] et
h(t) e 0, par prépondérance de 1’exponentielle sur les po-
t—>+00

lyndmes, donc, classiquement, & est bornée sur [0 ; +00[.

D’autre part, par hypothése, t — f(t)e=@= V!

sur [0 ; +ool.

est intégrable

Il en résulte que ¢, , est intégrable sur [0; +oo[.

.G
Ainsi, —— vérifie HDL.
apk

D’apres le théoreme de dérivation sous le signe intégrale, on
conclut que F est de classe C? sur R et que, pour toutp € R :

+00
F/(p):/ —tf(r)e P de,
0

+00
F'(p) = / 2 f(t)e P dr.
0

2) On a donc, pour toutp € R :

(F) = ( fo Tenfwer clt)2

< (/Omnf(me—f" ar)’

=(/+M(We‘%)(r f(z>e-’%)dz)2.
0 N

notée u(t) notée v(t)

Les applications u et v sont de carrés intégrables sur
[0; +oo[, d’ou, d’apres I’inégalité de Cauchy et Schwarz :

(F'(p)” < (fom (u(t))2dt)(/0+w (v(0)* dr)
+0o0 +00
- ( - e dt)(/o 2F)e dz) — F())F"(p).

b) On suppose, de plus, que f # 0. Puisque, pour toutp € R,
I’application 7 — f(t)e™”" est continue, 2> 0 et n’est pas
I’application nulle, on a :

VpeR, F(p)>0.

Alors, In o F, est de classe C? et :
F' , F//F_F/Z
(lnoF)/:F, (In o F) :T>O’

donc In o F est convexe sur R.

a) Etude de I et J :
1) Existence :
e [application f : x —> In sinx est continue sur ]0; 7/2]
et f < 0.On a, au voisinage de 0 :
—f(x) = —Insinx = —In (x + o(x))
= —In (x(l +o(l))) = —Inx —|—ln(1 —+ o(l))
=—Inx+o(l) ~ —Inux.
x—>0
D’apres le cours, x —> —Inx est intégrable sur ]0; 1].
Par théoreme d’équivalence pour des fonctions > 0,

— f estintégrable sur ]0; 1], donc sur ]0; 7/2], puis f I’est
aussi.
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/2
Ceci montre que 'intégrale [ = / In sinx dx existe.
0

. 7T . .
* Par le changement de variable t = i X, puisque [ existe,

J existe aussi et :
/2 0
J:/ lncosxdxzf In sint (—dt) = 1.
0 /2
2) Calcul :

Ona:
21 =1+J

/2 /2
= / (In sinx + In cosx)dx = / In (sin x cos x) dx
0 0

72 1 - z
:f In( = sin2x dx:——ln2—|—/ In sin2x dx .
0 2 2 0
—_—

notée I,

On a, par le changement de variable u = 2x, puis par la rela-
tion de Chasles :

1 ™
11:7/ In sinu du
2 Jo

™

1 2 g
=—<[ lnsinudu—i—/ In sinudu)
2\ Jo

2

1 0 1
= (1+/ In sinv (— dv)>=5(1+1)=1.

B

v=m—u?
On obtient ainsi 2/ = —g In2+1,dou:
1=J=—gmz
b) Etude de K :
1) Existence :
e L’application g : x —> ﬁ est continue sur ]0; 7/2[, et
g=0.
*Ona g(x) :01 et g(x)x_—);/zO, donc g est intégrable

sur 0 ; /2 (faux problemes).

dx existe.

Ceci montre que I'intégrale K = /
tan x

2) Calcul :
Soit € € ]0; w/2[ fixé. On a, par intégration par parties pour
des applications de classe C' :

w2 /2
X COS X
dx = X — dx
£ tan x = sin x

/2
=[xIn sinx]™/? — / In sin x dx

/2
= —<¢ln sina—/ In sin x dx.
£

Ona: elnsine ~ sinelnsine — 0,

e—0 £—

d’ou, en passant a la la limite :
/2 T
K:—/ Insinxdx = —1 = =—1n2.
0 2

c)Etude de L :

On a, pour tout x €]0; 7| :
2 X X
x sinx Sy 2 SO8 2 X

1 —cosx

X X
2sin’Z tan —
2 2

. . X .
Comme K existe, par le changement de variable t = > il en

résulte que L existe et que :

T xsinx T x
L:/ 7dx:/ - dx
o 1 — cosx 0 tanz

/2 2t
=/ ——2dt =4K =27In2.
0

tant

d) Etude de M :

Partant de K, par le changement de variable # = tanx :

X /‘ e , / + Arctanu  du
= x = S —— .
o tanx 0 u 1 4+ u?

Ceci montre que 1’intégrale proposée M existe et que :

. /*“’ ArCtanxdx:K:Ean
x(1 + x2) 2

L’ application x —> e *Q(x) estde classe C' surR et,
pour tout x de R :

d
—(e™oW) =eF(— —e P (x).

o 0(x) + 0'(x)) =

Il existe donc C € R tel que :

VxeR, e*0kx) = —[' e 'P(r)dt+C.
0

Comme ¢t —> e 'P(t) est continue sur [0; +oo[ et que
1

e 'P(t) = (t2> I’application ¢ —> e ' P(f) estin-

tégrable sur [O ; +00[. On déduit, en faisant tendre x vers +o00

+00
dans le résultat précédent : C = / e ' P(r)dr.
0

+00
Ainsi: VxeR, Q)= e"/ e "P(t) dt.

Comme : VxeR, Px)=0

il est alors clair que : VxeR, Q&) =0



1) Existence :

Soitn € N*.

xn—l

—> ———— est continue sur
(1 < x)n+l

e L’application f, :x

[1; +oof,etf, =0

xnfl

1
fn(x) ~ = F

x—>4o00 x+1

*On a: . D’apres 1’exemple de

Riemann en +o00 (2 > 1) et le théoreme d’équivalence pour
des fonctions 2> 0, f, est intégrable sur [1 ; +o0l.

xnfl

m dx existe.
x)n

+o00
On conclut que I'intégrale 7, = /

1
2) Calcul :

* /" méthode :

Essayons d’obtenir une relation de récurrence, a 1’aide d’une
intégration par parties.

> 2.Soit X € [1; +o0].

On a, par intégration par parties pour des applications de

Soitn € N* tel que n >

classe C!:
X
1 1
= xn—lM * _ /X(n — 1)x"*2M dx
—n 1 1 —n

_x +n—1/ 2
T A+ Xy a2 T a ), Ao

On obtient, en faisant X —> 400 :

1 n—1
In = 71}171 s
n2"
1
ouencore: nl, = o +m—1)I,,.

En notant J,, = nl, pour toutn € N*, on a donc :

1
>2, J,= o+ il o
d’ou, en réitérant :
J, = ! a4 ! 4.4 ! +J
"= on T onl 22 L.

e ) 117 1
Et: lef —  _dx=| — =_.
! 1+ x)? 1+x |, 2

1 1
Onconclut: VneN* [,= —(1 - —).
n 2n

Par le changement de variable ¢ = x + 1, puis développement
du bindme de Newton, en amenant des intégrales de fonctions
intégrables par I’exemple de Riemann en +00, on a :

+00 xn—l
Uy = —d
[ (1 +x)n+l %

+00 t—1 n—1
- f =g
) tn+l

* 2¢ méthode :

k=0
= kli(n —k)!'\ 2

Pour évaluer Min (x , il nous faut comparer

1 1
VA

1 1
X, E, 2 pour x fixé dans [0; +oo[ et ¢ variant ensuite dans
10; +ool.

1 1
Soit x €]0; +oo[. Notons g, : # —> Min (x, —, —).

NS
Vi €l0; +oof, g:(r) =go(t) =0,
donc g, estintégrable sur ]JO; +oo[, et f(x) = 0.

*Six =0, alors :

1
X si t < —
X ﬁ
eSi0<x < 1,alors: g, (t) = " "
— si — <t
12 Jx

L’application g, est donc continue sur [0; +o0l, et, d’apres
I’exemple de Riemann en +00 (2 > 1), g, estintégrable sur
[1; 400, puis sur [0; +o0[. On a :
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si

() = B

8 (1) Wi =
1
2

*Sil < x,alors :

si t>1.

Comme dans le cas précédent, g, estintégrable sur [0 ; +oo[.
Ona:

)= xdr + —dr + — dr
f 0 L Vi 1

1 : 1 +00
=x— +2vily +| -
X 2 t

1

On conclut :

2/x  si x <1
Vx €[0;+o0[, f(x)= 1

3—— siox>1

X
y
3
y =f(x)
2
11
0 1 5

Une étude immédiate de f (études en O et en 1) montre que f
est de classe C° sur [0; +o00[ et de classe C' sur ]0; +oo.

1) Si f estintégrable sur [0; 4-o0[, alors, comme :
g(x) = f(x)]sinx| < f(x)
h(x) = f(x)|cosx| < f(x),

d’apres le théoréeme de majoration pour des fonctions 2> 0, g
et h sont intégrables sur [0 ; 4-o0l.

Vx €[0; +ool,

2) Supposons g intégrable sur [0 ; +-00[.

Comme :
Vx €[0;4oof, 0< f(x)sin’x <

par théoréme de majoration pour des fonctions >

< f)]sinx] = g(x),
0, I’appli-
cation s : x —> f(x)sin?x est intégrable sur [0; +oo[.

D’autre part, puisque f est décroissante :

Vx € [m/2; 400, 0< f(x)cos’x = f(x)sin (x — E)

2
<f<x—g>sin2<x—g>:s<x_g>.

Comme s estintégrable sur [0 ; +o0[, par changement de va-
riable affine, x —— s(x — g) estintégrable sur [7/2 ; +00[,

puis, par théoreme de majoratlon pour des fonctions 2> 0, I’ap-

plication ¢ : x —> f(x) cos >x estintégrable sur [7/2; 4+o00[,
donc sur [0; +o0f.

Puisque s et ¢ sont intégrables sur [0; +oo[, par addition,
on déduit que f I’est aussi.

Ceci montre que, si g est intégrable sur |[0; +ool, alors f I’est
aussi.

3) Par la méme méthode qu’en 2), on montre que, si & est in-
tégrable sur [0; +ool, alors f 1’est aussi.

On conclut que les intégrabilités de f, g,k sont deux a deux équi-
valentes.

’ 1 /.
Ona: |ffI<5(f+ ™.
Puisque f? et f’> sont intégrables sur [0 ; 4+o0o[, par opéra-
1
tions, — ( f Y f ’2) I’est aussi, puis, par théoréme de majora-

tion pour des fonctions > 0, |ff’| D’est aussi, et donc ff’

I’est aussi.

Mais, pour tout X € [0; 400 :

/ff—f]

1 2
E(f X) —

(fZ(X) 30)).

+o00

2 /
Po) = | s

On a donc :
et il en résulte que f?(X) admet une limite finie en +00,
notée L.

SiL # 0,alors f2 n’est pas intégrable sur [0 ; +00[, contra-
diction.

Onadonc: L =0.
On déduit : f2(X) x_+> 0 et on conclut :

f(x) — 0.

xX—>+00



a) Puisque f est décroissante et intégrable sur ]0; 1],
ona:

Vn>2,Vke{l,....n—1},

o)< fas

n n

d’ou, par sommation et relation de Chasles :

et

1 1
Comme — —— 0, 1 — — —> 1,etque f estintégrable
n  noo n

sur 0 ; 1], on déduit, par theoreme d’encadrement :

1 n—1 1
Sl —
Ly 0
1 .
Enfin, comme — f(1) —— 0 on peut remplacer I’indice su-
n noo
périeur, n — 1 par n, et conclure :
1

—Zf( >—> 7.

b) Notons, pour tout n € N* :

n

Si=) ———
"= (k+n) kK +2n)

Considérons 1’application

f]O,l]—)R, xl—)m.

Il est clair que f est continue par morceaux (car continue),
fx ) ~ W

I’exemple de Riemann en O (1/2 < 1) et le théoreme d’équi-

décroissante, > 0. On a : donc, d’apres

valence pour des fonctions 2> 0, f est intégrable sur ]0; 1].

1
On peut donc appliquera) a f: S, ——> I

noo

~‘(_z
notée [

Il reste a calculer /. Par le changement de variable

1 1 dr
,x=—-—1,dx=—:

t =
x+1 t =

1
1
=] ———————dx
/0 (x + Dv/x(x +2)

1 dr
=/ L WTF =i V2

=v3-V2

On conclut :

my %
noo 4= (k + n)/k(k + 2n)

1) Existence :

Soitx €] — 00; 0[.

.. x —t .
L’ application f, : ¢t +—> . - est continue sur [0; 400,
et —
et f, =0
t2(x —1) 3
Ona: tfx(t) — ~ e’ — 0,
—el t—+4o00 t—>+00

2 fi(0) < 1,

donc, pour 7 assez grand :

puis: 0 < fi(1) <

D’apres I’exemple de Riemann en 400 (2 > 1) etle théoreme
de majoration pour des fonctions 2> 0, f, est intégrable sur
[0 4-o0l.

Ceci montre que, pour tout x € | — oo ; O[, I'intégrale propo-

+00
., x—t
sée I(x) = -

0 e) _el‘

2) Limite :

Soitx €] — 00 0[.

dr existe.

On a, par le changement de variable u =t — x :

+oo —t
i) =/ AENLEPH
0

et —ef

+o00 +o0
—u B u
= / X x+u du=e x/ u du.
_, Ef=@ _, et —1

Comme x < 0,ona[—x;4+oo[C ]0; +oo[, donc :

+00 u +00 u +0o0
/ - du}/ 714:/ ue " du
., er—1 G x

= [(~u = De ™)™ = (—=x + De*.

d’ou :

I1(x) Ze " ((—x+1De*) =

400 X —1
On conclut :
0 ex — et

—x+1 — +o0.

xX—>—00

dt — +oo.

X—>—00

a) Soit x €10; +oof.
Soit X € [x; +o00[. On a, par intégration par parties pour des
fonctions de classe C' :
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e e X 1 X 2 g
= o5 — 3| med
X

2

.. 1 2 .
Les applications t — e™" et t — 2 e’ sont continues

1
sur [x;+oo[ et négligeables devant ¢+—— — lorsque
t
t — 400, donc ces deux applications sont intégrables sur
[x; +o0[, d’ou, en faisant X —> +00 :

+00 = +00
2 € 1 1
/ e dr = ——/ —edr.
. 2x 2 ), 2

+00 1 2 1 +o00o 2
On a 0 </ —23_[ dr < —2/ e_’ dt
X t x X
et — — 0,
_x2 X—>+00
+o00 1 2 +o0 2
donc : / —ze” d= o / e dr).
¥ i x—> 400 x
+o0o 2 e—xz
On conclut : e " dr ~ .
P x—>+00 2x

b

2 1

b) Notons, pour toutn € N* : [, = / e " dr et u,=1I".
a

On a, par le changement de variable u = \/n 1 :

1 b
I, = — / e " du
\/r_l a/n

1 </+oo e d f+oo 2 d )
= — (& u — € uj.
\/ﬁ ayn by/n

D’apres a) :

+00 5 e—a’n +00 ) e—bzn
e " du ~ et e du ~ ——.
/aﬁ noo 2a./n /; i noo 2b./n
e—bzn e—azn
- —of ——),
2b/n 2a./n
—(1271

(&)
I= 5 (14 o(1)).

Comme O <a < b,ona:

d’ou :
On déduit :

_1oo e o
Inu, = - Inl, = n( a’n —In(2an) + In(1 +0(1)))

In(2 1
S —F = n(2an) +0<—> — =GP
n n

1

h n
2 2
et on conclut : (/ e dt) — s e,
a

noo

Soit x €]0; 1] fixé.

On a, par le changement de variable u = ¢ + x :

1 t x+1 u—x x+1 u
/ ° dt:/ € du:e”/ € du
0o X+t Y u x u
_ Al et — 1 Bl 1
=e ‘( du + —du
. u . u

x+1 et — 1
= e’x/ du +e*(In(x + 1) — Inx).
X u

u

L’application f : u — est continue sur [0; 2],
> 0,et f(u) —>0 1, donc f estintégrable sur ]JO; 2].

On a donc :

x+1 x+1 X
/ £ di = / £ di — / £y dr
x 0 0

1
_>/ fde=1.
x—>0 0

1 1
/ C _ar
0o X +t
=e¢ (I +o(1)) +e *(In(x +1) — Inx)

= (14+oM)(I 4+ o) + (1 = x +o(x))( —Inx + o(1))

=—Inx+1+o0(1).

1)Casx > 1

sin x

1
= — etque x —> —
X

e X«

Puisque : Vx € [1; +o0[,

. s .. sin x .
est intégrable sur [1; oo, I'application x — —— estin-
X

~T sinx
tégrable sur [1; +ool, et par conséquent, / — dx est
1 X
absolument convergente, donc convergente.

COoS x

De méme, x+— est intégrable sur [1; +oo[, et

~+® cosx
[ - dx est absolument convergente.
1 X

2)Cas0 < x <1

* On obtient, par une intégration par parties, pour tout X de
[1; ool :

X o3 X
sin x cos X COS X
f dx = — +cosl—a/ — dx
1 1

X« X« xn,+l

COS X L
Commea+ 1 > 1,d’apres /), x —> o estintégrable sur
X

[1; +o0[, d’ou :



X sinx 2 cosx
—— dx —— cosl —« ; dx
s X = ; yot

~T% sinx
Ceci montre que / —— dx est convergente, et que :
i X

+00 o3 +00
sin x CoS X
/ — dx:cosl—a/ dx
1 1

X x(¥+1

R ~H% cos x
De méme, — dx est convergente.
1 X

* Remarquons : Vx € [1; +oo[, [sinx| > sin’x, d’ol :

sin®x 1

sin x
xﬂ/,

cos 2x

Vx € [1; +ool, = e o

D’apres I’étude précédente (et I’ utilisation du changement de

. e . —+® cos2x
variable défini par y = 2x), ye dx converge.
1 X
> . .. 1
D’autre part, comme « < 1, la fonction positive x +—— P
X
n’est pas intégrable sur [1; +o0[.
i X |'sinx
Il en résulte : dx —— + o0, et donc
1 e X—+oc0
sinx | L
X —> ——— n’est pas intégrable sur [1; 4+-o0[.
X
De méme, x —> n’est pas intégrable sur [1; +o0[.
3)Casx < 0
On a, pour tout n de N* :
2n7T+%T7T sinx 2nﬂ'+% 1 T
= dx > —dx = ——,
wm+ X7 wm+ T 2 23/2
20+ ginx
donc : —— dx — 0.
i+ xe noo
) ~H0 ginx . sin x
Il en résulte que —— dx diverge, etdonc x —
1 e e
, . R ~1T® cosx
n’est pas intégrable sur [1; +o00[. De méme, - dx
1 X

. COS X .
diverge et x ——> n’est pas intégrable sur [1; +o0[.

«) Soientx e R—7Z,n € N.Ona:

n 2i(nt1 i(n4+1)x (@ ii+Dx _ o —i(nt1)x
ezikx _ e in+Dx _ _ el x(e n+1)x e i )
= T = NP
=0 e 1X l el\’(elx e lX)
_ ainy 2i sin (n + 1)x _ i sin (n + 1)x
2i sin x sin x

d’ou, en prenant la partie réelle :

sin(n + 1)x _ sin(2n + 1)x +sinx
sin x B 2 sin x

)

n
E cos 2kx = cosnx
k=0

et donc :

1 Z 1 Z
-+ Zcoska =——+4 Zcoska =
2 k=1 2 k=0

sin(2n + 1)x
sin x

sin(2n + 1)x
2sinx

0) Soitn € N. L’application x —> est conti-
nue sur ]O; g] et admet une limite finie (qui est 2n + 1)

en 0", donc est intégrable sur ]0; g] .

On a, d’apres a) :

s
2 sin(2 1
/ sin( 1'1—1— )x d =/
0 sin x 0
iy

n 7
=f+22/ cos 2kx dx
k=170

s
2

<1 +2 Zcos 2kx> dx

k=1
2

s
T " [sin2kx]2 =«
2 + = |: 2k ]0 2

b) 1l s’agit d’un cas particulier du lemme de Riemann-Lebesgue.

Une intégration par parties fournit, pour tout n de N* :
b
/ p(x) sinnx dx
a

cosnx b b cos nx
=[-e0 ZZ] + [ ¢ dx.
a a n

n
D’une part :
cosnx b
[— p(x) ]
n
|cos nb| |cos nal 2||o]|
< )| + lp(a)l Y <=

n n

D’autre part :

9 COS nx
f @' (x) dX‘
; x

b b
, |cos nx| 1 ,
</ ) dx<;/ ()] dx.

n

b
1l en résulte : / p(x)sinnx dx —— 0.

c) ) *» D’apres les théorémes généraux, f est de classe C'

sur]O; g]

sinx — x X
—— & o= —>O:f(0),
xsinx x—0t 6 (ot
donc f est continue en 0.
, x2cos x — sin’x
fi) = TN MY
x2sin“x

2 4
2 X 2 2 X 4
_X (I—E+O(X)>_(X —?4'0()()) _l

: .
x2sin’x x—0F 6
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donc, d’apres le théoreme limite de la dérivée, f est de

1 . &
classe C' sur [O, 2].
pf)Ona: VneN, Vxe]O;g:I,

sin(2n + 1)x sin(2n + 1)x

= f(x) sin2n + 1)x + -
sin x
sin(2n + 1)x
sin x
sin(2n + 1)x
X

. T
Comme f est continue sur [O; 5] etque x —>

est intégrable sur ] 0; g] ,ilenrésulte que x —
est intégrable sur ]O; g] et que :
Vn e N,
/% sin(2n + 1)x
——— dx
0 X

@ 7 sin(2n + 1)x
= / f(x) sin2n 4+ 1)x dx —|—/ ———— dx.
0 0 sin x
En utilisant a) ) et b), on déduit :

/% sin(2n + 1)x s
dx
0

X noo 2 ’
d) On a, pour tout n de N, a I’aide du changement de variable

défini par x = _t :
2n+1

@+0F giny T sin@2n + Dx
— du = —— dx.
0 u 0 X

—+00 g
y . sinu
Comme |’intégrale impropre / ——du converge
—0 u

(cf. exercice 3.44) et en utilisant ¢) 3), on conclut :

I 4
sSin x ™
T dx = -,
0 X 2

, 1 — cosx
a) ) Etude de / - dx :
0 X
1) Existence :
, .. 1 — cosx .
e L’application f :x +— ———— est continue sur
X

10; +oo[, et f = 0.

1
*Ona: f(x) —>0 X donc f est intégrable sur ]0; 1] (faux
probleme).

2
*Ona: Vuxe[l;+ool, [f(O)| < .
x

D’apres I’exemple de Riemann en 00 (2 > 1) etle théoreme
de majoration pour des fonctions 2> 0, f est intégrable sur
[1; +ool.

Puisque f estintégrable sur ]0; 1] et sur [1; oo, f estin-
tégrable sur O ; +o0[.

. Ve ) T 1 — cosx
Ceci montre que I’intégrale proposée =
0 X
existe.
2) Calcul :

On a, pour tout (¢,X) €]0; ~+o0[? tel que e < X, par intégra-

tion par parties pour des applications de classe C' :

X 1
/ (I — cosx)— dx
. 5

1\1¥ Z 1
= [(1 — cosx)( — —>:| —/ sinx(— —) dx
x)]. i X

l—cosX 11— cose X sinx
= + +/ dx.

X € X
Ona:
1— cosX 2
ol——| <= — 0,
X X X—+o0
1— cosX
donc —— — 0.
X X—+o0
1 —
O
£ e—0 2 £—0

Il s’ensuit, en faisante —> 0 et X —> +00 :

+00 1— SRCC
/ (;osxdx:/ sin x dr — Z.
0 X 0 X 2
, +oo /giny 2
() Etude de f ( ) dx :
0 X

- . X
On a, en utilisant le changement de variable ¢ = > :

. X
#9 {| — Eoms +oo 2 sin >
/0 2 dxz/o 2 dx

%0 25in 2t 0 gin?t
= —2 2d[ = 2 d[
0 4¢ 0 t

; e ) +° /ginx )’
Ceci montre que 1’intégrale proposée dx
0 X

existe (ce que 1’on pouvait aussi montrer comme en <) ) et que :

400 . 2 +00

s 1—
/ sin x dr :/ cos x dr — :
0 X 0 xz 2

b) Soit A € R.

. o T §int
a) Si\ > 0, apartir de & dt, on a, par le changement
0

t
d iable x = —:
e variable x \

/‘“’c sintdtz/‘*"o sin)\x/\dx=/+°° sin Ax o
0 t 0 )\X 0 X

Le cas A < 0, se ramene au cas A > 0 par imparité.

Le cas A = 0 est d’étude immédiate.



sin \x

+00
On conclut : VA € R, / dx = g sgn (x),
0

X

ou sgn est la fonction signe, définie par :

-1 si A<O0
sgn(M) =43 0 si A=0
1 si A>0.

t
B) Si A > 0, on a, par le changement de variable x = X :

T 1 — cost T 1 — cos A
/‘ cos dtzf cos x)\dx
0 i 0 Ax2

1 [T 1— A
=_/ cos xdx,
0

A x2
+ool_ )\
donc:/ ﬂdx:)ﬁ.
0 2

xZ
Le cas A < 0 se ramene au cas A > 0 par parité.
Le cas A = 0 est d’étude immédiate.
T 1 — cos A\x T
On conclut : V) € R, / — dxr = El)\"
0 X

c) Les intégrales proposées existent, par exemple par des rai-
sonnements analogues aux précédents.

Soit (a,b) € R?.

) 0 sinax sin bx
———dx
0 X

_/'+°° cos(a—b)x—cos(a+b)xdx
- 0 2X2
1 [T /1 - b
=_/ ( cos (a + )xdx
2 0 Xz
1— cos(a—b)x
_ = )d.x
1 T = b
=_(/ cos (a + )xdx
2 0 xz
T ] — cos(a — b)x
_/O - dx)
1 /7 s s
=5<§|a+b|—§|a—b|> = S (la+bl—a = bl).
B) /*m 1 — cosax cos bx
——————dx
0 x?
_/*wZ—(cos(a—f—b)x—i—cos(a—b)x)d
A 2x2 *
1/ (*®1— b
=_(/ cos (a + )xdx
2 0 P
T 1 — cos (a — b)x
Y g BT TR
0 X

1/ s us
= 5(Fla+b1+3la—bl) = Z(a+bl+la—b).

d) 1) Existence :

e L'application f : x —> est continue sur R sauf

x(m—x)
en(Oeten 7.
o Etude en 0 :
1 1
Ona: f(x)= -2* =

X mT—X x—0 7'('7
donc f est prolongeable par continuité en 0.
o Etude enr :
sin (mr — x) 1 1
Ona: fx)=—— — —,
T—X Xx—>7TT

donc f est prolongeable par continuité en 7.

1
En posant f(0) = f(m) = —, f est donc continue sur R.

T
o Etude en £00 :
1 1
lf @)l =

B ~ 5
|x(m — x)| x—+00 x2

sin x
Ona:

x(m—x)
D’apres I’exemple de Riemann en =00 (2 > 1), le théoréeme
d’équivalence et le théoréme de majoration pour des fonctions
positives, f estintégrable sur | — co; —1] etsur [4; 4-o0[, donc
sur | —oo; 0] et sur [0; +oof.

Puisque f est intégrable sur | — oo ; 0] et sur [0; +o0[, f est
intégrable sur R.
T sinx

On conclut que I’intégrale I = / dx existe.

oo X(T—X)

2) Calcul :

On a, par une décomposition en éléments simples immédiate :

T sinx | 1 1
I=/ 4dx=—[ sinx| — + dx.
oo X(T—X) T J X m—Xx

On sait (cf. aussi 1’exercice 3.44) que I’intégrale impropre

+° ginx
J = dx converge.

00 X

Par différence, comme [ et J convergent, I’intégrale impropre
sin x

+00
K=/
o T—X

D’apres I’exercice 3.45 et par parité : J = 7.

dx converge, etona:

1
I =—-(J+K).
T

Par le changement de variable t = m — x :

T sinx % Sint
K = dx = —dt=J.
o T—X I

2
I =—7m=2.
T

On obtient :

1) Existence :
Soit x € R.

1" cas : x >0 :
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, L. In(x + £%) .
e L’application g, :7+— W est continue sur

[0; +o0l.
*Ona:

X

2n+In (145
e+ e n( +12) 2in
SO Te T 1+

t—>+00 t2 ?

2Int
donc: *?g.(t) ~ =— — 0.
gX( )t*>+oo [1/2 t—> 400

On a donc, pour ¢ assez grand : 0 < 13%g. (1) < 1,
. 1
dou: 0< g, (1) < e

D’apres I’exemple de Riemann en +00 (3/2 > 1) et les théo-
réemes de majoration et d’équivalence pour des fonctions > 0,
g, est intégrable sur [0 ; +o00[.

2¢casx =0 :

In(7?)

1 £2

* Comme dans le premier cas, gy estintégrable sur [1; +oo[.

* Lapplication g : t ——

est continue sur |0 ; +o00[.

*Ona: go) ~021n t. D’apres le cours, 1 —> —Int est
11—

intégrable sur ]0; 1], donc, par théoréeme d’équivalence pour
des fonctions 2> 0, —go ’est aussi, puis go 1’est aussi.
Ainsi, go estintégrable sur ]0; 1] et sur |1 ; +o00[, donc sur
10; 4-o0l.

Fcas:x <0:

In(x + %)
1+ 2
[0; /—x [, donc f(x) n’existe pas.
On conclut que f(x) existe si et seulement si x = 0.

L’application g, : ¢ +— n’est pas définie sur

On suppose dorénavant x > 0.
2) Calcul :

Nous allons essayer d’utiliser le théoreme de dérivation sous
le signe intégrale.

Considérons 1’ application
In(x + £%)

F :[0;400[x]0; +oo[— R, (x,t) —> s

«) Expression de f'(x) pour x €]0; +oo[
e Pour toutx € [0; 4+o00[, F(x,-) estintégrable sur ]0; +ool,
d’apres /).

F 1
P A+

sur [0; +00[x]0; 400[, est continue par rapport a x et conti-
nue par morceaux (car continue) par rapport a z.

Soit a €]0; +00[.On a:
Y (x,1) € [a; 400[x]0; +o0l,
_ 1 < 1
(x+12)(A+1?) a(l +12)
———

notée 1, ()

existe

BF( 9
(.
0x

et ¢, est continue par morceaux (car continue), 2> 0, intégrable

sur [0 ; +oo[ car ’I/Ja(l‘)t ~+ prot
—> 400

oF
Ainsi, — vérifie HDL sur |0 ; +00[x]0; +o00].
5
D’apres le théoreme de dérivation sous le signe intégrale, f est

de classe C' sur ]0; +oof et :

1

+oc0
Vx €]0; +ool, f()c)=f0 md’-

0B) Continuité de f sur [0 ; +00[

e F est continue par rapport a x et continue par morceaux (car
continue) par rapport a 7.

e Soith € [0; +00[.Ona:

lIn(x + 23]

Y (x,t) € [0;b]x]0; +o0[, |F(x,t)| = D

_ Max ([In(t?)|, [In(b + 1%)])

< = t t
- 180(0)] + 18 (0]

notée o, (1)

et ¢, estcontinue par morceaux (car continue), > 0. D’apres

1), go et g, sont intégrables sur ]0; +oo[, donc ¢, 1’est aussi.
Ainsi, F vérifie HDL sur [0 ; +00[%x]0; +0o0].

D’apres le théoréme de continuité sous le signe intégrale,
f est continue sur [0 ; +o00[.

En particulier, f est continue en 0.
v) Calcul de f'(x) pour x €]0; 4o00[

On a, par une décomposition en éléments simples, six # 1 :

f/(x)
_ /4-00 df
TS GH+HA+1?)
1 vED 1 1
1—xJ x+12 1412

1 1 t +oo
= ——Arctan — — Arctan?

1-x[Vx Vx 0
_ 1 1 m 7r>
_m(ﬁi_i
N e A
S 2Jx 1—x 0 2/x(14Jx)

Comme les applications f’ et x sont

T
—_—

2J/x(1 4 /x)
continues sur |0 ; +o00[ et coincident sur ]0; +oo[—{1}, elles
coincident sur ]0 ; +oof, d’ou :

Vx €]0; +oof, f'(x)= 2«/_96(177:-«/5)



6) Calcul de f (x)

Par le changement de variable u = \/x, ona:

1
/¢m+¢@x /Qa+m /
=2In(1+u) + Cte = 2In (1 +ﬁ)+Cte.
Il existe donc C € R tel que :
Vx €]0; +oof, f(x)=m(In(l ++/x) +C).

Puisque f et le second membre ci-dessus sont continus en 0,
I’égalité est aussi vraie pour x = 0, d’ol :

Vx € [0;4ool, f(x)=n(In(1+x)+C).

0
En particulier, C = &, et:
T
1
ro= [T, o [ T2 (L L)
= = _—— u
o 1+2 =1 +°°l+iz “
u

_ +oo ln(MZ) _
——A o =10,
d’ou: f(0)=0.

Vx e[0; 400, f(x)=mln{ + /X).

On conclut :

a) Soit x €10; +o0f.

=i}

.. € .
Lapplication g :¢+— e est continue sur [x ; +oo[, et
g =0.
On a: t’g(t) =te”’ —> 0, donc, pour ¢ assez grand :
t—>+00

?g(t) < 1,dou: 0< g(r) < —

D’apres I’exemple de Riemann en 400 (2 > 1) et le théoreme
de majoration pour des fonctions > 0, g est intégrable sur
[x ; +oo[.

Ceci montre que, pour tout x €]0; +oo[, 1’intégrale
+00 ot

fx) = / e dr existe.
X

b)1)Ona:

Ie—t +t>o‘3
Vx €]0; 4o0], f(x):/ Tdt+/ Tdt.
X 1

—t
Puisque I’application ¢ —— e est continue sur ]0; 4-o0f,

d’apres le cours sur les primitives, f est de classe C' sur
10 ; +o00[, donc a fortiori f est continue sur ]0 ; 4+o00[.

2) On a, pour tout x € [1; 4o0[ :

+00 ot +00
gf(x):/ sz</ e dt

= [_eft];roo =¥

=@ 5

et x — e " est intégrable sur ]0; +oo[, donc, par théoréeme
de majoration pour des fonctions > 0, f est intégrable sur
10; 4-o0l.

3) D’apres le théoreme de Fubini, on a alors, pour tout
x €]0; +o0 :

+00 +00 +00 ot
/ ﬂmw=f (/ —4Qm
0 0 x t
“+00 t —t +o0 —1
:/ (/dx)e—dt:/ t S dr
0 0 t 0 t
+00
= / e'dt =[—e']f* =
0

Soit a €]0; oo fixé.
Notons F : R x [0; +oo[—> C, (x,t) —> e —a’gixt_

e Pour tout x € R, F(x,-) est intégrable sur [0; +ool, car :

|fPF(x,t)| = t%e -’ 0,

t—>—+00

o —ar? Lixt

s (x,f) —> ire e existe sur R x [0; +o0[, est

ax
continue par rapport a x, continue par morceaux (car continue)

par rapport a ¢ et vérifie HD sur R x [0; +o0o[ car, en

notant ¢ : [0 ; +00[—> R, ¢ est continue, > 0, intégrable sur
t—> te=ar’

[0; +o0[, et :

V(x,) € R x [0; 400, ’%(w) < (F)Y@).

+00
D’apres le théoreme de dérivation sous le signe / , Iap-
0

plication f : R — C définie par :
+00 5 .
Vx €R, f(x)= / e e dt,
0
est de classe C! sur R et :
+o00 2
Vx e R, f'(x) =f ire”“" e dt.
0

Une intégration par parties donne, pour tout 7" de [0 ; +o0f :

T
-, —at® i
/ ire™ " e™ dr
0
T T
—at? ixt] / 1 —at
€ (< + — € 1xe
0 0 2a

. i
- 2a
i

d’ou, en faisant tendre 7 vers 00 : f'(x) = % i fx).
a a

Considérons 1’équation différentielle linéaire :

ixt dt,

i
E 2= —
(E) +2ay 2a’

d’inconnue y : R — C.
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L’équation sans second membre associée :
, X
(Bo) Y +-—y=0
2a

2
. L _x
admet pour solution générale x —— A e 4, A € C.

D’apres la méthode de variation de la constante, on cherche
une solution y de (E) sous la forme :

X — y(x) = A(x) 67%.

Cette application y est solution de (E) si et seulement si :

-
)\(x)_z—e4a,
a

Vx € R,
d’ou la solution générale de (E) :
i x2 * l‘2 xz
yixH— yx) = — efﬁ/ edadr + e 4, XeC.
2a 0

Comme

1 +00
/ e dy = VT
0

+00
A= £(0) = —e? gy = .
£0) /O e dx N

u :_xﬁ Va
on conclut : V(a,x) €]0; +00[ xR,
+oo 3 2 X 2 2
/ C_azzemdt = L e 4a / e‘t*_adl‘ + ﬁ e da.
0 2a 0 2/a

En prenant la partie réelle et la partie imaginaire, on obtient,
pour tout (a,x) de ]0; +00o[ xR :

+00 2
e “cosxtdt =——e 4 et
/0 2J/a

+o0o —a12 i l ,ﬁ X ﬁ
e “sinxtdt = — e 4 edadr.
0 2a 0

1) Existence :
Soient x €]0; +o0[, z € C tel que Ré (z) < 0.
e Lapplication f : t —— t*~1e est continue sur ]0; +o0l.
o Etude en 0 :

Ona: |f@t)]=r"1eR@ ~ =1

t—0

donc, d’apres I’exemple de Riemannen O (x — 1 > —1)etle
théoreme d’équivalence pour des fonctions > 0, fest intégrable
sur [0; 1].

o Etude en 400 :

Ona: [f(1) ="k — o,

t—> 400
donc f estintégrable sur [1; +oof.

On déduit que f estintégrable sur ]O; +o00[, et on conclut que
I’intégrale proposée existe.

2) Calcul :
Fixons x € ]0; +o0[ et notons u = —Ré (z) > 0.

En notant v = Im (z) € R, on a donc :

+00 +oo .
/ tx—lezt dr = / [x—le—utel vt dr.
0 0

F :Rx]0; +oo[—> C, (U,t) — tX*le*uteivt.

Notons

e Pour tout v € R, F(v,-) est intégrable sur ]0; +ool,
d’apres /).

s () — e el

3 existe sur Rx]0; +o0o[, est
v

continue par rapport a v, continue par morceaux (car continue)
par rapport a t.
X ,—ut

oF
*Ona: VY (v,t) € Rx]0; 4o0[, ‘B—(U,t) =@
v

et 1 —> t*e " estindépendant de v, continue par morceaux
(car continue), > 0, intégrable sur ]0; 400

. OF
Ainsi, — vérifie HD.
av
D’apres le théoreme de dérivation sous le signe intégrale,
+00
I’application g : v —> / t*le el dr estde classe C!
0

sur R et, pour toutv € R :
+o0o ) +00 _
gw) = / e e dr =i / re el dr.
0 0

Nous allons montrer que g satisfait une EDL1, en utilisant
une intégration par parties.

On a, par intégration par parties, pour tout (¢,7) € R tel que
0<e<T:

/ txefutelvt dt — / txe(fuﬁ»l )t dt
€ €

(—u+iv)t T T (—u+iv)t

€ €

=t ———— — xt"ﬁl ——dr
—u—+1v |, c —u—+1v
(—u+tiv)e

L X

T
e - txfle(fu#»iv)t dr.
u-—1v Je

En faisant e —> 0 et T —> +00, on déduit :

- e(*ll+i )T
= " — &
—u +1v

—u+iv

+00 . ix
g =i f o lem el dr = ——g(v).
0 u—1v

u—iv

Pour résoudre cette EDL1 sans second membre, on calcule une
primitive :

v
=1 Arctan — — %ln(u2 +?) + Cte.
u



Et:

+o0 +00 x—1
d
(= [era o [(2) e
0 S =ut Jy u u

1 [f*e° 1
= —/ sle™ds = —T'(x).
MX

e 0
On obtient :
Voix
O e
0o U—1Ww
I'(x)

: voox 2 2
= —exp | —ixArctan — + —In(u” + v°)
u* u 2

'x) _. ) 2
— (X )e—lerctan 2 (u2 + UZ)% )
u

En notant Arg (z) = Arctan 2 €] —m/2;7/2[, on conclut :
u

+00
/ et dt =
0

1 a) Soite €]0; +o0].

F(x) efixArg () |Z|X .
M.\'

Soit X € [0; +oof tel que e < X.

On a, par linéarité de I’intégration, par des changements de va-
riable, et par la relation de Chasles :

/ J‘(aX) f(bX) / flax) f(bX)

aX bX
_ (MW fo
ag u
b " bX
fen) d f Q) d
aX u
. v . R C))
Puisque I’intégrale impropre —— dx converge,ona :
1 X
bX bX bX
f(u)d f(X)d f(x)dx
ax U 1 X 1 X
+oo +o0 r
s f f(u)du—/ )
X—+o00 J u 1 u
—+00 _ b
Il en résulte que l’intégrale / de
e X

converge et que :

+00 _ b b t
f(ax) ﬂx)dx:/ f(ef)d
5 X 9 t
b) Pour obtenir la limite de cette derniere intégrale lorsque

e —> 0, nous allons utiliser le théoreme de continuité sous le
signe intégrale.

Notons  F : [0; 1] x [a;b] — R, (£,1) —> f(ft).

e F est continue par rapport a €, continue par morceaux (car
continue) par rapport a z.

*Ona:
1 [0;b]
V(e,) €051 x [a;b], [F(et)| = ‘@ < w
a
T WA
et I’application constante ————— est intégrable sur le seg-
a

ment [a ; b].
Ainsi, F vérifie HD.
D’apres le théoréme de continuité sous le signe intégrale, 1’ap-

f()

plication € — ~———t estcontinue sur [0; 1].

a

En particulier :

f”f(&‘t)d
.t

. gy T flax) —
Il en résulte que I’intégrale
—0 X

T flax) —
X

e—0

= f(0)In b
a
f@x) 4

J (bx)

b
converge et que : dx = f(0)In—.
a

0
1I. a)l) Puisque f : x —> cosx estcontinue sur [0; +oof et
—+00
que I'intégrale /
1

d’apres I. b), pour tout (a,b) € (R )2, I’intégrale

fﬁﬂo cosax — cos bx

—0 X

COS x

dx converge (cf. exercice 3.44),

dx converge et :

/*"C cosax — cosbx
0

b
dx = f(0)In= = In—.
a a

—+00 g—ax _ e—bx
2) De méme, I’intégrale / dx converge et :
—0 X
+00 o—ax —bx
e =¢ b
———dx =In—.
0 X a

3)Puisque f : x —— 1 — thx estcontinue sur [0 ; 4-o0[ et que
e . —t© ] —thx
I’intégrale impropre
1 X
impropre proposée converge et :

dx converge, I'intégrale

dx

/*oo thax — thbx
0 X

+o00 _ _ _
:/ (1 —thbx) — (1 thax)dx: lng
0 X

2
.. u .
4) L’application f : x —> i (Arctan x)? est continue sur

[0; +o0] et, pour tout x € ]0; +oo] :
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fx) = <f — Arctanx) (g + Arctanx)

1
= (Arctan —) (z + Arctanx) ~ E,
X 2 x—>+00 X
2

— 400 Tr_ (Arctan x)?
donc / I S— converge.
1 X

D’apres I b), pour tout (a,b) € (R )2, I’intégrale impropre pro-
posée converge et :

/+°° (Arctan (ax))2 -
0

(Arctan (bx )) : dx
X

+00 2
= / l ((W— — (Arctan ax)2>
0 X 4

2
— (ﬂ— — (Arctan bx)2>) dx
4
o f(bx)

— flax) a 7 a
= O =g

b) On a, pour tout x € R et tout? €]0; +o0] :

sh xt et _ =Xt e—(lfx)t _ e*(l+x)t
—t — e—f =
t 2t 2t
Il s’agitdoncde a) 2), en prenanta = 1 —xetb =1 4 x, ol

(a,b) € (R )? car x €] — 1; 1[. 11 en résulte que I’intégrale
proposée converge et que :

T sh (xt 1 1
/ Sh¥1) v gr = Lip 14X
0

R

c¢) Par le changement de variable ¢ = e™*, dans le résultat de
a)2),ona:

b ~+o00 e—ax Zb dr
In— = dx —
a 0 1 —Int t

1 ga=1 _ =1
= —— a.
0 Int

Il en résulte que I’intégrale proposée converge et que :

I va__ b b 1
/ X X ax S .
o Inx a+1

= —In

d) Soit (a,b) €10 ; +o0[>.
1l—e ™ 1 — efbx

X

L’ application g : x ——> est continue sur

10; +o0[, g = 0, g(x)—>ab g(x) e —. donc g est

intégrable sur ]0 ; +oo[, I'intégrale proposée existe.

On a, pour tout (¢, X) € R? tel que 0 < £ < X, par intégration
par parties :

X N W 1
/ 1—e 1 —e X)—zdx
. X
] X
- [(1 - eiaX)(l - eibX)( - _>]
X/ e

X
1
+/ ((l e 9 beb* —_ (a+b) e*(aer)x)_ dx.
€ X

X—> 400

. _ —aX\(1 _ —bX _l
Ona: (1—e“)(1—e )( X)

et

(I—e )1 - e’bs)( - l)
E

1
~ asbs( - —) = —abe — 0.
e—0 £ e—0

Enfin, comme plus haut, la fonction
1

x> (ae™™ +be™™ — (a+b)e @)=

X

est intégrable sur ]0 ; +o00[.

On déduit, en faisante —> 0 et X —> 400 :

+00
0

+o0
= / (ae"“‘—kbe’h"—
0

+oo L —ax —(a+b)x
€ — €
=a — dx
0 X

+00 o —bx _ o —(atb)x
+b —dx
0 X

+b a—+b
n

1
e ™)1 —e )= dx
X

1
(a L b)e *(a+b)x)_ dx
X

=(a+b)In(a+b)—alna —blnb.

T,
t
D’abord, pour tout x € [0; 1[, / _
0o +/1—xcos?t
existe comme intégrale d’une application continue sur un seg-
ment.

a) On a, par le changement de variable ¥ = tant :

1—|—u2

+00
fx) = /
V 1—|—u2

du

+00
/(; T+ JT+u2—x

Notons, pour tout x € [0; 1] :



du *On a, pourtoutx € [0; 1] :

1
g(x):/o V1 4+ ul1 —x + u?

! 1 1

0<h(x)—g)= | (1- d

h(x)Z/ldiu. SUSGE /0( \/1+u2>x/l—x—|—u2 .
0 1 —x+u?

2

1 1
Ona: f(x) > g(x) > —h(x) :f C d
V2 o ittt )Tzt

et:

1 1 du 1 2 eE TR

h(x) = / </ i du = wii_2

Vi—=xJo 1 L\ Shit2e™ 7|4, ¢

+
<v1—x)

Comme g(x) ~ +o00,ilen résulte :
x—> 1=

1
1
= [Argsh L] = Argsh —— — +o0.

«/]—X 0 \/l_x x—1-

On conclut, par minoration : f(x) —> 4o00.
x—1-

8 ~ he).

b)* On a, pour tout x € [0; 1[ : Ainsi :
0< s -gw=[ du i
x)—gx) = - _ B
h 1 AT+ ulV1—x +u? f(x)x_>17 g(x)x_”ih(x) —Argshm
<-/-+oo du |: 1i|+oo )
X — = - — = 1. 1 1 1 o
1 u? u |y — ln( + 1+ ) — + +/ X
. V1—x I —x JI —x
Comme f(x) —> +00, il en résulte :
x—>1-
1 1
f(x)x:rg(x). =In(1++2—x)— E1n(1 —x) Y Nl—_iln(l —x).
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Seéries

Bl Plan M Theémes abordés dans les exervcices

Les méthodes a retenir 114 * Détermination de la nature d’une série a termes > 0
Enoncés des exercices 117 e Détermination de la nature d’une série a termes réels de signes quelconques ou
complexes

Du mal a démarrer? 125 ) ) _ )
. * Nature d’une suite par intervention d’une série
Corrigés 129 , .
e Calcul de la somme d’une série convergente

+  Etude d’un produit infini

* Etude d’intégrabilité d’une fonction, quand celle-ci peut se ramener a une
étude de convergence pour une série

* Recherche d’un équivalent ou d’un développement asymptotique, pour une
somme partielle de série divergente, pour un reste de série convergente

* Recherche d’un équivalent ou d’un développement asymptotique, pour le
terme général d’une suite définie par une relation de récurrence

Points essentiels du cours
pour la résolution des exercices

e Définition, propriétés générales, propriétés relatives aux opérations et a
I’ordre, pour la convergence et la divergence des séries

e Le lien suite/série
* Le lemme fondamental pour les séries a termes > 0

* Pour les séries a termes > 0, ’exemple de Riemann, le théoréme de majora-
tion, de minoration, le théoreme d’équivalence, la regle nu, par sa méthode,
la regle de d’ Alembert

e La comparaison somme/intégrale, ou série/intégrale
e La définition de I’absolue convergence et son lien avec la convergence

e Le théoréme spécial a certaines séries alternées (TSCSA)

e La constante d’Euler (2 la limite extérieure du programme) :
n
1
Z— =Inn+~y+ o(l)
k noo
k=1
* La formule de Stirling : n! ~ (z)n 27n

noo \e
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Chapitre 4 - Séries

114

= | es méthodes a retenir

Pour étudier la nature
d’une série Z u,
n>0
a termes dans R,
sur un exemple

Pour déduire la convergence d’une
série E u,, a termes réels > 0
n

a partir de la convergence d’une
série Z Vu, a termes réels > 0
n

Essayer de :
°® majorer u, par le terme général d’une série convergente, lorsqu’on
conjecture que la série de terme général u,, converge

w=> Exercices 4.1 a), ¢), 4.2 a), 4.10, 4.16
° minorer u, par le terme général d’une série divergente, lorsqu’on
conjecture que la série de terme général u, diverge
W= Exercices 4.1 b), 4.2 b), 4.10
° trouver un équivalent simple de u,, puis appliquer le théoreme
d’équivalence
== Exercices 4.1 d), h), i), 4.11, 4.30, 4.31 D), 4.45 d)
Pour obtenir un équivalent simple de u,,, il pourra étre nécessaire d’ef-
fectuer, de facon intermédiaire, des développements asymptotiques
W= Exercices 4.9 a), d), e), f), j), 4.13
° appliquer la regle n“u,, lorsque u#, n’admet apparemment pas
d’équivalent simple
W= Exercices 4.2 ¢),d), 4.9 b), c)
* mélanger I’utilisation d’équivalents et de majorants (ou d’équiva-
lents et de minorants)
== Exercices 4.1 ¢), f)
* appliquer la regle de d’Alembert, lorsque 1’écriture de u,, fait inter-
venir des factorielles ou des exponentielles

= Exercices 4.1 g), 4.9 ¢), k), 4.27

° utiliser une comparaison série/intégrale

== Exercices 4.2 ¢), f).

Dans un cadre théorique, essayer de :
° comparer, par inégalité, par équivalence, u, a v,

== Exercices 4.3, 4.4, 4.14, 4.36
° sinon, comparer, par inégalité, les sommes partielles de la série
u,, aux sommes partielles de la série Z Uns

== Exercice 4.15.
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Pour étudier la nature d’une série
Zu,,, a termes > 0,

n=>0

dans un cadre théorique

Pour montrer
qu’une série Z u,
diverge n

Pour étudier la nature
d’une suite (a,),

Pour étudier la nature
d’une série Z u,
n>0
a termes de signes quelconques
ou complexes,
sur un exemple

Pour étudier une série

dont le terme général u,,

a une expression différente

selon la parité de n, ou

selon une périodicité plus générale

Les méthodes a retenir

Essayer d’appliquer le lemme fondamental, ou sa contraposée

== Exercices 4.21, 4.49.

En plus des méthodes déja évoquées plus haut, essayer de :
° montrer que la suite (u,), ne converge pas vers 0, c’est-a-dire que la

série E u, diverge grossierement

n

== Exercice 4.18

° montrer qu’un paquet de termes ne tend pas vers 0

== Exercice 4.52.

On peut, surtout si a, apparait comme une sommation, étudier la na-

ture de la série Xj(awr | — ay,), puis appliquer le lien suite/série

" == Exercices 4.6, 4.25, 4.27.

Essayer de :

® yoir si la série E u,, est absolument convergente

n>0 == Exercices 4.5 a), 4.18

* appliquer le TSCSA, si u,, contient (—1)" en facteur et si I’autre fac-
teur ne contient pas de (—1)" dans son écriture

== Exercices 4.5 b), 4.17,4.31 b), 4.45 ¢)

e utiliser un développement asymptotique, en particulier si u,, contient

(—1)" en facteur et si I’autre facteur contient encore (—1)" dans son
écriture

== Exercices 4.5 ¢), d), 4.28, 4.37.

Essayer d’étudier les sommes partielles S5,, S>,.+1, d’indice pair,
ps» O2p+
d’indice impair

== Exercices 4.22, 4.38, 4.42.

2p
Attention : la somme partielle S,, = Z uy, est une sommation se ter-
k=0
minant par un terme d’indice pair (le terme u,,), mais cette somma-
tion fait intervenir tous les termes, d’indices pairs ou impairs, situés
avant up,.
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Chapitre 4 - Séries

Pour étudier I’intégrabilité d’une

application f : [0; +oo[—> R, telle

que f(x) présente une oscillation
lorsque x — 400

n
1
Pour évaluer H, = Z = n € N*
k=1

Pour évaluer n! ou In (n!)

Pour étudier finement la série
. . (=D"
harmonique alternée E 9
n
n>1
ou des séries s’y ramenant

Pour montrer la convergence
et calculer la somme
d’une série Z u,

n>0

Essayer, en plus des méthodes vues dans le chapitre 3, de relier la

(n+1)m
question a la convergence d’une série du genre E / fisif

n>0 Y nm

s’annule en chaque n7, par exemple

== Exercice 4.43.

Se rappeler, suivant le contexte :
* H, ~ Inn, obtenu par comparaison série/intégrale

noo
= Exercice 4.31 a)

°*H,=Inn+~y+ ngo(l), ou ~ est la constante d’Euler, obtenu par

étude de la suite de terme général H, — Inn et intervention du lien
suite/série

= Exercice 4.50.

Essayer d’utiliser :

* la formule de Stirling : n! ~ <E) N 2mn,
noo \e
* le développement asymptotique obtenu en passant au logarithme :

1 1
In(n!) =nlnn —n+ =Inn+ =InQ2n) + o (1).
2 2 noo

== Exercices 4.12, 4.24

En particulier : In (n!) ~ nlnn, ce que I’on peut montrer plus sim-
noo

plement par comparaison somme/intégrale

= Exercice 4.41.

1 1
Essayer d’exploiter : — = / " dx
n 0
== Exercices 4.37, 4.44, 4.51.

Essayer de :
° montrer d’abord la convergence par des arguments qualitatifs (utili-

sation de majoration, équivalent, régle nu,,... , en travaillant éven-
n

tuellement sur |u,|), puis calculer les sommes partielles Z uy, etenfin
k=0
chercher la limite de celles-ci lorsque 1’entier n tend vers I’infini

== Exercices 4.7, 4.19, 4.20, 4.33, 4.46, 4.47

* ou bien former directement les sommes partielles et déterminer leur
limite
== Exercices 4.29, 4.32, 4.34.
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Enoncés des exercices

Pour calculer les sommes partielles, il faudra souvent amener un téles-

copage, et, a cet effet :

® siu, est une fraction rationnelle en #, utiliser une décomposition en
éléments simples

® si u, estune fonction Arctan, sin, cos, tan,. .. essayer de mettre u,
par exemple sous la forme a,,; — a,, ol a, est assez simple et res-
semble un peu a u,,, en utilisant des formules de trigonométrie.

D’autre part, on connait directement certaines sommes de séries, par

exemple, celle de I’exponentielle

== Exercice 4.8.

Pour obtenir Essayer de faire intervenir :

des comparaisons (0, O, ~) ° une comparaison série/intégrale
sur des sommes partielles
de séries divergentes

ou sur des restes

de séries convergentes

== Exercices 4.23, 4.26

° un télescopage.

=m=e noncés des exercices

pr— Exemples de détermination de la nature d’une série numérique
Déterminer la nature de la série de terme général u,, dans les exemples suivants :
| sinn| 11\ n’>+2n+3
b - -1 -+ - d)ln ——
%) n? ) " <) 2+n )nn2+2n+2
sin iR 2" + )¢ —n*
e)1—cos (22 paw —1 9= p D = b e R
n n! n®
— 1») Exemples de séries de Bertrand

Déterminer la nature de la série de terme général u,, dans les exemples suivants :

) 1 b) Inn ) Inn ) 1 ) 1 P 1

a) —— R C) —— e .
n?lnn n n? J/nlnn nlnn n(Inn)?
— 557 Convergence d’une série par encadrement du terme général

Soient E Uy,, E v, deux séries réelles convergentes et E w, une série réelle telle que :
n=0 n=0 n=0

VneN, u, <w, < v, Montrer que la série E w, converge.
n=0

-— m Natures de séries déduites d’autres séries

Soit a, une série a termes dans R* , convergente. Déterminer la nature des séries de termes
+
n=0
L, a, cha, — 1 )
généraux : u, = R v, = ——, w, = a,.
1+a, a,
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Chapitre 4 « Séries

— Exemples de détermination de la nature d’une série alternée
Déterminer la nature de la série de terme général u,, dans les exemples suivants :
—1)" —1)" 1" —1)"
a()n, b)(), c(),d)().
n+n+1 Jn n+ (=" S+ (=1
- Nature d’une suite par étude d’une série

- 1
Soit a €] — 1; 4o0[ fixé. On note, pour tout n € N* : u,, = ( ) — Inn.
—~ a+k

Montrer que la suite (u,),cn+ converge.

[r— 77/ | Exemple de calcul de la somme d’une série convergente, utilisation d’une décomposition
en éléments simples

= 22n% +n —3)
Existence et calcul de U, ol u, = .
Z nn+1Dm+2)@n+3)

n=1

p— m Exemple de calcul de la somme d’une série convergente, utilisation de la série de 1’expo-
nentielle
nd+6n>—5n-2

On note, pour toutn € N : u, = ‘
n!

a) Montrer que la série Z u, converge.

n=0
b) Montrer que B = (1, X, XX -1, XX—-1DH(X - 2)) est une base de R;[X] et décompo-
ser linéairement P = X? 4+ 6X% — 5X — 2 sur B.

+00 =
¢) En déduire Z u,. On rappelle que : Z — =
“— n!

n=0

—— m Exemples de détermination de la nature d’une série numérique

Déterminer la nature de la série de terme général u,, dans les exemples suivants :

I A
a) (n sin —) ,aeR, b)e ™7 NeR, c) —/ e* Inx dx
n I

n+2

1 1 1 "
d)sin~ +atan— + b~ (@b) e R of1+%) - 2 e aeR,
n n n—1 n n—+1
AVRi+n+3+avni+n+1+bvn+n+2, (a,b) e R
(n!)¢ /‘“ x" . 2V 4 gn )
, a€eR h ———dx,aeR,, i)—, (a,b) e R
g) n" ) o 3/—1+x2 + )3*/’7+b" ( ) ( +)
N In n)"
Va2 + Y2, @b.e) e ®), o n,) :
— m Exemples de détermination de la nature d’une série
Déterminer la nature des séries de termes généraux :
1 1
u,,:/ tan (x") dx, vy =/ tan (x") dx .
0 0
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4.11

4.12

4.13

4.14

4.15

4.16

4.17

Enoncés des exercices

Exemples de détermination de natures de séries

Déterminer la nature des séries de termes généraux :

1Y 1Y
n= - k‘, e e——— k‘.
“= G "=l X

k=0 k=0

Nature d’une série faisant intervenir des factorielles, utilisation de la formule de Stirling

. L. L. n! \*
Déterminer la nature de la série de terme général u,, = <ﬂ) .
n)!

Recherche de parameétres pour la convergence d’une série

Déterminer les polynomes P € R[X] tels que la série de terme général

u, = (n* + 30>V — (P(n))l/z, est convergente.

Exemple de détermination de la nature d’une série définie a partir d’une autre série

Soit (#,), une suite réelle. On suppose que les séries Z u, et Z uﬁ convergent.
n n
a) Montrer que, a partir d’un certain rang, u, # —1.
Uy
14 u,

b) Etablir que la série Z converge.

Nature d’une série déduite d’une autre série

Soit E u, une série a termes dans R, convergente.
n=1

L A/ Un
Montrer que la série E ~— converge.
n
n=1

Nature d’une série faisant intervenir une suite récurrente

On considere la suite réelle (u,),> définie par u; > O et :
Uy
Vn2>1, u,y = In <1+—>.
n

Déterminer, pour o € R fixé, la nature de la série E uff
n=1

Exemple de détermination de la nature d’une série alternée, avec parametre

n(l

Déterminer, pour (a,b) € R? fixé, la nature de la série de terme général u, = (—1)" W
n

Exemples de détermination de natures de séries a termes complexes
Déterminer la nature des séries de termes généraux :

(Q+3Dn+2—i)" - Q4+3n+2-i\"
"T\@+4dn+3+i/) "T\G@+20n+3+i/
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120

4.21

Existence et calcul de la somme d’une série convergente
+00 1
Existence et calcul de Z U, ou:u, =

— nn+ 24+ n+2)/n

Exemple de calcul de la somme d’une série convergente

f 2
Existence et calcul de In (l — 7)
n=2 n(n + 1)

Calcul de la somme d’une série convergente déduite d’une autre série

Soit (u,),>1 une suite a termes dans R, .

Un

T A u) - (+uy)

On note, pour toutn > 1 : v,

n
1
a) Montrer : Vn>1, E n=1-— .
) =1 () (0 +up)

b) En déduire la nature de la série Z U,.

n=1

Calcul de la somme d’une série convergente déduite de la série harmonique

On note, pour tout n € N* :
1 .
— si n#0][3]
n

— st n=0 [3].

Montrer que la série E u, converge et calculer sa somme.
n=1

Exemple de détermination d’un équivalent de la somme d’une série convergente a para-
metre

+00
1 In x
Montrer : _  ~ —
; n(n+x) x—+o0 x

Recherche d’un équivalent d’une expression faisant intervenir un reste de série conver-
gente

+00 m
Trouver un équivalent simple de u,, = <Z B) , lorsque I’entier n tend vers I’infini.
k=n """

Etude d’une série construite a partir d’une suite

|

Soit (@, )en une suite dans R . On considere la suite réelle (u,,),en définie par uo € ]0 ;

T
[,et:

™
a) Montrer que la suite (u,),en converge et que, en notant £ = limu,,ona: € € ]O; §i|
noo

VneN, u,.; = Arctan (a, + tanu,).
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4.28

Enoncés des exercices

™

b) Montrer que la série Z a, converge si et seulement si : £ # 7

neN

Exemple de recherche d’un équivalent simple d’une somme double

1
On note, pour toutn € N —{0,1} : S, = Z B—

1<p<q<n VP4

1
a) Montrer : VneN-{0,1}, S, = E(Aﬁ — B,

"1
h é An = —, B, =
ou on a note I; ﬁ Z

1
=1 P

b) En déduire un équivalent simple de S, lorsque I’entier n tend vers I’infini.
Utilisation d’une série pour étudier une suite

Soit (A\,)nen une suite a termes dans R?, telle que Ay ——> + 00, et (i) ,en la suite réelle défi-
n oo

Uy + )\nunJrl

nie par (uo,u;) € R*et: Vn € N, u,n = =

Démontrer que la suite (u,,),en converge.

Etude d’une série dont le terme général fait intervenir une fonction

Soit f : [—1; 1] —> C de classe C>. On note, pour tout n € N* :

=)o) e

Montrer que la série E u,, converge.
neN*

Convergence et somme d’une série définie a partir d’une suite récurrente du type
Upy1 =f(u,)

Soit (u,),en la suite réelle définie par ug =S5et: Vn e N, u,, = ui — Su, + 8.

a) Montrer que (u,),en €st croissante et que u, —> + 00.
noo

(_l)n B (—1)" B (_1)n+1

b) Montrer : VneNlN, = .

) u, —3 Uy — 2 Uy —2
I o (=D"

c) Déterminer la nature et la somme de la série Z .
= Un — 3

Exemple de nature d’une série, le terme général étant défini par récurrence

On considere la suite réelle (u,),cy définie par up € R et :

VneN, n+2)2u =0+ Du, +n.

Quelle est, pour a € R fixé, 1a nature de la série Z uy ?
n
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— Etude de séries définies 2 partir de suites récurrentes

On considere la suite réelle (u,,),>; définie paru; = 1 et:

/ 1
Vn =1, Upt1 = uﬁ"‘_
n

a) Déterminer la limite de u, et un équivalent simple de u, lorsque I’entier n tend vers I’infini.

. . 1 -1)"
b) Déterminer la nature des séries de termes généraux — et D .
Up Up

— 7592 Convergence et somme d’une série définie a partir d’une suite récurrente du type
Up i1 :f (un)

On considere la suite réelle (u,),cy définie par uy € ]1; +oo[ et :

VneN, un+1=uﬁ—un+1.

+00
1
a) Montrer : u, ——> 4+ 00. b) Existence et calcul de Z —.
noo n—o Uy
— 1294 Exemple de calcul de la somme d’une série convergente, utilisation d’une décomposition
en éléments simples
+00
3n—-2
Existence et calcul de _
; n3 +3n%+2n
— Exemple de calcul de la somme d’une série convergente faisant intervenir la suite de

Fibonacci

On considere la suite de Fibonacci (¢, ),>0 définie par ¢, =0, ¢, =1 et:
Yne N! ¢n+2 = ¢n+l + (an .

a) Montrer : Vn € N, ¢>n+1 Gpbpin = (=D
D" ¢pp1 by

b) En déduire : Vn € N*, = .
¢n¢n+l ¢n ¢n+l

. - (="
c¢) Existence et calcul de Z .
n=1 ¢n ¢n+l
e Exemples de détermination de la nature d’une série numérique

Déterminer la nature de la série de terme général u, dans les exemples suivants :

- . 1 X"
a) tan<5(7+4\/§) > b)./o mdx )Z(k+n)2

[— “1%17)| Nature d’une série déduite de deux autres séries

N

Soient (a,b) € (R )2 E Uy, Zv,, deux séries a termes dans RY, convergentes.
n>0 n=0

u2v?

n-n

Quelle est la nature de la série de terme général w, = — 3
au; + bv}
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4.39

4.41

Enoncés des exercices

Exemple de détermination de la nature d’une série dont le terme général fait intervenir
les sommes partielles d’une série

n _1 k
Déterminer la nature de la série de terme général u, = In <exp ( Z E( +)1 ) - 1).
k=0

Exemple de détermination de la nature d’une série dont le terme général u, est donné
selon la parité de n

Déterminer la nature de la série de terme général :

1 . . .
sin—  si nestimpair, n > 1
n
u, = | - .
—sh — si nestpair, n > 2.
n

Etude des séries convergentes dont le terme général décroit

Soit (u,),>1 une suite a termes dans R* , décroissante, telle que la série E u, converge.

n=l1
a) Montrer : nu,, — 0.
n oo
JE P <z 2 Up
b) En déduire la nature des séries de termes généraux : v, = nu,,, w, = T
— nu,

Etude de la nature d’une série par comparaison

a) Soit (#,),en+ Une suite a termes dans R* , telle qu’il existe a € ]1; +oo[ tel que :

a
u n
Ve N*, n+1 g ( ) )

Un

Montrer que la série E u, converge.
n=1

1-3..-Qn—1 1
2.4--2n)  2n+1

b) Application : déterminer la nature de la série de terme général u,, =

Exemple de recherche d’une limite de suite a I’aide d’une série

+o00 1 ﬁ
Trouver lr}orgl ( kZ; F) .
Utilisation de groupements de termes pour étudier la nature d’une série

( 1) n(n+l)

— 2

Déterminer, pour « € R fixé, la nature de la série de terme général u, = ————.
n

Etude d’intégrabilité se ramenant a la nature d’une série

Est-ce que I’application f : x —> (1 + x*sin?x)73 est intégrable sur [0; +oo[ ?

Exemple de recherche d’un équivalent du reste d’une série alternée convergente
+00 k
P . (-1
Trouver un équivalent simple de R, = Z
k=n+1

lorsque I’entier n tend vers 1’infini.
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s Nature de séries définies a partir d’une suite
On considere la suite réelle (u,),>o définie parug = 0et:Vn e N, u,y1 = /n +u,.

a) Montrer : u, ——> —+ o0.
noo

b) Etablir que (u,),>0 est croissante a partir d’un certain rang.

c¢) Trouver un équivalent simple de u, lorsque I’entier n tend vers I’infini.

1
d) Quelle est la nature, pour « € ]0; 4+o0[ fixé, de la série de terme général — ?

n

1)y
e)} Quelle est la nature, pour 3 € ]0; +o0o[ fixé, de la série de terme général ( ﬁ) ?
Un
sl “J“11}| Convergence et somme d’une série, intervention de la formule de Stirling
+o00 1 1
Existence et calcul de Zun, ouu, =nln (1 + 7> — (1 — —)
—~ n 2n
— /Iy Calcul de la somme d’une série convergente, utilisation d’une décomposition en

éléments simples

) +o00 R 1
Existence et calcul de Z Uy, OU Uy = —————.
‘= n(2n+1)
e “7 5 Nature de la série des inverses des nombres premiers

1
On note p, le n-eme nombre premier (p; = 2). Montrer que la série Z — diverge.

n>=1 £n

i, u,
e —— — “ 208 Nature des séries Z Sa’ Z s
n n r

a) Soit Z u, une série divergente, a termes réels > 0. On note, pour toutn > 1: S, = Z Uy.
nzl k=1

Etudier, pour tout o € R, fixé, la nature de la série E .
(e}

nzl —n

b) Soit Z”" une série convergente, a termes réels > 0. On note, pour tout n > 1 :
n=1

+00
Ty = Z uy. Etudier, pour tout o € RY fixé, la nature de la série Z —:L

k=n n=zl n

s s s | Exemple d’étude de produit infini

" I 1
On note, pour tout n € N* : u, :1_[(1+ i + ﬁ)
k=1

Montrer qu’il existe C € R, tel que u, ~ Cn, et montrer : 1 < C < 3.
noo

On pourra utiliser la constante d’Euler v, définie par : Z i Inn+~vy+ o (1).
=1 noo
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Du mal a démarrer ?

—r—Tr—T— Z251 1 Etude de séries dont le terme général est défini 2 partir d’un reste de série convergente
a) Montrer que la série Zﬂ converge et que, pour tout n € N, son reste
n>1
R, = f ﬂvériﬁe:an(—l)”/l -
k=n+1 k o 1+x
b) Montrer que la série ZR,, converge et que, pour tout n € N, son reste p, vérifie:
n>0
(-l
Pn = (—1)"“/O &

¢) Quelles sont les natures des séries Z Pns Z(— 1)"p, ? En cas de convergence, quelle est la
n=0 n=0
somme ?

e —— —| Nature de la série Z @(Z)
n

n>1

p(n)

2

Soit ¢ : N* — N* injective. Montrer que la série Z
n=1

diverge.

e Du mal a‘a démarrer ?

m I s'agit de séries a termes réels > 0. Essayer d'appliquer : le théoreme de majoration ou le théoréme

. L de minoration, la régle n®u,, une comparaison série/intégrale.
Essayer d'appliquer (dans l'ordre) le théoreme de majoration ou B " s B

de minoration, le théoreme d'équivalence, la regle n“u,, la régle a), b) Majoration, minoration.

de d’Alembert, une comparaison série/intégrale. .
p 9 ), d) Regle n®u,,.

a) Majoration.
) Maj e), f) Comparaison série/intégrale.

b) Expression conjuguée, puis minoration. X - R
p Jug P Faire apparaitre des réels > 0 et utiliser le théoréme de

¢) Majoration. majoration pour des séries a termes > 0.
d) Equivalent. Il s'agit de séries a termes > 0. Remarquer d'abord :

a, —> 0. Utiliser ensuite une majoration ou un équivalent.
noo

Il sagit de séries alternées.

a) Convergence absolue.

e) Equivalent, puis majoration.
f) Equivalent, puis régle n%u,,.

g) Regle de d'Alembert.

: TSCSA.
h) Equivalent,si a # 0. b) TSCS

Il Sagit dexemples de séries de Bertrand ¢), d) Utiliser un développement asymptotique.

Utiliser le lien suite/série : la suite (u,),en+ converge si et

—— (a.p) € R*fixé. L

r; n®(ln n)P seulement si la série Z (up+1 — uy) converge.
neN*

Mais le résultat général sur les séries de Bertrand n’est pas au 1) Existence : Equivalent.

programme.
2) Calcul :Décomposition en éléments simples, puis télescopage.
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a) Equivalent et régle de d’Alembert.
b) - Degrés successifs.

* Faire apparaitre X(X — 1)(X — 2) dans P, puis faire apparaitre
XX —-1),...

¢) Décomposer en somme de séries convergentes.

Il s'agit de séries a termes réels > 0.

Essayer d'appliquer (dans I'ordre) le théoreme de majoration ou
de minoration, le théoreme d'équivalence, la regle n%u,, la regle
de d’Alembert, une comparaison série/intégrale.

Si le terme général u,, fait intervenir un ou des paramétres, on
pourra étre amené a former un développement asymptotique
de u,, qui permettra, selon les valeurs des parametres, d’obtenir
un équivalent de u,,, ou une estimation de u,,.

1

a) Effectuer un développement asymptotique de nsin —, puis
n

de u,.

b) Traiter d'abord les cas A < 0, 2 = 0.
Pour A > 0, utiliser la régle n%u,,.

¢) Majoration et regle n®u,,.

d), e), f), j) Former un développement asymptotique de u, a la
1

précision O (—2>
n

g), k) Régle de d’Alembert.

h) Séparer en cas selon la position de a par rapport a 1,a cause

de la présence de x" dans l'intégrale. Utiliser ensuite une majo-
ration ou une minoration.

i) Séparer en cas selon la position de a et b par rapport a 1, et uti-
liser des équivalents.

Il s'agit de séries a termes = 0.
Pour obtenir des inégalités sur u,, v,, utiliser un encadrement
de tan ¢, en montrant :
Vie[0;1], t <tanr < 2f.

n
Commencer par chercher un équivalent simple de Z k!.
k=0

n
Puisque k! croit tres vite, on peut conjecturer que Zk!, est

k=1
équivalent a n! lorsque I'entier n tend vers l'infini.

n
Utiliser la formule de Stirling : n! ~ <E> ~2mn pour
noo e

déduire un développement asymptotique de In u,, puis un
équivalent simple de u,, lorsque I'entier n tend vers l'infini.

* Montrer d'abord que, si la série Z”” converge, alors

n
nécessairement P est de degré 3 et de coefficient dominant
égal 1.

«Pour P = X3 + aX? + bX + ¢, (a,b,c) € R3, calculer un déve-

loppement asymptotique de u,,.

Un

b) Etudi
) U|er1+

— Uy.
Up

La présence de racines carrées dans une sommation (ou
dans une intégrale) fait penser a l'inégalité de Cauchy et
Schwarz. Appliquer celle-ci, dans RY usuel, pour N fixé, afin
d’obtenir une majoration des sommes partielles.

Obtenir une majoration convenable de u,,.
Traiter les cas immédiats a > b, a = b.
Pour a < b, montrer que le TSCSA s'applique.

» Majorer |u,| par le terme général d'une série géométrique
convergente.

+ Evaluer In|v, | et montrer que In|v,| ne tend pas vers 1 lorsque
I'entier n tend vers l'infini.

1) Existence : Equivalent.

2) Calcul : En utilisant une expression conjuguée, amener un
télescopage dans le calcul des sommes partielles.

1) Existence : Equivalent.

2) Calcul : Amener un télescopage dans le calcul des sommes
partielles.

a) Récurrence sur n, ou télescopage.

b) D'aprés a), la suite des sommes partielles de la série de terme
général v, est majorée (par 1).

3p
Calculer Z uy, puis déterminer sa limite lorsque l'entier p
n=1
tend vers l'infini, par exemple en utilisant le théoréme sur les

sommes de Riemann.
3p+1 3p+2

Relier avec Z u, et avec Z Uy.
n=1 n=1

Effectuer une comparaison série/intégrale, a l'aide, pour
x €]0; +o0o[ fixé, de I'application

1

iy R, ¢ _
[Litool=R, 1=

+00 1
-Montrerzg = &~ =,
k! noo n!
k=n

n
n
« En utilisant la formule de Stirling n! ~ <—) v/ 2mn, en dédui-
noo e

re un équivalent simple de u, lorsque I'entier n tend vers l'infini.
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a) Etudier, pour la suite (u,),en : existence, situation,
monotonie éventuelle, majoration/minoration.

b) Utiliser le lien suite/série.

a) Remarquer que p et g jouent des roles symétriques

1 1
dans ——, d'ou 25, = ——, puis rajouter et retran-
VPq K;gn VPq

cher les termes correspondant a p = q.

b) Par comparaison somme/intégrale, obtenir des équivalents
pour A, et pour B,,.

Utiliser le lien suite/série et la regle de d’Alembert.

Utiliser la formule de Taylor-Young pour obtenir un déve-
loppement asymptotique de u,, lorsque I'entier n tend vers I'in-
fini.

a) Montrer, par récurrence :Vn € N, u, > 5.

Ayant montré que (u,),eny est croissante, pour obtenir
u, ——> + 090, raisonner par l'absurde, en supposant
noo

u, —— L eR.
noo

¢) Faire apparaitre un télescopage dans le calcul des sommes
partielles de la série, en utilisant b).

Il sagit d'abord d’obtenir un équivalent simple de u,
lorsque I'entier n tend vers I'infini. A cet effet, obtenir des ren-
seignements de plus en plus précis sur u,, :

u, = O (n), puis (en réinjectant) u, = 0 (1),
noo noo
. . 1
puis u, — 0, puis u,, ~ —.
noo noo n

a) Exprimer uﬁ a l'aide de “ﬁqf puis sommer pour faire
apparaitre un télescopage.
n

1
Rappeler : H”:ZE ~ Inn.

=1 noo

Obtenir:u,, ~ +Inn.
noo

b) 1) La premiere série est a termes 2> 0 : utiliser un équivalent.
2) La deuxiéme série reléve du TSCSA.

a) Montrer que (u,),>0 est croissante et ne peut pas avoir
de limite finie.

b) Amener un télescopage dans le calcul des sommes partielles,
1

en calculant - .
Upt1 — 1 up — 1

1) Existence : Equivalent.

2) Calcul : Amener un télescopage dans le calcul des sommes
partielles, en utilisant une décomposition en éléments simples.

Du mal a démarrer ?

a) Récurrence sur n (d’autres méthodes sont possibles).

¢) Faire apparaitre un télescopage dans le calcul des sommes
partielles, en utilisant b).

a) Noter a, = (7 + 4+/3)" et considérer b, = (7 — 4+/3)".

Evaluer a, + b, en utilisant la formule du binéme de Newton, et

en déduire : u, = —tanb,,.
b) Il s'agit d'évaluer 1 +x +--- 4 x". Le remplacement par
1— xn+l
1 ne semble pas simplifier la question. Utiliser la com-
— X

paraison entre la moyenne arithmétique et la moyenne géomé-
trique, pour obtenir :

ntl
2

I+x+--+x">m+ Dx

¢) Ecrire u, sous une autre forme, avec changement d'indice,
pour faire apparaitre une somme de Riemann.

I s'agit de comparer w, avec une expression simple formée

. . . Uy + v
a partir de u,, et v,. Obtenir : w? < %
a
Expri f (_l)k‘l' ide d'intégral tilisant
xprimer a l'aide d'intégrales, en utilisant :
PIMEr £ e 2

1 /1 2
= t*dt.
k+1 0

En déduire :u, = 2a, + o(a?),

1 [)H»l
ou a, = (=" —dr.
%= E0 /0 1+1¢

Remarquer d'abord :u,, —— 0.
noo

Grouper les termes deux par deux.

+00
a) Ennotant R, = Z uy, et en utilisant la décroissance de
k=1
la suite (in)n>1, évaluer 2nuy, et 2n + Dugpyg.

b) Remarquer v, = (nuy,)u, et w, ~ uy,.
noo

a) Réitérer l'inégalité de I'énoncé et utiliser le théoréme de
majoration pour des séries a termes > 0.
Un+

1
—— et un
Un

b) Former un développement asymptotique de

a
développement asymptotique de (#) . Choisir convena-

blement a pour pouvoir appliquer le résultat de la question a).

+o0 1
Chercher un équivalent simple de R, = Z 7 lorsque
k=n "
I'entier n tend vers l'infini.

n
n
En utilisant la formule de Stirling n! ~ <7> V2mn, en
noo e

déduire un développement asymptotique de In u,, puis un
équivalent de u,,.
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Traiter d’abord le cas @ < 0, d’étude immédiate.

Pour o > 0, grouper les termes quatre par quatre, puisque la
n(n+1)
suite ((—1) 2 ) o est périodique de période 4.
>

(n+1)mw

En notant, pour tout n e N, u, = f f, montrer

nmw
d’abord que I'intégrabilité de fest équivalente a la convergence

de la série Z Up.
n=0
Evaluer u,, par changements de variables et inégalités.

Exprimer R, a l'aide d'une intégrale, en utilisant
1

—:/ *='ds, et en commencgant par travailler sur
0

p (71)/{

puis en faisant tendre p vers l'infini.
k=n+1

n

1
Pour déterminer un équivalent simple de / 1 dr, utiliser
0

+t
une intégration par parties.

b) Remarquer d'abord que (u,),>0 ne peut pas étre
décroissante. Sachant uy, 1 = u,, pour ng fixé, déduire que
(ttn)n>n, €st croissante.

¢) Considérer, pour toutn € N, P, = X2 — X — n et situer Unt1
par rapport aux deux zéros de P,.

En déduire : u,, = o(n), puis: u, = Jn.
d) Equivalent.

e) TSCSA.

1) Existence : Equivalent, par l'intermédiaire d'un développe-
ment limité.

2) Ecrire une somme partielle,amener un télescopage, et utiliser

n
n
la formule de Stirling : n! ~ (—) 2mn.
noo \ e

1) Existence : Equivalent.

2) Calcul : Utiliser une décomposition en éléments simples et la
constante d'Euler :

N
n=1

=InN+y+ o ().
Noo

S| =

1 1
Remarquer: — ~ In s
Pn 1

Pn

et étudier les sommes partielles de la série de terme général

ln;l, en développant i
= — —
Pn Pn
utilisant la décomposition de tout entier (= 2) en produit de
nombres premiers.

en série géométrique et en

a) Séparer en cas selon la position de « par rapport a 1.
o 2 u At
Sia = 1, supposer que la série Z S—" converge et déduire une
n n

contradiction, en utilisant

Sia €]0; 1[, utiliser une minoration et le résultat du cas précé-
dent.
. Up S 1
Sia €]1; +oo[, remarquer : S < — dx.
n S

x[l

n—1

1) Existence de C :

= 1 1 !
Noterv,,:];ln <1+E+k_2> etwn:];;
En utilisant des développements limités, montrer que la série

1 1 1
Z <ln(1 4F % 4 k_z) = E) converge.

k=1

2) Evaluation de C :

Utiliser 1+l+ : >1.|_1
iliser : -+ = -,
k' k27 k

1
t, kz22:1+-+—=><1+——.
et,pourk = +k+k2\ +k—1

1 1
a) Remplacer, dans R"'E par/ .
0

b) Se déduit de a).

n
¢) 1) Pour calculer Z Pk, raisonner comme en b).
k=0
2) Ne pas oublier que (—1)" p, est, en fait, de signe fixe.
, 0] o
Minorer convenablement Z e pour déduire que cette
k=n+1
somme ne tend pas vers 0 lorsque I'entier n tend vers l'infini.



= Corriges des exercices

i 1
| sinn| <

a)Ona: 0<

n? n?

D’apres I’exemple de Riemann (2 > 1) et le théoreme de ma-
joration pour des séries a termes 2> 0, on conclut que la série

E u, converge.

n

b) On a, en utilisant une expression conjuguée :

1 1 1
U, = —\/}’l—l=— > = °
90 Jitn—1" 2Jn " o}

D’apres I’exemple de Riemann (1/2 < 1) et le théoreme de mi-
noration pour des séries a termes > 0, on conclut que la série

Z u, diverge.

1 1\" 5\"
c)Ona,pourn>3:O<<—+—) g(—).
2 n 6

Pui 0 = 1, 1a séri : i q E = ' \%
1sque < I, laserie gecometrique converge.

Par théoreme de majoration pour des séries a termes 2> 0, on

conclut que la série E u, converge.

n

d)Ona:

n*>+2n+3 1
n——=In(l4+ ———
n2+2n+2 n2+2n+2
1 1
noo n2+2n 42 neo p?’
D’apres I’exemple de Riemann (2 > 1) et le théoreme d’équi-
valence pour des séries a termes 2> 0, on conclut que la série

E u, converge.
n

2

sinn
e) Comme ——> Oetque 1 — cosx ~ —,
n noo x—0 2
(sinn) 1<sinn>2
ona: 1 — cos ~ = .
n noo 2 n
sinn\* 1
n n

1
D’apres I’exemple de Riemann (2 > 1), la série Z =
n

converge. Par théoreme de majoration pour des séries a termes

q 2
. sinn L L.
> 0, la série E ( ) converge. Par théoreme d’équiva-
n
n

lence pour des séries a termes 2> 0, on conclut que la série E U,
n
converge.

f)Ona:

P ‘o Inn
Pour étudier la nature de la série E —, nous allons essayer
n
n
d’utiliser la regle n®u,,.
Inn Inn
PP == ——

n? n'2  noo

Ona:
par prépondérance classique.

. . Inn
D’ou, a partir d’un certain rang : n*? — < 1,
n

Inn 1

donc:0<?<n37.

. . 1
D’apres I’exemple de Riemann (3/2 > 1), la série E =
n
n
converge. Par théoreme de majoration pour des séries a termes
. Inn
> 0, la série E —- converge.
— n
On conclut, par théoreme d’équivalence pour des séries a
termes > 0, que la série E u, converge.
n

g)Ona:VneN, u,>0et:

2+l ! 2
n—|—1 noo

Unpt1 _

u, (n+ D! 2"

D’apres la régle de d’ Alembert, on conclut que la série Z Uy

converge.
h)Ona:

" — (n-l—l):—n“ :na‘b<<1+ 1) _ 1)
n n
=Gl
n n

. _pa b
eSia#0,alors: wu, ~ n‘’— =an* b1
noo n

Il en résulte, d’apres 1’exemple de Riemann et le théoreme

d’équivalence pour des séries a termes > 0, que la série E Uy

n
converge si et seulement si a —b —1 < —1, c’est-a-dire
a<b.

*Sia =0,alorsu, = 0 pour toutn € N*, donc la série E U,
n
converge.

Finalement, la série E u, converge si et seulement si :
n
a<boua=0.

Il s’agit de cas particuliers de la série de Bertrand

1
Z—, (o, 9) € R* fixé. Comme le résultat
n%(In n)?

n=2

129



130

1
——— converge<—>(a > lou(a=1letf>1
nZZ: no (ln n) el & ( (( ﬁ ))
est hors-programme, il nous faut ici étudier chaque cas pro-
posé.
1 1

~ ~ .
n’lnn ~ n?

a)On a,pourn 2> 3 :

D’apres I’exemple de Riemann (2 > 1) et le théoreme de ma-
1

n?lnn

joration pour des séries 2> 0, on conclut que la série E
n

converge.
In |

b)On a, pourn > 3 2l > >0
n n

D’apres I’exemple de Riemann et le théoréme de minoration

Inn
pour des séries a termes > 0, on conclut que la série E —
n
n

diverge.

3 :n3/zlnn _Inn

— 0,

c)Ona: n = —
n? n'/2 oo

Up
par prépondérance classique, d’ou, a partir d’un certain rang :

n3u, <1, etdonc: 0 < u, < TR

D’apres I’exemple de Riemann (3/2 > 1) et le théoréeme de ma-
joration pour des séries a termes > 0, on conclut que la série

Inn
E —— converge.
n2

n

! Vn

=n = —
Jnlnn  Inn ne

par prépondérance classique, d’ou, a partir d’un certain rang :

d)Ona: nu, + 00,
1

nu, > 1,etdonc: u, = — > 0.
n

D’apres I’exemple de Riemann et le théoréme de minoration

N

pour des séries a termes > 0, on conclut que la série

1
——di X
Xn:\/ﬁlnn iverge

e) Considérons 1’application

f:[2;+00[— R, x —> .
xInx

Tl est clair que f est continue, décroissante, > 0. D’apres le cours

sur la comparaison série/intégrale, la série E u, converge si
n

et seulement si 1’application f est intégrable sur [2 ; 4+-o00].
On a, pour tout X € [2; 400 :
X X 1
/ fx)dx = / dx
2 2 X Inx

In X
1
y=Inx Jn2 Y
In X __

=[lny],5 = Inln X — Inln2 — +o0.

—>+0

Ainsi, f n’est pas intégrable sur [2 ; +00[ et on conclut que la
1
série diverge.
' Xn: nlnn -

f) Considérons I’application

(2 R, _
g:[2;+oo[— x'—>x(lnx)2

Il est clair que g est continue, décroissante, 2> 0.
D’apres le cours sur la comparaison série/intégrale, la série

Z u, converge si et seulement si I’application g est intégrable
n

sur [2; +ool.
On a, pour tout X € [2; 400 :

X X 1 ]nXl
dx = —dx = —d
/2 #(x) /2 x(In x)? -V:““‘A:z et

X 1 1 1
= =———+ — ;
Ydmo2 InX In2 X—+ In2

Ainsi, g est intégrable sur [2 ; +00[, et on conclut que la série

1
Xn: W converge.

Ona:

Comme les séries de termes généraux u, et v, convergent, par
opération, la série de terme général v, — u,, converge, puis, par
théoreme de majoration pour des séries a termes > 0, la série
de terme général w, — u, converge.

V}’IEN, ngn—ungvn_uw

Enfin,comme: Vn e N, w, = (w, — u,) + u,

et que les séries de termes généraux w, — u, et u, convergent,
par addition, la série de terme général w, converge.

—_ an
- 1+a,

*Ona,pourtoutn : 0 < u, < ay.

Comme la série E a, converge, par théoréme de majoration

n

pour des séries a termes > 0, on conclut que la série E U,
n
converge.

* Puisque la série E a, converge,on a: a, —> 0, donc :

noo
n

cha, — 1 5% 1
Uy = 4 ~ 2 =_an>0-

a, noo  a, 2

Comme la série E a, converge, par théoreme d’équivalence

n

pour des séries a termes > 0, on conclut que la série E Uy
n

converge.

* Puisque la série E a, converge, on a : a, — 0,
noo
n

donc, a partir d’un certainrang : 0 < a, < 1, d’ou:

2
0w, =a, <a,.



Comme la série E a, converge, par théoréme de majoration

n

pour des séries a termes > 0, on conclut que la série E w,
n

converge.

n n 1
a)Ona:VneN, |u|=—— < — = —.
) Jn] w4+n+1 - nd  n?
D’apres I’exemple de Riemann (2 > 1) et le théoreme de ma-
joration pour des séries a termes 2> 0, la série Z |u, | converge.

n

Ainsi, la série E u, converge absolument, donc converge.
n

b) La série E u, est alternée, u, —— 0 etla suite (|u,|),>1
noo
n=1

est décroissante, donc, d’apres le TSCSA, la série Zu,,
n=1
converge.

c¢) Effectuons un développement asymptotique :

_ =y 204r0+en"‘

" n + (=1D)* n n
B o)~ o3)
n n n n
converge.

—1)
D’aprés le TSCSA, la série ) =D

n=l1

. : ) 1
Par théoréeme de comparaison, puisque la série E — converge
n
n

. 1
etesta termes > 0, la série E O (—2 converge absolument,
n
n

donc converge.

Par addition de deux séries convergentes, on conclut que la série

E u, converge.
n

d) Effectuons un développement asymptotique :
(=D D" (DY
T Ly ﬁio+«ﬁ>
_ =D (1 _en 0(1))
S Vn n
D" 1 1
_ 0 <_/)

D’apres le TSCSA, la série Z (

n

converge.

N/
—1)
n>1 \/ﬁ
1
La série Z — diverge.
n=l1

. . . 1
Par théoreme de comparaison, puisque la série E oY)
n>1

. 1
converge et est a termes > 0, la série E 0] <3—/2> est abso-
n
n

lument convergente, donc convergente.
Par addition d’une série divergente et de deux séries conver-

gentes, on conclut que la série E u, diverge.

n

Nous allons utiliser le lien suite/série.

Ona,pourn > 1 :

Upp1 — U =

of2)

. . 1
D’apres I’exemple de Riemann (2 > 1), la série Z =
n
n
converge. Par théoreme de comparaison, il en résulte que la série

1
E 0 (—2> converge absolument, donc converge.
n
n

Ceci montre que la série E (Up+1 — uy,) converge.
n

D’apres le lien suite/série, on conclut que la suite (u,),en+
converge.

1) Existence :
Ona:

22n%* +n —3) 4n* 4 >0
nn+ D +2)(n+3) oo n* ’

U, =

5 =
n2

D’apres I’exemple de Riemann (2 > 1) et le théoréme d’équi-
valence pour des séries a termes > 0, on conclut que la série

+00
E u, converge, donc S = E u, existe.
n

n=1
2) Calcul :
e Effectuons une décomposition en éléments simples.
1l existe (a,b,c,d) € R* tel que :

_ 2(2X2 + X —3)
XX+ DX +2)(X+3)
a b @ d

“xtxritx2tx+3

Par multiplication par X, puis remplacement de X par O,

—6
on obtient : a = o =—1.

Par multiplication par X + 1, puis remplacement de X par —1,

—4
on obtient : b = = = 2.
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Par multiplication par X + 2, puis remplacement de X par —2,

6
on obtient : ¢ = 2 =3

Par multiplication par X + 3, puis remplacement de X par —3,

24
onobtient:d:—6:_4,
. 1 2 3 4
Onobtient: F = —— + + _ )
X X+4+1 X+2 X+3
* D’ou, pour tout N € N* (tel que N > 4), par télescopage :
N
Zull
n=1
N N N N
1 1 1
__;; 1 ;n—I—Z_ ;n—i-S
= = =a2 =43 ——14 -
n=1 Z n=2 7 n=3 n=4 0
_ 1+1+1+ N
a 23 4Lugp
n=4
11 G 1
21 - — _
+<2+3+;n+N+])

. ﬁ:l-i- Lo, 1
R TNTI Nt2 N+3

=

—5+2+3 1+1
T 6 N+1 N+1 N+2

1 1 1 5
4 — —.
<N+1 +N+2+N+3) N 6

On conclut que la série E u, converge et que sa somme est :
n=l1

+00 5
5"

n’+6n>—5n—2 n’

a)Ona:u, = ~ —_ noté v,.
n! noo n!
Ona:VneN* v,>0et:
Vppt (130! (n+1)? 1
= — = ~ — 0<1.
Uy (n+ 1! n? n3 noo 1 noo

D’apres la regle de d’ Alembert, la série Z v, converge.

Par théoreme d’équivalence pour des séries a termes 2> 0, on

conclut que la série E u, converge.

n

b) * En notant

P=1P =X Pb=XX-1),PA=XX-1DX-2),

ona:Vie{0,...,3}, deg(P;) =i, donc, d’apres le cours,
= (P, P, Pz, P}) est une base de R;[X].

. Exprimons P sur la base B.

On a, en développant :

Po=1,P =X P,=X>*-X, P;=X—3X>+2X.

D’ou, en faisant apparaitre successivement Pz, P>, Py, Py
dans P :
P =X +6X*—-5X-2
=X -3X"+2X) +9X* - 7X -2
=P;+9X>—X)+2X —2=P;+9P, +2P, —2P,.

¢) On a, en manipulant des sommes de séries toutes conver-
gentes (d’apres la regle de d’ Alembert, par exemple) :

+00 +00

5= =Y 1 (P +9P) + 2P ) — 2P0

n=0 —0

+00 +00 too
_ ; Pil('n) +9 Z Pz(n) 22 Pl(") Z P(;l(!n)'

. n=0 n=0

Calculons ces différentes sommes de séries convergentes.

+00P() +ool
ISR IR

n=0 ° n=0

+ooPl(n) +ool
D Zn' Z(n_w:p;a:e
=XPm = n(n—l)

; P _; Z(n—Z)'_Z

P3(n) Zn(n— H(n —2)

|
n=0 Z

+00
:ZM‘Z

+o00
d’our : Zu,1=e+9e+26—2e=106.
n=0

a) Effectuons un développement asymptotique :

o1 1 1 o 1 | — 1 o 1
nsin—=n{—-——4o|l—=]) = o
n n 6n’ n3 6n2 n?

puis :

1 1 1
Inu, =n®In (nsin;) :n"ln(l _ @_,_0(’1_2))
a 1 1
= (‘@“(ﬁ)) =

e Si a<?2, alors Inu, 0, u,
noo n oo n oo

1
_gna72 +0(na72) .

donc la série E u, diverge grossierement.
n



1 1
— —,Uy € 61un_7L_)0,

noo 6 noo noo

donc la série E u, diverge grossierement.

n

*Si a=2,alors Inu,

* Supposons a > 2. On a alors :

2 21nnf%n“72+n(n

a—2
nu, =€ ) 50,

oo
par prépondérance classique.

On a donc, a partir d’un certain rang : n*u, <1, d’ou :
0<u, < n_lz D’apres I’exemple de Riemann (2 > 1) et le
théoreme d’équivalence pour des séries a termes > 0, on

conclut que la série E u, converge.

n

Finalement, la série E u, converge siet seulementsi: a > 2.
n

b)*Si\ < 0, alors (In n))‘ 0, u, 1, u, ——0,

noo noo noo

donc la série E u, diverge grossierement.

n

e Si A=0, alors (Inn)* =1, u, e, u, ——0,
noo noo

donc la série Z u, diverge grossicrement.

n
* Supposons A > 0. Essayons d’utiliser la régle n%u,.
Soit @ € R fixé, a choisir ultérieurement. On a :

a.—(n mA

_ A
naun — n% alnn—(In n) .

=¢
Pour comparer «Inz et (In 7)*, il nous faut connaitre la po-
sition de \ par rapport a 1.

* Si\ < 1, alors, en prenant o = 1, 0ona:

_ A
— elnn (In n)

nu, — 400,

noo

1

WV

donc, a partir d’un certain rang : nu, > 1,donc: u, > 0,

D’apres I’exemple de Riemann et le théoreme de minoration

pour des séries a termes > 0, on conclut que la série E U,
n
diverge.

—In n

1
*Si\ =1,alorsu, =e¢ = —, donc la série Z u, diverge.
n

. 1+ A
* Si A > 1, alors, en prenant o« = — > l,ona:

@ __ alnn—(In n))‘

e, =6 — (),

noo
donc, a partir d’un certain rang, : n%, < 1, d’ou :
0<u, < ni"‘ D’apres I’exemple de Riemann (o > 1) et le
théoreme de majoration pour des séries a termes > 0, on

conclut que la série E u, converge.

n

Finalement, la série E u, converge si et seulement si: A > 1.

n

c)Ona:

1

0<u, :/” e*(—In x) dx
1

2

1 1 1 1
<(-- 2=
\(n n+2)e ( nn+2>

2 l] ( +2) 2111]1
=————eiln ~2—.
n(n+2) & noo 2

3
il

. . Inn
Pour déterminer la nature de la série de terme général v, = —-,

2
n
utilisons la regle n®v, (cf. aussi I’exercice 4.2).

32 Inn

Ona: n’*v, = — —— 0,
nl2

noo

donc, 2 partir d’un certain rang : n*/?v, < 1,
1 .
dou:0< v, < =" D’apres I’exemple de Riemann
7E

(3/2 > 1) et le théoreme de majoration pour des séries a

termes > 0, la série E v, converge. D’apres le théoreme
n

d’équivalence et le théoreme de majoration pour des séries a

termes > 0, on conclut que la série E u, converge.
n

d) On a, en utilisant des développements limités :
1 1 1
n2¥ :1n<1—|——)—1n<1——>
n—1 n n
1 1 1 1 2
(o) (1ol 2+
n n n n n

n+1
B —

~(+o(5))+a(iro %)) (Go(3))

:(1+a+2b)% +O< ! >

n2

()

1 1
Uu,=sin — +atan — + bln
n n

1
e Si 1+a+2b+#0, alors u, ~(1+a+2b)—, donc
noo n

1 1
mun );o . = 0. D’apres I’exemple de Riemann, par

multiplication par un coefficient fixé non nul, et d’apres le théo-
reme d’équivalence pour des séries a termes 2> 0, la série g U,

diverge.
1

*Sil+a+2b=0,alors u, = 0<—2>
n

Tlexiste C € R, tel que, a partir d’un certainrang : |u,| < e
n

D’apres I’exemple de Riemann (2 > 1) et le théoreme de ma-
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joration pour des séries a termes > 0, la série E ’0 (—2>‘
n
n

L . 1
est convergente. Ainsi, la série E 0] (—2 est absolument
n n
convergente, donc convergente.

Finalement, la série E u, converge si et seulement si :

l+a+2b=0.
e) On a, par développements limités :

(+3) = er(m(+3))

e“(2 —a?
*Si a? £ 2, alors u, ~ ¥
noo 2n

D’apres I’exemple de Riemann, le produit par un coefficient
fixé non nul, et le théoreme d’équivalence pour des séries a

termes 2> 0, on conclut que la série Z u, est divergente.
n

. 9 1
*Sia” =2, alors u, = O — )
n

D’apres I’exemple de Riemann (2 > 1) et le théoreme de ma-

()

. 1
convergente. La série Z 0] (—2 est absolument convergente,
n

n

est

joration pour des séries a termes > 0, la série E
n

donc convergente.

Finalement, la série E u, est convergente si et seulement si :

n
at=2.

/) Effectuons un développement asymptotique :

Uy =~n2+n—+3+avm>+n+1+b/n>+n+2

1 3\ 11\
=l’l|:<1+—+—2> +a<1+—+—2>
n n n o n
12\
+b<1+*+7> ]
n n
IRV YA of ]
=" 2\n n? n3
F 1+1 1+1 + 0 !
@ il (T I —
2\n  n? 8n? n3
+b 1-}—1 1-I-2 ! + O !
2\n n? 8n? n3
1 1
=n[(l+a—|—b)—|—z(l+a+b);
n 11+3a+7b 1+0 1
8 8 8 ) n? n3

114+3a+7b 1
8 n

+0(5;).

e Si 1+a+b#0, alors u, ~(1+a+b)n, donc
noo

1
=a+a+Mn+§ﬂ+a+m+

lu,| —— + oo, u, —+—0, lasérie E u, diverge grossie-
noo noo
n

rement.
eSil+a+b=0etll+43a+7b+ 0, alors

11+3a+7b1
A % —, donc, par ’exemple de Riemann, par
noo n

la multiplication par un coefficient fixé non nul, et par le théo-
reme d’équivalence pour des séries a termes > 0, on conclut

Uy

que la série E u, diverge.
n

1
°Si1+a+b=0et11—|—3a—|—7b=0,a10rsun=O( )

n2

D’apres I’exemple de Riemann (2 > 1) et le théoreme de ma-
1
(%)

. 1
est convergente. La série E (0] (—2> est absolument conver-
n
n

joration pour des séries a termes 2> 0, la série E
n

gente, donc convergente.

On résout le systeme linéaire :
l+a+b=0
11 +3a+7b=0

a=1
—
b=-2.

Finalement, la série E u, converge si et seulement si :
n

a=1eth=-2.

'(Z
g)Ona:VneN*, u, = () > 0.

nn

Essayons d’utiliser la regle de d’ Alembert :



win (DY
wp (4D (nhe

_ (D" _ l -
_—(n—|—1)"+] =m+1) (l+n> .

Et:
1\ 1
14— =exp| —nln {1+ —
n n
( (1 (1>)>
=exp| —n| - +o| —
n n
=exp(—1+o0(1) — e
noo
Unti —1 a—1
On a donc : — ~e¢ (n+ )" .
Uy noo
* Si a>1, alors i ——> 400 > 1, donc, d’apres la
Uy noo

regle de d’ Alembert, la série Z u, diverge.

Up+1

— > e ' <1, donc, d’apres la regle

uy, noo

*Sia=1,alors
de d’ Alembert, la série Z u, converge.
n

. /|
*Sia < 1,alors —

——> 0 < 1, donc, d’apres la regle de
Uy noo

d’Alembert, la série Z u, converge.

n

Finalement, la série E u, converge si et seulement si :

n
a<l.

h) Comme le comportement de x” dépend de la position de x
par rapport a 1, et que x varie entre 0 et a, séparons 1’étude en
cas selon la position de a par rapport a 1.

eCas0<a<1:

On a alors, pour toutn € N :

a xn a
O<Mn:/ 7dx</x"dx
h o J1+x2 Lo

_ anrl a= an+l <an+1'
n+1], n+1 =

n+1

Comme 0 < a < 1, la série géométrique E a""" converge.
n

Par théoréme de majoration pour des séries a termes > 0, on

conclut que la série E u, converge.
n

eCasa>1:

On a alors, pour toutn € N :

a X" 1 x"
U, = 7dx>/ —dx
/0. M+x2 S M+
1 n
S AE PR NS B N
0 V2

~——3>0
2n+1 no J2n

D’apres I’exemple de Riemann, le théoreme d’équivalence pour
des séries a termes > 0, et le théoréme de minoration pour des

séries a termes > 0, on conclut que la série E u, diverge.

n

On conclut que la série E u, converge si et seulement si :
n

a<1.

i) On veut comparer 2v” et a”, et comparer 3v" et b”. Cette com-
paraison dépend de la position de a et de b par rapport a 1.

eCasa>lethb>1:

n n n
a a 4.0 z oy a
Alors : u, ~ — = | — ) . Lasérie géométrique E =
noo p b — \ b
I
. . a e N 5z .
converge si et seulement si : — < 1. Par théoreme d’équiva-
b
lence pour des séries a termes > 0, on conclut que la série

. .. a
E u, converge si et seulement si : b < 1.

n

eCasa<letb>1:

Jn
Alors : u, ~ z — eYnn2-ninb
’ " noo bn >
donc : n’u, ~ e2nnty/min2—nlnb 0.
neo noo

Il en résulte, a partir d’un certain rang : n’u, < 1, donc :
1

0<u, < — . D’apres I’exemple de Riemann (2 > 1) et le
n

théoreme de majoration pour des séries a termes > 0, on

conclut que la série E u, converge.

eCasa>letb<1:
an

Alors : u, ~ —— =etmeviln3 |
noo 3V noo

donc u, —/—0, la série E u, diverge grossicrement.
n oo
n

eCasa<letb<1:

2V 2\

Alors : u, ~ W = <§> .
Ona: Vlzbl,, ~ e21n n++/nn2/3 N 0’

noo n oo

par prépondérance classique. On a donc, a partir d’un certain
rang : nu, < 1,d’ou: 0 < u, < —.
n

D’apres I’exemple de Riemann (2 > 1) et le théoreme de ma-
joration pour des séries a termes 2> 0, on conclut que la série

E u, converge.
n

Finalement, la série E u, converge si et seulement si :
n

a
((2>,b>l,—<l)
Ou(a<l1b>l)0u(a<l7b<1)a

cequirevienta:a <1 ou 1 <a <b.

135



136

On peut représenter graphiquement 1’ensemble des couples

(a,b) € (R})? tels que la série Z u, converge :
n

b

(0] 1 a

Jj) Effectuons un développement asymptotique :

Uy = Ya—2b+ Yc=er" —2ei 4 enlne
1 1 1 1
=1+ —-Ina+ 0| — —2({1+—-Inb+ 0O —
n n? n n?
1 1
+{1+ —Inc+ O =
n n

_llnac+0 1
T n b2 n?)’
ac 1

Si% L1, alos i £0 1
e Si — , alors In — ,u, ~ In——.
b2 b2 oo B2

. | o
Comme la série E — diverge, par multiplication par un coef-
n
n

ficient fixé non nul, puis par théoréme d’équivalence pour des

séries a termes > 0, la série E u, diverge.
n

1
-Si% =1, alors u, = 0(;)

D’apres I’exemple de Riemann (2 > 1) et le théoreme de ma-

joration pour des séries a termes > 0, la série E ‘0 (—2>‘
n
n

1

converge. Ainsi, la série E 0 <—2 est absolument conver-
n

n

gente, donc convergente.

On conclut que la série g u, converge si et seulement si :

ac = b*.
k) Essayons d’utiliser la regle de d’ Alembert.
Ona: Vn>2, u,>0 et:

e (n@m+D)"
u, (¥ D! (Innpy
In(n+1\" In®+ 1)
=< In n ) n+1 °

Ona:

1
| (14—
In(n+1) L0 n( +n>

In n Inn
()
Inn+ — +of —
_ n n —14 o 1
a Inn a nlnn nlnn )’
puis :
In(n +1)\"
In n
( 1n(n—|—l))
= exp|(nlh————=
Inn

1 1
exp (nln |:1+ —|—0< >]>
nlnn nlnn
1 1
exp | n +o
( |:nlnn (nlnn)])
1 1
exp (——l—o(—)) — 1.
Inn Inn noo

D’autre part, par prépondérance classique :

In (n+1)

— 0.
n+1 noo
2 . Upt1
n deduit : —> U < 1.
On déd 0<1
Uy noo

D’apres la regle de d’ Alembert, on conclut que la série Z Uy
n
converge.

1) * On sait (par exemple, par I’étude des variations de
t —> tant —t), que:

m
Vit e [0; 5|: tant > t.
* D’ou, pour toutn € N :

1 1 et 1 1
U, :/ tan (x") dx 2/ x"dx = [ ] = .
0 0 n+1 0 n—+1

1
n—+1

Comme la série E diverge (série décalée de la série har-
n

monique), par théoreme de minoration pour des séries a termes

= 0, on conclut que la série Z u, diverge.

2) e Montrons : Vit € [0; 1], tant < 2¢.
L’application f : t —> tant — 2t est dérivable sur [0; 1] et :
Viel[0;1], f(r)=tan’t — 1,

d’ou le tableau de variations de f :



t 0 /4 1
f'@® = 0 ain
f@) 0 N /

Et: f(1)=tanl — 22>~ —0,443 ... < 0.
On conclut : Vr € [0; 1], tanz < 21.

* D’ou, pour toutn € N :

1 1
v, :/ tan (x"z)dx < / 2x" dx
0 0

n?+1 1 9 %)
2| = <=
n?+1], n*+1 " n?
D’apres I’exemple de Riemann (2 > 1) et le théoreme de ma-
joration pour des séries a termes > 0, on conclut que la série

E v, converge.
n

n
1) Commengons par chercher un équivalent de Z k!,
k=0
lorsque ’entier n tend vers I’infini.

On a, pour toutn € N (tel quen > 2):

n n—1 n—2
og(Zm)-m: k!:( k!)+(n—1)!
k=0 0 0

k= k=

SE-—Der-2!'+n-D!'=2n—-D!.

2m—1)! 2

n! n noo

Comme 0,ona:2(n—1)! =o(n!),

n
et on obtient : Zk! ~ nl.

noo
k=0

2)eOna:

1 nl 1
n=———Y kl~———=——2>0.
" (n+1)!k2=(; ot D! ntl”

1
n—+1
monique), par théoreme d’équivalence pour des séries a termes

Comme la série E diverge (série décalée de la série har-
n

> 0, on conclut que la série Z u, diverge.

n

*Ona:

1 z ! 1 1
v,,:—Zk!N " = R =,
(m+2)! &= o n+2)!  (n+ 1) +2) noon?

D’apres I’exemple de Riemann (2 > 1) et le théoreme d’équi-
valence pour des séries a termes 2> 0, on conclut que la série

E v, converge.
n

Essayons d’utiliser la formule de Stirling :

n n
n!l~ |- 27n .
noo \ e

1
Onadonc: In(n!)=nlnn—n+ 51n(27m) +o(1),

d’ou :
In u,
= %(m (n!) — In ((Zn)!))
(pme-ag ]
= —(|nlnn—n+ = In 27n)+ o(1)
n 2
—|:2n In 2n) —2n + % In (272n) +0(1)]>
1 1
= —<—nlnn—|—(l—21n2)n——ln2+0(1))
n 2
= —Inn+({-21In2)+o0(1).
Puis :

uy=exp(— Inn+(1—-2In2)+o()

1-21n 21 _ ¢

1
— _el2ln 250 o o == >0
n 4n

n noo

D’apres I’exemple de Riemann et le théoreme d’équivalence

pour des séries a termes > 0, on conclut que la série E U,
n

diverge.

Si la série E u, converge, alors nécessairement

n

u, — 0, donc : (n* + 3n?)!/* — (1"(11))”3

=o(l),d’ou:

1/3

(P(m)

et donc P(n) ~ n?, ce qui montre que P est de degré 3 et de
noo

=m*+3n)* +0(1) ~(n* + 304 ~n,

coefficient dominant égal a 1.
Notons donc P = X> + aX? + bX + ¢, (a,b,c) € R3.

Effectuons un développement asymptotique :

(n* +3n2)Y4 — (03 + an® + bn + ¢)'3

3\ a b c\"?
n|:<l+ﬁ) _<1+;+},TZ+;> :|
1+ & + 0 l
& 4n? n*

Uy =
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. a .
*Sia#0,alors u, —— — = # 0, donc la série Zu”
noo 3 n

diverge grossierement.

Sia=0et> 24+ Loa ¢

*°DNla= Gl = = = o ,alors u, ~ —.

4 39 o 1
—

noté C

D’apres 1’exemple de Riemann, par multiplication par une
constante non nulle, et par le théoreme d’équivalence pour des

séries a termes réels > 0, on conclut que la série E U,
n

diverge.

1
eSia=0et C=0,alors u, = O<—2>.
n
D’apres I’exemple de Riemann (2 > 1) et le théoreme de ma-

(i)

. L. 1
converge. Ainsi, la série Z (0] (—) est absolument conver-

joration pour des séries a termes > 0, la série E
n

n2
n

gente, donc convergente.

Finalement, la série E u, converge si et seulement si a = 0

9
etC:O,cequirevienta:a:Oetb:Z.

On conclut :
I’ensemble des polyndmes P € R[X] tels que la série de terme

général u, = (n* + 3n?)"/* — (P(n))l/3 converge est
9
{X3+ ZX-i—c; c ER}.

On remarque que, pour ¢ € R, u, n’est défini qu’a partir d’un
certain rang, mais que la série de terme général u,, est conver-
gente, puisque 1’énoncé n’impose pas 1’indice de départ.

a) Puisque la série E U, CONverge, on a :
n

u, — 0, donc, a partir d’un certainrang : u,, # — 1.
n oo

Un

b) D’apres a), la série de terme général v, = est bien

définie a partir d’un certain rang.
On a, pour tout n :

2
u,

Uy 2
= 0 & (/.
14 u,| noo "

1+u,,_

Up

|vn — un| :‘

Comme la série de terme général u2 converge, d’apres le théo-
reme d’équivalence pour des séries a termes 2> 0, la série de
terme général |v, — u,| converge. Ainsi, la série de terme gé-
néral v, — u, est absolument convergente, donc convergente.
Enfin, comme, pour toutn : v, = (v, — u,) + Uy,

par addition de deux séries convergentes, on conclut que la série
de terme général v, est convergente.

Rappelons I’inégalité de Cauchy-Schwarz, dans RY
usuel, pour N € N* fixé :

,IN) € RY,

<«(59) (&)

n=I

Y (1, xn), 01, -

N
§ XnYn
n=1

1
En appliquant ceci a \/u,, et —, a la place respectivement de x,,
n

et y,, on obtient :

1 1
VN e N*, ogZ‘/n"_” < (ZN:M> (i%)z
n=1

n=1 n=1

ol—

1
Puisque les séries E u, et E — sont convergentes et a termes
n
n n

= 0, on a, pour tout N € N* :
N

N +00 1
Zu" < ZM” et Zﬁ <
n=1

n=1 n=1

[ g
=N| =

D’ou :
1

o o 1
VN e N*, 0<Z‘/};‘—" < (+ZM>Z<+ZHI—Z>Z

n=1 n=1 n=1

Ceci montre que les sommes partielles de la série a termes > 0,

A/ Un o 2
E ——, sont majorees.
n

n=1

ity

n

D’apres un lemme du cours, on conclut que la série E
n=>1
converge.

e Une récurrence immédiate montre que, pour tout
n € N*, u, existe et u,, > 0.

*Ona:Vn > 1, un+1=ln<l+u—”><u—n,
n n

caronsait: Yx €] —1; +oo[, In(l +x) < x.

Il en résulte, par une récurrence immédiate :

puis : noté v,,.

Ona:Vn>1, v, >0, et:

- ny°
Un+1 — ((I’l ) ) _ i 0<1 .
Un (l’l !)“ n* noo

D’apres la regle de d’ Alembert, la série Z v, converge.
n=1



Par théoreme de majoration pour des séries a termes 2> 0, on

conclut que la série E u, converge, pour tout o € R* fixé.
n=1

Commencons par étudier le comportement de |u,|
lorsque ’entier n tend vers 1’infini.

a a

n n _
=00 e b =n"".
(n+1)? no n
*Si a > b, alors |u,| —— + 00, u, —/—0, donc la série

noo

noo

Ona: lu,|

E u, diverge grossierement.

n

e Si a =b, alors |u,| —— 1, u, —/—>0, donc la série
noo noo

E u, diverge grossierement.

n

* Supposons a < b.Lasérie Z u, estalternéeetu, —— 0.
7 noo

Nous allons montrer que la suite (|u,,|) , est décroissante.

n=
Considérons I’application

a

G R ETDT

f:ll; +oo[— R, x —

L’application f est dérivable sur [1; +4oo[ et, pour tout
x €[l;4o0[ :

f(x) =ax"'(x+ 1) — xb(x + 1)707!
=xTx 4+ 1)’b’1((a —b)x + a).

Le signe de f”(x) dépend de la position de x par rapport a b a

Ona:

a
Vx e |:— o —|—oo|:, f(x) <0.
b—a
11 en résulte que la suite (Ju,|), est décroissante a partir d’un
certain rang.

D’apres le TSCSA, on déduit que la série Z U, converge.

n
On conclut que la série E U, converge si et seulement si :
n

a<b.

1) On a, pour toutn € N :

n

Q+3n+2—i
G+4n+3+i

3 ((2n+2)2+(3n— 1)2)% _(
T\ Gn+32+dn+1)?2)

"_ 2n+2)+iBn—-1)
T Gn4+3)+i@n+1)

|un| =

13n2 +2n+5 >
25n2% 4+ 26n + 10

[SE)

2 2 p) n
BT ET R <<13>7 < 13)”
5, 2 10| ~\25) “\V2s5)°
252, 25 25

"1

/13 . 13\"
Comme 0 < 75 < 1, la série géométrique Z:( E)

converge.
Par théoréeme de majoration pour des séries a termes = 0, on

déduit que la série E |u,| converge.

n

Ainsi, la série E u, est absolument convergente, donc conver-
n
gente.

2) On a de méme, pour toutn € N :

Q+3n+2—il]" |@n+2)+i@Bn—1)
BG+20n+3+i| |Gu+3)+i@n+1)

(Cn+ P+ G- 12\T 1B+ 2 +5 \?
T \Gn+3)2+@n+1?2) T \13n2+22n+ 10

D’ou :

n

v, | :‘

n 13n2 +2n+5
Injv,] = -In—————
2 13n2+22n+ 10

n 20n + 5
= —-In{l-—————

2 13n% +22n + 10

n —Q0n+5)
noo 2 13n% +22n + 10

20n> 20 20 10

~ = S ———— = == &5 90—
noo 26n2 26 noo 26 13

Ainsi, In|v,| —f/— — 00, v, —/— 0, donc la série Z Uy
noo noo
n

diverge grossierement.

1) Existence :
1 1

~ >0
n/n+2+ (n+2)/n ne 2n32 7

D’apreés I’exemple de Riemann (3/2 > 1) et le théoréeme

Ona:u, =

d’équivalence pour des séries a termes > 0, la série E U,
n

+00
converge, donc E u, existe.
=1
2) Calcul :
Essayons d’amener un télescopage.

On a, pour toutn € N*, par utilisation d’une expression conju-
guée :

1 nvn+2— (n+2)n

o VA 2+ (4D m+2D)—(n+2)°n
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_nn2— 42V nvnt2—(n+2)yn
—2n? —4n —2n(n +2)
1 1
T 2/n 2nt2

On en déduit, pour tout N > 3, par télescopage :

(s wm )=l )
1 1 242
5(17>= i

Remarque : 1a partie 2) (calcul) montre que la série converge,
et rend donc alors inutile la partie /) (existence).

+00
On conclut : Z u, =

n=1

1) Existence :
Ona:

2 2 2
Up=In{l————| ~ —— ~ ——.
nn+1)) no  nm+1) nco  n?
D’apres I’exemple de Riemann (2 > 1), par multiplication par

un coefficient fixé (2), et d’apres le théoreme d’équivalence

pour des séries a termes > 0, on conclut que la série E U,

converge.
2) Calcul -

Essayons d’amener un télescopage.

On a, pour tout N € N* (tel que N > 5) :

i 2
(1o 2 )
n(n+1)

n=2

n—|—n—2_N n—1n+2)
A 1) =) In i A )

—Z
n=2
XN: In(n — 1)+Zln(n +2)— Z Inn — Zln(n +1)
n=2

N+42 N+1

:NZIHn—i-Zlnn—Zlnn—Zlnn

n=4 n=2

N—-1
Inl+ In2+ ln3+Zlnn>

n—=4

A

N—1
Zlnn—l—1nN+1n(N+1)—|—ln(N+2)>

n=4

/N

N—1
— (11‘12—{— ln3+Z Inn + 1nN>

n=4

N-—1
—<ln3+21nn+lnN+ln(N+l)>

n=4
2
=—In3+In(N+2)— InN=—In3+ 1n<1+ﬁ)

—> —1In3.

Noo

400 o)
On conclut : Z In (1 — m) = —1In3.
n(n

n=2

Remarque : 1a partie 2) (calcul) montre que la série converge,
et rend donc alors inutile la partie /) (existence).

a) Récurrence sur n.

Ui 1

n
°Pourn:1:2vk:v1:1+u :l_l—l—u’
1 1

donc la propriété est vraie pourn = 1.

* Supposons la propriété vraie pour un n € N* :

. 1
kazl— .
- Atu)--(A+u)

On a alors :
ntl n
ka = ( vk) + Unt1
k=1 k=1
)
(L +up)- (1 +uy)
Un+1
(1 +up) o (L uppr)
— 14 —(1 + upt1) + stnpy
A 4wup) (1 + 1)
_ 1
T U Hu) Ot u)
ce qui établit la formule pour n + 1.
On conclut, par récurrence sur n :
1, ivkz = ! .
= (A4 up) - (14 uy)

Remarque : On peut aussi obtenir le résultat en écrivant, pour
toutn > 2 :

14u, —1
Uy =
(I+up)--- (1 +uy)
B I 1
I4u)---Atu)  Atwu)--(I4u,)’

et en réalisant un télescopage.



b)D’apresa),ona:Vn > 1, ka < 1.
=1

Ainsi, la série E v, estatermes > 0 et ses sommes partielles
n
sont majorées. D’apres un lemme du cours, on conclut que la

série E v, converge.
n=l1

* Groupons les termes trois par trois.

On a, pour tout p € N* :

i_1+12+1+12+
=TT 17576

A 2o 0 A
= = = 3 = = = = =
2o 2 122
n=p+1 "t ;P'H p;1+_
p
En notant ¢ = 2p, on a donc :
3p
PR Z
i=1 1_|_
q
On reconnait une somme de Riemann, pour la fonction
fixr— 3 qui est continue sur le segment [0; 1].
Il 4= =
X
On a donc :

& 1 /' 1
T dx
qi:11+_l g Jo 14 2x
1

1 1
|:5 In(1 +2x)] =5 In3.

0

3p
On a donc, par suite extraite : E u, — In3.
poo

n=1

e Comme u,, —> 0, on a alors aussi :

3p+1 3p
E u,,:( E u,,>—|—u3p+1—>ln3,
poo

n=1 n=1

3p+2 3p
S = (w
n=1

n=1

) +'M3p+] +‘M3p+2'——9 In3
poo

Comme les 3p,3p + 1,3p + 2, p décrivant N*, recouvrent
tous les entiers (= 3), on déduit :

Zuk—>ln3

noo
k=1

On conclut que la série E u, converge et que sa somme est
n=l1
égale a In3.

* Soit x € ]0; +oof fixé.

Pour évaluer la somme de série proposée, nous allons utiliser
une comparaison a une intégrale.

1
t(t+x)

est continue, décroissante, intégrable sur [1; 4oo[, car

1
f@ -~ 7220

t—>+00

Lapplication f : [1; +oo[— R, 7 +—

On déduit, par comparaison série/intégrale, que la série

1 s A
Z ——— converge (ce qui était aussi visible en prenant un
Sin (n+ x)

équivalent) et que :

+o00 400 +00
/ fOd <Yy ——— <+ [ fod.
1 1

n=1

On calcule I’intégrale :

+00 +00 1
t)ydr = dr
1 6 /1 1(t +x)
171 1 1 s

= —-- dt=—|Int— In (¢

_/1 x<t t+x) x[ " n @+,

1 T 1 1 In (x+ 1)
=—| In =——1In = .

x t+x ], x  14+x X

On a donc, pour tout x € ]0; o0 :

ln(x—|— D _ 1 InGx4+1)
Z: (n+x) 1—|—x+ X ’

e Comme :

1 o(ln(x+1) 0<1n(x+1)>_0<1n (x+1)>

1+x x+1 x+1 X

1 In(x + 1)

+ —_— %
14+x 5

On conclut, par encadrement :

In(x + 1)

x—>+00 X

Ona:

i In (x +1)
“—~ n(n +x) x—>-+00 X

1 1 In x
=—|Inx+In(1+— ~  —
X X x—>+00 X

e Commencgons par chercher un équivalent simple de
+00
Z il lorsque I’entier n tend vers I’infini.
k=n """
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D’abord, d’apres la regle de d’ Alembert ou le cours sur la série

1
de I’exponentielle, la série Z o converge, donc, pour tout
=0

+00 1
neN, Z Fl existe.
k=n "

On a, pour toutn € N :

+c>01 1 +ool
°<(Za)‘a=25

k=n

S (1+ Loy : - )
T 41! n+2  m+2)n+3)

1 1 1
< 1
(n+l)!(+n+2+(n+2)2+ )

. 1 1 . 1 n+2
ST e+D, L T @+Diatl
n+2
1 n+2 1
= — =o0o| — |.
n! (n+1)2 n!
R 1 1 1
n a donc : kiﬁ—a—koa.
*D’ou :
1 Ly 1 1 1
In u, = ; In (; F) = ; In <m +0(m))

1 1 1
= ;<ln = + In (1+0(1))) = ;(— In n! + o(1)).

n
¢ De la formule de Stirling : n! ~ <E> 2mn,
noo \ e

1
on déduit : In (n!) =nlnn —n + 2 In 27n) 4+ o(1),
d’ol :
1 1
Inu, =—-{ —nlnn+n — Eln 2mn) + o(1)
n

=—Inn+1+o0(1),

1 e
puis : u, = e—lnn+l+0(l) — _ eeo(l) Ay =
n noo n
e
On conclut : u,, ~ —.
noo n

a) * D’abord, une récurrence immédiate montre que, pour
toutn € N, u, existe et u,, € [0; /2.

*On a, pour toutn € N :
U, = Arctan ( a, —+tanu,) = Arctan (tanu,) = u,,,
——
>0
donc la suite (i, ),y €st croissante.

¢ Puisque (u,),cn €st croissante et majorée par 7r/2, on conclut
que (¢, ),y converge et que sa limite £ vérifie £ € [0; 7/2].

Comme :Vn eN, u, > ug,

on déduit, par passage a la limite : £ = u,

etdonc ¢ > 0 d’ou’ €]0; 7/2].

b) On a, pour toutn € N : tanu,.; = a, + tanu,,

donc a, =tanu, | — tanu,.

D’apres le lien suite/série, il en résulte que la série

E a,converge si et seulement si la suite (tan u,,),cy converge.
neN

D’apres a), sil # m/2, alors la suite (tan u,, ),y converge vers
tan ¢, et, si £ = /2, alors la suite (tanu, ),y diverge.

On déduit que la suite (tanu, ),y converge si et seulement si

¢ # m/2 et on conclut que la série Z a, converge si et seu-
neN
lement si £ #= 7/2.

a)Soitn € N — {0, 1} fixé.
On a, en échangeant les roles de p et g :

1 1
Sn = = 5
|<p2<;<n VP4 1<c;2<1;<n var
d’ou, en additionnant :

1 1 1
28, = — = — —
1<;<n VP4 1<pzq:<n VP4 1<;<n VP4

“(ER(ER LA

1
Onconclut: Vn e N—{0,1}, S, = 5(Aﬁ — B,).

b) Essayons de trouver d’abord des équivalents simples de A,
et de B,.

e Par comparaison somme/intégrale, puisque 1’application
1 . .

x €[1l; +oo[— T € R est continue et décroissante, on a,
X

pour tout n € N* :

L |
—dx <A, <1 —dx.
/lﬁx\ h +/1«/)?

On calcule I’intégrale :
"1
—_— d = 2 n— 2 — 1 o

On a donc, pour toutn € N — {0,1} :

2Vn—2< A, <2yn—1.
Comme 2./n — 2 ~ 2/n,et2n—1 ~ 2./n,
on déduit, par encadrement : A, ~ 2.4/n.

noo

* De méme, on obtient : B, ~ Inn.
noo

*Onadonc A2 ~ 4netB, ~ Inn.
noo noo



Comme Inn = o(n), on conclut :

1

S, = —(A>—B,) ~ 2n.
2 noo

On a, pour toutn € N :

Uy + )\nun+1 7 Uy
N Upy1 =
1+ A,

— Upy

1+

Upia — Upp1 =

. 1
d’ou : m“’nﬂ — Uy|-

Ainsi, en décalant I’indice, on a :

|Mn+2 - Mn+l| =

1
s g — | = /5|

Vn > 1
"z 1‘*'/\n—l

U, — un71|-

*Siu; = ug,alors:Vn € N, u, = u,,donclasuite (¢,),>;
est constante, donc convergente.

* Supposons u; —ug = 0.

Alors :Vn = 1, |upy —uy,| > 0.
n — Yn 1

Ona:'u+l M|= 0<1.
|M,, _un—l| 1+)‘n—1 Reo

D’apres la regle de d’Alembert, la série Z |ty — Uy
n

converge.

Ainsi, la série Y (i1

n
convergente. D’apres le lien suite/série, on conclut que la suite
(u,), converge.

— u,) estabsolument convergente, donc

Remarque : on peut montrer de la méme facon que la méme
conclusion est valable si on suppose que la suite (\,), converge
vers un réel > 0.

Rappelons la formule de Taylor-Young pour f de
classe C3sur[—1;1] :

O -
FTRRT

r@ =10+ e+ L0  FO0y 4 ),

1 1
En remplagant x par —, par ——, on obtient, apres simplifica-
n n

tions :
1 1
n n
f///(o) 1 1
= +<—> - 0(‘)

D’apres I’exemple de Riemann (2 > 1) et le théoreme de ma-

()

converge. Ainsi, la série E u, est absolument convergente,
neN*

joration pour des séries a termes >

donc convergente.

a) * Montrons, par récurrence sur 7 :
VneN, u, >5.
C’est vrai pour n = 0, puisque uy = 5.
Si c’est vrai pour un n € N, alors :
5)+8=2825,

2
Upp1 = U, — Sup +8 = u,(u, —

donc c’est vrai pour n + 1.
VneN, u, > 5.

*On a, pour toutn € N :

On conclut :

—uy =u> —6u, +8=(u, —3>-1>3>0,

Un+1

donc (u,),ecn est croissante.

* Supposons u, —— £ € R. Alors, par passage a la limite dans
noo

la définition de la suite u, : £ = £> — 5¢ + 8, d’ou facilement

e {2,4}. Mais :Vn € N, u, > 5, donc, par passage a la li-
mite, £ > 5, contradiction.

Ceci montre que la suite (u,),cy diverge.
Puisque (u,,),cn est croissante et divergente, on conclut :

u, —> + o0.
noo
b) On a, pour toutn € N :

(_1)n+1 _ (_1)n+1 _
w2 —5u,+6  (u

(_1)n+l
,,—2)(M,l—3)
et 1 B 1 )_ (_1)n+1 (_l)n
=D <un—3 w,—2)  wu,—3 +un—2’

R N e I e Vi

un_3 un_2 un+1_2

c) D’apres b), on a, par télescopage, pour tout N > 0 :
i n XN: EUF e
u, —3 = Uy — 2  Upy —2

n=0 """
B XN: l)n (_l)n+l

Up n=0 Upy1 — 2

L (=D Ni(—l)“
a — Uy, — 2 U, —2

n=

Upt1 — 2

d’ou :

1 (_1)N+l
ug — 2

Uy —2

1 1
—> = —.
Noo

140—2 3

n

— 5 converge et que

Ceci montre que la série E
n=0

f b _1
Ty, —2 3
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* Commencons par chercher un équivalent de u,, lorsque
I’entier n tend vers l'infini. A cet effet, étudions le comporte-
ment de u,,.

1) On a, pour toutn € N :
1
ey

n—+1 n
RCEE TR
On déduit, en réitérant et par addition :
VneN, |u,| < luol +n,
u, = 0 (n).
noo

|(n + Du, +n|

Iun+1| =

[, | + [, | + 1.

d’ou:
2) On a alors, en reportant :
®+2%upi1 = (0 + Dty + 1= 0(n?),
o(n?)
(n +2)?

puis, en décalant I’indice : u,, = O(1).

donc: u,y = = 0(1),

3) En reportant encore :

(n+2) Uy = (n+ Du, +n = 0(n),

_ o _ (1
Mn+1—m—0(n>.

En particulier : u,+; —— 0, donc : u, —— 0.
noo noo

donc :

4) En reportant encore :

(n+2)upe1 = (n+ Du, +n

1
= n<(1 + 7>u,, + 1) ~ n,
n noo

n 1
noo (n+2)2 noo n’

1
donc, en décalant : u,, ~ ~
noo np — 1 noo

d’ol: u,g

S|~

1
*Onaalors: u, ~ — >0.
noo n

D’apres I’exemple de Riemann et le théoreme d’équivalence

pour des séries a termes > 0, on conclut que la série E us
n

converge si et seulement si a > 1.

a) * Une récurrence immédiate montre que, pour tout
n>1,u,existeetu, > 1.
|

Mrzz = ”i—l +
n

*On a, pour toutn > 2 : T

d’ou, en réitérant et en additionnant :
VI (L .
no 12 n—1)’
noté H,,_|

d’ou, puisque u, >0 : u, =+/1+H,_;.

Comme H, —— + o0, on déduit : u,, —— + oo.
noo noo

De plus, on sait :

1
H,, ~Inn—-1)= lnn—l—ln(l——) ~ Inn,
n 7

noo 100

donc: u, ~ Inn.
noo
1

1
Uy, n° 4/Inn
1

b)1)Ona:

WV
o

j

Comme n

——> 400, a partir d’'un certain rang :

WInn  noo

1 | 1
T > 1, donc: T > o D’apres I’exemple de
nn nn

Riemann et le théoreme de minoration pour des séries a termes
1

+/Inn

D’apres le théoreme d’équivalence pour des séries a termes > 0,

n

> 0, on déduit que la série Z diverge.

. L
on conclut que la série de terme général — diverge.

n

(=1

2) La série Z

w1 Un

, est alternée, son terme général tend

. 1 .
vers 0 (car u, ——> + o0) et la suite (—) est décrois-
noo uy n>1

sante, car :

Vo 21, g = Ju2+— 2 uy,.

S|~

D’apres le TSCSA, on conclut que la série de terme général
(="

Uy

converge.

a) * Montrons, par récurrence sur n :
VneN, u,>1.

La propriété est vraie pour n = 0, car uy € ]1; +00[.
Si la propriété est vraie pour un n € N, alors :
Uppr = Uy — Uy + 1=, — D>+ u, >1,
~—~—
>0 >1
donc la propriété est vraie pour n + 1.
On conclut, par récurrence surn : Vn € N, u, > 1.

* On a alors :
VneN, upy —uy =) —2u, +1=(, —1)* 20,
donc la suite (u,,),cy €st croissante.

* Supposons qu’il existe £ € R tel que u,, —— £. Alors, par
noo

passage a la limite dans la définition de la suite, on a :
£=0—L¢+1, dou £=1. Mais, d’autre part
VneN, u, > up,d ou, par passage alalimite : £ > uy > 1,
contradiction.



Ceci montre que la suite (u,),n diverge.
Puisque (u,),cn est croissante et divergente, on conclut :

u, —> + 0.
noo

b) On remarque que, pour toutn € N :

1 1 1 1
u,H,.—l_u,,—l_u%—u,,_u,,—l
1—u, 1
T =),

On a donc, pour tout N € N, par télescopage :

— —> .
up—1 uyy—1 Noo ug—1
On conclut que la série E — converge et que :
u
n=0 "N

+oo] 1

n=0 Un to — I

Not toutn > 1 3n =2
otons, pour tout 7 Uy = ————.

P - " 3+ 3n242n

1) Existence :

3
Ona:u, ~ = 2 0. D’apres I’exemple de Riemann (2 > 1)
noo

et le théoreme d’équivalence pour des séries a termes 2> 0, on

conclut que la série Z U, converge.

n=1
2) On va faire apparaitre un télescopage, a 1’aide d’une dé-
composition en éléments simples d’une fraction rationnelle.

eOna:
_ 3X —2 _ 3X -2
COX343X2 42X XX+ D(X+2)
_ b G
X+X+1 T Xy

ou (a,b,c) € R? est a calculer.

On multiplie par X, puis on remplace X par 0, et on obtient :

a=— =-1.
2
On multiplie par X + 1, puis on remplace X par —1, et on ob-
=5
tient: b = — =35.

—1

On multiplie par X + 2, puis on remplace X par —2, et on ob-

tient -8 4
ent:. c = — = —4.
2

D’ou la décomposition en éléments simples de F :

1 5 4

Fe—s e ———,
X "X+1 X+2

t d Vn>1 1+ > 4
etdonc: Vn , Uy =—— + —— — .
= " n n+l n+2

* Formons les sommes partielles.
On a, pour tout N € N* (tel que N >

4 1 5
e

n=1 n=1

5), par télescopage :

4
n+2
Yoo

A Moo
R BELL) D Bl ) Birre

n=1

N

N+2

= —Z +51§——4Z—

n=1

.
At

SI»—

N
1
—4
(St 75i+73)
1 4
= l+—-—— — 1
N +1 N +2 N

Ceci montre que la série proposée converge (ce que 1’on avait
déja obtenu par une autre méthode, plus directe, en /)) et que
sa somme est :

f 3n—-2
=3 4+3n2+2

a) Récurrence sur n (d’autres méthodes sont possibles).
La propriété est vraie pour n = 0, car :
¢ — dody = 1= (=1)°.

Si la propriété est vraie pour un n € N, alors :

¢i+2 - ¢n+1¢n+3
= ¢n+2(¢n+l + ¢ ) - ¢n+l(¢n+2 + ¢n+l)
= Gupabp — Popy = (1" = (1",

donc la propriété est vraie pour n + 1.

On conclut, par récurrence sur n :

n+l1 ¢n¢n+2 = (_l)n .

b) On a, pour tout n € N* :

%_%_%H ¢¢n+2_

¢n ¢n+1 B ¢n ¢n+l

VneN, ¢

(_ l)n
¢n ¢n+l '
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¢) On en déduit, pour tout N € N*, par télescopage :

N G <¢n+1 ¢n+z)
X1: qbn()bn-H - ; ¢n ¢il+1

N N
_ ¢n+l _ ¢n+2
- ; ¢ll ; ¢n+1

N N+1
b Mo b bwn
_; &, ; ¢ b v

Et:¢,=1, ¢, =0 +¢,=1.
On+o

Pour obtenir la limite de , lorsque I’entier N tend vers I'in-

N+1
fini, calculons ¢, en fonction de n, pour tout n € N.

Lasuite (¢,,),>0 est une suite récurrente linéaire du second ordre,
a coefficients constants et sans second membre. D’apres le cours,
nous disposons d’une méthode de calcul du terme général.

2

L’équation caractéristique 7~ —r — 1 = 0 admet deux solu-

tions réelles distinctes :
1-4/5

r = , 2

2

1+45
==

D’apres le cours, il existe donc (A;,)\;) € R? tel que :

VneN, u, = \r{ + X\orjy.

On calcule \;, )\, a I’aide des données initiales ¢, et ¢;:
AM+X=¢,=0
{/\1r1 + X =0¢, = 1.
On obtient, par résolution de ce systeme linéaire :
o bt -t 1
r, —n «/5 ry—nr «/5

D’ou :

e (55 - (59)

1+4/5 1-4/5
2 2

> 1 et’ < 1, on déduit :

“z 5 (550)

2
iz 1+5

D’ou:

’ by Nee 2
e (= 1 5 1—4/5
Onconclutzz( ) =1- +f: V5
n=1 ¢n¢n+l 2 2

a) Notons, sous réserve d’existence, pour toutn € N :

u, = tan <§(7 + 4«/§)”),

et considérons, sous réserve d’existence, pour toutn € N :
T
v, = tan (5(7 — 4«/5)”).

Notons aussi : a, = (7 +4v/3)", b, = (7 — 4/3)".

* On a, par la formule du bindme de Newton :

4=y (Z ) 7k (4/3)*,

k=0

n

bi=) <Z> TR (1R 3

k=0
En additionnant, les termes d’indices impairs se simplifient, les

termes d’indices pairs se doublent, et on obtient :

E(n/2) . o
.+ b, =2 THEP4EP3P € 2.
atin=23(5,)
)

entier

On a donc : ga,, + gb" € /.

D’autre part, comme 0 < 7 — 43 < l,ona:

VneN, g(7—4d§)'1e [o;g[,

donc v, existe pour toutn € N.
Il en résulte que, pour toutn € N, u, existe aussi etu,, = —v,.

-PuisqueO<7—4\/§< l,ona: (7 —4/3)" — 0,

donc : v, ~ g(7 —4V3)" > 0.

La série géométrique 2(7 —4/3)" converge, donc, par

théoreme d’équivalence pour des séries a termes > 0, la série

E v, converge.
n

En passant aux opposés, on conclut que la série E Uy

n

converge.
b) 1l est clair que, pour tout n € N, u, existe et u,, > 0.

Pour obtenir une inégalité portant sur u,, essayons d’en former
une portant sur 1 + x + - - - x”, pour tout x € [0; 1].
Rappelons la comparaison entre la moyenne arithmétique et la
moyenne géométrique de n réels = 0 :

VneN* Vay,...,a, e R,
1 n L
- E Ay > ( ak)
= k=1
— —_—

moyenne arithmétique moyenne géométrique



Appliquons cecia 1,...,x" (etn + 1 alaplace den) :

VneN,Vx e[0; 1],

n)ﬁ

1
e TR

a1 x>0 -x---x

(xH +n)n+1 _ (x"”T“))% =x3,

d’ou, pour toutn € N :

: x" 1 o
ogungf —dx = /xfdx
0o (n+1)x2 n+1J

1 [x%“ ]1 2 2
= = g_.
2

2
Ogung_

Onadonc:Vn € N*, e
n

D’apres I’exemple de Riemann (2 > 1) et le théoreme d’équi-
valence pour des séries a termes 2> 0, on conclut que la série

E u, converge.
n

¢) On a, pour toutn > 2 :

2n 2n
1 1
M"_;(k—kn)z—kz _X:an—}—n2

k=n

n

_ L T 1Z 1
= n = 2k +n 17:77;1 n = 2(p+n)+n

1 & 1 11 1
=2l T2 >

p=! 03-’-2*

noté v,

On reconnait en v, une somme de Riemann.

L application x € [0; 1] — est continue sur le seg-

1
3+ 2x
ment [0; 1].

D’apres le cours sur les sommes de Riemann :

Lo 1 15
vn—>/ dx =|=InB3+2x)| = =-In-.
oo Jo 3+2x 2 o 2 3
N———

noté C

C
Onadonc:u, ~ —,ou C > 0 estfixé.
noo n

C
D’apres I’exemple de Riemann et puisque C # 0, la série Z =
n

diverge. Par théoreme d’équivalence pour des séries a termes

> 0, on conclut que la série E u, diverge.
n

Essayons de comparer w, avec un terme simple formé
a partir de u,, et v,,.

On a, pour toutn > 0 :

2.2 2
< unvn _ Un
2,2 = ad T oau
U, vy, H "
= b 20
a“u+ vy u,v, . u,
bvy by,
2.2
. u,v u,v
d’oty, par produit : w? < —2"— = 1.
abu,v, ab
11 est clair, par développement, que :
1
V(@B eR’, af < S(a+ )
(u, + vn)2
dou: VneN, wg "
" 2ab
Uy + vy,

puis : VnelN, 0<w, <

~2ab
Par addition de deux séries convergentes, la série de terme gé-
néral u, + v, converge.

Par théoréme de majoration pour des séries a termes 2> 0, on

conclut que la série de terme général w, converge.

_)k

1 a I’aide d’une inté-

* Essayons d’exprimer Z

grale.

On a, pour toutn € N :
. (_l)k N k/I k
= (-1 t*dr
DT D
1 n 1 _ (_\nt+l
=/ (Z(—z)k>dt=/ 1=
o L—=(=0)

ltn+1
/—dl‘—l—( 1)"/ 1+tdt=

— ———
notée a,

In2+a,.

* D’ou, pour toutn € N :

— k+1

Ona:

1 tn+l 1 1
a,| = dr < "t dr
] A1+t \l

tn+2 1 1
= = 0,
n -+ 2 0 n—+ 2 noo

d’ou:a, —— 0.
noo

On en déduit un développement asymptotique de u,, :

Uy = In(2e® — 1) = In (2(1 +a,+ 0@) — 1)

= In(1+2a, + O(a})) = 2a, + O(ay) .
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Etudions maintenant les séries de termes généraux a,
et O(a?

e La série E a,, est alternée, son terme général a, tend
n=0

vers 0 lorsque I’entier n tend vers I’infini, et la suite (|a,, |)n>0

décroit, car, pour toutn € N :

1 t"+2 1 tn+l
a = dr < dt = |a,|.
I n+1| /(; 141 X /(; 1+1 I n|

D’apres le TSCSA, la série de terme général a, converge.
1 1

eOnavuplushaut: Vn € N*, |a,| < —— < —,

n

n+2
donc : O(a)— (%)

D’apres I’exemple de Riemann (2 > 1) et le théoréme de ma-

Jo(z)

1
converge. Ainsi, la série E (0] (—2 est absolument conver-
n
n

JOI'athIl pour des séries a termes

gente, donc convergente.

Les séries de termes généraux a, et O(a?) convergent.
On conclut, par addition de deux séries convergentes, que la
série de terme général u, converge.

1)Ona:

1 1 1
Vne N, |u,| < Max(sinf,shf>:shf,
n n n

donc : u, —— 0.
noo

2) Essayons de grouper les termes deux par deux.

Notons, pour tout p € N* : v, = us,_; + ).
Ona:
. 1 1
v, = sin —sh —
2p — 1 2p

= G=0(3) (o))
= =)o)
= @evan () = °(5)

D’apres I’exemple de Riemann (2 > 1) et le théoréme de ma-

joration pour des séries a termes > 0, la série Z '0 (—2> ‘
p
n
- L. 1
converge. Ainsi, la série Z 0 — | est absolument conver-
p

n
gente, donc convergente.

Ceci montre que la série E v, converge.
P

3) Etudions les sommes partielles de la série Z u, en liaison
n=>1

avec les sommes partielles de la série E .
p=1

On a, pour tout N € N* :
ON—1 N—1
Z U, = va + usn_1,
n=1 p=I

Comme u,y—; —> 0 et que la série E v, converge, il s’en-
Noo
p=>1

2N N
E un:E V-

n=1 p=1

+00
suit, en notant § = E P
p=1

2N—1

Zu,,—)S et Zu,,—)S
N
donc : ;unmS

Ceci montre que la série de terme général u,, converge.

+o00
l1,R, = E uy, qui existe,

k=n+1

a) Notons, pour tout n >
puisque la série E u, converge.
n>1

Puisque la suite (#,),>; décroit, on a, pour toutn > 1 :

2n
gzzukgzk

0 < 2}’1142,,
k=n+1
2n+1
< @+ Dugeyr <20+ Dutzr <2 ) ug < 2R,
k=n+1

Comme R, —— 0, on déduit, par encadrement :
noo
2nuy, —— 0 et 2n + Dugyy —— 0.
noo noo

Il en résulte : nu, —— 0.
noo

b)1)Onremarque:Vn > 1, v, = nu = (nu,)u,.

Puisque nu, —— 0, on a, a partir d’un certain rang,
noo

0<nu, <1, dou: 0< v, <u, Comme la série Zu,,

converge, par théoréme de majoration pour des séries a termes

> 0, on conclut que la série E v, converge.
n

2) * Puisque nu, —> 0, on a, a partir d’un certain rang,
noo

0 < nu, < 1,donc w, = 1 est défini a partir d’un cer-
— nuy,

tain rang.



Up

*Ona: ~ u, > 0.

w, =
1 — nu, nc

Puisque la série E u, converge, par théoréeme d’équivalence

n

pour des séries a termes > 0, on conclut que la série E wy,

n
converge.

a) On a, en réitérant I’hypothese, pour tout 7 :

Uy, n—1\" u 1\“
<( ) ,—2<<—),
Up—1 n u 2

d’ou, par produit et télescopage multiplicatif :

ﬂg 0=l a... la:i_
up n 2 né
1

Vn>1, 0<u, <u —.
na

On a donc :

D’apres I’exemple de Riemann (a > 1) et le théoreme de ma-

joration pour des séries a termes > 0, on conclut que la série

E u, converge.

n

b) Dans I’exemple, les u,, sont tous > 0, eton a, pour toutn > 1 :

Uppr  1:3--@Qn41) 1 - (2n)
U, _2-4-~~(2n+2)2n—|—31~3-~-(2 1)

@n+1)

2n + 1)

_(2n+2)(2n+3)_<1+1><1+i>
n 2n
_(1+2 1

= (12 +o(3))(

D’autre part, pour tout a € |1 ; 4-o0[ fixé, on a:

(7) =(+2) =1-2+()
=(1+- =1l——+o(-),
n+1 n n n
n “ 3\ 1 1
d’oﬁ:u+]— " =la—=)—+ol-).
Uy n+1 2}1 n

,onaac]l;

~+o0[

IO

En choisissant, par exemple, a =

a
Unpt1 n 1

t: = ~ —— <0,

© iy <n+1) o dn

donc, a partir d’un certain rang :

a
Upt1 n
_ <0,
D (n—|—1> =

~ Upt1 n “
d’ou : < .
U, = <n A 1)

D’apres a), on conclut que la série de terme général u,, converge.

+00
1 . . .
Pour tout n € N, R, = Z i existe, puisque la série

k=n
1
E F converge.

k=0

* Essayons d’obtenir un équivalent simple de R, lorsque 1’en-

. e 1 o
tier n tend vers I'infini. Puisque il e 0 tres vite, on peut
! (o)

1
espérer que R, soit équivalent a son premier terme, qui est =
n!

Ona:

1 R
OSRi=07= 2; T

1
(n+1)< n+2 (n+2)(n+3)+”')

1
(n+l)< n+2 (n+2)2+"')

(n-i—l)!l_ 1
n—+2

_ 1 n-+2
T m+Din+1

11 (1
S s i = R =y

1 1 1
Onadonc:R,,N—’,ouencore:R,,_ —|—0< ')
! n

noo n

1
. — I!
=2 u,=R;"™.

1 1 1
= In{ — +o| —
nlnn n! n!

1

= (— In (n!) + In (1 +0(1)))

nlnn

* Notons, pour tout n

On a, pour toutn > 2 :

In u, = In R,
nlnn

_ ! (= In (1)) +o(1))

nlnn
1 ! 1
z_n(n)+0 '
nlnn nlnn

Pour évaluer In (n!), on peut faire une comparaison somme/in-

tégrale, a I’aide de I’application x — In x, qui est croissante
sur [1; +o00[. On obtient classiquement : In (n!) ~ nlnn.

noo
D’ou : Inu, —> — letdonc: u, —> e~ .
noo noo
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Si a <0, alors u, — 0, donc Z u, diverge.
noo

n=>1

Supposons o > 0 ; alors u,, —— 0.
noo

Groupons par paquets de quatre termes consécutifs, en no-
tant, pour p € N :

Up = Usptl + Uspio + Uspi3 + Uspia.
Ona:
1 1 1
vy, = — = aF
Ap+ 1> (@Ap+2)r  (@Ep+3)@

1
+ e
@p + 4"

- ﬁ(— (1 +$)70— (1 + %)70
+(1+ %)_“ +(1+ %)_0)
== l-g)--5)
+(1_j_3)+(1_g)+0<%))

- (4;7)“ ( B % + 0(%)) oo 40;3“ <0.

1
Comme av+ 1 > 1, Z W converge, et donc Zv,,
p=1 P
converge.
Les sommes partielles de la série Z u, ne different de celles

n

de Z v, que par la somme d'au plus trois des u,,. Comme Z Up
P P

converge et que u, —> 0, il en résulte que E u, converge.
noo

n

Puisque f est continue et > 0, I’intégrabilité de f sur
[0; 400 est équivalente a I’existence d’une limite finie en +00

X
pour I’application X — f I
0

(n+1)m
Notons, pour toutn € N : u, = / I
n

™

On a alors, puisque f > 0 :

E(X/m)+1

Zun

X
VX € [0;+4o0l, / f<
0 n=0

N (N+Dm
VN €N, Zung(z)f f.
n=0 0

Il en résulte que f est intégrable sur [0 ; +o0[ si et seulement

la série E u, converge.
n=0

On a, pour toutn € N :

(n+1)m
Uy, =f (1 + x*sin%x) 3 dx
n

™

t=x—nn

= / (1 + (nm+0)* sinzt)73 dr.
0
Afin d’utiliser I’encadrement connu

T 2t .

Vit e [O; —], — < sinz < ¢,
2 U

scindons I’intégrale précédente, a 1’aide de la relation de

Chasles : u,, = v, + w,, ou :

s

2 —
Un =f (1+ (nm+1)*sin?1) > d,
0

Wy =/ (L+ (r+1)* sinzt)f3 dr

2
yis

/‘ 2
s=r—t Jq

On en déduit, pour toutn € N @ a, < u, < [,

(1 + (nm+ 7 — s)*sin? )73 ds.

ol on a noté :
T _
oy = 2/ (l + (n7r+7r)4lz) Tdr
0
s 2\ -3
2 2t
8, =2f (1 +(n7r)4(—> ) dr.
0 ™
Par les changements de variable y = (nm + )2t pour a, et
2t
y = (n7r)2— pour (3,, on obtient :
s

2 (n71'+71')271'/2
o= (n7T+7T)2 / (1+y2)_3dy,
0

- (nm)? -
0

L’application g : y € [0; +-0co[— (1 + y?>)~3 est continue,

Z0,etg(y) ~

—>+00

1
—» donc, d’apres I’exemple de Riemann
y
en 400 (6 > 1) et le théoreme d’équivalence pour des fonc-
tions 2> 0, g est intégrable sur [0 ; +o00].
+00

Il en résulte, en notant L = / (1+y)H3dy>0:

0

(n71'+71')2%
/ 1+ dy — L,
0 noo

(nm)?
/ A+yH3dy — L.
0 n oo



. 2L 1 L1
On déduit : o, ~ —— et B, ~ ===
noo ¢ n noo T n
D’apres I’exemple de Riemann (2 > 1) et le théoreme d’équi-
valence pour des séries a termes 2> 0, la série Z 3, converge,
n

puis, par théoréme de majoration pour des séries a termes 2> 0,

la série E u, converge.

n

L’intervention de v, est alors inutile, mais on ne pouvait guere
le prévoir.

Finalement, f est intégrable sur [0 ; +00[.

(=D*

o
D’abord, pourtoutn € N, R, = Z existe, car

k=n+1
la série E

1) Essayons d’obtenir une expression simple de R,, faisant in-
tervenir une intégrale au lieu d’une série.

COIlVCI‘gG.

* Soientn,p € N* fixés telsque p > n.Ona:

(1)k - _
Z _Z(l)k/kldt

k=n+1 k=n+1
1 p—n—1
/ Z( D dr = /(—t)” Z (—1)? dt
0 f=n+1 0 =0
p—n Lo\ _ (_
/( r)" — (=1)! g = — (=0)" — (=1)” dr
1 —(=1) 0 141

P L
dr + (-1 dr.
e

_(_l)n,1/1 "
- y =g

* Soit n € N* fixé. Comme :
> 1 tP i 1 »
0 —dt tP dt
\/0 L+1 \./o

Zati b 1
p+1{, p+1 pxo
on déduit du résultat précédent, en faisant tendre 1’entier p vers
1

Uinfini: Vn e N, R, = (—1)""!

w = (=1 L Tt
I1 nous reste a trouver un équivalent simple de cette derniere
intégrale, lorsque I’entier n tend vers I’infini.

n

dr.

1
2) Notons, pour toutn € N : [, = /
o 1+t

Effectuons une intégration par parties, pour des applications
de classe C' sur le segment [0; 1] :

gl 1 1 L gntl —1
I = L —/ ar
n 14ty Jo nt1(+1)2

1 ot
= 4F / dr
2m+1) n+1J, (1+1)?

Comme
Ll 1 1
—dtgf = — ——50,
o (1+1)? 0 n+2 noo
on déduit :
1 1
L=——+——o(l)

2n+1) n+1
A n 1 M 1y 1 + 1 1
“\2n ¢ n ¢ n)  2n ¢ n) no 2n

On conclut : R, ~

a) * Une récurrence immédiate montre que, pour tout
neN,u,existeetu, > 0.

* On adonc :

VneN, upp =/n+u, >/n— +00,
noo

d’ou: u, y ——> + 00,
noo
puis, par décalage d’indice : u, —— 4+ co.
noo

b) Puisque u,, —— + 00, la suite (u,),en n’est pas décrois-
noo

sante.

Il existe donc ny € N tel que : uyg41 = Up,.

Montrons, par récurrence : Vn = ng, Upiq = Uy,.

* La propriété est vraie pour n.

* Si la propriété est vraie pourunn € N tel que n > ny, alors :

Upto = V(n+1)+un+l 2 VIt Uy = Uy,

donc la propriété est vraie pour n + 1.
Ceci montre, par récurrence sur z :

Vn 2 no, Upti 2 Uy,
donc la suite (u,),>n, €st croissante.

c¢) Considérons, pour tout n € N, le polyndome
P, =X*—X-—neR[X].
On a, pour tout n > ny :

2
Pn(un+1) =U, g —Uppr — N

= (n+uy) ) < 0.

—Upp — N = _(unJrl —

Il en résulte que u,; est compris entre les deux zéros de P, :

I=VTHdn _ 14+ YT+dn

S lpy1 S
2 2

[ S
<0

l+«/1+4n

Ainsi : Vn 2 ng 2

) O<un+1\
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donc: u,y = O (Vn) = o(n),
puis, par décalage d’indice : u, = o(n — 1) = o(n).

En reportant dans la formule définissant la suite, on a donc :

Upt1 = /1 +un \/—
u, ~/n—1 ~ /n.
noo noo

puis, par décalage d’indice :

d) Pour o € ]0; +o0f fixé,ona: u, ~

D’apres I’exemple de Riemann et le théoreme d’équivalence
pour des séries a termes réels 2> 0, on conclut :

1

la série de terme général — converge si et seulement si
u
n

o L .
5 > 1, c’est-a-dire si et seulement si : o > 2.

n

) . .
7 est alternée, puisque

Un

e) La série de terme général

uf>0.

Son terme général tend vers 0, puisque u, ——> + 0o et
noo

B> 0.
La suite — est décroissante a partir d’un certain rang,
Up / n>0

puisque la suite (u,),>0 est croissante a partir d’un certain rang.

D’apres le TSCSA, on conclut que la série de terme général
(=1

B
Un

converge, pour tout 3 € ]0; +oo[ fixé.

1) Existence :

On a, par développements limités :

1 1
U, =nln{l+—-)—(1——
n 2n
(1 1 4o 1 { 1y 0 1
AU n3 2n) n?)
D’apres I’exemple de Riemann 2 > 1) et le théoréme de ma-

Jo(z)

. . 1
Ainsi, la série E 0] <—2) est absolument convergente, donc
n
n

JOI'athIl pour des séries a termes

converge.

convergente.

On conclut que la série E u, converge.
n

2) Calcul -

Essayons de calculer les sommes partielles , en amenant un té-
lescopage. On a, pour tout N € N* :

Y=Y (143) - (1-3)

N 1 1
1 1) —1 — N+ - -
Zn n(n + 1) nn +2;n

n=1

et:
N
Zn(ln(n—{—l)— lnn>
n=1
N N
= Zn ln(n—i—l)—Zn Inn
n=1 n=1
N+1
= Z(n—l)lnn—annn
n=2
N+1 N+1
= —Z 1nn+annn—annn
= —In((N+D)+N+1 In(N+1).
D’ou:
N
D up=—In((N+D!)+((N+1)In(N+1
n=1
1 1
—N+ = -
+ 2 ;n
D’apres la formule de Stirling n! ~ <E> 27n,
noo €]
(N + 1)N+le=N e
on a ~ .
(N+ D! Neo 27N
D’ou
N 1 N+1,—N
W re :m( ° (1+ o(1))>
(N + 1)! A2mN Noo

1 1
=1—=-In@27m) — -InN 1).
7 @) = = a3l
D’autre part, en utilisant la constante d’Euler, on a :
X1
> = =IN+7y+o(l).
n=1 W
On obtient :

Zu,, :( — — In@27) — ! lnN) —l—%(lnN—f—fy)—f—o(l)

1 1
=1- 3 In(27) + E’y—f—o(l).

On conclut que la série Z u,, converge (ce qui a déja été éta-
n=l1
bli en /) plus directement) et que :

§ U, =

1—= ln(27r) aF ’y 0,366365 .



1) Existence :
1 1
n(2n + 1) noo 2n
D’apres I’exemple de Riemann (2 > 1) et le théoreme d’équi-
valence pour des séries a termes > 0, on conclut que la série

E u, converge.

n=1
2) Calcul :
Essayons de faire apparaitre un télescopage dans 1’expression

des sommes partielles, en utilisant une décomposition en élé-
ments simples d’une fraction rationnelle.

Ona: u, = 2/0

On a facilement la décomposition en éléments simples :

1 1 2

XX+ X 2X+1°

D’ou, pour tout N > 1:
N N 1 2
;"”:;<2_2n+1>
Nl N
A=A
n=1 p=2 n=1

=2( 1nN+y+Nooo(1))—2(1n(2N+1)+y+0(1))+2

2N+1 1

1
=2In +24+0(1) — 2In-+2=2-2In2.
Noo 2

N
2N +1
On conclut que la série Z u, converge (ce qui était déja ac-
n=1

+00
quis d’apres 1)), et que : Z U, =2—2In2.

n=1

sont de méme

Les séries Zi et Zln

n>1 Pn n=1 1 — —
pll
nature, puisque :
1 1 1
In :—ln(l——>~—>0.
1— i Pn/ © Pn
Pn
N N 1
Soit N e N*. Ona: ;lnl = ,!:[11 i

Pour chaque n de {1,...,N}, on a, en utilisant une série géo-
1 ==

:Zﬁ'

— — kn=0

Pn
,pn} admet une décomposition primaire

métrique :

Tout entier v de {2,. . .

v=pi...pY,ou ry,...,ry sontdes entiers naturels.

De plus, pourtout nde{l,...,N}: py = v = p > 2™,

In py
donc < .
S Th2
En notant py = E 2% ) 41 d
n notan = , On aaonc .
& n2
1 Pn g
Vne({l,...,N}, T2,
1— — kn=0 Pn
Dn
N N PN
R | (o
nll__ n=1 k,,Opﬂ
p}l

Comme, tout entier v tel que 2 < v < py admet une décom-
position primaire dont les facteurs premiers sont tous < py,

ona:

N Pn 1 PN 1
g k,,Z::opﬁn =i

. . . 1 .
Puisque la série harmonique E — estdivergente et atermes
v
v>1

> 0,etque py ——> +oo,ona :
Noo

PN
= =——> SFG9,
v Noo
v=1
N
11 en résulte l_[ — 4+ 00,
Noo
n=11_— —
Pn
N N
Z —— + 00, et enfin — —— 4 o00.
— Noo — Pn Noo
n=1 | p— n=I1

Pn

. L. L.
Finalement, la série Z — diverge.
n=l1 Dn

Remarque : Le résultat estimmédiat si on sait que p, ~ nlnn
noo

(résultat tres difficile a obtenir).

a)l¢cas:a=1:

Raisonnons par 1’absurde : supposons que la série E —
n n

converge.

2 . url
Alors, nécessairement — ——— 0, donc :
p  nOO

On a, par télescopage, pour tout N > 2 :
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N
=Z(lnS,, —InS,_;) = InSy — InS;.

n=2

ZN: In S
n=2 -

Comme la série E u, diverge et est a termes

n

>0,o0na:

—> 400.
Noo

N
s N, Sn
SNN—OO>—|—oo,d0u. E In

n=2 n—1

Ceci montre que la série Z In diverge.

n>2 n—1
Par théoreme d’équivalence pour des séries a termes 2> 0, on

- Uy . ..
conclut que la série E S—" diverge, contradiction.
n n

u
On conclut que la série Z S—" diverge.
n

2¢cas:ae€l0; 1] :

Comme S, ——> + 00, on a, pour n assez grand :
noo

Mll
S < S,, donc E 2 S > 0. Puisque la série Z
diverge (cf. 1°' cas), on conclut, par théoreme de minoration

pour des séries a termes >

0, que la série Z % diverge.
3¢cas:a€]l;+oof :
On remarque que, pour tout n € N* :
w Su— Sue 2 Sl
St R Lot L
Sy Sy Si1 Si Sn1 X%

n

D’ou, par addition et relation de Chasles, pour tout N > 2 :

Sn SN 1 oo q
n s X Si X

. . L. u
Ceci montre que les sommes partielles de la série Z S_:" sont
n

majorées et donc, puisqu’il s’agit d’une série a termes > 0, on

(IJ

2.9 Up
conclut que la série E Ja converge.

n n

. L. u . .
Finalement : la série — converge si et seulementsi:a > 1.
Sa'
n

n

b) Méme méthode qu’en a). On obtient :

. u . .
la série E —Z converge si et seulement si : o > 1.
nzl 'n

1) Existence de C
D’abord, il est clair que, pour toutn € N*, u,, existe et u,, > 0.

Notons, pour tout n € N* :

n

11
=1nun=Zln<1+k+k2>

k=1

L1 I
Ona: n(1+5:+) ~ 1
e n(+k+k2>kock

1314 * . — _
Considérons, pour toutn € N* :  w, = Z =

On a, d’apres I’étude de la constante d’Euler :
w, =Inn+~v+ o (1).
noo
D’autre part :

Z 1 1 1
U"_w"22<ln(l+k+k2> z)

k=1

noté ay

Et, en utilisant des développements limités :
1 N 1 1 N 1 1
g=|l-+=)—-=+0ol=)—-
e TRe) e T Ne) Tk

(] LN
“w N\ 2 T

D’apres I’exemple de Riemann et le théoreme d’équivalence

pour des séries a termes > 0, la série E a, converge. Notons
3

Onadonc: v, —w,

=) a=S+o(),
k=1

dou:v,=w,+S+o0(l)=Inn+~v+ S +0(1),
puis :

Innty+S+o(1) _ p ¥ +Sg0() o oVHS,
noo

vy =" =¢

En notant C = ¢S > 0, on conclut : u, ~ Cn.
noo

2) Evaluation de C :

* On a, pour tout n € N* :

n 1 1 n
w=T1(1+z+5)>11(1+5)
k41 23 1
= + (n+) I’l+1>n.
wh & 1-2---n
. . ul‘l
Ainsi : VneN, —>1.
n

u
Comme — ——> C, on déduit: C > 1
n noo

* On a, pour toutn € N* — {1} :

[T L) =3[ (e 2o 1)

k=1 k=2
Et, pour tout k = 2 : (1) 1+1—|— ! <14+ — !
k' k2 k—1"
En effet :
1 1 1 1
D=eSia 1 eS e



et cette derniere inégalité est vraie.
On déduit :

n 1 n k
N (T
g k—1 py =1
2..
= " 3n.
1---(n—1)
. . u}l
Ainsi : Yn=>2, —<3
n

Uy P
Comme — —— C, on déduit : C < 3.
n noo

Finalement : 1 < C < 3.

a) Calculons les sommes partielles de la série

( 1)" 1 ) ) ) )
E en faisant intervenir des intégrales.
n
n=l1

On a, pour tout n € N* :

' (D!
%

k=1

n 1
— Z(_l)k—l/ xk_ldx
k=1 0
1 n
(5 )
0 k=1
1 n—1
[/
0 k=0
_ /1 1—(=x)"
I )
Lo (-
d =il
/0 T+ TED /0 I+ x
1 X" 1 1
onasos [[Fnacs [wan= iy o0
Donc :
( l)k 1

n _ - 1 1
> [ e
=1 k noo 0 1+x

_l)n—l

=[In(1 +x)]} = n2.

Ceci montre que la série Z

n=>1

pouvait montrer plus directement par le TSCSA) et que, pour
+00 (_ l)kfl

converge (ce que I’on

tout n € N, son reste R, =
k=n+1

_ +oo (_l)k—l 3 n (_l)k—l
_Z k ,; k

k=1
—fl L g /l R 1)"*1/1 AR,
_0 1+X . 0 1+x . 0 1+x

est donné par :

1 x"
=(-D" dx
( )/ol—l—x

b) De méme qu’en a), on a, pour tout n € N* :

n k
R, = 1’([ d
; 4 ];( ¥ | TR
1 n
(—x)")dx
1+x(k2=;

1
=

1 n+l
:f 10

o 1+x 1—(—x)

1 1 n+1
:/o Arrp XTED /(1+x)2

De la méme facon qu’en a), on déduit que la série Z R,
n=0

+00
2 R

k=n+1

converge et que, pour tout n € N, son reste p, =

vérifie : p, = (— 1)”“/ (1+x)2

c¢) 1) On effectue une troisieme fois le méme type de calcul.

On obtient, pour toutn € N :

n 1 X " 1 xn+2
== ——dx + (=" /7dx,
;” /0<1+x>3 T T
la série Z p, converge, et :
+00 1
Y= [ o
o (1+x)?

n=0
/1 ( Y )
y2 3

2) On a, pour toutn € N :

1 xn+l
—(=D"p, = | ———d
(=D"p, d+x) 53
1 n+l1
;[ A N S SN
) 22 4(n+2) nx 4n

D’apres I’exemple de Riemann, le théoreme d’équivalence pour

des séries a termes > 0, et le théoreme de majoration pour des

séries a termes > 0, on déduit que la série Z —(—=1)"p,
n

diverge. Par passage a 1’opposée, on conclut que la série

Z(— 1)"p, diverge.

Attention : Malgré les notations, la suite (p,,), est alternée, et

la suite ((— l)”p,,)” est a termes de signe fixe (tous négatifs).
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n
Notons, pour tout n € N* : u, = QO(Z .
n

On a, pour tout n € N* :

2n 2n gO(k) 1 2n
Z ug = Z i :4_nzkz (k) .

k=n+1 k=n+1

=n+1
Puisque les entiers o(n + 1),...,p(2n), sont deux a deux dis-
tinctset > 1,ona:
2n n
. nn+1)
T o> Lt
=n+1 i=1

2n
n+1 1
d’ou : Z Uy = > —.
k=n+1 8n

Si la série E u; convergeait, on aurait alors, en notant
>1

contradiction.

p(n)
2

On conclut que la série Z

n=1

diverge.
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Suites et séries

d’applications

Il Plan I

Les méthodes a retenir 159
Enoncés des exercices 165
Du mal a démarrer ? 174

Corrigés 179

Ce chapitre 5 ne concerne pas les étudiant(e)s de PT.

PC

Thémes abordés dans les exercices

Etude de la convergence simple d’une suite d’applications

Recherche de limites d’intégrales, d’équivalents d’intégrales, de développe-
ments asymptotiques d’intégrales

Approximation uniforme de fonctions par des fonctions d’un type donné
Etude des convergences (simple, absolue, normale) d’une série d’applications

Etude de la somme d’une série d’applications : ensemble de définition, conti-
nuité, limites, classe, variations, tracé de la courbe représentative

Obtention d’égalités du type intégrale = série.

Points essentiels du cours
pouv la vésolution des exevcices

Pour une suite d’applications : définition de la convergence simple

Théorémes du cours pour les suites d’applications : C.N. et limite, C.N. et
continuité en un point, C.N. et continuité sur un intervalle, C.N. et intégra-
tion sur un segment, C.N. et dérivation

Théoréme de convergence dominée
Les deux théoremes de Weierstrass

Pour une série d’applications : définition des convergences (simple, absolue,
normale), liens logiques C.N. — C.A. = C.S.

Théorémes du cours sur les séries d’applications : C.N. et limite, C.N. et
continuité en un point, C.N. et continuité sur un intervalle, C.N. et intégra-
tion sur un segment, C.N. et dérivation

Théoréme du cours sur I’intégration sur un intervalle quelconque pour une
série d’applications.
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Chapitre 5 - Suites et séries d'applications

158

Ce chapitre 5 ne concerne pas les étudiant(e)s de PT.

PSI

Thémes abordés dans les exevcices

Etude des convergences (simple, uniforme) d’une suite d’applications

Recherche de limites d’intégrales, d’équivalents d’intégrales, de développe-
ments asymptotiques d’intégrales

Approximation uniforme de fonctions par des fonctions d’un type donné

Etude des convergences (simple, absolue, normale, uniforme) d’une série
d’applications

Etude de 1a somme d’une série d’applications : ensemble de définition, conti-
nuité, limites, classe, variations, tracé de la courbe représentative

Obtention d’égalités du type intégrale = série.

Points essentiels du cours
pour la vésolution des exevcices

Pour une suite d’applications : définition des convergences (simple, unifor-
me), lien logique C.U. = C.S., caractérisation de la C.U. de (f,), vers f

par: [ fu = flloo — 0
noo
Théorémes du cours pour les suites d’applications : C.U. et limite, C.U. et

continuité en un point, C.U. et continuité sur un intervalle, C.U. et intégra-
tion sur un segment, C.U. et dérivation

Théoréme de convergence dominée
Les deux théoremes de Weierstrass

Pour une série d’applications : définition des convergences (simple, absolue,

normale, uniforme), liens logiques CN.—=CU —=UC_C.S.,

C.N.— C.A. = C.S., lienlogique C.U. = (||fulloc —> 0), carac-
noo

térisation de la C.U. par : ||R,||occ —> O
noo

Théorémes du cours sur les séries d’applications : C.U. et limite, C.U. et
continuité en un point, C.U. et continuité sur un intervalle, C.U. et intégra-
tion sur un segment, C.U. et dérivation

Théoreme du cours sur I’intégration sur un intervalle quelconque pour une
série d’applications.




Les méthodes a retenir

e | eS méthodes i\l retenir

Pour étudier la convergence simple
d’une suite d’applications
(fu : X — E),cn, dans un exemple

Pour étudier

la convergence uniforme
d’une suite d’applications
(fu : X — E)pen,

dans un exemple

Fixer x € X quelconque, étudier la convergence de la suite
( fa (x))neN dans E, et, si celle-ci converge, déterminer sa limite f (x).

== Exercices 5.1, 5.8, 5.13, 5.27

Dans des exemples faciles, on peut quelquefois montrer directement
la convergence uniforme, ce qui entraine la convergence simple.

== Exercice 5.1 a).

Sachant déja que (f,), converge simplement sur X vers une certaine
application f : X — E, voir si, a partir d’un certain rang, f,, — fest
bornée, et, si c’est le cas, on a :

C.U.
fn ;f<:>||fn_f||oo > 0.
noo noo

On essaiera de calculer || f;, — f ||, Souvent en étudiant les variations
de fn - f
== Exercices 5.1 ¢), d)

Si le calcul de || f, — flleo ne parait pas facile, étudier || f;, — f||oo-
A cet effet :

* pour montrer la convergence uniforme, majorer || f, — f||c par un
terme tendant vers O lorsque I’entier n tend vers 1’infini.

== Exercices 5.1 a), b),5.8¢),5.13,5.27 b), ¢)

* pour montrer la non-convergence uniforme, minorer || f, — f||
par un terme ne tendant pas vers 0 lorsque I’entier n tend vers 1’ infini,
par exemple, en évaluant | f, — f| en un point convenable dépendant
de n.

== Exercices 5.1¢) ah),5.8a), b), d),5.27 a), d)
Pour montrer la non-convergence uniforme, on pourra parfois mettre

en défaut une propriété qu’aurait transmise a f la convergence unifor-
me de la suite (f,),. Par exemple, si les f,, sont toutes continues, si

cs . . . , .
Ja —> fetsifest discontinue, alors la convergence n’est pas unifor-
noo

me.

W= Exercices 5.1 g), 5.27 b)

. . C.S. c.y. . .
Sif, — fetf, —,Z> f, on cherche alors éventuellement des parties
noo noo

convenables Y de X telles que f;, |y <4 [y
noo

== Exercices 5.1 ¢) a h).
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Dans un cadre abstrait,

cu.
pour montrer f,, — f sur X
noo

Pour montrer qu’une application,
obtenue comme limite d’une suite
d’applications, est continue, est de
classe C, C¥, C*®

Pour permuter intégrale et limite
en vue d’obtenir une formule du
genre

lim/f,,(x)dx - /(hmf,,(x))dx
noo 1 1 noo

Pour permuter intégrale et limite
pour un réel, en vue d’obtenir une
formule du genre :

lim /f(x,t)dt = /( lim f(x.t)) dt
X—a I I X—a
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« Evaluer [l fn — flloo et établir || f,, — flloo — 0, souvent par une
majoration convenable. "

== Exercices 5.9 a 5.12.
* Ne revenir a la définition en € et N qu’en dernier recours.

Essayer d’appliquer le théoréme du cours sur continuité et convergen-
ce uniforme sur tout segment de I’intervalle d’étude, ou le théoreme
du cours sur la dérivation pour une suite d’applications.

== Exercice 5.46 c).

Essayer de :
e appliquer une méthode élémentaire : si , pour x € I fixé, la suite

( fa (x))n admet une limite, notée f (x), voir si f est intégrable sur 1,

former’/[fn—flf

vent : linéarité de I'intégration, relation de Chasles, changement de
variable, intégration par parties, expression conjuguée, majorations

classiques), obtenir ‘/fn —/f‘ —— 0, d’on /fn — | f
1 I noo I

n oo I

, et, par majorations élémentaires (utilisant sou-

== Exercice 5.18 a)

* appliquer le théoréme du cours sur convergence uniforme (PSI) ou
normale (PC) et intégration sur un segment, dans le cas ou :

x [ = [a; b] est un segment

% pour tout n, f, est continue sur [a ; b]

* (fu)n converge uniformément sur [a ; b] vers une certaine f
* appliquer le théoréme de convergence dominée dont on rappelle les
hypotheses :

* pour tout n, f, est continue par morceaux sur /

C.s.
* fy —> fsurl
noo

* f est continue par morceaux sur /
x il existe ¢ : I —> R continue par morceaux, > 0, intégrable sur
I telleque:Vne N, Vx e, |f,(x)] < k).

== Exercices 5.3, 5.4, 5.16, 5.17, 5.42, 5.43.
Essayer de :

* se ramener a une question de continuité, et appliquer le théoreme de
continuité sous le signe intégrale

= Exercice 5.30
e combiner le théoreme de convergence dominée et la caractérisation
séquentielle des limites.

== Exercice 5.30.



Pour trouver un équivalent simple
d’une intégrale / [, lorsque ’en-
In

tier n tend vers I’infini, dans
laquelle, a priori, I’intervalle et la
fonction dépendent de n

Pour obtenir

une approximation uniforme
par des polynémes satisfaisant
une condition supplémentaire

Pour faire intervenir une condition
de majoration des degrés des
polynomes d’une suite convergeant,
en un certain sens, vers une fonction

Pour étudier les convergences
d’une série d’applications

Z(f,,:X—>K)

n

Pour étudier les convergences
d’une série d’applications

DX —K)

n

Les méthodes a retenir

Essayer de se ramener a une recherche de limite d’intégrale, sur un
intervalle fixe, par transformation de 1’écriture de I’énoncé, utilisant
les méthodes usuelles : linéarité de 1’intégration, relation de Chasles,
intégration par parties.

== Exercices 5.18, 5.19, 5.30 a 5.32.

Appliquer le premier théoreme de Weierstrass, puis modifier les poly-
ndmes obtenus, de facon a en construire d’autres, vérifiant la condi-
tion supplémentaire, et convergeant uniformément encore vers f.

== Exercice 5.15.

Essayer d’utiliser le fait que, pour N € N fixé, Ry[X] est de dimen-
sion finie. En particulier, Ry[X] est complet (PSI), donc fermé, et
toutes les normes sur Ry [X] sont équivalentes entre elles.

== Exercice 5.28.

Se rappeler d’abord, avec des abréviations évidentes :
CN.—CA = C.S.

Suivre, sauf exception, le plan de travail proposé dans le cours :

* Est-ce que Z f» converge simplement sur X ?
n
Si non, remplacer X par la partie de X formée des x € X tels que la

série numérique E fn(x) onverge, puis passer a I’étape suivante.
n
Si oui, passer a 1’étape suivante.

e Est-ce que Z fn converge normalement sur X ?

n

Si oui, alors, d’apres le cours, Z [ converge absolument et simple-
n
ment sur X, et I’étude est finie.

Si non, voir si E fn converge normalement sur des parties conve-
n

nables de X (en option).

== Exercices 5.5, 5.6 a), 5.7 a), 5.20, 5.21 a), 5.22 a), 5.24 a),
5.33,5.34 a), 5.35 a), 5.38 a), 5.44 a), 5.45.

Se rappeler d’abord, avec des abréviations évidentes :

CN.—=CU = C.S.,
CN.—=CA. = C.S.

Suivre, sauf exception, le plan de travail proposé dans le cours :

* Est-ce que Z fa converge simplement sur X ?
n

Si non, remplacer X par la partie de X formée des x € X tels que la

série numérique E fn(x) onverge, puis passer a I’étape suivante.

n
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Pour étudier la convergence simple
d’une série d’applications

Y (X —K)

Pour étudier la convergence
absolue d’une série d’applications

Z(f,,:X—>K)

Pour étudier
la convergence normale
d’une série d’applications

Y X —K)
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Si oui, passer a I’étape suivante.

* Est-ce que Z fn converge normalement sur X ?

n

Si oui, alors, d’apres le cours, E f» converge uniformément, absolu-
n

ment, simplement sur X, et I’étude est finie.

Si non, voir si E fn converge normalement sur des parties conve-
n
nables de X (en option), et, d’autre part, passer a 1’étape suivante.

* Est-ce que || fulloo — 0 7
noo
Si non, alors, d’apres le cours, E f» ne converge pas uniformément

n
sur X.

Si oui, passer a 1’étape suivante.
* Est-ce que ||R;||coc —> 0 ?
noo

Si oui, alors E Jfn converge uniformément sur X.

n

Si non, alors E fn ne converge pas uniformément sur X.

== Exercices 5.5, 5.6 a), 5.7 a), 5.20, 5.21 a), 5.22 a), 5.24 a),
5.33,5.34a),5.35a),5.38 a), 5.44 a), 5.45.

Etudier, pour x € X fixé, la nature de la série numérique Z fa(x).

n

== Exercices 5.5, 5.6 a), 5.7 a), 5.20, 5.33, 5.35 a), 5.38 a),
5.44 a), 545 a).

Etudier, pour x € X fixé, la nature de la série numérique Z | fu(x)].

n

== Exercices 5.5, 5.6 a), 5.33 ¢).

Etudier la nature de la série Z [ folloo-
n

S’il n’existe pas N € N tel que, pour tout n > N, f, soit bornée, alors
Z f» ne converge pas normalement sur X.

! == Exercices 5.20 a), 5.33 a)

S’il existe N € N tel que, pour tout n > N, f, soit bornée, alors,
d’apres le cours : Z i C.N. = Z || fulloo converge.
n n

== Exercices 5.5, 5.6 a), 5.20 b), 5.33 a), b), d), ¢), 5.34 a),
535a),5.38a),5.44 a),5.45 b).



Pour étudier
la convergence uniforme
d’une série d’applications

DX —K)

Pour montrer que la somme d’une
série d’applications admet une
limite en un point, ou est continue
en un point, ou est continue sur
son ensemble de définition

Les méthodes a retenir

Se rappeler d’abord : C.N. = C.U.
En pratique, on aura déja montré que Z fn converge simplement et

n
ne converge pas normalement.

Si || fulloo —/— 0, alors, d’apres le cours, Z f» ne converge pas uni-
n oo

n
formément sur X.

== Exercices 5.5 ¢), 5.20, 5.33 a), d), 5.44 a)

Si || fulloo — 0, former le reste d’ordre n :
n oo

+00
Ry: X — K, x+— Ryx)= Y filx),

k=n+1
et résoudre la question : ||R,||occ ——> 0 ?
A cet effet, évaluer R, (x), puis ||I’é;(|)|oo.
Pour cela, essayer d’utiliser :

* une comparaison série/intégrale, lorsque les f, (x) sont tous > 0 et
que, pour x fixé, la suite n — f,(x) s’extrapole simplement en une
fonction ¢, : t —> @, (), qui soit décroissante, continue, intégrable,

+00
et pour laquelle I’intégrale / ¢, (t) dt soit calculable ou évaluable.
1
== Exercice 5.33 b)

% une majoration géométrique, si E Jfa(x) ressemble a une série
n
géométrique.

x le TSCSA si, pour chaque x € X, la série Z fn(x) releve du

TSCSA.
Onauraalors : Vx € X,Vn e N, |R,(x)| < |fur1(®)],
puis : Vn e N, [|Rylloc < Il fa+1lloo-

== Exercices 5.5 g), 5.6 a), 5.33 ¢)

* une minoration du reste, si tous ses termes sont > 0, par une somme
de n termes (par exemple), que 1’on minorera encore, si possible.

== Exercices 5.33 a), d), e).

Essayer d’appliquer les théorémes du cours :

e théoreme sur convergence uniforme (PSI) ou normale (PC) et limite
e théoreme sur convergence uniforme (PSI) ou normale (PC) et conti-
nuité en un point

* théoreme sur convergence uniforme sur tout segment (PSI) ou nor-
male sur tout segment (PC) et continuité sur I’intervalle de départ.

w= Exercices 5.21 b), 5.22 b), 5.24 b), 5.34 b), 5.35 b),
5.38 b), 5.46 c).
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Pour montrer S(x) — +o0,
X—>a

+00
ou Sx) =) " fulx)
n=1

Pour permuter intégrale et série,
en vue d’obtenir une formule du
genre 2

/ fux) de= f Zf,, (x)

Essayer de :
e minorer convenablement S(x).

== Exercice 5.44 c)

e revenir a la définition d’une limite infinie.
Si, pour tout n € N, 0 < f,(x) — £, et si la série ZE,,, diverge,
X—>a

n

N
alors, pour tout A > 0, il existe N € N tel que Zﬁn > A+ 1, puis,
n=0
au voisinage de a :

+00 N
S =Y fu) =Y falx) = A
n=1

n=1

Essayer de :
e appliquer le théoreme sur convergence uniforme (PSI) ou normale
(PC) et intégration sur un segment, dans le cas ou :

x [ = [a; b] est un segment
* pour tout n € N, f, est continue sur [a ; b]

* Z fn converge uniformément sur [a ; b].
n
e appliquer le théoreme du cours sur I’intégration sur un intervalle
quelconque pour une série d’applications, dont on rappelle les hypo-
theses :
x pour tout n € N, f, est intégrable sur /

* Z Jfn converge simplement sur /

n
+00

* E [ est continue par morceaux sur /
n=0

x la série numérique Z / | fn(x)] dx converge.

n=0

== Exercices 5.25, 5.26, 5.37, 5.38 ¢), 5.39

* montrer que I’intégrale du reste tend vers 0.
n

En notant, pour tout n € N, §, = Z fr la n-eme somme partielle,

k=0
+00

S = Z fr la somme totale (la convergence simple doit étre déja
k=0

acquise), R, =S-S5, = Z fx le n-eme reste, les applications
k=n+1

S., S, R, sont intégrables sur I (déja acquis pour f,, puis pour S, par

somme d’un nombre fini d’applications intégrables sur /, pour S par

un raisonnement approprié a I’exemple, pour R, par différence), et :

/IS=/ISn+/IRn=kZ:;/Ifk+/IRn
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Pour établir une égalité du type
intégrale = somme de série

Pour montrer que la somme
d’une série d’applications
est de classe C1, Ck, C*>

Enoncés des exercices

Si f R, —— 0, on déduit que la série Z fi converge et que
1

noo k>0 I

+00
S = / fx, d’out le résultat voulu.
=%

Pour montrer que I’intégrale du reste tend vers 0, essayer d’utiliser
les méthodes classiques d’évaluation des restes des séries conver-
gentes : comparaison série/intégrale, majoration géométrique,
TSCSA.

== Exercices 5.40, 5.41.

Développer la fonction sous I’intégrale en somme d’une série de
fonctions (souvent par utilisation d’une série géométrique, ou d’une
série entiere voir ch. 6, ou d’une série de Fourier voir ch. 7), justifier
la permutation intégrale/série, et calculer le terme général de la série
apparaissant.

== Exercices 5.25, 5.26.
Essayer d’appliquer le théoréme du cours sur la dérivation pour une
série d’applications, éventuellement de fagon répétée.

== Exercices 5.7 b), 5.23 b),5.34 d), 5.44 b).

=mmme [noncés des exercices

— Exemples d’étude de suites de fonctions, convergence simple, convergence uniforme

PC : Etudier la convergence simple pour les suites d’applications suivantes :

PSI : Etudier (convergence simple, convergence uniforme, convergence uniforme sur des parties
de ’ensemble de départ) les suites d’applications suivantes :

a) fu

b) fu

) fu
d) f

e)fa

g

n—+1

‘R— R, xt+—> ———, n e N*

n? 4 x%’

:[0;1] — R, x—> —, neN*

1+nx

R — R, xr—>L n € N*

s
x2+n2

:[0;1] — R, x+— x"(1—x), neN*

nx3

[0; +00[— R, x—> ———, neN

14+ n2x’

1
:[0;1[—>R,x|—>Min<n, ) neN

V1 —=x
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1
nlx|—n+1 si |x|>1—-—

ghhil-1:1] — R, x+— " neNnz=2
0 si x| <1— 1
n
.1 .
Wi R—R, x|S0 S E0 N
0 si x=0
- Convergence simple et : croissance, convexité, lipschitzianité

Soient / un intervalle de R, (f,, : I —> R),cy une suite d’applications, f : I —> R une appli-
cation, k € R.. Montrer que, si (f,).cy converge simplement vers f sur / et si, pour tout n € N,
[ est croissante (resp. convexe, resp. k-lipschitzienne), alors f est croissante (resp. convexe, resp.
k-lipschitzienne).

- 5157 Exemples de recherche de limites d’intégrales
Déterminer les limites suivantes, lorsque 1’entier n tend vers I’infini :

+o0 —x +o0 +00 n

a) lim ——dx  b)lim —dx c) lim _r
noo Jooo 14 x2 noo Ji o nx?4e noo Jooo x4 x4 1
— 51| Exemple d’utilisation du théoréme de convergence dominée

Soit f : [0; 1] —> C continue par morceaux. Montrer :
1 £\ 1
/ f(x)(l——) dx —— f(x)eFdx.
0 n noo 0

- 5151 Exemples d’étude de convergence pour une série d’applications
PC : Etudier (convergences simple, absolue, normale) les séries d’applications Z [, suivantes :

2 n
PSI : Etudier (convergences simple, absolue, normale, uniforme) les séries d’applications Z Ja
suivantes : n

sin (nx)
24527

a)f, :R— R, x+—> e N*

n

b)f,:[0:1]— R, x —> n’x"(1 —x)", neN

nx2

——, neN*
n3 + x?2

c)fu i 10; +oo[— R, x —>

X —n242

—e ", neN*
n
n—+x

e)fn:[0; +oo[— R, x — m, n e N*

d)f, :[0; +oo[— R, x —

(="
(=n"

.
x2+n

Dfu 105 +00o[— R, x +—> e N*

n e N*,

g)fni10; +oo[— R, x —>
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5.6

5.8

5.9

5.10

Enoncés des exercices

Etude de la somme d’une série de fonctions, continuité

On note, pour toutn € N*: f,, : [0; +o0o[— R, x — (_1)"6T.
n+x

a) Etudier les convergences de la série d’applications Z fa-
n=l1

+00

b) Montrer que la somme S = Z f est continue sur [0 ; +o00[.
n=1

Etude de la somme d’une série de fonctions, classe C*

In(n + x)

On note, pour toutn € N* : f, : [0; +00[— R, x —> >
n

a) Etudier la convergence simple de la série d’applications Z Ja-
n=1

On note S la somme.

b) Montrer que S est de classe C 2 sur [0; +oo[ et exprimer, pour tout x € [0; +oo[, §'(x) et
S”(x) sous forme de sommes de séries.

¢) En déduire que S est strictement croissante sur [0 ; +oo[ et que S est concave sur [0 ; 4-00[.

Exemples d’étude de suites de fonctions, convergence simple, convergence uniforme
PC : Etudier la convergence simple pour les suites d’applications suivantes :
PSI : Etudier (convergence simple, convergence uniforme, convergence uniforme sur des parties

de I’ensemble de départ) les suites d’applications suivantes :

a)f, 105 1] — R, xn—>n(l—x)<sin%> ,neN

1
b)fp : R— R, x —> sin(n+ x), n € N*

2
c)fu:[0; +oo[— R, x —> ln<1+ e ) neN
14 nx

d) f, :10; +oo[—> R, x —> (nx)7, n € N*,

Exemple de convergence uniforme et composition

Soient X un ensemble non vide, (f, : X —> R, ),cn une suite d’applications, f : X — R une

application. On suppose : f, R I
noo
c.U.
Montrer : In(1 + f,) — In(1 + f).
noo
Convergence uniforme pour une suite de fonctions définies a partir d’une fonction donnée
Soit f : R — R de classe C3, telle que £ est bornée.

1 1
On note, pour toutn e N*: g, : R — R, x — nzl:f(x—f——) —2f(x)+f(x— —)]
n n

cu.
Montrer : g, —> f” sur R.
noo
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— Convergence d’une suite de fonctions définies par récurrence

— 5.12
— 5.13
— 5.14
— 5.15
— 5.16
— 5.17
— 5.18

Soit fo : R —> R, bornée, > 0. Etudier la convergence simple et la convergence uniforme de la
suite d’applications (f,, : R — R),cy définie par :

VneN,Vx eR, fi(x) =14 fu(x).

Convergence d’une suite de fonctions définies par récurrence

Soitf, : R —> R, bornée, > 0. Etudier la convergence simple et la convergence uniforme de la
suite d’applications (f,, : R —> R), <y définie par :

YneN,Vx eR, fi1(x)=In(1+ f,(x)).

Limites d’intégrales issues de la fonction I' d’Euler

Etudier la convergence simple et la convergence uniforme des suites d’applications
(fus &n : [0; +00[—> R),cn définies, pour tout n € N et tout x € [0; +oo[, par :

+00

1 * n ,—t 1 n ,—t
fulx) = — t"e ' dt, gn(x)=— t"e ' dr.
n! Jo n! J,

Une application classique du premier théoreme de Weierstrass

Soient (a,b) € R* tel que a < b, f : [a; b] —> C continue.

b
On suppose : Vn € N, / x" f(x)dx = 0. Démontrer: f = 0.

Recherche d’une suite de polyndmes convergeant uniformément vers une fonction
donnée et vérifiant une condition supplémentaire
Soient (a,b) € R? tel que a < b,f : [a; b] —> C continue, ¢ € [a; b].

cu.
o . P, —> f sur[a; D]
Montrer qu’il existe une suite (P,),cn de polyndmes telle que : noo

VneN, P,(c)= f(c).

Exemples de recherche de limites d’intégrales

Déterminer les limites suivantes, lorsque 1’entier n tend vers I'infini :
1 +00
. _x . n—+
a) lim n(e'w - 1) dx b)lim @*+1)
noo Jo noo Jo n—+

T psinnx

X .
2e"d)c ¢) lim ——
X no J_ o n +x

™ +00 L—(x+a)" Yn
dlim | Jr—xsin"xdx e) limf ¢ S dnachos f)lim/ I+ dx.
noo 0 noo 0 X noo 0

Exemple d’utilisation du théoreme de convergence dominée

“1 " ‘et —1
Montrer, pour tout a € [0; +o0o[ ﬁxé:/ —((1—}—{) —l)dx—> ¢
0o X n

noo 0 X

Exemple de recherche d’un équivalent d’une intégrale

Soit f : R — R continue par morceaux, bornée sur R, continue en 0, telle que f(0) # O.
+00
Trouver un équivalent simple de /, = fx) e dx lorsque I’entier n tend vers I'infini.

—00
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Enoncés des exercices

Comportement asymptotique d’une intégrale
1
On note, pour toutn € N* : [, = / V1 —x"dx.
0
a) Montrer : [, —— 1.
n oo

b) Trouver un équivalent simple de 7, — 1 lorsque I’entier n tend vers 1’infini.

Exemples d’étude de convergence pour une série d’applications
PC : Etudier (convergences simple, absolue, normale) les séries d’applications Z [ suivantes :

2 n
PSI : Etudier (convergences simple, absolue, normale, uniforme) les séries d’applications Z I
suivantes : "

a)fy 105 +oo[— R, x —> 1n(1+f>—f, neN
n n

b)fn:[0; +oo[— R, x —> e”‘(i — In <l—|— £>>, n € N*,
n n

Etude de la somme d’une série d’applications, limite

n—+x
On note, pour tout n € N*: f,, : [0; +00[—> R, x +—— Arctan Tomix
n3x

a) Montrer que Z f» converge simplement sur ]O; +oo[ et converge normalement sur
n=1

[1; +o0[. On note S la somme.

+00
1
b) Montrer : S(x) —+> L = Z Arctan — et calculer une valeur approchée décimale de L a
X—>+00 el n

1073 pres.

Etude de la somme d’une série d’applications, développement asymptotique

(="
V1 +nx ’
a) Montrer que Z [, converge simplement sur ]0 ; +o00[ et converge uniformément sur [1 ; +-00[.

n=l1
On note S la somme.

On note, pour toutn € N : f, : [0; +o0o[— R, x —>

b) Montrer : S(x) —+> 0.

¢)Onnote a = f (1" Etablir : S(x) = £ + O (L>
— /n VX x4 \ X4/x

Fonction ¢ de Riemann

+00 1
On note, sous réserve d’existence, pour x € R : ((x) = E —.
n
n=1

a) Montrer : Déf ({) =11 ; +oo[.

b) Etablir que ¢ est de classe C™ sur |1 ; +o0[ et exprimer, pour tout k € N et toutx €1 ; +o0[,
C(k) (x) sous forme de somme d’une série.
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= 525

¢) Btudier les variations et la convexité de ¢.

1 1
d) Montrer : Vxel]l;+ool, —— < (x) <1+ —,
x—1 x—1
. 1 .
et en déduire : ((x) ™. 70 Puis: (x) — +oo.
X—> — x—>1
1

e) Montrer : {(x) —+> I, et¢(x)—1 ~

x—>+o00 2 :

/) Dresser le tableau de variations de et tracer la courbe représentative de (.

Etude de la somme d’une série d’applications, continuité

On note, pour toutn € N* : f, :10; +oo[— R, x — - A) .
n).

a) Etudier les convergences simple, absolue, normale, normale sur certaines parties, uniforme, uni-
forme sur certaines parties, de la série d’applications E fa-

n=l1

+o0 —1)n
Onnote: T :]0;4oc0[— R, xr—>Z( )

n=1

nX

b) Montrer que 7T est continue sur ]0 ; 4+00[.

¢) Exprimer, pour tout x € ]0; 4o0o[, T (x) al’aide de ((x), ou ( est la fonction de Riemann (cf.
exercice 5.23).

Calcul d’une intégrale a I’aide de ( et "

+o00
Montrer : Y a €]0; +00], / 7 x —InEe* — D)) dx = {(a + DT (a),
0

+00
1
ou ( est la fonction de Riemann : ¢ : ]1; +oo[— R, a+— Z

no
n=1 n

+00
et " la fonction d’Euler : I" :10; +00[—> R, s+ I'(s) = / e dr.
0

Calcul d’une intégrale par utilisation d’une série
+00

+00 X 1
Existence et calcul de I = / —— dx. On admettra : — = —.
o shx n? 6

n=1

Exemples d’étude de suites de fonctions, convergence simple, convergence uniforme
PC : Etudier la convergence simple pour les suites d’applications suivantes :

PSI : Etudier (convergence simple, convergence uniforme, convergence uniforme sur des parties
de I’ensemble de départ) les suites d’applications suivantes :

111(1+an) ) 0
a)f,:[0;4+00[— R, x —{  ux si x £
0 si x=0
:10; 2 + (Inx)*"
b)f, :10; 00— R, x —> mW’ neN
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5.31

Enoncés des exercices

c)fy :R— R, x|—>(2”+|x|")%, n e N*

d)f, :10; +oo>*— R, (x,y) —> 1n<x—|— X), n € N*,
n

Convergence simple d’une suite de polynomes de degrés majorés

Soient N € N, (P,),en une suite de polyndmes de C[X] de degrés < N, qui converge simplement
sur un intervalle / (de longueur > 0) vers une application f. Montrer que f est un polynome, de
degré < N.

Limite uniforme, sur un segment, d’une suite de polynomes a degrés majorés

Soient (a,b) € R? tel que a < b, N € N*, (P, : [a; b] —> R),cn une suite de polyndmes
convergeant uniformément vers une application f, et telle que : Vn € N, deg (P,) < N.
Montrer que f est un polyndme et que deg (f) < N.

Exemple de recherche d’un équivalent d’une intégrale a parametre réel

sin (xt)
1+ r#

+00
Trouver un équivalent simple de / (x) = / de, lorsque x —> 0T,
0

Recherche d’équivalents d’intégrales a parametre entier naturel

Trouver un équivalent simple, lorsque I’entier n tend vers I'infini, de :

1 1 In(1 t 2
a) / In(1 + x") dx, on admettra : / LH dr = i
0 0 t 12

1 +00 < )
b)/ x"In(1 4+ x™") dx c)/ dx
0 X

(I+x?)

Recherche d’un développement asymptotique d’une intégrale
dépendant d’un parametre entier

nx"

1 1
Former un développement asymptotique a la précision o( ) de /, = / T3
0

dx, lorsque
I’entier n tend vers I’infini.

On laissera un des coefficients sous forme d’une intégrale.

Exemples d’étude de convergence pour une série d’applications

PC : Etudier (convergences simple, absolue, normale) les séries d’applications Z [ suivantes :

PSI : Etudier (convergences simple, absolue, normale, uniforme) les séries d’apf)lications Z fn

suivantes : n
a)f, 10: +oo[—> R, x — —— (a,b) € (R")? fixé, n € N*
(n + x)?

b) fu : [0; +oo[— R, X neN,n>2
nn
—"
c)fu:[0; +oo[— R, x +—> (2 )x, n € N*
X< +n
d)f, :R— R, x —> Arctan (x +n) — Arctann, n € N
nx
e)fn :[0;+oo[— R, x +— ﬁ’ neN.
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— B

Etude de la somme d’une série d’applications, classe C!

Arctan (x™+1)

On note, pour toutn € N*:  f, : [0; +00[— R, x +—
nn+1)

a) Etudier les convergences de la série d’applications Z f»- On note S la somme.
n=1

b) Montrer que S est continue sur [0 ; 4-o0].

. 1
¢) Etablir : Vx €]0; +ool, Six) = g — s(-).
X

d) Montrer que S est de classe C Usur [0; 1], que S est strictement croissante sur [0; 1], calculer
S(1), et déterminer lim S'(x).
x—>1-
e) Déterminer lim S(x).
xX—>+00

/) Dresser le tableau de variation de S et tracer la courbe représentative de S.

Etude de la somme d’une série d’applications, intégrabilité
1

On note, pour toutn € N* : f, :10; +00o[—> R, x —> m.

a) Montrer que la série d’applications Z f, converge simplement sur ]0 ; +o00[, et converge nor-
n=1
malement sur [a ; +00[, pour tout a € ]0; +o0[ fixé.

b) Etablir que S est continue sur ]0; 4-00[.
¢) Est-ce que § est intégrable sur ]J0; 1] ? sur [1; +-o00[ ?

Equivalent d’une somme d’une série d’applications

+00

x" In2
Montrer : Z e x—’\:l’ =
n=0

Série d’intégrales

+0o0
On note, pour toutn € N* : u, = / x"e ™ dx.
0

Convergence et somme de la série E Uy.
n=1

On exprimera le résultat sous forme d’une intégrale.

Etude de la somme d’une série d’applications, intégrabilité

1

Onnote, pourtoutn € N*: £, :10; +oo[— R, x—> ————.
P Jutl [ A+ nx)(n +x)

a) Montrer que la série d’applications Z [ converge simplement sur ]O ; +o00[, et converge nor-
n=1
malement sur [a ; +oo[ pour tout a € ]0; +ool fixé.

On note S la somme.

b) Montrer que S est continue sur |0 ; 4o00[.

+00 = Inn
¢) Montrer que S est intégrable sur ]0; +o00[ et que : / Sx)dx =142 Z P
0 n=2 e —
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5.41

5.43

Enoncés des exercices

Egalité entre une intégrale et une somme de série

Soit (a,b) € R? tel que 0 b. Montrer / Tshax oy f !
1t (a, u <a<po. . X = ad — .
d —oo Shbx = (2n+ 1) —a?

Calcul d’une intégrale a I’aide de T et I
txfl

e +1

—+00
Etablir : Vxe]0;+oo[,/ dr = T(x0)T (x),
0

+00
ou I' est la fonction d’Euler:  T':]0; 4+o00o[— R, x —> / e dr
0

SRS e
et T estdéfiniepar: 7 :]0;+oo[— R, x — T(x) = Z .
nx

n=1
Egalité entre une intégrale et une somme de série
Soit (a,),en une suite a termes dans R* , croissante, de limite +o00. Montrer :

1 +00 o an +o0 (_l)n
/0 (;(—1” )dx=21+an.

n=0

Comportement d’une transformée de Laplace, en +oc0, en 0
Soit f : [0; +00[—> C continue par morceaux.

a) On suppose ici que f est bornée sur [0 ; +00[.

+00
Montrer : x / e f(r)dt — £(O1).
0 X—> 400

b) On suppose ici que f admet une limite finie £ en 4-o00.

+o00
Montrer : x/ eV f)ydt — ¢
0 x—071

Théoreme de Scheffé

Soient / un intervalle de R, (f, : I —> R),cn une suite d’applications intégrables sur /, a
valeurs 2> 0, f : I —> R une application intégrable sur I.

On suppose :  f, &5 fsurl et / fo— | f
noo 1 I

noo

Démontrer : /|f,, — fl——0.
7 noo

Etude de la somme d’une série d’applications, classe C', équivalent

On note, pour toutn € N :  f, : [0; 1] — R, x —> In(1 +x").

a) Etudier les convergences de la série d’applications Z fn. On note S la somme.
n=0

b) Montrer que S est de classe C' sur [0; 1[ et que S est strictement croissante sur [0; 1].

¢) 1) Montrer : VneN,Vxel0; 1], ka(x)> ln(Zxk>.
k=0 k=0
2) En déduire :  S(x) —l>7 +00.
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d) En utilisant une comparaison série/intégrale, montrer :

I +o0o
Sx) ~ ,oul = / In(1 +¢e7*) du.
1—1- 1 —x 0
 ——— — Convergences d''une série d’applications dépendant d’une suite numérique

Soit (a,),en+ une suite a termes dans [0 ; +o00[, décroissante.

On note, pour toutn € N* : f, : [0; 1] — R, x —> a,x"(1 — x).

a) Montrer que Z fn converge simplement sur [0; 1].

n=1

. . L. ay
b) Montrer que E f» converge normalement sur [0; 1] si et seulement si la série E —
n>1 1 1

converge.

c) PSI : Montrer que Z [, converge uniformément sur [0 ; 1] si et seulement si : a, —> 0.

> noo

 ——— — Etude d’une suite de fonctions définies 2 1’aide d’intégrales, intervention de séries
a) Montrer qu’il existe une suite d’applications (f, : [0; 1] — R),cn et une seule telle que
fo=let:VneN, Vxe[0;1], firu(x) =1+ /x fu(t — t*)dr, et montrer que, pour tout
n € N, f, est un polyndme. ’

b)I)Montrer: VneN,Vxe[0;1], 0< f,(x) < fup(x) <e'.
2) En déduire que (f,).cn converge simplement sur [0; 1] vers une application notée f.

c) Etablir que la suite (f,,),en converge uniformément vers f sur [0; 1], que f est continue sur

[0;1],etque: Vxe[0;1], f(x)=1—|—/xf(t—t2)dt.
0

d) 1) Montrer que f est de classe Clsur[0; 1] et que:Vxe[0;1], flx)=f(x —xz).
2) Montrer que f est de classe C* sur [0; 1].

mmmee Du mal a démarrer?

* Pour étudier la convergence simple d'une suite d'appli- f) Pour x € [0; 1[ fixé, la suite (£, (x)), _, est stationnaire.
cations (f,)n, on fixe x et on étudie la suite (£, (x))

" h) Pour la convergence uniforme sur tout[—a ; a], a € [0; 4+o0[
« PSI : Pour étudier la convergence uniforme d’une suite d'ap- fixg, utiliser 'inégalité connue: V7 € R, [sinz| < |7].

plications (f,,),, apres avoir montré que (f,), converge sim- .
Pour des éléments fixés dans I'ensemble de départ des f,,

plement vers une certaine f, on étudie la convergence vers 0 o . o
passer a la limite lorsque I'entier n tend vers l'infini, dans la

de la suite (||fn — flloo)n-Sill fu — flloo N'est pas facilement
calculable, soit on essaie de majorer || f, — f||o par un terme

tendant vers 0, soit on essaie de minorer || f, — f||oo par un Appliquer le théoréme de convergence dominée.
terme ne tendant pas vers 0.

condition d’hypothése des f;,.

514° Appliquer le théoréeme de convergence dominée.
* Si (fu)n Ne converge pas uniformément vers f sur tout l'en- - el J

semble d'étude X, déterminer des parties de X sur lesquelles 51 Utiliser, de maniére générale, le plan d’étude d’une série

(fu)n converge uniformément. d'applications : C.S., C.A., C.N., C.U. Cependant, dans des cas trés
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simples, il se peut que I'étude de la convergence normale soit
facile et qu'il y ait convergence normale, auquel cas I'étude des
autres convergences est inutile.

+ Pour étudier la convergence simple d'une série d'applications
Z fu,on fixe x et on étudie la série Z fu(x).
n n

- Pour étudier la convergence absolue d'une série d'applications
an,on fixe x et on étudie la série Z | fu(x)]. Lorsque les
n n

fn(x) sonttous = 0 (pour tout n et pour tout x), la convergence
absolue revient a la convergence simple.

+ Pour étudier la convergence normale d'une série d'applica-
tions Z [, on étudie la série numérique Z [z [
n n

« PSI : Pour étudier la convergence uniforme d’une série d'appli-
cations an, si || fulloo — 0, on étudie le reste R,, et on
noo
n

résout la question : est-ce que ||R,||cc —> 0 ?
noo

g) Pour I'étude du reste dans la convergence uniforme, utiliser le
TSCSA.

a) « Pour I'étude de la convergence normale sur ]0; +oof,

1
remarquer:Vn € N*, || fulloo = —.
n

« Pour I'étude de la convergence uniforme sur [0; +oo[ (PSI),
utiliser le TSCSA.

a) Pour la convergence simple, avec x fixé, utiliser un équi-
valent lorsque I'entier n tend vers l'infini.

b) Appliquer deux fois le théoréme de dérivation pour une série
d’applications.

a) (PSI) Pour montrer la non-convergence uniforme sur
1
[0; 1], évaluer, par exemple, f, (1 — 7>.
n

b) (PSI) « Pour montrer la non-convergence uniforme sur R, éva-

luer, par exemple, | f>, — f)(n7)|, ou f : x —> sinx.

+ Pour montrer la convergence uniforme sur [—a;al],
a € [0; +oof fixé, transformer la différence de deux sinus, puis
utiliser I'inégalité connue: V7 e R, |sinz| < |[¢].

¢) (PSI) Pour étudier la convergence uniforme, utiliser I'inégalité

des accroissements finis, appliquée a 7 — In(1 + 7) entre x et
nx2

1+nx"

d) (PSI) Pour étudier la convergence uniforme, étudier les varia-

tionsde g, = f, — f.

Appliquer I'inégalité des accroissements finis a

t —> In(1 4 ¢) entre f(x) et f,,(x).

Du mal a démarrer ?

Utiliser I'inégalité de Taylor-Lagrange appliquée a fentre x
1 1

etx + —, entre x et x — —, puis combiner par l'inégalité trian-
n n

M3

gulaire.Obtenir: Vn € N*, ||g; — flloo < E

ou M3 = Sup | fP@)].
teR

Montrer que lI'application
@ :[0;+oo[— R, t+—> +/1+1¢
admet un point fixe et un seul, noté «, et calculer «.

Majorer ensuite | f,+1(x) —«f, puis || f, — || . Faire appa-
raitre une suite géométrique.

La méthode utilisée pour la résolution de I'exercice 5.11
(majoration géométrique) ne s'applique pas ici. Montrer que la
suite (anlloc)” est décroissante et minorée, et montrer qu’elle
converge vers 0.

Commencer par I'étude de ( f,),>0.Remarquer ensuite :

VneN, Vxe[0;+ool, gn(x) =1~ fu(x),
apres un calcul faisant éventuellement intervenir la fonction I’
d’Euler.

Montrer d'abord :

b
vV P e C[X], / P(x)f(x)dx =0,

a

en utilisant la décomposition additive de P, ou encore une
linéarité.

Utiliser le premier théoréme de Weierstrass.

Utiliser le premier théoreme de Weierstrass pour avoir une
suite (Q,), de polyndomes convergeant uniformément vers f
sur [a ; b], puis modifier Q,, pour obtenir P,.

Appliquer le théoreme de convergence dominée.
a) Pour la domination, aprés avoir obtenu :
Vne N Vxel0:1], |fu()| <n(er —1),

. - 1
remarquer que la suite de terme général n(en - 1) est conver-
gente, donc bornée.

b) Une fois appliqué le théoréme de convergence dominée,
pour calculer I = /Jroo(x2 + 1)e " dx, on peut utiliser la
fonction I d’Euler. ’

¢) Pour la domination, utiliser I'inégalité classique :

Y (a,b) € Ry)?, a*+b* > 2ab.
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f) Remarquer que la borne /n dépend de n et que
n = enll"" — 17 .Décomposer, par la relation de Chasles, l'in-
tégrale de I’ér’;oooncé en somme d'une intégrale de 0 a 1 (a laquel-
le on pourra appliquer le théoréme de convergence dominée)
et d'une intégrale de 1 a ¥/n (dont on montrera qu'elle tend
vers 0).

Appliquer le théoréeme de convergence dominée. Pour la
domination, utiliser I'inégalité classique :

Vie]—1;+oo[, In(l1+7) <.
Montrer d’abord I'existence de I,, en utilisant par

exemple la régle x2 f(x) en +oo.

Pour obtenir un équivalent, effectuer le changement de variable
t = nx, puis appliquer le théoréme de convergence dominée a

. . 1
I'intégrale obtenue apres mise en facteur de —.
n

a) Majorer convenablement |7, — 1].

xn

———dx,
14+4/1—x"

effectuer le changement de variable r = x", et appliquer le
théoréme de convergence dominée a l'intégrale obtenue apres

1
b) Obtenir: I, — 1 = _/
0

. 1
mise en facteur de —.
n

a) Pour I'étude de la convergence normale sur [0; a],

a € [0; +ool fixé, utiliser I'encadrement classique :
2
t
Vit e[0; +ool, -5 <In(l1+1)—1<0.

b) Pour I'étude de la convergence normale, utiliser le méme
encadrement que ci-dessus.

a) Montrer que Zf,, converge normalement sur
[1;+oo[. 2l

b) Pour obtenir une valeur approchée décimale de L, étudier le
reste R,, en utilisant une majoration et une comparaison
série/intégrale.

a) Pour la convergence uniforme, utiliser la majoration de
la valeur absolue du reste venant du TSCSA.

b) Montrer d'abord que a existe.

Considérer, pour tout n € N* :

(="
gn:[1;+oo[— R, x +—
nx
et majorer | f (x) — g (x)], puis [S(x) — 4 .
Jx

b) Appliquer, de facon réitérée, le théoréme de dérivation
pour une série d'applications. Pour obtenir des convergences

simples ou des convergences uniformes (PSI) ou normales (PC),
on sera amené a montrer que, pour tout k € N* et tout

Inn)* N
x €]1; +o0[, la série Z ( X) converge. A cet effet, utiliser la
n=1
. .. x+1
regle n®uy,, avec un « bien choisi, @ = —

d) Utiliser une comparaison série/intégrale, en considérant, pour
1
x €]1; +oof fixé:gy : [1;+o0[— R, +— o
. . _ 1 .
e) Pour le deuxiéme point, considérer {(x) — 1 — = et majorer

+00
Z — grace a une comparaison série/intégrale.
n

n=3

a) Pour la convergence uniforme sur tout [b; +oo[,
b €]0; +oo[, utiliser la majoration de la valeur absolue du reste
venant du TSCSA.

b) Former ¢(x) + T'(x) et remarquer qu'alors les termes d'in-
dices impairs sont nuls.

Développer la fonction sous l'intégrale en une somme de
série de fonctions, puis permuter intégrale et série en montrant
qu’on peut appliquer le théoreme du cours sur l'intégration sur
un intervalle quelconque pour une série de fonctions.

1) S'assurer d'abord que l'intégrale proposée existe.

2) Développer la fonction sous l'intégrale en une somme de
série de fonctions (en faisant apparaitre une série géométrique)
puis permuter intégrale et série en montrant qu’on peut appli-
quer le théoréme du cours sur l'intégration sur un intervalle
quelconque pour une série de fonctions.

2

+00 I T
Pour calculer Z sachant que Z il décom-
n
n=0 =il

@2n + 1)2
2N+1

poser, pour N € N* fixé, Z 2 en termes d’indices pairs,
k=1

termes d'indices impairs, puis faire tendre I'entier N vers l'infini.

a) PSI : Pour I'étude de la convergence uniforme, comme le
signe de f,(x) ne parait pas facile a déterminer, et puisque
1 + nx? intervient, séparer en deux cas selon la position de x par

1
rapport a T obtenir une bonne majoration dans chaque cas,
n

puis regrouper en une seule majoration.

b) 1) Pour I'étude de la convergence simple, on sera amené a
séparer en cas selon la position de x par rapportae~! etae.

2) PSI : Pour I'étude de la convergence uniforme, remarquer que
les f,, sont continues sur ]0; +oo[ et que la limite simple f est
discontinueene™! etene.
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D’autre part, montrer qu'il y a convergence uniforme sur des
intervalles de 10 ; +oo[ décollés dee™! et dee.

¢) 1) Pour obtenir la limite de (£, (x)), .,
cas selon la position de |x| par rapport a 2.

,0U x est fixé, séparer en

2) PSI : Pour étudier la convergence uniforme, utiliser I'inégalité
des accroissements finis, appliquée a ¢ :[0; +o0o[— R,

1
t——tn,
entre 2" et 2" + |x|", entre |x|" et 2" + |x|".

d) 2) PSI : Montrer qu’il y a convergence uniforme sur
105 al x [b; +o0l, pour tout (a,b) € 10; +oo[? fixé.

Utiliser les polynomes d’interpolation de Lagrange
(Li)o<i<n sur des points xo,...,xy, deux a deux distincts, et
I'égalité du cours :

N
VP eCyIX], P=) P(x)Li.
i=0
Montrer que le sev F de C([a; b]; R), formé des poly-

némes de degré < N, est de dimension finie, donc complet,
donc fermé.

« Commencer par montrer que l'intégrale proposée existe.
« Comme, pour tout € [0; o0 fixé, sin (xr) ~  xt,0n peut
x—>0t

conjecturer que I(x) ressemble, lorsque x — 0%, a

+00 t
/ .
0 144

1" méthode : transformer I'écriture de 7 (x), en utilisant

sinu

i 0
¢:ur— u Sious

1 si u=0,

mettre x en facteur dans 7(x), puis appliquer le théoreme de
continuité sous le signe intégrale.

2¢ méthode : utiliser le théoréme de convergence dominée et la
caractérisation séquentielle des limites.

a) Utiliser le changement de variable t = x", mettre l en
facteur dans l'intégrale, puis utiliser le théoreme de convergen—
ce dominée.

b) 1 méthode : comme pour a).

1
2¢ méthode : considérer K, = / " 'In(1 + x™) dx.
0

Utiliser une intégration par parties, puis le changement de
variable r = x", et le théoréme de convergence dominée.

a) + Etudier d'abord la convergence simple.
» Pour la convergence normale, étudier les variations de
fa.n € N* fixé, calculer|| ||, €t déterminer la nature de la

série Y |l fulloo-

n=1

Du mal a démarrer ?

* PSI : Pour la convergence uniforme, dans le cas a > b — 1,
minorer convenablement le reste.

Former finalement une réponse claire a la question posée, don-
nant les CNS sur (a,b) pour les différentes convergences.

b) « Pour la convergence normale, étudier les variations de

. .

fu.n = 2 fixé. Montrer que la série Z —— diverge, par com-
nlnn
n>2

paraison, série/intégrale.
« PSI : Pour la convergence uniforme, étudier le reste, en faisant
une comparaison série/intégrale, pour x € ]0; o0 fixé, a l'aide
de:
—Ix

¢x [2;+o0[— R, +— ¢
Int

¢) « PSI : Pour la convergence uniforme, utiliser la majoration de
la valeur absolue du reste venant du TSCSA.

d) < Montrer que, si x +n = 0, on peut transformer I'écriture de

X
'énoncé en : x) = Arctan —,
Fa®) 14+nx+n)

Utiliser I'inégalité connue : V¢ € R, |Arctant| < |¢].

» Pour la convergence normale, étudier les variations de
fu, n € N fixé.

« PSI : Pour montrer la non-convergence uniforme sur R, minorer
convenablement le reste.

e) « Pour la convergence normale, étudier les variations de
fns n € N* fixé.

« PSI : Pour la non-convergence uniforme sur [0 ; +o00[, minorer
convenablement le reste.

a) Par une majoration convenable, montrer qu'il y a

convergence normale.
1

¢) Former S(x) + S<7> et utiliser la formule connue, pour tout
X

1 T
t € RY : Arctan? + Arctan T=3

+1)

d) - Appliquer le théoreme de dérivation pour une série d'appli-
cations.

+00
Pour calculer Z (7,faire apparaitre un télescopage.
nn
n=1

« Le calcul de S(1) se raméne a la série vue plus haut.
+ Pour montrer S'(x) —> +o00, minorer convenablement

x—>1

S’ (x),pourx € [0; 1[.

¢) * Pour I'étude en 0T, considérer la série d’applications

1 C
E <x —> ﬁ) et montrer S(x) ~ —2,00 C est une
n*+x x—0T X
n=>1

C

constante > 0. « Pour I'étude en +o00, montrer 0 < S(x) < 5o

X
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) X -
Pourx € [0; 1[, pour évaluer E H—n,unllserune com-
5
n=0

paraison série/intégrale, a I'aide de :
t
[0; +oo[— R, t— ——.
ox [ I T+
Appliquer le théoreme du cours sur l'intégration sur un
intervalle quelconque pour une série d'applications.

¢) Appliquer le théoreme du cours sur I'intégration sur un
intervalle quelconque pour une série d’applications.

Développer la fonction sous I'intégrale en une somme de
série de fonctions (a l'aide d’une série géométrique), puis per-
muter intégrale et série en montrant qu’on peut appliquer le
théoréme du cours sur l'intégration sur un intervalle quel-
conque pour une série de fonctions.

Développer la fonction sous l'intégrale en une somme de
série de fonctions (a I'aide d’une série géométrique), puis per-
muter intégrale et série en montrant que l'intégrale du reste
tend vers 0. Le théoreme du cours sur I'intégration sur un inter-
valle quelconque pour une série d‘applications ne

+00
s'applique pas ici, car la série Z/ | fn(x)| dx diverge.
n=>1 0

Développer la fonction sous l'intégrale en une somme de
série de fonctions (a I'aide d'une série géométrique), puis per-
muter intégrale et série en montrant que l'intégrale du reste
tend vers 0. Le théoreme du cours sur l'intégration sur un inter-
valle quelconque pour une série d‘applications ne

1
s'applique pas ici, car la série Z[ | fn(x)| dx peut diverger.
n>0"0

a) Utiliser le théoréme de convergence dominée et la
caractérisation séquentielle des limites.

b) Méme méthode qu’en a).

1) Considérer,pourn € N, g, = (f, — f)~ .Montrer que le
théoreme de convergence dominée s'applique a (g,)n. En

déduire:/gn — 0.
I noo

2) Utiliser: (fy — )T = (fu — f) + &n
puis : fu=Ffl==H T+ = ).

1 _xn+1

n
¢) 2) Utiliser : k=
) 2) k;x —

a) Utiliser le théoreme de majoration pour des séries a
termes = 0.

b) Etudier les variations de f,, pour n € N* fixé, et calculer
[| fulloo, puis un équivalent simple de || f, || lorsque I'entier n
tend vers l'infini.

¢) 1) En supposant a, —> 0, majorer convenablement R, (x),
noo
puis || Ry ||oc-

2) Réciproquement, si Zf,,, converge uniformément sur
n=0
[0; 1], raisonner par l'absurde : supposer a, —> 0. Ne pas
noo

oublier que (a,),>0 est décroissante. Minorer convenablement
Ry (x), puis || Ry |00 et conclure.
a) Récurrence sur n.
b) 1) Récurrence sur n.
¢)Remarquer: Vte[0;1], t— 12 e [0; 1/4].

Noter, pour toutn € N :

g 0;1/4
My = | far1 — fulllS0, mu = |l fus1 — fullbe /4.

Majorer convenablement | f,+1(x) — fu(x)],
puis || fu+1 — fulloo. €t Obtenir une majoration géométrique
pour m,, pour M,,.

Utiliser le lien suite/série pour la convergence uniforme.



= Corrigés des exercices

a) 1) Convergence simple :

+ 1
On a, pour tout x € R fixé : f,(x) = nrn — 0,
n?2+x? i

C.s.
donc: f, — 0.
noo

2) Convergence uniforme (PSI) :

" n+1 n+1
Ona:VneN,VxeR,|fn(x)|:m< e
n+1
done : 1 falleo € == —> 0.
n noo

On conclut : f, o 0, et donc f, &5 0, ce qui rend I’étude
de /) inutile, a cgrifiition de prévoirn;Je la limite sera 0.
b) 1) Convergence simple :
Soitx € [0; 1].
nx? nx?

~ — =X,

Si 0, alors: f,(x) =
ix #0,alors: f,(x) T o o

donc : f, (x) —— x.

Six =0, alors : f,(x) =0 —— 0.

Onconclut:f,,%f,oﬁ:f :[0;1] — R, x —> x.
2) Convergence uniforme (PSI) :

Ona:VneN, Vxel0;1],

nx? ‘ R 1

— x|l =
1+ nx

[fu(x) = f(X)] = ’

1
donc : i = flle < = — 0.
n noo

c.u. . p g

On conclut : f, —> f, ce qui semble rendre 1’étude de /) in-
noo

utile. Cependant, pour former || f, — f|lx, 1l faut d’abord

connaitre f, ce qui nécessite 1’étude de la convergence simple.

c) 1) Convergence simple :

X
On a, pour tout x € R fixé: f,(x) = —— —— 0,
x24+n? nco

..
donc: f, — 0.
noo

2) Convergence uniforme (PSI) :
1" méthode :
Soit n € N*.

L’ application f, est impaire, de classe C! sur IR, et, pour tout
x € [0; +o0[ :
x2 4+ n? — x(2x) _ n? —x?

(2+n2)? (24?2’

i) =

d’ou le tableau des variations de f,, (sur [0; 4+o0]) :

% 0 n ~+00
Ja®) + 0 -
)| 0 /7 N0
Onadonc: || fullee = fu(n) = L L — 0,
2n?  2n  neo

cu.
et on conclut: f,, — 0,
noo

donc f, 2) 0, ce qui rend I’étude de /) inutile.
noo

2¢ méthode :

Soit n € N*.

Rappelons : V (a,b) € (Ry)?, a® + b*> > 2ab.

On a donc :

o X X 1
VXER+, ngn(x)zmg%:%,

d’ou, puisque f,(0) = 0 et que f;, est impaire :

[[falloo S 5=,
2n
et on termine comme dans la 1™ méthode.

d) 1) Convergence simple :
Soit x € [0; 1] fixé.

Six # 1,alors : f,(x) =x"(1 —x) —— 0.
Six =1,alors: f,(x) =0 —— 0.

CS.
On conclut: f, — 0.
noo

2) Convergence uniforme (PSI) :
Soit n € N*.

L’application f, est de classe C' sur [0; 1] et, pour tout
x €[0;1]:

fi) =nx"""—(n+ Dx"=x""(n— (n+ Dx),

d’ou le tableau des variations de f;, :

n
X 0 1
n+1
f(x) + 0 -
Sux) | O v NN 0
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On a donc :

_ n
[1falloo = fn(n+ 1)

S| 1
— (-2 < 0,
n+l) n+1 n+1 neo

c.u. . . .
et on conclut : f, — 0, ce qui rend I’étude de /) inutile.
noo

e) 1) Convergence simple :

Soit x € [0; 400 fixé.

nx3 x2

Six # 0, alors : f,(x) = 0.

~ —
1+4ﬂx noo n noo

Six =0,alors: f,(x) =0 —— 0.

C.s.
On conclut: f, — 0.
noo

2) Convergence uniforme (PSI) :

* On remarque que, pour toutn € N, f, — 0 n’est pas bornée

sur [0; +oo[, car f,(x) —> +oo, donc : f, E#) 0 sur
x—>+00 noo

[0; +o0l.

e Soit b € [0; +oo[ fixé.

Ona:
3 2 b2
VneN, Vxe[0;b], |fi)l= —— <= < =,
1+ n%x n n
bZ
donc : A% < = — 0.
n noo
On conclut :

T &y 0 sur tout [a; b], b € [0; +oof fixé.

f) 1) Convergence simple :
Soit x € [0; 1] fixé.

EnnotantNx=E< )+1,ona:

1
V1—x

1
JT=x'

1
Vn > Ny, f,(x) =Min|(n,
£ ( Tx)

stationne sur ,d’ou:

1
neN Vi

donc la suite (f,(x))

ﬁ&x)___é 0
noo 1—x

1

T=z

Notons: f :[0; I[— R, x —>

On conclut : f, &5 fsur[0; 1.

2) Convergence uniforme (PSI) :

* Pour tout n € N fixé, I’application | f, — f| n’est pas bor-
née sur [0; 1[, car, pour x assez pres de 1 :

[fu(x) = f(0)| = \/% = = e

Il en résulte, d’apres le cours : f, £,‘Eif sur [0; 1].
Soit a € [0; 1] fixé.

EnnotantN:E( >—|—1,ona:

1
V1 —a

Vn>=N,Vxe[0;a], fu(x)=

1
J1=x
dou: Vn > N,Vx €[0;al]l, fu(x)— f(x)=0.

Ceci montre que ((fy — f) lj0:a] ),y €St stationnaire nulle,

neN
donc : f, % fsur[0; al.
noo

8) y
1

I

-1 —1+L o T
8 n

1) Convergence simple :
Soitx € [—1; 1] fixé.

Si |x| < 1, alors, pour tout n assez grand (précisément, pour

1
nz l——lxl)’ fn(x) = 0, donc la suite (f,l(x))n22 stationne

sur 0, donc : f,(x) —— 0.

Si|x| =1,alors: f,(x) =1 —— 1.

noo

C.s. N
On conclut : f, — f, ol :
noo

0 si |x] <1
f:[-1;1] — R, x +—
1 si |x]=1.
2) Convergence uniforme (PSI) :
o Etude sur [—1:1] :
1" méthode :
y
1
mef
-1 —14+L1 o - 1 x
Z T



Ona: Vn=2, ||fi— flle=1,
donc : ||ﬁ1_f||oo?él_)oa

et on conclut : f; %E;o sur[—1;1].

2¢ méthode :

Puisque les f,, sont continues sur [—1; 1], et que f n’est pas
continue sur [—1; 1], d’apres le cours, on conclut : f, % 0
sur [—1; 1].

o Etude sur [—a; a], a €[0; 1[ fixé :

On a, pour n assez grand (précisément : n > 1 DB
—a
Vxel—a;al, f,(x)=0= f(x),
d’oi : fu — FIIS*9 =0 — 0.

On conclut :
c.u. ,
fo—> fsurtout[—a;al, a € [0; 1] fixé.
noo

h) 1) Convergence simple :

Soit x € R.

1
Six # 0, alors : f,(x) = x%sin — —> 0.
nx noo
Six =0, alors : f,(x) =0 —— 0.

C.s.
On conclut : f;, — 0 sur R.
noo

2) Convergence uniforme (PSI) :
s Etude sur R :

1
On remarque : || f]]co = fn(n) = n® sin—2 — 1,
n noo

donc : || fulloo —=0, fo 50 surR.
o Etude sur [—a: al, a € [0; +ool fixé :
Soit a € [0; +o0of fixé.

Ona:Vne N, Vx e[—a;al,

o1 1 X a
a0l = 22 sm—l <2|=|=H ¢
nx nx n n
. * [—a;a] < a
donc : Vne N, || fulle S
d’ou : ||f,l||[o;““’] — 0.
noo
On conclut :

i CY% 0 sur tout [—a;al, a € [0; +o0] fixé.
noo

1) Supposons que, pour tout n € N, f, soit croissante.
Soit (x,y) € I* tel que x < y.
Ona:VneN, f,(x)< f,(y).

Comme f;, % f, on déduit, par passage a la limite lorsque I’en-
tier n tend vers Iinfini : f(x) < f(y).

On conclut que f est croissante.

2) Supposons que, pour tout n € N, f, soit convexe.

Soient A € [0; 1], (x,y) € I*>.Ona:
vrneN, fi(Ax+A—-Xy) <A@+ 0 =N ().

C.S. P S T e )
Comme f, — f, on déduit, par passage a la limite lorsque I’en-
noo

tier n tend vers 1’infini :
FOx+0=Ny) KAF@+A=NfB).
On conclut que f est convexe.

3) Supposons que, pour toutn € N, f, est k-lipschitzienne, ol
k € R, est fixé, indépendamment de 7.

Soit (x,y) € I>.Ona:
VneN, [fi(x) = fu(¥)] < klx —yl.

C.s. . N ,
Comme f, —> f, on déduit, par passage a la limite lorsque I’en-
noo

tier n tend vers 1’infini :

Lf () = fO)] < klx =yl

On conclut que f est k-lipschitzienne.

Nous allons essayer, dans ces exemples, d’appliquer le
théoreme de convergence dominée.

a) Notons, pour tout n € N* :
e*%
1T+x2
e Pour tout n € N*, f,, est continue par morceaux (car conti-
nue) sur [0 ; +o0].

fn i [0; 400[— R, x —>

e Pour tout x € [0; +oo[ fixé :

e 1
1+x2 noo ]+x2'
1
14 x2°

fu(x) =

Ennotant f :[0; +oo[— R, x —

on a donc : f, &% f.
noo
e f est continue par morceaux (car continue) sur [0 ; 4+o0].
*Ona:
e 1
1+x2 S 1+2x2

VneN* Vxel0;+oof, |f,(x)] =

et ’application x —> 7 5 est continue par morceaux (car

+x
continue), > 0, intégrable sur [0 ; +o0o[
1 1
car —— —, exemple de Riemann en +00 (2 > 1)

1+ x2 x—+00 x2°
et théoreme d’équivalence pour des fonctions > 0.
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Ainsi, (f,)nen+ Vérifie I’hypothese de domination.

D’apres le théoreme de convergence dominée, f est intégrable
sur [0; 4o0[ et :

+o0 +o00 +o00 1
" R
f s fo —

0 noo
T
_ +00 _
= [Arctanx ][> = 5

+00 e—j—‘l

ldx = =

O lut: i .
n conclu im T >

noo 0

b) Notons, pour toutn € N :
n
fo i [1; +oo[— R, x —> m.
* Pour toutn € N, f, est continue par morceaux (car continue)
sur [1; +o0l.
* On a, pour tout x € [1; 4o0[ fixé :
folo) = = :

nxz + e* P e’ noo Xz.

1
Ainsi: f, > fyon: f ¢ [1;+oo[—> R, x —> —.
noo X

e f est continue par morceaux (car continue) sur [1 ; 4+o0f.
*Ona:
n 1

VneN,Vx e[l;4oof, |fi(D)=—F77< 5.
nx2 +e* 2

1 . .
et x —> — est continue par morceaux (car continue), = 0,
X

intégrable sur [1 ; +-o0[ (exemple de Riemannen +00,2 > 1).
Ceci montre que (f,).en Vérifie I’hypothese de domination.

D’apres le théoréeme de convergence dominée, on déduit :

+00 +00 +o0 1 1 +00
+o0 n
On conclut : lim/ zidle.
noo Jy nx- +e*
¢) Notons, pour tout n € N* :
xil
[0; oo — R, x —> ———.
fo10; ool —

e Pour toutn € N, f, est continue par morceaux (car continue)
sur [0; 4-o00].

e Soit x € [0; 4o00[.

X
Si0 < x < 1,alors : = o
108 x < alors fn(x) x2n +x"+1 oo

1
Six =1, alors: f,(x) =

- s -
3 a0 3
Six > 1, alors :
x" x" .
fn(X):X2n+xn+1 "’:0 xz” = noo 0:

Ainsi : f, &5 fsur[0; +oo[,ou:
noo

0 si x#1
f:[0; +oo[— R, x —
1/3 si x=1.

* f est continue par morceaux sur [0 ; +o0o].
e Soientn € N*, x € [0; +o0].

Si0<x < 1,alors:

x"

0 fix)= —— <x" < 1.
<A@ = g <A<
Six > 1, alors :
" 1 1
0L i) < == < o sin>2.
Xt it X

Ainsi: Vn e N — {1}, Vx € [0; +ool, |£,(0)] < p(x),
ou :

1 si 0<x<1

p:[0;+oo[— R, x —> 1

- si l<u

X
L’application ¢ est continue par morceaux, 2> 0, intégrable sur
[0; 4-o00[ (exemple de Riemann en +o00, 2 > 1).

Ceci montre que ( f;,),>> Vérifie I’hypothese de domination.

D’apres le théoreme de convergence dominée, on déduit :

+o0 +o00
[ — f=0.
0 noo Jo
+0o0 xn
On conclut : lim e dx =0
noo Jo o x4 x"+1

Essayons d’appliquer le théoreme de convergence do-
minée.

Notons, pour tout n € N* :
fui:l0;1] — C, x— f,(x) = f(x)(l _ f) '
n

* Pour toutn € N*, f,, est continue par morceaux, comme pro-
duit de deux applications continues par morceaux.

* Pour tout x € [0; 1], et pourn > 2 :
fn(x) = f(x)exp (n In (1 — %))
= reen (o -7+ 2.(3)))
= f)exp(—x+o(h)) — fx)e™.

Ennotant g : [0; 1] — C, x —> f(x)e ™,

onadonc:fnﬂ}gsur[o; 1].
noo



 [application g est continue par morceaux, comme produit
de deux applications continues par morceaux.

* On a, pour toutn € N* et tout x € [0; 1] :
[ fu ()| = If(x)l(l - 2) SIfG,

et | f| est continue par morceaux, > 0, intégrable sur [0; 1]
car continue par morceaux sur ce segment.

Du théoreme de convergence dominée, on déduit :

ffn—> .

c’est-a-dire :

1 n 1
f f(x)(l - f) dx —> | foe™dx.
0 n noo 0

a) On a, pour toutn € N* ettoutx € R :

| sinnx| 1 1
[ fi(X)] = n2 + x2 X w2+ X2 X E’
d’ou : VrneN, || fullo <

1

D’apres I’exemple de Riemann (2 > 1), la série Z =
n=>1

converge. Il en résulte, d’apres le théoréme de majoration pour
0, que la série Z || f2]]s converge.

n=1

des séries a termes

On conclut que Z [ converge normalement sur R, donc uni-
n=1
formément (PSI), absolument, simplement.

b) L’étude des variations de x —— x(1 — x) sur [0; 1]

montre : Vx € [0; 1], [x(1 —x)| < -
2
Onadonc: VneN,Vx e[0;1], |fr(x)] < —
n?
d’ou : VneN, || fillo < i
n?
Notons, pour toutn € N : u, = i
Ona: VneN, u,>0
Unst (A2 4 (41?1 1
et: —— = — = - - < 1.
Uy 4+l p2 n?> 4 no 4

D’apres la regle de d’ Alembert, la série Z u, converge.

n=>1
D’aprés le théoréme de majoration pour des séries a termes > 0,

la série Z || fulleo converge.

n=1

Ceci montre que la série Z Jf» converge normalement sur
n=>0
[0; 1], donc uniformément (PSI), absolument, simplement.

c¢) 1) Convergence simple, convergence absolue :

La convergence absolue revient a
puisque les f, sont toutes > 0.

Soitx € [0; +0co[.Ona:

la convergence simple,

nx? nx?  x?

VReN, S®) =G a S T

D’apres I’exemple de Riemann (2 > 1) et le théoreme de ma-

>0, la série Y f,(x)

n=l1

N

joration pour des séries a termes

converge.

Ceci montre que E f» converge simplement et absolument sur
n=1

[0; 4-o0l.
2) Convergence normale, convergence uniforme (PSI) :
n’ n
LN0) : nlloo > n = = 17
na | fille > 1l = ooy = g —
donc: ||fulloco —#> 0.
noo

D’apres le cours, il en résulte que E f» ne converge pas uni-
n=1

formément sur [0 ; +o0[ (PSI), et ne converge pas normalement
sur [0; +o0].

e Soit a € [0; +oo[ fixé.

Ona:
X2 2 2
o . na* a
Vne N, Vx e[0;al, |f,(x)] = Wgﬁ_ﬁ’
0: a*
donc : Vne N, [|£]I04 < s

Il en résulte, d’apres I’exemple de Riemann (2 > 1) et le théo-
réme de majoration pour des séries a termes > 0, que la série

Z 11 /11241 converge.

n=1

Ceci montre que E [ converge normalement, donc unifor-
n=1

mément (PSI), sur tout [0; a], a € [0; +o0[ fixé.
d) 1) Convergence simple, convergence absolue :

La convergence absolue revient a
puisque les f, sont toutes > 0.

Soit x € [0; +o0f.

la convergence simple,

Si x > 0, alors, pour tout n € N* :

2 2 2
Lxe™™ =x(e ).

X _»

S fux) = —e "
n
] —x2 2B relmcece X 2
Puisque [e™"| < 1, la série géométrique E (e™" )" converge,
n=1
donc, par théoréme de majoration pour des séries a termes > 0,
la série E fu(x) converge.

n=1
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Six =0,alors:Vn € N*, f,(x) =0,

donc la série Z fn(x) converge.

n=1

Ceci montre que Z fn converge simplement et absolument
n=1

sur [0; +o0l.
2) Convergence normale, convergence uniforme (PSI) :

Soitn € N*.

L’ application f; est de classe C' sur [0; +oo[ et, pour tout
1

x € [0; +oo[ f”’(x) — _(1 _ znzxz)e,nzxz,
n

d’ou le tableau des variations de f;, :

0 N
X n«/z “+00
Sux) 4 0 =
Sax)| 0 /! N 0

On a donc :

1 1 1 1
Vn e N, [ falloo = n<—>= e 2= .
5 7 n/2 n2/2 n2y/2e

D’apres ’exemple de Riemann (2 > 1), la série Z Il 77alllss
n=>1
converge.

Ceci montre que Z [ converge normalement, donc unifor-
n=>1
mément (PSI), sur [0; +o0[, et rend 1’étude de /) inutile.

e) 1) Convergence simple, convergence absolue :

La convergence absolue revient a la convergence simple,
puisque les f, sont toutes 2> 0.

Soit x € [0; +oo[ fixé.

n+x 1
Ona: fn(x):mn’;:;>0
D’apres I’exemple de Riemann (2 > 1) et le théoreme d’équi-
valence pour des séries a termes > 0, la série Z fu(x)

n=1
converge.

Ceci montre que Z [ converge absolument et simplement

n=1
sur [0; +o0].
2) Convergence normale, convergence uniforme :
1" méthode :
Soitn € N*. L’application f, est de classe C Usur [0 ; o0 et,
pour tout x € [0; 400 :
3

_ n® +x2) — (n + x)2x

, x2+2nx —n
f;z(x) - (I’l3 + x2)2 -

(n3 + x2)?

Par résolution d’une équation du second degré, on déduit le
tableau de variations de f;, en notant x, = —n + «/n° + n? :

x | 0 X, +00
fr(x) + 0 -
Jn (%) % /' N0
On a donc :
[ falloo = fu(xn)

. vnd +n? . 1
T 24 2n —2nmd +n? 2( /2 — n)

D’apres I’exemple de Riemann (3/2 > 1) et le théoreme
d’équivalence pour des séries a termes 2> 0, la série Z [ flloo

n=1
converge.

Ceci montre que Z [ converge normalement sur [0 ; o0,
n=1

donc uniformément (PSI), absolument, simplement, et rend in-

utile I’étude de /).

2¢ méthode :
Soitn € N*.

Vu le dénominateur n* + x2, séparons en cas selon la position

relative de n* et de x2, c’est-a-dire selon la position de x par
/2

rapport a n*

e six > n’?, alors :

n+x n+x n3? 4+ x 2x 2
| fi(X)| = w3+ X2 = T2 < 32 I F < 7137
e six < n’?, alors :
n+x n+x n—+n’? 2n3/? 2
@) = = < < <E ==

< = .
P e e n3/2

2
Onadonc: Vn e N, Vx € [0; +ool, [fa(x)| < —7,
%

5 2
doi Vn e N, ||fn||oo<m

D’apres I’exemple de Riemann (3/2 > 1) et le théoréme de ma-

joration pour des séries a termes > 0, la série E [ fulloo
n=1
converge.

Ceci montre que Z [ converge normalement sur [0 ; 400,
n=1
donc uniformémen (PSI), absolument, simplement.



f)Ona:
VneN, Vx e[0; 4o, [fu(x)|= 2l S
. 1
donc : Ve N, || fullo <

E.
D’apres I’exemple de Riemann (2 > 1) et le théoreme de ma-
joration pour des séries a termes > 0, la série Z I 77l

n=l1
converge.

Ceci montre que Z [ converge normalement sur [0 ; +o00[,
n=1
donc uniformément (PSI), absolument, simplement.

g) 1) Convergence simple :

Soit x € [0; +oof fixé.
_1 n — n
La sérieZ (2 ) est alternée, o
=X +n x-—+n

—— 0, etla suite
noo

1 .
> est décroissante.
x+n/, -

D’apres le TSCSA, la série Z fn(x) converge.

n=1

Ceci montre que Z f» converge simplement sur [0 ; +o00[.
n=1

2) Convergence absolue, convergence normale :

Soit x € [0; +oo] fixé.

[fu(0)| =

D’apres I’exemple de Riemann et le théoreme d’équivalence

1
~ —>0.
X24n non

Ona:

pour des séries a termes > 0, la série Z | fu(x)| diverge.
n>1

Ceci montre que Z [ ne converge absolument sur aucune par-
n=1

tie non vide de [0; +o0].

Il en résulte que Z f» ne converge normalement sur aucune
n=1

partie non vide de [0 ; +o00[.

3) Convergence uniforme (PSI) :
Soit n € N* fixé. Puisque, pour tout x € [0; +o0[, la série
Zf,l(x) releve du TSCSA, en notant R,(x) le reste

n=1
d’ordre n, on a, pour tout x € [0; +o0] :

R
xX24+m+1) " n+1

IRy < [fur1 ()] =

1
donc : [Ralloo S ——-
n

+1

Ilenrésulte : ||R,||.c — 0, eton conclut, d’apres le cours,
noo

que Z [ converge uniformément sur [0 ; 4+-o00].
n=>1

a) 1) Convergence simple :

Soit x € [0; +oof fixé.

e

La série Z fn(x) estalternée, | f,(x)| =

n=>1
la suite (| f,,(x)]), ., est décroissante. Daprés le TSCSA, il en

— 0, et
n X noo

résulte que la série Z fn(x) converge.
n=1

On conclut : Z f» converge simplement sur [0 ; +00[.
n=1

2) Convergence absolue :

Soit x € [0; o0 fixé.

*Casx #0.0Ona:

e "

<e*ﬂX:e*Xn.
i S ()

VneN', |fu(x)] =

Comme |[e™*| < 1, la série géométrique E (e™")" converge.
n=>1
Par théoréme de majoration pour des séries a termes > 0, la

série Z | fu(x)| converge.

n=1
1
eCasx =0.0Ona:VneN, |f,(x)=-,
n

donc la série Z | fu(x)| diverge.

n=l1

On conclut : Z [ converge absolument sur ]0 ; +oo[, mais
n=l1

non sur [0; +o0of.

3) Convergence normale :

o Etude sur10; +o00[ :
—nx 1

. ©
Soit n € N*. Comme | f,(x)| = — =
n+x x—o0t n

1 .
ona: || f,llw = —,etdonc, d’apres ’exemple de Riemann et
n

le théoreme de minoration pour des séries a termes 2> 0, la série

0; 2
Z [ 1112+ diverge.

n=1

Ceci montre que Z f» ne converge pas normalement sur
n>1
10 +-o0l.
o Etude sur [a ; +oo[, a €10; +00[ fixé :
Soit a €10; +oof fixé.On a:
Vne N Vx e la;+ool,
—nx e

©
—nx —hna

< <e™<e
n—+x n

[ fu(0)| =

)

d’ou Vne N, [|fullle ™l < @)

Puisque [e™| < 1, la série géométrique E (e™“)" converge.
n=1
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Par théoréme de majoration pour des séries a termes > 0, on

conclut que Z f» converge normalement sur [a ; +0o[, pour
n=l1
tout a € ]0; +oo[ fixé.

4) Convergence uniforme (PSI) :

Puisque, pour tout x € [0; +o00[, la série Z fn(x) releve du
n=1
TSCSA, on a, en notant R, le reste d’ordre n :

VneN, Vx e[0; 4o,

e*(nJrl)x 1
[R, ()| < | fur1 ()] = D tx < P
d’ou : Vn € N¥, ||R,,||oo§#,
n+1
puis : [|Ry||loe —> O.
noo

Ceci montre que E fn converge uniformément sur [0 ; 4+o00[.
n=1

b) Puisque, pour tout n € N*, f, est continue sur [0 ; +oo[ et

que E [ converge uniformément sur [0 ; +o0o[, d’apres un
n>1

théoréme du cours, on conclut que la somme S est continue

sur [0; +o0l.

a) Soit x € [0; +oo[ fixé. On a :

X
1 In{1+ —
ln(n+x)_ = n( +n> Inn

fn(x) = ) 20
n

) > P

) . Inn . e
Puisque la série g —- converge (cf. Exercice 4.2, utilisation
n
n=1

de la régle n*/?u,,), par théoréme d’équivalence pour des sé-

ries a termes > 0, la série E fu(x) converge.
n=1

On conclut : Z [ converge simplement sur [0 ; +00[.
n=1
b)*Pourtoutn € N*, f, estde classe C? sur [0; 4+o00] et, pour
tout x € [0; +oo :
1

(n+x)2n?"

fax) = [ () =—

(n + x)n?’

1
*Puisque: Vn e N ||f)llo = —,
n
d’apres ’exemple de Riemann (4 > 1), la série Z [ converge
n=1

normalement, donc uniformément (PSI), sur [0 ; +ocof.

1
* Puisque : Vn e N¥, 1 fullo = =
P
d’apres I’exemple de Riemann (3 > 1), la série Z £, converge
n>1
normalement, donc uniformément (PSI), sur [0 ; +ocol.

*Onavuena)que Z [ converge simplement sur [0 ; 4-00[.
n=1

D’apres le théoreme de dérivation pour les séries d’applications,
on conclut que S est de classe C? sur [0; +o0[ et que, pour
tout x € [0; +o0 :

+00 +00 1

!’ 1 4
SO=2 o SO=X Grom

n=1 n=1

c¢) 1) D’apres b), S est de classe C! sur [0; +o00] et, pour tout
x € [0; +oo[, §'(x) estla somme d’une série a termes tous
> 0, donc S'(x) > 0. On conclut que S est strictement crois-
sante sur [0 ; +o00].

2) D’apres b), S est de classe C? sur [0; +ool, et, pour tout
x € [0; +oo[, S”(x) est la somme d’une série a termes tous
< 0, donc S”(x) < 0. On conclut que S est concave sur
[0; 4-o0l.

a) 1) Convergence simple :
Soit x € [0; 1] fixé.

. . TX
*Six # 1,alors: 0 < sm7 <1,
donc, par prépondérance de la suite géométrique sur les puis-

o n
sances : f,(x) =n(l — x)(sm 7) — 0.

*Six =1,alors: f,(x) =0 —— 0.

. C.s.
Ceci montre : f,, — 0.
noo

2) Convergence uniforme (PSI) :

L’étude des variations de f,, parait malcommode, car le signe
de f;(x) ne parait pas facile a déterminer.

e Etude sur[0; 1] :

Soit n € N*. Remarquons :

1 . T s
A(1-5)= (= (-5

Ilenrésulte : || f, — O0lloo =

1
fn<1 _ _> — o,
n noo
Ceci montre que (f,),>0 ne converge pas uniformément
vers O sur [0; 1].
o Etude sur [0; al, a € [0; 1[ fixé :
Soita € [0; 1[ fixé.Ona:Vn e N*, Vx € [0; a],



n

@) = n(l —x)(sin %) < n(sin %) ,

: o ma\"
AL <n(sin ) — 0

noo
03
I fullp ) — 0.
noo
Ceci montre que la suite (f,),>0 converge uniformément
vers 0 sur [0; a], pour tout a € [0; 1[ fixé.

b) 1) Convergence simple :

. (n+1 .
Pour tout x € R : f,(x) = sin X ) —— sinx.
noo

. C.s. N .
Ceci montre : f, — f,ouf : R — R, x +— sinx.
noo

2) Convergence uniforme (PSI) :
o Etude sur R :

Soit n € N*. Remarquons que, par exemple :

2 1
|(f2n — f)(mr)| = ‘sin( n2: n7r> — sin(mr)‘
=1 =0/ =1.
On a donc : fon — fllo 2 1,

dod: || fon = flleo —> 0, puis ||.fo = flloo —> 0.

Ceci montre que (f,),>1 ne converge pas uniformément vers
fsur R.

e Etude sur [—a : al, a € [0; +ool fixé :

Soit a € [0; 4+o0f fixé.
On a, en utilisant une formule de trigonométrie :

VneN', Vx e[—a;a],

oG — F)] = sin(” :%) ~ inx

. (1<n+1 )) (l<n+l
2sin| = x—x))cos| = —x +
2 n 2 n

)

LoX 2n + 1)x
= |2sin — cOS ———
2n 2n
<2lsin 2| 2|2 =M<f,
2n 2n n n
AN - [7zl;a1<a
dou« ||fn_f||oo \*—)0-

n noo
Ceci montre que la suite (f;,),>1 converge uniformément vers
fsur[—a;a], pour tout a € (0; +oo[ fixé.
c) 1) Convergence simple :
Soit x € [0; o0l fixé.

Six # 0, alors :
2

fu(x) = In <l—|— ) —— In(1 +x).

n
1+nx

Six =0, alors : f,(x) =0 —— 0.

. c.s. N
Ceci montre : f,, —> f, ou :
noo

f:[0; +00o[— R, x > In(l +x).
2) Convergence uniforme (PSI) :
Soitn € N*,

Le calcul de (f, — f)' paraissant compliqué, nous allons es-
sayer, pour x € [0; 4+o00[, de majorer | f,,(x) — f(x)| en utili-
sant ’inégalité des accroissements finis.

L application ¢ : t —> In(1 + ¢) estde classe C' sur[0; +o0[

1
t:Vere[0; , o) = —.
e [0; +ool, ¢ (1) Tz

D’ou, d’apres I’inégalité des accroissements finis, appliquée

N . . nx?
A @ entre x € :
i * 1+nx
fu@) = f@) n’ (x)
n\X) — X)| = — X
14 14+ nx L4
nx? X 1
< Su (¢t — x| = < —
h (re[o;Foo[w()l)‘l—i—nx ' 1+ nx n

1
Onadonc: [|fy = flloe < = —— 0,

n noo

c.u.
eton conclut: f, — fsur [0; +o0l.
noo

Remarque : Ce résultat entraine la convergence simple.
Cependant, on ne pouvait pas se passer de 1’étude de la conver-
gence simple, car, pour étudier la convergence uniforme, on a
besoin de former f,, — f, donc de connaitre f, issue de I’étude
de la convergence simple.

d) 1) Convergence simple (PSI) :

Soit x €]0; +o0[ fixé. On a:

fu(x) = (nx)% = exp (fln (nx)> — 1.
n

noo
@8, N ..
On conclut : f, — f, ou f = 1 (application constante).
noo

2) Convergence uniforme (PSI) :

Soit n € N*. L application g, = f, — f est de classe C! sur
10; +o0[ et, pour tout x € ]0; +o0f :

, , 1 x 1
8 (x) = f,(x) = fn(-x)<; ) 4 = ;)

1
= ;lfn(x)(ln (nx) +1).
On en déduit le tableau de variations de g, :

1

X 0 — +00
en
g, (x) = 0 +
gn(x)[ 0\ /4o
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Et:

(D) = ) =1 = exp (fln(nx)) 1o,
n +

x—>0

gn(x) —> +00 9
xX—>+00

1 1\ a2 L
al—)=(-)" —1=e o —1.
en €

*Pourtoutn € N*, g, = f, — fn’estpas bornée sur ]0 ; +o0],
donc ( f,).>1 ne converge pas uniformément sur ]0 ; +o0o].

e Soith €]0; +ool fixé. On a, d’apres le tableau de variations
deg,=fun— f:

. 1
12 = £ < Max (= ga(=-). 8:))

= Max (e = 1, 8,(b)) — 0,

1
care «> —— | et, par convergence simple,
noo

8n(b) = fu(0) — f(b) — 0.

Ceci montre que la suite (f,),>1 converge uniformément sur
tout |0; b], b €]0; +oo[ fixé.

L’ application ¢ : [0; +oo[—> R, 7 —— In(1 +#) est
dérivable sur [0 ; +o0[ et :

1
Viel0; , o) = ——,
[0; +oof, ©'(@) 1+7

donc ¢’ estbornée et  Sup | (2)| = 1.
te[0 ;400

D’apres I’inégalité des accroissements finis, on a alors :
Y (u,v) € [0; +00[*, |p@) — )|

<( Sup I@1)lu = vl = fu—vl,
t€[0;+o00[

donc :

Y (u,v) € [0; 4+00[?,

In(1 +u) —In(1 +v)| < Ju —v|.
D’ou,ici:Vn e N, Vx € X,

|1n (l + f,,(x)) — ln(l + f(x))|
< @) = FO < i — flleo-

Il en résulte :
VneN, [[In(1+ f) —In(L+ Nl < 1fi = Flloo -
Commef,lﬂ&f, onal|f, — flle —— 0, donc,

par encadrement, ||In(1 + f,) —In(1 + f)|lcc —— O,

et on conclut : In(1 + f,) % In(1 + f).

Puisque f est de classe C? sur R, d’apres 1’inégalité de

Taylor-Lagrange, en notant M3 = Sup | f®(¢)|, on a, pour
teR

toutx € R ettoutn € N* :
1 1, 1, <y
f(x‘*';)—(f(x)-i-;f(x)‘i‘ﬁ (X)> S e
1 1, 1, <y
‘f(X—;)—<f(X)—;f(X)+ﬁf (ﬂ)‘\@ 3,
d’ou, en utilisant I’'inégalité triangulaire :
1 X . 1 r
'(f<x+—) —ZI(XH-J‘(X— —) == (X)’
n n n
1 1 ! l "
= ‘[f(x—k —) - (f(X) +-f ) +-=f (x))]
n n 2n

1
+ [f(x - —) - (f(x) w4 ”(x))]‘
n n 2n

1 M;
< 2e M= 33,
puis :
|gn(x) — f"(x)]
1 1
= [f(x + 1) —2f(x) + f(x - —)] - —zf”<x>‘
n n n
<
3n

Ceci montre que g, — f” est bornée et que :

5 M;
Vo e N, |lgn— flleo < 5.
3n

M; .
Comme — —— 0, il en résulte, par encadrement :
n noo

cu.
[1gn — f"|lcc — 0, eton conclut : g, — f” sur R.
noo noo

Une récurrence immédiate montre que, pour toutn € N
ettout x € R, f,(x) existe et f,,(x) = 0.

Considérons 1’application
0:[0;+o0[— R, t+— /141
et cherchons les éventuels points fixes de .

On a, pour tout ¢ € [0; +o0[, p(r) = 0 et:

o) =t<=l+t=<r*—1t—-1=0
L_1+V5

, noté «.

Essayons de montrer que la suite ( f;,),<n converge uniformé-
ment sur R vers la fonction constante a.

Soient n € N, x € R. On a, par utilisation d’une expression
conjuguée :
| for1 () —al = [V/1+ fu(x) = V1 +aql
_ A& —al
\/1+fn(x)+\/1+a

< %lfn(x) - Oé|.




Une récurrence immédiate montre :
VxeR, VneN, [f,(x) —al < 2—1,,|fo(X) —aof,
d’ou:
VxeR,VneN,
120) = al < 55 (o) + ) < 51 follo + ).

Il en résulte que, pour tout n € N, f;, est bornée et que :

1
£ = llos < 5, (UL follos + @) — 0.

c.u. N . .
On conclut: f, — a sur R, ou « est la fonction constante égale
noo

aa.

* Montrons, par récurrence sur 7, que, pour toutn € N,
f existe, est = 0 et est bornée sur R.

La propriété est vraie pour n = O par hypothese.

Si la propriété est vraie pour un n € N, alors f,,; existe, et,
comme:Vx e R, 0< £,(x) < || fulloos

ona:Vx €R, 0< In(l+/,(x) < In (1 + [ fulloo).
donc f, . est = 0 et bornée.

On a ainsi montré, par récurrence sur 7, que, pour toutn € N,
f existe, est = 0 et est bornée.

eOna:VneN,Vx eR,
0 < fupr1 (@) =In(1 + £,(x)) <In(1 + | fulloo),
donc: Vn e N, |[|futilleo S In(1 4[] fulloo)-
Notons, pour tout n € N, u, = || f,||, et étudions la suite
(un)nEN'
Ona:VneN, u,py <In(l+u,) <u,
donc (u,,),cy est décroissante.
De plus, comme : Vn € N, u, >0,
la suite (u,),en est minorée par 0.

Il en résulte que (u,),cn converge et que sa limite £ vérifie
¢ =0.

De plus, comme : Vn € N, u,; < In(l +u,),

on a, par passage a la limite : £ < In(1 + £).

L’étude des variations de la fonction t —> In(1 +1) — ¢

sur [0; +oo[ montre que : £ < In(l + £) < ¢ = 0.

Ceci montre : u, — 0, c’est-a-dire || f,,||cc ——> O,
noo oo

c.u.
et on conclut : f,, — 0.
noo

a) Etude de (f,)nen :
1) Convergence simple :

Soit x € [0; 400 fixé.

Ona:

1 X Y 1 . xn+l
| fn)] = — t"eT'dr < —xx" = —0,
n! Jo n! n! e
par prépondérance classique.
On conclut : f, &5 0 sur [0; +oof.
noo
2) Convergence uniforme :
o Etude sur [0 ; +o0 :

On a, pour tout n € N, d’apres 1’étude de la fonction I'
d’Euler :

1 x 1 +o00
fulx) = —/ t"e'dt — —/ t"e " dt
n! 0 0

X—> 400 n'
1 1
=—TI(m+1)=—n!=1.
n! n!
Tlenrésulte : Vn € N, || fulleo = 1,
etdonc: f, £,’£>O sur [0; +o0[.
o Etude sur [0 a), a € [0; ~+o0[ fixé :

Soit a € [0; +oo] fixé.
Ona:VneN,Vxel[0;al,

1 [ 1 [
[fu ()| = _/ e dr < _/ et dt = Jula),
n! 0 n! 0

d’ou: VreN, I < fu@.

Comme f,(a) —> 0, on déduit || £, |1 0
noo 06D
c.u. )
et on conclut : f;, — 0 sur tout [0; a], a € [0; +oo[ fixé.
noo

b) Etude de (gn)neN ’
Ona:VneN,Vx e [0;+oo],

1 400
gn(x) = — / t"e ' dt
n! J,

1 v *
_ n [—t _ n ot
_n!(/o t"e " dt /Ote dt)
1
= ;r(n+ D— fulx) =1— fu(x).

On déduit de a) les résultats suivants :

'gng 1 sur [0; +oo[
noo

° g, &y 1 sur tout [0; a], a € [0; +o0] fixé
noo

°g, % 1 sur [0; +o0l.

N
« Soit P = Zaka € C[X].Ona:
k=0

b b N
[ Porma= [ () rwax
a a k=0
N
= Za
k

=0

b
f x* f(x)dx =0.

a

—_———
=0
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* D’apres le premier théoreme de Weierstrass, il existe une suite

(Py)nen de polynomes de C[X] convergeant uniformément

c’est-a-dire (PC) telle que :|| f — P,||o—> 0 vers fsur[a ; b]
noo

(PSI). On a, pour tout 7 € N, en utilisant le résultat précédent :

b b
o< [ 1P dx = / T £ () dx

b b
= / Tl — / P f(x) dx

a
N— ——

=0

b
=/ (f) = Pa)) f@) dx < (0 = I f = Pullool| floo-

b
Comme || f — P,||cc—> 0, on déduit :/ | £(x)]*dx = 0.

Puisque f est continue sur [a ; b], il en résulte f = 0.

D’apres le premier théoreme de Weierstrass, il existe une
suite (Q,)nen de polyndmes de C[X] telle que : O, C—;} fsur
[a;b]. '
Notons, pour toutn € N : P, = Q, — Q,(¢c) + f(c).

Il est clair que (P,),en est une suite de polynomes de C[X] et
que:VneN, P,(c) = f(c).

On a, pour toutn € N :

Vx €la;bl, |Pu(x) — f(x)]
SIP(x) = @u(O)] + [Qn(x) — f(X)]
=10a(c) = fOI +10x(x¥) = fFOI < 211Qn — [l

dou: [[P — flloo < 211Qn — flloo-
Comme Qnﬂ}f,ona: ||Qn_f||oc > 0,
noo noo

puis, par encadrement : ||P, — f|lcc —— O,
noo

N C.U. . . .
d’ou : P, —> f. Ainsi, la suite (P,),cy convient.
noo

a) Notons, pour tout n € N* :
f:[0;1] — R, x— n(e™ —1).
 Pour tout n € N*, f,, est continue par morceaux (car conti-
nue) sur [0; 1].
e Soit x € [0; 1] fixé.
Six # 0, alors :

fu(x) =n(eﬁ — 1) ~n

donc : f,(x) —— x.

Six =0, alors : f,(x) =0 —— 0.

noo
Ainsi:fngf,oﬁ:f:[O;I]HR, X —> X.
noo

e f est continue par morceaux (car continue) sur [0; 1].

eOna: VneN, Vxel0;l1],

Notons, pour tout n € N* : @, = n(enl —1).

Ona:a, — 1.
noo

Puisque (a,),cn+ est convergente, (a,),en+ est bornée.

Il existe donc C € Ry tel que: Vn € N*, |a,| < C.
Onaalors:Vn e N, Vx € [0; 1], |f,(x)]| < C,

et I’application constante C est intégrable sur le segment
[0;1].

Ceci montre que ( f,),en+ Vérifie I’hypothese de domination.

D’apres le théoreme de convergence dominée, on déduit :

1 1 1 x2 1 1
b [ = [re=[] =2

/0 noo  Jo 0 2y 2

! 1
On conclut : lim n(em — 1) dx = —.
noo Jo 2
b) Notons, pour toutn € N* :

n—+x
n + x2

=57

(<]

fu:[0; +oo[— R, x — (x> +1)

* Pour tout n € N*, f,, est continue par morceaux (car conti-
nue) sur [0; +ool.

* Pour tout x € [0; +oo[ : f,(x) —— (x> + 1)e™,
noo

C.s. N
donc f, — f,ou:
noo

f:10;+oo[— R, x +— (x> +1)e™™.
* f est continue par morceaux (car continue) sur [0 ; 4-o0[.

* On a, pour tout n € N* et tout x € [0; +o0] :

X
ls=
n—+x :
[l = G+ D =G e =07+ h—F e
Il =
n
<EXP+ DA +x)e™,
2
car iéx et x—}O.
n n

L’application
0 [0; +00[— R, x — x>+ 1)1 +x)e™

est continue par morceaux (car continue), 2> 0, intégrable sur

[0; +oof car: x*p(x) ~ x’e* — 0,

—>+00 x—> 100

1
donc, pour x assez grand : x%p(x) <1, 0< o) < et

exemple de Riemann en 400 (2 > 1) et théoreme de majora-
tion pour des fonctions > 0.

Ceci montre que ( f,),en+ Vérifie I’hypothese de domination.



D’apres le théoreme de convergence dominée, f est intégrable

sur [0; +oof et:
+00 +oo
fo— /0 f.

notée /

0

Il reste a calculer /.
On a, en utilisant des intégrales de fonctions intégrables :

+o00 +00 +o00
I:/ (x2+1)e’xd.x:/ xZe’)‘dx—{—/ e dx
0 0 0

=ra3)+ra)=24+0!=3.

+00
On conclut : lim/ e *dx =3.
noo 0
c) Notons, pour tout n € N* :
nsinnx
fi  R— R, x — S
n-+x

* Pour tout n € N¥, f;, est continue par morceaux (car conti-
nue) sur R.
* Soit x € R fixé. On a, pour tout n € N* :

n|sinnx| n n

1
[fu(0)] = < Sa=5

X
n? + x* n?+x* ~ n?

donc : f,(x) —— O.

. €8,
Ceci montre : f, — 0 sur R.

noo

* ( est continue par morceaux sur R.

e Soientn € N, x e R.Ona:

| _ n|sinnx| n
fu@)] = P St
Rappelons : VY (a,b) € (R})?, a*>+ b> > 2ab,
d’otrici : n* 4+ x* > 2nx?,

etdonc, six #0 :

n
< f—
A< 5

72
D’autre part, si |x| < 1
hWIS —— < S =2 <,
Ainsi: VneN" VxeR, |f,(x)] < @),
1 si x| <1
oi: p:R— R, x+— 1

ﬁ si |)C|>l
X

L’application ¢ est continue par morceaux,
sur R (exemple de Riemann en 00, 2 > 1).

> 0, intégrable

Ceci montre que ( f,),en+ Vérifie I’hypothese de domination.

D’apres le théoreme de convergence dominée, on déduit :

+o0 +o0
fo —— 0=0.
—00 noo —00
. * nsinnx
On conclut : lim dx = 0.

noo J_ o n2+x4

d) Notons, pour tout n € N* :
fuil0;7] — R, x — /7 —x sin"x.

* Pour tout n € N*, f,, est continue par morceaux (car conti-
nue) sur [0; 7].
e Soitx € [0; 7].
. s . . .
Six £ > alors sinx € [0; 1[, donc sin”"x —— 0 puis :
noo

fu(x) — 0.

Six = g, alors : f,(x) = \/g ? \/g

. C.S. N
Ceci montre : f,, — f, ou :
noo

0 si x £m/2
f:[0;71] — R, x +—
{./71'/2 si x =m/2.

e f'est continue par morceaux sur [0 ; 7].
VneN Vxel0;n],

|fu@)] =7 —xsin"x <Vm—x <7

et I’application constante x —> /7 est continue par morceaux,

*Ona:

> 0, intégrable sur le segment [0 ; 7].
Ainsi, la suite (f,,),en+ Vérifie I’hypothése de domination.

D’apres le théoreme de convergence dominée, on déduit :

/ fn —>
On conclut : hm/ V7 —x sin"xdx = 0.

e) Notons, pour tout n € N* :

f—O

ef(era)"

Jx
e Pour tout n € N*, f, est continue par morceaux (car conti-
nue) sur 0 ; +oo[

e Soit x €]0; +o0[.

fn:10; +oo[— R, x —>

Six <1—a,alorsO<x+a<1, (x+a)* —— 0, donc

e €
Six=1—a,alors: f,(x .

fa(®) m n oo m
Six >1—a,alors x+a>1, (x+a)" —— + o0,

donc f,(x) —— 0.

Ceci montre : f, R f sur ]0; +oo[, ou 1’application
f:10; +oo[— R el;:déﬁnie, pour tout x € ]0; 400, par :
1 .
ﬁ si

fx) = e!

1—a
0 si

O<x<l—a

si x=1—a

x>1—a.
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e f est continue par morceaux sur ]0; +oo[.
e Soientn € N*, x €]0; +o0][.

e—(x+a)”

VX S

Six €]0; 1], alors : 0 < f,(x) =

-

Six €]l; +ool, alors :

e~ (xta)"
Jx

Ainsi: Vn e N*, Vx €]0; +oo[, |f,(x)] < ¢(x),

en notant :

0< fulx) = Le ™ L™ e

1

— si 0<x<1
©0:]0; +oo[— R, x —> { /% =

e si 1<ux.

L’ application ¢ est continue par morceaux, > 0, intégrable sur
10; +o0[ (exemple de Riemann en 0, 1/2 < 1 ; exemple du
cours en 4+-00). Ceci montre que la suite (f,),>; Vérifie I’hy-

pothese de domination.

D’apres le théoreme de convergence dominée, f est intégrable
sur |0; +oof et :

+00 +o00 1—a 1
n > = —dx
/o U noo Jo f /0 Vx
=RVxl“=2/T—a.
dx =241 —a.

400 e—(x+a)”
On conclut : lim

noo Jo \/;

f) Remarquons que la borne /n dépend de n et que

1 o N
Yn =ei™ —— 1 par valeurs supérieures a 1.
noo

On a, pour tout n € N* :

Yn 1 Yn
f «/l—l—x"dx:/«/l—kx”dx—kf V1 +x"dx.
0 0 1

notée v, notée w,

1) Etude de v,, :
Notons, pour toutn € N* :
fuil051] — R, x — /1 4+x".

 Pour tout n € N*, £, est continue par morceaux (car conti-
nue) sur [0; 1].

'Ona:f,,ﬂ)fsur[o;l],oil:

1 si 0<x<1
V2 osiox=1.

e f est continue par morceaux sur [0; 1].

f:00;1] — R, x+—

eOna:
Vne N, Vx €[0; 1], |f,(x)] =+1+x" < V2,

et 'application constante /2 est intégrable sur le segment
[0;1].

Ceci montre que la suite ( f,),> vérifie ’hypothese de domi-
nation.

D’apres le théoréme de convergence dominée :

v,,=/01fn7/01f=/0|1dx=1.

2) Etude de w, :

On a, pour tout n € N* :

i
ogwn=/ Vitxde < (n—DV1+n
1

1 1
:(enl'“”—l) /l—f-nNM«/ﬁ:ﬂ—)O,
noo n \/Z noo

donc: w, —— 0.
o0

i
Ainsi:/ V1+xtdx=v,+w, — 1+0=1.
0

noo

Y
On conclut : lim V14 xtdx = 1.
noo 0

Essayons d’appliquer le théoreme de convergence do-
minée.

Notons, pour tout n € N* :

fuil05al — R, x — l((1_;-f> _]>.
X n

* Pour tout n € N*, f,, est continue par morceaux (car conti-
nue) sur |0; a].

n
e Soit x €]0;a]. On sait : (1+ £> —— ¢*, donc :
n

noo

X

-1
fu(x) —> . Ainsi, f, &5 fsur]O;al,ou:

e —1

X

f:10;a] — R, x +—

* f est continue par morceaux (car continue) sur ]0; a].
e Soitn € N*,
Puisque: Vre]—1;4o0[, In(1+1) <1,

ona: Vtel0;4+oof, 14+1<L¢,

d’ou, pour tout x €]0; a] : (1 + £> < (en) =e',
n

n
puis : Oé(l—i—{) —1<e" -1,
n

et enfin : 0< f(x) < fx).

L’application f est continue par morceaux sur ]0; a], > 0, et
& =1

—> 1.
x—0

intégrable sur ]0; a] car f(x) =

Ainsi, la suite (f,),> vérifie ’hypothese de domination.



D’apres le théoreme de convergence dominée, on déduit :

/Oafn—> Oﬂf,

noo

c’est-a-dire :
@ n aex 1
0o X n noo 0 X

1) Existence de I, :

Soitn € N*. L’applicationu, : x —> f(x) e~ est continue
par morceaux sur R (car f I’est), et :

—n2x2
Vx €R, [ua| < | fllce™ .

. . ) 5 %
L’application ¢, : x — e est intégrable sur R, car

2 —n%x?

x%e,(x) =x2e —> 0, donc, pour |x| assez grand,
x—>to0

1 1
0<¢e,(x) < —,etx —> —est intégrable sur | — oo ; —1]
X X

et sur [1; +o00[, exemple de Riemann. Par théoreme de majo-
ration pour des fonctions > 0, u,, est intégrable sur R, donc 7,
existe.

2) Equivalent de I, lorsque n tend vers I’infini :

On a, pour tout n € N* fixé, par le changement de variable
t=nx:

TED _ 22 1 e t _2
I, = fx)e™ " dx=— fl—)e™" dt.
—o0 nJ_« n

Essayons d’appliquer le théoreme de convergence dominée, pour
obtenir I’éventuelle limite de cette derniere intégrale.

Notons, pour tout n € N* :
. St )
i it R— R, t— f{—-)e".
n
* Pour tout n € N*, f, est continue par morceaux sur R, car f
I’est.

i e
— —— 0, donc, par continuité de f
n noo

en0:f<£) s F(0), puis : fu(t) —— F(O) e

e Soit t € R. On a :

. cs. N
Ceci montre : f,, —> g, ou :
noo

—f2

g:R— R, t+—— f(0)e

* g est continue par morceaux (car continue) sur R.

*Ona:

t 2
VneN, VieR, [f,()] = ‘f(—)e*’z <fllwe™,
n

t

. . 2 9
et ’applicationt —> || f||oo €' est continue par morceaux (car

continue), > 0, intégrable sur R.

Ainsi, la suite (f,),> vérifie ’hypothese de domination.

D’apres le théoreme de convergence dominée, on déduit :
+00 +00

Jn > 8,

—00 noo —00

c’est-a-dire :

TE2 t 2 e 2
[ s (2) ed— [ fOed = fOVF,

00 noo —00

+00

e dt = 7.

en utilisant I'intégrale de Gauss : /

—00

On obtient :

+00
f(x) efn2x2 dx = f(o)ﬁ + o <l>
63 n noo \ n

et on conclut, si on suppose f(0) # O :

+o00
Fle)e™ dx o~ f(O)g.

Remarque : La méme méthode permet de montrer :

esif :[0; +o0o[—> R est continue par morceaux et bornée,

alors :
+o0
f Foe™ dx = £0H L 4+ o <1>
0 2n noo

n
ol f(0%) désigne la limite de f en 0 a droite

esif :] —o00; 0] — R estcontinue par morceaux et bornée,
alors :

0
/ f(x) e—anZ dx = f(o—)ﬁ + o (1) s
S 2n noo \ n

ou f(07) désigne la limite de f en 0 a gauche

*si f : R —> R est continue par morceaux et bornée, alors :

SOV +FO) VE (1>

2 n noo \ n

+o00 5.3
f fx)e™* dx =

D’abord, pour tout n € N*, [, existe comme intégrale
d’une application continue sur un segment.

a) Comme, pour toutx €]0; 1], /1 —x" —— 1,
noo
on peut conjecturer : [, —> 1.
noo

Le théoreme de convergence dominée s’applique, mais un simple
calcul de majoration est possible. En effet, on a, pour tout
n € N*, en utilisant une expression conjuguée :

1 1
/vl—x”dx—/ 1dx
0 0

=/(;I(1—M)dx=/01—l+\)/€mdx

1 n+1 1 1
S/ﬂdx: - = :
0 n+1], n+l1

donc [, — 1| —— O, puis: [, —— 1.
noo noo

[ — 1| =
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b) Reprenons le calcul de 7, — 1 effectué ci-dessus (sans la va-
leur absolue) :

n

1
/xidx.
o 1++/1—x"

notée J,

L —1=—

Pour étudier J,, effectuons le changement de variable

1 1 1
t=x",x=tn,dx=—tn ' dr:
n

. t ll,l 1 1 [%
J, = — i 't = — —dr.
0o 1+4/1—1tn nJjo 14+/1—t¢
—_—
notée K,

Pour trouver la limite de K, (si elle existe) lorsque 1’entier n
tend vers I’infini, nous allons essayer d’utiliser le théoréeme de
convergence dominée.

Notons, pour tout n € N* :
1
ti
1+/T=1
* Pour tout n € N*, f,, est continue par morceaux (car conti-
nue) sur |0; 1].

f:1051] — R, t+—

C.S.
e Pour tout # €]0; 1], on a : o —— 1, donc f,, — f sur
noo noo

1
0;1],ou:7:10;1] — R, t —> ————.
1041 ou: 7410+ 1] Vo
e f est continue par morceaux (car continue) sur ]0; 1].

*Ona:

tn
YneN, Vtelo; 1, |fu(t) = —— <1,
1051 1A0] = 17—

et I’application constante 1 est continue par morceaux, > 0,
intégrable sur I’intervalle borné ]0; 1].

Ainsi, la suite (f;,),> vérifie I’hypothese de domination.

D’apres le théoréeme de convergence dominée, on déduit :

1 1 1
1
g /Ofnm/()f /01+ft
—_—

notée L

Pour calculer L, on effectue le changement de variable
u=1—t,t=1—u? dt = —2udu :

vl L
L:/ —(—2u)du:2/ du
1 14+u 0 1 4+u

1
! 1
:2/0 (1 - l+u)du=2[u—ln(l+u)]0=2(l —n2).

Ainsi : K, —— 2(1 —1In2),
noo
et on conclut :
1 2(1 —In2)
I, -1=-J,=——K, ~ ———.
n noo n

a) 1) Convergence simple, convergence absolue :
Soit x € [0; +oo] fixé.

On a, par développement limité :

) = 1n<1+f>—f=(f+0(iz)>—f
n n n n n
1
=o(;3)

D’apres I’exemple de Riemann (2 > 1) et le théoreme de ma-

1
joration pour des séries a termes > 0, la série E o (—2> est
n
n

absolument convergente. Ainsi, la série Z fn(x) est absolu-
n

ment convergente, donc convergente.
Ceci montre que E [ converge absolument, donc simplement,

n=1

sur [0; +ool.
2) Convergence normale, convergence uniforme (PSI) :
* Pour tout n € N*, comme

£u(%) =1n(1 + f) I, _x
n

n x——+oo

(prépondérance classique), f, n’est pas bornée, et donc, d’apres

le cours, Z fn ne converge pas uniformément (PSI), ni nor-
n=>1

malement (PC), sur [0 ; +o0].

¢ Soit a € [0; +o0[ fixé.

L’étude des variations des deux fonctions

2

t
t—In(14+1¢t)—t+ —

t— In(1+1¢) —¢t, 5

2
montre : V¢t € [0; +oof, —Eéln(l—l—t)—tSO,

t2
dot:  Vre[0;4o0f, |In(1+1)—1] < 5"

On a donc : VneN, Vx el0;al,
X X 1/x\? 52 a’
@) =n(l+—-)—=|<=-) =— < —
[ fa )] ‘n( +n) n \2<n> 2n2  2n2

2

Ainsi : Vne N, [|f]l09 < —

2n?’
D’apres I’exemple de Riemann (2 > 1) et le théoreme de ma-
joration pour des séries a termes > 0, on déduit que la série
Z ||fn||gi;“] converge, et on conclut : Z J» converge nor-
n=l1 n=l1
malement, donc uniformément (PSI), sur tout
[0;al, a € [0; +o0] fixé.
b) L’étude des variations des deux fonctions
2

12
t+— In(1+1¢) —¢t, t|—>ln(1—|—t)—t+§

12
montre : YVt € [0; +o0[, t — ) <In(1+1) <t



Onadonc: VneN*, Vxel0;+o0[,

<x>2

- 2 A—x

n x-e 1
0< fulx) Le™ = —.
fulx) <e > >

55

L’application ¢ : [0; +oo[—> R, x —> x’e”
est de classe C! sur [0; 400, et, pour tout x € [0; +o0[ :
¢(x) = @x —xP) e,

d’ou le tableau de variations de ¢ :

X 0 2 +o00
@' (x) + 0 —
px)| 0 /! Ny 0

Ceci montre que ¢ est bornée et que :
llplloo = @(2) = 4e72.

1
Onadonc: VneN, [|filleo < 4e*2n—2‘

D’apres I’exemple de Riemann (2 > 1) et le théoreme de ma-
joration pour des séries a termes > 0, on déduit que la série

Z || fulloos converge et on conclut que Z fn converge nor-

nzl n>1
malement (donc uniformément (PSI), absolument, simple-
ment) sur [0 ; +0o0].

a) 1) Convergence simple sur 10 ; +o0| :
Soit x € [0; +o00].
Six # 0, alors

+x n+x 1

fn(x) = Arctan 1

1+ n3x noo 1+ ndx no n2x =
D’apres I’exemple de Riemann (2 > 1) et le théoreme d’équi-

valence pour des séries a termes > 0, la série E fn(x)
n=1
converge.

Six =0, alors f,(x) = Arctann —— 7/2 # 0,
donc la série Z fu(x) diverge (grossierement).
n=1

On conclut que Z f» converge simplement sur ]0; +oo[
n,z1

(et non sur [0 ; +00[).
2) Convergence normale sur [1; +oo] :

Soitn € N*. L’application f, est de classe C' sur [0; +o0] et,
pour tout x € [0; 4-o00] :

, 1 (1 +n*x) — (n+x)n?
Sfux) = 7" 3.2
n+4x (I +nx)
1+ ——
1+ n3x
1—n*

’

— <
(I+mx)2 +@m+x)?

donc f,, est décroissante sur [0; +oo[, d’ou :
Vxe[l;+ool, 0< fu(x) < fu(D),

IS < fu(D).

Comme la série an(l) converge (cf. 7)), par théoréme
n=1
de majoration pour des séries a termes > 0, la série

Z || f,1||£>'<j+°"[ converge, et on conclut que Z f. converge

n=1 n=1
normalement, donc uniformément (PSI), sur [1 ; +o0[.

et donc :

b) 1) Puisque, pour tout n € N* :

fa(x) = Arctan nEx

1
—> Arctan —
1+ n3x x—+o0 n3

etque Z [ converge uniformément sur [1 ; +oo[ (PSI), nor-
n=1

malement sur [1 ; +oo[ (PC), d’apres le théoreme du cours sur

convergence uniforme (PSI) ou normale (PC) et limite,

+00 l
ona: S(x)X:mL = ;Arctan pt

2) En notant R, le reste d’ordre n de la série définissant L
ci-dessus, et en utilisant une comparaison série/intégrale, 1’ ap-

plication ¢t — e étant décroissante et intégrable sur [1 ; +o00[,

ona:
2 1 = 1
0K R, = Z Arctank—3< Z s
k=n+1 k=n+1
+00 —2+o0
< -5 -
On a donc :

1
IR, <0,9-107° & — <0,9-107°
2n?

3

0.9 ~555,...<=n > 24.

—n’>

D’autre part, 20,1 - 1073 pres, en utilisant la calculatrice :

24 1
Z Arctan — 2~ 0,9866.
=1 k3

On conclut : L ~ 0,986 a 1073 pres.

a) 1) Convergence simple sur ]0; +o00[:

Soit x €]0; +o0o[ fixé. La série an(x) est alternée,
n=0

[fu()] =

—— 0, et la suite (| f;,(x)]),  est dé-

1
V1 4+nx noo
croissante, donc, d’apres le TSCSA, la série Z Jfn(x) converge.

n=0

Ceci montre que Z [ converge simplement sur ]0; +-o00[.
n=0
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2) Convergence uniforme sur [1; +00[ :

On a, pour tout x € [1; 4o00[, puisque la série Z fu(x) re-
n=0

leve du TSCSA, en notant R, (x) le reste d’ordre n :

1 1

R’l < bl
e NEIES R Y

S (0] =

d’ou: [Rulloo < 0,

1
—
Jn+2 noo
donc ||R,||.c — 0. Il en résulte que Z f» converge uni-
nee n>0

formément sur [1 ; +o0].

—1)n
D ) —> 0 et que
V1 +nx x—+00
Z [ converge uniformément sur [1 ; +-oo[, d’apres le théo-
n=0
réme du cours sur convergence uniforme et limite, on déduit :
Sx) — 0.

xX—>—+00

b) Puisque, pour n € N*, f,,(x) =

n

c) D’abord, a existe car la série Z -

n=>1

converge, d’apres

le TSCSA.

Notons, pour tout n € N* :

(=1’
Jnx

On a, pour tout n € N* et tout x € [1; +oo[, en utilisant une
expression conjuguée :

(="
| fu(x) — ﬁ
_ Nl4nx —nx 1
a \/ﬁx/l—i—nx \/ﬁ«/l—i—nx(\/ﬁ—l—«/l—i—nx)
1
= 32 n3/2

gn i [1; +oo[— R, x —

(=D"

gn(x)| =

2(n)c)3/2

rr<r + %)

Puisque la série Z

n=1

—j; converge (exemple de Riemann,
P

3/2 > 1), il en résulte, pour tout x € [1; ool :

400

‘S(X)_T = ;(fnm—gn(x))‘
+00 +00 1 1
< ;m(x) — &) < ; = =
121 1
= (E Z nz/z)
etdonc: S(x) — — 0 :
ne : 09— —— =
7= 9.(z5)

d’ou, en conclusion : S(x) =

%+ (s5)

a) D’apres le cours, pour x € R fixé, la série de Riemann

1 . .
E — converge si et seulement six > 1, d’ou :
n=1

Déf (f) =11; +oo[.
b) Notons, pour toutn € N* :

1
fuill;+o0o[— R, x—> — =¢
nX

—x1Inn

* Pour tout n € N*, f, est de classe C* sur ]1; +o0o[ et :
—1 k
VkeN, Vx ell; +oof, fP(x)= &

n

e Pourtoutk € N, Z f,f’” converge simplement sur |1 ; 4-o0].
n=1

En effet, pour tout k € N et tout x € ]1; +oo[ fixés :
k
%f”(k)( )_ﬂ_)(),

nz noo

donc, pour n assez grand : n's |fn(k) x| <1,
1

xtl
2)

puis : 1£P @) <

n

1
> 1) et le théoréme de

0,la série Y | % (x)|

n=1

. X
D’apres I’exemple de Riemann (
majoration pour des séries a termes >

converge.

Ainsi, la série E fn(k) (x) converge absolument, donc converge.
n=l1

Ceci montre que Z fn(k) converge simplement sur |1 ; 4+o0].
n>1
* Pour tout k € N* et tout segment [« ; b] inclus dans |1 ; +o0[,

Z fn(k) converge normalement, donc uniformément (PSI), sur
n=l1

[a; b]. En effet,on a :

VneN Vx €la;b],

159 (x)] = (h’") \(1“") 1£®@)],

k) la;b k
||fn‘ N < 1P @

D’apres le point précédent, la série Z | £ % (a)| converge, donc,
n=1

par théoreme de majoration pour des séries a termes 2> 0, la

série Z [ £ul1“1 converge.

n=1

d’ou : Vn EN*,

Ceci montre que E f"(k) converge normalement, donc uni-
n=>1

formément (PSI), sur [a ; b].

D’apres un théoreme du cours, il en résulte que ¢ est de
classe C* sur |1 ; +o0[ et que I’on peut dériver terme a terme,
c’est-a-dire :

+o0 k
VkeN, Vx el tool, (V=3 T

b
n=1 n



c) 1) D’apres b), on a :

+00

=Z 1nn_ lnn.

n=1

Vx ell; oo, (x)

Les termes de cette derniere série sont tous > 0 et non tous nuls,

donc leur somme est > 0, d’ou :
Vx ell; +oof, ((x) <O0.

Il en résulte que ¢ est strictement décroissante sur ]1 ; +00[.

+00 2
Z (Inn) >0,

n*x

2)Dapres b): Vx e]l;+oo, ('(x) =

n=1
donc ( est convexe.

d) 1) Pour obtenir un encadrement de ((x), nous allons utili-
ser une comparaison série/intégrale.

Soit x €]1; +oof fixé.

Puisque 1’application
1
p:[l;+oo[— R, t+— Z—X:t"‘

est continue par morceaux (car continue), décroissante, inté-
grable sur [1 ; +-00[ (exemple de Riemann en 400, x > 1), par
comparaison série/intégrale, on a :

+00 +00
/ p(t) dt < Z@(n) o(1) + f p(r)dr.
1
ﬁ,_z
= ((x)
Et:
+o00 +o0 B P +oo 1
/; <,o(t)dt=/I t dt:[—x—kll =7
D’ou : ! <) <1+ ;
x—1 — 1

1
2)C 1+ —
) Comme + —1 x—>l+ x—1

1
ment : ~ .
) —1tx —1

on déduit, par encadre-

—> +00, on obtient :

X—>

1

3) Puisque
X —
((x) —> +oo0.

x—1t

e) 1) ¢ Pour tout n € N* fixé, ona:

1 si n=1

l
fn (x) = — )
ntox—te L) §sion > 2.

. Z fn converge uniformément (PSI) et normalement (PC) sur
n=1

[2; +ool.
D’apres le théoréeme du cours sur convergence uniforme (PSI)
ou normale (PC) et limite, on déduit :

+00 too
(@ =) ful@) —> 1+ 0=1.
n= n=2

2) On a, pour tout x € [2; +oo[ :
1 =21
) —1- =) —

X )C
2 7

=
Par comparaison série/intégrale, puisque, pour tout
x € [2; +oo[ fixé, I’application f —> P est continue par

morceaux (car continue), décroissante et intégrable sur [1 ; +o0[,
ona:

+:>01 +ool
0<Z;</ t—xdt
2

t—x-H +o0 2—x+l Pl
= = = v
|:—x IF 1] x—1 x-1
+00
On a donc : — = o (27,
= n* x—>+00
d’ot ¢lx) =1 ! !
ou : -1 - — = 0 — ),
“ . 2% x—>+oo \ 2%
t lut : x)—1 !
et on conclut : C(x e heo OF
f X 1 ~+o00
¢ =
C(x) [+o00 N 1
y
1
0] 1 X

a) 1) Convergence simple :

_)n

Soit x €]0; +oo[ fixé. La série Z

n=1

est alternée,

1 1
= — —— 0 etlasuite <—X) décroit. D’apres
n n=1

n* noo

(—1)"

n

le TSCSA, la série Z

n=1

converge.

Ceci montre que Z [ converge simplement sur O ; +o0[.
n=1

2) Convergence absolue :

1
Puisque, pour toutn € N* et tout x € ]0; +o0[, | f,(x)| = —,
n)(

la série Z | fu(x)| converge si et seulement si x > 1.
n=1

197
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Ceci montre que Z [ converge absolument sur |1 ; ,4-o0[ et
n=1
ne converge pas absolument ailleurs.

3) Convergence normale :

ePourtout a > 1, E [ converge normalement sur [a ; +00[,
n=1

car || fullog " = 2.

e La série d’applications E [ ne converge pas normalement
n=>1

itool — et que la série Z -

n=1 Z

sur |1 ; +oo[, puisque || £, ||}

diverge.

4) Convergence uniforme :

=l —/—> 0, Z f» ne converge pas uni-

nzl1

* Puisque || f, |15 =

formément sur ]0 ; +o0f.
* Soit b € ]0; +o0[ fixé. Puisque, pour tout x €]0; +ool, la
série Z fn(x) releve du TSCSA, on a, en notant R, le reste

n=1
d’ordre n :

VneN* Vx €[b;+oo[,
[ frg1 ()] =

— e —
(n+1D* =+ 1P
1
R ||lLstool < ,
IR < ey

b
[[R, 125+t — 0.
noo

[Ry(0)] <

d’ou: Vn e N¥,
et donc :

On conclut que E f» converge uniformément sur tout
n=1

[b; +o0[, b €]0; +oof fixé.
b) Puisque, pour tout n € N*, f, est continue sur ]0; +o0[, et

que la série d’applications Z [ converge uniformément sur
n>1

tout segment de ]0; +-o0[, d’apres un théoreme du cours, on

conclut que la somme 7 est continue sur O ; +o00[.

c)Soitx €]1;+o0[.Ona:

S

(x)+Tx) =

+00

1+( 1"
=Z _Z(zp),x’

n=1

car les termes d’indices impairs sont tous nuls. Puis :

+00 1
() +T) =27 — =2""%((x).
=1 P
Onconclut: Vx e]l;+oo[, T(x) = Q2" — 1){(x).

Nous allons développer la fonction sous I’intégrale en
une somme de série de fonctions, puis permuter intégrale et
série.

On a, pour tout x €]0; +oo[ :
x*(x —InEe* — 1)) = —x*"In(l —e™)
+oo _a—1,—nx

+0oo ( —x\n
_ e™) x*le
n n
n=1

n=1

Notons, pour tout n € N* :

xa—] e ¥

fn 1105 400o[— R, x +—
n

* Pour tout n € N*, f, est continue par morceaux (car conti-
nue) sur |0 ; +oof.

. Z fn converge simplement sur ]O; +oo[ et la somme S
n=1

+o00
est: S=an:xr—>x0"l(x—ln(e"—l)).
n=1

* S est continue par morceaux (car continue) sur 0 ; +oo[.

+00
* Montrons que la série Z / | fu(x)| dx converge.

n=l1
On remarque d’abord :

x(lflefnx
VneN, Vxe]0;+oof, fi(x)=——20.
n

On a, pour tout n € N* :

+o00 +ooxa—le—nx
f |fn<x>|dx=/ "
0 0 n
a—1
(u) u
+oo \ €
1
_ / By L,
0

u=nx n n

1 400 - 1
= —'/(; Ma7 e “du= WF(Q)

notl
Comme « + 1 > 1, d’apres I’exemple de Riemann, la série

+o00
/ | f(x)| dx converge.
n=1

D’apres le théoreme sur I’intégration sur un intervalle quelconque
pour une série d’applications, on déduit que S est intégrable
sur 0 ; 4+o0[ et que :

+00
/ x*!(x — In(e* — 1)) dx
0
+00 +00 +00
= ; )

1
frx)dy =3 —T(a) =

n=1

Ca+ DI ().

1) Existence :
e [’application f : ]0; +00[— R, x +—> hi est continue
shx
sur |0 ; +ool.

* —> 1, donc fest intégrable sur ]0; 1].

"En0:f(x) = o -



3

e En 400 : x*f(x) = — 0, donc, pour x assez
shx x—tco
1
grand : x>f(x) <1, puis : 0< f(x) < - D’apres
X

I’exemple de Riemann (2 > 1) et le théoreme de majoration
pour des fonctions > 0, f est intégrable sur [1 ; +o00[.

Ainsi, f est intégrable sur ]0; +oo[ et on conclut que

400 X
1= / —— dx existe.
0 sh x

2) Calcul :
Nous allons essayer de développer la fonction sous I’intégrale
en somme d’une série de fonctions, puis permuter intégrale et
série.
On a, pour tout x €]0; +oo[ :

x  2x @ 2xe”
shx e —e* 1—e2

+00 +00
—2xe* Z(eflxyl — ZZX ef(ZIH»l)x,
n=0

n=0

car [e | < 1.
Notons, pour toutn € N :
fn:10; +oo[— R, x —> 2xe @ntbr,
* Pour toutn € N, f, est continue par morceaux (car continue)
sur |0 ; +ool.

. Zf,, converge simplement sur ]0; +oo[ et a pour
n=0

somme f.

* f est continue par morceaux (car continue) sur |0 ; 4+o0[.

+o00
* Montrons que la série Z / | fu(x)| dx converge.

n=0 0

Remarquons d’abord :
VneN, Vx el0; +oo[, f,(x)=2xe @+b¥ >0,

On a, pour toutn € N :

+0o0 +o00
/ | fu ()| dx = Ju(x) dx
0

0
+00
= / 2x e~ @ HDx gy
0

+00 ¢ » 1
= 2 e dr
t=Q2n+Dx Jo 2n+1 2n+1
> /mt e

=— @

@2n+1)?2 Jo

2 2 2

=—T02) = 1! = ,

(2n +1)? @ (2n +1)? (2n +1)?

+o00
donc la série Z / | fu(x)| dx converge.

n=0 0

D’apres le théoreme sur I’intégration sur un intervalle quelconque
pour une série d’applications, on déduit :

+o0 1
./o = ,10/ Sl e = Z(z 12

1l reste a calculer cette somme de série.

Pour tout N € N, en séparant les termes d’indices pairs, d’in-
dices impairs, on a :

2N+1 1 N 1 N 1

Zﬁ:;(zn)Z“L;(an)z
Bl
Zznz

n=1

N
Z(2n+1)2’

d’ou, en passant a la limite lorsque I’entier N tend vers I’infini
et puisque les séries considérées convergent :

+oc>1 ]+ool +00 1

kzﬁngﬁJrg(an)z’

et donc :

+00 1 1 +001 3 2 2)
P (-DE RIS
Qn+ 1) 1)2E~167 3

n=0

+00 x T
On conclut : —dx = —.
0

a) 1) Convergence simple :
Soit x € [0; +o0f.
Six # 0, alors :

In(1 + nx?)

fnx) = ———
nx
1
Inn+ Inx*>+In(1+—
nx? Inn
= ~ — —— 0.
nx noo nx noo

Six =0, alors: f,(x) =0 —— 0.

Ceci montre : f;, &5 0 sur [0; 4+o0].
noo

2) Convergence uniforme (PSI) :
Soit n € N* fixé. L’étude des variations de f, parait malcom-

mode, car le signe de f, (x) semble difficile & étudier.

Vu I’expression 1 + nx?, il peut étre intéressant de séparer en

cas selon les positions relatives de 1 et nx>.
Soit x € [0; +o0l.

1
* Si x < —, alors, en utilisant 1’inégalité classique
NG
Vie]l—1;400[, In(1+17) <t
nx? 1
ona ngn(X)gﬁzxéﬁ.
eSix > alors 1 < nx?, d’ot :

7
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In(1 + nx?) In(2nx?)
0< fulx) = <
nx nx

_In@2n) 1 21nx

T n x nx
In(2n 2 In(2n 2
< ( )ﬁ+—1= Gl
n n N/ n

On déduit, en regroupant les deux cas précédents :

n@n) 2
Vx e [0: oo, 0< fu(x) < @M 2
Jn n
n@n) 2
etdonc: |Ifulle < MM L2
\/ﬁ n noo

Ceci montre : f, % 0 sur [0; 4+o0].

b) 1) Convergence simple :

Soit x €]0; +oof fixé.

Vu la présence de (Inx)?, nous allons séparer en cas selon la

position de (Inx)? par rapport a 1, ¢’est-a-dire selon la posi-
tion de Inx par rapporta —1 eta 1.

*Six €]0;e '[U]e; +oo[, alors (Inx)? > 1,

d (1 )Zn + : 2 + (lnx)Zn 1
onc (In —> 4oo,puis: ——— —— 1,
e P ) neo
2 1 2n

etenfin : f,(x) = In ﬂ — 0.

14+ (Inx)> »neo

*Six =e'oux =e,alors (Inx)> = 1, donc :
3

3
f,,(x) = IHE ? IDE

< x <e, alors (Inx)? < 1, donc (Inx)** —— 0,

e Sie”
puis : f,(x) —— In2.

On conclut : f,, LN frou:f :]0; +o0o[—> R est définie, pour

tout x € ]0; 4o0[, par :
1

0 si O<x<e oue<ux
3 . i
f(x) = lnE Si x=€e¢ oux=e¢e
In2 si el<x<e.

On pouvait aussi remarquer :
1
Vx €]0; +o0[, f<;> = f(x),
ce qui permet de se ramener a une étude sur [1 ; +oo[ au lieu
de 10; +o0l.
2) Convergence uniforme (PSI) :
* Puisque chaque f, est continue sur ]0 ; +o0[ et que f est dis-

continue ene ! eten e, d’aprés un théoréme du cours par contra-
position, on déduit que la convergence de la suite (f;,),> vers

£ n’est uniforme sur aucun des intervalles suivants : ]0; e~![,
Je=; 11, [Lsel, Je; +ool.

* Soit a € Je; +oof fixé. Ona:

VneN Vxela;+oof,

2+ (Inx)* 1
2 _ e 1 —_— = 1 1 T n e NG
|f (X) f(x)| n 1 + (1nx)2n n + 1 + (lnx)z”
1 1
< <
S 1+ (lnx)2” X 1 + (lna)z’“
1

donc: || fy — fILH < ——— 0.

1 =+ (11'161)2" noo
Ceci montre : f, &y fsur [a; +oo[, pourtout a € Je; 4oo[
noo

fixeé.

R 1 cu.
De méme (ou en remplagant x par —) : f, — f sur tout

X noo

10: 5], b €]0; e[ fixé.
*Soith € [1;e[ fixé. Ona:
Vne N, Vxel[l;b],

2 + (Inx)*
2 (9) = =|In=——"_ — In2
If (X) f(-x)l ’ n l+(lnx)2n 1t
2 4+ 2(Inx)* (In x)*
=n_ =77 _ fae
Mmooz - U T 2 e
(Inx)*" (Inx)?" (Inb)>
S24@Mnx)>» > 2 2
, In b)?"
done:Ilfy - ALY < B 0,

Ceci montre : f, <% fsurtout [1:b], b e [1; e fixé.
noo

1 c.u.
De méme (ou en changeant x en —) : f, —> f sur tout
X noo

la; 1], a ele " ; 1] fixé.

I en résulte que f;, &y fsurtout[a; b], (a,b) €le”!;e[* fixé.
noo

c) 1) Convergence simple :
Soit x € R fixé. Vu la présence de 2" + |x|", séparons en cas
selon la position de |x| par rapport a 2.

* Si |x| < 2, alors :
1

x|

ful) = @+ xI)F = 2[1 + <7> ]

(ol (3)
b (3) ()]

* Si |x| = 2, alors :
fix) =@+ )7 = @27 =27 .2 — 2.
e Si |x| > 2, alors :
2\" 4
falr) = @' + |x|)7 = IXI<1 A <m> ) — x|,

comme plus haut.



. cs. N
Ceci montre : f,, —> f, ou:
noo

2 si x| <2

f:R— R, xr—>{

[x| si |x| > 2.

Autrementdit: Vx e R, f(x) =Max (2, |x]).
2) Convergence uniforme (PSI) :
Soitn € N tel que n 2> 2. On a, pour tout x € R :

Q@+ xIM7 — @95 si x| <2
Ifn(x)—f(X)|={ ] A

@+ xM)i = (x[")n st |x] > 2.
L application ¢ : [0; +00[— R, t +—— th

est continue sur [0; +oo[, de classe C! sur ]0; +o00[, et :

/ 1 Al 1
Vte]0;4ool, p(t)=—tr = =
n nt'=n

D’ou, par I'inégalité des accroissements finis, pour tout
(a,h) € [0; +oo[? :

0< pla+h)—p@<h Sup (1)<
t€la;a+h[ na

1—

1
n
On a donc :

* sl [x| < 2, alors :

|fax) = FOOI = |02 + IxI") — (2"
(b > 2
n(2n)17; n2”*1 n

* 8i |x| > 2, alors :

Ifu(x) — Ol = |@" + Ix") — o(|x|")]

g 2 1 < 2 1 :%
n(lx|m'=a  n@H'=a n
2
Ainsi : Vx eR, [fi(x)— fx) < —,
n
2
donc : [fi = fllo € = — 0.
n noo

. CU.
On conclut : f, — fsur R.
noo

d) 1) Convergence simple :

Soit (x,y) €]0; +00[>.On a :

fu(x,y) = In (x + X) —— Inx.
n noo
C.S. N
On conclut : f,, — f,ou:
noo

f:10; +oo[>*— R, (x,y) —> Inx.
2) Convergence uniforme (PSI) :
Soit 7 € N*. On a, pour tout (x,y) €]0; +oo[> :

[fuey) = £ @] = |In (x + %) — Inx|

ln<l+l>‘ = 1n<1+l>.
xn xn

e Par exemple, pour tout x €]0;+4oo[ fixé,

[(fn — F)(x,y)] - 400, donc f, — f n’est pas bornée
y—>+00

sur 0 ; +oo[2. Il en résulte, d’apres le cours, que la suite (f5,)n>1

ne converge pas uniformément sur ]0 ; +oo[>.

* Soit (a,b) €10; +oo[>.

On a, pour tout (x,y) € D =]0;a] x [b; 4o :

b
1n<1+l>‘< 1n(1+—),
xn an

I1fo — 12 < In (1 + i) — 0.

an n oo

Ifn(-x’y) - f(x!y)l =

donc :

Ceci montre que la suite ( f,),> converge uniformément vers

f sur tout D =10;a] x [b; +oo[, pour (a,b) €]0; +oo[?
fixé.

Puisque / est un intervalle de longueur > 0, / est un en-
semble infini, donc il existe xg,...,xy € I, deux a deux dis-
tincts.

Considérons les polyndmes d’interpolation de Lagrange sur les

abscisses X, . . . Xy, ¢’est-a-dire les polyndmes Ly, . .., Ly dé-
finis par :
l_[(x —Xj)
Vie{0,....N},Vxel, Lix)=2
l_[(xi - X_;‘)
JFi

D’apres le cours sur I’interpolation de Lagrange, on a, pour tout

N
PeRy[X]:P =) P(x)L:.
i=0
En particulier, on a donc :

N
Vxel,¥neN, P(x) =) P(x)Li(x).
i=0

C.S. P . .
Comme P, — f sur /, on déduit, en faisant tendre I’entier n
noo

vers I’infini :
N
Vxel f(x)=) fG)Li(x).
i=0

Ceci montre que f est un polyndme, c’est le polyndome

N
Z f(xi)L;, de degré < N.
i=0

Munissons £ = C([a; b], R) de ||.||oo. Considérons le
sev F de E, formé des polynomes de degré < N. Ce sev F est
de dimension finie (égale a N + 1), donc, d’apres le cours,
F est complet. Puisque F est complet, F est fermé dans E.
Comme : Vn € N, P, € E, et que (P,),cy converge vers f
dans E (la convergence uniforme est la convergence pour la
norme ||.||~), il s’ensuit : f € F.
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On conclut que f est un polynome, de degré < N.

Comparer 1’énoncé et la méthode de résolution de 1’exercice
5.28.

* D’abord, montrons que, pour tout x € [0; 4-o0[, I'in-
tégrale proposée existe.

. ) . sin (xt)
Soit x € [0; +oo[ fixé. L’application f, : t —> Tre est
continue sur [0; +oof et, pourz > 1 :

1
|[F. ()] < FET e

D’apres I’exemple de Riemann en 00 (4 > 1) et le théoreme
de majoration pour des fonctions > 0, F, est intégrable sur

~+00
[0; 400, donc I (x) = / F, (t) dt existe.
0

e Comme, pour tout ¢ € [0; +oo[, sin(xt) ~ +xt, on peut
x—0
conjecturer que I(x) ressemble, pour x —> 0F, a
~+00
f T+7 df, donc que /(x) admette un équivalent du
0

o
genre Ax, A € RY.

1" méthode : utilisation du théoréme de continuité sous le signe
intégrale :

On a, pour tout x € ]0; 4-o0[ :

1) = /+°° sin (xt) & /‘+°° » sin (xt) 1
0 1+ 0 xt 1+
+o0

t
= t)—— dr,
x| oen

dt

en notant :
sin u
¢ :[0; +oo[— R, u+— u 2= )
si u=0
Notons :

t

F :[0; +00[X[0; +0oo[—> R, (x,f) —> ¢(xz)1+_14.

* F est continue par rapport a x (car ¢ est continue), continue
par morceaux par rapport a ¢ (car continue par rapport a ¢, ¢
étant continue).
*Ona:V(x,t)€[0;+oo[x[0; 4o,
FD) = Dy < oy
B L+ 144

car:Vu € [0; +oo[, |sinu| < u.

L’application ¢ : t —> est continue par morceaux (car

t
1414
continue), 2> 0, intégrable sur [0 ; ,+o00[ (exemple de Riemann,
3 > 1 et théoreme d’équivalence pour des fonctions > 0).

Ainsi, F vérifie HD sur[0 ; +o00[ X[0; +00].

D’apres le théoreme de continuité sous le signe intégrale, 1’ap-
plication

+00
g :[0; +oo[— R, xr—>/ f(x,t)dt
0

est continue sur [0 ; +o0o[. En particulier :

+o0 t
0) = —dt
8(x) — (0) /0 e

1 [ du 1 voo | T
= = —— = —[Arctanu];~ = —.
U= t2 2 0 1 4= 1/[2 2 4
Puis, comme : Vx € [0; +oo[, I(x) = xg(x),

on conclut : I(x) ~

—X.
x—0t 4

2¢ méthode : utilisation du théoreme de convergence dominée
et de la caractérisation séquentielle des limites :

Soit (x,),en une suite dans ]0; +o00[, convergeant vers 0.
Notons, pour toutn € N :

sin (x,1)
Xn(1 414"
* Pour toutn € N, f, est continue par morceaux (car continue)
sur [0 ; 4+o00[.
e Soit# € [0; +o0[. Sit # 0, alors :

sin (x,t) t t

fn i [0; +00o[— R, t+—

(1) = .
Fa®) Xpt 1414 noo 1414
Sit =0,alors: f,(t) =0 —— 0.
noo
Cecimontre:f,,C—'S&fsur[O;—i-oo[, ou :
noo
1
2 [0; R, ¢ —_—
f:[0; +oo[—> '—>l—|—t4

* L’application f est continue par morceaux sur [0 ; +oo[ (car
continue).

eOna:VneN,Vrel0;+o0[,

| sin (x,2)| || !

@l = O+ S xnd+) 1+

. t .
et I’application ¢ — T est continue par morceaux (car

continue), > 0, intégrable sur [0 ; +o0[.
Ainsi, la suite (f,,),en Vérifie ’hypothese de domination.
D’apres le théoreme de convergence dominée :

+00 +00 +00 t T
N ——> = —dt = —
0 J noo 0 f _A 1414 4

(calcul fait plus haut, dans la premiere méthode).

Ceci montre que, pour toute suite (x,),eny dans ]0; +oo[,

+00 9
. sin (x,?
convergeant vers 0, la suite <[ 4&)
o A+ )

s
converge vers Z



11 en résulte, par caractérisation séquentielle des limites :

sin xt)

+00 g T
/ ——dr — -
o x(I+1%)

x—0t 4

s

I(x) ~ Ex.

x—0t+ 4

et donc :

a) D’abord, pour tout n € N*, I’intégrale

1
Iy = / In(1 + x") dx, existe comme intégrale d’une appli-
0

cation continue sur un segment.

On a, pour tout n € N*, par le changement de variable

1
t=x",x=tn,

: 1 1 (' 1In(1+¢
zn:/ 1H(1+t)ftnl‘1dz:7/ t%Lﬂdt,
9 n n Jo t

notée J,
ou J, est d’ailleurs une intégrale de fonction intégrable sur
105 1].
Pour obtenir la limite de J, (si elle existe), nous allons utiliser
le théoreme de convergence dominée.
Notons, pour tout n € N* :
1 In(1 4 ¢

fn:1051] — R, ¢t +— IFQ.
* Pour tout n € N*¥, f, est continue par morceaux (car conti-
nue) sur [0; 1].

, car, pour

In(1 + ¢
£, 55 oafi10:1] — R, sz

te€l0; 1] ﬁxé,onatnl — 1.

* f est continue par morceaux (car continue) sur ]J0; 1].

*On a, pour toutn € N* et tout# €]0; 1] :

1In(1+¢) _ In(1+1¢)
[fu()] =17 < .
t t
, .. In(1 +¢) .
et ’application ¢t —— — est continue par morceaux (car
In(1 + 1)
continue), > 0, intégrable sur ]0; 1], pulsquef —>0 1.
t—>

Ceci montre que la suite ( f,,),,>1 vérifie ’hypothese de domi-
nation.

D’apres le théoréme de convergence dominée :

+o0 +00
fn — f
0 noo Jo

+o0 In(1 t 2
Ainsi : J, / nd +1) dr = W_‘
noo 0 t 12

+00 2 1

On conclut : / In(1 +x")dx ~ — —
0 noo 12 }’l

b) 1" méthode : utilisation du théoréeme de convergence do-
minée :

1
D’abord, pour tout n € N*, I, = / x" In(1 4+ x™) dx existe
0

comme intégrale d’une application continue sur un segment.

On a, pour tout n € N*, par le changement de variable

1 1 1
t=x",x=tn,dx=—¢n'ds:
n

1 1 1 1
1,,:[ tln(1+t)—z%*‘dz:—f 7 In(1 4+ 1) dr .
0 n nJo
—_—_—

notée J,

Notons, pour tout n € N* :

£:10: 1] — R, £+ tiln(1+1).

* Pour tout n € N*, f, est continue par morceaux (car conti-
nue) sur |0; 1].

-fngf, ou f:]0;1] — R, ¢+ In(l 4 1), car, pour
noo

t€]0; 1] fixé, 17— 1.

noo
e f est continue par morceaux (car continue) sur J0; 1].

*Ona:

VneN, Vel 1], |£@0] =t In(l+6) <In(l +1),

et1’application  — In(1 + ¢) est continue par morceaux (car
continue), > 0, intégrable sur ]0; 1] car intégrable sur [0; 1]
puisque continue sur ce segment.

Ceci montre que la suite (f;,),>; vérifie I’hypothese de domi-
nation.

D’apres le théoréme de convergence dominée :

[ 5= [+

c’est-a-dire :

1

J, —— In(1 + ¢)dzt
n oo 0
=[t+DInA+0)~(1+n], =22~ 1.
2In2 —1
On conclut : L, ~ ——.
noo n
2¢ méthode : intervention d’une autre intégrale, calculable :

1

Pour toutn € N*, notons 7, = / x"1n (1 4+ x") dx, qui existe
0

comme intégrale d’une application continue sur un segment,

1

et notons K, = / x"'n(l + x") dx.
0

* On a, pour tout n € N* :

1
|1, — K,| =/ "' — x") In(1 4+ x") dx
0
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1 n n+1 1
g/ "' —=x") In2dx = In2 r 2
0 n  n+1],

1 1 In2 1
= In2( - — = =o |-
n n+1 nn+1) noo \ n

» D’autre part, on peut calculer K, par le changement de va-
riable t = x", df = x" 'dx :

'l 1
K,,:/ S 4+nHdi=-2m2-1),
o n n

calcul déja fait dans la 1™ méthode.

Ainsi : I, =K,+ U, — K,),
. 2In2 —1 1
ou : K,=—, e I,—K,=0|—-)=0(K,).
n n
On obtient : Iy = I,
noo
2In2 —1
et on conclut : I, ~ ——.
noo n
X X
¢) Comme, pour x € [0; +oo[ fixé : In <l + —) ~ -,
n ) non

X
+o00 1n<1 —+ ;)
on conjecture que [, = / —— = dx est équivalente

o x(1+x?)
X

+o00 —
a / — M dx, c’est-a-dire 2 An, oi A > 0 est une
o x(1+x?)
constante.

. 1
On va donc essayer de faire apparaitre — en facteur.
n

A cet effet, considérons, pour tout n € N* :

X
nln <1 + —>
_ N nJ

x(1 + x?)

et essayons de montrer que le théoréme de convergence dominée
s’applique.

fn 1105 +00o[— R, x —

s

* Pour tout n € N*, f,, est continue par morceaux (car conti-
nue) sur |0 ; 4+-o0[.

e Pour tout x € ]0; o0 fixé :

(142
i n 1 1

fn(X)z { 14+x2 1o l+x2’
n
C.s. . 1
donc f, — f,ouf :10; +oo[— R, x —> ———.
noo 1+x2

e f'est continue par morceaux (car continue) sur ]0; 4-o00].
*Ona: VneN* Vxe]0;+oo[,

nln(1+f> S
n) n 1

x(1+x2) x(1+x2) - 14 x2°
Vie]l—1;+o0[, In(1+1¢) < 1.

[fu(0)] =

car on sait :

L’application x — 152 est continue par morceaux (car
x
continue), = 0, intégrable sur ]0 ; +o0l.

Ceci montre que la suite ( f,),>; vérifie 'hypothese de domi-
nation.

D’apres le théoreme de convergence dominée :

+o0 +o0 +o0 1
o = —d
/(; f noo 0 f A 1+x2 *

= [Arctanx]® = g

. 1n(1+f> _
On conclut : / 7ndx ~ —
0

x(1+ x2) noo 2n

1) Soit n € N* fixé.
On a, par intégration par parties :
1 n 1 n—1
I,,:/ de:/ dex
w4 o l+x%
1

1
= [x Arctan (x")] / Arctan (x") dx = g —J,.
0

0
notée J,

Par le changement de variable

1 1 1
t=x",x=trn,dx=—tn'dr,
n

1 1, 1 ' 1 Arctans
Iy = Arctant - —¢n df = — tn dr
0 n n Jo t
———
notée K,

Pour déterminer la limite de K, (si elle existe) lorsque I’ entier
n tend vers I’infini, nous allons essayer d’utiliser le théoréme
de convergence dominée.

Notons, pour tout n € N* :

fi:10;1] — R, ¢t +— tnl Arctant’

* Pour tout n € N*¥, f,, est continue par morceaux (car conti-
nue) sur [0; 1].

Arctan ¢

£, SX foufi10:1] — R, £ —>

* f est continue par morceaux (car continue) sur [0; 1].
VneN* Vrel0; 1],

1 Arctan ¢

*Ona:

Arctan ¢
<——<1

|fn(t)| =1

)

et1’application constante 1 est intégrable sur I’intervalle borné
10 11.
Ceci montre que la suite ( f,),>; vérifie ’hypothese de domi-
nation.

D’apres le théoreme de convergence dominée :



1 1 1
A
Kn:/ fn—>/ f=/ rctantdl.
0 noo 0 0 t

——
notée C

Arctan ¢

Puisque I’application ¢ — est continue, 2> 0 etn’est

pas I'application nulle,ona: C > 0.

On obtient : K,=C+ o(1)
noo
d’ou :
s s 1 ™ C 1
Inz——an———an———-FO I
4 4 n 4 n  noo\n

Remarque : Le calcul de C, en se ramenant a une série, peut
étre I’objet d’un exercice.

a) 1) Convergence simple, convergence absolue :
Puisque toutes les f, sont 2> 0, la convergence absolue revient
a la convergence simple.

Soitx €]0; +oof fixé.
Ona :

a a

X
P o
(n+x)b no nt =

X

fn(x) =

D’apres I’exemple de Riemann et le théoreme d’équivalence
pour des séries a termes > 0, on conclut :

*sib > 1, alors Z [ converge simplement sur ]0 ; 400
n=1

* si b < 1, alors Z f» ne converge simplement sur aucune
n>1

partie non vide de 0 ; 4+-oo[.

Dans la suite de 1’étude, on peut donc se limiteraucas: b > 1.

2) Convergence normale :

e Etude sur10; o0 :

Soit n € N* fixé.

L application f, est de classe C' sur ]0; +oo[ et, pour tout
x €]0; +o0f :

fl(x) = ax"'(n +x)7" + x“(=b)(n + x) 7!
= x*(n +x)b! (a(n +x) — bx)
=x1m+x)"! ((a —b)x + an) .

* Si a > b, alors :

xa

—b
———— ~ xa
(n + x)b? x—+c0

Ju(x) =

—> 400,
x—> 400

fn n’est pas bornée, donc E [, ne converge pas normalement
n=>1
sur |0 ; +ool.
a

*Sia= b, alors :fn(x) = mx—’:;oo

donc || fulleo = 1, Z || fullec diverge grossierement, Z i

n=1 n=1
ne converge pas normalement sur ]0 5 +OO[

* Supposons maintenant a < b et dressons le tableau de va-
riations de f;, :

an
0
X b—a +00
frx) + 0 -
)| 0 /! N\ 0
On a donc :

( = )a
an b—a
||fn||oo:fn<b_a>: ( an )b

n+b—a

an ¢ b—a b a b—ajy,—b 1
:<b—a> ( o ) =a‘(b—a)"b a

D’apres I’exemple de Riemann, la série E || fullec converge
n=1

sietseulementsi:b—a > 1.

On conclut :

osib—a < 1,alors E f» ne converge pas normalement sur
n=1

10; +o0[
osib—a>1, alors an converge normalement sur
n=1
10; +oo[.
o Etude sur10; A], A €]0; —+oo] fixé :
Soit A €]0; +oof fixé.
Ona:VneN* Vxe]0; A],
x4 x4 A“
ng"(x):m<ﬁ<n_b’

. A
Ve N, |IflIR04 < o

d’ou:
D’apres I’exemple de Riemann (b > 1) et le théoreme de ma-
joration pour des séries a termes 2> 0, on déduit que la série
Z [| f,,,||]o(i”” converge, et on conclut que Z fn converge
nzl1 n=>1
normalement (donc uniformément) sur ]0; A], pour tout
A €]0; +oo[ fixé (on rappelle que I’on a supposé b > 1).

3) Convergence uniforme (PSI) :

Si a=b,onavu||f|l —F 0, donc, d’apres le cours,
n oo

E [ ne converge pas uniformément sur ]0 ; +o0[.
n=>1

Supposons dorénavant a < b.

Sia <b—1,onavuque E [ converge normalement, donc
n=1
uniformément, sur [0 ; +o00[.
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=>b—1.

On a, pour tout n € N* et tout x € ]0; +o0[, en notant R, le
reste d’ordre n :

2n
Z S0 2 D0 A

k= n+1 k=n+1
>0

=

Supposons dorénavant a >

R, (x) =

a

X
- Z (k—|—x)” 2N

k=n+1

d’ou, en particulier :

>0

nt patl-bs 1
Rum) > np s = 3,, > 5
. 1
puis : [[Rulloc = Ru(n) 2 TR
Il en résulte : ||R,||.c —#> 0, et on conclut que Z fn ne
noo

n=1
converge pas uniformément sur ]0 ; +ool.

On peut résumer les résultats dans un tableau :

Nature de la convergence
normale uniforme simple
a+1<b oui oui oui
l<b<a+1 non non oui
b<1 non non non

ou encore dans le plan des (a,b) :

b

b) 1) Convergence simple :

Puisque les f,, sont toutes 2> 0, la convergence absolue revient

a la convergence simple.
Soit x € [0; +o00f.
Ona:

—nx

nx — x(e—X)n .

Vn>3,0< filx) = —

Inn

Si x #0, alors [e™| < 1, la série géométrique Z(e’“)"

n
converge, donc, par théoreme de majoration pour des séries a

termes > 0, la série Z fn(x) converge.

Six =0,alors:Vn >

2, f.(x) =0, donclasérie Z £ (),

converge.

On conclut : Z [ converge simplement sur [0 ; +-00[.

2) Convergence normale :

o Etude sur [0 ; +00[:

Soitn € N tel que n > 2, fixé.

L’ application f; est de classe C' sur [0; +o0] et :

—nx

Vx €[0;4oo[, fi(x)= ni(l—nx)e

On en déduit le tableau de variations de f, :

1
X 0 — +o00
n
() + 0 -
H)| 0 N\ 0
. 1 1
D’ou: [ falloo = fn(_> = :
n enlnn

. 1 . . .
Comme la série E I diverge (cf. exercice 4.2, par uti-
enlnn
n

lisation d’une comparaison série/intégrale), la série Z [ fielloos

n

diverge, donc E f. ne converge pas normalement sur
n

[0; 4-o0].
o Etude sur [a ; +00[, a €10 ; +00[ fixé :
Soit a €]0; +oof fixé.

1
Puisque — —> 0, il existe N > 2 tel que :
n

1
YVn>N, —<a.
n

On a alors, d’apres le tableau de variations de f,, :
Va2 N, |ILIET =1 f@)] = fu@).

Comme la série Z fu(a) converge (cf. 1)), il s’ensuit que la

n

série Z [ £l |[o“03+°°[ converge, et on conclut : Z [ converge
n n
normalement sur tout [a ; +00[, a € ]0; +oo[ fixé.

3) Convergence uniforme (PSI) :
e Etude sur [a ; +00[ :
D’apres 2), Z [, converge normalement, donc uniformément,

n

sur tout [a ; +00[, a €]0; +oo[ fixé.



e Etude sur [0; +00[ :

—— 0, il nous faut étudier le reste
enlnn noo

d’ordre n, noté R,.
Soitx € [0; +oof fixé.

Nous allons utiliser une comparaison série/intégrale.

Comme || fulloc =

—tx

xe
L’ application it e2; +oo[— —— =
4 e [ L Int e Int

est continue par morceaux (car continue), décroissante, inté-
grable sur [2; +oo[, car t>¢, (t) —> 0.
t

—>+o0

X

On a donc, par comparaison série/intégrale, pour toutn > 2 :

+00 +o0
RW=Y p0< [ aoa

k=n+1
+o00 —tx
xXe
< dt
" Inn

[_efrx]l#{oo -

Et:

+00 +00 X e—tx
t)dr = dr
/n @, (1) / I

_ 1
" lnn

1
Ainsi: Vn > 2, Vx € [0; +00l, 0 < Ry(x) < —,
nn
_ 1
puis: Vn 22, [[Rylle < 7—.
Inn

1 .
Comme — —— 0, il en résulte ||R,||.c —> 0, et on
Inn  noo noo

conclut : Z [ converge uniformément sur [0 ; 4-o00].
c) 1) Convergence simple :

. X
Pour tout x € [0; +o0o[ fixé, la série Z(—l)” releve

n=1
du TSCSA, car elle est alternée, le terme général tend vers 0,
et la valeur absolue du terme général décroit. Il en résulte que

cette série converge.

x2+n

Ainsi, Z f» converge simplement sur [0 ; 4+00[.

n=l1
2) Convergence absolue :
Soit x € [0; o0 fixé.

x| x|
~ El

Six # 0, alors : | f,(x)| = =0,

x2+n ne n
donc, par I’exemple de Riemann et le théoréme d’équivalence

pour des séries a termes > 0, la série E | fu(x)| diverge.
n=>1

Pour x = 0, tous les termes sont nuls, donc la série converge.
Ainsi, Z f» converge absolument seulement sur {0} .
n=1
3) Convergence normale :
D’apres 2) (et le cas trivial x = 0), Z [ ne converge norma-
n=1
lement sur aucune partie non vide ni égale a {0}, de [0 ; +o0[.

4) Convergence uniforme (PSI) :
Puisque, pour tout x € [0; 4-o0[, la série Z fn(x) releve du

n=1
TSCSA, on a, en notant R, le reste d’ordre n :

Vne N, Vxel0;+oof,

X
Rn < n = 5 . .-
IR @ < ot 0] = 50y
Pour n € N* fixé, I’étude des variations de
X
[0; +oo[— R, x —> ————
#n + 105 +ool T Yt

1
montre :  Sup ¢, (x)| =p,Wn+1) = ———.
xe[();-ll?oo[ . . 2\/71-{-1
1
On a d : 0K ||R, < — 0,
n a donc <l 1||00\2\/m7

d’ou, par encadrement : ||R,||l.c —— 0.
noo

On conclut que Z fn converge uniformément sur [0 ; 4-o00].
n=1

d) 1) Convergence simple, convergence absolue :
Soit x € R fixé.

Pour toutn € N telquen > —x,ona:

Arctan (x +n) € [O;g[ et Arctann € |:0;g|:,

T
d’ou : G E |==5=|-
wi  awe]-Z
Et, par une formule de trigonométrie :
(x+n)—n X
tan (f,(x)) = =

T 1+ @+mn 14+nakx+n)

On a donc, pour toutn > —x :

X
" = Arctan — .
fn(x) rctan TtnG+n)

Onsait: V¢ € R, |Arctant| < |z].

x|
l+n(x+n)
Six =0,alors:Vrn e N, f,(x)=0,

D’ou : Vn 2z —x, |fi(0)] <

donc la série Z Jfa(x) converge.
n=0
Six#£0,alors — 1 Bl
’ 14+n(x+n) no n?’
D’apres I’exemple de Riemann (2 > 1), le théoréme d’équi-
valence et le théoreme de majoration pour des séries a termes

> 0, la série Z | fu(x)| converge.

Ceci montre que E fn converge absolument, donc simplement,
n=0
sur R.

2) Convergence normale, convergence uniforme (PSI) :

Soit n € N*.
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L’ application f, est de classe C' sur R et :

1

VxeR, fix) = ——
% fn(x) 1+(x+n)2 >

)

d’ou le tableau de variations de f;, :

X =69 +00
[ ) +
Su(X) /!
Et:
1
11m f,l(x) —— — Arctann = —7 + Arctan —
n’
1
hm fn(x) = = — Arctann = Arctan —
I’l

o Etude sur] — 00; 0] -

Puisque || f,|[[5>°% —— 7 # 0, d’apres le cours, Z fune
noo

converge pas uniformément (donc ne converge pas normale-
ment non plus) sur | — oco; 0].

o Etude sur [0; 4+00] -

. 1 1

* Puisque || f,||cc = Arctan — ~ — > 0, d’apres I’exemple de
n noo n

Riemann et le théoreme d’équivalence pour des séries a termes

> 0, la série Z [ £ 1]l diverge, donc Z [, ne converge

n=0 n=0
pas normalement sur [0 ; +o0[.

* Pour étudier la convergence uniforme, puisque

[ fou|| Qi Foel — 0 et que la série Z [ 1952 diverge,
n=0
il nous faut étudier le reste d’ordre n, noté R,,.

On a, pour toutn € N et tout x € [0; +o0[ :

+00
> A=

R,(x) = Arctan —————
k=n+1 an;n 1+k( + k)
2n
X b
2 Arctan ——————— > n Arctan ———————
/k;I rcan1+k(x+k)/n rcan1+2n(x+2n),
puis : R, (n) = n Arctan ﬁ, donc :
2
1
1 Rulloo > n Arctan ——— ~ —" 1

14+ 6n% no 14+6n%> neo 6
Il en résulte : ||R,||cc —F— O.
noo

Ceci montre que E f» ne converge pas uniformément sur

n

[0; +ool.

* Soit (a,b) € R? tel que, par exemple, a < 0 < b.
Notons ¢ = Max (—a,b).

On a, pour toutn € N tel que n > —a :

X
Vxela;bl, |f(x)] = |Arctan ——————
* €las bl /(o) = Arctan 72— s
x| ¢
S l+nax+n)  1+na+n?
dou: ALY < —— ~ S >0,

>
1 +an+n2 no n?

D’apres I’exemple de Riemann (2 > 1), le théoréme d’équi-
valence et le théoreme de majoration pour des séries a termes

> 0, la série Z ||fn||[;;”] converge.
n

On conclut que E f» converge normalement, donc unifor-
n=0

mément, sur [a;b], pour tout (a,b) € R? fixé tel que
a < 0 < b, puis sur tout segment de R.
e) 1) Convergence simple, convergence absolue :

Comme les f, sont toutes >
a la convergence simple.

Soit x € [0; 400l fixé. Six # 0, alors :

0, la convergence absolue revient

nx nx 11
n = = — — > 0 .
Ful®) 1+n3x2 no m3x2  xn2”
D’apres I’exemple de Riemann (2 > 1) et le théoreme d’équi-

>0, la série Y f,(x)

valence pour des séries a termes

converge.
Six =0,alors:Vn e N, f,(x)=0,
donc la série Z fa(x) converge.

On conclut :

la série Z [ converge simplement sur [0 ; +-00[.

n

2) Convergence normale :
Soitn € N*. L’application f, est de classe C! sur [0; +o0[ et,
pour tout x € [0; 4o00[ :
n(l + n3x?) — nx2n’x
(1 + n3x2)2

fx) =
n — n*x? n(1 —n3x?)

T A+ (A +nixr)?

d’ou le tableau de variations de f; :

X 0 n=3/? +00
[ () + 0 -
fx) O A Ny 0

e Etude sur [0; ool -
L’application f, est bornée et :
—I/2 1

_ —3/2
fillee = S0 ™P) = f25 = 30




D’apres I’exemple de Riemann (1/2 <

1), 1a série || fulloo
n

diverge, donc : E f» ne converge pas normalement sur

n

[0; +ool.
e Etude sur [a; 4o0ol, a €]0; o0l fixé :
Soit a €]0; +oof fixé.

1" méthode :

Puisque n7%> —— 0, il existe N € N* tel que :
noo
n>=N, n?<a.
Onaalors: VYn 2= N, || =|f(@)| = f.(a).

Puisque Z fn(a) converge (cf. 1)), la série Z IFALSa

converge. Ceci montre que E fn converge normalement sur

n

[a; +ool.
2¢ méthode :
Ona: VneN* Vxe€la;+ool,
nx nx 1 1
. < - <
S folx) = 1+mx2 S n3x2  n2x > nla

donc:Vn e N¥, || f, ||l < —5-

D’apres I’exemple de Riemann (2 > 1) et le théoreme de ma-
joration pour des séries a termes > 0, on déduit que la série

Z [ fa ||[" Bl converge, et on conclut que Z [ converge

n

normalement sur [a ; +00].
3) Convergence uniforme (PSI) :
e Etude sur [a ; +oo[, a €10 ; +o0[ fixé :

D’apres 2), E [ converge normalement, donc uniformément,

n

sur [a ; +00[.
e Etude sur 10 ; +00[ :
Puisque || f,||lc — O et que la série Z [| fulloo diverge,

il nous faut étudier le reste.

On a, pour tout n € N* et tout x € [0; +o0[, en notant R, le
reste d’ordre n :

R, (x) f: kx S 22" kx
2 (X) = — 2 —
k=n+1 1+ kx? k=n+1 14 kx?
(n+ 1)x _ n(n+ 1)x
T4 (2n)3x2 T 14 8n3x2

D’ou, en particulier, pour tout n € N* :

n(n + DHn=3/?
148

_n—|—1

I N

0

R,(n™?) >

[|Rulloo = R, (n ™) >

d’olt: ||Rylec —F=0.

et donc : — + 00,

noo

ﬁ
9

On conclut : E fu», ne converge pas uniformément sur

n

105 +ool.

a)Ona:VneN* Vx € [0; +ool,
Arctan (x™+1) T T
nn+1)  2n(nn+1) 202
Vi e N, || fullo < F

D’apres I’exemple de Riemann (2 > 1) et le théoreme de ma-

>0, la série Y (| fullo

n=>1

[fu(0)| =

)

donc :

joration pour des séries a termes

converge.

On conclut que Z f» converge normalement, donc unifor-
n=1

mément (PSI), absolument, simplement, sur [0 ; +o0l.

b) Puisque, pour tout n € N*, f, est continue sur [0; +oof et

que la série d’applications Z f» converge normalement (PC),
n=>1

uniformément (PSI) sur [0 ; o0, d’apres un théoreme du cours,

la somme S est continue sur [0 ; +0o0].

¢) On a, pour tout x € J0; +oo[ :

1
S +5(~)
X
1 n+1
A —
Z Arctan (x" ) +§ rctan<<x> )
_n 1 n(n+1) el nn+1)
n+1 1 1
= Z Arctan (x"") 4+ Arctan
n=1 x" Vl(i’l + ])
_ +00 T 1
— 2n(n+1)’
Comme, pour N > 1, par télescopage :
Z XN: l - ! == ————— ]
=”("+1) —\n n+1)  N+lnv—io’
+00 1
: - =1,
on a ; N

1
etdonc: V¥x el0;4ool, S(x)+ s(-) = g
X
d’ou I’égalité demandée.
d) 1) s Pourtoutn € N*, f, estde classe C' sur [0; 1] et, pour
toutx € [0; 1] :
1 (n+ 1)x" x"

fn(x) = nin+1) 1 + x20+1) = n(l _|_x2(n+l)) :
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e Soit a € [0; I[ fixé.Ona:Vn e N*, Vx € [0; a],

n n

! 'x n n
|fn(x)|=m<7<x <a",

donc : Vne N, || fiI0 < a"
Comme |a| < 1, lasérie géométrique Z a" converge. Par théo-
n=l1

réme de majoration pour des séries a termes > 0, la série
Z 1 £, |[023“] converge. Ceci montre que Z £, converge nor-
n=1 n=1

malement, donc uniformément (PSI), sur tout [0 ; a], a € [0; 1]
fixé.

*Onavuena)que Z fu, converge simplement sur [0 ; +-00[,
n=1

donc sur [0; 1].

D’apres le théoreme de dérivation pour une série de fonctions,

on conclut que S est de classe C! sur [0; 1[ et que :

400 n
T X
Vxel0; 1], S'x) = ”2:1: n(l + x2+h)”
2)Comme S’(0) =0etVx €]0;1[, S'(x) >0,
il s’ensuit que S est strictement croissante sur [0; 1[.

De plus, comme S est continue sur [0; 1] (cf. b)), on conclut
que S est strictement croissante sur [0; 1].

X Arctanl 7 X 1 s
3)Ona: S(1) = —_— == _ =
JSEe 0 ;n(n—i—l) 2;n(n+1) 4
4) On a, pour tout x € [0; 1[ :

+00 n +00 n

Do x X
S(x)_zn(1+x2(n+1>) >Zn.2

n=1 n=1

1
=—=In(l —x) — +o0,
2 x—1-

donc: S§'(x) — +oo.

s 1l=
e) D’apres c) et la continuité de S en O (cf. a)), on a :

S(x) =2 —S(l) — T _sop="L

2 X ) x—+c0 2 2°

f) L’étude des variations de S sur [1; +o0o[ se déduit de celle
des variations de S sur [0; 1[ par la formule obtenue en c).

X 0 1 +o00

S'(x) |0 + +00 || +00 +

Sx) | 0 Va

ST

YA

SE

INE

a) 1) Soit x € ]0; +o0[.
1 1
: -~ _—_ >0
Ona:fax) X2t 4 x2) no x2pt 0
D’apres I’exemple de Riemann (4 > 1) et le théoreme d’équi-
valence pour des séries a termes > 0, on déduit que la série

Z Jfu(x) converge.

n>1
Ceci montre que Z f» converge simplement sur 0 ; +o0[.

n>1
2) Soit a € 10; +o0[ fixé.
Ona:VneN* Vx e€la;+oo[,

1

x2(n* 4 x2)  a?(n* 4 a?)
Ve N, ||AIILH < fila).
D’apres /) et le théoréeme de majoration pour des séries a termes

> 0, on déduit que la série Z [ 11127 converge.
n=1

| fu(0)] =

= fula),

donc :

On conclut que Z [ converge normalement, donc unifor-
n=1
mément (PSI), sur tout [a ; +00[, a €]0; +o0o[ fixé.
b) Puisque, pour tout n € N*, f,, est continue sur ]0; +oo[ et
que Z f» converge normalement (PC), uniformément (PSI)
n=1
sur tout segment de ]0; +o0o[, d’apres un théoréeme du cours,
la somme S est continue sur ]0; +o0[.
¢) 1) Notons, pour tout n € N* :
1
n +x2°

* Pour tout n € N*, g, est continue sur [0 ; +00[.

g, [0; +oo[— R, x +—>

. 1
Vn e N, |lgnlloo = —,
n

*Ona:
donc la série E |lgnlleo converge, E gn converge normale-
nz1 n=1
ment, donc uniformément (PSI), sur [0 ; +o00[.
+00
D’apres un théoréme du cours, E gn estcontinue sur [0 ; +oo[,
n=1
en particulier en 0.



+00 1

En notant C = E — > 0,
n

n=1

400
on a donc : E g.(x) — C,
P x—>0F

C
d’oti: x2S(x) —> C, puis: S(x) ~ -
x—0t x—0t X

D’apres I’exemple de Riemann en 0 (2 > 1) et le théoreme
d’équivalence pour des fonctions 2> 0, on conclut que S n’est
pas intégrable sur |0 ; 1].

2) On a, pour tout x € [0; o0 :

+00 1 +00 1

1
0S80 = e S 1w =

n=1 n=1

D’apres I’exemple de Riemann en 4+-00 (2 > 1) et le théoreme
de majoration pour des fonctions 2> 0, on conclut que S est in-
tégrable sur [1; +ool.

Soit x €]0; 1[ fixé.

t

L application ¢, : [0; +00o[— R, ¢ +—
1+ x!

est de classe C! sur [0; +o0] et, pour tout ¢ € [0; 400/ :

_ (nx)x'(1+x) —x'(lnx)x"  (Inx)x’

@, () T )2 = darae S

donc ¢, est décroissante sur [0 ; +o0.

D’autre part: x' —> 0,
t—> 400

donc : pu(t) x' =l >0,

—>+00

Comme Inx < 0, ’application ¢ —> e est intégrable sur
[0; 400l Par théoréeme d’équivalence pour des fonctions = 0,
on déduit que ¢, est intégrable sur [0 ; +ool.

Par comparaison série/intégrale, il en résulte que la série

Z ©,(n) converge, etona:

n=0
+o00 +00 +00
/ P, () dt <Y p.(n) < 9,(0) +/ . (1) dt.
0 n=0 0

Calculons cette intégrale :

00 +o0o xl
t)dr = dr
[ ewa= [

/‘*OO eu 1
= — —du
u=tlnx Jo 1+e“Inx

1 0 In2
= ——[ma+en] = .
—Inx —o —Inx
In2 e 1 In2
On obtient : < <= .
mobtentt ey S 41w S22 T

Comme —> +00, on déduit :
—Inx x—1—
I i In2
- = .
1+ x" x—i Inx

Enfin, comme —Inx ~ 1 — x, on conclut :

x—>1"

*2'0 b In2
l+x" »—1- 1 —x

n=0

Nous allons essayer d’appliquer le théoreme sur I’inté-
gration sur un intervalle quelconque pour une série d’applica-
tions.

Notons, pour tout n € N* :

nx

fu:[0; +oo[— R, x —> x"e”
* Soitn € N*. Il est clair que f, est continue par morceaux (car
continue) sur [0 ; +oo[.

n+2 ,—nx

*On a, puisque 7 > 0 : x> f, (x) = x" e — 0

x—>+00

donc, pour x assez grand : xf(x) <1,
1

puis: 0 < f,(x) < e
X

D’apres I’exemple de Riemann en +00 (2 > 1) et le théoréme
de majoration pour des fonctions > 0, f, est intégrable sur
[1; 400, puis sur [0; 4o0].

« Etudions x e, pour x décrivant [0 ; 4-o0].
L’application ¢ : [0; +oo[— R, x —> xe™*
est dérivable sur [0; +oof et :

Yx €[0; oo, ¢'(x) =(1—-x)e™,

d’ou le tableau de variations de ¢ :

X 0 1 +00

@' (x) 4 0 =
o(x) | 0 VZce N 0

llplloo = (1) ="

Ainsi, pour tout x € [0; +o0f :

On a donc :

VneN, 0< f,(x) = (xe )" < (e7)".

Comme |e™!| < 1, la série géométrique E (e™")" converge,
n>1
donc, par théoreme de majoration pour des séries a termes > 0,

la série Z fu(x) converge.

n=1

Ceci montre que Z [ converge simplement sur [0 ; +-o00[.
n=1
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+00
* On a, en notant S = fns pour tout x € [0; o0 :

n=1

too 400 1
SE =Y filx) =Y (xe) =xe™
n=I1 n=1

1 —xe>’

donc S est continue par morceaux (car continue) sur [0 ; +00[.

+o00
* Montrons que la série Z / | fu(x)| dx converge.
0

n=1

On a, pour toutn € N* :

+00 +00
/ | fn(x)|dx = f x"e " dx
0 0

+00 t n . 1 1 +00 Y
= —)e'—dr= t"e ' dt
t=nx_Jo n n nn+l 0

I S TINS  Lere SR B
T opnl (n+ )_nn+l _; n-n---n \;12’

donc, d’apres 1’exemple de Riemann (2 > 1) et le théoréeme

N

de majoration pour des séries a termes > 0, la série
+o00

Z / | fu(x)| dx converge.

n=1 0

D’apres le théoreme du cours sur I’intégration sur un intervalle

quelconque pour une série d’applications, on déduit que la série
+00

Z Jfu(x) dx converge, que S est intégrable sur [0 ; +-o0[

n=>1

et que :

+o0 +00 +00
/ Sydx =" fix)dx = "u,.
0 n=1 n=1

+00 +00 —X
xe
On conclut : E U, = ——dx
=l 0 1l—xe*

a) 1) Convergence simple :
Soit x €]0; +o0[.
1 1
Ona: W)=~ — =0
na Sa(x) A Em) e w2 =
D’apres I’exemple de Riemann (2 > 1) et le théoreme d’équi-

valence pour des séries a termes > 0, la série E fu(x)
n=1
converge.

Ceci montre que Z fn converge simplement sur ]0 ; +00[.
n=1
2) Convergence normale sur [a ; +o0[, a € ]0; +o00[ fixé :
Soit a € ]0; +o0o] fixé.
Ona:VneN* Vx € [a;+oo],
1

= T e

S TEmota = H@1= 5@,

donc : Ve N, || £l < f(a).

Comme la série E fu(a) converge (cf. 1)), par théoreme de
n=1
majoration pour des séries A termes > 0, la série E IR
n=1
converge.

On conclut que Z f» converge normalement, donc unifor-
n=1

mément (PSI), sur [a ; +00[, pour tout a € ]0; +oo[ fixé.

b) Puisque, pour tout n € N*, f, est continue sur ]0; +oo[ et

que Z [ converge normalement (PC), uniformément (PSI)
n=>1

sur tout segment de 0 ; +oo[, d’apreés un théoreme du cours,

on conclut que la somme S est continue sur |0 ; 4-o0[.

¢) Nous allons essayer d’appliquer le théoréme du cours sur

I’intégration sur un intervalle quelconque pour une série d’ap-

plications.

* Pour tout n € N*, f,, est continue par morceaux (car conti-
nue) sur |0 ; +oof.
. Z [ converge simplement sur]0 ; +oo[
n>1
+00
o Z [ est continue par morceaux (car continue) sur 0 ; +00[

n=1

(cf. b)).

+00
* Montrons que la série Z / | fu(x)| dx converge.
0

n=1
Remarquons d’abord :
Vn e N, Vx €]0; +ool, fu(x) =>0.

Pourn =1:

+o0 +00 1 1 +0o0
L ﬁmmzl 0+W“ZLW+JOZL

+oo

Pour calculer, pour tout n € N — {0,1}, fu(x) dx, com-

0
mencons par effectuer une décomposition en éléments sim-

ples :
1 a
Q1m0+ X 14X  ntX
Par multiplication puis remplacement, on obtient facilement :
1 n |

SR Sl S G el

(a,b) € R?.

1 1 1
D’ou : = " — )
A+nX)n+X) n2—1\14+nX n+X

puis :

+00 +00
/ |fn ()l dx = Ja(x) dx
0 0

/+°° 1 n 1
= — dx
o nt—1\l+nx n+x




1 400
= ] [ln(l +nx) — In(n —I—x):|(J

P
1 14 nx]™° 1 1
= In = Inn —In—
n? — 1 n+x |, n? — 1 n
21Inn 21Inn

n2—1 no p?
La série E
n=1
cf. exercice 4.2), donc, par théoreme d’équivalence pour des

+o00
0, la série Z / | fu(x)| dx converge.

n=1

converge (par larégle n*/%u,,, par exemple,

séries a termes

D’apres le théoreme du cours sur I’intégration sur un intervalle
quelconque pour une série d’applications, on déduit que S est
intégrable sur ]0; +o0[ et que, le calcul ayant déja été fait ci-
dessus :

+00 +00 oo
f S(x)dx = Z
0 n=1 0

+00

fidr=1+2) —

)12

Inn

Nous allons essayer de développer la fonction sous I’in-
tégrale en une somme de série de fonctions, puis permuter in-
tégrale et série.

h
Remarquons d’abord que I’application f : x —— hzx
continue sur R* et que : f (x) o Z—x B ,donc f (x) — %

On peut donc compléter f par continuité en 0 en posant
fO) =—

D’autre part, il est clair que f est paire.

On a, pour tout x € ]0; oo, en utilisant une série géométri-
que :

shax 2shax
_ _ _ —bx
7@ shbx  ebx —ebx 2e " shax | =g 2=
+00 +00
=2e shax ) ()" =) 2e " shax,
n=0 n=0

car [e 72| < 1.
Notons, pour toutn € N :
fu 1105 4oo[—> R, x —> 2e @D shgx
* Pour toutn € N, f, est continue par morceaux (car continue)

sur |0 ; +o0f.

. Zf,, converge simplement sur ]0; +oo[ et a pour
n=0

somme f.

* f est continue par morceaux (car continue) sur |0 ; 4-o0[.

+00
* Montrons que la série Z/ | fu(x)|dx converge.
n=0 0
Remarquons d’abord :

VneN,Vx e€]0; 4ool, fu(x) =0

On a, pour toutn € N :

+oo
/ | /o (x)] dx
0

+00

Ju(x) dx

0

+00
/ 2~ @b gh g dx
0

+o0
/ e—(2n+l)b)r(eax _ e—aX) dx
0

+00
/ (6(7(2n+1)b+a)x _ e(f(ZnJrl)bfa)x) dx
0

e(*(ZnJrl)hfa)x

+00
—2n+1)b — a]o

|: e(7(2n+l)b+a)x

—2n+1)b+a
B 1 1
T @un+Db—a @n+Db+a
2a

@2n + 1)2b% — a2’

2a 2a a 1
C ~ =9 ">,
O + 1202 — @2 noo 4n?b2  202m2 =

d’apres I’exemple de Riemann (2 > 1) et le théoreme d’équi-
valence pour des séries a termes >0, la série

+o00
/ | fn(x)| dx converge.
n=0

D’apres le théoréme du cours sur I’intégration sur un intervalle
quelconque pour une série d’applications, on déduit que f est
intégrable sur ]0 ; 400 (ce que I’on pouvait aussi montrer di-
rectement) et que :

+00 +o0 +
f fo)yde=Y"
0 n=0 Y0

Ju(x) dx

— (2n + 1)*h? — a?
Enfin, on conclut, par parité :

400 400 +00 4a
(x)dx =2 (x)dx = ——,
_O! (x) : f(x)dx ; ST

Nous allons essayer de développer la fonction sous 1’in-
tégrale en une somme de série de fonctions, puis permuter in-
tégrale et série.

Soit x €]0; 4+o0o[ fixé.

On a, pour tout ¢ € J0; +o0[, en utilisant une série géométri-
que :
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— 1 —IZ( e—t) _Z( 1) - 1 —(n+1)1

car|—e | < 1.
Notons, pour toutn € N :
fn 110 +oo[—> R, £+ (—1)"¢*le= @D
Le théoréme du cours sur I’intégration sur un intervalle quel-

conque pour une série d’applications ne s’applique pas ici, car

+00

la série Z / | fx(2)| dt diverge, comme on peut s’en rendre
n>0 Y0

compte en calculant I’intégrale (de toute facon, nous allons cal-

culer cette intégrale, sans la valeur absolue).

Pour pouvoir permuter intégrale et série, nous allons montrer
que I'intégrale du reste tend vers 0.

Soientn € N, ¢t €10; +o0[.

On a, en notant R, (7) le reste d’ordre n :

too +00
Rn(l‘) = Z fk([) = Z (_l)ktx—le—(k+]),

k=n+1 k=n+1
_e—r)n+l
:xl—tz(e—t)k \'I—t(
— (—et
k=n+1 ( © )
x—1a—(n+1)t
:(_l)n-%—ltt € ()
I qpe=

11 est clair, par I’exemple de Riemann en O et la regle 1 f(¢)
en 00, que, pour toutn € N, fy,. .., f, et S sont intégrables
sur |0 ; +o0[. Il en résulte, par combinaison linéaire, que, pour
toutn € N, R, est intégrable sur ]0; +-00[. On a :

400 +00 tx—le—(n+1)f
0</ R, (t dt:/ —dr
< IR |

+00
g / txflef(nJrl)t dr
0

/+00( U )X—l ~ 1
= e ¥ du
u=n+1r Jo n+1 n+1

_ 1 /+°C x—1 7ud F(X)
C(m+ DT Tty

r
) —— 0, donc

Puisque x €]0; +o0[ estfixé, ona: ————
o ] [ B+ 1 noo

+00
/ R, (t)dt — 0.
0 noo

n
On a alors, pour tout n € N, en notant S, = Z fi la somme
k=0

partielle d’indice n et S = Z fx» la somme totale :
k=0

+o0 +o0
/ S@t)dr = f (82 () + Ru(1)) dt
0 0

+o0 n +00
- / (Z.fm)) dr + / Ra(1) dt,
0 k=0 0

d’ou :

n +o00 +o00 +o00
> fe)dt = f S@)dr — f R,(t)dr.
0 0

k=0 /0

+00
Comme / R, (1) dt —— 0, on déduit :
0 n oo
n +00 +o0
Z/ fe@)dt —— / S(t)dt.
=0 J0 noo 0

+00
Ceci montre que la série Z / fi(¢) dt converge et que :
k>0

+00 400 +o0
> fi(t)dr = / S(r) dr.
k=0 YO0 0

Enfin, pour toutn € N :

+00 +00
/ f;z(t) dr = / (_l)rztx—le—(n+l)t dr
0 0

+o00 u x—1 1
- (—1)"/ ( ) e du
u=m+ 1) 0 n+1 n+1

_1\n +o00 _1\n
= i/ wle ™ du = ﬁlﬂ(x),
(n+1)* Jo (n+1)*

calcul presque déja fait plus haut.

On conclut :

+00 tx—l _+OO (_1)7!
/0 et+1dt_27(n+1)xr(x)

n=0

+o00 1 n—1
Z ) C'(x) = T ) ().

Nous allons essayer de permuter intégrale et série.

Pour tout n € N, comme a, > 0, ’application
f:[0;1] — R, x > (—1)"x™

est continue sur le segment [0; 1].

Comme, pour toutn € N :

1 1 xl+an ! 1
/ [ fu(x)]dx =/ x4 dx = |: ] =
0 0 1+an 0 1+an

et que la série Z

n=0 An
par exemple, nous ne pouvons pas appliquer le théoreme du
cours sur I’intégration sur un intervalle quelconque pour une
série d’applications.

peut diverger, pour (@,)nen = (1) nen

Nous allons essayer de montrer que 1’intégrale du reste tend
vers 0.

Notons, pour tout n € N, S, la n-éme somme partielle :

= Xn:(—l)kx“k.
k=0

S, :[0;1] — R, x+— §,(x)



Pour tout x € [0 1[ fixé, la série Z £, (x) releve du TSCSA,

n=0

car elle est alternée, |f,(x)]=x" —— 0 puisque
noo

a, ——> + 00, et la suite (|f,,(x)|)ngN est décroissante,

noo
puisque x € [0; 1] et que (a,),en €st croissante et a termes
dans RY .

Il en résulte que, pour tout x € [0; 1[, la série E fn(x)
n=0
converge.

Ainsi, Z f» converge simplement sur [0; 1[.

n=0

Notons S la somme :
+00
S0 1[— R, x— Sx) =Y fu(x).
n=0
Notons, pour toutn € N, R, le reste d’ordre n :

+00
R, :[0;1[— R, x+— R,(x) = Y fix).

k=n+1

On a, pour toutb € [0; 1 :

0;:b 0:b
RN < | fugt |27 = b+t — 0,
noo

donc Z [ converge uniformément sur tout segment de [0 ; 1].

n

Comme chaque f, est continue sur [0 ; 1[, il en résulte que, pour
toutn € N, R, est continue sur [0; 1.

D’apres ce qui précede, les applications S et R,,, pour toutn € N,
sont continues sur [0; 1].

Puisque, pour tout x € [0; 1[, la série Z fn(x) releve du
n=0
TSCSA, on a, pour toutn € N et tout x € [0; 1] :

|Ry ()] < | fua1 00)] = [(=1)"F xs1| = x,

Il en résulte, par théoreme de majoration pour des fonctions 2> 0,
que, pour tout n € N, R, est intégrable sur [0; 1[, eton a:

1
/ R,(x)dx
0

Comme g, —— +oo,ona: — —— 0,
noo l4+a,41 neo

1 1
1
</ [R,(x)]dx < /Xa”“ dx = ——.
0 0 1 + an+1

+00
donc, par encadrement : / R,(x)dx —— 0.
0 noo

Mais, pour toutn € N :
1 1
/ Sx)dx = f (S (x) + S(x)) dx
0 0

1 1
=/ Sn(x)dx+/ Ry (x) dx,

0 0

donc :
n 1 1 n
;/ﬂ fk(x>dx=/0 <k;fk<x>)dx

1 1 1
:/ S,,(x)dx:/ S(x)dx—/ R,(x)dx.
0 0 0

1
Comme / R,(x)dx —— 0, il s’ensuit que la série
0 noo

1
Z / fx(x) dx converge et que :
0

k>0

400 1 +o00
Zf fe(x) dx =/ S(x)dx.
k=0 v 0 0

On conclut :

1 +oo
/ (Z(—l)"x””)dx
0 n=0
_ 400 1 " _ +00 (—l)n
_;/O (=1)"x dx—Zl+an.

n=0

a) Remarquons d’abord que, puisque f est continue par
morceaux sur [0 ; +oo[, f admet en 0" une limite finie, notée
f(01), et qu’il se peut que f(0T) soit différent de 1 (0), lorsque
Jf n’est pas continue en 0.

Nous allons utiliser le théoreme de convergence dominée et la
caractérisation séquentielle des limites.

On a, pour tout x € ]0; +oo[ fixé, par le changement de va-
riable u = xt :

+00 +o0 u
x/ e ft)dt = f e‘“f(—) du .
0 0 X

Soit (x,),en une suite dans 10 ; +o0[, de limite +oc0.
Notons, pour toutn € N :

fu 1 [0; +oo[— R, u +— e’”f<1>.

Xn

* Pour tout n € N, f, est continue par morceaux (car f 1’est)
sur [0 ; +o0].

* Pour tout u € ]0; +o0[ fixé, puisque f — f(0"), on a, par
0
composition de limites :

Ju(u) = e_“f(xl) — e " f(07).

00

D’autre part : f,(0) = f(0) —— f(0).
. C.S. N
Ceci montre : f,, — g, ou :

e f(0) si u#O

u=0.

g:[0; +oo[— R, ur—){
0 si
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e L’application g est continue par morceaux (car f 1’est) sur
[0; +ool.

*Ona: VneN,Vucel0;+o0],

f(i>' < eI flloes
Xn

et 'application u —> e™"|| f ||~ st continue par morceaux (car
continue), > 0, intégrable sur [0 ; +ool.

| fu()| = eyt

Ceci montre que ( f,),>0 Vérifie I’hypothese de domination.
D’apres le théoréeme de convergence dominée :

+00 +00

Jo — f
0 REY 0

c’est-a-dire :

+o0 u +00
/ e (—) du — e " £(07) du
0 0

=[-e" (05> =

f@©).

Ainsi, pour toute suite (x,),>o dans ]0; +-o0[, de limite +o00,

+o0
la suite ( / e (i> du) converge vers f(07).
0 Xn neN

Par caractérisation séquentielle des limites, on déduit :

+00 u
/ e " <—) du — f(0"),
0 X Ji—=—=rar el

+00
et on conclut : x/ e ™ f(t)dt — £(Oh).
0 X—> 400

b) Méme méthode qu’en a), avec utilisation des suites (x,,),en
dans ]0; 400 telles que x, ——> 0.

noo
On remarquera que f est bornée sur [0 ; +oo[, car, puisque f
admet une limite finie en +o00, il existe a € [0; +oo[ telle que
S lja:+o0) SOit bornée, et f |[0.4) €st bornée car continue par mor-
ceaux sur un segment.

Rappelons que, pour toute applicationu : I —> R, on
note u™, u~ les applications de / dans R définies, pour tout
x €, par:

u(x) si u(x)=0

ut(x) =
0 si u(x) <0
0 si u(x) =0
u (x) =
—u(x) si u(x) <0,
etque l'ona:
ut—u =u, ut+u = ul,
0<ut <ful, 0<u™ < Jul.
1) Notons, pour toutn € N : g, = (f, — f)~.

Nous allons essayer d’appliquer le théoreme de convergence
dominée a (g,)nen-

*Pourtoutn € N, g, = (f, — f) estcontinue par morceaux,
car f, — f I’est et I’application y —> y~ est continue sur R.

*Soitx € I.Ona:
VneN, 0<g.()= (- < |fu = FIG).
Comme f, % foona: f,(x) 7 fx),
donc: |fy — fI(x) — 0,
puis, par encadrement : g, (x) ? 0.

. C.S.
Ceci montre : g, —> 0 sur /.
noo

* [application nulle est continue par morceaux (car continue)
sur /.

e Par hypothése: Vx eI, VneN, f,(x) =0,

d’ou, puisque f, &5 f, par passage a la limite lorsque I’entier
noo

n tend vers 'infini : Vx € I, f(x) = 0.

Soientn € N, x € I.

* Si fu(x) 2 f(x), alors f,(x) — f(x) =0,
donc g,(x) =0 < f(x).

* Si f,(x) < f(x), alors :
g (x) = —(fux) — f(0) = f(x) — fux) < f(x).
Cecimontre : Yn e N, Vx € [, |g,(x)| = g,(x) < f(x).

Et I’application f est continue par morceaux, => 0, intégrable
sur / (par hypothese).

Ainsi, la suite (g,),ey Vérifie I’hypothése de domination.

D’apres le théoreme de convergence dominée, on déduit que,
pour tout n € N, g, est intégrable sur /, et que :

/gll >
I noo
2)Ona:

V”EN’ (fn_f)+:(fn_f)+(fn_f)7:(fn_f)+gn-
Comme, pour tout n € N, f, — f et g, sont intégrables sur /,
par opérations, (f, — f)T est intégrable sur /. Et :

/I(fn—fﬁz/;(fn—f)wL/lgn
~[n-[s+[o— [r-[r+0=0

3) Enfin :

/Ifn—f\ =/((fn—f)++(fn—f)’)
I I

0=0.
I

=/(fn—f)*+f(fn—f)*—>0+0:0.
I I noo

a) 1) Convergence simple, convergence absolue :
Puisque: Vn e N, Vx € [0; 1], f.(x) =0,

la convergence absolue revient a la convergence simple.



Soit x € [0; 1] fixé.

Six # 1, alors x” —— 0, donc :
noo
fu(x) =In(14+x") ~ x" > 0.
noo

Puisque |x| < 1, la série géométrique E x"" converge. Par théo-
n=0
réme d’équivalence pour des séries a termes 2> 0, on déduit que

la série Z Jfa(x) converge.

n=0

Six = 1, alors f,(x) —> In2 # 0, donc la série Y f,(x)
noo >0
diverge (grossierement).

On conclut que Z f» converge simplement sur [0; 1[ et non
n=0
en 1.

2) Convergence normale, convergence uniforme (PSI) :

o Etude sur [0 1] :

On a, pour toutn € N : ||f,,||[o(<);” =1In2 ——0,
noo

donc E Jf» ne converge pas uniformément (PSI), ni norma-
n=0

lement (PC), sur [0; 1].

o Etude sur [0; al, a € [0; 1] fixé :

Soit a € [0; 1[ fixé.

Ona: VneNN, [|[£]%9=In(l+a") = f,(a).

Comme la série an(a) converge (cf. 7)), la série
n=0

Z [ £l |[£3“] converge, et on conclut que Z [ converge nor-
n=0 n=0
malement, donc uniformément (PSI), sur [0; a].

b) 1)+ Pourtoutn € N, f, estde classe C' sur [0; 1] et, pour
n—1
fix) =

toutx € [0; 1] : nr
e Soit a € [0; 1] fixé. On a :

1+ xn
VneN Vxel0;a],

n—1
g nx'Fl < nanfl’

WMEIIES

n
14 x»

d’ou : Vne N, ||fI0 < na"'.

Comme la série E na"~! converge (regle n’u, par exemple),
n=1
par théoreme de majoration pour des séries a termes > 0, la

série Z [1.£/]19:41 converge.
n=l1

Ceci montre que Z f, converge normalement, donc unifor-
n=0

mément (PSI), sur tout [0; al, a € [0; 1] fixé, donc sur tout

segment de [0; 1.

*Onavuena)l)que Z [ converge simplement sur [0; 1[.
n=0

D’apres le théoreme de dérivation pour une série d’applications,
on déduit que S est de classe C' sur [0; 1 et que :

+o0 n—1

Vrel0: 1L S=) =

n=1

14 xn

2) Pour tout x € [0; 1[, §’(x) est donc la somme d’une série
a termes > 0 et dont le terme d’indice 1 est > 0, d’ou :
S’(x) > 0. Il en résulte que S est strictement croissante sur
[0;1].

c)1)Soientn e N,x € [0; 1[.Ona:

Xn:fk(x) = iln(l +x5=In (ﬁa +xk)>
k=0 k=0

k=0

=In((1+x)0+x)A+x%) - (1 +xM).

En développant ce produit de n parentheses, les termes sont tous

>Oetilya,parmieux:l,x,xz,...,x".Onadonc:
n n
Zﬁ(x)>1n(1+x+--~+x">=1“(2"k>'
k=0 k=0
2)D’apres 1), on a:
n 1_xn+1
Vxel0:1[,VneN, Y fi(x)>In —

k=0
d’ou, en faisant tendre 1’entier n vers I’infini, pour x fixé :

1
Vxel[0;1], S()c)}ln1 =—In(1 —x).
—Xx
Comme —In(1 — x) '—1>7 +00, on conclut :
S(x) ’—1>7 +00.

d) Soit x €]0; 1[ fixé.

Pour évaluer S(x), nous allons utiliser une comparaison
série/intégrale. Notons
@, [1;4+00[— R, 7+ In(l +x") =In(l + ') .
Il est clair que ¢, est continue par morceaux (car continue), dé-
croissante, intégrable sur [1 ; +oo[,carp () ~ ¢ 10
t—>+00
etlnx <O0.

On a donc, par comparaison série/intégrale :

+o0 +00
/ b0 < ) < (D) +/
1 =il 1

Pour calculer I’intégrale, utilisons le changement de variable
u = —t Inx (rappelons que x €]0; 1[ est fixé) :

+oo +o00
/ o () dr = / In(1 4 e'"¥) dr
1 1

+00 -1
= / In(1 + e’“)(—) du
—Inx Inx

+o0

1
= —— In(1 +e*)du.
In x —Inx

+00
P, (1) dt.
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L’application % :]0; +00o[— R, u +—— In(1 +¢e7"), est
continue par morceaux (car continue) et intégrable sur ]0 ; +o00[,

car ¥(u) —0>+ In2,et(u) ~ e

—>+00

+o00
En notant / = / In(1 +e*)du,
0

+00
on a donc : f In(1+e™)du — I.
_ x—> 1=

Inx
De plus, comme 1) est continue, 2> 0 et n’est pas 1’application
nulle,ona:/ > 0.

Il en résulte :

1 1

~ .
Inx x—1- 1 —x

x—1-

+o00
/ In(1 +e'™)dr ~
1

De plus :

1
p,()=In(1+x) — In2 = o ( ),
x—>1- x—>1- 1—x

d’ou :

+oo I
@, (1) +/ In(1 +¢e'™)dr  ~
1

x—1= 1—X.

1
On conclut, par encadrement : S(x) ~ 1 .
g1 — X

a) Soit x € [0; 1].
Six # 1, alors :

0< filx) =a,x"(1 —x) < apx" < ax”,

donc, puisque la série géométrique E x" converge, par théo-
n=l1
reme de majoration pour des séries a termes > 0, la série

Z fn(x) converge.

n=1
Six=1,alors:Vn e N*, f,(x)=0,

donc la série Z fa(x) converge.

n=>1

Ceci montre que Z f» converge simplement sur [0; 1].
n=1

b) Soitn € N*. L’application f, est dérivable sur [0 ; 1] et, pour
tout x € [0; 1] :

fix) = an(n)c'“1 —(n+ 1)x”) = a,,x"fl(n —(n+ l)x) s

d’ou le tableau de variations de f;, :

X 0 " 1
n+1
@) + 0 -
Hx)| 0 Ny 0

On a donc :

Wfalle = £ == ) = an (=) L
AV | = o n+1) n+1°
et:

() ~(ro2) =)
ool (2 (2)]

=exp(—1+0(l))§>e_l.

a
Dob: || fulle ~ —.
noo en

On conclut que Z fn converge normalement sur [0; 1] si et
n=l1

. L a
seulement si la série E — converge.
n
n=1

¢) (PSI) 1) Supposons a, —> 0. Puisque la suite (a,),>; est

décroissante, on a, en notant R, le reste d’ordre n, pour tout
ne N ettoutx € [0; 1[:

+00 +00
0SRW = ) ax*(1=x) < Y a1 —x)

k=n-+1 k=n+1
+00
Z k +1
:an+l( X )(1 _-x) :atl+l-xn 5
k=n+1
et I’inégalité est aussi vraie pour x = 1.

Onadonc:Vn e N [|R,|loo < dnit,

d’ou: ||R,||lcc —— 0, ce qui montre que Z [ converge uni-
noo w1
formément sur [0; 1].

2) Réciproquement, supposons a, —/— 0.
noo

Comme (a,),> est décroissante et minorée par 0, (a,),>1
converge vers un réel £ > 0, et par hypothese, £ # 0, donc
¢ > 0.

On a, pour toutn € N* et tout x € [0; 1[ :

+00 Foo
R,(x) = Z ax (1 —x) > Z 2x*(1 = x)

k=n+1 k=n+1
+00
= e( > xk>(l —x) = £x",
k=n+1
dot: [[Rullo = Sup R,(x) > Sup (&x"*) =2,
x€l0;1] x€l0;1[
etdonc: ||R,|lcc —— O, Z fn ne converge pas uniformé-
noo

n=1
ment sur [0; 1].

On conclut que Z [ converge uniformément sur [0 ; 1] si et
n=1

seulement si: a, ——> 0.
noo



a) Récurrence sur n.
* Pour n = 0, fy = 1 existe, est unique et est un polyndome.

* Si, pour un n € N fixé, f, existe, est unique et est un poly-
ndme, il est clair que

for1:[0;1] — R, x —> 1+/ fult — 12 dr
0

existe, est unique et est un polynome (fonction polynomiale).

b) 1) Récurrence sur n.

* Pourn = 0, on a, pour tout x € [0; 1], fo(x) =1 et:
f,(x)=1+f fo(z—tz)tzl—i—/ 1dr =1+ x,
0 0

d’otr : 0< folx) < filx) S ety
>1+x.

* Supposons la propriété vraie pour unn € N.

par I’inégalité classique : e*

On a alors, pour tout x € [0; 1] :

Jnr2(x) = fug1(x)

= <1 +/X Fari(t —tz)dt> = (1 +/x fult —tz)dt)
0 0

=[Xﬁﬂa—h—ﬁa—ﬁ)m>o
0 =5

et
fn+2(x) = 1+/ fn+1(l —tz)dl‘
0
<1+/. eszfﬂl—F/. efdt =1+l =¢"
0 0

Onobtient: Yx € [0;1], 0 < fr1(x) < fipalx) <e¥,
ce qui établit la propriété pourn + 1.

On conclut, par récurrence sur n :
VneN,Vx e[0;1], 0< f,(x) < furi(x) <e'.

n>0 est croissante

2) Pour tout x € [0; 1] fixé, la suite (f,,(x))

et majorée (par e*), donc converge vers un réel, noté f(x), et
ona:0< f(x) <e'.

Ceci montre que la suite ( f;,),>0 converge simplement sur [0 ; 1]
vers une application f.

c) Remarquons d’abord : V¢ € [0; 1], ¢ — 2 €[0; 1/4],

car: t—t'=—(t"—1)=— - 2+l
’ - N 2 4’

ou encore par étude des variations de ¢ —> ¢ — ¢> sur [0; 1].

Notons, pour toutn € N :

0;1 0;1/4
My = || farr — FllY, my = || farr = fullSVH.

On a, pour toutn € N et tout x € [0; 1] :

|fn+] (X) - fn(x)l

’(1 +/X fn(t—tz)dt) - (1 —i—/x f,l,l(t—tz)dt)
0 0

= M (fut =15 = faat = tz))dt(

</ﬂﬁa—ﬂ—ﬁqu—ﬁmz
0

x
g / mnfldt = XMy <mn71~
0

Nlenrésulte: M, = Sup |fr1(@®) — ()] < m,_y.

x€[0;1]
Mais aussi, en particulier :
1
Vx e [07 1/4]7 |fn+1(x) - fn(-x)l g Xmy_g < Zmnfl 5
1

d’ou : m, < Zmn,l.

. . 1
Par une récurrence immédiate : Vn € N, m, < 4—nm0.

Comme < 1, la série géométrique E —— converge. Par
n=0

théoreme de majoration pour des séries a termes > 0, il s’en-

suit que la série E m, converge, puis, comme M, < m,_i,
n=0

la série Z M, converge.

n=l1
Ainsi, la série Z [l furt — £ull2 converge, donc

n=0

Z( Jfat+1 — fu) converge normalement sur [0; 1], donc uni-
n=0
formément. D’apres le lien suite/série pour la convergence uni-
forme, on déduit que la suite (f,),>o converge uniformément
sur [0; 1].
Enfin, comme (f,),>0 converge déja simplement vers f, on
conclut que (f,,),>0 converge uniformément vers f'sur [0; 1].
* Puisque les f, sont toutes continues sur [0; 1] et que (f,,),>o0
converge uniformément vers f sur [0; 1], d’apres un théoréme
du cours, f est continue sur [0; 1].

* Notons, pour toutn € N :

g [0;1] — R, t+— f,(t —17).
. c.u. .. c.u.

Puisque f,, — f'sur [0; 1], a fortiori, f, — f sur [0; 1/4],
noo noo

donc g, &y gsur[0; 1], ou:

noo

g:[0;1] — R, t+—> f(r—17).

Alors, d’apres le théoréme du cours sur I'intégration sur un seg-
ment et la convergence uniforme, on déduit, pour tout x € [0; 1]
fixé :
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fx £t =) dt /X F—dr [0;1]. D’apres le résultat de c), on déduit que f est de
0 noo Jo

classe C!sur[0; 1] et que :
Comme:Vn eN, f,(x)=1 +/ fult — 1) dt, Vxe[0;1], f/(x)=f(x—x?).
0

on déduit donc, en faisant tendre 1’entier n vers I’infini : 2) » Montrons que f est de classe C* sur [0 ; 1] par récurrence.
X it déia 1 ]
) =1 +/ £t — 1) dr, * On sait déja que f est de classe C' sur [0; 1].

0

x Si fest C" pour un n € N* fixé, alors 1’application
X —> f(x —x?) est C" donc f’ est C", fest C"*!,

Ceci montre, par récurrence sur n, que, pour tout n € N*, f
est C".

d) 1) Puisque f est continue sur [0; 1] et que
Viel0;1], t—1>€[0;1/4] C[0;1],
I’applicationt — f(t — 1) est continue sur [0 ; 1], donc, par

X 9} o
primitivation, x —— / f(t — 1t} dr est de classe C' sur (Gl Emes i s /e elis 2 mr U5 1,
0
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Séries entieres

I Plan I

Les méthodes a retenir 222
Enoncés des exercices 226
Du mal a démarrer ? 235
Corrigés 240

On abrege « développable en série entiere en 0 » en dSE(0), et « développe-
ment en série entiere en 0 » en DSE(0).

Thémes abordés dans les exevcices

Détermination du rayon de convergence d’une série entiere
Calcul du rayon de convergence et de la somme d’une série enticre
Détermination du DSE(0) d’une fonction

Calculs d’intégrales et de sommes de séries numériques (convergentes) par
I’intermédiaire de séries entieres

Obtention de la classe C* pour une fonction d’une ou de plusieurs variables
réelles, par intervention de la notion de dSE(0)

Dénombrements par utilisation de séries entieres génératrices.

Points essentiels du cours
pour la résolution des exevcices

Définition et caractérisations du rayon de convergence d’une série entiere

Théorémes de comparaison, pour obtenir inégalité ou égalité, sur des rayons
de convergence de séries entieres

Regle de d’Alembert pour les séries numériques et son emploi dans le cadre
des séries entieres

Théorémes sur rayon et somme de séries entieres obtenues par opération sur
une ou deux séries entieres : addition, loi externe, dérivation, primitivation,
produit de Cauchy (PC, PSI)

Théorémes sur la convergence (absolue, simple, normale PC, PSI, uniforme
PSI) pour les séries entieres, théoreme de la limite radiale (PC, PT)

Relation entre coefficients d’une série entiere et dérivées successives
en 0 de la somme de cette série entiere, lorsque le rayon est > 0

Définition de la notion de fonction dSE(0), unicité du DSE(0) en 0

Théorémes sur les opérations sur les fonctions dSE(0) : addition, loi externe,
dérivation, primitivation, produit (PC, PSI)

Liste des DSE(0) usuels, avec leur rayon de convergence et leur ensemble de
validité

Définition et propriétés de I’exponentielle complexe.
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222

=mmme | es méthodes a retenir

Pour déterminer
le rayon de convergence R

d’une série entiere E a,z"
n

Essayer de :
® Chercher un équivalent simple de |a,| lorsque I’entier n tend vers
Iinfini.
Si |a,| o |b,|, alors les séries entieres Zanz" et anz" ont le
n n

méme rayon de convergence.

== Exercices 6.3 b), 6.9 a), 6.18 b), 6.20 b)

Pour trouver un équivalent simple de |a,| lorsque I’entier n tend vers
I’infini, on pourra étre amené a utiliser des développements asympto-
tiques intermédiaires.

== Exercices 6.8 a), d)

® Majorer ou minorer |a,| par un terme général plus simple.
Si, pour tout n, |a,| < |b,|, alors les rayons de convergence R, et R,

des séries entiéres E a,7" et E b,7" vérifient : R, > Ry,.
n n

== Exercices 6.36, 6.45 b)

Une combinaison de majoration et de minoration de |a, | permet quel-
quefois d’obtenir le rayon de convergence.

== Exercices 6.1 f), 6.2 g), 6.8 ¢), m), 0), 6.30 ¢), h), 6.44

* Appliquer la regle de d’ Alembert, en particulier lorsque a, contient
des factorielles ou des exponentielles.

== Exercices 6.1 ¢), 6.2 a), d), f), 6.8 i),
6.90b),6.12 a), f) 6.32b), ¢), d), 6.47 a)

* Combiner prise d’équivalent et regle de d’ Alembert.

w= Exercices 6.1 a) a d), 6.2b), ¢), ), 6.3 ¢), 6.8 b),
6.12a) ad), 6.13 d), 6.30 ¢), d), 6.32 ¢)

* Si |a,| n’admet pas d’équivalent simple lorsque I’entier n tend vers
I’infini, et si la régle de d’ Alembert ne parait pas applicable ou parait
peu commode a appliquer, se ramener a étudier, pour z € C* fixé, la
nature de la suite (|anz" |)n en fonction de z.

Si on trouve un R € [0; +o00] tel que :

— pour tout z € C tel que |z| < R, (a,z"), converge vers 0

— pour tout z € C tel que |z] > R, (a,z"), n’est pas bornée,

alors le rayon de convergence de la série enticre Zanz” est égal
a R. n
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Pour calculer

le rayon R et la somme S

d’une série entiére Zanz"
n=>0

Les méthodes a retenir

Pour étudier la nature de la suite (|an " |)n, on pourra commencer par

étudier la nature de la suite (ln la,| + nln |z|)n, puis composer par
I’exponentielle.

== Exercices 6.8 ¢), f), g), h), j), 1), n),
6.9c¢), d), e), 6.30 b), 6.32 f)

® Séparer la recherche de R en la recherche de deux inégalités com-
plémentaires sur R, obtenues par les méthodes précédentes.
En particulier :

—s’il existe z; € C tel que a,z] — 0, alors : R > |z4]
n

Z
o0
—s’il existe z, € C tel que a,z5 —/0, alors : R < [z2].
noo

== Exercices 6.3 a), d), k), 6.30 a), 6.32 a), 6.33 a)

Utiliser le théoreme du cours sur le rayon de convergence d’une
série entiere dérivée, en vue de faire disparaitre un n en facteur, ou
sur le rayon de convergence d’une série entiere primitive, en vue de
faire disparaitre un n ou un n 4+ 1 du dénominateur.

== Exercices 6.30 a), 6.33 b).

Commencer par déterminer le rayon R, par les méthodes précé-
dentes.

Dans la plupart des exemples ou I’énoncé demande le rayon et la
somme d’une série entiere, la détermination du rayon est aisée. En
effet, le coefficient a, est souvent une fraction rationnelle en n autre
que la fraction nulle, et alors le rayon est 1, ou a, fait intervenir sim-
plement des factorielles ou des exponentielles, et alors le rayon peut
étre souvent calculé par application de la regle de d’ Alembert.

== Exercice 6.2

Ayant déterminé le rayon R, pour calculer la somme S, c’est-a-dire
S(x) pour x €] — R; R[ si la variable est réelle, S(z) pour |z| < R,
si la variable est complexe, essayer de se ramener aux séries entieres
connues, en utilisant notamment les techniques suivantes :

® dérivation ou primitivation, éventuellement répétée, d’une série
entiere

== Exercices 6.2 a) ad), g), 6.32b), 6.33 b)

® décomposition de a, en éléments simples, lorsque a, est une frac-
tion rationnelle en n

== Exercices 6.12 a), b)

® combinaison linéaire de séries entieéres connues

== Exercices 6.2 b) ag),6.12¢) ah), 6.13d)
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PC-PSI
Pour montrer

qu’une fonction f est dSE(0)
et calculer le DSE(0) de f

224

En particulier, si a, est un polyndme en cosn € et sinn 6, essayer de
faire intervenir I’exponentielle complexe
== Exercice 6.33 a)

° changement de variable du genre ¢ = \/x ou f = /—x lorsque
I’énoncé comporte x" et que ’on préférerait y voir un élément du
genre 12"

== Exercices 6.32 ¢), d), e)

Si on est amené a calculer « a part» S(0), ne pas oublier que, tout
simplement, S(0) est le terme constant de la série entiere définissant

+00
S(x), c’est-a-dire S(0) = ap lorsque S(x) = Zanx”.
n=0

== Exercices 6.12 a), b), c¢), 6.32 c), d), e)

Si, pour le rayon R, on a obtenu seulement une minoration
R > p > 0, et si on a calculé la somme S(x) pourtoutx €] —p; pl,
souvent, on pourra montrer R = p en faisant apparaitre un comporte-
ment irrégulier de S(x) (ou de S'(x),...) lorsque x tend vers p~ ou
lorsque x tend vers —p™.

== Exercice 6.36.

Essayer de se ramener aux DSE(0) connus, par les opérations sui-
vantes :
® combinaison linéaire de fonctions dSE(0)

== Exercices 6.3 a), b), e), f), 6.14 a), b), c), f)

® produit d’un polyndome par une fonction dSE(0)

== Exercices 6.3 ¢), d)

® produit de deux fonctions dSE(0)
Si f se présente comme produit de deux fonctions dSE(0), alors,
d’apres le cours, f'est dSE(0). Mais, pour le calcul de DSE(0) de f, on
envisagera souvent un autre point de vue, car la valeur des coefficients
du DSE(0) de f, obtenue par produit de deux séries enticres, est sou-
vent inutilisable ou inapproprié.

== Exercices 6.14 f), 6.39

® dérivation, primitivation d’une fonction dSE(0).

Si la dérivée f' de f est plus simple que f, former le DSE(0) de f”, puis
en déduire celui de f. Essayer en particulier lorsque f est une intégrale
dépendant d’une de ses bornes ou lorsque f est un logarithme ou une
fonction circulaire réciproque ou une fonction hyperbolique réciproque.

== Exercices 6.14 d), e), h), i), 6.23

e utilisation d’une équation différentielle

== Exercices 6.39, 6.40
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Pour obtenir
le DSE(0) d’une intégrale
dépendant d’un parametre

Pour calculer la somme
d’une série numérique
(convergente)

Pour montrer
qu’une fonction f
d’une variable réelle
est de classe C*

PC, PSI

PC, PSI

Les méthodes a retenir

° montrer que f est de classe C*, appliquer la formule de Taylor avec
reste intégral a I’ordre n pour tout n € N, et montrer que le reste tend
vers 0 lorsque I’entier n tend vers 1’infini.

== Exercices 6.38, 6.48, 6.50.

Développer la fonction sous I’intégrale en la somme d’une série de
fonctions, souvent par I’intermédiaire d’une série entiere, puis mon-
trer que I'on peut permuter intégrale et série, par 1'une des trois
méthodes suivantes :

* continuité et convergence uniforme (PSI) (normale (PC)) sur un seg-
ment

== Exercices 6.21, 6.28, 6.29, 6.36

° théoreme sur I’intégration sur un intervalle quelconque pour une
série de fonctions

== Exercices 6.24, 6.26, 6.43
* montrer que I’intégrale du reste tend vers 0.

En plus des méthodes vues dans le chapitre 4, on peut essayer de faire

intervenir une ou des séries entieres.
+o00

Pour calculer E u,, (apres avoir montré la convergence de cette
n=0
série), introduire par exemple la série enticre E u,7", déterminer son
n=0
rayon R et sa somme S.

—Si R > 1, alors, on peut remplacer directement x par 1, et on a :
+oo

Zun = S(1).

n=0 == Exercices 6.4, 6.27

—Si R =1, essayer de montrer que la série entiere Z u,z" converge
n=0
uniformément (PSI) (normalement (PC)) sur [0; 1], ce qui permettra
+00
de déduire : » "u, = lim S(x).

=0 x—>1-

Avant d’introduire une série entiere dans ce contexte, il peut étre
commode de commencer par transformer 1’écriture du terme général
de la série numérique de 1’énoncé, ou de considérer d’autres séries
numériques analogues.

- (.28, 6.49.

Essayer d’abord les théorémes généraux : somme, produit, quotient,
composée... de fonctions de classe C*.

Sinon, il suffit de montrer que f est dSE(0).

Y penser en particulier lorsque f(x) est donné par deux expressions
selon la position de x.

== Exercices 6.22, 6.34 a), 6.41 b).
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Pour montrer

qu’une fonction f

de deux variables réelles
est de classe C*

Pour établir une égalité
du type intégrale = série

Pour montrer qu’un DSE(0),

400
fx) = Zanx" , valable pour tout
n=0
x €] — R; R[, est encore valable
pour x = R, ou pour x = —R

Pour obtenir la continuité en —R
ou en R, de la somme d’une série
entiere de R

Pour résoudre une équation
d’inconnue z € C, faisant
intervenir e*

Essayer d’abord les théoremes généraux : somme, produit, quotient,
composée... de fonctions de classe C*.

Sinon, essayer de se ramener a des fonctions d’une variable réelle et
essayer d’appliquer la méthode précédente a ces fonctions d’une
variable réelle.

== Exercice 6.22.

Essayer d’écrire la fonction située dans 1'intégrale comme somme
d’une série de fonctions, souvent par l’intermédiaire d’une série
entiere, puis justifier la permutation entre intégrale et série.

== Exercice 6.19.

Essayer de montrer que la série d’applications Z (x — a,,x”)
n=0

converge uniformément (PSI) (normalement (PC)) sur [0; R], puis

appliquer le théoreme sur convergence uniforme et continuité (PSI),

ou convergences normale et continuité (PC).

== Exercice 6.28.
Essayer d’appliquer le théoreme de la limite radiale

== Exercices 6.7, 6.16, 6.17, 6.37.

Utiliser éventuellement un changement de variable.

== Exercice 6.6.

=== FNnoncés des exercices

Exemples de détermination du rayon de convergence d’une série entiére

Déterminer le rayon de convergence R des séries entieres suivantes :

—
n*+1
a) _
g nd+2
In(n* + 1)
d) _
; In(n3 4+ 1)
—

2" + n?
b)Yy (n+2— )" )Y s

no_ pn2
n=0 n=0 3 n

" e)z<2nn>zn f)ZeSinnZ”.

n=0 n=0

Calcul du rayon de convergence et de la somme d’une série entiere

Calculer le rayon de convergence et la somme des séries entieres suivantes

(z : variable complexe, x : variable réelle) :

(1) anx”

n=0

d) Z(nZ 4 1)(_1)nx2n

n=0

(n+1)2n n3+n2—1n
b)z—n X C)Z—n—i—l X

nz=1 n=0

e) Zshnz" f)Zn:’lz" g) Zn(”)"x".

n=0 n=l1 ° n=l1
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4

E

Enoncés des exercices

Exemples de DSE(0)

Pour les fonctions f des exemples suivants, oul I’on donne f(x) (x : variable réelle), montrer que
f est dSE(0) et calculer son DSE(0) ; préciser le rayon de convergence R.

X 42 1
a)xz—l b m ) (I =x)In(1—x)
1—x 5 sin4x sin x
d) || —= e)In(x* — 8x + 15) f— 8) )
1+x sin x X

Exemple de calcul d’une somme de série numérique par utilisation d’une série entiere
+00
i 2" +n3"
Existence et calcul de S = Z .
“— (n — D)n5"

Exemple de calcul d’un produit infini par utilisation d’une série entiere
n Zk
Trouver lim l_[ 3%,
noo
k=0
Exemple de résolution d’une équation portant sur I’exponentielle complexe
Résoudre I’équation, d’inconnue z € C : e* = —2.
Etude de continuité et de limite au bord pour la somme d’une série entiére
1
On note, pour toutn > 1 : a, = In (1 + —)
n
+00
et, pour x € R, sous réserve d’existence : S(x) = Z a,x".
n=1
a) Déterminer le rayon de convergence de la série entiere Z apx".

n=l1

b) Etudier la convergence des séries numériques E a, et E a, (—1)".
n=1 n=1

c) Montrer Déf (S) = [—1; 1[ et montrer que S est continue sur [—1; 1[.

1 1 ,
d) 1) Montrer : Vn > 1, In <1 + —) > o 2) Etablir : S(x) —> +o0.
n n x—1-

Exemples de détermination du rayon de convergence d’une série entiére

Déterminer le rayon de convergence R des séries entieres suivantes :

@)y (VP 4nt 1=V +n) b)Y Ynchn' o) Y (V)

n=0 n=0 n=1

d)Y tan(m/n?+ 17" €)Y In@mH"  HY (nm)" g) Y ( nt] ) Z"

n=0 n=0 n=2 n=1 2n + 1
n3n )

h) ;e’cmz" i) ; mz“ J) ;nz"2 k) ;anz", a, = n—e& décimale de v/2
1) Zn_E(ﬁ)z" m) Z S,(n)z", S»(n) = somme des carrés des diviseurs > 1 de n

n=1 nzl

1 n3 1 " n VE

n) (1 + —> 7" 0) (/ — dt)z" p) (e_” e k>z”.

2 (1o 2\ ), v 2 ("2
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—— m Exemples de détermination du rayon de convergence d’une série entiere,
avec parametres

Déterminer le rayon de convergence R des séries entieres suivantes, les parametres a,b étant fixés :

)Z nz, (a.b) €10; +oo[? - ’z, a €]0; +oof
nzl1 b n=0 (2 )
c) Za" 7", aeC* d) Za" "oageC* e) Zea“")uz", aeR.
n=0 n=1 n=2
— m Rayons de séries entieres définies a partir d’une série entiere donnée

Soient E a,z", une série entiere, R son rayon de convergence.

n

Déterminer les rayons de convergence des séries entieres E 61 E a,l

— m Caractérisation des séries entieres de rayon > 0

Soient E a,z", une série entiere, R son rayon de convergence.
. . . 1 P
Montrer que R > 0 si et seulement si la suite (|a,, | )n>1 est majorée.

— {11’42 Calcul du rayon de convergence et de la somme d’une série entiére

Calculer le rayon de convergence et la somme des séries entieres suivantes

(z : variable complexe, X : variable réelle) :

gy ny 2 )Z"“_I)M
n>1 n(n—|—2) >2 n*—n = nt+ (=D
n* +n +1 x4t n+1
TR P o
); ),;(4p+1)' f);(n+2)n‘

1 si n=3p,peN

24 (—1)"
g)Z< e )>Z WY @ a =12 si n=3p+1peN
im0 \3+ (=D =0
3 si n=3p+2, peN

— {i7][51 Séries entiéres issues du développement de (1 + +/2)"

a) Montrer qu’il existe un couple unique ((@,)nen, (Pn)nen) de suites réelles tel que :

(an,b,) € N?
a, + b2 =1+ V2)".

b) Etablir : VneN, a, —byvV2=(1-+2)".

VneN, {

¢) En déduire une expression de a, et de b, en fonction de n, pour tout n € N.

d) Déterminer le rayon de convergence et la somme des deux séries entieres E a,z", E b, 7",
n=0 n=0

— 1]F7 Exemples de DSE(0)

Pour les fonctions f des exemples suivants, ot I’on donne f(x) (x : variable réelle), montrer que
fest dSE(0) et calculer son DSE(0) ; préciser le rayon de convergence R.
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Enoncés des exercices

1 16

- b)) — In(1 2
a)x2—x+2 )x3—5x2+3x+9 ¢)In(l+x +x7
d)In(x>+2x +5) e) Arctan (2 + x) f)sinx chx

hx —1)\? “In(l +1¢ el 1y
) (ngz> h)/ Mdf i) e—zdt.
X 0 t 2x t

{1150 Exemple d’inégalité sur la somme d’une série entiére

2 1—x)(Ind-x)
Montrer : Vxel0; 1], Zx—z > ( x)( ( x)) .
—~n X

m Etude de continuité pour la somme d’une série entiere dont les coefficients sont définis
par une relation de récurrence

On considere la suite réelle (a,),>o définieparay =1 et: Vn € N, a,;1 =In(l +a,).

+o0
On note, pour x € [0; 1], sous réserve d’existence : f(x) = Z(—l)"a,,x".
n=0

a) Montrer que (a,),>o est décroissante et converge vers 0.
b) Montrer que f est définie sur [0; 1].

¢) Etablir que f est continue sur [0; 1].

{11/ Etude de continuité au bord pour la somme d’une série entiére

+00 n
On note, pour x € R, sous réserve d’existence : S(x) = E P "
nle
n=0

a) Déterminer I’ensemble de définition de S.

b) Etablir que S est continue en —1.

m Etude d’une série entiere dont les coefficients sont des sommes de séries

+00
1
On note, pour tout n € N* : q, = _—
; k(k + n)

a) 1) Montrer que, pour tout n € N*, a, existe.

1

2) Etablir : VneN, a,=—Hy i —H,1),
n
N ) 7.1
ou on a noté Hy = 0 et, pour toutn € N*, H, = Z —.
=k
On pourra utiliser : H, = Inn + v+ o (1), ou 7y est la constante d’Euler.

3) En déduire un équivalent simple de a, lorsque I’entier n tend vers I’infini.

b) On considere la série enticre E a,x", ou la variable x est réelle, et on note R son rayon de
n=>1
convergence.

1) Déterminer R.

2) Quelles sont les natures des séries numériques Z a,R", Z a,(—R)" ?
nz=l n=1
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— m Calcul d’une intégrale double par utilisation d’une série entiére

+00 1
Montrer : xyeVdxdy=e—1-— .
//[0;1]2 Y Y Zn-n!

n=1

— {1241}] Etude d’une série entiere dont les coefficients sont des intégrales

+00
a) Montrer que, pour tout n € N*, I, = / e dr existe.
1

On consideére la série entiere E I,x" (ou x est une variable réelle), et on note R son rayon, S sa
n=l1
somme.

b) Déterminer R.

¢) Etudier la nature des séries numériques Z I,R", Z I,(—R)".

n=l1 n=1
d) Montrer que S ets continue en —R.
— 1741 Exemple de DSE(0) pour une fonction définie par une intégrale

K
Montrer que la fonction f : x —> / ch (x cost) dr est dSE(0) et calculer son DSE(0) ; préciser
0

le rayon de convergence R.

— [{}24’4| Classe C* pour une fonction de deux variables réelles

Montrer que 1’application f : ] — 1; +00[ xR — R définie par :

1 y—1
d+x’ -1 si x#£0
f(x,y): 111(1+X)
y si x=0
est de classe C*® sur | — 1 ; +oo[ xR.
—— DSE(0) d’une fonction définie par une intégrale

1 [* Arctant
On note, pour tout x € R* : f(x) = — / ; dt
X Jo

a) Montrer que f est définie sur R* et que f admet une limite finie £ en 0.
On note encore f 1’application R —> R obtenue en prolongeant f par continuité en 0.

b) Montrer que f est dSE(0) et calculer le rayon de ce DSE(0).

— DSE(0) d’une fonction définie par une intégrale

+00
On note, pour x € R et sous réserve d’existence : f(x) = / In(1+xe")dr.
0

a) Déterminer I’ensemble de définition de f.

b) Montrer que f est dSE(0) et déterminer le rayon et le DSE(0).
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6.31

Enoncés des exercices

Détermination d’une fonction dSE(0) dont on connait les dérivées successives en 0
Trouver un intervalle ouvert / contenant O et une application f : I —> R de classe C* sur I, tels
que:VneN, f™0)=n> n!.

Transformée de Fourier d’une fonction a support borné

Soit f : R — C continue par morceaux et nulle en dehors d’un segment.

On considere la transformée de Fourier g de f:
1 +oo .
g:R—C, xr— gx) = Eﬁm f(e ™ dr.
Démontrer que g est dSE(0), de rayon infini.

Calcul d’une somme de série numérique par utilisation de séries entieres

f 1
Existence et calcul de A = .
= (3n)!

Calcul d’une somme de série numérique par utilisation d’une série entiere

(=n"

Existence et calcul de S = Z m .
n n

Calculs d’intégrales a I’aide de DSE(0)
Calculer, pour toutn € N :

o o
1, =/ e cos (nt — sinr)dr et J, =/ e sin (nt — sint) dr .
0 0

Exemples de détermination du rayon de convergence d’une série entiere

Déterminer le rayon de convergence R des séries enticres suivantes :

) smn
a)Zsmnz", Z Znsmnz )Z —_—"

=0 n>1 n>0 n>2 ln (n+ 2))
+1 T\ , 1
c) Z Arcsm T3 6 z d) ZArccos 11— -
n=0 n>1

1 +oo
e)Z( / t(l—l)~--(z—n)dt>z” f)Z(/ z”ef’dt)z"
n>1 ) n>0 n
(n+1)T
V(L

n=0

. 2 d n h n
sin (1°) t)z );n\/— E(n\/—)

Effet de la multiplication du coefficient d’une série entiere
par une fraction rationnelle de I’indice

Soient  (a,)sen € CN, F € C(X) — {0}. Montrer que les séries entiéres Zanz" et

Z F(n)a,z" ontle méme rayon de convergence.

n
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6.34

Calcul du rayon de convergence et de la somme d’une série entiére
Calculer le rayon de convergence et la somme des séries entieres suivantes

(z : variable complexe, x : variable réelle) :

3n+2 X"
a);cosnx )2311—1—2 c);m
d) Z e) Z 73}1 x" f ZZE(ﬂ).
n>0 (2n + D! n=0 2n*+n—1 n=0

L. N . . cosnf sinnf
Séries entieres de coefficients cosnf), sinnf, ,
n

n

a) Calculer, pour tout # € R, les rayons de convergence et les sommes des deux séries entieres

E cosn@x”,g sinnf x".

n=0 n=0

b) En déduire, pour tout f € R, les rayons de convergence et les sommes des deux séries entieres

cosnf sinnf
E x", E x".
n n

n=1 n=1

Fonction de classe C* par DSE(0)
Soitn € N fixé. On note f, : R — R 1’application définie, pour tout x € R, par :

1 . n xk )
We_;ﬁ si x#=0

fulx) = =
1

(n+ 1!

si x=0.

a) Montrer que f, est de classe C* sur R.

b) Montrer qu’il existe P, € R(X] tel que :

Vx eR*, £ (x) = 2P, (x) — e 2Py (—x))

x2n+l1 (

et calculer P,.

Exemple d’égalité de sommes de séries entiéres, par produits de Cauchy

Montrer, pour toutz € C:  €° Z( l)n : _n Z(Z )

n=1

Etude d’une série entiére dont les coefficients sont des intégrales
1

On note ap = 1 et, pour toutn € N*: a, = — l_[(t — k) | dr.
}’l' 0 e

Déterminer le rayon de convergence R et la somme S de la série entiere E a,x", ou la variable
n=0
x est réelle.
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6.43

Enoncés des exercices

Etude de continuité et de limite au bord pour des séries entieres

+o00 n

p . X
On note, pour x € R, sous réserve d’existence : S(x) = g 5
n
n=1

a) Etablir : Déf (8) = [—1; 1].
b) Montrer que S est continue sur [—1; 1] et de classe C' sur ] — 1; 1[.
c) Démontrer que S est de classe C' sur [—1; 1[.

d) Montrer : S'(x) —> +o0. Est-ce que S est de classe C' sur [—1;1] ?
x—>1"

Résolution d’une équation fonctionnelle par utilisation d’une série entiére

Pour (o, A) € R*x] — 1; 1[ fixé, trouver toutes les applications f : R —> R dérivables telles
que:Vx e R, f(x)=af(x)+ f(Ax).On exprimera le résultat sous forme d’une série.

Exemple de DSE(0), méthode de I’équation différentielle

Argshx
V14 x?

Montrer que f : x —> est dSE(0) et calculer son DSE(0) ; préciser le rayon de conver-

gence R.

Exemple de DSE(0), méthode de I’équation différentielle

Pour o € R* fixé, former le DSE(0) de f : x —> sin (« Arcsin x).

Fonction d’une variable réelle de classe C* par utilisation de DSE(0)
1 1

Onnotef : R* — R, x +—> - —.
e —1 x

a) Montrer que f admet une limite finie £ en O et calculer £.
On note encore f I’application R — R obtenue en prolongeant f par continuité en 0.

b) Montrer que f est de classe C* sur R.

Principe des zéros isolés et une application

a) Soit E a,x" une série entiere réelle, de rayon de convergence R > 0, f sa somme. On suppo-
n=0
se qu’il existe une suite (,),cy telle que :

VneN, —R<t,<Rett,#0 et f(t,)=0

t, — 0.
noo

Démontrer : f = 0.

b) Existe-t-il une application f :] — 1; 1[—> R, dSE(0) de rayon > 1, telle que :

1 1 1
VneN-{0,1}, f<;>:f<_;>:ﬁ7

DSE(0) de x — T'(Z + x), ou I" est la fonction d’Euler

Montrer que I’application x — I'(1 4 x) est dSE(0), de rayon 1, et exprimer les coefficients de
ce DSE(0) a I’aide d’intégrales.
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6.47

Etude d’une série entiere dont les coefficients vérifient une relation de récurrence
linéaire du second ordre, a coefficients constants et avec second membre

On considere la suite réelle (u,),<n définie par ug = 0,u; =1 et:

1
VneN, up=uyy +u, + ——.
n Upyr = Upy1 T U il

Déterminer le rayon de convergence R et la somme S de la série entiere E u,x", ol la variable

n=0
x est réelle.
Série entiere génératrice pour le nombre de dérangements
On note, pour tout (n,k) € N? tel que k < n, F, ; le nombre de permutations de {1,...,n} ayant
exactement k points fixes, et on note, pour tout n € N, oy, = F,, 9. On convient : oy = 1.

a) 1) Montrer, pour tout (n,k) € N? tel quek <n:F, = (Z) Q-
n n
2) En déduire, pour toutn € N : ap =n!.
) p ZO: (k) k

LR PN P N Ot,, N .
b) On considere la série entiere —z", ol la variable z est complexe, et on note R son rayon
!
= n!
de convergence, S sa somme.

1) Montrer R > 1 et établir, pour tout z € C tel que |z] < 1 : S(z) = le
~ (—=1)?
2) En déduire : VneN, o :n!Z .
= D!
p=0
n! 1 . n!
3) Conclure, pour toutn € N —{0,1} : oo, = E{ — + 5 ) puis: o, = — + 0 (1).
(& (S noo

Comparaison des comportements de deux séries entiéres au bord

Soient E a,x", E b,x" deux séries entiéres, R,, R, les rayons, S,,S, les sommes.
n=0 n=0

Onsuppose: (1) Vn e N, b, > 0, (2) an diverge, 3) R, =1, (4) % — L eR.

n=0 n

Sa(x)

—
S[,(X) x—1-

a) Montrer : S, (x) —1>7 +00. b) Etablir :

Etude d’une série entiére, comportement au bord

n

On note, pour toutn € N*: qa, = s et on considere la série entiere E a,x" (ou la variable
e'n!
n=1

x est réelle), R son rayon de convergence, S sa somme.

a) Déterminer R.

b) Déterminer un équivalent simple de S(x) lorsque x — 1~.

X v, /7
A cet effet, on admettra / e dx = - et on utilisera I’exercice 6.46
0
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Soit f : [—1;1] — R declasse C* telleque: Vn € N, /

Du mal a démarrer ?

7211 Fonction dSE(0) par inégalités sur des intégrales

1
(£ ()" dx < ()2,

-1

Montrer que f est dSE(0), de rayon > 1.

+00 1
Montrer:ﬂzzﬁ(

n=0

6.50

Formule de Simon Plouffe

4

2 1 1

8n+1 _8n+4_8n+5_8n+6)'

Toute fonction C*° absolument monotone est dSE(0)

Soient a € R%, f :]—a;a[—> R de classe C* telle que :

VneN,Vxel—a;al, f"x)>0.

On note, pour toutn € N ettoutx €] —a;al:

n k X _ n
S0 =Y G0, R = / %ﬂ"*“(z) dr.
. 0 .

a) 1) Montrer que, pour tout x € [0: a[, la suite (S,(x)) _, converge et la suite (R,(x)),_,

converge.

2) Btablir, pour tout (x,y) €]0;al> telquex < y: 0<

3) Montrer, pour tout x € [0; a[ : R,(x) —— 0.

4) En déduire que, pour tout x € [0; a[, la série de Taylor de f en 0, prise en x converge et a pour

somme f(x).

b) Etablir :

Vxe]l—a;0], R,(x) —— 0.

¢) Conclure que f est dSE(0), de rayon > a.

msssse Du mal a démarrer ?

m a) a d) Equivalent, puis régle de d’Alembert.
e) Régle de d’Alembert.

f) Encadrer la valeur absolue du coefficient.

a) A partir de la série géométrique, dériver, multiplier par x.
b) Décomposer en combinaison linéaire de trois séries entieres.

¢) Décomposer en combinaison linéaire de deux séries entieres
et utiliser le résultat de a).

d) Décomposer en combinaison linéaire de deux séries entiéres

et utiliser le résultat de a), en remplacant x par —x.

et —e™*

e) Remplacer shx par

f) Décomposer en combinaison linéaire de séries entiéres et uti-
liser le DSE(0) de I'exponentielle.

g) Séparer les termes d'indices pairs, d'indices impairs, d'abord
sur des sommes partielles.

a), b) Décomposer en éléments simples.
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¢) Calcul direct.
d) Remarquer: f(x) = (1 —x)(1 —x?)~1/2,

e) Factoriser et décomposer en somme de logarithmes (de
nombres strictement positifs !).

f) Simplifier f (x) et linéariser.

g) Diviser le DSE(0) de sinx par x, puis récupérer la valeur pour
x=0.

Calculer les rayons et les sommes des deux séries entieres
n n
X

Z S et Z ——, puis remplacer x parg parE
= (n—1n n>2n—1 5 5

Se ramener a une étude de somme en passant par le loga-
rithme.

Poser z = x + iy, (x,y) € R2.
a) Utiliser un équivalent.
b) * Etude en 1 : Equivalent.
« Etude en —1 : TSCSA.
¢) Utiliser le théoreme de la limite radiale.
d) 1) Etudier les variations de :
<p:t6[0;l]|—>ln(l+t)—%.

a), d) Obtenir un équivalent simple de a,, par développe-
ment asymptotique, puis appliquer la regle de d'Alembert.

b) Equivalent, puis régle de d’Alembert.

c),f),g),h),j),1),n) Pour z € C* fixé, déterminer la limite de |a, 2" |
lorsque I'entier n tend vers l'infini.

e),m), o), p) Encadrer |a,|.
i) Regle de d’Alembert pour les séries numériques.
k) Majorer |a,|.D'autre part, étudier le cas z = 1.

a) Chercher un équivalent simple de a,, en séparant les
cashb < 1,b>1.

b) Regle de d'Alembert.

¢) a e) Pour z € C* fixé, déterminer la limite de |a,z"| lorsque
I'entier n tend vers l'infini.

Etudier la nature des suites (a2z"),>0, (@nz*")n>0-

1)Si R > 0, intercaler p tel que 0 < p < R, et déduire une
majoration de |a,|/".

2) Réciproquement, comparer |a,| avec le terme général d'une
série géométrique.

a) Décomposer en éléments simples, multiplier par x2.
b) Décomposer en éléments simples et diviser par x.

¢) Séparer les termes d'indices pairs, d'indices impairs, d'abord
sur les sommes partielles, puis sur les sommes totales.

d) Décomposer le polyndme n* +n? + 1 (variable n) sur les
polynémes n(n — 1)(n — 2)(n — 3), n(n — 1)(n — 2), n(n — 1),
n, 1, puis utiliser le DSE(0) de I'exponentielle.

e) Combiner les DSE(0) de sh et sin.

f) Multiplier le dénominateur par n + 1, pour faire apparaitre
(n + 2)!, puis utiliser le DES(0) de I'exponentielle.

g) Séparer les termes d'indices pairs, d'indices impairs, d'abord
sur les sommes partielles.

h) Calculer d'abord une somme partielle, par exemple
3N+2

anZn-
n=0

a) 1) Existence : Récurrence sur n.
2) Unicité : Utiliser v/2 ¢ Q.
b) Utiliser la formule du bindbme de Newton.

d) Pour les rayons, chercher un équivalent simple de a,, de b,
lorsque I'entier n tend vers l'infini.

Pour les sommes, utiliser ¢) pour se ramener a une combinaison
linéaire de séries entiéres géométriques.

a) Décomposer en éléments simples dans C(X), utiliser des
séries entiéres géométriques, puis regrouper les termes conju-
gués deux par deux.

b) Décomposer en éléments simples et utiliser la série entiére

géométrique et sa dérivée.

_ 53

1
c)Remarquer:l—i—x—i—xz: pourx €] —1;1[.

— X 4
d) Former le DES(0) de f/ par la méme méthode qu’en a), puis
primitiver.

e) Former le DES(0) de f’ par la méme méthode qu’en a), puis
primitiver.

f) 1 méthode : Remplacer sin x par —i sh (ix), puis linéariser.

28 méthode : Exprimer sinx et chx & l'aide d’exponentielles
complexes.

g) Linéariser (chx — 1)2, diviser par x*, former le DSE(0), puis
récupérer le cas x = 0.

In(l +1
F)FormerlelDSE@)Ide g o s R dEi )

blement en 0, puis primitiver.

, compléter convena-
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i

i) Former le DSE(0) de g : 1 —> ————

nablement en 0, exprimer f’(x) a I'aide de g, puis primitiver.

, compléter conve-

Utiliser I'inégalité de Cauchy et Schwarz sur des séries
entiéres.

a) Pour la décroissance, utiliser une inégalité classique sur
le logarithme.

b) TSCSA, pour x € [0; 1] fixé.
¢) Utiliser le théoréme de la limite radiale.

a) Déterminer le rayon R de la série entiére envisagée, par
la régle de d’Alembert.

« Ftude en —1 : TSCSA.

« Ftude en 1 : Utiliser la formule de Stirling.

b) Utiliser le théoréme de la limite radiale.
In2

a) On obtient:a,, ~ —.
noo n

b)1)R=1. 2)Pour » a,(—R)", utiliser le TSCSA.
n

Calculer I'intégrale double, par emboitement d’intégrales
simples, en utilisant une intégration par parties, puis calculer

Ler —1
L=

. o —h —
a) Remarquerici: e" <e™.

dx par intégration d'un DSE(0) de rayon infini.

b) Obtenir un équivalent simple de 7, par le changement de
variable u = ", suivi du théoreme de convergence dominée.

c)Pour » " I,(—R)", utiliser le TSCSA.
n=l1
d) Appliquer le théoréme de la limite radiale.

Développer la fonction sous I'intégrale en une somme de
série de fonctions, puis permuter intégrale et série, par le théo-
reme du cours sur continuité et convergence uniforme (PSI) ou
normale (PC) sur un segment.

Calculer les intégrales de Wallis d'indices pairs.

Décomposer f, par produit et composition, a l'aide de
fonctions d’une variable réelle, en considérant
e —1
¢:R— R, t+— t

si t#0

t=0.
Se rappeler que toute application dSE(0) est de classe C*.

1 si

Arctant

b) Montrer que I'application ¢ — , convenable-

ment prolongée en 0, est dSE(0), puis primitiver et refaire le
méme raisonnement pour obtenir f(x).

a) Séparerlescas:x < —1, x = —1, x > —1.

Du mal a démarrer ?

b) Pour x €]—1;1[, développer 1+ In(1+xe™") en
somme d'une série de fonctions, puis permuter intégrale et
série, par le théoréme du cours sur l'intégration sur un interval-
le quelconque pour une série de fonctions.

Considérer la somme de la série entiere Z n’x".
n=0

En notant [—a;a] un segment en dehors duquel f est
nulle, exprimer g(x) pour x € R fixé, puis permuter intégrale et
série, par le théoréme du cours sur l'intégration sur un interval-
le quelconque pour une série de fonctions.

Noter
400 1 400 1 +00 1
A=Y — B=) —— C=) ——,
,;)(w ,;)(3“1)! ;0(3”2)!

et calculer A+B+C, A+jB+j*C, A+j*B+jC, puis
déduire A.

(71)7!xﬂ
5% n+1)2n+1)
Calculer sa somme pour x € [0; 1[, puis montrer qu'on peut

remplacer x par 1, par continuité et convergence uniforme (PSI)
ou normale (PC).

Considérer la série entiére ,de rayon 1.

Former /1, 4 iJ,, développer la fonction sous l'intégrale en
une somme de série de fonctions, puis permuter intégrale et
série, par continuité et convergence uniforme (PSI) ou normale
(PC) sur un segment.

a) 1) Utiliser la majoration usuelle de | sinn|, et,d"autre part,
montrer que la suite (sinn),ecn ne converge pas vers 0.

2) Une série entiere a le méme rayon que sa série entiere déri-
vée, ou qu’'une série entiére primitive.
b) Pour z € C*, déterminer la limite de |a,z"| lorsque I'entier n
tend vers l'infini.
¢) Pour obtenir un équivalent simple du coefficient, utiliser le
théoréme des accroissements finis, appliqué a Arcsin, entre 3

n+1

2n+3"
d) Remarquer a, —> 0,donc: a, ~ sina,.

noo noo

e) Encadrer |ay|.
f)Montrer: YVneN, a, >n"e™",

puis régle de d’Alembert pour Z n"e 7",
n=1

g) Par le changement de variable t = x2, se ramener a

(n+1Dm sint
w= [
n

n Vi

— % sint

On sait que l'intégrale / 7 dr est semi-convergente,
t

ks
c'est-a-dire convergente mais non absolument convergente.
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h) « Montrer:a, > 1.

+ Par utilisation d'une expression conjuguée, montrer :
a, < nv/2.

Utiliser la méme méthode que celle employée dans le
cours pour montrer qu’une série entiere a le méme rayon que sa
série entiere dérivée.

a) * Rayon : Comme pour I'exercice 6.30 a).

» Somme : Remplacer cosn par son expression a l'aide d’expo-
nentielles complexes et utiliser des séries géométriques.

b) Dériver, décomposer en éléments simples, primitiver.

¢) Changements de variable :

t=4/x si xel0; 1], t=4+/—x 81 xe€]—1;0[.

d) Changements de variable :

t=4/x si x€]0;+o0[, t=+/—x si x€]—00;0[.

e) Décomposer en éléments simples.

+00 n
Pour calculer ———, utiliser des changements de
n; 20+ 1 9

variable,comme dans ¢).

f) Pour ze€C tel que |z]<1 et N eN* découper
(N+1)2-1

Z EVM en paquets.

n=0
a) 1) Rayons : Une inégalité est immédiate.
Montrer que, pour tout € € R, la suite (cosn6),>0 ne converge
pas vers 0, en raisonnant par lI'absurde. Montrer que, pour tout

0 € R — 7, la suite (sinné),>o ne converge pas vers 0, en rai-
sonnant par I'absurde.

2) Sommes : Considérer S.(x) + iS5 (x) et utiliser une série géo-
métrique.

b) 1) Rayons : Série entiére dérivée.

2) Sommes : Se ramener a a) par dérivation et multiplication
par x.

a) En utilisant le DSE(0) de I'exponentielle, montrer que f
est dSE(0) de rayon infini, donc fest de classe C* sur R.

Effectuer le produit de Cauchy des séries entieres

1 (=t . . .

E —7" et E ————7", puis exprimer le coefficient de z”,
n! n-n!

n=0 n=1

1 ke
ar " e
n—k " /0

1) Par majoration de |a, |, montrer: R > 1.

en remplacant

2) Soitx €] — 1; 1[.Pour calculer S(x), montrer qu’on peut per-
muter série et intégrale, par continuité et convergence uniforme
(PSI) ou normale (PC) sur un segment.

X

si x #Z0

3) Ayant obtenu S(x) = { In(1 +x)

1 si x=0,

montrer R =1 en considérant le comportement de S’(x)
lorsque x — —17.

a) Montrer que, pour x € R fixé, si [x| < 1 alors la série
converge, et si [x| > 1 alors la série diverge grossierement.

b) 1) « 1" méthode, PC : Convergence normale sur [—1; 1].
- 2¢ méthode, PC, PT : Utiliser le théoréme de la limite radiale.

2) Utiliser le théoreéme du cours sur la dérivation pour les séries
entieres.

¢) Utiliser le théoreme de la limite radiale et le théoréme limite
de la dérivée.

d) + Minorer S’(x) en remarquant :
1 1
Vn>1, Pyl > e
« Raisonner par I'absurde pour montrer que S n'est pas de clas-
se Clsur[—1;1].

1) Soit f convenant.
» Montrer que fest de classe C*° sur R.

» Montrer que le reste de Taylor de f en 0 tend vers 0 lorsque
I'entier n tend vers l'infini.

+00

2) Reporter f(x) = Za,,x" dans I'équation, et raisonner par
n=0

équivalences logiques successives.

1) Montrer que f est dSE(0), par des arguments qualitatifs.

2) Pour calculer le DSE(0) de f, utiliser la méthode de I'équation
différentielle.

Montrer que f satisfait une EDL2 (E) a coefficients variables
polynomiaux.

+00
« Supposer que f est dSE(0), f (x) = Zanx", reporter dans (E),

et déduire les aj,. =0

+ Réciproquement, montrer que la série entiére obtenue est de
rayon > 0 et satisfait (E) et les mémes conditions initiales que f.
Conclure a l'aide du théoreme de Cauchy linéaire.

a) Utiliser des DL(0) pour obtenir :

Fo) —> L,

x—0 2
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x ef—1—x
et —1 x2

complétée convenablement

b) Montrer, pourx # 0 : f(x) = —
et —1—x
o
en 0, est dSE(0), puis utiliser le lien entre dSE(0) et classe C*°.

Montrer que x —

a) Montrer : f(0) = 0. Se ramener au cas ou t, Eo) 0 en
décroissant strictement, et utiliser le théoreme de Rolle pour
construire une suite (u,),>0 jouant, pour f’, le méme réle que
celui joué par (t,),>0 pour f.

En déduire f/(0) = 0, réitérer, puis f = 0.
b) Raisonner par l'absurde et appliquer le résultat de a) a

g:X|—>f(x)—x3, h:)m—>f(x)+x3.

Montrer gu’on peut permuter intégrale et série, par appli-
cation du théoreme du cours sur l'intégration sur un intervalle
quelconque pour une série de fonctions.

1) Rayon : Encadrer u, par deux suites plus simples,
0< v, <u, <w,, calculer v, et w, et en déduire

5—1
R = /5 .
2
2) Somme : Décomposer u,,+2x"+2 d'apres I'énoncé, puis som-
mer.
b) 1) « Encadrer a_,', ,et déduire R > 1.
n:

o, 1
« Faire le produit de Cauchy de E 7" et E —7".
n! n!
n>0 n>0

2) Effectuer (1 — z)S(z) et utiliser un télescopage.

_1\P
3) La série Z ( 1')

. p:
ae !, p=0

releve du TSCSA et sa somme est égale

a) Revenir a la définition d’une limite infinie et utiliser des
sommes partielles.

Du mal a démarrer ?

a
b) Revenir a la définition d'une limite finie, pour b—” —> £, et uti-
n oo
liser des sommes partielles. "

a) Regle de d'Alembert.

b) Par la formule de Stirling et I'exercice 6.46, montrer :

1 +o0 X"

—1= V2n n=1 ﬁ

Pour obtenir un équivalent simple de cette derniére somme de

S(x)

série entiére lorsque x —> 17, utiliser une comparaison
série/intégrale.

Appliquer la formule de Taylor avec reste intégral a f sur le
segment joignant O et x, et majorer la valeur absolue du reste a
I'aide de l'inégalité de Cauchy et Schwarz.

Remarquer :

1 V2 Ly2 8ntp—1
- = 2P nTp— dx
16"8n + p) /0 .

Montrer que I'on peut permuter intégrale et série, par continui-

vV p e N,

té et convergence uniforme (PSl) ou converge normale (PC) sur
un segment.

En déduire, aprés changement de variable u = X2
1 42 3_,4_ .5
S=16 / L S T
0 16 — u8

Simplifier la fraction rationnelle et calculer I'intégrale.

a) 1) Montrer que, pour tout x € [0; af,la suite (Sn(x))@o est

croissante et majorée.

Ry (x) |
xntl &
Ry (y)

yn+1 :

2) Pourn € N, (x,y) €]0; a[2 tel que x < y, exprimer

t
I'aide du changement de variable u = —, et comparer a
X
3) Pour x €]0; al fixé,intercaler strictement un y entre x et a et
utiliser 2).

b) Montrer, pourtout x €] —a; 0] : |R,(x)| < R,(]x]),
et utiliser a).
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= Corriges des exercices

Notons, dans chaque exemple, a, le coefficient de la série f)Ona: VrneNlN, 0<e ! e Lel.

entiere envisagée. . N P . )

5 Les séries entieres Z e 7" et Z ez" sontderayon 1 (sé-
n“+1 1 >0 n>0

n3 42 no n’ ries géométriques, ou regle de d’ Alembert), donc, par théoréeme
d’encadrement pour les rayons : R = 1.

a)Ona: a, =

puis, pour tout z € C* :

n+l1

ap4+12 ~ n = >
P A —— |z| o |zl a) La regle de d’Alembert montre : R = 1.
+00
donc, d’apres la régle de d’Alembert : R = 1. Ona: Vxe]l—1;1] ZX" =
2 1 "
b)Ona:a,=n+2—n= — d’on, en dérivant :
N e VTN
uis, pour tout z € C* : _ — 1
puis, p Vxel—1:1], nan = A7
an+lzn+l ﬁ
a,7" oo m'zl oo Izl puis, en multipliant par x :
donc, d’apres la regle de d’Alembert: R = 1. Vxel—1:1[ ionx” _ 2 =x(l — x)—z
on 4L n2 on n=1 (1 - )C)
c)Ona: y = ——— ~ —,
3" —n* noo 31 puis, en dérivant : Vx €] — 1; 1,
puis, pour tout z € C* : 1
an o (1m0 21— x) P =
an+lzn+l 2n+1 3n (1 — x)3
|~ o 5l = Sl —— Sl
nZ e puis, en multipliant par x et en remarquant que le terme d’in-
3 dice O est nul :
donc, d’apres la regle de d’Alembert: R = —.
2 +00 s x(1 4+ x)
@i Vxel—1;1[ S@) =) n’x"="—"—T—.
n=0 (1 - )C)
1 p
In(n2 + 1) 2Inn + In (1 aF ﬁ) ’ Réponse: R =1 et:
= = —_— =
n 3 > x(1+x)
In(n3 + 1) 37 + In 1+i © 3 Vyel-151 S&) = —~———.
=3 )
puis, pour tout z € C* : b) L utilisation d’un équivalent et la regle de d’ Alembert mon-
trent: R = 1.
a lZrHrl i X .
2l o 12 g — 2 On a, pour toutx €] — 1; 1] :
anz" b noo >
+00 Pl +00
(n+ 1)
donc, d’apres la régle de d’Alembert: R = 1. Sx) = Z Z n+2 +
n=1 n=1

e) On a, pour tout z € C* :

400 400 +oo X"
T 71| | =;nx +2,,Z=1:x +;7,
wz | \n+1)\n) © o
car ces trois séries entieres sont de rayon 1.

(2n +2)! (n!)2| | (2n—i—2)(2n—|—1)| | 412 +00

= z| = z z . n
2 | 2 B 2 On sait : Vxe]l—1;1[, 7=

((n+1)!) @2n)! (n+1) o Z
donc, d’apres la régle de d"Alembert : R = + donc: Vxel—1;1[, Zx =
onc, d’apres la regle de embert: R = 7 : =1

n=1
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D’autre part, en dérivant, on obtient :

+00
Vxe]—1;1], nx" = — |
; (1—x)7?

puis, en multipliant par x :

X

Vxe]l—1;1[, an =T

+00 _n

Enfin, onsait: Vx e]—1;1], Zx— =—In(l —x).
— n

En combinant linéairement, on en déduit S(x).

Réponse: R =1 et:

2

(I —x)?

c) Lutilisation d’un équivalent et la regle de d’ Alembert mon-
trent: R=1.

Vxe]l—1;1[, Sx) = —In(l —x).

Ona,pourtoutx €] —1;1[:

+00 3+ 2_1 +00
=Z%":Z<”

n=0 n

+00 +00 1

= anx" —Zn+1x",

notée A(x)

notée B(x)
car ces deux séries entieres sont de rayon 1.
x(1+x)
(A—x)p

On a calculé A(x) dansa): A(x) =
D’autre part, six = 0 :

+oo n-H

B(X) = ;

_—Z—_—%ln(l—x),

n=0 n=1

eton a B(0) = 1, terme constant de la série entiere définissant
B(x).

Réponse: R =1 etpourtoutx €] —1; 1[:
x(1+x) .
—1 1 — 0
sy =] a—xp x0TV s xF
1 si x=0.
d) * Soit x € R*. Notons, pour toutn € N :
up, = [0+ D(=D"x*"| = (n® + x>,

u
On a LA lx|?,

n+D*+1 .,
= |x|
Uy i’l2+1 noo

donc, d’apres la regle de d’Alembert: R = 1.

*Ona,pourtoutx €] —1;1[:

+00 too
S =Y (7 + D=1 =) (0 + D(—x)"
n=0 n=0

+00 +00
— an(—xz)" + Z(_XZ)n ,
n=0 n=0

car ces deux séries entieres sont de rayon 1.

D’une part, par série géométrique :

+00
D ()=
n=0

D’autre part, d’apres I’exercice a) :

1
1—(—x%) ~ 1+x2°

Vie]—1;1], Z “:t(IH)

3
n=0 Z)

puis en remplagant ¢ par —x> €] —1; 1] :

+o0 —x2(1 — x2
I
=0 (L + %)
Réponse: R=1et:
—x2(1 — x?) 1
Vxel—1;1[, Skx) = .
x €] [, S 1227 T
e)*Ona: an:shn:l ~ e—.
2 noo 2

. . L.
Comme la série entiere E e"z" est de rayon — (série géo-
e

n=0

1
métrique), par théoreme d’équivalence : R = —.
e

1
* On a, pour tout z € C tel que |z] < —:
e

—n

@) = Zshnz —Z%z”
1+oo ) 1+oo -
:Egeln_ige O

. 1
car les rayons respectifs sont —, et
@®

11 11 1(1—e'2)—(1—ez)
21—ez 21—ez 2 (I—en(l—elg)
1 (e—e Nz (sh1)z
T21—(+eDz+z22 1-20cchhz+22

=

1 1
Réponse : R = — et, pour tout z € C tel que [z| < —:
e e

zsh

S@) = —
@ =Tt
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f)*Ona, pour tout z € C* :

| n42 n! |
a,z" _(n+1)'n+lz
n+2
= 712 o~ el ——0,
INCES))
donc, d’apres la regle de d’Alembert: R = +o00.
*Ona, pourtoutz € C:
n +1
S(z) = 2}—— _1+Xj z"
_ 1+Z l P
1)' n!
+o00 _n

Z
—1+Z 1)’ L

car ces deux séries entieres sont de rayon infini

+o n+l +o0 "

+00
Ej =1+
n=0

VzeC, S()=(+z)¢"

" )

—‘:(l—i—z)e“.

n!

R =+occet:
1

Vne N, — <K
n

Réponse :

g)*Ona: la,| < n.

1
Comme les deux séries entiéres E —7" et E Z" sont de
n
n=1 n=1

rayon 1, par théoréme d’encadrement : R = 1.

*Soitx €] — 1; 1[. Pour séparer les termes d’indices pairs, d’in-
dices impairs, nous allons travailler sur des sommes partielles.

On a, pour tout N € N :
2N+

N N
1
D"y 2 px2P - 2ptd
E n X E px=* + E X .
= P P

Comme les trois séries entieres qui interviennent sont de rayon
1, on déduit, en faisant tendre 1’entier N vers I'infini :

+0oo 2p+l
SC) = Zszzp +Z <2p+1°
%,_/ —,_z

notée A(x) notée B(x)

On a, d’apres la série géométrique :

400
Viel—1:1], Zz":—
n=0

d’ou, en dérivant :

1
(1-0?’

+00
Yiel—1:1][ Zm”*‘:

n=1

puis, en multipliant par 7 :

t
(1—0*

+00
Viel—1:1[ an":
n=1

Il s’ensuit :
+00 3 X2
Vxel—1;1] A(x)=2p2=l:p(x )P=2m.
D’autre part :
Viel—1:1[ B(x):fzitll =%1nti.
p=0
Réponse: R =1 et:
Vxe]l—1;1], S(x):zixz—k1 nlﬂ
(1—x22 2 1—x

3
est définie sur

a) La fonction f:x+— —
X2 —

R — {—1,1}, donc au moins sur | — 1; 1[, et on a, par une dé-
composition en éléments simples immédiate, pour tout
xel—1;1[:

[ e N e v
X) =X =x . <
==L @ —DE+1)
y3.t 1 301 11
=7 — - I
2x—1 2x+1 7“7 21=x 21+=x
3+oo
3 Ee i e
=0 n=0
+00
_X+Z(————( 1)) =3 a4,
n=0 =
3 1
— — (=" q |
ennotant: a, = 2 2( YooosionE
0 si n=1,

—1 si n=2p+1, peN*

ouencore: a, =43 —2 si n=2p,peN
0 si n=1.
Déterminons le rayon R de cette série entiere.

D’une part, puisque la suite (a,), ne converge pas vers 0,
ona: R< 1.

D’autre part, puisque (a,), estbornée,ona: R > 1.
Onconclut: R =1.
b) La fonction
7 1 1
X > =
* x*—=3x2+2 (Z-DEx2-2)

est définie sur R — {—+/2, —1, 1, +/2}, donc (au moins) sur
] —1; 1[ et on a, par une décomposition en éléments simples
immédiate, pour toutx € ] —1; 1[ :



1
*2—-1D(x%2-2)
1 1 1 1 1

=_x2—1+x2—2=1—x2_§ x?

fx) =

3 +00 X2 n 400 1 ,
S AR () £ -

n=0 n=0

Puisque 1 — ~ 1 etque la série entiere sz" estde

2+ oo n>0
rayon 1, par théoreme d’équivalence,ona: R =1.
c) Lafonction f :x +—— (I —x)In(l —x)
est définie que | — co; 1[, donc (au moins) sur | — 1; 1[.
Ona,pourtoutx €] —1;1[:

+00
~(1-0) =
n=1

f@=0-x)In1-x) =

n+1

——Z Z
+00 1 1 . +00 1 .
:—x—f-;(—;—f—n_])x :—x—{—Zi(n_])nx.

On peut considérer que ce dernier résultat constitue la réponse
a la question posée. On peut aussi se ramener précisément a
une série entiere :

Viel—1;1] f(x)=

+o00

n
E anX—,
n=0

0 si n=0
5 . _ =l si n=1
ou, pourtoutn e N : a, =
1
— si o n>=2
(n—1n
Par la regle de d’Alembert: R = 1.

d) La fonction x ——

est définie sur | — 1; 1], donc (au moins) sur | — 1; 1].

Ona,pourtoutx €] —1;1[:

f) = —— = (1 —x)(1 —x?)~'2

=(1—x)[1+§ (—%)...(_%_n+1)(_x2)n]

n!
1) (_l)nXan|

too —_ n . e
=<1—x>[1+z( )"1-3---@2n
n=1

2"n!

en!
_(1_x)<1+222n(n|)2 2)

2n)! .
=0-x Z 22;1(n!)2x2

n=i

_ (2n)! e =2 @2n)!
Z 2271(}1!)2 ; 22n (n!)zx

n=0
On peut considérer que ce dernier résultat constitue la réponse
a la question posée. On peut aussi se ramener précisément a
une série entiere :

2n+1

Vxel-1;1[, f(x)=

+00
E akxk 5
k=0

ou, pour tout k € N :

2n)! . o

(D)2 si k estpair, k =2n,n € N
ay =

B b it =P 1, m @
— ,k=2n+1,neN,
21 (nl)? P

2n)!
_ k
ou encore, pour tout k € N, a, = (—1) W’ en notant

i)

Déterminons le rayon R.Onsaitdéja: R > 1.

Comme f(x) —>++oo,0na: R < 1.
x——1

Onconclut: R=1.
e)Ona: X2 —8X+15=X-3)(X-5).

La fonction f:x+— In (x> — 8x + 15) est définie sur
] —00;3[U]5; 400[, donc (au moins) sur | — 3; 3.

On a, pour tout x € ] — 3; 3[ (en faisant attention a ne mettre
des logarithmes que sur des nombres > 0) :
f(x) =In ((x - 3)(x — 5))
=InB—x)+In(5—x)

=1n3+1n( —g)—l—lnS—l—ln( —g)

~n1s- 355 - 55 ()
+00

- 1n15—2%(3in + Si)x

n=1
On peut considérer que ce dernier résultat constitue la réponse
a la question posée.
On peut aussi se ramener précisément a une série entiere :

+00
— § a,,x" ,
n=0

Vxel—=3:;3L fx)

. 1/1
olay=Inl5eta, =——|(—
n

1
3 iy 5n> pour toutn > 1.
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1
Ona |a,| ~ —— noté b,, et, pour tout x € R* fixé :
noo p3"
] n3" n x| |x|

~ (n+ )3 Il = n+13 no 3

bn+1x
b,x"

On en déduit, d’apres la regle de d’Alembert et le théoreme
d’équivalence : R = 3.

sin 4x
est définie sur R — 7Z.

f) Lapplication f : x —>
On a, pour tout x € R :
sin4x = 2sin2x cos 2x = 4 sin x cos x cos 2x,

donc, pour toutx € R — 7Z : f(x) = 4 cosx cos2x.

Ainsi, f peut étre prolongée par continuité a R tout entier, en

notant: f:R — R, x —> 4cosx cos?2x.

Linéarisons : Vx € R, f(x) =2(cosx + cos3x).

D’apres le cours, comme x ——> cosx etx —> cos3x sont
dSE(0) de rayon infini, par combinaison linéaire, f est dSE(0)
de rayon infini, et on a, pour tout x € R :

+o00
(L Rl
f(x)_2< )p+z<2p>' )

@p )‘
(=1)?
—2§ @l (3% + 1)x?P.

p=0

On peut considérer que ce dernier résultat constitue la réponse
a la question posée. On peut aussi se ramener précisément a
une série entiere :

+00
= E a,x",

n=0

Vx eR, f(x)

ou, pour toutn € N :

i_( % 4+ 1) si nestpairn=2p, peN

@2p)!

si n estimpair .
On a vu plus haut que le rayon est infini.

g) L’application f :x +— est définie sur R* et

sin x

fx) =

a R tout entier, en notant :

— 1. On peut donc prolonger f par continuité
xX—>

sin x
fR— R, x+— X

si x#0
1 si x=0.

On a, pour tout x € R, d’apres le cours :

+00 —1)?
sinx = Z sz”“,
2 2p+1)!

d’ou, pour tout x € R* : f(x) = ——xP.

5 Cp+1)!
De plus, cette derniere égalité est vraie pour x = 0, car
f(0) =1 etlavaleur en 0 de la série entiere du second membre

est égale a son terme constant, donc égale a 1.

+00 (_1)p )
Ainsi:  VxeR, f(x)=) ———x
= 2p+D)!
Il est clair que : R = +00.
On a, pour toutn > 2 :
2" +n3" 1

2 n + 1 3 n
u, = = — —— ([ = .
(n—1n\5 n—1\5
Nous allons calculer les sommes respectives A, B des séries en-

n

2
tieres Z (n D’ Z nx_ T puis remplacer x par 3

n>2 n>2

(n — 1)n5"

3
par 5 Il est clair, par la regle de d’ Alembert par exemple, que
ces deux séries entieres sont de rayon égal a 1.

Ona,pourtoutx €] —1;1[:

+00 X" +00 xn—l +00 X"
B = = f— R
= x(— In (1 —x)) =—xIn(l—x).
D’autre part, pour tout x €] — 1; 1[, en utilisant une décom-
1
position en éléments simples de ———:
(n—1n
+00 X" 00
A n
0= = 2( )
+o00 1 +00 1
= xn — _xn
n=2 n—1 n=2 W

car ces séries entieres sont de rayon 1
=B(x)—(—In(l —x) —x)
=—xln(l—-x)+In(l—x)+x=1—x)In(l —x) + x.

On a donc :

+00 +ool n 4o

5= =Y o2 (3) + Lo
3 2 33 2
5

REETREER RS

55275
n 2]‘
En notant, pour toutn € N, P, = l_[3F, onaP, >0
k=0

n 2k n 2k
et:lnF‘”:Z—‘lnS: (Z—‘)m,
kI k!

k=0

—+

n

313+2
">+ =
5 5 5



+o00 2k
donc : lnP,,—><ZE>ln3:ezln3,

k=0
puis, par continuité de I’exponentielle :

2 24
Pn e In3 =3¢

noo

R s
On conclut : lim l_[ 3T =3,
noo *—0

Soit ze€C,z=x+1y, (x,y)e]Rz.Ona:

€ =-2&et =2

=2 x=1n2
<~

y = Arg (—1) [27] y=n [27]

On conclut que I’ensemble des solutions de I’équation propo-
séeest: S={In2+ (w+2kn)i; k € Z}.

1 1
a) Comme : a, = ln(l +—) ~ =,

n ) non
s n N
et que la série enticre E —x" est de rayon 1, par théoreme
n=>1

d’équivalence, le rayon de la série entiere E a,x" estl.
n=l1

b)e Etude en1 :

1
Ona: a, ~ — >0, donc, d’apres I’exemple de Riemann et
noo n

le théoreme d’équivalence pour des séries a termes 2> 0, la série

Z a, diverge.

n=l1

e Etude en —1 :

La série Z a,(—1)" est alternée.

n=1

noo

1

Ona: |a,(—1)"| = In (l + —) — 0,
n

et la suite (Ja, (—=1)"|),>1 est décroissante.

D’apres le TSCSA, on conclut que la série Zan(—l)”
n=l1
converge.

c)eD’apresa),ona: | —1;1[C Déf(S) C [—1; 1].
D’apres b),ona: —1 € Déf (S) et 1 ¢ DéEf(S).

On conclut : Déf(S) = [—1; 1[.

* D’apres le cours sur les séries entieres, S est continue
sur | — 1; 1.

D’apres le théoreme de la limite radiale, puisque la série en-
tiere converge en —1, la somme S est continue en —1.

On conclut : S est continue sur [—1; 1[.

d) 1) 11 suffit de prouver : V¢ € [0; 1], In(l +1¢) >

NSRS

i
L’application ¢ : £ € [0; 1] — In (1 +17) — 3

est dérivable et, pour toutz € [0; 1] :

1 1 1—1t

/tzi—fz Z
=TT T2 T 1y

donc ¢ est croissante.

Comme de plus ¢(0) = 0, on déduit ¢ > 0, d’ou I’inégalité
voulue.

2) On a donc, pour tout x € [0; 1] :

+00 1 +00 1
S(x) = Z In (1 + ;)x” > Z %x"

n=1 n=1

1
=—In(1—x) — +o0,
2 x—>1-

et on conclut : S(x) — +o0.
x—1-

a) On a, par développement asymptotique lorsque I’en-
tier n tend vers ’infini :

ay =vn*+n+1—nd+n?
1 1
1 1)2 1\3
n o n n
1 1 1 1
=nll+—+4+o|—-|)|—n|l+—+o0| -
2n n 3n n

:é—l—o(l).

an+1z"+'
— | —— Izl
noo

d’ou, pour tout z € C* :

al‘l Zn

et donc, par larégle de d’Alembert: R =1.

] e +efn el
b)Ona: a, = Ynchn=er™-—— ~ =
2 noo 2
puis, pour tout z € C* :
a +12n+1 en+1
n
el e el el

1
donc, par la regle de d’Alembert: R = —.
@®

c)Soitz € C*.Ona:
In (|a,z"]) = —nln/n +nln|z|

— 00,
noo

1
:n(—ilnn+ln|z|) —

donc : a,z" —— 0. Onconclut: R = oco.
noo

d) On a, par développement asymptotique lorsque I’entier n tend
vers I’infini :
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1
1\ 2
a, = tan (my/n% + 1) = tan |:7m(1 + —2) ]
n

—t I+ o gof )
= tan | ™ e 0 )
[t gt o) = 5o +o(5)]
=tan|m™m + — +o| — =tan| — +o| — ~
211 n 2]1 n noo

d’ou, pour tout z € C* :

gl=

s 2n

o yerg gl

n+1
412

a,z"

donc, d’apres la regle de d’Alembert: R = 1.
e) On a, pour toutn > 2 :
Vkefl,...,n}, n2< Ink < Inn,
d’ou, en sommant :
(n—11n2 < Ink<(n—1)Inn.
k=2
Comme, pour toutn > 2 :

a, = In (n!) =ln< k) = Z Ink,
k=2

k=2

0<(m—1Dn2<La, <(n—1)Inn.
D’apres la regle de d’Alembert, les deux séries entieres
Z(n —1)In2z7" et Z(n — 1)Inn z" sontderayon 1, donc,

n=2 n=2

par encadrement : R = 1.

ona:

/) On a, pour tout z € C* :

In (la,z"|)
—o0 si |zl <1
=—Innlnlnn+nln|z] —
DED +oo si |z| > 1,
0 si |z] <1
donc: |a,7"| ——
S 400 si |z| > 1.
Onconclut: R=1.
g) On a, pour tout z € C* :
n—+1
In (|a,z"]) = nln In
(la,z") =n 1 +nln|z|
14+ 1L —00 s Jz] <2
=n|:ln Z +1n|z|] —_—
2+ n.00 +oo  si |z| > 2
(il n’est pas utile d’examiner le cas |z| = 2).
0 si |zl <2
D’ou: |a,7"| ——
RED +oo  si |z] > 2,

etonconclut: R =2.

h) On a, pour tout z € C* :

In (Ja,z"|) = —chn + nln|z|

en e—ll
=———+nljz] — — o0,
2 noo

donc : a,z" —— 0. Onconclut: R = oco.
noo

i)Soitz € C*.Ona:

BV + DM (3n)!| B
az, 7" Bn +3)! n*
. (I’l + 1)3n+3 | |3
=~ Ge LG 0 D
+1)? 1\
3Gn+2)Gn + 1) n
Et:

3n
<1+l> = exp |:3nln (1—1—1)]
n n
1 1 3
= exp [3n<; + 0<71>>] =exp (3+0(h) —> &,

63 3
— =zl
noo 27

3(n+1
3412 U

donc : 7
azpl n

& ;27 3
Comme: —|z]’=14<=|z|’= — < |z] = —,
27 e3 e

3
onconclut: R = —.
®

j) Soit z € C*.
Si |z| < 1, alors In([nz"’|) = Inn +n?ln|z] — — 00,

2
donc: nz"" —— 0.
noo

Si |z| = 1, alors |nz"2|:n_> + oo.
noo
Onconclut: R=1.

k) Par définition de a,,ona: Vn >1, 0 < a, <9.

Comme la série entiere Z 9z" est de rayon 1, on déduit :
n=1

R > 1.

D’autre part, on sait que +/2 est irrationnel (ou, au moins ici,
que V2 nest pas décimal), donc la suite (a,),>; ne stationne
pas sur 0. Comme les a, sont des entiers, il en résulte que la
suite (a,),>1 ne converge pas vers 0. Ceci montre que la série

entiere Zanz” diverge pour z = 1,donc: R < 1.

n=1

Onconclut: R=1.



1) On a, pour tout z € C* :

In (Ja,z"]) = In ‘n*EWz" = —E(/n)Inn+nln|z|

—o0 st |zl < 1
-

nEd +oo  si o z| > 1,

car /n—1 < E(J/n) < /n,donc E(y/n) ~ /n.
noo
0 si
la 2| ==

1160 +oo  si

(il n’est pas utile d’examiner le cas [z| = 1)

lz| <1
D’ou:
lz] > 1

etonconclut: R =1.

m) Il est clair que, pour tout n € N*, ’ensemble Div (n) des
diviseurs > 1 de n vérifie :

{1} C Div (n) C {1.2.....n},

donc : 1< S <Y K <n-n>=n'.
k=1

Comme les séries entieres E 7" et E n’z" sont de

n>1 n=l1
rayon 1 (par la regle de d’ Alembert, par exemple), on conclut,
par encadrement : R = 1.

n) On a, par développement asymptotique lorsque I’entier n tend
vers ’infini :

1" ; I
a, = l—l——2 =exp|n’In l—l——z
n n
aff 1 1 1
=exp|n’| 5+ 0| =exp|n+0(—])]|.
n n n
puis :

1
1= o[ o) ]
1
= exp |:n(l +In |z|> aF 0(—)]
n

—o0 S1
_
noo +00 si

(il n’est pas utile d’examiner le cas |z| = e™})

lz| <e!

|z] > e’!

etonconclut: R =e!.

0)On a, pour toutn € N :

lt” 1 " 1
—dté/ 7dt</t”dt,
0 3 0 ]+l+tn 0

1
<7<|an|<

i - 0< .
ol ) - P

1 1
Comme les séries entiéres Z mz" et Z mz"

n=0 n=0

sont de rayon 1, par encadrement, on conclut: R = 1.

p)Soitn e N.Ona: Vke(0,....n), 1 <e'* eV,
m+1) <Y e <@+ e,
k=0

puis: 0K (n+De™" <a, < (n+ DeVie™.
Y —

d’ou, en sommant :

noté b, noté ¢,
Pour tout z € C* :
bz | _ (4 Be”D |z| e 'zl
b,z" (n+ e 100 ’

donc, d’apres la regle de d’Alembert : R, = e.
Pour tout z € C* fixé :
Cn+lzn+l (n+ 2)6—«/n+lef(n+l)

(n + Devie™n

|z|

G i

2
n—em’ﬁe

=i
o |z]

2 1
— ie/n?+ﬁe*1|z| — > e,
n +1 noo
donc, d’apres la regle de d’Alembert: R, =e.

Par encadrement, on conclut: R =e.

n

a
a) Notons, pour toutn € N* : a, = .
n+b"
n n
Ona: a, ~ — si b<1, a, ~ — si b> 1. La série
noo n noo pn

LN an A z. LN z.
entiere E —2z" ale méme rayon que sa série entiere déri-
n>1
vée E a"z"~! qui, par produit par la variable z, a le méme
n=1

. . . 1 :

rayon que la série entiere Z a"z", qui est de rayon — (série
n=1 @
géométrique).
. N a b ., . .
La série entiere E —7" estde rayon — (il s’agit de la série
— b" a

n=1

géométrique).

On conclut, par théoreme d’équivalence :

1 b
R=- si b<, R=—-— s b>1,
a a
1
ou encore : R = — Max (1,b).
a
a"
b) Notons, pour toutn e N : a, = .
2n)!
On a, pour tout z € C* :
Y I (2n)!| |
w | @nt2)! a” ¢
a2+ 0 si a<l1
= |zl
@n+1)(2n +2) n o +oo si a>1.
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On conclut, d’apres la regle de d’ Alembert :
+oo si a<1

0 si a>1.

c) Notons, pour toutn € N :  a, = a™.

On a, pour tout z € C* :

la,2"| = exp (n!Inlal + nln|z|)

0 si Ja| <1

0 si Jal=1let|z| <1
e
BED 1 si lal=1letl|z] =1

+oo  si a| > 1.
400 si Ja| <1
Onen déduit: R = 1 si |a|l =1
0 si |a| > 1.
d) Notons, pour tousn € N* etz € C* : u, = a,z".
On a, pour tout z € C* :
0 si |z]<1
|u,,|:exp(nln|a|—|—n!ln|z|)—> { )
noo +oo si |zl > 1
(I’examen du cas |z| = 1 est inutile).
On déduit: R=1.
e) Notons, pour toutn > 2 : a, = e™»",

On a, pour tout z € C* :

la,7"| = exp ((ln n)* +nln |z|)—>
noo

{ 0 sifz] <1

+oosi|z] > 1

(I’examen du cas |z| = 1 est inutile).

Onconclut: R=1.

1) Notons R’ le rayon de la série enticre Z a’z".
n

On a, pour tout entier n et tout z € C :
2 1 2
lagz"] = (lan(lz13)"])".

. 1 In
*Silz]2 < R,alors |a,(z]2)"| —> 0,
noo

donc |a?z"| —— 0, d’ou: |z| < R
noo

o 1 0 2
¢ Si |z|2 > R, alors la suite (‘a,,(|z|%)" |)n n’est pas bornée.

donc la suite (|aﬁz”|)n n’est pas bornée, d’ou |z| = R'.
|zl < R? = |z| < R/

|zl > R* = |z| > R,
d’ou: R*<R et R* >R,

R = R’

On a montré :

Vz eC, {

et on conclut :

2) Notons R” le rayon de la série enticre Z a,z>".
n

On a, pour tout entier n et tout z € C :
anzzn = day (ZZ)n .

* Si |22| < R, alors a,|z?|" — 0, donc: |z| < R”.
noo

« Si |z%| > R, alors la suite (a,, (zz)”) n’est pas bornée, donc

i

la suite (a,z*"), n’est pas bornée, d’ot1 : |z| > R”.

VzeC,

=
1
, 7zl < R? = |z] < R’
On a montré : Izl Izl <
| >

1
|z] > R? = |z| = R”,

<R et R* >R,

ol

d’ou : R

ol—

eton conclut : R” = R2.

1) Supposons R > 0.

_ R
p= o
Puisque |p| < R, la suite (a,p"),>1 est bornée. Il existe

donc C e R* telque: Vn > 1, |a,p"| < C,d’ou:

Il existe p € R tel que 0 < p < R, par exemple :

1
Va1, la,l7 < =C7.
p

1 . z
Comme C» —— 1, la suite (C%),,gl est bornée.

noo

Il existe donc D € R, telque: Vn > 1, Cn < D.

D
Onaalors: Vn > 1, |an|% € =

. . 1 .
ce qui montre que la suite (|a,, [ )n>] est majorée.

2) Réciproquement, supposons que la suite (|a,, | %)n est ma-

>1
jorée.
Il existe donc M € R* tel que: Vn > 1, |an|nl <M.

On a alors : Vn2>1, |a,| < M".
i .\ - Lo
Comme la série entiere Z M"7" estderayon M (série géo-
n=l1
métrique), il en résulte que la série entiere Z a,7" estderayon
n=l1

1
> T donc de rayon 0.

I
7@+ 2) noo 12

d’ Alembert et le théoreme d’équivalence : R = 1.

a)*On a: donc, par la regle de

» Utilisons une décomposition en éléments simples du coeffi-

ient 1 1/1 1
cient: —=—-|—-— ——).
nn+2) 2\n n+2

Ona,pourtoutx €] —1;1[:



S) i’f x" =¥1/1 1 .
X = — — X
~nn+2) <H2\n n+t2
1 400 1 1+00 1
2 ~n 2 n+2
—— ———

notée A(x) notée B(x)

car ces deux séries entieres sont de rayon 1.
—In (1 —x).
On a, pourtoutx €] —1;1[:

D’apres le cours : A(x) =

+00 42 +oo x"
x?B(x) = Z = -

n+2 n
2
=—In(1—x)— —
n( X) (x+2>,

n=3
d’ou, pour toutx €] —1; 1[—{0} :

n=1

1 x?
B(x)=—2<—ln(l—x)—x——>.
X

2
Puis :
1 2
S(x) = ——ln(l—x)+ <ln(l—x)+x+2>
1 1 2+
=(=—=—-—=]In(d -
<2x2 2) n(l—x)+ P
1 —x? 2—|—x
=—In(l —
2x2 n(l=x)+ 4x
Enfin : S(0) =0, car S(0) est le terme constant de la série

entiere définissant S.

Réponse: R =1 et,pourtoutx €] —1;1[:
—x2 2+ x .
S()C): ?ln(l_x)'f'? S1 x-,«"ZO
0 si. x=0.
b)*Ona: ~ —, donc, par la regle de d’ Alembert

n3 —n noe n3’
R=1.

» Utilisons une décomposition en éléments simples du coeffi-

et le théoreme d’équivalence :

1
cient .l existe (a,b,c) € R? tel que :
—n

n3

1 1 _a b G

X —X X—DXX1D X-1 " XVtx+r1

Par multiplication par X — 1 puis remplacement de X par 1,

. 1
on obtient : @ = 7

Par multiplication par X puis remplacement de X par 0, on ob-
tient: b= —1.

Par multiplication par X + 1 puis remplacement de X par—1,
1

on obtient: ¢ = —.
2

On ad 1 1 1 2+ 1
n a donc : == - = .
X3-X 2\X-1 X X+1

D’ou, pour tout x € ] — 1; 1[—{0} :

+o00 n

X e ) 1 2 1
S — — - _ = n
) nz:;rﬁ—n ;2<n—1 n+n—|—1>x
&
3 2n

car ces trois séries entieres sont de rayon 1

n +o X" +oo n

_Zi 72 11

+oon

:_Z_"_Z;' e

:%(—ln(l—x))—(—ln(l—x)—x)

LY (S z
A e —x X
2x 2

X 1 1 3x
=—(=-—-14+—)In(1—x)— =+ —.
(2 + 2x) nl=x-3+7
Enfin, S(0) =0, car S(0) est le terme constant de la série
entiere définissant S.

Réponse: R=1,50)=0cet: Vxe]—1;,1[-{0},

X 1 1 3x
Sx)=—(=z—-14+—)In(l —x) — =+ —.
) (2 +2x>n( N3 %
-1 n+1
c)*Ona: u ~ 1, donc, d’apres la regle de
n+ (=1 nco

d’Alembert et le théoreme d’équivalence : R = 1.
*Soit x €] —1; 1[—{0}.

On a, pour tout N € N*, en séparant les termes d’indices pairs,
d’indices impairs :

2§1n+(_1)n+1xn_i2p_
n+ (—1)" = 2

n=2

! 2p 3 w 2p+1
=F ; 2 X .
Comme les trois séries entieres qui interviennent sont de
rayon 1, on déduit, en faisant tendre I’entier N vers I’infini :
S(x)
+00

2p—1 ,, X[¥op+2 il
_22p+1x 2 20

p=1 p=1

_ f (1 . 2 )x2p + +Z°O (1 + l)x2p+]
p=1 1 p=1 p
szv 22 +2x2v+1 +Z
= 2p+1

car ces quatre séries entieres sont de rayon 1
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400 2+OO 2p+1 +00 (xZ)p
= =ll=ux4 x"— =
n=0 2p+1 p=1 p
1 2/1 . 1+x
_ _1_x+___(_1n )
1—x x\2 1—x

x(—In(1—x?)

2 — 2x + x? l] 1+4+x
= — —1In
1—x x l—x

—xIn(1 —x?).

Et: S(0) =0, car S(0) estle terme constant de la série en-
tiere définissant S.

Réponse: R=1,850) =0 et: Vxe]—1;I1[—{0},
2-2 211
S =TT T hma—).
1—x x l—x
4 2
1
d) * Notons, pour tout n € N : a, = w
n!
i
Ona: a, ~ —.
noo n!
D’ou, pour tout z € C* :
Gpai 0 (n + D* n! n+1)>3
D= 2l — 0.
i noo (n+1)'n n* noo

D’apres la regle de d’ Alembert et le théoréme d’équivalence,
on conclut : R = oo.

» La série entiere proposée ressemble a celle de 1’exponentielle :

+oo "
VieC, ) =e
n=0

Dans le numérateur n* +n>+1,
nn—1)n—2)(n—3) :

faisons apparaitre

n* 4+ n* 41

=nn—1)n—2)(n—3)+6n° — 11n*> +6n) +n> +1

noté o,
=, +6n° —10n> +6n+ 1
=y —|—6[n(n —D(n—2)+3n* — Zn] —10n>+6n+1
noté 3,
=0, + 60, +8n° —6n+1

=an+6ﬂn+8[n(n—1)+n]—6n+l
—_—

noté -,

=a,+66,+8y,+2n+1.

On a donc, pour tout z € C :

Xt +n?+1
S@)=) ———7"

!
=0 M

n

_Z(a,,+6ﬁ +8v, +2n+ 1)—

n=0
+o00 Zn +o0 zn +00 Zn
= ;ana +6n2_;ﬂn; +8;’7n_‘
- - - " +00 "
+22n—+2

car toutes ces séries entieres sont de rayon infini. Mais :

Z 2z
Z; =
n=0 """
+00 n +00 n— n
Z Z
Z;"H_Zzl(n—l)' Zzn' S
n=| n n=\
et, de méme :
+00 n
Z .
Y n— D= =2¢,
n!
n=0
+00 Zn
Zn(n —D(n —2)= = ¢,
n!
n=0
“+00 Zn
Zn(n — ) — D3, =z'e".
n!
n=0

On obtient :
S(z) = z*e? + 62°¢7 + 8z%¢% + 2z¢° + ¢°
=(z*+ 62 +822+ 2z + 1) €.

Réponse : R = oo et, pour tout z € C :

S(z) = (z* 4+ 62° + 82> + 2z + 1) €.

e) * Notons, pour tout p € N et tout x € R* :
x4p+l ‘

Uy =|———[>0
@p+ 1)

Ona:

uppr x| @p+ 1!

u,  (@p+35)! |x[rt!
. |x|* 0
C (@Gp+2)---(4p+5) e

donc, d’apres la regle de d’ Alembert, la série de terme géné-
ral u, converge.

On conclut: R = oo.
e Soit x € R.

On a, pour tout N € N :



N 2k+1 N (= 1)kx 2t 2V dpt
k= =

X
X(;(Zk—i-l)! +Z; @k +1)! :zpzo @p+ D

car les termes d’indice k pair se doublent, et les termes d’in-
dice k impair s’éliminent.

Puisque les séries entieres envisagées sont de rayon infini, on
déduit, en faisant tendre I’entier N vers I’infini :

1 +00 x2k+1 +0 (_1)kx2k+]
S(x)_§<;(2k+1)! +k2=0: @k + D! )

1
= E(th + sinx).

Réponse : R = oo et, pour toutx € R :

1
Sx) = E(th + sinx) .

f) * Notons, pour toutn € N :

n—+ 1 (n+1)?
a, = = .
(n +2)n! (n+2)!
On a, pour tout 7 € C* :
| (n42)? (n+2)! 2|
a2’ | 43! (n+ 12"
(n+2)?

— 0,
PR —"

donc, d’apres la regle de d’Alembert : R = oo.

*On a, pourtout z € C :

+00
S(Z)=Z n+1

n o__ f (I’l+ 1)2 n
Zonom " T

n+2
donc, en multipliant par z° :

228(2)

= (n+2)! = @l
Xnt-22n+1, &Enm-1)-n+1,
= % = —_———
! |
s n: o n:.
+00 +00 +00
nn—1) n 1
N R - s
P il e n.: — n:
400 e +o00 " +00 "
=2, -2 +2,
S n-=2) = m-1D! nl
+00 _n +00 7" +00 7"
— 52 > i a
=% Z | n! + Z n!
n=0 n=1 n=

=z -z - 1D+ —1-72)
= —z+1)e—1.
On conclut: R = oo et, pourtout z € C :
S@)=E —z+De—1.

2+ (—1)")"
e Notons, pourtoutn e N: g, = ————| .
¢ ’ <3+ Dy

Ainsi, pour toutp € N :

3 2p 1 2p+1
() ()
Ona:
3 2p 3 2 P
vecspen mr= () o= ().

. . 4
donc la série entiere E a ,,z2” est de rayon T

p=0

De méme :

1 2p+1
Vze (C, Vp € N, a2,,+122p+1 = <5> ZZPJrl

donc la série entiere E a2p+122p“

p>0

est de rayon 2.

Il en résulte, par addition de deux séries entieres de rayons dif-

férents : R = Mi 4 2 4
érents: R=Min( =,2| = =.
3 3

4
* Soitz € C tel que [z] < 3

On a, pour tout N € N, en séparant les termes d’indices pairs,
d’indices impairs :

Wl g 4 () " N /3 2p2 N_71\2Pt! -
Z<3+(—1>")Z =Z<Z) Z”;G) <

n=0 p=0

d’ou, en faisant tendre 1’entier N vers 1’infini :

+00 3 2p +o00 1 2p+1
S(z) = Z (Z) 220 ¢ Z (5) Z2p 1
p=0

p=0
+00 3 29p z +00 1 29p
=2 ()] +5x1G) ]
p=0 p=0
_ 1 o z 1
- | 3 2 2 | 1 2
-(# ()
. 16 2z
T 16-9z2 422
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4 4
Réponse: R = 3 et, pour tout z € C tel que [z] < 3 :

@) = 16 o 2z
YT 16-92 " a_z

h) » La série entiere envisagée est la somme des trois séries en-

tieres :
Zz3p7 ZZPZBIH—I? 2317Z3p+2.

p=0 p=0 p=0

La série entiere Z 2°P estde rayon 1, car ¢’est une série géo-
p=0
métrique en z°.
1\ /3
La série entiere Z 2773PT! est de rayon (5) , car c’est
p>0

une série géométrique en 27°.

1/3

. . 1

La série entiere Z 3723P%2 est de rayon (5 , car c’est
p>0

une série géométrique en 3z°.

Comme ces trois rayons sont deux a deux différents, on a, d’apres
le cours :

N 71\ 1\/3
R=Min(1 (=) .(=z =(=) .
2 3 3
1\ /3
¢ Soit z € C tel que |z| < (§> .

On a, pour tout N € N :

3N+2
a,Z"
n=0

N N N

— 3 3p+l 3p+2

= E azpz’? + E @3p 12777 + E 3p22°"
=0 p=0

p=0

N N N

3 1 2

ZE :ZP+§ zpz3p+ +§ 3pz3p+ .
p=0 p=0 p=0

D’ou, en faisant tendre I’entier N vers I’infini :

_ +00o - +o00 3t +o0 b 3pi2
S(z)—Zz +Z2z +Z3z
p=0

p=0 p=0
+00 —+00 +oo
=> @)’ +z) Q)+ (P
p=0 p=0 p=0

S D D
11— " ‘1-22 "f1_3

1

1\3
Réponse : R = (§> , et, pour tout z € C tel que

1 1/3 1 z ZQ
Z = : Sk = .
|z|<<3) (2) 1—Z3+1—223+1—3z3

a) 1) Existence :
Récurrence sur n.
ePourn =0,ona: (I —|—«/§)0= 1 :a0—|—b0«/§,
avecap=1€N, by =0 e N.

* Supposons qu’il existe (a,,b,) € N tel que :

ay + b2 = (1+2)".

On a alors :
(1 +V2)"! = (1 ++/2)( + V2)"
= (an + b,vV2)(1 +V2)

= (a, +2b,) + (@, + b)V2.

En notant a,,.; = a, +2b, € N et b,y =a,+ b, €N, on
abien: anis + buiv2 = (1 +/2)",

ce qui établit la propriété pour n + 1.

On a montré, par récurrence sur n, qu’il existe un couple de
suites ((a,,),,gN, (b,,),,gN) a termes dans N, tel que :

VneN, a,+b,N2=(1+V2)".
2) Unicité :
((an)nENa (bn)nEN)v ((Oén)nENﬁ (ﬂn)neN)

Supposons que
conviennent.

On a alors :
VneN, a,+bN2=(1+v2)"=a,+5,V2,

donc: VmeN, (a, —a,) = (6, —by) V2.

e e
Soitn € N fixé.
a, — oy,
By — ba

car on sait que «/E est irrationnel.
VneN, B, =b,,

Si B, — b, # 0, alors : V2 = € Q, contradiction,

On a donc :
puis : VneN, o, =a,,

donc ((O‘n)neNy (ﬂn)nEN) = ((an)i1€N7 (bn)nEN)7
ce qui montre 1’unicité.

b) Soit n € N. On a, en utilisant la formule du bindme de
Newton :

an+bnﬁ=(1+f2)"=i<”)ﬁk

k=0 k

== ()72 2 (o)

0<2p<n 0<2p+1<n

donc, d’apres 1'unicité dans la question a) :

n n
4y = Z( )21’, b= Y ( )21’.
0<2p<n 2p 0<2p+1<n 2p + 1



On déduit, en utilisant a nouveau la formule du binéme de
Newton en sens inverse :

Gy — bun/2 = <”)2l’—ﬁ ( " )zp
oggsn 2p o<2pz+1<n 2p+1

= Z (") (—1)*v2% = (1 = V2)".
k=0 k

c)D’apres a) et b), on a, par addition et soustraction, pour tout
neN:

ar = 5(( 42"+~ V),

1
b, = —=((1 )" — (1 —+/2)").
2ﬁ(( +V2)" = (1-v2)")

d) 1) Rayon :
D’apres c¢), comme |1 — V2l <1,et|l1++2] > 1,

1 |
ona: a, ~ =(1 \/E", b, ~ —(1 \/5",
“ noo 2( + ) noo 2\/5( + )
donc, par théoreme d’équivalence, les deux séries entieres en-
visagées ont le méme rayon que la série entiere

1
(1++2)"7", donc: R = =v2-1.
; 14++/2

2) Somme :

Notons S, et S, les sommes des deux séries entieres propo-
sées.

On a, pour tout z € C tel que [z] < R :
Sa(2)

+o<;1 \/_ \/_
=Y S(a+V2"+0-v2y)"
;2( )Z
+o0

= %[2{; (a+ ﬁ)z)" + 2 ((1 - \/E)z)"]

car ces deux séries entieres sont de rayons > R

1 1 1
== +
2(1—(1+f2)z 1—(1—ﬁ)z>

1 1 1

= = +
<1—z—z«/§ 1—z+z«/§)

1 o21-3 11—z

2(1—2)2—22 1-27—2*

[\

De méme :
=1 \/— \/_
S = — (1 2" — (1 —=~2)" )"
»(2) ;2ﬁ(<+ Y = (1= v2))z

1 1 1
_2_ﬁ<1—(1+f2)z_1—(1—ﬁ)z>
_L 2z4/2 _ Z
T2 /2(0—2)2—222 " 1-27—z7%

a) Le trindbme 7 = X?> — X +2 a pour discriminant
A =—7 <0, T ne s’annule en aucun point, donc 1’applica-

tion f :x > est définie sur R.

x2—x+2
Passons par les nombres complexes. Le trindme 7' admet deux
zéros simples, complexes non réels :

1-i7 _14ivT7
X1 = ) s Xy = > .
Par décomposition en éléments simples dans C(X), il existe
(a1,0) € C? tel que :
1 _ 1 _ (03] + Qi
X2—-X+2 X—x)X—-x) X—-x X—x

En multipliant par X — x, puis en remplagant X par x;, on ob-
|

Xl—Xz'

tient : o =

En multipliant par X — x,, puis en remplagant X par x,, on ob-
1

Xo — X7
1 1 1 1
X2_X+2 Xy — X1 X—Xl X—)C2

tient: ap =

D’ou:

Puis, pour tout x € R :
1 1 1
0= ——(r=-==)
Xo — X1 \ X1 — X Xy — X

_ 1 1 1 1 1
_Xz—xl xll_i X21_£'

X1 X2

lx1] = |x2] = /2.

On a donc, en utilisant la série géométrique, pour tout

xel—~2;2[:
1 1 &/ x\ 1 &&/7x\
f“)—xz—xl(;;(z) “Z(—>)

De plus :

Notons o = Arg(x;) €] — m; m]. On a donc :
x1 =2, x, =% =27,
X2 — %1 = /2(e7¥ —el®) = —2i+/2sina.

D’ou, pour tout x €] — \/E; \/Z[ :

1 3 1 1
- (ke e
f —2i ﬂsina; (ﬁ gl (ﬁe—m)nﬂ
1 f 1 ( i(n+hHx i(n+1) )
- _ efl n+ _ el n+Da X"
2i/2sina 5 2"
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1 +o00

1
© V2sina ; J2H!

(sin (n + Da)x"

+00 2
\ |
_ szrlwxn.

=0 sSin &«

Déterminons le rayon R de cette série entiére.
Ona:

Y x e]—«/i;«/i[,

ce qui montre : R > V2.
D’autre part, dans C :

400,

z—>x]

|f(z)|=‘(

z—x1)(z — x2)

donc: R < V2.
On conclut : R = ~/2.
On peut aussi utiliser le résultat de 1’exercice 6.30 a), d’apres

lequel la série entiere Z sin (n + 1)az" estde rayon 1. Par
n=0

. 'x 7 LB 2z rz
le changement de variable z = ﬁ’ la série entiere €tudiée

estderayon: R = +/2.
b) En notant P = X3 —5X>+3X+9, on remarque :
P(—1) = 0. On en déduit la factorisation de P :
P=X+DX-6X+9) =X+DH(X-3).
L’application
16 16

U B Pl S Yo

est définie sur R — {—1,3}, donc (au moins) sur | — 1; 1[.
Par décomposition en éléments simples de la fraction ration-
nelle, il existe (a, b, ¢) € R tel que :

16 a b c

X+DX—32 X372 X-3 X+1'

En multipliant par (X — 3)2, puis en remplagant X par 3, on
obtient : a = 4.

En multipliant par X 4 1, puis en remplacant X par —1, on
obtient : ¢ = 1.

En multipliant par X puis en faisant tendre X vers 1’infini, on
obtient:0 =b+c,d’oub=—1.

D’ou la décomposition en éléments simples suivante :

16 4 1 1

XtDX-3? X=37 X-3 X+1'

Puis, pour toutx €] —1; 1[ :

f)y = —2 LR

x_(x—3)2 x—3 x+1
4 11 1
9

N T3 TTax
(“5) 3

1 +00

Vie]—-1;1], — = ",
] A >

d’ou, en dérivant :
l +oo +00
Viel—1;1][, —— = "= D"
] b T ;n ;(H)

On a donc, pour tout x € | — 1; 1] :

+00 n +00 n “+00
f@) = g S+ 1)(%) + % 3 (g) +Y =1y

n=0 n=0 n=0
X/4an+1 11
— _ _ _ln n
”:0<9 3 T3m Tl ))x
INX/d4n+7
=Z<—l+(—1)">x".
£\ 930

Ona:la,| ~ 1, donc, par théoreme d’équivalence, le rayon R
noo

de cette série entiere est: R = 1.

¢) Lapplication f : x —> In (1 + x + x?) est définie sur R,

puisque le discriminant du trindme 1+ x + x? est

A=-3<0.

On remarque que, pour toutx € ] —1; 1[ :

53

f@)=Inl+x+x*)=In 11

+00 (x3)n +00 _n

—h(-x)-hd-0=-Y il
n

n=1 n=1

+00 1 +o00 1 +00
_ 3n n o__ n
== =" qF e a,x-,
n n
n=1 n=1 n=1

1 . .
en notant, pour tout n € N* : a, = —, si 3)n, et, si
n

1 1 2
n=3p,peN, g,=——+—=——.
p 3p 3p
Puisque la suite (a,),> estbornée,ona: R > 1.
Puisque la série Z la,| diverge,ona: R < 1.
n=l1

Onconclut: R=1.



d) Le trindbme X? + 2X + 5 a pour discriminant A = —16 < 0,
donc:Vx eR, x*4+2x+5>0.

Il en résulte que I’application f : x —> In (x? 4+ 2x +5) est
définie sur R.

Nous allons former le DSE(0) de f”, puis primitiver pour ob-
tenir le DSE(0) de f.

L application f est dérivable sur R et, pour tout x € R :
2x +2
fo) =5,
x2+2x+5
Passons par les nombres complexes.

Le trindme X° 4+ 2X + 5 admet deux zéros simples, com-
plexes non réels :

xp=—142i, x=-1-2i.

Par décomposition en éléments simples dans C(X), il existe
(a1,0,) € C? tel que :

2X+2

. 2X+2 . (03] Q)
X242X+5

X-—X-m) X-m X-xm

En multipliant par X — x;, puis en remplagant X par x,, on ob-
tient :

2x1+2  2(—142i)+2 |
o] = = =1,
: X1 — X2 4i
puis: ap =0y = 1.
Onad 2X+2 1 o 1
n a donc = ,
X2+2X+5 X—Xl X—X2
d’ou, pour tout x € R :
£ = 1 o 1 1 1 1
x_x—xl x—xz_ xll_i le_i.
X1 X2

Comme |x;| = |x;| = ﬁ,ona,pourtoutx e]— \[5 ﬁ[,par
utilisation de la série géométrique :

ro-= 56 256

=0
1
- Z( n+1 - ] )xn'
Notons o = Argx; €] —7; 7).
:\/geia, Xy =
d’ou, pour tout x €] — V5 \/5[ :

Jge—ia’

On a donc :

f’(x) — _ f 1 (Ci (n+1)a + e—i (n+1)a)xn
n+1
n=0 \/g
2cos(n+ Da
== Z n+l = = X0

Comme dans ’exercice a), le rayon de cette série entiere

est /5.

Par primitivation, on en déduit que f est dSE(0), de rayon /5,
et que, pour tout x € | — \/5; \/5[ :
X 2cos(n + Do
fO)=fO) =) ————x""!
=0 (n+1)v/5

X 2 cosna
=In5— Z —,,x" B
n=1 n\/g
On peut considérer que ce dernier résultat est la réponse a la
question posée. On peut aussi se ramener précisément a une
série entiere :

+00
Vxel=V5:V50 f(x) =) anx",
n=0

2cosna
-—, pour toutn > 1.

n/5

e) L application f : x —> Arctan (2 +x) est de classe C'
sur R et, pour tout x € R :

1 1

PO =T rerar ~ 2rax s

ou ap=1In5 et a, = —

Nous allons former le DSE(0) de f’, puis primitiver pour ob-
tenir le DSE(0) de f.

Le trindme X* +4X + 5 a pour discriminant A = —4 < 0,
donc ce trindme admet deux zéros simples, complexes non réels :
X =-=241i, x=-2-i

Par décomposition en éléments simples dans C(X), il existe
(av,0) € C? tel que :

1 _ 1 o o [e%)
X2+4X+5 X—x)X-x) X—x X-—x

En multipliant par X — x, puis en remplagant X par x;, on ob-
1

tient : .
X — X2

o] =

En multipliant par X — x,, puis en remplagant X par x,, on ob-
1

tient : .
Xy — X

Qp =

On a donc :

1 1 1 1
X2+4X+5  x —x2<X—x1 _X—xz)

1 Lol
_)Cl—XQ xll_i

X1 X2

Ona:|x1|:|x2|:\/§.

D’ou, pour tout x €] — V3 «/5[, par utilisation de la série

géométrique :

1 L3\ & (x)
22 +5E)
X1 — X2 X1 5,20 \ X1 X2 950 \ X2

') =

255
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= = == qp === |}
5 = a5 xn-H xn+l

n=0 1 2

Notons o = Argx; €] — m; 7]. On a donc :

=569 x, =57 x —x, =2iv/5sina,
et, pour tout x € | — V5 \/5[ :
1 +00 i+ _ o= (14D

S = Asina Z(; 5 :

1 X2 2isin(n + Da

- 2i /5 sin o = 5+l

_ Z sin (n + 1)« o
~ sina /5 n+2 ’

n=0

n

D’apres un théoréme du cours, par primitivation, f est dSE(0),
de rayon V3, et, pour tout x € | — LK «/5[ :

1 &2 sin(n+ Da x"t!
= f(
f) = fO)+ SMZ T o
1 +00
= Arctan2 + Z sinna
sin v — n\/_n+1

Comme dans I’exercice a), le rayon de cette série entiere est :
R =+/5.

f)Lapplication f : x — sinx chx estdéfinie sur R. Puisque
les applications x — sinx et x — chx sont dSE(0) de
rayons infinis, par produit de Cauchy, f est dSE(0) de rayon
infini.

1" méthode : Utilisation de fonctions circulaires ou hyperbo-
liques de variable complexe :

Ona:
VxeR, sinx = — = —ish(ix),

d’ou, pour tout x € R :
f(x)
=—ish(@x)chx

1 . .
= —1§(sh(1x +x)—|—sh(1x—x))

i .
= — 5 (shG + Dx +sh(i = x)

- 1(% (G + D) . f (G — D)™™
- 2\&g @p+ ) @2p+1)!
L l 400 (i—|— l)2p+l 4L (i— 1)2p+1 2p41
= 2p+ D!

I 3R 2R 4 (VAR
2

= Q2p+ 1!

i +00 \/‘2,,

2p+ D! (ei(zpﬂ)% -
p

—i s
o—iCpD )x2P+1

p 0

_ 1 f: (237”;/_1)'<2i sin ((2p+ |)g>)x2p+1

_ f R (@p+ 1)%)#1’“.

= Q2p+ D!
2¢ méthode : Utilisation de I’exponentielle complexe :
On a, pour tout x € R :
eix _ e—ix e’ +e*

f(x) =sinxchx = 5 2

— l(e(i+])x + e(i—l)x _ e(I—i)x _ e—(H—i)x)
4i
_ l<+oo ((1+ I)X)n N 400 ((1_ l)x)n

4i\ £ n! = n!

_i@((l—l)x)” _f(( 1 —i)x) )
n=0 n! n=0 n!

1 - 1 N/ BN 1 ENAY
=4 E((l-}—l) +(—1+D)— (A —D'— (-1 —)")x
_i+wi((\/§i%)n+(—\/§_i§)n
T H L\ ©

—(V2e )" - (= V2 E)" )

1 V2" x

_ZZ\{; (1n4_( l)nemz-f—( l)n -ing _ e m;)xn

aF 2
=1 o \/—P (2i(2p+l)§

— e i (2p+l)§)x2p+l
S 2p+ D)

car les termes d’indices pairs sont tous nuls

1 +o00 zp
- z =i sin ((2p n 1)f)x2!’+‘
< @p+ D! 4
+00 2];

= Z 2p+ 1)' sin ((2p + l)g)xml'

On a vu, au début de la solution, que le rayon de la série en-
tiere obtenue est R = +-00.

, L ) chx —
g) L’application f : x — ( e

1\2
) est définie sur R*.

x22\* 1
Deplus:f(x)x:)0< xé ) =7



On peut donc compléter f par continuité en 0, en posant
fO) =+

D’autre part, pour tout x € R* :

chx —1\> ch®x —2chx + 1
o= (L) e

1 /1
= —4(—(ch2x +1) —2chx + 1>
x4\ 2

1
= 2—x4(ch2x —4chx +3),

puis, en utilisant le DSE(0) de ch, qui est de rayon infini :
1 +00 P) 2p +00 2p

_4<Z( X)v _42 . '+3>

24\ @p)t 2 @2p)!

e

fx) =

X 2Py

+Z @p)!
X2 +00 x2p
—4f1+ =+ +3
( 2 pZ;(zm!) ]

+00 52 +00 ~52p—1
:LZZF_“)CZp:Z_ZI =2 2pa
224 4 (2p)! ~ ep)!
+o00 22(q+2)—l _ 2 +00 22q+3 _ 2

_ 29 __ 2q
= - __x" = —x,
9=r=2 1= (2(q —+ 2)!) ; 2q +4)!

On peut considérer que ce dernier résultat constitue la réponse
a la question posée. On peut aussi se ramener précisément a
une série entiere :

Vx eR, fx)=

+o00
§ :anxn ,
n=0

ou, pour toutn € N :

2%+3 _ 2
o — m si nestpair,n =2qg, q € N
0 si n est impair.
On a vu plus haut que le rayon de cette série entiere est infini.
h) L application
ol w si te]—1;0[U]0;+oo[

1 si t=0

est continue sur | — 1 ; +oo[—{0}, et :

gt) =

In(1 + ¢
¥—>1:g(0),
t

donc g est continue en 0.

Ainsi, g est continue sur ] — 1 ; +o0].

“In(l + ¢ *
/ Mdt=/ g(r)dr est
0 4 0

donc définie (au moins) sur | — 1 ; +o0[.

L’application f :x —>

On a, en utilisant le DES(0) de ¢ —— In (1 +7), qui est de
rayon 1, pour toutr €] — 1;0[U]0; 1] :

+0oo lnln
g(t)_fz()it

n=1 Z

(= 1)”1 D
_Z Zn—|—1

De plus, g(0) = 1, et la valeur de la derniere série entiere en
Oestégalea 1, car c’est le terme constant de cette série entiere.

+00 1)"
Onadonc: Vre]l—1;1[, g(t)_z( +)1

D’apres le cours, il en résulte que f, qui est la primitive de g
telle que f(0) =0 est dSE(0), de rayon, > 1, et on a, pour
toutx €] —1;1[:

R RSP (S

n=0 (l’l + 1)2 n=1 I’l2

I1 est clair, par la régle de d’Alembert par exemple, que cette
derniere série entiere est de rayon 1.

i) Considérons 1’application

e —1—1¢

g R —R, t+— 2

On a, pour ¢ tendant vers 0, par développement limité :

= c 2 1
g(t)_t—z[< +t+§+ti0(z ))— —t]

1 1

=3 +o(1) — 7

On peut donc compléter g par continuité en 0, en posant
8(0) =3

Ainsi, I’application, encore notée g :

e —1—t
— Q0 si t#0
g:R—R, t+— )
= t=0
> si
est continue sur R.
Il en résulte que 1’application
3x
fR— R, x+— g()dt
2x
est de classe C! sur R et que :
Vx eR, f'(x)=3g3x)—2g(2x).

On a, pour tout x € R* :

& =1 =2
(2x)?

e —1—3x

fl)=3 G )2
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1 7E Gy
:§<Z n!

n=0

1 7E @y
_1_3x)_2_(z o)

n 1 +K}2n

3n— 1 n— +oo 2n—1 .
= Z -2 o
=2 n=2 e
+00 3n+1 +00 2n+| 400 3n+| _ 2n+|

n

1
De plus, comme f(0) = g(0) = 3 et que le terme constant

de la derniere série entiere est aussi égal a > I’égalité est aussi
valable pour x = 0, donc :
+oo 3n+l _ 2n+l

2 i

n=0

VxeR, f'(x)=

Ceci montre que f’ est dSE(0), de rayon infini.

D’apres le cours, il en résulte que f est dSE(0), de rayon in-
fini, et que I’on peut primitiver terme a terme, d’oul, pour tout
xeR:

n+1 n+l1 n+1
3 2

“+00 _27! n
f) = f(0)+ZWn+1 ;Hl).n :

Soit x €]0; I[. On a, par I'inégalité de Cauchy et
Schwarz, les séries manipulées étant (absolument) convergentes :

(55) -5[G)]
<[ZeEGE)]

n=1 n=1

d’ou en utilisant des DSE(0) du cours :

(—In(1—x)’

400 X"
et finalement : E = >
n

n=1

(1—-x)(In(1 —x))

X

a) 1l est clair, par une récurrence immédiate, que, pour
toutn € N, a, existe et a, = 0.

* On a, par une inégalité classique sur le logarithme :
VneN, a,,y =In(l +a,) < a,,

donc (a,),>o est décroissante.

* Ainsi, la suite (a,),>o est décroissante et minorée par 0, donc
converge vers un réel noté £ et tel que £ > 0.

=In(1 +a,),
par passage a la limite, on déduit : £ = In(1 + £).

Comme: VneN, g,
L’application ¢ : [0; +oo[— R, t +—— In(1 +1) — ¢
est dérivable et :

t

1
Vtel0; o= == ,
105 +ool, v(0) =17 1+1

donc ¢ est strictement décroissante sur [0 ; +o0].
Comme de plus ¢(0) = 0, il en résulte :

YVt €]0; 4+oof, In(1+1¢) < t.
Onadonc: ¢ =0.

On conclut : a, —> 0.
noo

b) Soit x € [0; 1] fixé.

La série Z(—l)”anx" est alternée.
n=0

On a, pour toutn > 0 :

|(_1)n+lan+1xn+1’ = all+]xn+1 < anxn = ‘(_l)nanxn

5
H n n 74 M
donc la suite (|(—1) a,x |)n>0 est décroissante.

Ona: |(—1)"anx”| =a,x" < a, — 0,
noc

donc : |(—1)"a,x"| —> 0.
noo

D’aprés le TSCSA, on déduit que la série » (—1)"a,x"
n=0

converge, donc f(x) est défini. Ceci montre que f est définie

sur [0; 1].

c) * Puisque, pour tout x € [0; 1], la série numérique

Z(—l)”anx" converge, le rayon R de la série entiere

n=0

> (=1)"a,x" vérifie : R > 1.

n=0

D’apres le cours sur les séries entieres, il résulte de b) que f

est continue, au moins, sur [0 ; 1].

* Puisque la série Z(—l)anx" converge pour x = 1, d’apres
n=0

le théoreme de la limite radiale, f est continue sur [0; 1].

a) * Déterminons le rayon R de la série entiere
n

>
| o
>0 n:e

(n o 1)n+1xn+l
(n+ 1)lert!

x". Soitx € R*. On a:

_ (n+1)n+lx
|+ Denn

" x| x|
1+ — —e— = [x|.
e nx e

n!e"

nﬂx)l



Il en résulte, d’apres la régle de d’Alembert : R = 1.
Cecimontre : | — 1; 1[c Déf(S) c [—1; 1].
o Etude en —1 :

2. nn z
La série E (—1)" est alternée.
=g nle”

n

n

(=D"

Notons, pour toutn = 0 : u, =

n!e”
On a, pour toutn > 0 :

lppr] (D" nle”
lu,l — (n+ Dlertl pn

(3 tenfm1+2)
cenle[n(1+2)-E])

caronsait: YVt €] —1;4oo[, In(1+1) <t

Ainsi, la suite (|u,|),>o est décroissante. De plus, d’apres la for-
mule de Stirling :

n}l nl‘l 1

= — ~ = —0
nlem noo (E)nmen /2mn  noo

€

[2tn ]

D’apres le TSCSA, on déduit que la série Z u, converge, et
n=0

on conclut que S est définie en —1.
 Etude en 1 :
On a, d’apres la formule de Stirling, comme ci-dessus :
n" N 1 1
nler no /25 nl/2’

D’apres 1’exemple de Riemann (1/2 < 1) et le théoreme
d’équivalence pour des séries a termes > 0, on conclut que la

série Z 1‘1 — diverge, donc : 1 ¢ Déf (S).
n!le

n>0 "
Finalement : Déf (S) = [—1; 1[.
nn
b) On a vu ci-dessus que la série entiere Z ' x" est de
! e)l
n=0
rayon 1 et converge pour x = —1. D’apres le théoréeme de la
limite radiale, il en résulte que S est continue en —1.
., 1 1
a) 1) Pour n € N* fix§, ——— ~ — >0, donc,
k(k +n) keo k>

par I’exemple de Riemann (2 > 1) et le théoreme d’équivalence

. 1
pour des séries a termes > 0, la série Z ——— converge,
— k(k +n)

+00 1 )
a, = Z m existe.

k=n

k= k=n
1 N 1 N 1 1 N 1 N+n1
=;(;r;k+n>=;(;z‘k;j>

1
= ;((HN —H,—1) — Hy4n — H2n—l))
1
- ;[((mN +7+ 0 (1) - H,,_1>

~((In @V 4+ 1)+ 7+ 0(1)) = Hayy)

N
N +n

1
=—1In

1 1
+ —(Hzu1 — Hyop) + —o(1).
n n

Pour n € N* fixé, en faisant tendre 1’entier N vers 1’infini, on
obtient :

+00 1 1
n = —_— Y = — Hn_ _Hn_ .
a ;k(k—i—n) n( 2n—1 1)

1
3)Onadonc: a, =—(Hy_ —H,_ )
n

I
= (@1 =D +7+ 0 (V) =(In@ = D +7+0(1))
= %ln 2:__11 +0(%) = %ln (2+0(l))+o<%)

_ 2 . 2

1
+0(—) .
n nj) no n

. In2 . N X
b) 1) Puisque a, ~ —, et que la série entiere Z — estde
noo n
n=1
rayon 1, par théoreme d’équivalence, le rayon R de la série en-
tiere Za,lx" est:R=1.
n=1
2) * Nature de la série de terme général a, R" :

In2 .
a,R" =a, ~ —, donc, d’apres ’exemple de

noo n

Riemann et le théoreme d’équivalence pour des séries a termes
> 0, la série a,R" diverge.
n

n=1

On a :

* Nature de la série de terme général a,(—R)" :
11 s’agit de la série Z(—l)”an, puisque R = 1.
n=1

Ac P In2

Cette série est alternée, et a, —— 0, car a, ~ —.
noo noo n
On a, pour toutn > 1 :
+00 1

apy1 = Z m

k=n+1
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+o00

X
k=n+1

k(k ) Z k(k Ty ™
donc (ay),>: est décroissante.

D’apres le TSCSA, on conclut que la série E (-D"a,
n=1
converge.

Finalement, la série E a,(—R)" converge.
n=1

On a, en utilisant le théoreme de Fubini et une intégra-
tion par parties :

1 1
I = // xye¥dxdy =/ (/ y(xe) dy) dx
[0;17? 0 0
1 1
=/ ([ye”]lv:o—/ Ch dy)dx,
0 : 0

puis, en faisant apparaitre des intégrales de fonctions intégrables :

1
5] o)
0 X
1 1 ax
:/ e"dx—/ € 1dx:[e"](])—
0 0 X
—_———

notée J

J=e—-1-1J.

On a, en utilisant le DSE(0) de I’exponentielle :

]1 1 1+ooxn
J = —(e"—1dx = = — ) dx
_/ox(e )dx A(x;n!)

n

1 +00 xn—l 1 +oo X"
:/0 (; n! >dx:/o (;owl)!)dx'

)l
La série entiere T
2 @
n 0
de d’ Alembert, par exemple), donc on peut intégrer terme a terme
sur [0; 1], c’est-a-dire permuter intégrale et série :

+00 1 X"
Jz;(/o (n+1)!dx)

est de rayon infini, (par la regle

+00 1
;(n—i—l)(n—i—l)' Zn n!’
+00 1

Finalement: [ =e—1— Z

.n!’
= n-n!

_n

a) Soitn € N*. L’application f, : t — e™" est conti-

nue sur [1; +o0[ et :

Vie[l;+ool, 0K f,(1) =e Le.

Comme I’application ¢ —> e’ est intégrable sur [1 ; o0l

par théoréme de majoration pour des fonctions 2> 0, f, estin-
tégrable sur [1; +ool.

+00
On conclut que, pour toutn € N*, [, = / e~ dt existe.
1

b) Etudions le comportement de 7, lorsque I’entier n tend vers
I’infini.

On a, par le changement de variable

1
u=1"t=un,dt = —un'du
+00 7141 i 1 +00 e U 1
b= e "—un du=— ur du .
1 n n Ji u
—_— ——
notée J,

Déterminons la limite de J, lorsque I’entier n tend vers 1'in-
fini, en utilisant le théoreme de convergence dominée.

Notons, pour tout n € N* :
—u 1
un.

gn i [1; +oo[— R, ut+r—
u

* Pour tout n € N*, g, est continue par morceaux (car conti-
nue) sur [1; 4+oo[

—u

-gng}g,oug:[l;+oo[—>R, U —>
noo

* g est continue par morceaux (car continue) sur [1; +00[

*Ona, pourtoutn € N ettoutu € [1; +ool :

—u
1
7

a1 _
un =efun !t Le

(S
1gn ()] =

etu —> e * est continue par morceaux (car continue), => 0
intégrable sur [1 ; 4-o0[.
Ainsi, (g,),>1 vérifie I’hypothese de domination.

D’apres le théoreme de convergence dominée, on a donc :

+00 +00 efu
J, —— g(u)du = / du > 0.
noo 1 1 u
notée o
Ilenrésulte: 1, ~ —,
noo n

et donc, par théoreme d’équivalence : R = 1.

¢) 1) Etude de la série Z I,R":

n=l1

Comme I,R" = I, ~ 2. 0, d’apres I’exemple de Riemann
noo n

et le théoreme d’équivalence pour des séries a termes > 0, la
série Z I,R" diverge.

n>1
2) Etude de la série Z L,(=R)" :
n=l1
Il s’agit de la série Z(—l)” I,

n=1

«
Cette série est alternéeet [, ~ — —— 0.
noo n n oo



De plus, la suite (I,),>; décroit, car, pour toutn € N* :

+o00 a +o0o
n n
L = f e dr < / e dr =1,
1 1

puisqu’ici + > 1 et n > 0.

D’apres le TSCSA, on conclut que la série Zln(—R)”
n=l1
converge.
d) Puisque la série numérique Zln converge, d’apres le
n>1
théoréeme de la limite radiale, la somme S de cette série entiere
est continue en —R

Remarquons d’abord que, pour toutx € R, f(x) existe,
car I’application # — ch (x cos ) est continue sur le segment
[0; x].

Nous allons développer la fonction sous I’intégrale en somme
d’une série de fonctions, puis permuter intégrale et série.
Soit x € R fixé.

On a, par DSE(0) du cours :

+00 tzp
Vit € [0;m], ch(xcost) = ZM

T 2p)!
Notons, pour toutp € N :
(x cos )P
fril0;n] — R, t— ———
! @2p)!

Pour toutp € N, f,, est continue sur [0; 7].

La série d’applications E f, converge normalement, donc

p=0
uniformément (PSI), sur [0; 7], car, pour tout p € N,
2p 2/7
| follo = W et la série numérique Z converge.

!
= 2p)!
D’apres un théoreme du cours, on peut donc permuter intégrale
et série, d’ou :

(" X (x cost)??
ro= | <Z @) )d[

p=0
+00 T £)2P 2p
:Z m —Z(/ cosz”tdt) al 5
2y e 2 @p)!

notée I,
Il reste a calculer I, pour tout p € N, ce qui est classique (in-
tégrale de Wallis d’indice pair, sur [0 ; 7]).
On a, pour toutp € N :

s /2 [
/ cosrdr = / cos 2Pt dt + / cos >Pt dt
0 0 /2

/2 /2
= f cosz"tdz+/ cos u du
0 0

u=T—t
/2
=2 / cos Pt dt .
0

N———
notée J,

Par intégration par parties, pour toutp > 2 :

/2 /2
Jap =/ cos*Pt dt =/ cos 't cos ¢ dt
0 0
/2
1 b .
= [cos?” ltsml]g/ —|—f 2p — 1) cos >~ 2t sin*t dr
0

/2
=Q2p— 1)/ cos 2?72t (1 — cos %t) dt
0

= (2[7 - 1)(‘]2])72 - J2p) P

d’ou: 2pJr, = 2p — 1) Jops.
On a donc, de proche en proche :
2p —1 2p —1 1
T = = e =],
2p 2[7 2p—2 2p D) 0
_@p-1@p-3--17_ @p! w
T @ep@p-2---2 27 @rp)22

On obtient :

@p)! _
VxeR, f(x )—; (2,,py)22(2p)v 2(217171)2

Finalement, f est dSE(0), de rayon infini.

Nous allons essayer de nous ramener a des fonctions d’une
variable réelle, dSE(0) donc de classe C°.

Considérons I’application

e —1
p:R— R, t+— t

si t#£0

1 si t=0.
On a, pour tout (x,y) €] — 1 ; +oo[xR :
esix #0ety # 0, alors :
eyln(,r+l) —1
L =y
In(1 + x)
esix #0ety=0:f(x,y) :O:y(p(yln(l +x))
esix =0:f(x,y) =y =y<p(y1n(1—|—x)).
Ainsi :
V(x,y) €] —1;+00[xR, f(x,y)=ye(yIn(l+x)).

Par composition, il suffit donc de montrer que ¢ est de
classe C* sur R. A cet effet, nous allons montrer que ¢ est
dSE(0) de rayon infini.

On a, pour tout # € R* :

flx.y) = e(yIn(1 +x))

= 1 +o0 "

w(t)——(e—l)— Z I ;nv :;(n+1)!'

n=1

De plus, comme ¢(0) = 1 et que le terme constant de la der-
nicre série entiere est égal a 1, I’égalité est aussi vraie en 0, d’ou :

+o0o 1
VteR, ()= —_—
; (n+1)!
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Ceci montre que ¢ est dSE(0), de rayon infini.
D’apres le cours, il en résulte que ¢ est de classe C* sur R.

Par composition, on conclut que f est de classe C* sur
]—1;4o0o[xR.

a) Considérons I’application

Arctan ¢

si t#0
1 si t=0.

p:R— R, t+— t

Alors, ¢ est continue sur R*, et ¢(z) - 1 = ¢(0), donc ¢
t—>
est continue en 0.

Ainsi, ¢ est continue sur R, donc ¢ admet des primitives
sur R, I’une d’elles étant :

¢:R— R, xr—>/1 p(r)dr,
0

et ¢ est continue sur R (et méme de classe C' sur R).
o(x) — ¢(0)
x—0

donc f admet une limite finie £ en 0, et £ = 1.

Ona: f(x)= e #'(0) = p(0) =1,

On peut donc prolonger f par continuité en 0, en posant
fO)=¢=1.

b) D’apres le cours :

+00 (_1);112n+l

Viel—1;1[ Arctant =)

= 2n + 1

d’ou:

Vie]l—1;1[—{0}, @) =

Arctan? +2’° (=12
t =~ 2n+1
De plus, comme ¢(0) =1 et que le terme constant de la der-

niere série entiere est égal a 1, 1’égalité est aussi vraie pourz = 0,
d’ou :

Viel—1:1[ o@) f(_l)nlzn
“LIAL e =) -
= 2n +1

Par primitivation, ¢ est dSE(0) et :

+00 (_l)nx2n+1
Vxel—1;1 = 1
*€I-LIL ¢ =90+ G

d’ou :
¢(X) +00 (_l)nx2n
Vxe]—1;1[-{0}, =— = _—
x €] (=10}, f@) == ;(ZM—I)Z
Comme f(0) =1 etque le terme constant de la derniere série
entiere est égal a 1, I’égalité est aussi vraie pour x = 0, d’ou :
+o0o (_l)nx2n

VXE]—l;l[, f(x):Zm

n=0

Ceci montre que f est dSE(0).

Par la regle de d’ Alembert, le rayon est égal a 1.

a)Soit x € R.
eCasx e]—1;+00[ :

L’ application ¢ — In (1 4+ xe™) estcontinue sur [0; 4-00[
et In(1+xe”) ~ xe.Dapreslecours, r —> e est
i

—>+0o0

intégrable sur [0 ; +ool, donc, par théoreme d’équivalence pour
des fonctions de signe fixe,  — In (1 +xe™") estintégrable
sur [0 ; +o00[, et donc f(x) existe.

eCasx =—1:

Lapplication ¢ — In(1 —e™) est continue sur ]0; +o0l,
intégrable sur [1 ; +-00[ (comme dans le cas précédent), et, au
voisinage de O :

In(d—e")=In (1 (1=t +()(t))) =In (¢ + o(t))
=1nt+1n(l —|—0(1)) =Int 4+ o(1) ~0 Int < 0.

D’apres le cours, 1 — Int estintégrable sur 0 ; 1]. Par théo-
reme d’équivalence pour des fonctions de signe fixe,
t —> In(l —e™") est intégrable sur ]0; 1].

Ainsi, t+— In(l —e™) est intégrable sur ]0; 1] et sur
[1; +oo[, donc sur O ; 400, et on conclut que f(x) existe.
eCasx €]l —o0;—1[ :

L’application ¢ +—— In(1 4+ xe™") n’est pas définie sur
10; +o0[, donc f(x) n’existe pas.

Def (f) =[—1; +ool.

b) On a, par DSE(0) de u+— In(1+u), pour tout
(x,t) €] —1; 400[x]0; +oof tel que [xe ™| < 1:

On conclut :

+0oo n—1 —1\n
_ (=D (xe™)
In (1 DE —_—
n(l+xe) ; "
Soit x €] —1;1][.
Notons, pour tout n € N* :
(-1 we)y”

fn 1105 4+o0o[— R, t+—
n

* Pour toutn € N*, f, estintégrable sur ]O; +oo[

. E fn converge simplement sur ]0 ; +oo[, et a pour somme
n=>1

S:t— In(1+xe™)
* § est continue par morceaux (car continue) sur ]0 ; +o0o[

*On a, pour toutn > 1 :

+00 +00 —t\n n +o00
X|e X
[ im= [ e =B [ e
0 0 n n-Jo

B |x|n|:e—nli|+00 B |x|n . 1

n —n

= 2 S 90
0 n n



+0oo
donc la série Z / | fu| converge.
0

n=1

D’apres le théoreme du cours sur I’intégration sur un intervalle
quelconque pour une série d’applications, on peut permuter in-
tégrale et série, d’ou :

+00 +00
f) =/0 (anm) dr
n=1
+o00 +OO( l)n 1 X"
/ fuar =y S

n=1 n=1

le calcul de la derniere intégrale étant analogue au calcul ci-
dessus.

On conclut que fest dSE(0) et que :

+00 (_l)nfl n
=Y —

n=1

Vxe]l—-1;1[, f(x)

La regle de d’ Alembert montre que le rayon est 1.

La condition demandée revient a :

F70)

VneN,
n!

Considérons la série entiere E n*x". Sonrayonest 1. Le cal-
n=0
cul de sa somme a été fait dans 1’exercice 6.2 a) :

400
Vxel—1;1[ Z,ﬂxn =

n=1

x(1+x)
(I—x)3"
Notons, I =] — 1; 1[, qui est un intervalle ouvert contenant 0,
x(1 4+ x)
(I—x)*
Alors, f est dSE(0) de rayon 1, donc f est de classe C* sur
1—1; 1[ et, d’apres le cours :
VneN, f™0)=n n!,

donc f convient.

et: f:1 — R,

Par hypothese, il existe a € R, tel que :
VxeR—[—a;a]l, f(x)=0.

Il est clair que, puisque f est continue par morceaux sur R et
nulle en dehors de [—a ; a], f estintégrable sur R.

Soitx € R fixé. On a:
(x) ! /mf(t)e*”’dt ! f f()e ™ dr
G = — [ —
= r ) Nz
1 [ X (—ixt)"
:E/_af(”@ )

/i(;;f(t)

1xl)”>

Notons, pour toutn € N :

(— 1xt)"

foilma:al — R, t— f()

e Pour tout n € N, f, estintégrable sur [—a;a], car f, est
continue par morceaux sur ce segment.
o Z f» converge simplement sur [—a ; a].
n=0
+o00
. an it —> f()e ™" est continue par morceaux sur
n=0
[—a;al.

*Ona, pourtoutn € N :

/:;m(mdz:/

/If(t)lltl”dt il / | ©)]dr,

et cette derniere expression est le terme général d’une série
convergente, d’apres la série de 1’exponentielle.

a
Ainsi, la série Z / | fu] converge.
—a

n=>1

(— xt)” dr

_ X

D’apres le théoreme sur I’intégration sur un intervalle quelconque
pour une série d’applications, on peut permuter intégrale et série,
donc :

1 XL pe (—ixt)"
g(X)ZE;/_af(l) P dr

— io (L /a f@ (=1)” dt)x"
n=0 \/ﬁ —a n!

Ceci montre que g est dSE(0), de rayon infini.

Notons

Z (3n)v

n=0

+00o 1 +00 1
= b ———— C: I ———
;(3}14-1)! ;(3n+2)!

les trois séries étant convergentes d’apres la regle de d’ Alembert
par exemple.

Soit N € N. On a, par groupement de termes dans des sommes
d’un nombre fini de termes :

N 1 N

N
,,Z(; (3n)! +Z (3n + 1)! 2(; (3n+2)' =

D’ou, en faisant tendre ’entier N vers I’infini :

3N+2 1

p=0 il

+ool
A+B+C=) — =cl=e.
p=0 P*
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n=0 n=0
N j3n N j3n+1 N J3n+2 3N+2
Z;an) Z(3 T Z(3n+2)v_Z
d’or ; A+jB+jC =¢.

De méme, ou par conjugaison, puisque A,B,C sont réels :
A+PB+jC=¢".
On déduit, par addition, puisque 1 +j +j* =0 :

3A=e+ei+é2=e+e’%“§ —l—e’%’i%

J3

1
—e+e 22cos —.
+ 2

1 3
Onconclut: A = 3 (e =F 2e’% cos %)

Remarquons que la méthode fournit aussi les valeurs de B
et C:

3B =e+j% +je’

1 3 /3 1 3 A
=e+<———i§)e_%’+l% +<_§+1§>e—%—17“

V3 g V3

1
=e—¢€ 2cos— —¢€ 2+4/3sin —,
2 2

et de méme :

V3

3
3C=e—e’%cos——|—e’% 3sin7.

Nous allons calculer la somme de la série entiere
1 n
E L, puis essayer remplacer x par 1.
= n+1D)Q2n+1)

1) Calculons la somme f(x) de la série entiere, pour tout
x €]0; 1[. On a, en utilisant la décomposition en éléments
simples du coefficient :

O C niDenrD

_+2.0( l)n 1 + 2 n
= aail " apa )

S, ",
Z; 2 ZZn—I—lx

notée A(x) notée B(x)

car ces deux séries entieres sont de rayon 1.

On a, pour tout x €]0; 1[ :

+oo (_])n+1xn+1

A(x):%z

n=0

b
n+1 Z

n—1 x"
=——Z( l) :—lln(l—l—x)
X

d (- D 3R s "
P Z :

B =
*) 23 2+ 1
1) (f)2n+l 1
= — Arct .
= S TR = A
On obtient :

1 2
Vxel0;1[, f(x)=——In(1+4x)+ —=Arctan/x.
X

N

2) Nous allons montrer qu’on peut remplacer x par 1 dans la
formule précédente, par continuité.

Notons, pour toutn € N :

(_ l)n X"

fni[0;1] — R, x’_)—(n—l—l)(Zn—l—l)’

* Pour tout n € N, f,, est continue sur [0; 1].
*Ona,pourn € N :

1 1

llfnlloo:i(n—l—l)@n—l—l) n:o 2712,

donc, d’apres I’exemple de Riemann (2 > 1) et le théoreme

d’équivalence pour des séries a termes > 0, la série E il
n=0

converge. Ainsi, E f» converge normalement, donc unifor-
n=0

mément (PSI), sur [0; 1].

D’apres le cours, il en résulte que la somme f est continue
sur [0; 1], donc :
x—1-

1 2
S= 1l — —In(1 —Arct
im ( T n ( +x)+ﬁ rcanx)

— _In2+2Arctan1 = —In2 + g

Soit n € N. Il est clair que I, et J, existent comme
intégrales d’applications continues sur un segment.

On a, en passant par les nombres complexes :

27
In +IJn =/ ecostei(ntfsint) dr
0

2m 27 X
e dl . 5 =
— / e(c.os! isint)+int dt = / ee eln[ dz.
0 0

En utilisant le DSE(0) de I’exponentielle, de rayon infini, on
adonc :

27 +00 (e—ir)k X
L +ilJ, =/ (Z—'>e”" dr
o =



2T +00 Li(n—k)t
:/. (2:6 ’ )m.
0 =

Nous allons essayer de permuter intégrale et série.
Notons, pour tout k € N :
ei(n —k)t

fi:[0;27] — C, ¢t —> o

* Pour tout k € N, f; est continue sur le segment [0 ; 27].
1
* On a, pour tout k € N : || filloo = ik donc la série

Z || fxlloo converge, donc Z fx converge normalement,
=0 >0

donc uniformément (PSI), sur [0; 27].

D’apres un théoreme du cours, on peut permuter intégrale et

+00 2 ei (n—k)t
série,donc: I, +iJ, = Z dr.
k=0 Y0 k!

De plus, si k # n, alors :

2T i (n=k)t el (1=h)t 21
/ﬁ dr = | - =0,
h k! i(n—kk! ],

2m ei (n—k)t

_27r

et,sik = n, alors : / —dr = —.
0 k! n!

Les termes de la série précédente sont donc tous nuls, sauf celui

e 1 N . 2T
d’indice k = n,d’ou : I,,+1Jn=—'.
n!
En séparant partie réelle et partie imaginaire, comme I, et J,
, 27
sont réels, on conclut : [, = — J, =0.
n!

a)l)ePuisque:Vn e N, |sinn| <1

et que la série entiere Z 7" est de rayon 1, par théoreme de
n=0
majoration, on déduit : R > 1.

* Montrons que la suite (sinn),cy ne converge pas vers 0, en
raisonnant par 1’absurde.

Supposons : sinn —— 0.
noo

Alors, par suite extraite : sin (n + 1) 7 0.
Mais, pour toutn € N :

sin(n+ 1) =sinncos 1+ sinlcosn,
donc, comme sin1 #= 0 :

sin (n + 1) — sinn cos 1
cosn = - 0.
sin 1 noo

Enfin: 1 = cos?n + sin’n —— 0+ 0 = 0, contradiction.
noo

Ceci montre que la suite ( sinn),cy ne converge pas vers 0.

I en résulte que la série enticre Z sinn z" diverge pour z =1,
n=0

donc R < 1.

Finalement: R =1.

nn

. 3N S A P
2) La série entiere E 7" ale méme rayon que sa série

n=l1 n
entiere dérivée, qui est E sinn z"~!, et celle-ci a le méme
n=1
rayon que la série entiere E sinnz",donc: R=1.
n=1
3) La série entiere E nsinnz" a le méme rayon que
n=0
E nsinnz"~', qui est la série entiére dérivée de la série en-
n=0
tiere E sinn z", donc a le méme rayon que celle-ci, d’ou :
n=0

R=1.

b) Soitz € C*.Ona:

}171Z
(In(n+2)
=nln3—m—1)Inln(n+2) +nln|z|
=n(In3+1Infz]) —(n — DInln(n +2) —> — oo,
noo

In|a,z"| = In )

a,7" —— 0.
noo

par prépondérance classique, donc :

On conclut: R = o0.

c¢) Pour obtenir un équivalent simple du coefficient

+ 1 g . e
—— — — lorsque I’entier n tend vers I’infini,
2n+3 6
appliquons le théoreme des accroissements finis a Arcsin entre

1 n—+1 . . 1
— et ——. Il existe ¢,,, compris entre — et

a, = Arcsin

+1
—— tlelque:
2" m+3 2% 2my3 o4

n-+1 1 ., 1 1
a, = ——— — = JArcsin'(¢cy)) = ——— —
m+3 2 M+3 T-c

. . 1
Comme la série entiere Z - —Sz” est de rayon 1 (par la
n=1 n

regle de d’Alembert par exemple), on conclut, par théoréme
d’équivalence: R=1.

1
d) Comme a, = Arccos (1 — —) —— Arccos1 =0,

n noo

ona:

1
a, ~ sin (Arccos (1 — —))
noo n
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1 J
U __ﬁnoo n

/2
Puisque la série entiere Z —z" estderayon 1 (par larégle
n

de d’ Alembert par exemple), par théoreme d’équivalence, on
conclut: R=1.

e) Essayons d’encadrer |a,|, pour toutn > 2.0On a:
|an=—‘/ (t—l) -(t—n) dt
%f—’ S——
<0
1
= —/ t(l1—1¢)---(n—1t)dt.
n! Jo

2...ndt =1
et:

1 1
|an|>—/ t-(=1)-1---(n—1)dt
n! Jo

n—1! [! ) 1re2 27 1
= P=)l==|===| ==
n! /(;( ) nl2 3], ©6n

1
Vn=>2, —
- 6n

Ainsi : < a,| < 1.

1
Comme les séries entieres —z" et Z" sontde rayon 1
2 o 2 vomdery
(par larégle de d’ Alembert par exemple), on conclut, par théo-
reme d’encadrement: R =1.

t

f) Pour tout n € N, I’application ¢ —— t"e™" est intégrable

sur [0; +oo[ (par larégle 1% f(¢) en 400, par exemple), donc
+o00
intégrable sur [1 ; +00[, ce qui montre que a, = / et d

existe.

On a, pour toutn € N :

+00 +00
a, :/ t"e " dt 2/ n"e " dt
n n

=n"[—e'[I®° = n"e" > 0.
==
noté b,

Et, pour tout z € C* :

bn+|Z"+l
b,7"

(l’l 45 l)nJrle—(nJrl)
- ne"

|z]

n+1\"
=< . )(n+1)e‘1|z|>(n+1)e"|z|—> + oo,

— 5 +oo>1,
noo

bn+] Zn+1
donc : _

b,7"

et donc la série numérique E az,z" diverge (grossierement).

n

Ceci montre : R, = 0.
Par théoréeme de minoration, on conclut: R = 0.

g) On a, pour tout n € N*, par le changement de variable

1
t=x>x=+/t,dx = —dr:
2./t

A/ (n+1)m ) 5 (n+1)7 sint
a, = sin (x°) dx = — dr
nm nm 2\/;

* D’une part :

i /'(N“)” sin ¢ & /‘+°° sin ¢ .
a, = —dr— ——=dr,
g T 2t Neo Joo 2/t

~t gint
car on sait que I'intégrale impropre / —— dt converge.
0

NG

Ceci montre que la série enticre E a,z" convergepourz = 1,
n=1

donc: R > 1.

. sin ¢ .
* D’autre part, puisque  —> —— est de signe fixe sur chaque

2Vt

[nm; (n+ 7], n € N*, ona:

lal= [ 0,
a,| = —
" o Zﬁ Noo

n=1

400,

~H% | sint|

car on sait que I’intégrale impropre / dr diverge.

71' Vi

Ceci montre que la série entiere E a,z"
n=>1

ment convergente pour z = 1, donc :

n’est pas absolu-

R < 1.
Onconclut: R=1.

h) Remarquons d’abord que, puisque ~/2 est irrationnel, on a,
nv2 — E(n\/i) +#0,

1

nv2 —Emv2)
« D’une part, puisque 0 < n+/2 — E(nv/2) <

* D’autre part, en utilisant une expression conjuguée :

_ nv2 + E(n+/2)
— (Bv2)*

pour toutn > 1 :

donc a, = existe.

l,ona: a, > 1.

Comme 2n® — (E(n \/E))2 est un entier naturel non nul, il est

< nv2 + Emv2) < 2nv2.
< 2nv/2.
Comme les séries entiéres Z 7" et ZZVM/EZ” sont de

> 1,donc: a,

Onobtientainsi: Vn >1, 1 <a, <

rayon 1 (par la regle de d’ Alembert par exemple), on conclut,

par encadrement : R =1.



Nous allons utiliser la méme méthode que celle employée
dans le cours pour montrer qu’une série entiere a le méme rayon
que sa série entiere dérivée.

Notons R et R’ les rayons respectifs des deux séries entieres

Zanz”, Z F(n)a,z".

1) Soit z € C tel que |z] < R. Il existe alors Z € C tel que :
1

|z] < |Z| < R, par exemple Z = §(|Z| + R).

On a, pour tout 7 :

!F(n)anzn| = |anzn|

Z n
Fan(z)
(n) Z
D’une part, puisque | Z| < R, la suite (|a,Z"|), est bornée.

D’autre part, puisque F est une fraction rationnelle et que

< A z .
‘E < 1, par prépondérance classique, on a :
Z n
‘F (n) (—) — 0.
VA noo

Il en résulte : |F(n)a,,z”| —— 0,donc: |z] < R.
noo

Onamontré: ¥z € C, (lz] < R=> |z]| < R').
Ilenrésulte: R < R'.

F
respectivement, ce qui permet d’échanger les roles des deux
séries entieres de 1’énoncé, et on obtient : R’ < R.

1
2) On peut appliquer le résultat de /) a Z F(n)a,z" et —

Finalement: R’ = R.

a) ® Rayon :

/)Ona: VneN, |cosn| < 1.

Comme la série entiere Z 7" estderayon 1, par théoreme de
n=0
majoration: R > 1.

2) Montrons que la suite (cos n),>( ne converge pas vers 0.

Raisonnons par I’absurde : supposons cosn —— 0.
noo

On a alors, par suite extraite : cos2n ——> 0.
noo

Mais : cos2n = 2cos’n — 1 —— — 1, contradiction.
noo

Ceci montre que la suite (cosn), ne converge pas vers 0.
Il en résulte que la série entiere Z cosnz" diverge pour
n=0
z=1,donc: R < 1.
Finalement : R = 1. Cf. aussi I’exercice 6.30 a).
e Somme :
Ona,pourtoutx €] —1;1[:
+00 ein _|_e—in

+00
S(x) = E cosnx" = E Tx"
n=0 n=0

1 +00 . 1 +00 »
:Ezemxn'f_ize |nxn,
n=0 n=0

car ces deux séries entieres sont de rayon 1, d’apres la regle
de d’Alembert par exemple.

D’ou :
1 +00 . 1 +00 .
S0 =5 ;(e )"+ 5 ;(e x)

1 11
T 21—¢x 21—eix

1 2—elx —e'x _ 1 — (cosl)x
T2 —eix)(1—eix)  1—2(cosl)x+x2"

Réponse: R =1et:

1 —(cosl)x

VrElm LIl W = T s e a2

b) * Rayon :
x3n+2
Soit x € R*. Notons, pour toutn € N : u, = .
3n+2
Ona:
Upyt xS 130 42 3n+2 . 3
= | = x| Il
U, 3n+5|| x>t 3n+5

D’apres la regle de d’Alembert, si [x| < 1, alors la série

Z |u,| converge, et, si [x| > 1, alors la série Z lu,| di-
n n

verge.

Onconclut: R=1.

* Somme :

+00 x3n+2
L’application S:]—1;1[— R, x — est de

= 3n+2
classe C'sur]—1;1[ et:

+o0 _— +o0 s X
. / — 3n+1 __ 3\n __

Vxe]—l,l[,S(x)—;x —x;(x) =1_

En primitivant et puisque S(0) = O (terme constant de la série
entiere définissant S), on a :

ot
Vxel—-1;1[, Skx) = —dr.
W= | =
Pour calculer cette intégrale, utilisons une décomposition en

éléments simples dans R(X) :

X X a

-X  0-X0+X+X) 1-X

bX +c¢
1+X+X2’

oil (a,b,c) € R est a calculer.

On multiplie par 1 — X, puis on remplace X par 1, d’ou :

o=
267
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On multiplie par X puis on fait tendre X vers I’infini, d’ou :

1
0= —a + b, donc b=a=§.

Enfin, en remplagant X par 0 : O=a+c, d’ou :
1

c=—a=—-.

3
On a donc la décomposition en éléments simples :

X 1 1 N =1l
1—-X3 3\1—-X 1+X+XxX2/)°

D’ou le calcul de primitive :
t 1 1 t—1
——dr= = — —)dt
/l—t3 3/(l—t+l—|—t+12

1(2z+1) 3
1 1 1 ) 5
N S /gd,

T 3) 1—1¢ 3 24+t4+1
1 1 1 dr
=——In(d-0+-In@@+r+1)—= | —.
3n( )+6n( D) 2/t2—|—t+1
————————

notée J (1)
Par mise sous forme canonique pour un trindme :

2
z2+z+1=(r+l> +2

2 4

= (Gl -3 )]
4 NG 2 4 NG '

. 2t +1

D’ou, par le changement de variable u = —— :

NE]
0 f s Arct sty 2L
= [ ———— = —Arctanu = —Arctan .
+w) V3 Ve 73

D’ou, pour toutx €] —1; 1[ :

S(x)=[—%ln(l—f)—}—éln(l—{-t-}—zz)

—LArctan 2 1i|x
V3 V3 1o

= —%111(1 — ) - éln(1+x +x?)
—LArctan il 4F LArctan L

SV SV SV

Réponse: R =1 et,pourtoutx €] —1;1[:

1 1
S(x) = —gln(l —x) + gln(l—i—x—i—xz)

2x + 1
Arctan al T

V3 V3 6V3
c) Par la regle de d’ Alembert, on obtient R = 1.

La série entiere proposée ressemble a la série entiere

x2n+l

2n+1°

n=0
Soitx €] —1; 1[.
1)Six €]0; 1[, notons t = +/x.

On a alors x = ¢, donc :

S(x) +200 X" _Z (IZ)n
2n + 1 2n + 1
1 [2n+1 1
== —— = — Argtht = — Argth
tZZn—f—l 8 Jx e

2)Six €] —1;0[, notons t = \/—x.

On a alors x = —¢?, donc :
+00 X" +oo (_tZ)n 1 +0oo t2n+1
S =] = = - —Il n
*) ;2714—1 ;Zn—i—l t;( )2n—|—1
1 1
= —Arctant = Arctan /—x.
t =X

3) Enfin, S(0) = 1, car S(0) estle terme constant de la série
entiere définissant S.

Réponse: R =1¢et:
1
ﬁArgth«/} si O0<x <1
S(x) = 1 si x=0

—X si —1<x<0.

1
J=x
d) Par la reégle de d’ Alembert, on obtient R = +o0.
La série entiere proposée ressemble a la série entiere
2+l

=0 Q@n+ 1!
Soit x € R.

1) Six €]0; +oo[, notons ¢ = /x.
On a alors x = 2, donc :

+00 (12);1

S@ =2 (2n+ Do Z Cn+ 1)

n=0

1 t2n+l 1

= 7—7Sh .

Tl antr T B
2)Six €] —oo;O[,notonst =.J—x.

On a alors x = —¢2, donc :
sw=3 S D
P _
= (2n+1)’ 2n + 1)!
Z (=i . sin  /—x
= —sint = ———.
2n+1)! t =z

3) Enfin, S(0) = 1, car S(0) est le terme constant de la série
entiere définissant S.

Réponse :

h

T si x>0
Jx

R=0c0 et S(x) = 1 si x =

sin

_— si x <O.
J—x



e) Par utilisation d’un équivalent et de la régle de d’ Alembert,
on obtient: R = 1.

Formons la décomposition en éléments simples du coefficient
a, de la série entiere :

_ 3n _ 3n _ 1 " 1
T m2+n—-1 @+D2n—-1 n+4+1 2n—1°

Qn

On a alors, pour toutx € | — 1; 1] :

+oo to0 g +o0
Sx) = ;a,lx" Z;n—}— lx"—i—;zn_ lx"

notée A(x) notée B(x)

car ces deux séries entieres sont de rayon 1.

Ona,six #0:
1 &%yl 1 X x» 1
A = = = = —:——l 1— 5
*) x;n—i—l x;n xn( x)

et A(0) =1 car A(0) estle terme constant de la série en-
tiere définissant A(x).

D’autre part, en isolant dans B(x) le terme constant, on a :
= 2n+ 1
——

notée C(x)

+00 X"
B(x)=—-1+ =—1+x
;211—1

On a calculé C(x) dans I’exercice c¢) :

1
ﬁArgth«/f si O<x<1
Cx) = 1 si x=0
1
Arctan o/—x si —1<x<0O.

J=x

On reporte la valeur de C(x) et on en déduit I’expression
de A(x).

Réponse: R=1et:S(x)=

1

——1In(1 —x) — 1 + /x Argth /x si O0<x<1
X

0 si x=0

1
——In(l—x)—1—+/—xArctan/—x si —1<x <0.
X

f) * Rayon :

Soitz € C.

Si |z] < 1, alors |zEWP| = |z|F&D — 0,
noo

Si|z] > 1, alors [EV™| = |z]EWD) —— 4 0.
noo

Onconclut: R=1.

* Somme :

Soit z € C tel que |z| < 1. On a, pour tout N € N*:

(N+1)2-1 N (p+1)*-1
Z LBV — Z Z ZEWm
n=0 p=0 =p?
N p2+2p N
=Y Y =) @p+
n=0 p=p2 p=0

En faisant tendre I’entier N vers 1’infini, on obtient :
+00 +00 +00 +00
S(z) = ZZE(*/;’) = Z(2p + 1)z? = ZszP + ZZ",
n=0 p=0 p=0 p=0
car ces deux séries entieres sont de rayon 1.

1
1—z

+00
On sait (série géométrique) : E =
p=0

D’ou, en dérivant (algébriquement, car z € C ici) :

+00 1 1
pzl— = .
; (1—-2)

+o00

et donc, en multipliant par z : 7P = —.
pliant p ;p Ty
On obtient :
z 1 2z4+(1—z 1+2z
S(z) =2 >t = ( 2 ) = 2"
(I=2* 1-z (1-2) (1-2)
Réponse: R =1 et, pourtoutz € C tel que |z| < 1 :
142
S(z) = .
() a_27

a)Notons R., Ry, S.,S;les rayons et les sommes des deux
séries entieres proposées.

1) Rayons :
*Ona: VneN, (Jcosnf| <1 et |sinnf| <1),
d’ou, par théoréme de majoration: R, > let Ry > 1.

*Pour toutf € R, lasuite (cosnb),>o ne converge pas vers 0.
En effet, si cosnf —— 0, alors, par suite extraite,

noo

cos2n —— 0,d’ott 2cos’nf —1 —— 0,
n oo noo

contradiction avec 2cos’nf — 1 —— — 1.
n oo

Ceci montre que la série entiere Z cosnfx" diverge pour
n=0

x =1,donc R. < 1.

e Pour tout § € R — 77Z, la suite (sinnf),>( ne converge pas

vers 0.

En effet, si sinnd —— 0,
noo

alors, par suite extraite, sin(n + 1) —— 0,
noo
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d’ou sinnfcosf + sinfcosnf —— 0,
noo

puis (comme sin § # 0) cosn —— 0, contradiction comme
noo
on I’a vu ci-dessus.

Ceci montre que la série entiere E sinnfx" diverge pour
n=0
x =1,donc R; < 1.

Sif € 77, alors, pour toutn € N, sinnf = 0,donc R; = oo.

Finalement : R.=1 pour tout feR, et R, =1 si
0eR—7Z, Ry, =005si0 € nZ.

2) Sommes :

Soit 6 € R.

Le rayon de la série entiere Z ¢"’x" est1etona, pour tout

n=0

xe]l—1;1[:

Se(x) +1.8;(x)

400 +00
= E cosnfx" +1i E sin nfx"
n=0 n=0

too 0 +00 . 1

— elntyn — (el x)n - -
Z X_: [ =l
n=0 n=0

1 (1 —xcosf) +ixsinf
(1 —xcosf)? + (xsind)?”

(l —xcosf) —ix sm@

D’ou, en séparant la partie réelle et la partie imaginaire :

1 —xcosé x sin 6
1—2xcosf + x2’ 1—2xcosf+x2
De plus, si 0 € 7Z, alors: Vx € R, S;(x) =0.

b)Notons p,.,p;, 0.,0, les rayons et les sommes des deux sé-

S(‘(x) = Ss(x) =

ries entieres proposées.
1) Rayons :

Puisqu’une série entiere a le méme rayon que sa série entiere
dérivée,ona: p. = R, et p, = R;.

2) Sommes :
*Ona,pourtoutx €] —1;1[:

+00
E cosnf x"

n=1

xo.(x) =

_ xcosf — x*
1 —2xcosf+ x2’

. 1 —xcosé
" 1 —2xcosf + x2

cosf — x
d’ou, si 0: 0. =
ob, six # 7c(x) 1 —2x cos 6 + x2

D’autre part : ¢..(0) = cos @, car il s’agit du terme constant
de la série entiére définissant o’ (x).
cosf —x

On a donc : B
1 — 2x cos @ + x2

Vxel—1;1[, o.ix) =

On déduit, pour toutx €] —1; 1[ :

cosf —t

(x) = 0,0 Odt= |
o.(x) U()+/o o.(1) _/0 1 —2tcosf 4+ ¢2

1 x 1
—[5 In(1—2¢ cos¢9+t2)j| = In(1 — 2x cosf + x2).
0

*Ona,pourtoutx €] —1; 1[:

+00
E sinnf x" =
n=1

sin 6
1 —2xcosf+x2
D’autre part, 0 (0) = sin @, car il s’agit du terme constant de

x sin 6

/ —
xo,(x) = 1 —2xcosf+ x2’

d’ol,six £0: o.(x) =

la série entiere définissant o7, (x) .
Onadonc:Vx e]—1;1[, o.(x) sinf
n a donc : —1; 1], =——
* e 1 —2xcosf + x2

On déduit, pour toutx €] —1; 1] :

* sin 0
os(0) + f
0

. — _dr
75 (x) 1 —2tcos @+ ¢2

/ sin 6 dt
o (t —cosf)? + sin20

t —cosf
dl —
. /'“ ( sin 0 )
si sinf £ 0 0 <t—cos¢9)2+1

sin 6

= [Arctan =04 4 ]
0

" sinf
= Arctan 2=2C086 _ Arcian =Cos0
sin 6 “sinf
_ x —cosf cos
= Arctan o + Arctan <nd

cosnfl ,
X

Réponse : ¢ Pour Z
n
n=1

1
R=1 et Skx) =——1n(l — 2x cos O + x?)

sinn 0
e Pour Z

n=1

x*SifenZ: R=+oco et S=0
x*Sif¢nZ,: R=1et:

cosf
+ Arctan ——,

sin 6
ce dernier résultat pouvant étre transformé sous diverses
formes.

x —cosf
S(x) = Arctan ———
sin 6

a)Ona, pourtoutx e R: e' = —,
d’ou, pour toutn € N et tout x € R* :

n k +00 k

L(ex -y X_> _ 1 v

+1 ] +1 ]

X" = kel xS k!

1 xp+n+l +00 xP

= o Z(p_|_n+1)v Z;([H_,H_l)y'

fn(x) =



1
Comme f,(0) = et que le terme constant de la der-
(n+1)!
niere série entiere est égal a ————, 1’égalité est aussi vraie
(n+1)!
pour x =0, d’ou :
+00

x?
Vx eR, f,(x)= —_—
fr®) ;(HH])!
Ceci montre que f, est dSE(0) de rayon infini, donc f, estde
classe C* sur R.
1

b)Ona: VxeR*, f,,(x):x*"*‘eﬁ—zF
k=0 °

k—n—1

On en déduit, en dérivant n fois et en utilisant la formule de
Leibniz, pour tout x € R* :

f,f”)(x)
21
= —n—1y(n=p) (ax)(P) _ 2 k—n—1\(n)
= ()(x )P =Y S
= k!
2 Y n! —n—1—n+
=2 i il D G2
= p! !
- 1 k—2n—1
—Zg(k—n—l)m(k—zn)x
n 2 _ '
zeXZﬁ( 1= (21 ‘p) o -2ntp-1
= pin—p)! n!

k—2n—1

n k)
_Z_(_ ) k)’x

_e%(—l)” £ L . (2n — p)!
=~ (L e o
o3 . k(2n k)! N ;
- -Z(—)ki,( i 0h).

k=l

En notant P, =(—1)" Z( )pﬂ

XP e RIX
2 o= p)l € R[X],

on conclut :

VxeR, fP(x) = —— (e} P(x) —e I Py (=),

2n+1

On a, pour tout z € C, par produit de Cauchy de deux
séries entieres de rayon infini :

i 1)"1 lz”
+001n +00( l)nl
- (L) (E 5

n=0 n=1

> chz :

ou, pour toutn > 1 :

_ n—1 1 (_l)n—k—l _ 1 n—1 (_l)n—k—l n
o= Z;ﬁ n—k)(n—k)!_ﬂ,; n—k (k)

0

n—1 1
— Z( l)n —k—1 (}’l / tn—k—l dr
g 0

1 —
% (Z(_])ﬂ*k*l <Z> " —k— 1) dr
- JO

n—1
k=0
— 1 l 1 ”il: n ( Z)nfk dr
B nlJo 1\ &= \k
[ B .
- ol —?((1—;) —l)dt
1 ‘1—u 1 <"1 ")d
= — == u u
u=1-—t n''Jo 1—u n! =
111—] 1 1
= Tl

d’ou I’égalité voulue.

1) Minoration du rayon R :

On a, pour tout n € N* :

la,| = — ‘/( (t—k))dt
k=0

1
=) ((I=0)--(n—1=10)dt
1 n—10! 1

n

. . 1
Comme la série entiere E —x" estderayon 1, par théoreme

n
n=1
de majoration, on conclut : R > 1.

2) Calcul de la somme S sur | —1; 1] :

Soitx €] —1; 1[ fixé. On a:
n"ll
[ (51e-»)a

Sx) = Za,,x =ay+ Z

n=1

Notons, pour tout n € N* :

X" n—1
fi:[0;1] — R, +— — l_[(t—k)
* Pour tout n € N*, f,, est continue sur le segment [0; 1].

*On a, pour tout n € N* ettout # € [0; 1] :

II"

1fa®l = =-t(A=)--- (1 = 1= 1))
n 2z n
< |x| 11 (n— 1) = | x| (n—l)!:l x| < Ixf",
n! n!
d'ou:Vn e N, || fullo < |x[".
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Comme |x| < 1, la série géométrique E |x|" converge, donc,
n=1

par théoreme de majoration pour des séries a termes > 0, la série

numérique Z || fulloo converge. Ceci montre que la Z e

nz1 n=1

converge normalement, donc uniformément (PSI), sur [0; 1].

D’apres un théoreme du cours, on peut alors permuter intégrale
et série, d’ou :

S(x)

1 +00 X" n—1
:ao+/ (E —‘H(l—k)>df
0 n: k

n=1 =0

] +OO _ e —
=1+_/0 (Zt(t 1) ngt n+])x”)dt

n=1

1 1
= / (I4+x)dt = / e+ gy
0 0

! In(1+x) ]l eln(+x) _ | x

six#£0 [111(1 1y

o In(+x) In(l+x)

D’autre part, S(0) = ap = 1, car S(0) est le terme constant
de la série entiere définissant S.

Ainsi :
X .
—— si x#0
Vxel—1;1[ Sx)={ In(1+x)
1 si x =0.

3) Valeur du rayon R :

Pour montrer R = 1, étudions la série entiere au voisinage de
—1, point qui annule le dénominateur de I’expression de S(x) .

X
Ona: Sy =—2 5,
na &) = ) i

ce qui n’amene pas de résultat net sur la position de —1 par
rapport a ’intervalle [-R ; R].

Mais S est dérivable sur ] —1;1[ et on a, pour tout
xe]l—1;1[:

X
n+0) =177 (140 +x)—x

A+ 0(nd+x0)

S'(x) =
) (In (1 + x))*

d’ou, par prépondérance classique :

1

S'(x) ~ — 400
——1* 2 st

x (I+x)(In(1+x)" *

Raisonnons par I’absurde : supposons R > 1. Comme S estde
classe C*® sur ] — R; R[ etque —1 €] — R; R[, S’ esten
particulier continue en —1, contradiction avec le résultat pré-
cédent.

Onconclut: R=1.

a) Soit x € R.

n

1
X n3_/2 s

X

eSi|x| < 1,alors:Vn > 1, —
n

donc, d’apres I’exemple de Riemann (3/2 > 1) et le théoréme

n

de majoration pour des séries a termes > 0, la série E

X
32
n>1 n

converge.

n

—> +00, donc

* Si |x| > 1, alors, par prépondérance :
n3/2 noo

la série Z nx3—’/l2 diverge grossierement.
n>1

On conclut : Déf (S) = [—1; 1].

b) 1) * 1" méthode, PC :

Notons, pour toutn > 1 :

e

fuil—=1;1] — R, xt—>m.

1
Ona: Vnz=1, [|fulle = ey

D’apres I’exemple de Riemann (3/2 > 1), la série numérique

DIl converge.

n=l1

Ceci montre que la série Z f» converge normalement sur
n=>1

[—1;1].

Comme, d’autre part, chaque f,, est continue sur [—1; 1], ilen

résulte, d’apres le cours, que S est continue sur [—1; 1].

* 2¢ méthode, PC, PT :

xll
132

D’apres a) ou la regle de d’ Alembert, la série entiere Z

n=1
est de rayon, 1. D’apres a), cette série entiere converge en — 1
eten 1.

D’apres le théoreme de la limite radiale, on conclut que la somme

S est continue sur [—1; 1].

2) D’apres a) ou la regle de d’Alembert, le rayon de la série

entiere z % est 1, donc, d’apres le cours, S est de classe
n=1

C* (donc C')sur] —1; 1[. De plus :

+oo n—1

X
Vxel—1;1[ S(x):n;W.
=b"
nl/2

c) La série numérique Z

n=l1
puisqu’il s’agit d’une série alternée dont la valeur absolue du
terme général décroit et tend vers 0. Il en résulte, d’apres le théo-

reme de la limite radiale, que la somme de la série entiere
xnfl )

Z i est continue sur [—1; 1.

n=l1

converge, d’apres le TSCSA,



Ceci montre que S” admet, en —17, une limite finie qui est
12 -
n=1 e /

Ainsi, S est continue sur [—1; 1], de classe C' sur] — 1 ; 1[,
et S’ admet une limite finie en —17. D’apres le théoréme li-
mite de la dérivée, on conclut que S est de classe C' sur[—1 ; 1[.

d)*Ona,pourtoutx €]0; 1[ :
+oo _n—1 400

X xn—] 1
5(x>=ZW>Z __Z—_—;ln(l—x).

n=1 n=1 n=1

1
Comme : ——In(1 —x) — +o0,
X

x—1-

S'(x) — +o0.

x—1"

il en résulte :

* Si S était de classe C! sur [—1; 1], S’ admettrait en 1~ une

limite finie, contradiction avec le résultat précédent.

On conclut : S n’est pas de classe C' sur [—1; 1].

1) Soit f convenant.
* Montrons que f est de classe C* sur R.

A cet effet, montrons, par récurrence sur 7, que, pour tout
n € N*, f estn fois dérivable sur R.

La propriété est vraie pour n = 1, par hypothese.

Supposons que f est n fois dérivable sur R. Puisque :
VxeR, f'(x)=afx)+ f(x)

et que le second membre est n fois dérivable sur R, f’ est n

fois dérivable sur R, donc festn + 1 fois dérivable sur R.

On conclut, par récurrence sur n, que f est n fois dérivable sur R
pour tout n € N*, donc f est de classe C* sur R.

* Montrons que f est dSE(0). A cet effet, nous allons montrer
que le reste de Taylor de f en O tend vers O.

Soit x € R fixé. On a, pour tout n € N, d’apres la formule de
Taylor avec reste intégral :

® 0
=3 P ( )k (x CZD ey ar.
notée R, (x)
Notons, pour toutn € N : M, = Sup |f™ ().
te[—x;x]
On a, pour toutn € N :
Rwi=| [ e a
x — Mn ¢t bl
< / MMM dt| = Mot |[ 6= 0"
0 n! n! n+1 |,
_ Mn+1 |x|n+1 _ Mn+1 | |,1+1
n! n+1 (n+1)!

Essayons d’établir une majoration de M,,.

VieR, f@)=af®)+ f(),

d’ou, par une récurrence immédiate :

Par hypothese :

VaeN,VteR, fo @) =af®@)+ NP0,

et donc, en passant aux bornes supérieures lorsque ¢ décrit

[—x;x]:
Vl’l S N7 Mn+l < |Oé|M,, + |)\|nMn < (Ial + I)Mn-
Par récurrence immédiate, on déduit :
VneN, M, < (Ja|+ 1)"M,.
(ol + D" M,
D’ob . R < n+1 07
ou: |R,(x)| < Y x| —

par prépondérance classique de la factorielle sur les exponentielles.

On déduit, en faisant tendre I’entier n vers I’infini dans la for-
mule de Taylor avec reste intégral, que la série de Taylor de f
F™(0)

n!

en 0, E x", converge et a pour somme f (x).

n=0

On conclut que f est dSE(0) de rayon infini.

+o00
2) Soit f dSE(0) de rayon infini, f(x) = Z a,x". Alors, fest
n=0

dérivable sur R et on a :

f convient

= VxeR, f'(x)=af(x)+ f(Ax)
+oo +00

2=l aZa,,x" + Za,,)\"x"
n=0 n=0

+0oo +0oo
< Vx eR, Z(n + Da, 1x" = Z(a + \Ya,x"

n=0 n=0

+00
<— Vx eR, Znanx
n=1

= VneN, n+ Da,. = (a+ \a,
unicité du DSE(0)
>\n
= VneN, ay = et
n—+1

1 n—1
& VneN, q, = (— ]—[(a+Ak))ao.
n! i
On conclut :

400 1 n—1
:{f:R—>]R, xr—>a2—'l_[(a+/\k)x"; a ER} .
g

n=0

1) L’application x —> =(14+x>)"" est

1
1+ x?
dSE(0) de rayon 1, d’apres le cours. Par primitivation, il en ré-
sulte que I’application x —> Argshx est dSE(0) de rayon 1.

Par produit, I’application f est donc dSE(0) de rayon > 1.

2) Pour calculer le DSE(0) de f, nous allons utiliser la méthode
dite de I’équation différentielle.
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L application f est dérivable sur R, d’ou :

Vx eR,

di(\/ 1+ xzf(x)) = i(Argsh x),
x dx

c’est-a-dire :

VxeR, vV1+x2f'(x) + —— f()—;,

V1 1+ x?

donc: VxeR, (1+x3)f(x)+xf(x)=1.

+00
= Z a,x" le DSE(0) de f, qui existe et est

n=0
de rayon > 1 comme on I’a vu plus haut, on a, pour tout
xel—1;1[:

En notant f(x)

0=(+x)f(x)+xf(x)—1
+00 +00
=(1+x? Zna,,x”*l 4F 3% Zanx” —1
n=1 n=0
+00 +00 +00
_ Znanx”*' n Znanxn+l n Zananrl .
n=1 n=1 n=0
+oo +o0 +00
=Y 1+ Dagx" + (0= Dapx" + ) a,x" — 1
n=0 n=2 n=1

+00
= (a1 = D+ )_ (4 Dapy1 +na, 1)x"

n=1
Par unicité du DSE(0) de la fonction nulle, on déduit a; = 1
et:Vn =1, (n+ Da,y +na,_; =0.

Comme ay = f(0) = 0, il en résulte, de proche en proche :

VpeN, a), =0,

ce que I’on pouvait aussi trouver en remarquant que f est im-
paire.

Et, pour tout p € N :

2p
@p+1 = —mazrl
_ 2p 2p 2 2
=\ " 2p+1 2p—1 3 )4
(=1)P27p! _ (=DFErpYH?

T @pth@p-1)--3

On obtient :

2p+ 1!

X (=P 2P p!)?

Vxel—1;1[ f(x)= ZMXQP‘H.
= Q2p+ 1!

3) Déterminons le rayon R par la regle de d’ Alembert.

Soit x € R* fixé. Notons, pour tout p € N, u, le terme géné-

ral de la série obtenue. On a alors |u,| > 0 et :

P (p+ D)’ 2p + 1!

Up+1 2
|22 = x|
up 2p +3)! 2rp!)
4(P+ 1)2 2 2
= ————x|"—> [x|,
2p+2)2p+3)
donc: R=1.

L’application f :x+—— sin(aArcsinx) est de
classe C* sur | —1;1[ et on a, en dérivant, pour tout

xe]l—1;1[:f'(x) =cos (oeArcsinx)lL,

—2
donc: /1 —x2f'(x) = acos (o Arcsin x),
puis, encore en dérivant :
V1I=x2f"(x) — ———f'(x)
J—
1 2
= —a? sin (o Arcsin x) __¢ 2ACY ,
J1=x2 V1 —x2

dot: (I —x2)f"(x) —xf'(x) +a?f(x) =0.

Ainsi, f est solution de 1’équation différentielle

—xy +a’y=0.

+00

=) ax’,
n=0

R > 0. On peut alors dériver (deux fois) terme a terme sur

]—R;R[,dou:

B  A-x%y

* Supposons que f soit dSE(0), f(x) de rayon

0=(—x)f"(x) = xf'(x) +a’ f(x)

+00
=(1—-x% Zn(n — Da,x"~

n=2
+00 +00
—x Z na,x"~' + a? Z a,x"
n=1 n=0

+00 +00
= Zn(n — Dax"2 — Zn(n — Da,x"
n=2 n=2
+00 400
— Znanx" + Z a’a,x"
n=1 n=0
+00 +00
=D +2)(1+ Dayax” = Y n(n = Dayx”
n=0 n=2
+00 +00
— Znanx" + Z ota,x"
n=1 n=0
400 400
= Z(n +2)(n + Da,ox" — Zn(n — Da,x"
n=0 n=0

+00 +00
- E na,x" + E a’a,x"
n=0 n=0



+00

=Y ((n+2)(n+ Dayya
n=0

—n(n — a, — na, + oaza,,)x”

+00
=Y ((+ 20 + Dagss — (0° = a*)a,)x"

n=0
Par unicité du DSE(0) de la fonction nulle, on déduit :
VneN, m+2)n+ Day, =0 —aoa,.
Comme ayp = f(0) = 0, on déduit, de proche en proche :
VpeN, a, =0.

Comme a; = f'(0) = a, on déduit de proche en proche :

Q2p—1?—ao? 12 — o2
a — “e . o
T 2p+ D@2p) 3.2

P
= Grrmi L] (@0 =),

k=1

* Réciproquement, considérons la série entiere E a,x" ol
n=0
a, est défini ci-dessus.

Comme les a,,; sonttous = 0, et que, pour tout x € R* fixé :

2p+1
Ayp1X w A2p+1

Jx?

App—1 X201 azp—1

@p—12 - ;
= — a2,

T ep+1@2p)

le rayon de la série entiere est 1, qui est > 0.

D’apres le calcul fait plus haut, en réciproque, la somme S de
la série entiere est solution de (E) sur | — 1; 1[.

S0)=0 et S0) = a.
Ainsi, f et S sont solutions de (E), sur | —1;1[ et
£(0) = $(0), f(0) = S(0).

D’apres le théoreme de Cauchy linéaire, il en résulte :

De plus :

Vxel—1;1[, f(x)=Sx).

Ainsi, pour toutx € ] —1; 1[ :
+00

@ Tk -1y -
2 e (1@

donc f est dSE(0), de rayon, 1.

f(.x) ))x2p+1,

a) On a, en utilisant des DL(0) :

I x—(e"-1)

x(e* —1)

—(x+%+ o &)
x(x + o(x))

fx) =

ec—1 x

L to?) 1

— o
x2+0(x2) x—0 2

On conclut que f admet une limite finie £ en 0, et que :

‘= 1
===
On prolonge f par continuité en 0, en posant : f(0) = —
b) On a, pour tout x € R* :
1 1 x e —-1—x
X)= —_— = — e —
F&) ef—1 «x er — 1 52
400 X"
*Onsait: Vx eR, e ZZOH’
+00 X"
donc : e —1—x= —,
nX:; n!
e —1—x +00 X”72
is, si 0: — = =
pui X £ 2 s p Z (n + )
Considérons I’application
F=1=
S 1
u:R— R, x— xl
— si x=0.
2
+o0 n
On vient de montrer : Vx € R*, u(x) =

X
;(n—FZ)!'

De plus, cette égalité est aussi vraie pour x = 0, car u(0) = =

. . 1
et le terme constant de la série entiere est 7
—+00 n

X
:;(wrz)!'

Ceci montre que u est dSE(0) de rayon infini, donc, d’apres
le cours, u est de classe C* sur R.

Onadonc: Vx eR, u(x)

* De méme, et plus bricvement, I’application

et —1

vV:R— R, x+— X ot e g

1 si x=0
est de classe C* sur R.

On peut aussi remarquer, a cet effet :
Vx eR, v(x) =xu(x)+1.
* De plus, il est clair, sur la définition de v, que :

Vx eR, vix)#0.

1
D’apres le cours, — est donc de classe C* sur R.
v

eOna: VxeR* f(x)=———uk).

1 1
Etcomme f(0) = —3 v(0) =1, u(0) = = l’egahte est aussi

vraie pour x = 0.
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1
= ==w.
v

On a donc :

1 .
Comme u et — sontde classe C* sur R, par produit, f est
v

donc de classe C* sur R.

a) Par hypothese, f est dSE(0) de rayon R > 0, donc
f estde classe C* sur ] — R; RJ[.

Puisque t, —— 0, que, pour toutn € N, f(#,) =0 et que
noo
f(0)=0.

On peut se ramener, en prenant une suite extraite, au cas ou la
suite (#,),en est strictement décroissante et vérifie :

VneN, 0<t, <R.

f est continue en 0, on déduit :

Pour tout n € N, d’apres le théoreme de Rolle, puisque
f(t,) = f(t,+1) etque f estcontinue sur [, ; #,.] et déri-
vable sur |z, t,.1[, il existe u, €]t,; t,.1[C]0; R[ tel que:

f'(u,) =0.
On construit ainsi une suite réelle (u,),cy telle que :

VneN, —R<u, <R etu,#0cet f'(u,) =0

u, — 0.
noo

On peut alors appliquer le résultat précédent a f’ a la place
de f, puisque f’ est dSE(0) de méme rayon que f, d’ou :
1) =0.

VneN, f®@©) =0.

Enfin, comme f est dSE(0), ona:

En réitérant, on déduit :

(n)
Vxel—R:R[, f(x)= Zf ©

b) Supposons qu’il existe f :] — 1; 1[—> R, dSE(0) de rayon
> 1, telle que :

I 1 1
VneN-{0,1}, f(;):—f(_;> =—.

Considérons les applications

=fx) -’
h:1—1;1[— R, x —> h(x)

g: 1L 1[— R, x> g(x)
= f(x)+x>.

Puisque f estdSE(0) derayon > 1, g et h le sont aussi. De

plus :

Vi e N—{0.1), g<%>=o 5 h(—%):

D’apres a), il en résulte :
Vxe]—-1;1[, gx)=0 et h(x)=0,

dou: Vxe]—1;1[, x> =—x>, contradiction.

On conclut qu’il n’existe pas d’application f convenant.

Rappelons la définition de la fonction I" d’Euler :
+00
Vs €]0; 4+oo[, T'(s) = / e dr.
0

Ainsi, pour toutx € ] — 1; o0 :

+o0 +0o0
rd+x) = / e 'dr = / eIl e~! dy
0 0
+o0 +00 1 )"
=/ Z((xn) e’t>dt
0 = n!

+00 +00 1 t n
:/ <Z (x 1 ) eft> dr.
0 =0 I’l'

Nous allons essayer de permuter intégrale et série.

Soitx €] — 1; 1[ fixé. Notons, pour toutn € N :

(xInt)" _,

fn 1105 00— R, t+— '
n!

* Pour toutn € N, f, est continue par morceaux (car continue)
sur ]0 ; 4+-o0l, et intégrable sur ]0 ; +ool, car «/Zf,,(t) — 0
t—>0

et tzf,,(t) — 0.

+00

. Z Jfn converge simplement sur ]0; 4-o0[ et a pour somme
n=0

St evclnte r

* § est continue par morceaux (car continue) sur ]0 ; +oo[.

+00
* Montrons que la série E / | x| converge.
n=0 0

On a, pour toutn € N :

+00 +o0
/ |fn| = f
0 0
n +o00
_ I / [Ins|" e d
n! 0
|X|" 1 » +o0 .
= (=Inp)" e~ dr + (Inp)"e"dt ).
n! 0 1

notée A,

(xInz)"
n!

—t

dt

notée B,

Et:
1
<A, g/ (=Inz)" dr
0

+o0
= f u'e"du=T(m+1) =n!
u=—Intr Jo

+o00
0<B,,</ e dt
1

+00
§f t"e'dt=T(m+1)=n!.
0



|x|"

+o00
Onadonc: VneN, / | fnl < —‘Zn!=2|x|".
0 il

Puisque x| < 1, la série géométrique E |x|" converge, donc,
n=0

par théoréme de majoration pour des séries a termes > 0, la

+00
série Z / | fu| converge.
n=0 Y0

D’apres le théoréme du cours sur I’intégration sur un intervalle
quelconque pour une série de fonctions, on peut permuter in-
tégrale et série, d’ou :

+00 +o00 1 tn
r‘(x+1)=Z/ (xn) Y
n=0
+% etoo s
= Z/ (—(lnt)”e” dt)x”
=0 J0 n!

Ceci montre que x —> I'(1 4 x) estdSE(0), derayon R > 1.

Comme I'(1+ x) — 400, on peut préciser :
x—>—1

R=1.

1) Détermination du rayon R :
Essayons d’obtenir une estimation de u, lorsque I’entier n
tend vers Iinfini.
1

P < 1, considérons les
n

Comme, pour toutn € N, 0 <

deux suites obtenues en remplagant, dans I’énoncé,

+1
par O, par 1. Autrement dit, considérons les suites
(vn)neNa (wn)neN déﬁnies par :

v=0,v=1 VYneN, v,n=v,1+v,
wy=0,w; =1, VneN, w,1no =w,4 +w, + 1.
Une récurrence immédiate montre :

VvneN, 0<v, <u, <w,.

e Calcul de v, :

La suite (v,),en est une suite récurrente linéaire du second ordre,
a coefficients constants et sans second membre. L’équation ca-
ractéristique 72 — r — 1 = 0 admet deux solutions réelles dis-
tinctes :

1+4/5

r = , 2=

2

1-4/5
-

D’apres le cours, il existe (A, \;) € R? tel que :
VneN, v, = /\11”;’ A /\27‘;.

On calcule (A;,)\;) par les conditions initiales :

1 1
AL = =—
M+ =uy=0 : r—nr \/g
—
Airp+ X =uy =1 X = ! :—L.
I —n V5
1
Onadonc: VneN, v, = (rf —ry

V5
e Calcul de w,, :

Cherchons une suite constante C vérifiant la méme relation de
récurrence que (w,),en. Le réel C convient si et seulement
si C=C+C+1,cesta-dire: C = —1.

Considérons donc la suite (7,),cn définie par :
VneN, t,=w,+1.
On a, pour toutn € N :

thta = Wpyo + 1= (wn+1 + w, + 1)+1

= Wpp1 + D+ (W, + 1) = tpy + 1.
Ainsi, (t,),en estune suite récurrente linéaire du second ordre,
a coefficients constants et sans second membre. D’apres le cours,
il existe (u11,1,) € R? telque: Vn €N, t, = w7} + pory.
On calcule (u;,u,) par les conditions initiales :

2—r2

oy =tg=wy+1=1 =

2—7'1

rl—rz'

—

i+ =t =w +1=2 _
My ==

Onadonc: VneN, w,=t, —1=pr{ + pry —1.

Comme |r| > 1 et |rp| < 1,etque \; #0etp, #0,
U, = N1y 4+ Xory ~ Ay
noo

_ n n n
Wy = i+ ppry =1 o i

Il en résulte que les deux séries entieres E v, 2" et E w,zZ"
n=0 n=0

1
sont de rayon —.
ry

Comme: VneN, |v,| < |u,| < |wyl,

on déduit que la série entiere E u,z" estderayon :
n=0

1 5—-1
R:—:—I‘z:\/——,
r 2

2) Détermination de la somme S :
+00
Notons S:]—R; R[— R, x — Za,,x”

n=0
Soit x €] — R; R[.On a, pour toutn € N :

1
xn+2
n+1

+2
Mn+2xn = (un-H +u, +

277



278

xn+2

n+l 2 n
= i F 28 ) A :
X (Upp1 X" ) + X7 (upx™) —

D’ou :
n+2

+0 +00
E Upox" 2 =x E B dd ™ i 5 E U x" + E
= on+ n+1

les quatre séries entieres étant de rayon > R.
On a donc :
S(x) — (uo 4+ u1x) =x(S(x) — ug) + x>S(x) —xIn (1 — x),
d’ou :
(I —x —x2)S(x) = up + (w1 — ug)x —xIn(l —x)
=x—xIn(l —x).

xln(l —X)

—x —x2

Finalement: Vx €]— R; R[, S(x )—

a) 1) Soit (n,k) € N? tel que k < n

Une permutation o ayant exactement k points fixes est définie
par ’ensemble de ses k points fixes et par une permutation des

n — k autres éléments ne laissant fixe aucun de ces éléments.

n n
Fox = (k) Foko= (k) Oy -

2) L’ensemble de toutes les permutations de {1,. ..

On a donc :

,n} se par-
titionne en sous-ensembles formés de permutations ayant

exactement k points fixes, 0 < k < n.

On a donc, par dénombrement :

= ;ka =] i (z> Q.

k=0

Par le changement d’indice p = n — k, on a donc :

R

p=0 p=0
b)l)sOna: VneN, 0< o, = F,o <n!,
Qy,
donc : VneN, 0< — < 1.

n!

Comme la série entiere E 7" estderayon 1, par majoration,
n=0

on déduit: R > 1.
e Soitz € C tel que |z] < 1.

Par produit de Cauchy de deux séries numériques absolument

convergentes :

I
ﬁ Big
) 3
/N
~
I =
‘ Q
— | =
—
S
| it
~
N
~—
NS

S =3 =

= —nlz" = "= —,
n=0 n=0 1—z
d’ou : S@) =

2) On a dongc, pour toutz € C tel que |z]| < 1 :

(I-2)8@z)=e""

Mais :
(1-28@ = —z)Z—z
n=0 :
+00 +00
a}l a}l
D EES 3
= n! = n!
+o0o +oo
Qy Qp—q
=1 L no__ n
2o " L=
400
(e Qg
=1 —+ _— = n
; (n! (n— 1)')
Et:

+00

(I—Z)S(z):e_"zzﬂ —1+Z( l)n

n=0

Par unicité du DSE(0) de z — (1 — z)S(z), on a donc :
Qy Q1

o "

nl —D! !

Vn e N¥,

En sommant cette relation, on déduit, par télescopage :

@ xS (=D?
n! 0! = p!
. ~ (=1)?
. — pl
puis : an_n.z o
p=0
3) La série Z releve du TSCSA, donc converge, et
p=0

a pour somme e*', d’ou, pour toutn € N tel quen 2> 2 :

(= 1)” (— 1)”
=[S mS

p=0 p=0

n!
Qy — —
€




_ i’f (_1)11 ( 1)n+l 1 P l <£
o | S Tar1 S35

Ainsi, pour toutn € N :

! 1
a, €N et0<<n—+—>—an<1,
e

2
n! 1
donc: «, = E(? A —).

2
n! 1 n! 1
Comme — —-—<a,<—+ —,
€ 2 e 2
n!
on déduit : a, =—+ 0().
(& noo
a) Soit A > 0 fixé. Puisque la série Z b, divergente
n=0
estatermes > 0,ona: Zb —>+oo
n=0
N
donc il existe N € N tel que : an > A+ 1.
Ayant ainsi fixé N, : b, b,.
yant ainsi fixé N, on a Z x" x:l> Z
Il existe donc 7 € ]0; 1] tel que :
N N
Vxell—nill, ) bux" > (Zm)
n=0 n=0
Comme de plus les b, sont tous > O etquex > 0,ona:

N
Vxel[l—n;l[, Spx) > Zb,,x"

On a montré :

VA>0,3nel0;1[, Vx e[l —n; [, Sp(x) = A.

On conclut : S, (x) x:r +o00.

b) Puisque Z—: ? £ e R, il existe M > 0 tel que :
VneN, Z— <M,

donc : VneN, |a,| < Mb,.

Comme la série entiere E b,x" est de rayon 1, par majora-
n=0

tion, la série entiére E a,x" 1 et sa somme
n=0

S est définie (au moins) sur | — 1; 1[.

est de rayon >

Soit e > 0 fixé.

Puisque In £, il existe N € N tel que :

p  noo

a,
¥n > N, f—e‘

bn

On a, pour tout x € [0; 1] :

Sa(x) _4 _]8a(0) = £8,(0)
B Sp(x)
+oo +00
= 500 Z:anx — ;Zb,,x

+00

1
Z |y — Ly |x"
S50

S,,(x) ’ Z(a,, thy)x"

N

= la, — b, |x" + —— la, — €b,|x".
o S<n§4
D’une part :
1 +00
0< la, — £b,|x"
Sp(x) n:XN:H
+o0
eb,x"

S S) n=N-+1

D’autre part :

Z la, — £by|x"
sb<x)

N
car Z la, — £b,| est fixé indépendamment de x,
n=0

et S,(x) — —+oo.
x—>1-
Il existe donc € ]0; 1[ tel que :

Vxe[l—n;1[ 0

1 N
- b —an n <
\Sm(;m u>\a

S, (x
Onaalors: Vx e[l —mn;l1[, ()—ZISZE.
Sp(x)
§
On conclut : a() —¢ — 0,
S;,(x) x—>1-
§
c’est-a-dire : a()
S;,(X) x—>1-
nt’l
a)Ona:VneN*, a, = >0
e"n!
et, pour tout x € R* fixé :
a’l+1xn+1 _ (}’l e 1)n+1 enn!| |
apx” | ertl(n+1)! nn *

1 \" 1
=—(14+—-) |x| — —elx| = |x|.
€ n noo €

D’apres la regle de d’ Alembert, on conclut: R =1.

b) D’apres la formule de Stirling : n! ~ (g) V2mn,
noo

n"

1
e"n! noo 4/27171’

donc: a, = notéb,, .

eb,x" = €.
Sb(x) Z
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Puisque a, ~ b, etque lasérie E a, estdivergente a termes
noo
n

> (), d’apres I’exercice 6.46, on a :

+o00
Sx) = Zanx"
n=1

400 1 +o0o X"

~ bn —
x—>1= ; * \/_ nZI: \/—

+00 n

Il reste a trouver un équivalent simple de Z

n=1

. A cet effet, nous allons utiliser une comparaison
série/intégrale.

lorsque

x — 1

Soit x € [0; 1] fixé. Considérons 1’application
xt

[l 4oo[— R, t+— —.

NG
Il est clair que ¢, est continue et décroissante.

3/2¢¢ Inx 0.

o 2 _
Deplus: o (t) =t N

par prépondérance classique, car Inx < 0.

Il en résulte, par I’exemple de Riemann en +00 (2 > 1) etle
théoreme de majoration pour des fonctions 2> 0, que ¢, est
intégrable sur [1 ; +ool.

Par comparaison série/intégrale, on a donc :

+0o0 +00 +o00
f b 0d <Y ) < 1+f (1) dr.
1 n=1 1

On calcule I’intégrale :

+00
/ o () dt =
1

400 Ltlnx

+oo eu2 Inx
dr = 2u du
1 «/; u=+/t /; u

2
eV dv.

+00
= 2/ e’ du /
1 v = u«/—lnx V—=Inx Jy=my

Comme +/—Inx —> 0 etque v —> e’ est intégrable sur
x—>1-
[0; 4o0[,0ona:
+o00 +00
/ eV dv —> e dv = ﬁ
VTinx x—1= Jo 2
D’aut art 2 2
autre : = .

P V—Inx x—1- /1 —x

D’ou :

+00
/ oyt ~ T
1 x—1- /1 —x x—1—

On a donc, par théoreme d’encadrement pour des équivalents :

Jr
Zﬁ x~>1’ m

1
Onconclut: S(x) ~

x—1- \/54/] —x.

Soientn € N*, x €] — 1; 1[. Puisque fest de classe C*>
sur [—1; 1], on peut appliquer la formule de Taylor avec reste
intégral sur le segment joignant O et x :

n—1 (k)o
f()-Zf Pt [ EZO oy,

notée R, (x)

On a, en utilisant I’inégalité de Cauchy et Schwarz :

meor < | [ (2w [ ooy e

* D’une part :

_ \n—1 x _ £)\2n-2
[ [ e
o ~ (mn— 1)' o ((n—1))

|x|2nfl

@n—1(n -1

(x — 2! .
- ’ - [(Zn —1)((n - 1)!)2] -

* D’autre part :

x 1
’/ (foz)(;))zdz‘ < f (F™ @)’ dr < (1),
0 -1

par hypothese.
D’ou :

|x|2n—l |2n71n2

|x

|Ru () < (n!)? = :
TS e D@ —ny 2n—1

Puisque x €] —1; 1[, par prépondérance classique,
|x|2n—1n2
——— ——— 0, donc R, (x)—)O

2n — 1 noo
Ceci montre que la série de Taylor de f'en 0 converge et a pour
somme f.

On conclut : f est dSE(0), de rayon > 1.

1l est clair, par laregle de d’Alembert par exemple, que,

1
our tout p € N* fixé, la série converge et que :
= & Z 16" 8n + p geetd
+00
8)1+p—1 dx .

1
Z 16'8n+p) Z 2,,/

Nous allons essayer de permuter intégrale et série.
Notons, pour tout p € N* et toutn € N :

fo 1105 1/4/2] — R, x —> /2Px8Hp1
e Pour toutn € N, f, est continue sur [0; 1/ V2].

. E f» converge normalement, donc uniformément (PSI), sur
n=0

[0; 1/«/5] car, pour toutn € N :



. 1 8n+p—1 ﬁ
||fn||w=ﬁp<ﬁ> -

D’apres un théoreme du cours, on peut donc permuter intégrale
et série, d’ou :

1/4/2 40
§ :x8n+1771 dx
n=0
xP~!

1/4/2
0 1

Notons S la somme du second membre de 1’énoncé. On a alors

1/4/2 1
s=4ﬁ/
0

+00 1

e |

n=0

dx

— x8

1/V2 Pe
dx — 2&4/ dx
0

1 — x8 1 —x8

\/_5 /2 x4
_2/
0

1 — x8

1/4/2 3

l—xgdx

dx — /26
0

dx

/'/ﬁ 44/2 — 8x% — 4/2x* — 825
0 1—x8

L 4\/5 — 2«5143 — ﬁu“ — \/zus du
I /o uf V2

1— =
16
V403 — it — S
:16/ ST TR T
0 16—148

Comme 1 est racine évidente du numérateur, on a :
4 -2 —u* —uw’
= (1 —u)(4+du + 4u* + 2u° + u*)
=1 —-w)Q+u>)2+2u+u?
et:
16 —ud = (4 —uh)(4 + u)
=Q2—u)2+u?)(Q+u?)? —4u?)
=Q2—-u)Q+ud)Q2—2u+u>)Q2+2u +u?).

1
1—u
Dou: S=16 du.
/0 C—w)2—2utud) "
On effectue une décomposition en éléments simples, et on ob-
tient, apres quelques calculs élémentaires :

1 11
1 —ZM E—Zu
S =16 d
/(; (2—u2+2—2u+u2) “
1 ! 1 2
=4|:—1n(2—u2)j| +4/ 7% .
2 o o 2 —2u+ u?
—_— —
notée J

Par mise sous forme canonique d’un trindme :

2—2ut+ut=w—1>+1.

On effectue donc le changement de variable v =u — 1 :

J /0 L g /0 %oty — T i

= ——dv — ——dv=—+ -In2.
_]U2+1 _]U2+1 4 2

1
Onobtient: S = —21n2—|—4(£ + 51112) =T.

Remarque : cette formule de Simon Plouffe permet de calcu-
ler efficacement des approximations décimales de 7.

a) 1) Soitx € [0; al.
k
D’aprés U'hypothese, on,a: Vk € N, % F®0) >0,

donc la suite (S, (x))@0 est croissante.

De plus, d’apres la formule de Taylor avec reste intégral :
VneN, f(x)=S,(x)+ R,(x).

D’aprés I’hypothése,ona: Vn e N, R,(x) >0,

donc : VneN, S,(x) < f(x).

Ainsi, la suite (S, (x))@0 est croissante et majorée par f (x),
donc converge.

Par différence, comme R, (x) = f(x) — S,(x),il enrésulte que
la suite (R, (x))wo converge.

2)Soientn € N, (x,y) €]0; a[* telque: x < y.Ona:

R, (x) _ 1 /X(x — 1" F () ds
nlx®tl o

xntl

1

u =_t/x n!

1
/ (1 —w)" £+ (xu) du.
0

Comme f "2 > 0, f**+D est croissante, donc :

Yuel0; 1], fOPxu) < F" P ou),

puis :
R,(x) 1 [! " o
o ;/ (1 —w)" O (xu) du
= Jo
1! R,
g _'/ (1 _ M))lf(n+1)(yu) du = ni}i) .
n:Jo y

3) Soitx € [0; af.
Six =0, alors, R,(x)=0 K) 0.
Supposons x > 0. Il existe y €]0; a[ tel que x < y, par
exemple y = #. On a alors, d’apres 2) :
K

VneN, 0< R, < R s
yn

On a vu en a) /) que la suite (R,, (y)) converge, donc est

n=0
bornée.
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xn+1

—_— 0. Ilenré-
n oo

D’autre part, puisque <1,ona:

n+1
sulte: R,(y)— —— 0,
yn+1 069

puis, par théoreme d’encadrement : R, (x) — 0.
noo

4) On a donc, pour tout x € [0; af :

Sp(x) = f(¥) = Ry (x) — f(x) 0= f(x).

Ceci montre que, pour tout x € [0; a[, la série de Taylor de f
en 0, prise en x converge et a pour somme f (x).

b) Soitx €] —a; 0]. On, a, en utilisant le méme changement
de variable qu'en a) 2) :

xn+l

[R,(x)] =

1
/ (1 —w)" £ (xu) du
0

n!

|x

|n+| 1
: / (1 — )" £ (xu) du.
5 0

n

Comme £+ est > 0 et croissante, on déduit :

|x|)l

+1 pl
— a0
o

IR, ()| <
n

_ |X|"+l |:_ (l - M)"+l:|1f(n+1)(0)
n! n+1 0
|x|n+l

BRCEENY

£V ©0) < R, (Ix]).

D’apres a) 4), puisque |x| € [0;a[,ona: R,(Jx]) —— 0.

Il s’ensuit, par encadrement : R, (x) ——> 0,
noo

donc : Sp(x) = f(x) — R, (x) —> f(x).

Ceci montre que la série de Taylor de f en 0, prise en x, converge
et a pour somme f(x).

c)D’apres a) et b), on a :

+00 (k)
Vxel-azal, f@) =Z%xh
k=0 .

donc f est dSE(0), de rayon > a.
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Séries de Fourier

BN Plan I

Les méthodes a retenir 283
Enoncés des exercices 285
Du mal a démarrer ? 289
Corrigés 292

Thémes abordés dans les exevcices

Calcul des coefficients de Fourier, exponentiels (PC, PSI) ou trigonométriques,
d’une application R — K périodique et continue par morceaux

Développement d’une application R — K périodique assez réguliere en
série de Fourier
Obtention de certaines sommes de séries numériques convergentes, par

+00 1 7T2
exemple : — = —
ple: ) 5=
n=1
Obtention de certaines égalités entre intégrales et sommes de séries

Obtention de certaines inégalités portant sur des intégrales.

Points essentiels du cours
pouv la vésolution des exewvcices

Définition des coefficients de Fourier, exponentiels (PC, PSI) ou trigonomé-
triques, d’une application R — K périodique et continue par morceaux

Formule(s) donnant les coefficients de Fourier d’une dérivée

Théoréme de Dirichlet de convergence simple, théoreme de Dirichlet de
convergence normale

Théoréme de Parseval, formule de Parseval réelle, formule de Parseval complexe.

Le programme PT comporte une définition de aq différente de celle figurant dans les programmes
MP, PC, PSI. Nous optons pour les formules classiques, qui sont celles des programmes MP, PC,
PSI, et qui donnent comme série de Fourier trigonométrique de f':

ao

5 + Z (an cos not + by, sin not).

nzl1

s | ¢s méthodes a retenir

On note

CM7y le K-espace vectoriel des applications R — K, T-périodiques
et continues par morceaux

Cr le K-espace vectoriel des applications R — K, T-périodiques et
continues.
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Chapitre 7 « Séries de Fourier

284

Pour calculer directement,
quand c’est possible,

les coefficients de Fourier
d’un élément f de CMr

Pour étudier les convergences
de la série de Fourier

d’un élément f de C M7,

et préciser sa somme

Pour obtenir

des sommes de séries numériques,
apres avoir calculé

des coefficients de Fourier

2
Appliquer, avec w = ?ﬂ, la définition des coefficients de Fourier expo-

1 i
nentiels (PC, PSI) de f: c,(f) = 7 f®e ™' dt, neZ,
(7]
ou la définition des coefficients de Fourier trigonométriques de f':

2
an(f)z? T]f(t)cosnwtdt, neN,

[
2
b,(f) = T [ ]f(t)sinnwtdt, n € N*.
T

Tenir compte d’une éventuelle parité ou imparité de f.
Pour calculer ces coefficients, utiliser, en général I’'une des démarches
suivantes :

e calcul direct

== Exercice 7.1 a)

° intégration par parties

== Exercices 7.2 a), 7.4 a), 7.7 a), 7.19 a)

* linéarisation

== Exercices 7.3 a), 7.6

* intervention de I’exponentielle complexe

w=> Exercices 7.7 a), 7.19 a).

Appliquer I'un des deux théoréemes de Dirichlet :
* le théoreme de convergence simple, lorsque f est T-périodique et de

classe C'! par morceaux.

== Exercices 7.1 b), 7.19 b)

* le théoreme de Dirichlet de convergence normale, lorsque f est

T-périodique, de classe C' par morceaux et continue sur R.

w=> Exercices 7.2 b),7.3b),7.4b),7.6,7.7,7.21 c).

Appliquer un des deux théorémes de Dirichlet ou une formule de
Parseval.

== Exercices 7.1¢),7.2¢),7.3¢),7.4¢),7.7¢c),7.19b),7.21 c)

Les sommes de séries dont le terme général ressemble a a,, by, ¢,
proviennent souvent d’un théoreme de Dirichlet.
Les sommes de séries dont le terme général ressemble a a>

|
n i
prOVienl’lent souvent d’une formule de Parse\/al.

2
’ b,p |Cn
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Pour relier entre elles des sommes
de séries convergentes du genre

IERD IS
== et -
— n? = (2p+1)2

Pour calculer

les coefficients de Fourier
d’une fonction,

lorsque le calcul direct
ne parait pas faisable

Pour obtenir une égalité entre
une fonction et une somme
de série trigonométrique

Pour obtenir une inégalité
portant sur des intégrales
de carrés de fonctions

Enoncés des exercices

Séparer, dans une somme partielle, les termes d’indices pairs, d’in-
dices impairs, puis passer aux limites.

== Exercices 7.1¢), 7.2 ¢), 7.7 c).

Exprimer la fonction comme somme d’une série de fonctions et mon-
trer que ’on peut permuter intégrale et série par I'une des trois
méthodes habituelles (cf. les méthodes a retenir du chapitre 5).

== Exercices 7.14, 7.15, 7.16, 7.17 a), 7.22 b)

Ne pas confondre 1’indice d’un terme de la sommation donnant f ini-
tialement, et 1I’indice concernant le terme d’une série de Fourier.

Essayer d’appliquer un des deux théoréemes de Dirichlet a une fonc-
tion bien choisie.

== Exercice 7.6.

Essayer de se ramener, quand c’est possible, a une inégalité portant
sur des sommes de séries numériques, en utilisant une formule de
Parseval.

== Exercices 7.9, 7.11, 7.13.

== Fnoncés des exercices

- Exemple de développement en série de Fourier, créneau

Soit f : R — R, 2m-périodique, paire, telle que, pour tout t € [0; 7] :

f=1si0<1 <

, ﬂn=0mr=g, fmz—lag<z<m

Y

a) Vérifier f € CM,r et calculer les coefficients de Fourier (trigonométriques) de f.

b) Etudier les convergences de la série de Fourier de f et préciser sa somme.

+00 (1)1) +00 1 +00 1

c) En déduire les sommes de séries suivantes : Z il Z 2pt ) Z —-
p p n

p=0 p=0 n=1

e Exemple de développement en série de Fourier, dent de scie continue

Soit f : R — R, 2m-périodique, impaire, telle que :

ﬂn:tﬁ0<z<g,

f®)y=n—t sigézéw.
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- 7.6
— 7.7
— 7.8

a) Vérifier f € C My, et calculer les coefficients de Fourier (trigonométriques) de f.
b) Etudier les convergences de la série de Fourier de f et préciser sa somme.

c) En déduire les sommes de séries suivantes :

+o0 1 +ool 400 1 +ool

Exemple de développement en série de Fourier, courant redressé
Soit f : R — R, t — |sint|.
a) Vérifier f € CM; et calculer les coefficients de Fourier (trigonométriques) de f.

b) Etudier les convergences de la série de Fourier de f et préciser sa somme.

¢) En déduire les sommes de séries suivantes : _ s .
— 4n? — 1 — 4n? — 1 — 4n? —1)2

Exemple de développement en série de Fourier, raccord de paraboles
Soit f : R — R, 2mw-périodique, impaire, telle que : V¢ € [0; 7], f(t) =t(m—1).
a) Vérifier f € C My, et calculer les coefficients de Fourier (trigonométriques) de f.

b) Etudier les convergences de la série de Fourier de f et préciser sa somme.

+00 +0oo +00
. .. (=DHr 1 1
c) En déduire les sommes de séries : Z
p=0

Qp+ 1P Z(2p+1>6’ 2w

p=0 n=1
Coefficients de Fourier nuls
0 .
Soit f : [—m; m] —> C continue telle que : Vn € Z, / f®)e"dt =0.
-7
Montrer : f = 0.

Exemple de développement en série de Fourier

+00
Montrer qu’il existe une suite réelle (o, ),y telle que : Vi € R, |cost| = Z o, cos 2nt,
n=0

et déterminer une telle suite (ay,),en.

Exemple de développement en série de Fourier avec parametre

Soit A € ]0; 4-o0[ fixé. On considere I’application f : R — R, 27-périodique, telle que :
Vte]—m;7], f()=ch(\r).

a) Vérifier f € C My et calculer les coefficients de Fourier (trigonométriques) de f.

b) Etudier les convergences de la série de Fourier de f et préciser sa somme.

+o00 (_l)n +00 1 “+00 1
¢) En déduire les sommes de séries suivantes : Z Z Z

= )\2+n2’ — )\2+I’l2’ — ()\2+n2)2.
Calcul d’une intégrale par utilisation de ((2)
. T x —E(x)
Existence et calcul de I = ——dx.
1 X
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Enoncés des exercices

7/} Inégalité sur des intégrales

2
Soient T €]0; +o0o[, w = 771-, f :R — C, T-périodique, de classe C', telle que :

2m
Vne{-1,0,1}, fe™dr=0.
0

1
| I 2 . ,
Montrer : || f]l2 < Ellf [l2, ou: [[fll.= (?/ If(t)lzdt> , et de méme pour || f]].
0

7411 Nullité de certains coefficients de Fourier

Soit f : R — C, 2m-périodique, continue.
2

On suppose : Yk € Z, f &)@V dr = 0. Montrer que f est 7-périodique.
0

741/ Inégalité sur des intégrales
Soient 7 > 0, f : R — C, T-périodique, de classe C' par morceaux, continue.

lfOTf

T

2

T T2 T
Montrer : / P < — IfI1?+
0 47 Jo

74174 Nullité d’une fonction par orthogonalité

On note, pourtoutn € Z : ¢, : R — C, t — el Op = €n—1 + ey + enyi.
Soit f € Cyr telleque : Vn € Z, (p, | f) =0, pour le produit scalaire usuel sur Cyy.
Montrer : f = 0.

7/ 53| Inégalité sur des intégrales

Soit f : R — C, 2m-périodique, de classe C 2 par morceaux, de classe C L

2m 2m 2m
Montrer : 4/ |f|2+2/ Lf 25/ LfP.
0 0 0

57 Série de Fourier d’une série trigonométrique complexe

Soit (,)nez une suite (indexée par Z) a termes dans C.

P
Onnote, pourtoutp e N: §, : R — C, 1 +— Z et
k=—p

On suppose que la suite (S,) ey converge uniformément sur R vers une application notée f.

Démontrer que f est 2m-périodique, continue, et que : Yn € Z, ¢,(f) =,
7[5} Série de Fourier d’une série trigonométrique réelle
Soient ,),>0,(3,)s>1 deux suites réelles telles que la suite d’applications (S,),cn définie par :
o o .
YieR, S,(¢) = =4 Z(ak coskt + [3, sin kt)
2 o
converge uniformément sur R vers une application notée f.

a) Montrer que f est 2m-périodique et continue sur R.

b) Etablir : (Yn >0, a,(f) =) et (Yn =1, b,(f) = B).
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E— YA [ Développement en série de Fourier par utilisation d’une série trigonométrique
1
Soientz € C tel que [z| < l,etf :R— C, t —> ————.
1 + z elt
Vérifier f € CM,r et calculer les coefficients de Fourier exponentiels de f.

e 717 Développement en série de Fourier par utilisation d’une série trigonométrique
1

Soit @ €]0; +oo[.Onnote f : R — R, t +—> —F—.
cha + cost

a) Vérifier f € CMy, et déterminer les coefficients de Fourier (trigonométriques) de f. On
pourra utiliser 1’exercice 7.15.

b) En déduire, pour toutn € N :

/’T cosnt dt m(—=1)"e " . /” sinnt A
= (¥ —_—
o cha+ cost sha o cha+ cost
1
——dr.
(cha + cost)?

K
c) Calculer : I = /
0

—r—1r— 7/ 11 Calcul d’intégrales, connaissant ((2)
1 In(1 +oo -1 n—1 2
a)Montrer:f mdxzz( )2 =T
0 X ~ n 12

(Utiliser I’exercice 7.1 ou I’exercice 7.2.)

b) En déduire les valeurs des intégrales suivantes :

0 /‘1 Inx dr. @ /1 Inx
0 1+x ’ 0 1—x

d. G /l Inx dx
9 0 l_xz b

1 xz Inx 1 +00
puis de : (4) / 2—1dx, (®)] / InxIn(l +x)dx, (6) / In thx dx,
0o X°— 0 0
+00 +oo
) f — 4 ® / T dx.
0o e e o - —1
—r—r— 7,2} Exemple de développement en série de Fourier, calcul d’une intégrale

Soient x € [0; +ool, f : R — R, 27-périodique, telle que f(m) =0 et :
Vte]—m;n[, f(t) =shuxt.
a) Vérifier f € CMypr et calculer les coefficients de Fourier (trigonométriques) de f.

b) Etudier la convergence de la série de Fourier de f, et montrer :

X 2(-1)"'nshmx

Vte]l—m;a[, shat = ———————sinnt.
] L ; m(n? + x2)
) En dédui /‘+°° cos xt ds ™
¢) En déduire : = .
0 cht 2ch ™
2
I 7/7A\) Utilisation des coefficients de Fourier pour la détermination d’une fonction assez réguliere

Déterminer I’ensemble des applications f : R —> C, 27w-périodiques, de classe C, telles
quiil existe M € Ry tel que : V(n,x) e Nx R, |f™(x)| < M.
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Du mal a démarrer ?

— Calcul d’intégrales utilisant des séries de Fourier

Soit v € |1 ; +00[.

a) Montrer :

b) En déduire :

¢) Etablir :

oo gy luﬁ—ku’é
ozf =/ du.
0 ta+1 0 1+M

+oo g +00 (—1)"+lz

! «

a at ) —*
A
n o2

+002_1n+1 1 1
vrelo: Y D7 x —
n=1

— m(n2 —x%)  sinmx  wx

en étudiant, pour x €]0; 1[ fixé, la fonction f:R — R, 27w-périodique, telle que
f(t) = cosxtsit €] —m; .

d) Démontrer :

m

+00 -

/ a g
=—.
o 1+l g
«

e) En déduire les valeurs des intégrales suivantes :

+00 tx—l +00
1)/ dr, x €10; 1] 2) / 2In(1+86)dr, x €]0;1[
0 1+1¢ 0

+00 eat
3) / —dt, (abc)eR b<a<c

eb[ + et

4) f+0<> et dr ( ) . RZ | | 5) /+oo chat
s , s <
o Chet ae a=c o chet

dr, (a,c) € R?, |a| < c.

—— — — /724" Trouver une fonction dont les coefficients de Fourier vérifient des inégalités

Soit (a,),>0 une suite a termes dans R, , convergeant vers 0.

a) Montrer qu’il existe une extractrice o telle que la série Z Q) converge.

n=0

b) En déduire qu’il existe f:R — R, 27-périodique, continue, telle que, en notant
a,(f), b,(f) (n € N) les coefficients de Fourier trigonométriques de f, il existe une infinité de
n € N tels que : |a,(f)| + |b.(f)] = «,. (Utiliser I’exercice 7.15.)

e Du mal a démarrer ?

a) « Tracer la courbe représentative de f et montrer
f € CMy.

- Les b, sont tous nuls. Pour calculer a,, appliquer la définition
des coefficients de Fourier trigonométriques de f.

b) Appliquer le théoreme de Dirichlet de convergence simple.
) * Appliquerb)ent = 0.

« Appliquer la formule de Parseval réelle.

« Séparer en termes d'indices pairs, d'indices impairs,d’abord sur
des sommes partielles, puis passer a la limite.

a) - Tracer la courbe représentative de f et montrer
f €CMy.

« Les a, sont tous nuls. Pour calculer b,, appliquer la définition
des coefficients de Fourier trigonométriques de f. Utiliser une
intégration par parties.

289



Chapitre 7 « Séries de Fourier

290

b) Appliquer le théoreme de Dirichlet de convergence normale
(PC, PSI) ou simple (PT).

c) * Appliquer b) en t = %

« Séparer en termes d'indices pairs, d'indices impairs,d'abord sur
des sommes partielles, puis passer a la limite.

« Appliquer la formule de Parseval réelle.

« Séparer en termes d'indices pairs, d'indices impairs, d’abord sur
des sommes partielles, puis passer a la limite.

a) « Tracer la courbe représentative de f et montrer
f € CMyr.

« Les b, sont tous nuls. Pour calculer a,, appliquer la définition
des coefficients de Fourier trigonométriques de f, en n'oubliant
pas qu'ici la pulsation est @ = 2. Utiliser une linéarisation.

b) Appliquer le théoreme de Dirichlet de convergence normale
(PC, PSI) ou simple (PT).

¢) + Appliquerb)ent =0,ent = %

« Appliquer la formule de Parseval réelle.

a) « Tracer la courbe représentative de f et montrer
f eCMy,.

* Les a, sont tous nuls. Pour calculer b, appliquer la définition
des coefficients de Fourier trigonométriques de f. Faire deux
intégrations par parties successives, en gardant le facteur
t(w —t) groupé.

b) Appliquer le théoreme de Dirichlet de convergence normale
(PC, PSI) ou simple (PT).

c) * Appliquer b) en t = %

« Appliquer la formule de Parseval réelle.

« Séparer en termes d'indices pairs, d'indices impairs, d’abord sur
des sommes partielles, puis passer a la limite.

Considérer g : R — C, 2r-périodisée de f.

Développer t — | cost| en série de Fourier, puis expri-
mer les cos 2nt a I'aide de cos %nt.

a) « Tracer la courbe représentative de f (pour A fixé) et
montrer f € CMy;.

« Les b, sont tous nuls. Pour calculer a,, appliquer la définition
des coefficients de Fourier trigonométriques de f. Utiliser I'ex-
ponentielle complexe, ou bien faire deux intégrations par par-
ties successives.

b) Appliquer le théoréeme de Dirichlet de convergence norma-
le(PC, PSI) ou simple (PT).

c)* Appliquerb)ent =0,ent = .

« Appliquer la formule de Parseval réelle.

1) Existence : Etude en +o0o par majoration.

N+l _ |
2)Calcul :Pour N € N*,décomposer lintégrale / X %(x) i
1 X

a l'aide de la relation de Chasles, en faisant intervenir

n+1 x—n

= [ 5— dx. Calculer I, et terminer.

P
n

Appliquer la formule de Parseval complexe a feta f, et uti-
liser la formule donnant les coefficients de Fourier exponentiels
de f” en fonction de ceux de f.

Considérer I'application
g:R—C, t+— ft+m)— f(0).

Appliquer la formule de Parseval complexe a feta f/, et uti-
liser la formule donnant les coefficients de Fourier exponentiels
de f” en fonction de ceux de f.

Noterg : R —> C, t+—> (& —2+4 ™) f(1),
etmontrer: VneZ, (e,|g) =0.

En déduire, convenablement, ¢ =0, puis, convenablement,

f=o0.

Appliquer la formule de Parseval complexe a f;a f7,a f”, et
utiliser les formules donnant les coefficients de Fourier expo-
nentiels de f” et de f” en fonction de ceux de f.

1) Montrer que fest 2-périodique, par limite simple.
2) Montrer que f est continue, par limite uniforme.
3) Montrer, pour tout n € Z fixé :

1 : 1
— Sp(t)yedt — —
poo

F@)e " dr.
21 [27] 21 [27]

a) « Montrer que fest 2-périodique, par limite simple.
+ Montrer que fest continue, par limite uniforme.

b) Montrer, pour tout p € N fixé :

1 [T 1 [~
7‘/ S, (t) cos pt dt lim f/ f(t)cos ptdt.
b4 T )

=1

1
Développer ———— a l'aide de la série géométrique, puis
Il 4= z@"

montrer que l'on peut permuter intégrale et série.

a) Utiliser I'exponentielle complexe pour obtenir :

VieR, f(z):L( CANN )

sha \elf +e? eit +e@
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puis utiliser la série géométrique pour obtenir :

1 2 400
vVt eR, )= — +— —1)te ™™ t,
€ f@) sha + sha ’;( )'e " cosn

et enfin montrer que I'on peut permuter intégrale et série.
¢) Appliquer la formule de Parseval réelle.

a) Utiliser le DSE(0) de x — In(1 + x) . Par continuité et
convergence uniforme sur un segment, montrer que I'on peut
permuter intégrale et série. Obtenir :
/' In(d+x +2‘° (—1)2"—1 .
0 X = oo

b) 1) Intégration par parties.

2), 3) Noter

L I I
1=/ ¥ dx, J:/ 2 dx, K:/ M.
0 1+ x 0 14+x 0 1 —x2

Montrer:I +J =2K, I =4J —4K. En déduire J,K.

4) Séparer par linéarité.

5) Intégration par parties.

6) Changement de variable u = th x.
7) Changement de variable u = e*.
8) Changement de variable u = e™*.

a) Pour calculer les by, utiliser I'exponentielle complexe, ou
bien deux intégrations par parties successives.
b) Appliquer le théoreme de Dirichlet de convergence simple.

cosxt

¢) Développer a l'aide de la série géométrique, montrer

chr
que l'on peut permuter intégrale et série par étude de l'intégra-
le du reste, et obtenir :

Du mal a démarrer ?

/+°° cosxt *2” 2(—1)"(22;1 4 12)_
0 cht = @Cn+ 1) +x
Utiliser enfin b).
1) Soit f convenant. Utiliser la relation exprimant les coeffi-
cients de Fourier exponentiels de f®) en fonction de ceux
de f.En déduire :
YneZ—{—1,0,1}, cua(f) =0,
puis montrer :

VxeR, f(x)=ci(f)e™ +co(f)+ei(f)e.
2) Etudier la réciproque.
1
a) Relation de Chasles et changement de variable v = "

dans une des deux intégrales, puis changement de variable
u=t"

1
b) Utiliser le DSE(0) de u +— 1 et montrer que l'intégrale

+u
du reste tend vers 0.En déduire que I'on peut permuter intégra-
le et série.

¢) Appliquer le théoréeme de Dirichlet de convergence normale a f.
d) Utiliser b) et c).

e) 1) Changement de variable u = #*.

2) Intégration par parties.

3) Changement de variable u = e“~2)!,

4) Cas particulier de 3). 5) Appliquer 4).

a) Construire o (0) tel que as@©) < 1, puis o (1) tel que
aq ) +as) < 1,etc.

b) Considérer la suite réelle (u,),>0 définie, pour toutn € N, par
u, = o, s'il existe k e N tel que n =o(k), u, =0 sinon, et
considérer, pour tout n €N, lapplication f, :R — R,

t —> u, cosnt.
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a)

y=r(@

- T 0 F
2

Il est clair que f est 2m-périodique et continue par morceaux
sur R donc f € C My, et les coefficients de Fourier (trigono-
métriques) a,, b, (n € N) de f existent.

Puisque f est paire,ona: Vn € N*, b, =0.

On a, pour tout n € N, en utilisant la parité de f:

2 (" 2 (7
anz—/ f(t)cosntdt=—f S () cosnt dt
21 J_» T Jo

2/ (72 ©
= 7</ cosntdz—/ Cosntdt>.
7T 0 s

2

On a donc ay = 0, et, pour toutn > 1 :

@y = 2 ([smnt] 2 — [ sinnt] /2)

™

n(n3)
—sin(n—=).
™™ 2

A=y
m2p+1)°

On a donc, pour tout p € N :
a, =0 et  ayy =

b) Puisque f est 2m-périodique et de classe C' par morceaux,
d’apres le théoréme de Dirichlet de convergence simple, la série
de Fourier de f converge simplement sur R et a pour somme

la régularisée f de f.
On a donc, pour tout 7 € R :

Fo=Lran + ra) =3 2 cocp+ 1
2 = m2p + 1)

c) * En remplacant ¢ par O dans le résultat de b), on obtient :

400 4(—1)P +00 —1)?
Z¥=l,donczz( ) =I.
= T2p + 1) = 2p+1 4

¢ Puisque /' € CM,,, d’apres la formule de Parseval réelle, on a :

2 +00 T

ag 1 3 1 /’ 2

— 4+ = b)) = — 1)) dr

L +2;(an+ D=3 (F0)
N 16 1 ("
c’est-a-dire ici : 3 [Z:(; m = ;/0 dr =1,

400 1

T
d’ou : —_— = —.
IZ:(; Q2p+1)? 8

= Corrigés des exercices

*Soit N € N. On a, en séparant les termes d’indices pairs, d’in-
dices impairs :

2N+1

N
Y Z<2p>2 X;<2p+1>2

n=1

D’ou, en faisant tendre I’entier N vers 1’infini, et puisque les
séries qui interviennent convergent :

n=1 plp

donc :

Réponse :
f(—l)”_ﬂ f 1 _7r2 il_ﬂ'z
= 2p+1 4 = Q2p+1)? 8’ — n? 6
a)
y
y=£@
_T
—7T 2 (0}
T t

e

Il est clair que f est 2-périodique et continue par morceaux sur
R (et méme, continue sur R), donc f € C M, et les coefficients
de Fourier (trigonométriques) a,, b,, (n € N) de f existent.

Puisque f est impaire,ona:Vn e N, a, =0.

On a, pour tout n € N*, en utilisant I’'imparité de f :

™

2 2 (7
by=>— | f@®)sinntdt = —/ f(t)sinnt de
27T —r ™ Jo

P /2 T
—(/ tsinntdt—i—/ (ﬁ—t)sinntdt)
m™xJo /2
P) w/2 /2
= —(/ tsinntdt—i—/ usin(mr—nu)du)
Uu=m—1m 0 0

o) /2 /2
=—(/ tsinntdt—(—l)"/ usinnudu)
T™NJo 0

P /2
==(1+ (—1)”)/ tsinnt dr.
™ 0



Il s’ensuit : V p € N*, b, =0,

et, pour tout p € N, grice a une intégration par parties :
4 /2

by = —/ tsin(2p + 1)t dt
™ Jo

3 4([ tsin(2p+1)t]"/2 /”/2 cos (2p + 1)t dt)
T 0 0

2p+1 2p +1
_ATsinQ@p+ D] 4=y
o 2p+1 o T2p+1?

b) Puisque f est 2m-périodique, de classe C! par morceaux
sur R et continue sur R, d’apres le théoreme de Dirichlet de
convergence normale (PC, PSI), la série de Fourier de f
converge normalement (donc uniformément PSI, absolument,
simplement) sur R et a pour somme f.

=X 4-1nr

Onadonc:VieR, f(t)=)

p=0

Remarque : La convergence normale résulte aussi de :

4=DP .
VpeN,VieR, | ———sinQCp+1)t| < ——
P @p+ 2 P VIS T, e
et de la convergence de la série numérique Z ;
. T L ap e

r=0

¢) * En remplacant ¢ parg dans le résultat de b), on obtient :

e 4 T\ T
p;w(Zp—l—l)Z _f(§> T2

+00 1 2

27_“_
~ep+1? 87

donc :
*On a, pour tout N € N*, en séparant les termes d’indices pairs,
d’indices impairs :

2N+1

1 N
L=l & +Z e

p=1

D’ou, en faisant tendre 1’entier N vers I’infini, et puisque les
séries qui interviennent convergent :

Pa-if Sty

plp

+ool

d’oﬁszﬁz

n=1

4 7% ?

12(2p+1)2_38 T 6

* Puisque f € CMy, ona, d’apres la formule de Parseval réelle :

2 +00 T
a , 1 2., 12 1 / 2
— 4 = b)) =— 1)) dt
4 +2;(”"+ = ,W(f( )

c’est-a-dire ici :

il Z&8 16 1
Egm:%/ (f0) e
1 ™ 2 1 /‘7{‘ 2 ‘/~ﬂ' 2
= = t dt = — t-dt — — 1) dt
W/O (ro)a=~( [ [ @ )
1 /2 3 /2 3
= ;(A t dt—i—A u du)

2 [ 2132 7P
=—/ tzdtz—[—] =,
T Jo wL3lo 12

400 1 2 w2 gt
dou:y —— T _ T
ol ;(2p+1)4 16 12 96

e Comme en /), en séparant les termes d’indices pairs, d’in-
dices impairs et puisque les séries qui interviennent convergent,
ona:

+00 1

Z n# Z (210)4 Z; Cp+ 1D’

donc :
i’i 1 i’i 1 16 7t _ 7t
Snt &g @p+Dt 1596 90
4
+oo 1 71,2 + 1 71_2
Réponse : —_— = — =,
f 1 _ 7t f: 1 t
p=0 (2p + 1)4 967 =) 714 90

a)

—-T

2y = fi1)

-

2 2
L’application f : t — | sin?| est m-périodique et continue par
morceaux (car continue), donc f € CM,, et les coefficients de
Fourier (trigonométriques) a,, b, (n € N) de f existent.
Comme f est paire,ona: Vn € N*, b, =0.

On a, pour toutn € N :

2 ks
—/ f(t)cos2nt dt =
™ Jo

2 ks
a, — / sin ¢ cos 2nt dt
™ Jo

] ™
= —/ (sin(2n + 1)t — sin(2n — 1)r) dt
™ Jo

cos (2n — l)t]"
2n — 1 0

_ 1 [ cos 2n + 1)t
2n + 1

_ 1( 1 1 )_ 4
T a\2n+1 2n—1/ " w@n?:-1)
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4
m(4n? —1)
VneN* b, =0.

VneN, a =—
On conclut :

b) L application f est 7-périodique, de classe C' par morceaux
sur R, continue sur R, donc, d’apres le théoreme de Dirichlet
de convergence normale (PC, PSI), la série de Fourier de f
converge normalement, donc uniformément (PSI), absolu-
ment, simplement, sur R et a pour somme f. D’ou :

+00
a
VieR, |sint| = 7" + > (@, cos2nt + b, sin2nr)
n=1
2 = 4
=SS Z 240082711‘.
T = w(4n? — 1)

¢) * En remplacant ¢ par O dans le résultat de b), on obtient :
3= 4
0=-— _,
m ; w(4n? — 1)
+00 1 1
d’ou : — ==
o ; o1 2
* En remplacant ¢ par g dans le résultat de b), on obtient :

2 ¥ 4

1=y _*
T ;7[’(4]’!2—1)

+00
(=D" w2 1 7
"ol : =T(Z-1)=--"
ohi ) A 4(71' ) 27 3

n=1

(=",

e Puisque f € C M, d’apres la formule de Parseval réelle :

ao _ Z( a>+b?) = —/ (f(t))zdt

c’est-a-dire ici :

]+]+ZOO 16 I/W'ztdt
— + = _ = — sin
w24 mEn? -1 7y

1 [T 1 sin2t " 1
— (1 — cos2nt)dt = — |t — = -,
7 Jo 2T 2 g 2
+00 1

et on conclut :
Z _ 1 1 _ w2 —2
—@n2-12  8\2 ) 16 °

S| I (=) 1 =
Ré : — = —__Z
. ; m—1 2 ; m_1 2 4

oo| 3,

a) Il est clair que f est 27-périodique (par définition) et
continue par morceaux (et méme continue) sur R, donc les coef-
ficients de Fourier (trigonométriques) a,, b, (n € N) de f
existent (voir schéma ci-apres).

I
NE]
| a

y =f(t)

De plus, f est impaire, donc: Vn € N, a, = 0.
On a, pour tout n € N* :

™

2
b, = f@)sinntdt = = | f(t)sinntdt

2 2]

-

2 m
= —/ t(m—t)sinnt dt
™ Jo

2 cos nt
5 (-0 -
ipp T n Jo

™

2
= —— (2t — ) cos nt dt

t
( 74268 dt)

™ Jo
sin nt T _sinnt
- ([(2; — ) ] | 2 dz)
ipp ™ 0 0 n
4 T 4 1 cosntqT
= — sinntdt = ——[ ]
wn? Jo m2L n lo
. 4(1 — (—1)”)
a mn3 ’
VneN, a,=0
On conclut : 4(1 — (—1)
VneN, b, = (—(3))
n’

b) Puisque f est 2-périodique et de classe C! par morceaux et
continue sur R (et méme de classe C! sur R), d’apres le théo-
reme de convergence normale de Dirichlet, la série de Fourier
de f converge normalement (PC, PSI), donc uniformément (PSI),
absolument, simplement, sur R et a pour somme f. On a donc :

VteR, f(t)=— + Z(a,, cos nt + b, sinnt)
=1

sin nt.

g

En particulier :

oo 4(1 —(=1)"
Vit e[0;n], t(ﬂ—t):igsinnt.

mn3
n=I1



c) 1) En remplagant # par g dans le résultat de b), on obtient :

RN 4(1 — (—1)”) o

T (1)

_ +00 8 T _ +o0 8(—1)”
; T@pr i on ((2” * DE) =2 2p+ 1)

p=0

car les termes d’indices pairs sont tous nuls, d’ou :
= Cp+13 32

2) Puisque f est 2w-périodique et continue par morceaux
sur R, on a, d’apres la formule de Parseval :

a—5+1§(a2+b2)= i/ (f(0))*di
4 2T T 0 Jon
noté PM noté SM
Ici:
+00 1\ 2 +00
PM:%;m(l 7r2;61)) _ 3217 0(21)—1{—1)6

car les termes d’indices pairs sont tous nuls, et :
SM = fﬂ () d = 1/ﬂ(z( n)’ dr
T or ) T i

1 [ 1rs i 13
S / (* — 27 + 2n?) dr = [ S LA wz—]
™ 0 ™

5 4 3 Jo
5 4 3 4
LG -nE D)< (-1e -5

1 mt

32
Onadonc: =) —— = —,
n a donc = p2=(; (Zp + 1)6 30

+00 1 71'6
d’ou: —_— = —
; 2p+D° 960

3)On a, pour tout N € N, en séparant les termes d’indices pairs,
d’indices impairs :

2N+1 1 N 1 N 1
Z _6 = 2 6 + Z 2 1 6
= n° = 2p) = Cpt+D)

N
Z 2p+1)6’

d’ou, en faisant tendre 1’entier N vers ’infini, et puisque les
séries qui interviennent convergent :

1
262,,6 ZW’

et donc :

Snt L4 @p+ 1T 63960 945°
26
Ré i (=D* 7r3
eponse : = —
P @r+ 1P 32

f 1 _ w0 f: 1 _ 70
= Q2p+1)° =960’ n® 945"

Considérons I’application g : R — C, coincidant avec
fsur [—7; w[ et 2w-périodique.

- (0] T t

Ainsi, g € CMo.
Les coefficients de Fourier exponentiels de g sont, pour
new:

1 (7 ) 1 [7 )
cn(g) = — / g)ye"dr = —/ f@)edt=0.
s 2w J_»

27

D’apres le cours, il en résulte g = 0, donc, en particulier :
Vte[—m;n[, f(t) =g@) =0.

Enfin, comme fest continue en 7, on a aussi f () = 0, et on

conclut : f = 0.

Nous allons développer f —> | cos | en série de Fourier,
puis exprimer les cos 2nt a 1’aide de cos *nt.
e Lapplication f : R — R, t +—— |cost]|
est w-périodique et continue par morceaux (et méme continue),
donc admet des coefficients de Fourier (trigonométriques), notés

a,,b, (n € N).
De plus, f est paire, donc : Vn € N*, b, = 0.

On a, pour toutn € N :
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P) /2
a, = —/ | cost| cos2nt dt
T™J—n)2

4 /2
= —/ cost cos2nt dt
™ Jo

2 /2
= f (cos (2n 4+ 1t + cos (2n — 1)1) dt
0

T
2[ sin (2n + 1)t
m

sin 2n — l)t]ﬂ/2
2n +1

2n — 1 0

Sin n -+ - m (zn — -
S.

- %( 2n+ 1 2n—1 )
_ z((—l)" _ (—1)") _ 4(=D)"
m\2n+1 2n-—1 w(4n?2 —1)°
4(_1)n+l
VneN, g = ———
On conclut : w(4n? — 1)

VneN* b, =0.

« Puisque f est 27-périodique, de classe C! par morceaux et
continue sur R, d’apres le théoreme de Dirichlet de convergence
normale, la série de Fourier de f converge normalement (PC,
PSI), donc uniformément (PSI), absolument, simplement, sur
R et a pour somme f.

Ainsi, pour tout t € R :

f@)

+00
ay .
= —+4+ E a, cosnt + b, sinnt
2 n=1 ( )

2 IR 4(-1)t!
= = — cos2nt
- +n2=1:7r(4n2— D e

2 X 41!
2

= - —2 t—1
L wn? — )( cos’n )
2 400 4(_1)n+1 +00 8(_1)n+| 2
— (=2_ t
<7r ;w(4n2—1))+;7r(4n2— 1) cos
——————
noté oy note a,

+00
= E «, COS znt.
n=0

Ceci montre 1’existence d’une suite réelle (c,),cn convenant.

De plus, en remplacant ¢ par 0 dans la formule initiale, on dé-

4 1 n+l1
duit: 1 = _+Z7T(E|-I’l ) , puis :

2 §4( D2 2\ 4
= 7T(4n2—1) T ) ’

a)

y
ch(Ar)

y=fix

11 est clair que f est 2-périodique (par définition) et continue
par morceaux (et méme continue) sur R, donc f'admet des coef-
ficients de Fourier (trigonométriques) notés a,, b, (n € N).
De plus, f est paire, donc : Vn € N*, b, =0.

On a, pour toutn € N :

f()cosntdt =

a, = —

2 s
f/ ch A\t cosnt dr.
27 Jiom 7 Jo

1" méthode : utilisation de I’exponentielle complexe :
Ona:

2 T e)\l +e—)\t eint +e—in1
Gl = —/ dr
™ Jo 2 2
_ %(e()‘“”)‘ 4 e | oA e(—)\—in)r) ds
s
1 e()\+in)t e()\—in)t N e(—)\+in)t N e(—/\—in)t ™
B A+in  A—in  —A+in  —A—-in],
1 e()\+in)7r N e(/\fin)ﬂ N e(—/\+in)7r N e(fx\fin)ﬂ'
T2\ A+in  A—in  —X+in  —X—in

( l)n AT (_l)ne/\ﬂ‘ (—1)”67/\71— (_l)ne—)\fr
o A+in A—in A—in A+in

1 N 1 1
g —l n T viy
27r( )'(e ¢ )<)\+in+)\—in>
_ (=D"sham 2\
- s A+ n2

2¢ méthode : Utilisation de deux intégrations par parties :
Ona:

™
/ ch At cos nt dt
0

sh \r T ™ sh At .
= ——cosnt| — — (—nsinnt) dt
ipp A 0 o A

—1)"sh A g
= ()%—f—%/(; sh \z sinnt d



 (~1y'shax
ipp A

I n ([ ch\t
A

) W T ch M\t
sinnt | — (ncosnt) dr
o Jo A

(=D"shAr  n? [T ch\t
=) - — —— cosnt dr.
A XS A
D’ou :
s
/ ch A\t cos nt dr
0
. 1 (=D"shAxr . (=D)"Ash A7
2 by 2 2 ’
14 % AN +n
2(—1)"Ash Aw
etdonc: a, = —_——
(A~ + n?)

b) 1l est clair que f est 2w-périodique, de classe C! par mor-
ceaux et continue sur R, donc, d’apres le théoreme de Dirichlet
de convergence normale, la série de Fourier de f converge nor-
malement (PC, PSI) (donc uniformément (PSI), absolument,
simplement) sur R et a pour somme f. On a donc :

+00
VieR, f(t)= % + ;(a,, cosnt + by sinnr)

snt.

shar X 2(=1)"Ash A7
= + co
AT Z (A + n?)

n=1

En particulier :

h A X 2(=1)"Ash A
S 7T+Z( )" Ash A

Vte[—m;7w], chAt =
[ ] AT 7T(/\2+Vl2)

n=1
c) 1) En remplagant ¢ par 0 dans le résultat de b), on obtient :
shar X 2(=1)"AshA
o
AT T\ + n?)

1=

n=1
+o00
=" T sh Aw
d’ou: = — .
ot ;)\2-}—712 2)\sh)\7r< AT >
2) En remplagant 7 par 7 dans le résultat de b), on obtient :
shar X 2(=1)"Ash Ar
+ -
AT Z T\ + n?) =D

chAm =

n=1

+00 1

h \
Z = il Ch)\ﬂ'—s il .
A +n2  2XshArw AT

n=1

d’ou :

3) Puisque f est 2m-périodique et continue par morceaux,
d’apres la formule de Parseval réelle, on a :

2 +00
@ 1 ., 1/ 2
s Py = — n) dr.
4 “LGzl(a"Jr W= 2 o (f( ))

—_—
noté PM noté SM
B v — ((SPATY? LIS 4N sh’
' U 2= w2 (N +n2)?

sl = wa (f()*dr = l/ﬂchzktdt
— ™ Jo

2 ),

l ™
= —/ (1 4+ ch2Ar)de
271' 0

1 sh2\rm 1
[z A ] (7r aF

B B sh2/\7r)
Y 2\ lo ™ 27 ’

2\
Donc :
+00 1

)y (AN +n?)?

n=1

[i(

sh2\r sh A2 m*

2T AT 20\% sh? A7
_ N7+ ArshArch Ar — 2sh*Ar
- AN*sh? A ’

1) Existence :

S x —E(x) .
L’ application f : x — ——5—— est continue sur [1; 400,
X

1
et:Vxe[l;+oof, 0< f(x) < —.
P

D’apres I’exemple de Riemann en 400 (3 > 1) et le théoreme

de majoration pour des fonctions > 0, on conclut que f est in-
+oo

tégrable sur [1; 4oo[, donc I'intégrale I = f(x)dx

existe.
2) Calcul :

Soit N € N*. On a, en utilisant la relation de Chasles :

N+ ¥ — E(x) Yoot x —E(x)
/1 — dx:n;/n —

N oy,
n=1 Y &

————
notée I,

et, pour tout n € N* :

_/"“ 1 n P 1+ n 7!
" FEEY x  2x%],
_ 1 +1 +1 n n
- n+1 n 2\(n+12 n?
_ 1 +1 +1 n+1H—-1 1
B n+1 n 2\ (n+1)2 n

11 1 1 1
T 2\n n+1 2(n+1)?

297



298

1< /1 1 1 & 1
_EZ(Z_nH)_E;(nH)z

1 1 18
===~
2 N +1 2n=2n2
1

1
=l == —_—
2(N +1) 2;n2

121 1 72

— 11— = —=1—-=-—

Noo 2;712 26
E 2
Finalement : f J =1- 7r_'
1 X3 12

Puisque f et f’ sont T-périodiques et continues par
morceaux (car continues), on peut leur appliquer la formule
de Parseval, donc :

1 T +o00
1715 = 7/0 FOPd =Y le(HP

n=—0o0o

1 T +00
1£1B = Ffo 1FORd =Y len(fHI.

n=-—0o0

D’autre part, par hypothese :
c1(f) =co(f) =1 (f) =0.

De plus, comme fest T-périodique, de classe C' par morceaux
et continue sur R, d’apres le cours :

VneZ, c,(f)=inwe,(f),
dot: e (f) =co(f) =c1(f) =0.

On a donc :
WFIB= D lealfHP= Y. nllea(HP
nez, n|=2 nez, \n|=2
> Y laOP=4If15,
nez, |n|=2
1 ’
eton conelut : || 12 < SI1fllo-

Considérons I’application
g:R—C, t+—— f@+m— fQ@).

Ainsi: g =71rf — f.
Puisque f € Cyr, d’apres le cours, on a donc g € Cy et, pour
toutn € Z :

Cn(g) = Cn(T—7rf - f) = Cn(T—ﬂ'f) - Cn(f)
e (f) = en(f) = ((=D" = 1)ca(f).

En particulier (pour n pair) : V p € Z, ¢;,(g) = 0.
D’autre part, par hypothese (pour n impair) :

VpeZ, cpri(f)=0,

donc:VpeZ, crpii(g) =
Ainsi:Vn € Z, ¢,(f) =0.

Comme, d’apres le cours, 1’application

—26‘2p+1(f) =0.

Cor —> CF, fr— (cu())

nez
est linéaire injective, on déduit g = 0, c’est-a-dire :
VieR, ft+m=r@),

et on conclut que f est m-périodique.

Puisque fest T-périodique et de classe C' par morceaux
sur R, donc continue par morceaux sur R, f admet des coeffi-
cients de Fourier (exponentiels), définis par :

2w
w=—,
T

1 (7 :
VneZ, c(f) = —f F@) e ™ dt,
T Jo

et on a, par la formule de Parseval :
1 T +00
2 _ 2
7 [t Y eor

De méme, puisque f' est T-périodique et continue par morceaux,
f" admet des coefficients de Fourier (exponentiels), et on a :

VneZ, c,(f)=inwe,(f),

+00
" —/ IR WA

D’ou:
1 T
7 1= e = af + Sl P
nez n;n’%
2
= leo(HE+ Y 'C"(f)' lo(/)P + Z lea ()P
neZ* nez*
1
= ‘7f ;m(f)ﬁ
I B .
_F/O f +E? |f|
Ve
_ﬁ/o f +ﬁ [fI™

2

T 3 T2 T 3 1 T
Final t: < — ! — .
imtement: [ 17 < 3 [ 1171 +T’/O f




On a, pour toutn € Z :
((pn | f) = (6,,,1 - Zen =F €n+1 |f)
(en—l I f) - 2(6,, I f) + (en+1 I f)

o
Il

1 : : .
(671 (n—1)y _ 2eflnf + efl(nJrl)r)f(t) dr

B Z [27]
1 . . )
= — e (e —=2+e') f(r) dt.
27 Jiam —_—
noté g(t)

L application g est 2w-périodique, continue, et :
VneZ, (e,lg) =0.

D’apres le cours, il en résulte : g = 0.

Ainsi: Vi e R, (e —24+e ) f(r) =0.

. . t
Mais : VreR, ' —2+¢e ' =2cost—2=—4sin2§.
t
On a donc : VteR, (sin2§>f(t):0,
do : VieR—27Z, f(1)=0.

Comme f est continue sur IR, I’égalité est encore vraie, par pas-
sage a la limite, en les points de 277Z, et on conclut : f = 0.

Puisque fest 27-périodique, de classe C? par morceaux

et de classe C! sur IR, les coefficients de Fourier de f, f/, f”
existent et vérifient :

VneZ, c,(f)=inc,(f), ci(f") = ({n)c.(f).

De plus, comme f, f/, f” sont dans CM,, on peut leur ap-
pliquer la formule de Parseval :

1 27 ) 5
4 AU ;Z]cn(m,
1 27T
=[P = Yl = e HI,
27 0 ; gz:
1 2w
| P = Y laE = Y et
™ Jo nez nez
D’ou :

2m 2m 2m
4/ |f|2—5/ |f’|2+2/ £
0 0 0
=2W<4Z|C,,(f)|2—52n2|6n(f)|2

nez nez
+ 2Zn4|cn(f)|2>

nez

=21y (4 —5n® +2n") e, ()

nez
Le discriminant A = —7 est < 0, donc :
YneZ, 4—5n°+2n* >0,

et on déduit I’inégalité demandée.

1)Soitt € R.Ona:VpeN, S,(+2m) =S,().

D’ou, en faisant tendre 1’entier p vers ’infini, puisque (S,),

converge uniformément, donc simplement, vers f :
f+2m) = f(@).

Ceci montre que f est 2m-périodique.

2) Puisque chaque S, est continue sur R et que (S,), converge
uniformément vers f sur R, d’apres un théoréeme du cours,
f est continue sur R.

3) Soitn € Z fixé.

Puisque :

VpeN, VI eR, [S,0)e ™ — f() e ™| < IS,0)—fO)I,

et que (S,), converge uniformément vers f sur R, la suite

d’applications (1 —> S, (1)) _ converge uniformément

p=0
sur R vers I’application t —> f(¢) e,

D’apres un théoréme du cours, il en résulte :

1 / : 1 .
— S,(H)e " dt — — f@®)e'"dt.
27T [27] i P 271' [27]

Mais, comme la famille (z —> e *¥),c; est orthonormale
dans C,; pour le produit scalaire canonique, on a, pour tout

p=n:
i S, (1) efint dr = i 'yki‘/\ eiktefipt dr = 7,
27{' 2] [ — 27r [27] "
R 1 i
d’ou : VYneZ, c,(f) =— f@e M dt =~,.
27 Jiom
a)eOna: VieR,VneN, S, +2n)=S,(»2),

Cs.
d'ou, puisque S, —— f: VieR, f@+2m)=f(),
et donc f est 2m-périodique.

c.u.
e Puisque S, —— fet que les S, sont continues sur R, f est
noo

continue sur R.

b) Soitp € N.
. c.u. ) .
Puisque S, —— f et que t —— cos pt est bornée, la suite
noo

dapplications (1 —> S, (t)cos pt) _ converge uniformément

sur R vers (t — f(¢) cos pt).Deplus, lest — S,,(¢)cos pt
(n € N) sont continues sur le segment [—; 7].

ks

On peut donc intervertir /

-7

et lim, d'ou :

noo
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1T
a,(f) = ;/L (lﬂlgSn(t)) cos pt dt

1 (7.
=- [ ) (1323(5,, (1) cos pt)) dt

1 m
= — lim (/ S, (1) cos pt dt) .
T noo o

Mais, pour tout k de N :

- 2r si k=p=0
/coskrcosptdt: ™ si k=p#£0
- 0 si k#p

™
et /sinklcosptdz:O,
=T

™

1 0 si
d'otr ; VneN,—/ S,,(t)cosptdz:{ n=p
T J_n @

Si nZ>p.
Ainsi : a,(f) = .
1):b,(f) = 0,.

On obtient de méme (pour p >

L'application f est 27-périodique et continue sur R, donc
f € CMy, et les coefficients de Fourier exponentiels ¢,
(n € Z) de f existent.

Soit n € Z. Puisque |ze| = |z] < 1,ona:

1 R0 )
VieR, — = —z ek,
1+ ze" ;( oL

1 ™ efim

~ —dt
2w J_ 1+ zet

- —mt(z( Zelt) )

l /7!’ ( +00 )
= — Sfi(®) |de,
21 J_» ; k

oti on a noté, pour k € N, f; : t —> (—1)kzke

Ona: VkeN,Vt e [-m 7], |i®)] =z

i(k—n)t

Comme |z| < 1,il enrésulte que E fx converge normalement,
k>0

donc uniformément, sur [—; 7]. Puisque chaque f; est conti-

s
nue sur le segment [—7r; 7], on peut alors intervertir / et Z :

+oo T
==> / fi(@) de
k=0 /-

— _Z( 1)k k/ 1(k n)t dr.

T 2r si n=k
Mais : ik=mt qy — .
s /_,re {0 sionEk

(-1)"z" si n=0

0 si

Finalement : Vn € Z, ¢, = { .
n<0

a) L'application f est 2mw-périodique et continue (car
cha > 1 > —cost), donc f € CMy, et les coefficients de
Fourier (trigonométriques) de f existent. Le but de la question
b) étant d'obtenir ces coefficients, nous n'allons pas procéder
de la fagon directe utilisée dans les exercices 7.1 a 7.4.

Ona:
2 el

Vi eR, f(t) = - — = — - .
f® 2cha +ef +e it €2 4 2el" cha + 1

Par une décomposition en éléments simples dans R(X):

2X _ 2X
X24+2Xcha+1 =~ (X+e)(X+e)

_ 1 & CRs
" sha \X+e? X+ed)’

. 1 e’ e
dou: VieR, f(t)=—|— == .
sha \e? +e* ef+e@
Remarquons que, puisque a €]0; +oo[, 0 <e ™ <1 <ef,
d'ou, en utilisant des séries géométriques, pour tout # de R :

1 e—a—it
f( )_E <1+efa+ir - 1+efa7it)

1 o n(,—a+it\n —a—it w— n ,—a—it\n
—m<;(—1) (e iy —e™ T Y (—1)"(e ))

n=0

1 400 . +00 .
= (1 —1)" —na-+int -1 —na—int
Sha( +;( )'e +;( )'e )

n —n(l
sha sha Z( 1)"e "“cosnt.

Puisque : Vn € N*,Vt e R,

(—=1)"e"cos nt‘ < e " etque

0<e?<1,la séried‘applicationsz (t — (—l)”e’"”cost)
n=1

converge normalement, donc uniformément, sur R.

D'apres I'exercice 7.15, on conclut :

2(—1)te "4
Vn e N, a,l(f)zi
sha
Vn e N*, b,(f)=0.
b) D’apres a), on a, pour toutn € N :
T cosnt m(—=1)"e™"
/7(1: = Zah="
o cha+ cost 2 sha
-~ .
1
/&d; = I =o.
o cha+ cost 2



c) Puisque f € CMy,, on a, d’apres la formule de Parseval
réelle, et puisque f est paire :

a() + - Z(an_'_bZ

I 2
=§f_ﬂ(f(t)) dr =

1 ™ 3
/o mdf=fo (ro) a

1 N 1 f 4e=2na s N 2r e
=7al — = — | = — —_—
sh’a 2 sh’a sh’a  sh’a 1 —e 2

n=1

N 2
;/0 (f) dr

D’ou :

w 14e 2 w cha wcha

2al—e2@  sh’qsha sha

In(1 + x)
X

a) Remarquer d'abord que x —
sur ]0; 1].
D'apres le DSE(0) de x — In(1 + x),ona:

estintégrable

+00 (_l)n—lxn

In(l+x)=3 ——,

n=1

vx € [0; 1[,

In(1+x) S (=D xm!

dou: Vxelo:l[, —— =) ————
ou x €] [ < Z

n=1 Z

* La série d'applications Z fasouf,: [O 1] — R converge

=il ( 1)" 1 X" 1
uniformément sur [0; 1]. En effet, pour tout x de [0; 1], la série

numérique Z fa(x) estalternéeet (| £, (x)[), ., décroit et tend
n=1
vers 0. On en déduit :

Vn e N, Vx € [0; 1],

+00
IRl = D /)| < |fur1 )]
k=n+1
x" 1
= <
n+1 n+1’
dou: ||R,|lcc —— O.
noo

* Puisque chaque f, est continue sur [0; 1] et que Z fn

n=1

converge uniformément sur [0; 1], on peut intervertir / et Z,

[ (Er)e

+00 1 ( l)n 1
—Zﬂﬂmw Z
=l

d'ou :

U n(1
/‘ n( —|—x)d
0 X

* En séparant les termes d'indices pairs ou impairs et puisque
les séries envisagées sont absolument convergentes :

+o0 (l)n—l +00 1 400 1

=- aF
; n? ,; 2py? ,,Z(; 2p+1)
1 2 n 2 _ 2
- 46 8 12
N C . . Inx
b) 1) Al'aide d'une intégration par parties, puisque x ——> T
X
In(1
et x — m sont intégrables sur ]0; 1] et que
X
Inx In(1 + x) admet une limite finie (0) en 07 :
/l Inx
dx
0 1 +x
1 1 In(1 2
= [lnx In(1 —|—x)] —/ 711( =) dx = _7T_~
0 0 X 12

T 2 1
2),3) Notons [ =/ Y k= _7r_, 7 :/ nx o,
o 1+x 12 b =

' Inx ..
K = —— dx (qui existent).
0 1 — Xz

' 21Inx
Ona: I—I—J:/ dx = 2K.
0 1—x2
D'autre part :
121
J = / ny2 y dy
[y=+x]Jo 1=V
: 1)—1
g OED =y — 4y —ak
0 1—y?
2K —J =1
On obtient ainsi { 4K — 3JJ _ol
donJ=2=-" e k=2r=_T
onJ =2I=—— e =—I=——
6 2 8

On conclut :

ll 2
/gﬂim:_l,
o 1+x 12

[ e 2
y l—x 6 ), 1—x2 8

x%nx

4) L'application x ——> — 1 est intégrable sur ]0; 1[, et :
2 —

' ¥2Inx f 1
f dx=/ 1—— Inx dx
0 X2—1 0 1—x
/ Inx dx — / Inx
—x2

=[xInx —
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5) Les applications x —> Inx In(1 + x) etx — (x Inx — x)

T+ sont intégrables sur ]0; 1], et (x Inx — x)In(1 + x)
x

admet une limite finie (0) en 0, d'o, par une intégration par
parties :

1
/ Inx In(1 + x) dx = [(x Inx — x)In(1 +x)](l)
0

1
1
—f(xlnx—x) dx
0 X+1

1 1
—an—/ ol 1nxdx+/ L
0 1+x 0 1+x

1 1
—ln2—/ (1——>1nxdx
0 1+x

1
:—1n2—[x lnx—x](])—k-/ lh_l’_x dx—|—[x—1n(1—|—x)]
0

71.2

=2—2n2— —.
12

6) L'application x — Inthx est intégrable sur ]0; +o0f et,
grace au changement de variable défini par u = thx :

f+m1 thx dx = / Inu_y i
n ===
: * T—w2™~7%

7) L'application x ——>
e te

S est intégrable sur [0; +o0] et,

par changements de variable :

+00 +0oo 1
/ _ Y 4 / L
o e +e” m=e1li w(d+uw
1
1
_ _f vinv do
=i b T

u

1 1
:—/ (1——>lnvdv
0 I1+v

1
1 Inv
=|—vinv+v —|—/ — dv
[ ]0 o 1+U
™
12

8) L'application x —> ol 1 est intégrable sur ]0; +o0[ et,
et —

grace au changement de variable défini paru = e :
g U Inu 2
dx = — du = —.
o e —1 0

1 —u 6
a) Il est clair que f est 2m-périodique et continue par mor-
ceaux sur R, donc les coefficients de Fourier (trigonométriques)
de f existent.

De plus, f est impaire, donc :
VneN, a,=0.

sh zx

On a, pour tout n de N* :

™

2 2 ("
b, = f(t) sinnt dt = / shxt sinnt dt
™ Jo

27
217{-/ ( Xt 7kt)( int _ 7mr)dt
1 g g g ] :
— 2_ (e(x+1n)t _ e(x—m)t _ e(—x+1n)t + e(fx—ln)t) dr
17T Jo
1 e(x+in)r e()cfin)r e(7)r4rin)z‘ e(fxfin)r ™
= e N o0 — + B
2im [x—l—m xX—in —x+in —x—m]o

X +in X —in X —in x +in

_ T )" X —Tx 1 1
T 2im S &) x+in x—in

_ 2(—1)"*n shmx
w(n? + x2)

1 e(x+in)7T e(x—in)‘/r N e(—x+in)7r e—(x+in)7r
© 2in
(-1

b) Puisque f est 27-périodique et de classe C! par morceaux,
d'apres le théoreme de Dirichlet, la série de Fourier de f

converge simplement sur R et a pour somme la régularisée f
de f. On a donc :

~ 1
vieR, f(t)= 5(f(t*> + f(7))
Z 2(=)"*'nshmx |

sinnt.
w(n? + x2)
En particulier :
2 shmx &2 (—=1)"t'n
Vt €] —m w[, shxt= sinnt.
] @ 7T[ T Z n2 +x2

n=1

c) En utilisant une série géométrique, on a, pour tout ¢ de
10; +-o0f :
cosxt 2cosxt
cht e 4et

+00
= 2e "cos xt Z(—e_z’)” =
n=0

2e 'cos xt
14+e2

+oo
> ho,
n=0

oltonanoté f,:t e [0;+oo[—> 2(—1)"e~?"+Dicos xt.



Considérons, pour ¢ €]0; +oo[ etn € N, le reste d'ordre 7 :

CcoS xt
R, (1) = Z fit) = me)
k=n+1

Ona:

+00
R, (1) = Z 2(—1)ke@HDicog xt

k=n+1

=2(=1)"tle=@3t cos xt,

1+e 2
d'ou l'intégrabilité de R, sur ]0; +o0[, et :

+00 e
f R, (1) dt| < f |R,(t)| dt
0 0

+00 2
< / 2”@ qr = S—()}
0 2i’l =+ 3 noo

+00

Z, d'ou :

+00
On peut donc intervertir / et
0 n=0

COS)C[
/ Zz( 1)"f e @ icos xt dr.
0 n=0

Et, pourn € N :

+o00 1 +o00 . .
/ e @t Vicosxr dr = > f et (el | o=ixyqy
0 0

1 e(—@ntD+in)
~— 2 |:—(2n+ D +ix

1 1 1
2 ((2n+1)—ix + (2n+1)+ix> B

/+°° cosxt Z 2=1y"2n + 1)
0 cht @n+1)2+x2°

D'autre part, d'apres b), en remplagant ¢ par E :

e(-—@ntD—in)t j|ﬂ>0
T ;
—(2n+1) —ix |,
2n + 1
@2n + 1)2 + x2°

D'ou :

™ 2 shmx &2 (—=1)"t'n sinn”
— = inn—
2 T = on?+x? 2
+00
_ 2 shx Z 2p +21 .
T Cp+1)?2+x
™
+00 1?2 1 s -
d'ofl,six#O:Z( )(’2’+2= 2 - _"__
= Cp+ 1)+ 2 shx 4ch7

. L —DP2p+1
Comme la série d'applications Z X —> M
— @p+ 17+
releve du TSCSA, I'étude du reste montre qu'elle converge uni-
formément sur [0; +o0[, d'ou, en faisant tendre x vers O :

f: =DPCp+1) «

@p+12 4

p=0

+00

.. =DP@2p+1) ™
Ainsi: Vx € [0; +o0], E 2p T S = =
p=0 p % 4Ch7

cos xt ™

+00
et finalement : f dr =
0 cht

X
2ch —
2

1) Soit f convenant.

Puisque fest 2m-périodique et de classe C, pour toutk € N,
f® admet des coefficients de Fourier (exponentiels) et on a :
VkeN,VneZ, c,(f®) = @in)ec,(f).

Soitn € Z —{—1,0,1}.0Ona:

lea(FD1

Vk €N, |Cn(f)| |1 |k|

= |,€| e (f®).

En utilisant I’hypothese :

1 )
VkeN, |c,(f®) = ‘%/ FO @y e dr
27]

1 1
< —f If® @) dt < —27M = M.
27 Jom 27

On a donc : Vk eN,

Comme M et |n| sont fixés (indépendamment de k) et que

lea (I <

M
n| > 2,ona: — —0
ko

d’ou, puisque |c, (f)| ne dépend pasde k : |c,(f)| = O, puis :
cn(f) =0.
Cecimontre: VneZ—{—1,0,1}, ¢,(f)=0.

D’autre part, puisque f est 2-périodique et de classe C* sur R,
f est 2m-périodique, de classe C! par morceaux et continue
sur R, donc, d’apres le théoreme de Dirichlet de convergence
normale, la série de Fourier de f converge normalement, donc
simplement, sur R et a pour somme f. On a donc :

VxeR, fx)= 1121( Z cr(f) e”“)

k=—n
=ca(fe ™ +alf) +a(fer.
2) Réciproquement, soient (cv, 3,7) € C et
f:R—C, x+— ae ™™ + 3+ el*

L’ application f est 2m-périodique, de classe C* et on a , pour
tout (n,x) e Nx R :
IfP 0] = |a(=D)"e™ + 00" + 1" €| < lal + 18] + 11,

donc f convient.

Finalement, I’ensemble des applications f convenant est :

{f:]R—> C, x — ae’”—l—ﬁ—kve”;(a,[)’ﬁ) e(C3].
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Pour tout o de |1; +o0[, l'application t —> ——
a) ade] [, 'app P

est intégrable sur ]0; +oo[, et :
/*O@ dt /1 dt /+°° dt
= +
o 141 o t*+1 1 o+ 1

/‘ dr /1 dv
= p —+ 1
[v:%] o 19+1 0 2<_+1)

1 1 l‘“72 1 1 1— 1
— / 1+ &t = f 1tue 1 wz= dy
o 141 [u=1*1Jo l4+u «

1 e
b)Ona: Vu € 011, g = ;(—I)W,

d'ou: Vu €]0; 1],

1 _1
ua " 4+u a
= T eh)

Notons, pourn € N :
fo: 100 1[—> R, u —> (=1~ +E 4+ un—) .
Ainsi, la série d'applications Z [ converge simplement sur
n=0
10; 1[ et a pour somme

1
a

iy _
S:u|—>ua e
14+u

Notons, pour n € N, R, le reste :

Rn =I5t= ifls =
k=0

Puisque S et les fi sont intégrables sur ]0; 1[, pour chaque n
de N, R, est intégrable sur ]0; 1[, et :

1 1 +oo
/ R, (u) du:/ @i +ua) Y~k du
0 0

k=n+1

1 —1)ntlyntl
:/ (ué_l—{—u_é) —( )" u du,
0

1+u

1 b 1, u't!
R, (u) du| = ua 4y @ du

[ mwal= [t b

|
</ (ufl +u a) L dy
0

1
L _1
:/ (un+” +un+l u)du

0
2
- I “n+1

1
n+—+1 n+2-——
e} e

+00
> S

k=n+1

noo

1
et donc : / R,(u) du —— 0.
0

{o¢]
On peut donc intervertir / et Z, d'ol :

/luu 1—|—u u
0 1+ u

x 1 1
=Z(—1)< 7 1).

n=0 n—4+ — n+1——
« o

(="
==

)120n+1__
«

f( 1) nl+a+u76)d

(-1
D'apres le TSCSA, les séries Z )1

n>0n+_
(0%

convergent, d'ou :

lua l+u a
/0 1+u

SERGI
7

n=0p 41— —
«

1y
=3

n=| 071—|—
«

+o00 (_l)n +oo(
2 —T+X

[p=n+1],,=on+_ plp

1
n+— n— —
e’
+00 (—1)"
— (0] f‘.
= an__
o?

c) L'application f est 2-périodique et continue par morceaux
sur R, donc les coefficients de Fourier (trigonométriques) de
f existent. De plus, f est paire, donc les b, sont nuls, et, pour
tout n de N :

2 (" 2 (7
Ty = =— / f(t) cosnt dt = —/ cosxt cosnt dt
21 J_» T Jo

= l / (cos(x + n)t + cos(x — n)t) dr
0

s
1 sin(x +n)t  sin(x —n)t]"
T x+n X —n 0

1 /(—=1)'sinmx  (—1)"sinmx 2(—1)"x sinx
= — + =

T X +n xX—n m(x2 — n?)

Puisque f est 2-périodique, de classe C' par morceaux et conti-
nue sur R, d'apres le théoreme de convergence normale, la série
de Fourier de f converge normalement (donc simplement)
sur R et a pour somme f, d'ou :

osnt.

sintx <X 2(—1)"x sin7x
VieR, f@)= +
; m(x2 — n?)

En particulier, en remplagant 7 par O :

1=

’

5 +00 5
sin 7rx 2(—1)"x sin7mx
A

™ —~  m(x*—n?)



d'ou :

f 2=y 1 : sin 7x 1 1
w(n2 — x2)  sinmx X sintx  wx

n=1

d)D'apres b)etc) :

to g oo (—1yH1 2
! (0%
Y N i

n=l p2 _
o2

=a+T7

3
QI3 ~
3

sin —
«

+00 dt z
On a prouvé : Vo €]1; +o0[ / =%
' BT L o S )
«

x—1

e) 1) Remarquer d'abord que ¢ — T

est intégrable sur

10; 4-00[.

Le changement de variable défini par u = ¢* fournit :

+o0 tx—l 1 +o0 1
/ dtz—/ ; du,
0 1+1¢ x Jo 1+ux

+00 x—1
d'ou, en utilisant d) : / dr =
0 1 + t

sin7x

2) Remarquer d’abord que I’application — *~2In(1 + ) est
intégrable sur ]0; 4-o0[.

On a, par intégration par parties, pour tout (¢, 4) € ]0; +oo[?
telquee < A :

A
/ 2 In(l+1)dt
&
=l

t,\'*l A A
= In(1+¢ — — dt,
|:x—ln(+)]5 /5 x—11+1

d’ou, en faisant tendre € vers 0 et A vers +00 :

+o0
/ *2In(1 + 1) dt
0

1 /l txfl T
1—x Jo 141t (I — x) sinmx

at

3) Remarquer d'abord que r — — estintégrable sur R.

@ @
Ona:

+00 at
€
/ bt ct dr
e @ FRE

+o00 e(a—b)t
= / (c—b)t dr
o 1+e

a—

S

-/+°° ueb 1
= ——— du
[u = e Jo 14+u (c—bu

1 +°°ucfb
= / du
c—>b ) 14+u

™

a—b
—b)sinm ——
(¢ —b) sin "

4) 11 s’agit d’un cas particulier de 3), pour b = —c, donc :

+o00 et T T
[ = - .
o Chect . a-+c Ta
2csin (7 2ccos | —
2c 2c
5) On applique le résultat de 4) a a eta —a, et on utilise un ar-
+o00 eat A et
-
o chet

+00 e—at T
—dt= ———.
o chet Ta
ccos | —
2c

gument de parité :
+% chat 1 [T chat
/ Dar= - / S
o chet 2 J_» chet

0 at
=/ A P
_oo Chet

a) Puisque a,, — 0 et que les «, sont tous > 0, il
n oo

existe 0(0) € N tel que : oy < 1.

Puisque a, —— 0 et que 1 — g0 >0, il existe
noo

o(1) > a(0) tel que ay) + oy < 1.

De proche en proche, on construit une extractrice o telle que :

VneN, Zag(k) < 1.

k=0
Puisque la série E Qo) est a termes > 0 et 2 sommes par-

k=0
tielles majorées (par 1), d’apres un théoréme du cours, la série

Z Oly(n) CONVErge.

n=0

b) Considérons la suite réelle (u,),>o définie, pour toutn € N,
par:u, = o, s’ilexiste k € Ntelquen = o(k),u, = 0 sinon,
et considérons, pour toutn € N :

fu :R— R, t —> u, cosnt.

Ona: VneN,VteR, |u,cosnt| < u,,

donc : VneN, ||fillo < iy

Comme la série E u, converge (d’apres a)), par théoreme de
n=0

majoration pour des séries a termes > 0, la série E ({77 s
n=0

converge, donc E f» converge normalement, donc unifor-
n=0

mément, sur R.
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D’apres I’exercice 7.15, en notant

+o0
f:R—R, t+— f(t) = Zuncosnt,
n=0
[ est 2m-périodique, continue, et, pour toutn € N :

an(f):Mns bn(f):()
Onaalors: Vn € N, |a,(f)| + [b,(f)| = u,.

En particulier :
Vk €N, laow (N + bow () = tow) = Qo) -
Ainsi, il existe une infinité d’indices n € N tels que :

la, () + 16, ()] 2 a,

puisqu’il y a méme égalité.
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Equations

difféerentielles

BN Plan M—m

Les méthodes a retenir 308

Enoncés des exercices 311
Du mal a démarrer? 319
Corrigés 323

Par commodité, on utilise
les abréviations suivantes :

ED : équation différentielle
EDL1 : équation différen-

tielle linéaire du premier
ordre

EDL2 : équation différen-
tielle linéaire du deuxie-
me ordre

SDL1 : systeme différentiel
linéaire du premier ordre

SDL2 : systeme différentiel
linéaire du deuxieéme
ordre

SSM : sans second membre
ASM : avec second membre

Thémes abordés dans les exevcices

Résolution d’EDL1, avec ou sans second membre

Etude des raccords éventuels

Etude d’EDLI matricielles

Résolution de SDL1, avec ou sans second membre, a coefficients constants

Résolution d’EDL2, avec ou sans second membre, a coefficients constants ou
variables

Résolution de problémes de Cauchy

Etude qualitative de la solution maximale d’un probléme de Cauchy
Recherche de solutions dSE(0) pour une EDL1 ou une EDL2
Résolution d’équations fonctionnelles, d’équations intégrales

Etude d’inéquations différentielles

Etude de propriétés qualitatives de solutions d’une EDL2.

Points essentiels du cours
pour la vésolution des exewvcices

Résolution des EDL1 normalisées, sans second membre (formule du cours),
avec second membre (méthode de variation de la constante)

Définition de la dérivée, théoreme limite de la dérivée, pour I’étude des raccords

Résolution d’un SDL1 a coefficients constants, avec ou sans second membre,
réduction des matrices carrées

Structure et dimension de 1’espace des solutions d’une EDL2, avec ou sans
second membre, normalisée, a termes continus sur un intervalle, théoreme de
Cauchy et Lipschitz linéaire, et, pour PC, PSI, définition et propriétés du
wronskien de deux solutions de (Eg)

Meéthode de Lagrange pour trouver une deuxiéme solution d’une EDL2 SSM

Meéthode de variation des constantes pour trouver une solution d’'une EDL2 ASM
(PC, PSI)

Résolution des EDL2 SSM a coefficients constants (intervention de I’équation
caractéristique), résolution des EDL2 a coefficients constants, avec second
membre exponentielle-polyndme

Théoréme de Cauchy et Lipschitz non linéaire.
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e | es méthodes a retenir

Pour résoudre
une EDL1 SSM normalisée

(Eo) y +ay=0,

oua : I — K est continue sur
Pintervalle I, ety : I —> K est
I’inconnue supposée dérivable sur 7

Pour résoudre une EDL1 ASM
normalisée

(E) y' +ay=>,

oua,b : I — K sont continues sur
Pintervalle I, ety : I — K est
I’inconnue, supposée dérivable sur /

Pour résoudre
une EDL1 ASM non normalisée

e ' +p0y=n,
ouna,,v: I — K

308

Appliquer le cours : la solution générale de (Eg) sur I est donnée

par:y: I — K, x|—>)\exp<—/a(x)dx), e K.

e Résoudre d’abord I’EDL1 SSM associée (Eg), cf. ci-dessus.
D’apres le cours, la solution générale de (E) est la somme d’une
solution particuliere de (E) et de la solution générale de (Ey).

Il reste donc a chercher une solution particuliere de (E).

* Chercher une solution particuliere de (E).

* Il se peut que (E) admette une solution évidente.

== Exercice 8.21

* Sinon, appliquer la méthode de variation de la constante qui,
connaissant une solution yy de (Eg) autre que la fonction nulle,
consiste a chercher une solution particuliere y de (E) sous la forme
¥ = Ayp, ol A est la nouvelle fonction inconnue.

== Exercice 8.23

* On peut quelquefois grouper des termes de (E) pour faire apparaitre
une dérivée d’une fonction simple.

== Exercice 8.1.

Résoudre (e) sur des intervalles sur lesquels o ne s’annule pas, puis
étudier les raccords, par continuité, par dérivabilité.

= Exercice 8.1.
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Pour résoudre un SDL1 SSM,
a coefficients constants (S)

Pour résoudre un SDL1 ASM,
a coefficients constants (S)

Pour résoudre une EDL2 SSM,
normalisée

(Eo) y' +ay +by=0,

oua,b,: I — K sont continues sur
Pintervalle I,

ety :I — K est ’inconnue,
supposée deux fois dérivable sur /

Les méthodes a retenir

Ecrire la matrice A du systeme.

*Si A est diagonalisable, d’apreés le cours, la solution générale

n
de (Sp) est donnée par : X : t —> ZCkeAk’Vk, ol Ap,...,\,
k=1
sont les valeurs propres de A, comptées avec leur ordre de multi-
plicité, (Vi,...,V,) est une base de vecteurs propres respectivement
associés a A\i,...,\,, et Cq,...,C, € K.

== Exercice 8.4

* Si A n’est pas diagonalisable, trigonaliser A, en passant éventuel-
lement par les complexes, A = PTP~', ou P eGL,(K),
T €T, K).Noter Y = P~ !X, seramenera Y’ = TY, résoudre en
cascade, et revenir 2 X par X = PY. Le calcul de P! n’est pas
nécessaire.

* Si (S) possede une solution évidente, résoudre le SDL1 SSM asso-
cié (Sp), la solution générale de (S) étant la somme d’une solution
particuliere de (S) et de la solution générale de (Sy) .

== Exercice 8.6

* Si (S) n’a pas de solution évidente, diagonaliser ou trigonaliser la
matrice A de (S). Si, par exemple, A= PDP~! ou P € GL,(K),
DeD,(K), noter Y=P 'X,C=P 'B, se ramener 2
Y’ = DY + C, résoudre, et revenir a X par X = PY. Le calcul de
P~ est ici nécessaire, pour exprimer C.

== Exercices 8.5, 8.30.

Si a, b sont des constantes, on sait, d’apres le cours, exprimer la
solution générale de (Ey), en utilisant I’équation caractéristique, cf.
Meéthodes et exercices MPSI, ch. 10.

Sinon :

* Essayer de trouver deux solutions particulieres de (Eg), évidentes
ou simples, (y1,y2), formant famille libre. La solution générale
de (Eo) sur I est alors A;y; + A2y2, (A1, A\2) € K2,

== Exercices 8.8, 8.11, 8.13

* Sinon, essayer de trouver une solution évidente ou simple y; de
(Ep) (un polyndme, une exponentielle, ...) ne s’annulant en aucun
point de /, puis appliquer la méthode de Lagrange, qui consiste a
chercher une deuxiéme solution particuliere de (Eq) sous la forme
y2 = Ay, ou A est une fonction inconnue (non constante). La solu-
tion générale de (Ep) est alors Ajy; + Aoya, (A1, \2) € KZ.

== Exercices 8.12, 8.34

* Suivant les éventuelles indications de 1’énoncé, utiliser un change-
ment de variable et/ou un changement de fonction inconnue, ou
toute autre indication permettant de trouver une premiere solution.

== Exercices 8.7, 8.9 a 8.11, 8.33, 8.36.
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Pour résoudre une EDL2 ASM
normalisée

(E) y'+ay +by=g,

oua,b,g : I —> K sont continues
sur P’intervalle 7,

ety : I — K est ’inconnue,
supposée deux fois dérivable sur /

Pour résoudre une EDL2 ASM,
non normalisée

© '+ +w=94

Pour effectuer un changement de
variable ¢ = ©(x) dans une ED (E)
d’inconnue y : x —> y(x)

Pour calculer la solution maximale
d’un probleme de Cauchy (C),
quand c’est possible

Pour étudier qualitativement la
solution maximale d’un probléme
de Cauchy, par exemple pour
préciser la nature de I’intervalle de
définition de la solution maximale

Résoudre d’abord I’EDL2 SSM associée (Eg), cf. ci-dessus.
D’apres le cours, la solution générale de (E) est la somme d’une solu-
tion particuliere de (E) et de la solution générale de (Ey).

Il reste donc a trouver une solution particuliere de (Ey).

¢ Chercher une solution de (E), évidente ou simple, ou d’une forme
suggérée par 1’énoncé.

* Si (Ep) est a coefficients constants et si g est une exponentielle-
polynoéme, chercher une solution de la méme forme, cf. Méthodes
et exercices MPSI, ch. 10.

* Sinon, appliquer la méthode de variation des constantes, qui consis-
te, connaissant une base (y;,y,) du K-espace vectoriel des solutions
de (Ep), a chercher une solution particuliere de (E) sous la forme
Yy =Ay1 +X2y2, o A, Ax : I —> K sont des fonctions incon-
nues, supposées dérivables sur 1, en imposant A}y, + Ayy, = 0. On

)\/1)’1 + /\/2)’2 =0

résout le systeme d’équations d’inconnues

AV Ay =g
A, A, (ou g est le second membre de (E) normalisée). On déduit
A2, puisy = Ay + A ys.

== Exercices 8.15, 8.16.

Résoudre (e) sur des intervalles sur lesquels a ne s’annule pas, puis
étudier les raccords, par continuité, par dérivée premiere, par dérivée
seconde.

== Exercices 8.8, 8.11.

Il faut aussi changer de fonction inconnue. Poser z(t) = y(x),
Calculer y(x), y'(x), y”(x) (si nécessaire) en fonction de x, z(t),
7/(t), 7" (1), reporter dans (E), et se ramener & une ED (F) d’inconnue
z it —> z(t). Pour que la méthode ait un intérét, il faut que (F) soit
plus simple que (E).

Si (E) est une EDL2 a coefficients variables, souvent (F) sera une
EDL?2 a coefficients constants.

== Exercices 8.10, 8.33, 8.38.

D’une part, montrer, par application du théoreme de Cauchy et
Lipschitz, que (C) admet une solution maximale et une seule. D’autre
part, calculer une solution y de (C), en imposant éventuellement une
condition du genre : y ne s’annule en aucun point.

== Exercices 8.20, 8.27 a 8.29.

Souvent, raisonner par I’absurde, et montrer qu’alors on pourrait pro-
longer strictement y en une solution de (C), ce qui contredirait la
maximalité de y.

== Exercices 8.40, 8.47, 8.48, 8.52.
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Pour déterminer une ou des
solutions d’une ED satisfaisant
une condition supplémentaire

Pour résoudre
une équation fonctionnelle
ou une équation intégrale

Pour trouver
des solutions y d’une ED (E)
développables en série entiere en 0

Pour résoudre des exercices
abstraits sur des EDL2

Enoncés des exercices

Déterminer d’abord toutes les solutions de I’ED, puis, parmi ces solu-
tions, chercher celle (celles) qui satisfait (satisfont) la condition sup-
plémentaire.

== Exercice 8.13.

Essayer de se ramener a une ED, en utilisant la dérivation.

== Exercices 8.26, 8.37, 8.41.

+00
Supposer que y:x+—— y(x) est dSE(0), y(x)= Za,,x”.
n=0

Remplacer, dans (E), y(x), y'(x),y"(x) (si nécessaire) par des
sommes de séries entieres, puis identifier en utilisant un argument
d’unicité pour le DSE(0) du second membre. En déduire a, en fonc-
tion de n. Réciproquement, considérer la série entiere obtenue, mon-
trer que son rayon est > 0 ; sa somme vérifie (E) d’apres le calcul
direct, si celui-ci a ét€ mené par équivalences logiques successives.

== Exercice 8.35.
Penser a utiliser le théoréme de Cauchy et Lipschitz linéaire et/ou a
faire intervenir le wronskien (PC, PSI) de deux solutions de (E).

== Exercices 8.42 b), 8.43, 8.44.

=eee Fnonceés des exercices

— Exemple d’EDL1 non normalisée

Résoudre I'ED (E) xy’ + y = Arctanx, d’inconnue y : R — R dérivable sur R.

- Etude d’inéquations différentielles linéaires du premier ordre

Soient a,b : [0; +00o[— R continues, y,z : [0; +00[— R dérivables telles que :

Montrer : y 2 z.

y Zay+b, Z<az+b, y0) =z(0).

A cet effet, considérer U = e 4 (y — z), oll A désigne une primitive de a sur [0 ; +oo[.

- Equation différentielle d’une famille de fonctions

A
Onnote,pour A e R,y : R — R, x +—— y)\(x) =shx + —.

chx

Former une EDL1 normalisée satisfaite par toutes les y), c’est-a-dire trouver deux applications
a,b: R — R continues telles que : VA € R, y\ +ayy =b.
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Exemple de SDL1 SSM, a coefficients constants, a matrice diagonalisable
X' =2x—-2y+z
Résoudre le SDL1 : (S) { v =2x —3y 42z d’inconnues x,y,z:R — R dérivables

7 =—x+2y
(la variable sera notée t).

Exemple de SDL.1 ASM, a coefficients constants, a matrice diagonalisable
¥=—x4+y—z+r+1

Résoudre le SDL1: (S) { y' = —4x +3y —4z+4t + 1
7 =-2x4+y—2z+2t+1

d’inconnues x,y,z : R —> R dérivables (la variable étant notée 7).

Exemple de SDL1 ASM, a coefficients constants, 2 matrice diagonalisable
X=—-x+y+z-—1
Résoudre le SDL1 (S) § y=x—y+z—1 dinconnues x,y,z: R —> R dérivables

=x+y—z—-1
(la variable sera notée ).

Résolution d’une EDL2 SSM par changement de fonction inconnue

Résoudre 'EDL2:  (Ep) (x> +1)y" — Bx* —4x +3)y' + (2x> —6x +4)y =0,
d’inconnue y : R — R deux fois dérivable, en utilisant le changement de fonction inconnue
z=G2+1) y.

Résolution d’une EDL2 SSM par recherche d’une solution polynomiale, étude de raccord
Résoudre PEDL2 :  (e)  x(x*+3)y” — (4x* 4+ 6)y + 6xy =0,

d’inconnue y : R — R deux fois dérivable, sur tout intervalle ouvert non vide / de R. A cet effet,
on pourra chercher des solutions polynomiales.

Préciser la dimension de I’espace vectoriel S; des solutions de (e) sur /.
Résolution d’une EDL2 SSM par changement de variable

Résoudre 'EDL2 :  (E) (1 —x?)y” —xy +y =0, d’inconnue y :]—1; I[— R deux
fois dérivable, a I’aide du changement de variable défini par # = Arcsin x.

Résolution d’une EDL2 SSM par changement de variable puis changement de fonction
inconnue

Résoudre 'EDL2: (E) x*y” —y =0, d’inconnue y : ]0; +00[—> R deux fois dérivable,
en utilisant le changement de variable 7 = % puis le changement de fonction inconnue
u(t) =1tz(t),ou z(t) = y(x).

Résolution d’une EDL2 SSM par recherche de deux solutions particulieres, étude de raccord

Résoudre 'EDL2: (e) xy"+ (x —2)y' —2y =0, d’inconnue y : I —> R deux fois déri-
vable sur 7, sur tout intervalle ouvert / de R. A cet effet, on pourra chercher une solution particu-
liere polynomiale et une solution particuliére de la forme x — e®*, o € R.
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8.12

8.13

8.14

8.15

8.17

8.18

Enoncés des exercices

Résolution d’une EDL2 SSM par solution évidente et méthode de Lagrange

Résoudre 'EDL2: (E) x*(x + 1)y —x(x>+4x+2)y + (x> +4x +2)y =0
d’inconnue y :]0; +o0o[—> R deux fois dérivable.

Résolution d’un probleme de Cauchy linéaire d’ordre 2

Déterminer toutes les applications y : ] — 1; 1[—> R deux fois dérivables, telles que :

. Vxel—1:1[ (1—=x2y"(x)+2xy'(x) —2y(x) =0, y(©0) =3, y(0) =4.
A cet effet, on pourra chercher des solutions polynomiales de I’ED.

Etude d’une EDL2 SSM avec une condition initiale
V' =xy' +y=0 (E)

y'(0) =0
d’inconnue y : R — R deux fois dérivable.

On considere le probleme : (P)

a) Montrer que, si y est solution de (E), alors y est trois fois dérivable et y® = xy”.
b) En déduire ’ensemble S des solutions de (P).
Résolution d’une EDL2 ASM, méthode de variation des constantes

1
Résoudre 'EDL2 : (E) y'+y= p— d’inconnue y :] — 7/2; 7/2[— R, deux fois
x

dérivable.
Résolution d’un probleme de Cauchy linéaire d’ordre 2
vy +y =tan’x (E)
Résoudre le probleme de Cauchy : (P)
y(0)=0,y(0)=0
d’inconnue y : ] — 7/2; w/2[—> R deux fois dérivable.
Résolution d’une EDL4 SSM, a coefficients constants, par deux méthodes
On considere 'EDL4 : (E) y® —2y” +y =0, d’inconnue y : R —> R quatre fois dérivable.

a) Résoudre (E) en admettant que les résultats du cours sur les EDL2 SSM a coefficients constants
sont aussi valables, de fagon analogue, a I’ordre 4.

b) 1) Est-ce que x —— ¢* est solution de (E) ?

2)Ennotant z : R — R, x — y(x)e™*, montrer que (E) se ramene a une EDL2 d’inconnue
7" et en déduire une résolution de (E).

Former une EDL2 pour laquelle des fonctions données sont solutions

Soient / un intervalle de R (non vide ni réduit a un point), y;,y, : I —> R de classe C 2, telles
que I’application w, définie par w = y;y, — y|¥2, ne s’annule en aucun point de /. Montrer qu’il
existe un couple unique (p,qg) d’applications continues de / dans R tel que y; et y, soient solu-
tions sur I de 'EDL2 (Eg) y” + py’ + qy = 0, et calculer ce couple (p,q).

Obtention de propriétés des solutions d’une EDL2 a I’aide d’une fonction auxiliaire

Montrer que toutes les solutions y de (E) y” 4+ e*y = 0 sur [0; +oo[sont bornées. A cet effet,
on pourra considérer U = y? +e™*y’'2.
Exemple de probleme de Cauchy

/ y

y = —
Trouver toutes les y : ]0; +0o[—> R dérivables telles que : x+y?
y2) =1
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1741 Etude d’une EDL1

Déterminer I’ensemble a € R tels qu’il existe f : [0; +00[— R dérivable telle que :

Vx €[0;+ool, (f’(x):f(x)—xz—f—x et f(x)>0), f() =a.

Exemple d’inéquation différentielle du premier ordre
Soit f : [0; +00[—> R declasse C' telleque : Vx € [0; +oo[, xf(x) +2f(x) > 4x%.

Démontrer : Vx €[0; 400, f(x)=x2

Exemple d’équation se ramenant a une EDL1
Soit a € R. Déterminer I’ensemble des applications f : R — R, de classe C, telles que :

@) = f@
X

1
Vx € R—{al}, - E(f/(X)Jrf'(a))-

Etude de solutions d’une EDL1 matricielle SSM a coefficients constants

Soient n € N*; A € M,,(C). On considere ’ED (E) X’ = AX, d’inconnue X : R — M,, ; (C)
dérivable. Soient o, € C, U,V € M,, 1 (C). On note :

F:R— M, ;(C), G:R— M, (C), H=F+G.
t—> eMU t — efty

Montrer que F' et G sont solutions de (E) sur R si et seulement si H est solution de (E) sur R.

Etude d’un probleme de Cauchy linéaire SSM i coefficients constants

Montrer que le probleme de Cauchy linéaire
X' ==x4+y, yYV==y+z, I=-2+x
x0) =1, y(0) =j, 2000 =7,

d’inconnues x,y,z : R — C dérivables, admet une solution et une seule, notée (x,y,z), et que,
pour tout t € R, les points x(¢), y(t), z(t) forment, dans le plan complexe, un triangle équilatéral
direct.

A cet effet, on pourra considérer U = x + jy + j*z.

Exemple d’équation intégrale

Trouver toutes les applications f :] — 1; 1[—> R continues telles que :
X
Vyel—1;1[, fix)=1 +/ (f(t))zdt.
0

Exemple de résolution d’un probleme de Cauchy, équation de Riccati

Déterminer la solution maximale y du probleme de Cauchy :
, 3 ) 1
© vy =—;y+xy et )’(2)=§-

Exemple de résolution d’un probleme de Cauchy, équation incompléte en x

vy 4+ cosy=0

Montrer que le probleme de Cauchy (C) admet une solution maximale et une
y(m =0

seule, et déterminer celle-ci.
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8.31

Enoncés des exercices

Exemple d’étude d’un probleme de Cauchy

Déterminer I’ensemble des ¢ € ]0; +oo[ tels qu’il existe y : [0; 1] —> R dérivable telle que :
Y =—@+y) et y(1)=0.

Résolution d’un SDL1 SSM a coefficients constants, a matrice non diagonalisable

Résoudre le SDL1: (S) x' =2x—y+2z, y=10x =5y +7z, 7 =4x —2y +2z

d’inconnues x,y,z : R — R dérivables.

Etude d’un SD non linéaire

a) Montrer que le probleme de Cauchy

2 1 4 2
© x'=(@—-Dxy— ¥ T3 y'=Qt+ Dxy— ¥ty xO =1 y0 =1

admet une solution maximale et une seule, notée (x,y).

b) Etablir que I’application z : t —> (2 + 1)x(¢) — (+ — 1)y(¢) est constante et calculer cette
constante.

Recherche de solutions dSE(0) pour une EDL1

On considere ’EDL1 :  (E) (1—-x)y'+y=g,oug:]—1;1[—> R estdonnée, continue,
ety:]—1;1[—> R est’inconnue, dérivable.

Onnote: (Ey) (I1—x)y +y=0.
a) Résoudre (E).
400
b) On suppose, dans cette question, que g est développable en série entiere en 0, g(x) = Z b,x",

n=0
de rayon > 1. Montrer que (E) admet au moins une solution y développable en série entiere en 0,

+0o00
y(x) = Zanx”,de rayon 2> 1, et montrer :
n=0

1 n—1
=— b t Vn>=2, a,= —— kb | .
a apg+by e ( nz a n(n—l); k)

X
¢) On suppose, dans cette question: Vx €] — 1; 1[, g(x) = —1In (l - 5)
En utilisant ), déterminer une solution y de (E) sous forme d’une somme de série entiere, puis

exprimer y a I’aide de fonctions usuelles.

Résolution d’une EDL2 ASM par changement de variable

Résoudre 'ED (E)  x%y” —2y = x*Inx, d’inconnue y :]0; +oo[—> R deux fois déri-
vable, par le changement de variable t = Inx.

Résolution d’une EDL2 SSM par recherche d’une solution polynomiale
Résoudre 'ED  (E)  x(x>—1)y" —2(x*— 1)y +2xy =0,

d’inconnue y : ]1; +0o[—> R deux fois dérivable, sachant qu’il existe une solution polynomiale
autre que la fonction nulle.

Recherche des solutions dSE(0) d’'une EDL2 ASM
a) Trouver les solutions dSE(0) de 'ED (e) x>y 4+6xy +(6—xH)y=—1.

b) Exprimer la (ou les) fonction obtenue en a) a ’aide des fonctions usuelles.
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Résolution d’une EDL2 ASM par diverses méthodes

Onconsidere 'ED:  (E)  xy" —2(x — 1)y + (x —2)y = x ¢,

d’inconnue y : ]0; +0o[—> R deux fois dérivable. Résoudre (E) par trois méthodes :
1) al’aide du changement de fonction inconnue z = e *y

2) al’aide du changement de fonction inconnue u =y’ — y

3) en cherchant des solutions particulieres de 'EDL2 SSM associée (Ey) sous la forme
x —> x“e*, oll @ € Z est une constante a choisir, puis en appliquant la méthode de variation des
constantes.

Exemple d’équation fonctionnelle se ramenant a une EDL2

Trouver toutes les applications f : [—1; 1] — R dérivables telles que :
VieR, f(cost) = (cosr)f'(sint).

Exemple de SD1 non linéaire se ramenant a des EDL2

Trouver tous les couples ( f,g) d’applications de ]0 ; +oo[ dans R, dérivables, telles que :
Yx €]0; +ool, (f’(x) __8W g(x) = _f(x)) .
x X

Exemple d’EDL2 matricielle

Soient n € N*, S € S}+. Montrer que toutes les solutions X : R —> M, ;(R) de 'EDL
X" 4+ §X = 0 sont bornées.

Etude qualitative des solutions d’un probléeme de Cauchy
y/ = 2x + y2

a) Montrer que le probleme de Cauchy (C) admet une solution maximale et une
y(©0)=0

seule, notée f.

b) Montrer que f est de classe C* au voisinage de O et former le développement limité a
I’ordre 11 en O de f.

Exemple d’équation intégrale, équation de convolution

Trouver toutes les applications f : R — R continues telles que :
VxeR, fx)=-1 —f (2x —1t) f(z)dr.
0

Zéros des solutions d’une EDL2
Soient / un intervalle de R (ni vide ni réduit a un point), p : I — R continue sur /.

a) Soit z : I —> R une application dérivable telle que z’ + pz > 0. Montrer que z admet au plus
un zéro dans /.

b) Soient g : I —> R continue telle que ¢ < 0,y : I —> R deux fois dérivable, autre que I’ap-
plication nulle, telle que y” + py’ 4+ gy = 0. Montrer que yy’ admet au plus un zéro dans /.

Parité, imparité de solutions d’une EDL2
Soient p : R — R continue impaire, ¢ : R — R continue paire.

On considere 'ED  (Eg) y” + py +¢qy =0, d’inconnue y : R —> R deux fois dérivable.
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8.44

8.45
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8.47

8.48

Enoncés des exercices

a) Montrer que, pour toute solution f de (Ey) sur R, I’application g : R — R symétrisée
x> f(—x)

de f, est aussi solution de (Ey).

b) 1) Montrer qu’il existe une solution f; de (Ey) unique telle que :

f1(0) =1, f10) =0, fi est paire.
2) Montrer qu’il existe une solution f, de (Ey) unique telle que :
f2(0) =0, £0) =1, f> est impaire.

3) Btablir que (f1, f>) est une base du R-ev Sy des solutions de (Ep) sur R.
Etude de solutions d’une EDL2

On note S) I’ensemble des solutions y : ]0; +0co[—> R de I’'ED :
1
(Ep) y”+y’—<x+1—|—;>y=0.

a) Montrer que Sy est un plan vectoriel inclus dans C*(]0; +oo[,R).
b) Montrer que I’ensemble S = {y e So; y(1) = 2} est une droite affine.

c) Soit y € S. Calculer la courbure ~, de la courbe représentative de y en le point d’abscisse 1, en
fonction de y'(1).

d) Quelle est la valeur maximale de v, lorsque y décrit S ? En donner une valeur approchée a
1073 pres.
Etude d’une inéquation différentielle du deuxiéme ordre
Soient (a,b) € R*telque 0 < a < b, f : [0; +0o[—> R de classe C? telle que :
Vx € [0; 400, a’f(x) < f'(x) <P f(x).
Montrer, pour tout x € [0; 4-00[ :

D < fo0 < r0 o0 + 7O
a

Résolution d’une ED2 non linéaire avec conditions initiales

f(0)ch(ax) + f'(0)

Trouver tous les couples (/,y) ou / est un intervalle ouvertde R telque O € ety : I — R deux

yy// + y/ 2 0
fois dérivable sur / telle que :
yO) =1, y(0) =1

Etude qualitative des solutions maximales d’une ED non linéaire

Soit f : R? — R une application de classe C' et bornée. Montrer que toute solution maximale
de’ED (E) y' = f(x,y) estdéfinie sur R.

Etude qualitative de la solution maximale d’un probleme de Cauchy

1
On considere le probleme de Cauchy (C) suivant: y) = ————— et y(0) =0,
I+ x2+y?

ou la variable (réelle) est notée x et la fonction inconnue (a valeurs réelles) est notée y.
1) Montrer que (C) admet une solution maximale et une seule, encore notée y.
Que peut-on dire de I’intervalle de définition 7 de y ?

Que peut-on dire de toute solution de (C), vis-a-vis de la solution maximale y ?
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8.51

8.52

2) Etablir que I est symétrique par rapport 2 0 et que y est impaire.

On pourra, a cet effet, considérer / = {x e R; —x e [} etz : J— R
X —> —y(—x)

On note encore y la restriction de 1’application précédente a I N [0; +ool.
3) Montrer que y est strictement croissante, a valeurs > 0, majorée.

4) Etablir que I’extrémité droite de I’intervalle de définition de y est +o00.

. . , m
5) Démontrer que y admet en 400 une limite finie, notée £, etque: 0 < £ < —.

6) Montrer que y est de classe C* et concave sur [0 ; +00[.

7) Tracer I’allure de la courbe représentative de y.

On précisera la demi-tangente en O et la concavité.

8) Montrer que y admet un développement limité a I’ordre 5 en O et calculer celui-ci.
Etude de périodicité pour les solutions d’un SDL1

Soient T €]0; +oo[, A: R —> M,(C) continue, T-périodique. On considére I’ED
(Eg) X' = AX, d’inconnue X : R — M, (C) dérivable sur R. Montrer qu’il existe une solu-
tion X de (E) sur R autre que I’application nulle, et A € C tels que :

VteR, Xt+T)=\X(1).

Etude d’une ED matricielle non linéaire

Soient a €]0; +oo[,n € N*, A € GL,(R), X :] — a; a[— M, (R) dérivable telle que :
Viel—ajal, X)X(t)=A
X(0) =1,.

a) Démontrer : Viel—a;al, Xt)A =AX(t).

b) On suppose ici, de plus, que A est symétrique. Démontrer que, pour tout t € | —a; a[, X (¢)
est symétrique.

Inégalité sur des intégrales relatives a des solutions d’une EDL2
On note Sy ’ensemble des applications y : R —> R deux fois dérivables sur R et solutions sur R
de 'EDL2 : (Eg) ' —x*y +y=0.
0 1
Montrer qu’il existe a € R tel que : Vy € So, / ' =y < a/ '+ .
-1 0

Etude de périodicité pour des solutions d’une EDL2 SSM

Soient T €]0; +oo[, f : R — C T-périodique et continue, (y;,y,) une base du C-espace vec-
toriel des solutions sur R de 'EDL2 SSM:  (Ey) y" + fy =0.

a) Montrer qu’il existe (o, ;, a2, 3,) € C* unique tel que :
Vke{l,2},Vx eR, w(x +T) = axyi(t) + Bya(t) .

ay 51

b) Démontrer que la matrice A = (
a S,

) est inversible.
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Remarquer : xy’ +y = (xy)'.
Etudier la dérivabilité en 0 de la fonction obtenue.
Calculer U’ et montrer:U’ > 0.
Calculer y) et obtenir une relation simple liant y, et y\.

Il s'agit d'un SDL1 SSM, a coefficients constants. Montrer
que la matrice de (S) est diagonalisable et la diagonaliser.
Appliquer enfin la formule du cours donnant la solution géné-
rale.

Il s'agit d'un SDL1 ASM, a coefficients constants. Montrer
que la matrice A de (S) est diagonalisable et la diagonaliser :
A = PDP~!, avec les notations usuelles.

X
Noter X =| y |, B(t) le second membre, U = Plx,

z
C =P 'B, et se ramener a la résolution de I'équation
U =DU +C.

Il s'agit d'un SDL1 ASM, a coefficients constants. Montrer
que la matrice A de (S) est diagonalisable et déterminer valeurs
propres et sous-espaces propres. Remarquer une solution évi-
dente de (S).

1"® méthode : Calculer z, z’, z” en fonction de x, y, ', y”
et grouper convenablement des termes dans I'équation (E) pour
faire apparaitre 7, 7/, z. Se ramener a une EDL2 SSM a coeffi-
cients constants.

2¢ méthode : Calculer y,y’,y” en fonction de x,z,z7,z" et
reporter dans (E).

Il sagit d'une EDL2 SSM non normalisée. Chercher une
solution polynomiale en cherchant d’abord son degré. Obtenir
ainsi deux solutions polynomiales formant famille libre. En
déduire la solution générale de (E) sur ] —oo0;0[ et sur
10 ; +oo[ . Etudier le raccord en 0.

Noter t = Arcsinx (donc x = sint) et y(x) = z(z).
Calculer y(x), y'(x), y”(x) en fonction de x, z(1), z/(t), z"(t) et
reporter dans (E). Se ramener a une EDL2 SSM a coefficients
constants, d'inconnue z.

Noter t = l et z(r) = y(x).Calculer y(x), y'(x),y"(x) en
fonction de x, z(tx), Z/(1), 7" (t) et reporter dans (E). Se ramener
ainsi a une EDL2 (F) d'inconnue z.Noter u = tz, calculer z, z/, z”
en fonction de 7, u, u’, u” et reporter dans (F). Se ramener ainsi
a une EDL2 a coefficients constants, d'inconnue u.

Du mal a démarrer ?

=msse Du mal a démarrer ?

Chercher une éventuelle solution polynomiale, en cher-
chant d'abord son degré. Chercher une solution particuliere
sous la forme x — e®, @ € R fixé a trouver. Montrer que la
famille des deux fonctions obtenues est libre et en déduire la
solution générale de (e) sur ] — co; O[ et sur ]0; +oo[.Etudier le
raccord en 0.

Il s'agit d'une EDL2 SSM normalisable sur ]0; +oo.
Remarquer la solution évidente y; : x —> x. Chercher une
deuxiéme solution par la méthode de Lagrange.

Chercher une solution polynomiale de (E), en cherchant
d'abord son degré. Obtenir deux solutions de (E) formant famil-
le libre. En déduire la solution générale de (E). Enfin, traduire les
conditions imposées en 0.

a) Exprimer y” en fonction de x, y, y'.

b) Si y convient, résoudre I'EDL1 SSM d’inconnue y” et tenir
compte de y”(0) = 0.En déduire y.

Ne pas oublier d'étudier la réciproque.

Il s'agit d’'une EDL2 ASM, normalisée sur l'intervalle
I =]—m/2;7/2[. Résoudre I'EDL2 SSM (Ej) associée, puis
appliquer la méthode de variation des constantes.

Résoudre (E) en utilisant la méthode de variation des
constantes, puis traduire la condition en 0.

a) Il s'agit d'une EDL4 SSM, a coefficients constants. Former
I'équation caractéristique et en déduire (par généralisation du
résultat a I'ordre 2) la solution générale de (E).

b) 2) Noter z = ye*,doncy = e "z, reporter dans (E), et se rame-
ner a une EDL2 (F) d'inconnue z”.Résoudre (F), en déduire z, puis
y.Controler la cohérence des réponses obtenues en a) et en b).

Résoudre le systéme d'inconnues p,q formé par les deux
équations vérifiées par y;,y>.

Calculer U’.

1) Appliguer le théoreme de Cauchy et Lipschitz.

2) Montrer que, si y ne s'annule en aucun point, I'ED se raméne

’
ay = (f) . En déduire une solution du probleme de Cauchy.
y
Conclure.

2 _x, d'inconnue

Résoudre I'EDL1 (E) y=y—x
y : [0; +0o[—> R dérivable. Traduire ensuite les conditions

imposées.
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Considérer U : x —> x% f(x) — x*, calculer U’.
2
Résoudre 'EDL1 SSM y/ — ——y =0.
XX =@

En déduire le changement de fonction inconnue :

g:R—{a} — R, xn—)g(x):ﬂ

(x—a)?

Déterminer g, puis f, et utiliser le raccord en a.
Ne pas oublier d'étudier la réciproque.
1) Un sens est immédiat.

2) Réciproquement, si H est solution de (E), dériver, prendre les
valeurs en 0 et déduire AU = aU et AV = BV, puis conclure.

D'aprés un exercice de Premiere année (Méthodes et
exercices MPSI, ex. 2.27 a)), les points x(z), y(t), z(¢) forment,
dans le plan complexe, un triangle équilatéral direct si et seule-
ment si:x(r) + jy(r) + j?z(r) = 0.Considérer U = x + jy + j%z,
calculer U’, et déduire U = 0.

1) Soit f convenant. Montrer que f est de classe C! sur
] —1; 1[ et satisfait un probleme de Cauchy (C). Appliquer le
théoreme de Cauchy et Lipschitz pour déduire que (C) admet
une solution maximale et une seule. Chercher une solution
de (C) ne s'annulant en aucun point. En déduire f.

2) Etudier la réciproque.

1) Appliquer le théoreme de Cauchy et Lipschitz pour
obtenir I'existence et I'unicité d’'une solution maximale y de (C).

2) Chercher une solution y de I'ED ne s'annulant en aucun point,
en utilisant le changement de fonction inconnue z = —.
y

Conclure.

1) Appliquer le théoréme de Cauchy et Lipschitz pour
obtenir I'existence et I'unicité d'une solution maximale de (C).

2) Chercher une solution y de I'ED telle que cos y ne s'annule en
aucun point. En déduire la solution maximale.

Conclure.
Pour ¢ €]0; +oo[ fixé, résoudre I'ED (E)
Yy ==+,
d’inconnue y:[0; 1] — R dérivable, et traduire ensuite
y(1) =0.

Conclure.

Il sagit d'un SDL1 SSM, a coefficients constants. La matri-
ce A du systeme n’est pas diagonalisable, mais est trigonali-
sable. Obtenir P € GL3(R),T € T3 (R) telles que

A=PTP! Noter U= P 'X, se ramener a U =TU,
résoudre en cascade, puis revenir a X.

a) Appliquer le théoreme de Cauchy et Lipschitz.

b) Calculer 7.
+00
b) Noter y = Zanx" (de rayon > 0), reporter dans (E),
n=0
obtenir une relation entre a,1,da,,b,. En considérant
u, = n(n — 1)a,,déduire a, en fonction de n.

Réciproquement, montrer que la série entiére ainsi définie est
derayon > 1.
+o0 =
2(1 =271
Obtenir: Vxe]—1;1[, = 7
c) enir x €] [, y(x) Z pY— X

n=2

1
Rappeler les DSE(0) des fonctions ¢ —> 1= et

t —> —In(l — ), et déduire, par primitivation, la somme de la

tn+l

série entiere —
g; n(n+1)

, puis y(x).

Noter ¢t = Inx, z(t) = y(x). Calculer y(x), y'(x), y"(x) en
fonction de x, z(1), z('(¢), z” (¢), et reporter dans (E). Se ramener
ainsi a une EDL2, a coefficients constants, avec second membre
exponentielle-polynéme, que I'on sait résoudre. Revenir a y.

1) Chercher une éventuelle solution polynomiale en cher-
chant d’abord le degré. Obtenir y; : x —> x% — 1.

2) Chercher une deuxieme solution de (E) par la méthode de

Lagrange.
3) Conclure.
+00
a) Noter y = Zanx" (de rayon > 0), reporter dans (E),
n=0

obtenir une relation de récurrence sur les a, et déduire a,.

Réciproquement, montrer que la série entiére obtenue
2p

Z _(2x7+3)‘, est de rayon infini.
P 4
p>0

b) Exprimer y(x), obtenu ci-dessus, a I'aide de sh x.

Ne pas oublier 'examen du cas x = 0.

1) Noter z = e *y,d'ot y = e*z.Calculer y, y’, y” en fonc-
tion de x, z, 7, Z”, reporter dans (E) et se ramener a une EDL1
d’inconnue z’.Résoudre, déduire z' puis z, puis y.

2) Noter u =y’ — y, donc u’ = y” — y’. Dans (E), grouper des
termes pour faire apparaitre u et u’.Se ramener a une EDL1 d'in-
connue u.Résoudre, déduire u, puis une EDL1 sur y, puis y.
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3) Chercher des solutions particulieres de (Eg) sous la forme
eX

y:x+—> x%*, a € Z.0btenir y; : x —> — et yp : x —> e*.
X

Appliquer la méthode de variation des constantes.

Il ne s'agit pas d'une ED, puisque I'équation fait intervenir
les valeurs de fet f’ en deux points variables différents.

1) Soit f convenant. Noter x = sinz, montrer que f est deux fois
dérivable sur ] — 1 ; 1[, et déduire que f satisfait une EDL2 SSM,
a coefficients constants. Résoudre celle-ci et déduire f.

2) Etudier la réciproque.

1) Soit (f,g) convenant.Montrer que fet g sont deux fois
dérivables et vérifient une EDL2 SSM d’Euler (1). Noter
t =Inx, u(t) = f(x). Calculer f(x), f'(x), f”(x) en fonction
de x, u(r), u'(t), u” (¢), et reporter dans (1). Se ramener ainsi a
une EDL2 SSM, a coefficients constants, d’'inconnue u. Déduire u,
puis f, puis g.

2) Etudier la réciproque.

Utiliser le théoreme spectral pour se ramener a des EDL2
SSM, a coefficients constants.

a) Appliquer le théoreme de Cauchy et Lipschitz.

b) + Montrer, par récurrence sur n, que, pour tout n € N, fest de
classe C" surl.

« Utiliser le théoreme de Taylor et Young pour I'existence du
DLy (0) def.

+ Calculer f®(0) pour k=1,2,3,4 et en déduire que le
DL;(0) de festde laforme:

f@ =x*4asx>+---+anx' + o 'h.
x—0

Reporter dans I'ED et en déduire les valeurs des coefficients

as,....ail.

Montrer d'abord que, si f convient, alors fest de classe Cc2,
Remplacer ensuite le probleme par un probléme équivalent, a
I'aide de dérivations.

Se ramener a I'ED y” +xy' +3y =0 avec les conditions
y(0) = —1, y'(0) =0. Effectuer le changement de fonction
inconnue z = e*’/2y.

a) Considérer u = ze”, ol P est une primitive de p sur I.
Calculer u’.

b) En notant z = yy/, montrer d’abord z’ + pz > 0. Etablir
Z 4+ pz > 0, par un raisonnement par I'absurde utilisant le
théoreme de Cauchy et Lipschitz linéaire. Appliquer enfin a).

Du mal a démarrer ?

b) 1) et 2) Appliquer le théoréme de Cauchy et Lipschitz
linéaire.
a) * Montrer que Sy est un plan vectoriel.

+ Montrer que, pour toute y € Sy, y est de classe C*, par un rai-
sonnement par récurrence.

b) Exploiter I'application
0:5 — R, yi— (3. YD),
qui, d’aprés le cours, est une bijection linéaire.

¢) Se rappeler que la courbure y, de la courbe représentative de
y en le point d'abscisse 1 est dénnée par:
y"(D)
(14 (r))™
d) Montrer que y’(1) décrit tous les réels, et étudier I'application
6—1t
(1 +2)32°

y

y:R— R, t—y@) =
+Noter g = f” — o fet calculer fen fonction de g,a l'aide
de la méthode de variation des constantes. Obtenir :

Vx e[0;4o0l,

shax

fx) = é/ g(®ysh(a(x —1))dr + f(0) chax + f/(0)
0

.
En déduire la premiére inégalité demandée.

+ Pour la deuxieme inégalité, appliquer le résultat précédent a

des éléments convenablement modifiés.
2
1) Soit (I,y) convenant. Déduire % — Ax+ B, ou A,B

sont des constantes, puis : y> = 2x + 1.

Par un raisonnement rigoureux, utilisant le théoréme des
valeurs intermédiaires, déduire :

Vxel, y(x)=+v2x+1.
2) Etudier la réciproque.

Soient y une solution maximale de y’ = f(x,y),I =] ; B[
I'intervalle de définition de 1y, ou o, Vérifient
—00 < o < B < +00. Raisonner par l'absurde : supposer
B € R. Montrer que l'on peut prolonger alors y convenable-
ment en B, pour contredire la maximalité de y. En déduire :

B =+o0.
1) Appliguer le théoreme de Cauchy et Lipschitz.
2) Montrer que z est solution du probleme de Cauchy (C).

1

3)Remarquer: VYx el N[0;+ool, y(x) < —
14+x

etdéduire: Vx el N [0;+oof, yx) < %
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4) Raisonner par I'absurde : supposer I N [0; +oo[ = [0; b[, ou
b € R. Montrer que I'on peut prolonger convenablement y en
b, pour contredire la maximalité de y.

T
5) Pour obtenir I'inégalité stricte £ < 7 raisonner par I'absurde.

6) o) Montrer, par récurrence sur n, que y est de classe C", pour
toutn € N*.,

B) Montrer:y” < 0.

8) Appliquer le théoréme de Taylor-Young pour obtenir I'exis-
tence du DLs(0) de y.Se rappeler que y est impaire. Procéder
par coefficients indéterminés.

L'ensemble S, des solutions de (Ep) sur R est un C-espa-
ce vectoriel de dimension finie. Montrer que l'application qui, a
tout X € Sy, associe t —> X (¢t + T), est un endomorphisme
de Sy. Se rappeler que tout endomorphisme d'un C-ev de
dimension finie (= 1) admet au moins une valeur propre (et un
vecteur propre associé).

a) Montrer d'abord que, pour tout 7 €] —a; a[, X(¢) est
inversible. Considérer

Y:l—a;a[— M,[R), t— Y(@)=X1#)A - AX().

Calculer Y’.Montrer que Y est solution du probléme de Cauchy
linéaire: Y = —AX'YXx~! et Y(0)=0,

et déduire:Y = 0.
b) Considérer le probleme de Cauchy (non linéaire) :

(C€) Z=AZ"" et Z©O) =1,

Montrer que la solution maximale de (C) est un prolongement
de X.Considérer :

U:l—a;a[— M,(R), t+— U(@) = X ()
et calculer U'U.En déduire X = U.

L'ensemble S est un R-espace vectoriel de dimension 2.
Montrer que les applications Ny, N, : Sy —> R définies, pour
touty € S, par:

0
Ni(y) = /1 Y =yl

sont des normes sur Sp.

1
Na(y) = /0 [y + 'l

Appliquer enfin le théoréme d'équivalence des normes en
dimension finie.

a) Noter, pour k € {1,2} :
%t R—C, x+— y(x+T).

Montrer que zx est solution de (Ep) sur R.En déduire I'existen-
ce et l'unicité de (ax, Bk) -
y1(x)
b)Noter Y : R — M, 1(C), x — .
y2(x)
Montrer: Vx eR, Y(x +T) = AY (x).

Montrer, de méme qu'en a), I'existence de B € M (C) telle
que: VxeR, Y(x—T)=BY(x).

En utilisant le wronskien de (y;,y2), obtenir: BA = I,.



= Corrigés des exercices

Soit y : R — R une application dérivable sur R.
Ona:
(E) Vx e R, xy' + y = Arctanx
< Vx eR, (xy) = Arctanx

<= 3dC e R, Vx € R, xy:fArctanxdx—l—C F).

En primitivant par parties :
X

T2 ) dx

/ Arctan x dx = x Arctanx — /

1
= x Arctanx — 3 In (1 + x?).

Donc (F) est équivalente a :

3C e R, Vx € R, xy(x) = x Arctanx — %ln(l +x)+C.

En prenant la valeur en 0, on a nécessairement C = 0. D’ou :
(F) <= Vx € R*, y(x) = Arctanx — % In(1+ x?).

1) Si y convient, comme
1
(41 ~ =
2x x—>

on a alors y(0) = 0.

2) Réciproquement, considérons y : R — R définie, pour tout
x € R, par:

1
) = Arctanx — g1n(1 +x%) si x#£0

0 si x=0.
11 est clair que y est dérivable sur R*, et, d’apres 1’étude pré-

cédente, y est solution de (E) sur R*.

1
Deplus: Vx e R*, y(x) = — In(l +x?),
2x2

_— =

donc: y'(x) s

Ainsi, y estde classe C! surR*, continue en 0, et y’ admet une

1
limite finie (égale a 5) en 0. D’apres le théoreme limite de la
1
dérivée, y est de classe C' sur R et y'(0) = 7
Ainsi, y est dérivable sur R et vérifie (E) sur R.

On conclut que (E) admet une solution et une seule :

1
) = Arctanx — Eln(l +x%) si x#£0

0 si x=0.

Puisque a est continue sur [0; +oo[, a admet des pri-
mitives sur [0; +oo[. Notons A une primitive de a sur
[0; 4oo[,et U =e*(y — 2).

Par opérations, U est dérivable sur [0; 4-o0[ et :

U'=et0 ~-2)—ae*(y~2)

=e (O -2)—aly—2)
=e (¢ —ay)— (& —a2)) > 0.
N——
>b <b
Ceci montre que U est croissante sur I’intervalle [0 ; 4+o0[.
Comme U(0) = e 4@ ( y(0) — z(O)) >0,
————
=0

on déduit U > 0, eton conclut : y > z.

Pour tout A € R, y) est dérivable sur R et, pour tout
xeR:

Ashx

A (x) =chx — =chx
) ch®x

shx A

chx chx

—ch _sh_x( ()—h)
=chx chxyAx shx

shx ch’x + sh’x
= _Ey/\(x) I —hr
d’ou:
ch?x + sh’x

VxR, yi(0)+ Xy 0 =
o » chxy)‘x - chx ’

On conclut que les applications a,b : R — R définies, pour

tout x € R, par:

ch’x + sh’x
chx

)

a(x) = z‘l—i b(x) =

conviennent.

Il s’agit d’un SDL1 SSM, a coefficients constants.

2 =2 1
La matricede (S)est: A=| 2 -3 2
-1 2 0

On calcule le polyndme caractéristique (par exemple en déve-
loppant par rapport a la premiere colonne) et on obtient :

XaA) ==X =\ +51 -3
=A=DEXN=20+3) = -\ +3)(\ = D2

Ainsi, les valeurs propres de A sont —3 (simple) et 1 (double).
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Déterminons les sous-espaces propres.

X
Soit X = | y
74

S M3_1 (R) o

¢ X € SEP(A,—-3) & AX = —3X

S5x —2y+z=0
Z=—X
= {2x+2z=0 = 5
y=2x
—x+2y+3z=0
1
donc : SEP (A,—3) = VectV;,ou: V| = 2
-1

X € SEP(A,1)e=AX = Xe=x —2y +7=0,
donc SEP (A,1) = Vect (V,,V3),

1 2
ouV, = 0 |,Vs=|]1], parexemple.
—1 0

Puisque x 4 est scindé que R et que la dimension de chaque sous-
espace propre est égale a I’ordre de multiplicité de la valeur
propre associée, d’apres le cours, A est diagonalisable.

D’apres le cours, la solution générale de (S) est donnée par :

3
t— X(t) = ZCke)‘k’Vk

k=1

1 1 2
=Cie| 2 |+Ce| 0 |+Ce 1],
=1 =1 0

ou encore :
x(t) = Cie ™ + (C, +2C3) €

y(t) =2C e + Cs ¢ (C1, C2, C3) e R3.

Z(t) = —C1 e_3’ — C2 e’

Il s’agit d’un SDL1 ASM, a coefficients constants.

-1 1 -1

-4 3 —4

-2 1 =2

On calcule le polyndome caractéristique de A (par exemple

par C; <— C, — Cs, puis L3 <—L3+ L) et on obtient :
Xa) = =+ DA = D).

Il en résulte que A admet trois valeurs propres simples, qui sont
—1,0, 1, et, comme A est d’ordre trois, d’apres le cours, on
conclut que A est diagonalisable.

La matrice de (S)est: A =

On calcule des vecteurs propres associés, et on obtient, par

0 1 1
exemple, [ 1], 0 |, |2
1 —1 0

Ainsi, A= PDP~', ou:

0 1 1 -1 0 O
P=|1 0 2|, D= 0 0 O
1 -1 0 0 0 1

Comme (S) est un systeme avec second membre et que (S) n’ad-
met pas de solution évidente (on pourrait cependant chercher
une solution ol x, y, z seraient des polyndmes de degrés < 2),

on calcule P~! et on obtient :

2 -1 2
P'l=|2 -1 1
-1 1 -1
X t+1
NotonsX =| y |, B@#)=|4t+1 |.Onaalors:
Z 2t + 1

X =AX+B<= X =PDP'X+B
< P 'X'=DP'X+ P 'B.

u 2t +3
Notons U =P 'X=|v |, C=P'B= 2
w t—1
Alors :
X =AX+B<<=U =DU+C
u' -1 0 O u 2t +3
|V |]=] 0 0 O v | + 2
w’ 0O 0 1 w t—1

W =—-u+2t+3
— vV =2
w=w+@—1).

La résolution de chacune de ces trois EDL1 ASM a coefficients
constants est immédiate, et on obtient :

X' =AX+B
u)=2t+1+C e’

= VieR, {v@e)=2t+C, (Cy, Cy, C3) € R?.
w(t) = —t + Cz¢'
Enfin :
0 1 1 20+ 1+Cre
X=PU=|1 0 2 2t + C, ,
1 —1 0 —t+C3e’

donc la solution générale de (S) est donnée par :
x(t) =t+ C, + Cs¢
y@t)=1+Cie' +2Cs¢!  (Cy,Cy, C3) € R3.

W) =14+Ce' —C



11 s'agit d'un systeme différentiel linéaire a coefficients
constants. En notant

—1 1 1 X —1
A= 1 -1 11, X= ,B=1{-1],
1 1 -1 b4 —1
(x,y,z) est solution du systeme différentiel proposé si et

seulement si X est solution de 1'équation différentielle (matri-
cielle) :

X' = AX + B.

La matrice A est diagonalisable dans M3 (R) et un calcul él¢é-
mentaire (ou la calculatrice) fournit :

A=PDP!,
1 1 1 1 0 0
on P=|1 -1 o), b=jl0 -2 0O
1 0 -1 0 0 -2

La solution générale de I'ED sans second membre X' = AX
est, d'apres le cours :

1 1 1
Xitr—Xe |1 | +pe?| -1 +ve™ 0],
1 0 =1
O\ pv) € R,
D'autre part, I'ED avec second membre X' = AX + B admet
1

la solution évidente r — | 1

1
Finalement, la solution générale du systeme différentiel pro-
posé est :

x(t) =1+ Xe + pe ™ + e
y(&) =1+ Xe! — e ,
z) =1+ Xe! —re

t —> O\ p,v) € R,

Comme le suggere 1’énoncé, pour y : R — R deux fois

dérivable, considérons z = (x> 4 1)y, qui est deux fois déri-
vable.

1" méthode :

Comme (E) commence par (x> + 1)yz”, calculons 7’ et zz”.
Ona:

2=+ Dy, Z=2y+E+ 1y,
2z =2y +4xy' + (x> + )y’
d’ou :
(% 4+ 1)yz” — Bx* —4x +3)y + 2x> — 6x +4)y
= (zz" — 2y —4xy’) — (3x% —4x 4+ 3)y + (2x> — 6x + 4)y
=z7" =3+ 1y + 2x* — 6x +2)y
= 77" — 3(z' — 2xy) + 2x* — 6x +2)y

=z7" —37 +2z.

Ainsi, y est solution de (E) si et seulement si z est solution de :
F zz" =37 +2z=0.
L’ED (F) est une EDL2 SSM a coefficients constants. L’ équation

caractéristique 7> — 3r + 2 = 0 admet deux solutions réelles
1 et 2, donc, d’apres le cours, la solution générale de (F) est :

z:xn—>/\e"+,uez", ()\,u)eRz.

On conclut que I’ensemble S des solutions de (E) est :

et + pe*

S = R R,
{y — X —> 71

s (A e Rz} -

2¢ méthode :

Z N £ ’ 1
Onay= ——— d’ou I’on calcule y" et yz” en fonction de
X

+1
Z, 7, zZ". On reporte dans (E), des termes se simplifient, et on
retrouve (F) de la premiere méthode.

L’ED (e) est une EDL2 SSM, non normalisée. ”ED nor-
malisée associée, sur un intervalle / ne contenant pas 0
est :

4x* 4+ 6 6 .
x(2+3)° "Tx243’

* Cherchons une (ou des) solution particuliere de (e) sous forme

/

B 0.

de polyndme : y(x) = Zakxk, ouneN, ag,...,a, €R,
k=0

a, # 0. Le terme de degré n + 1 dans le premier membre
de (e) doit étre nul :

n(n — 1a, — 4na, + 6a, =0,
d’ou, puisque a, =0 : n*> —5n+6=0,
doncn =2 oun = 3.
Notons donc y(x) = ax® + bx> 4+ cx +d, (a,b,c,d) € R*.
On a alors, en calculant y’ et yz” et en reportant dans le
premier membre de (e), avec des notations classiquement abu-
sives :

x(x% +3)yz” — (4x> + 6)y’ + 6xy
= x(x% 4 3)(6ax + 2b) — (4x” + 6)(3ax’ + 2bx + ¢)
+6x(ax® + bx% + cx +d)

= 2¢x* 4 (—6b + 6d)x — 6¢.

Ainsi, y est solution de (E) sur / si et seulement si :

¢ =0, d = b. Deux solutions polynomiales particulieres sont
donc :

Yo ix — x2 41,

obtenues pour (a, b, ¢, d) égala(1,0,0,0),2a(0, 1,0, 1) res-
pectivement.

Vi ix — X,

Il est clair que la famille (y;,y,) est libre.

D’apres le cours, I’ensemble S; des solutions de (E) sur 7 est
donc :

S,:{y:l—)]R, X — ax’ +b(x>+1); (a,b)eRz}.
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« Etudions le raccord en 0.
Soit / un intervalle ouvert de R, tel que 0 € 1.
Notons

ax* +bx*>+1) si x <0

y:I—{0} — R, x+—
ax’ + /(x> +1) si x>0,
pour (a,b,a,3) € R* fixé.
Ona:

yx) — b et yx) — 0,
x—0 x—07F

donc y est prolongeable par continuité en O si et seulement si
B=b.
Supposons = b et notons y(0) = b.
Alors, y est continue sur /, dérivable sur / — {0} et :

, 3ax>+2bx si x <0

y(x) =
3ax?+2bx si x> 0.

Comme :

y@x) — 0 et y(x) — 0,
x—>0— x—0t

d’aprés le théoreme limite de la dérivée, y est de classe C'
sur /.

L’application y est de classe C? sur I — {0} et :
6ax +2b si x <0
y'(x) =
6ax +2b si x > 0.
Comme:y’(x) — 2b et y7'(x) — 2b,
x—0— x—0t

d’apres le théoréme limite de la dérivée (appliqué a y’), y est
de classe C? sur 1.
De plus, y satisfait (e) en le point 0.

Finalement, I’ensemble S; des solutions de (e) sur 7 est :
51 = {1 — R;

si x <0

si x=0 ; (a,a,b)e]R3}.

ax’ +b(x>+1)
X —> b
ax3+b(x*+1) si x>0

¢ Pour tout intervalle ouvert non vide / de R, S; est un R-
si 0¢1

espace vectoriel, et : dim (S;) = {
3 si Oel.

L’ED (E) estune EDL2 SSM, non normalisée, mais nor-
malisable sur ] — 1; 1[.
Comme le suggere 1’énoncé, utilisons le changement de variable
t = Arcsin x, donc x = sint, et notons
z:]1—m/2;7/2[— R,t — z(t) = y(x) la nouvelle fonc-
tion inconnue. Par composition, z est deux fois dérivable et on
a, avec des notations classiquement abusives :

y(x) =z(0),

, e dz_, 1
y(X)—z(t)a—z(t)im,

" /" 1 / X
yZ'(x) = zz (f)m +z (I)m'

d’ou : EB)&—=z7"+z=0 (.

L’ED (F) est une EDL2 SSM, a coefficients constants.

D’apres le cours, la solution générale de (F) est :
z:t+—> Acost+ Bsint, (A,B) e R?.

sint = x, cost = /1 — x2.

On conclut que I’ensemble S des solutions de (E) sur | — 1; 1[
est:

S:{y:]—l;l[—>R, x —> AV 1—x%2+ Bx;
(A,B) e R*}.

Comme r = Arcsinx,ona :

Remarque :

Au lieu de la méthode proposée dans 1’énoncé (changement de
variable ¢ = Arcsin x, suggéré par la présence de 1 — x? de-
vant y”), on aurait pu remarquer que x —> x est solution évi-
dente de (E), puis trouver une deuxieme solution par la méthode
de Lagrange.

Il s’agit d’'une EDL2 SSM, non normalisée, mais nor-
malisable sur ]0; +o0f.

Comme le suggere 1’énoncé, effectuons le changement de va-
. 1 . Lo
riable t = —, donc aussi un changement de fonction inconnue
x

z(t) = y(x), ou z est deux fois dérivable. On a, avec des no-
tations classiquement abusives :

, , . dt o1
yx)=2z@), yx)=1z2 (f)a = =)=,
X
" " 1 ! 2
Y& =2"0)— +2 ).
X w
RN 4 1 " 2 /
Dlou:  x"y"(x) —y(x) =2"(1) + P (1) — z(®).
Ainsi, y est solution de (E) sur ]0; 400 si et seulement si z
est solution sur ]0; +oo[ de :
" 2 ’
F z +;z —z=0.

Comme le suggere 1’énoncé, effectuons le changement de
fonction inconnue défini par u(t) = tz(z).

L’application u est deux fois dérivable et, :

1 1 1
z=-u,?=—u+-u,7"=—u—Su' +-u",
t 12 t > 12 t
2 1 1
d’ou : 4+ —z=-u"— -u.
t 1 t

Ainsi, z est solution de (F) sur ]0; +oo[ si et seulement si u
est solution sur |0; +oo[ de: (G)

L’ED (G) est une EDL2 SSM, a coefficients constants.

u —u=0.



L’équation caractéristique 7> — 1 = 0 admet deux solutions
réelles 1 et —1. D’apres le cours , la solution générale de (G)
est donc :

u:t—sae +be’, (a,b) eR’.

Par le changement de fonction inconnue u = ¢z, la solution gé-
nérale de (F) sur ]0; +o0[ est :

1
z:tr—>;(ae’+be_'), (a,b) € R,

1
Enfin, par le changement de variable # = —, on conclut que
X

I’ensemble S des solutions de (E) sur ]0; +o0[ est :
S = {y :10; +o0[— R,
X —> x(ae% + befé); (a,b) € Rz}.

1l s’agit d’une EDL2 SSM, non normalisée sur R, mais
normalisable sur 7 si 0 ¢ 1.

Cherchons, selon I’indication de 1’énoncé, une solution de (e)
n

sous la forme d’un polynome y : x —> Z ax*, otn €N,
k=0

ao,...,a, € R, a, # 0.Le coefficient du terme en x" du pre-
mier membre de (e) doit étre nul : na, — 2a, =0, d’ou,
puisque a, # 0 :n = 2.

Cherchons donc une solution particuliere de (e) sous la forme
y:x —> ax>+bx +c, (a,b,c) € R3. On a alors, avec des
notations classiquement abusives :

xy" 4+ (x —2)y =2y
= x2a + (x —2)Qax + b) — 2(ax* + bx +¢)
=—QRa+b)x —2(b+c).

Pour que y soit solution de (e) sur R, il faut et il suffit que
2a+b=0etb+c=0,c’est-a-dire : b = —2a et c = 2a.
Ainsi, par exemple (en prenant a = 1), I’application
Y1 : X —> x> — 2x + 2 est solution de (e) sur R.

* Cherchons, selon I’indication de 1’énoncé, une solution par-

ticuliere de la forme y : x — e™*, a € R fixé. On a, avec des
notations classiquement abusives :

y=e*, y =ae, yz
puis :
xy" + (x —2)y' — 2y = xa2e™ + (x — 2)ae™ —2e*
= ((0® + @)x = 2(a+ 1)) e = (a+ 1)(ax — 2) ™.
En choisissant « = —1, ’application y, : x —— e~* est solu-
tion de (e) sur R.

* ]I est clair que, pour tout intervalle ouvert non vide / de R,
la famille (y|; , y2|;) est libre. D’apres le cours, si 0 ¢ 1,
I’ensemble S; des solutions de (e) sur / est donc :

Si={y: I —R, x— Ax?—2x+2)+pe*;
A € R?}.

« Etudions le raccord en 0.

Soit I un intervalle ouvert contenant 0, et soient

(A1, X5 15) € R*, vy : I — R D’application définie par :

M2 =2x+2)+ e si x<0

y(x) =

(2 —2x+2)+pme™  si ox>0.

Ona: y(x) e 2X1 + py et y(x) e 200 + g,

donc y est prolongeable par continuité en O si et seulement si :
2)\2 P My = 2)\1 +,u1

Supposons cette condition réalisée, et notons y(0) = 2\ + p,.
Alors, y est continue sur /, de classe C' sur I — {0}, et, pour
toutx € I — {0} :

A@2x —2) —p e si x <0

y'(x) =

AQ@2x —2)—pe™  si x <O.

Ona: y'(x) — =2\ — i,
x—0"

et y(x) —O>+ =20 — pp = —2X\; — py,
donc, d’apres le théoreme limite de la dérivée, y est de

classe C!sur Iet y'(0) = —2X\; — p;.

L’application y est de classe C? sur I — {0} et, pour tout

2\ + e si o x <0

xel—{0}: y'(x)=

20 + e siox > 0.

Ona: y'(x) —gﬁ 2 + 1y

et y'(x) —0>+ 200 + iy = 20 + g,
X—>

donc, d’apres le théoreme limite de la dérivée (appliqué a y’),
y est de classe C? sur [ et y”(0) = 2\, + 1.
Enfin, il est immédiat que y vérifie (e) en 0.

On conclut que, si 0 € 1, I’ensemble S; des solutions de (e)
sur [ est :

81:{y:1—>R, X yx) =

A2 —2x +2) + p e
2)\1 +U1 si
A(x? =2x +2) + QA + 1y —2X0)e ™ si x > 0;

(A1, g, A2) €R3}-

et donc S; est un R-espace vectoriel de dimension 3.
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Il s’agit d’'une EDL2 SSM, normalisable sur ]0; +o0[.
* Une solution évidente est y; : x —> x.

* Cherchons une deuxieme solution par la méthode de Lagrange,
c’est-a-dire sous la forme y : x —> xA(x), ou A est une fonc-
tion inconnue, supposée deux fois dérivable. On a, avec des no-

tations classiquement abusives : y = x\, y = A+x\,

Y =2X +x)\,
donc :
x2(x + Dy —x(x> +4x +2)y + (x> +4x +2)y
=x2(x + DN +x)\) —x(x> +4x +2)(\ +xN)
+ (% 4 4x + 2)x A
=2’ + DN + 2% + 1) — 22 (* + 4x +2)) N
=x*(x(x + DN = (x* + 20)N).
Ainsi, y est solution de (E) si et seulement si A est solution
de: (F) x+DN' —x+2)N =0.

Une solution particuliere (autre que la solution nulle) de cette
EDL1 SSM (d’inconnue \') est donnée par :

)\/(x)zexp</ii?dx>=exp</(l+x]?>dx

:exp(x+ln(x+ 1)) =(x+1)e.

Une fonction A convenant est donnée par :
Ax) = /(x—|— 1)e*dx =xe*.
Une solution particuliere de (E) est donc :

y2:10; +oo[—> R, x —> x%e".

* Puisque (E) est une EDL2 SSM normalisée, a coefficients
continus sur I'intervalle 0 ; +oo[, d’apres le cours, I’ensemble
S des solutions de (E) sur ]0 ; +o0[ est un R-espace vectoriel
de dimension 2.

D’apres le cours sur la méthode de Lagrange, la famille (y;,y,)
est libre.

Onavuplushaut: y, €S, y, €S.
On conclut que I’ensemble S des solutions de (E) sur ]0 ; 4+-o0[
est :
S={y:10;,+oo[— R, x +—> a1x + ax?e’;
(a1,00) € R2}

1l s’agit de résoudre une EDL2 SSM, normalisée, avec
conditions en un point.

* Comme le suggere I’énoncé, cherchons d’éventuelles solu-
tions polynomiales de

(E) (1 —x%)y"+2xy =2y =0.

Notons y : x —> Zakxk, une fonction polynomiale, ou
k=0
n eN,ap,...,a, € R, a, #0.Si y est solution de (E), alors
le terme de degré n du premier membre est nul, donc :
—n(n — 1)a, + 2na, —2a, =0,
c’est-a-dire : (—n2 +3n —2)a, =0,
donc: n=1oun=2.

Considérons donc y : x — ax” + bx + ¢, pour (a,b,c) € R
fixé. On a, avec des notations classiquement abusives :

(1 —x*)y" +2xy' =2y
= (1 —x?)2a + 2xQax + b) — 2(ax> + bx + ¢)
=2(a—c).

Ainsi, y est solution de (E) si et seulement si : ¢ = a. En par-

ticulier, les deux applications :
yiix—>x et y=x+>x2+1

sont solutions de (E) (on peut d’ailleurs controler ceci par un
calcul direct). Comme, d’apres le cours, I’ensemble S des so-
Iutions de (E) sur ] — 1; 1[ est un R-espace vectoriel de di-
mension 2, et que (y;,y,) est libre, on déduit :

S:{y:]—l;l[—)R;xr—>o¢x+ﬂ(x2+l);

(@) € RZ].
Avec ces notations, on a :
Vxel—1;1[ y(x) =a+20kx,
donc : y(0) = B et y'(0) = a, puis :
{y(m =3 {ﬂ: 3
—
y'(0) =4 a=4.

On conclut qu’il y a une solution et une seule, I’application :

y:]—1;1[— R, x —> 3x> +4x +3.

a) Soit y une solution de (E).
Alors, y est deux fois dérivable et y” = xy’ — y. Comme
xy' — y estdérivable, y” est dérivable, donc y est trois fois dé-
rivable et : y® = (xy’ — y) = xy”.
b) * Soit y une solution de (P).
D’apres a), y est trois fois dérivable et y® = xy”. Ainsi, y”
vérifie une EDL1 SSM. Il existe donc A € R tel que :

x2
Vx eR, yz'(x) = Xexp (/xdx) =)\eZ.

Mais yz”(0) = 0, donc A = 0, puis yz” = 0. II existe donc
(a,3) e R’telque: Vx e R, y(x) = ax + S.
VxeR, 0=y"—xy +y=04,

Vx eR, y(x) = ax.

Puis :
On a donc :

* Réciproquement, il est évident que, pour tout a € R, I’ap-
plicationy : R — R, x +—— ax est solution de (P).



Finalement, I’ensemble S des solutions de (P) est :

S={y:R—>R;xn—>ax;aeR}.

Il s’agit d’'une EDL2 ASM, normalisée sur I’intervalle
I =]—mn/2;m/2[.
La solution générale de ’EDL2 SSM associée
(Eo) Y'+y=0

est y:x —> Acosx + Bsinx, (A,B) € R%.

Cherchons une solution particuliere de (E), par la méthode de
variation des constantes, sous la forme

y:x+— A(x)cosx + B(x)sinx,

ou A, B sont des fonctions inconnues, supposées dérivables.
On a, par la méthode :
A'(x)cosx + B'(x)sinx =0
Vxel,

—A'(x)sinx + B'(x) cosx =
COS X

A'(x) = —tanx
<~—Vxel,
B'(x)=1

A(x) = In cosx
<—Vxel,
B(x) = x.

Une solution particuliere de (E) est donc :
y:Xx > cosxIncosx + xsinx.
On conclut que la solution générale de (E) sur 7 est :

Yy :x > cos In cosx + x sinx + Acosx + Bsinx,
(A,B) € R%.

L’ED (E) est une EDL2 ASM, normalisée sur I’inter-
valle I =] —7/2; w/2[.
1) Résolution de (E) :
La solution générale de ’EDL2 SSM associée
(Ep) ' +y=0
est: y:x > Acosx + Bsinx, (A,B) € R?,

Cherchons une solution particuliere de (E), par la méthode de
variation des constantes, sous la forme

y:x+— A(x)cosx + B(x)sinx,

ou A, B sont des fonctions inconnues, supposées dérivables. On
a, par la méthode :

A'(x)cosx + B'(x)sinx =0

Vxel,
—A’(x)sinx + B'(x) cosx = tan’x
, . sin®x
A'(x) = —tan“x sinx = ———
cos2x
< Vxel, )
, 2 sin%x
B'(x) =tan“x cosx = .
COS X

Calculons A(x) et B(x) par primitivation (2 une constante ad-
ditive pres), en utilisant, par exemple, les reégles de Bioche :

sin3x 1 —u? 1
= du = —— —u
I = COSX u? u

Ax) = —/ 5 dx
COS %X

sin? 2
B(x) = / al dx = / L dv
COoS X v=sinxJ 1—102

1 1 [T+
(14— )dv=—v+-1
/( +1—u2>” v+2n‘l—v

1+ sinx

|
= —d s
L

On en déduit une solution particuliere de (E) :

1 + cos?x
yiXxt+— y(x) = ———  cos
cosx

. 1. 14 sinx) .
4+ — sinx + -In—— | sinx
2 11— sinx

1 . 14 sinx
=—2+ —sinxIn ———,

2 1 — sinx
puis la solution générale de (E) :

1 . 1+ sinx
yixt+— =2+ —sinxIn ————
2 1 — sinx
+A cosx + Bsinx, (A,B) € R%.
2) Résolution de (P) :
Traduisons les conditions en 0.
y0) =0 2+ A=0= A=2.
* On calcule y'(x), pour tout x € [ :

') 1 | 1+sinx+ . d 11 1+ sinx
=—cosxln—— + sinx— | =In—
VI 2 * 1— sinx xdx 2 11— sinx

*Ona:

— Asinx + Bcosx,
d’ou : Y(0)=0<= B=0.
Finalement, le probleme (P) admet une solution et une seule :
y:l=m/2;7/2],
1+ sinx

1
x|—>—2+§sinxln1 + 2 cosx.

—sinx

a) Il s’agit d’'une EDL4 SSM, a coefficients constants.
On forme I’équation caractéristique :
=274+ 1=0(*-1=0
= (r—D'r+1)*=0,
dont les solutions sont —1 (double) et 1 (double).
D’apres le cours, généralisé a 1’ordre 4, la solution générale
de (E) est donnée, pour tout x € R, par :

y(x) = (Ax + B)e* + (Cx + D)e ™™, (A,B,C,D) € R*.
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b) 1) L’application y; : x —> e” est solution évidente de (E).

2) En notant, selon I’énoncé, z = yyl_' ,comme y; est solution
de (E), la fonction constante égale a 1 sera solution de la nou-
velle équation.

On a, avec des notations classiquement abusives :
y=z¢", Y =@E@ +2¢e", y' =@ +27 +2)¢
y® = @® +327 + 37 +2)€*

y® = @@ +4z% 1 677 + 47 + 7)€,
donc :
(EB) y¥ =2y"+y=0= F) ¥ +4:V +47"=0.
Ennotantu = z”,ona:
(F) <= (G) u"+4u' +4u=0.

L’ED (G) est une EDL2 SSM, a coefficients constants.
L’ équation caractéristique 72 + 4r + 4 = 0 admet une solution
double réelle —2, donc la solution générale de (G) est :
u:ix — x+pe >, A\ eR

Comme u = zz”, en primitivant deux fois, la solution générale
de (F) est :

2:x — (ax + B e ™ + (x +6), (a,p,7,0) € R*.

Enfin, comme y = ze*, la solution générale de (E) est donnée,
pour tout x € R, par :

y(x) = (ax + e + (x + ) e, (a.,53,7,0) € R

On retrouve bien le méme résultat qu’en a).

On a, pour toutes applications p,q : I — R :
WH+pyt+an=0 pyi +ay1 = —y{
< (S)

i +py, +qy:, =0 Py +qy: = —y;.

Comme w = y;y» — yry, ne s’annule en aucun point de /,
pour tout x € 1, le systeme linéaire (S) d’inconnue ( p(x),q (x))
est de Cramer, donc admet une solution et une seule. On a
donc :

"y, " N/
(S) <p _ Y12 w)’l)’z et g = YiYa =N yz).

w
Ces formules montrent I’existence et 1’unicité de (p,q). De plus,
comme y; et y, sont de classe C? sur /, par opérations, p et g
sont continues sur /.

On conclut qu’il existe un couple (p,q) et un seul convenant,
et il est donné par les formules ci-dessus.

Soit y une solution de (E). Avec des notations classi-
quement abusives, ’application U = y* + e *y’? est dérivable

sur [0; +oof et :

U =2yy —e "y 2 +e*2yy"
=2y'e My +)y) —eTy = -y <0,
donc U est décroissante.
Vx €[0; 4+oo[, U(x) < U(0).
Ilenrésulte : Vx € [0; +oo[, y*(x) < U(x) < U(0),
puis : Vx e[0;+ool, 0< [y@)| <VU().
Ceci montre que y est bornée.

On a donc :

1) L application

y
F:U=R! xR— R, (x,y) —>
v (x,y) g
est de classe C! sur I'ouvert U de R?, et (2,1) € U. D’apres
le théoreme de Cauchy et Lipschitz, le probleme de Cauchy
/ y

© x +¥? admet une solution maximale et une

y2) =1
seule, notée encore y, et I’intervalle de définition / de y est ou-
vert.

Ceci montre ’unicité d’une éventuelle solution de (C) sur
105 +o0l.

2) * Supposons [0; +oo[C I et:Vx €]0; +o0[, y(x) #0.
On a alors, avec des notations classiquement abusives :

/

y / /
Y=—S Syx+yy=y=yy=y-—xy

X +y

’ ’
— X X

y =2 2y y,:<7>.
y y

Il existe donc C € Rtel que :y = a A €
y

d’otr : y2—Cy—x=0.
Deplus: y2)=1<=1-C-2=0«< C=—1.
On obtient : Y +y—x=0.

Le discriminant de cette équation du second degré est
A =1+4x > 0, donc pour tout x € |0; 4+o00] :

1 —4/1+4+4x _—1+«/1+4x
==

y(x) = — > y(x)

Comme y(2) = 1, ceci nous amene a considérer la fonction ob-
tenue ci-dessus avec le signe + devant la racine carrée.

3) Réciproquement, considérons 1’application :
1
y:10; +oo[—> R, x —> 5(_ 1++/1+4x).

Il est clair que y est dérivable sur ]0; +o00[, que y est solution

dey = L, sur ]0; +oo[ (d’apres 2)), et que y(2) = 1.
x + y?
Finalement, il y a une solution et une seule :

1
y:10; +oo[— R, x —> 5(—1+«/l+4x).



1) Résolvons I’'EDL1 (E) y’ = y — x> + x, d’incon-
nuey : [0; +00[—> R dérivable.
La solution générale de ’EDL1 SSM associée
(Eo) y' =y
est: y:x+— Aef, AeR.
Cherchons une solution particuliere de (E) sous la forme
y:ix+— ax?+ fx +7, (@.B,7) € R
On a, pour tout x € [0; +o0f :
Y (@) = (yx) = x* +x)
= Qax + fB) — (ax*> + fx +v— x> + x)
=(1-a)x’+Qa—B—Dx+(B-7.
11 suffit donc que :
l—a=0, 2a—0—-1=0,

=1, ~=1.
Une solution particuliere de (E) est donc :

c’est-a-dire: a =1,
yixr— x> +x+1.
D’apres le cours, la solution générale de (E) est donc :
yixr x> +x+14+xe", AeR.
Considérons donc, pour A € R, I’application :
f:[0; +oo[— R, x— x2+x+ 1+ Xe*,
qui est dérivable sur [0 ; +o00[.

2) Si A\ <0, alors y(x)x —_>+)oo —o00, contradiction avec la
deuxieme condition de 1’énoncé.

On a donc nécessairement : A 2> 0.

Alors: Vx €[0; +oof, f'(x)=2x+1+Xe* >0,

donc f est strictement croissante sur [0 ; +ool.

Il en résulte que f > O si et seulement si f(0) > 0.

Et: f(0) =1+ .

Ainsi, f convient si et seulement si: 1 + A > 0.
=3

Enﬁn:a:f(l)=3+)\e,donc:)\za s
€

-3
puis : )\>—1<:>aT>—l<:>a>3—e.

On conclut que I’ensemble des a € R demandé est :
13 —e; +ool.

Considérons I’application
U:[0;+0o[— R, x — Ux) =x>f(x) — x*,
suggérée par 1’expression x f/(x) + 2 f(x) — 4x> de I’énoncé.

Cette application U est dérivable et, on a, pour tout
x €[0;+oo[ : U'(x) = x(xf'(x) + 2f(x) — 4x?) > 0.

Il en résulte que U est croissante. Comme de plus, U (0) =0,
on déduit : U > 0, ¢’est-a-dire :

Vx e[0;4oof, x>f(x) > x*.
En simplifiant par x>, on déduit :
Yx €10; 400, f(x)=x".

Comme f est continue en 0, I'inégalité est encore vraie en 0,

etonconclut: Vux €[0;+oo[, f(x) > x>

1) Soit f convenant. On a alors :
Vx e R—{a},

2 2
@) ——f=-———f@ - fa.
X —a X —a

2
La solution générale de ’EDL1 SSM y' — ——y =0, sur
x—a

Iy =] —o00;al oul, =]a;+oo[, est donnée par :

2
y:xr—>/\exp</
X

—a

dx):/\(x—a)z, AeR.

Conformément a la méthode de variation de la constante,
considérons I’application

f(x)

g:R—{a} — R, x+— o’

qui est de classe C! sur R — {a}. On a ainsi :
VxeR—{a}, f(x)=@x—a) g,
d’ou, en dérivant et en reportant I’expression de f'(x) dans1’éga-
lité initiale :
2 7 2 /
VxeR—{a}, x—a)g'x) = —mf(a)—f(a),
et donc :

2 f'(@)
G DG

VxeR—{a), g(x) =~

Par primitivation sur | — 0o ; a[ etsur Ja ; +-00[, on déduit qu’il
existe (o, 3,7, A\, u,v) € RO tel que :

Vx e]l—o00;al, g(x):( p + v

—a)2+x—a
1
xX—a

Vx €la;+oo[, glx) = A ¥,

(x —a)?
d’ou:
Vxe]l—o0;al, f(x)=a+Bx—a)+yx —a)’
Vx €la;4ool, f(x)=A+pux —a)+uvix—a)

f&x) — a et f(x) —>+/\
On a alors : ) e , e
f (X)X:H[5 et f(x)x:1)+ Hs
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d’ou, puisque f est de classe C' sur R :
a=Aet B=p,
puis, pour tout x € R :

a+Bx —a)+yx—a)? si x<a

f(X)={

A\VARV/AN

a+pBx—a)+v(x—a) si x>a.

2) Réciproquement, pour tout (e, 3) € R?, I’application obtenue

ci-dessus est de classe C' sur R et, pour tout x € R — {a} :

fx) = fl@) {B+7(x—a) si x<a

F=w B+v(x—a) si x>a,
1 %(ﬂ—i—Zw(x—a)—{—ﬂ) si x <a
E(f/(X)+f/(a)) =
§(ﬂ+21/(x—a)+ﬁ) si x >a,
donc f convient.

On conclut que I’ensemble des applications convenant est :

{[fR—R, x+—
a+px—a)+y(x —a)® si x<
a+px—a)+v(x—a) si x>a

Remarquons d’abord que F, G, H sont dérivables
sur R.

1) Si F et G sont solutions de (E) X' = AX, alors :
H=(F+G)=F+G =AF + AG = A(F +G) = AH
donc H est solution de (E).

2) Réciproquement, supposons que H est solution de (E). On
adonc :

VieR, ae®U+ e’V = AU +e*v),
d’ou aussi, en dérivant :
Vi eR, o?eU + Fe™V = A(ae™U + B V).
En prenant les valeurs en 0, on obtient :

aU + BV = AU + V) = AU + AV
QU + V = A(aU + V) = aAU + BAV,

(AU — aU) + (AV — BV) =0
doir:
' a(AU — alU) + B(AV — V) = 0.

Comme « # 3, on déduit, par exemple en effectuant
L2<— Lz—Ole Cth(— Lz—ﬁLl 5

AU —aU =0
AV — BV =0.

On a alors, pour tout 7 € R :
F'(t) = ae®U = eM™AU = A(™U) = AF(1),

donc F est solution de (E), et, de méme, G est solution de (E).

D’apres le cours, le probleme de Cauchy linéaire pro-
posé admet une solution et une seule, notée (x,y,z).

Considérons U = x +jy +j’z. L’application U est de
classe C'sur R et :

U/ — x/ +_]y/ +j2Z/
=(x+y+i-y+2+i(-z+x)
=@ -Dx+A-jy+ G-z
= -P( - A +px+y+iz)
=1 -)Gx+y+j2)
=1 - +iy+ifd = ¢ - DU.
Par résolution de ’EDL1 SSM obtenue ci-dessus, il existe
UpeCtelque: VieR, U@ =e Dy,
De plus :
Up=U(0) = x(0) +jy(0) +j*2(0) = 1+ +j =0,
VieR, U@)=0.

VieR, x(t)+jy@) +jz(t) =0.
D’apres un exercice de Premiere année (Méthodes et Exercices

PCSI-PTSL ex. 2.26 a)), les points x (¢), y(t), z(t) forment, dans
le plan complexe, un triangle équilatéral direct.

d’ou :

Ainsi :

1) Soit f convenant. Puisque f est continue, 1’applica-

tion x —> / (f(t))2 dr, est de classe C', donc f est de
0

classe C! sur] — 1; 1[. On a alors, en dérivant :
, 2
Viel— 11 £ =(f),

et, d’autre part : £(0) = 1.

y/ — y2

y(0) =1
Puisque 1’application (x,y) —> y? est de classe C' sur I’ou-
vert U =] —1; 1[xR et que (0,1) € U, d’apres le théoreme

de Cauchy et Lipschitz, (C) admet une solution maximale et
une seule.

* Considérons le probleme de Cauchy (C)

* D’autre part, cherchons une solution y de (C) ne s’annulant
en aucun point. On a :

/

y—:
yZ

y =y 1

1
<—3JINeR Vxe]-1;1[, ———=x+ A
y(x)

JXeR, VY —1:1[, =
= € x €] [, y(x) P



1
Puis : y(0)=l<:>—X=l<:>)\=—1.

1

Ainsi, Yo:]—o00; 1[— R, xr—>]
—X

est solution de (C), nécessairement maximale, puisque
Vo(x) —1> +00.
x—>1-

D’apres le cours, f est restriction de yg, d’ou :

1
Viel- L1l fO)= .

2) Réciproquement, f :]—1;1[— R, x —— ] est

continue sur | — 1; 1[, et, pourtoutx €] —1; 1[ :

X b3 X 1
1+/O (f®) dt_1+/0 mdt

7" 1 1
:1+[m]o=1+<1_x‘1>:m:f‘”

donc f convient.

Finalement, il y a une application et une seule convenant :
1

_x.

f:1-1;1[— R, x +——

1) Existence et unicité de y :
3
Puisque I’application F : (x,y) —> — =y + xy’
X
est de classe C! sur ouvert U =]0; +oo[xR de R?, et que

1
(2, §> € U, d’apres le théoreme de Cauchy et Lipschitz, le

!

3 2
Y =——y+xy

probleme de Cauchy (C) admet une so-

1
2) = =
y(2) 3
lution maximale et une seule, notée y, et I’intervalle de défi-
nition / de y est ouvert.
Remarquons : 2 € Iet I C]0; +oof.
2) Calcul de y :

* Cherchons une solution particuliere y de (C) ne s’annulant
en aucun point.

Soient J un intervalle ouvert tel que 2 € J et J C ]0; 400,
ety :J —> R dérivable telle que :

Vxeld, yix)#0.

1
Notons z:J — R, x —> —), qui est dérivable sur J.
X

On a, avec des notations classiquement abusives :

, 3 3 4 3 x
y =—=y+xy {:>_72:_7+72
X Z Xz z
, 3

<:>z=;z—x (F).

Il s’agit maintenant d’une EDL1 ASM. La solution générale

3
de ’EDL1 SSM associée z' = —z est donnée par :
X

3
z(x)=Aexp</;dx> =A™ =3, A eR.

On cherche une solution particuliere de (E) par la méthode de
variation de la constante, sous la forme
z:x —> z(x) = A(x)x>, ou A est la nouvelle fonction in-
connue, supposée dérivable. On a, avec des notations classi-
quement abusives :

3
7="z7—x<<= Nx*=—x
X
o |
— A =——2<:>\=—.
X X

Une solution particuliere de (F) est donc :

ZIX|—>—X3:X2.
X

D’apres le cours, la solution générale de (F) est donc :
Zixr— x>+ M\°, VeR.

Il en résulte que, pour tout A € R fixé, la fonction

1 1

y:me:m

est une solution de I’ED de 1’énoncé. Et, pour cette fonction :

| 1 | 1
D) === —— = — &S A= ——,
Y& =3 418\ 3 8

Considérons donc la fonction

1 8
Viix —> = .
x2—gxd 8x2— i3

D’apres ce qui précede, y; est solution de (C) sur I’intervalle

10; 8[. De plus : y(x) —> 400, donc y, est nécessairement
x—>8~

la solution maximale de (C).

On conclut que la solution maximale de (C) est :

8

:10; 8 R, =
y:] [— xr_)8x2—x3

1) L application
F:R* — R, (x,y) —> —cosy

est de classe C! sur I’ouvert R? de R?, donc, d’apres le théo-

reme de Cauchy et Lipschitz, le probleme de Cauchy
y'=F(x,y)

) admet une solution maximale et une seule,
y(m =0

notée y, et I'intervalle de définition de y est ouvert.

2) Cherchons des solutions de y” + cos y = 0 telles que cos y
ne s’annule pas. On a alors, avec des notations classiquement
abusives :
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, dx 1
Yy 4+cosy=0 — =—

dy cos y
) dr
d
<:>x=/— y _ _/‘ 1+t22
COSy i=tan(y/2) 1—1¢
1+ ¢?
dr .
=—2/1 t2=—2Argtht—|—C, si [tj<1, CeR
- x C
<=t =th =—th{=——=
(-3
< tan = = th(x ¢
2 2 2
x C
= —2Arctan [th( = — = ) |.
Yy rcan[ (2 2)]
Et:
™ C
y(m) = 0= —2 Arctan |:th <§ — 5)] =0«<C=m.

Considérons donc 1’application

y:R— R, x+— —2Arctan<thxg7r).

Cette application y est dérivable sur R et satisfait (C). De plus,
il est évident, puisque y est définie sur R, que y est solution
maximale de (C).

Finalement, la solution maximale de (C) est y définie ci-dessus.

Soit ¢ €10 ; 4o00[.

Résolvons I'ED (E) y’ = —(c? + y?). On a, avec des nota-
tions classiquement abusives :

dy
62+y2
d
@/ﬁyyz:—x-F)\, AeR

1
:}—ArctanX:—x—i—)\,)\eR
c c

(B) &= = —dx

<y =ctan(c(—x + \)).

De plus, pour cette fonction y :
y(1) =0 <= tan (c(—14 X)) =0

k

- =km keZ e A=1+—.

c

Ainsi :
km
y = ctan (c( — il ?)> =ctan (c(—x +1)).

Enfin :

Déf (y) D [0; 1] <= Vx €[0;1], c(—x + 1) ¢g+ﬁz

™ ™
<:>[0,C]C:|—§,§|:<:>C€i|0,§|:.

On conclut que I’ensemble cherché est : ]O ; g |:

Il's’agit d’un SDL1 SSM, a coefficients constants. La ma-

2 -1 2
tricede (S)est: A=| 10 -5 7
4 -2 2

Un calcul élémentaire (polyndme caractéristique) montre que
les valeurs propres de A sont —1 (simple) et O (double), et que
les sous-espaces propres sont :

SEP(A,—1) = Vect (V}), Vi=| -1 ],
-2
1
SEP (A,0) = Vect (V,), Vo, =| 2
0
Il en résulte que A n’est pas diagonalisable.
0
Notons V3 = | 0 | par exemple (n’importe quel vecteur hors
1
de Vect (V;,V,) conviendra), et :
1 1 0
P=Vy V, V3)=|-1 2 0
-2 0 1
Alors, P estinversible et un calcul élémentaire (ou la calcula-
| 2 -1 0
trice)donne: P'=—-[1 1 0
4 -2 3
Ennotant 7 = P~' AP, on obtient, apres calcul du produit des
-1 0 -1
trois matrices : T = o o0 3],
0O 0 O

qui est triangulaire supérieure.

Autrement dit, nous avons trigonalisé A.

Notons U = P~'X,donc X = PU.Ona:
)= X' =AX <= U'=TU.

u
Notons U = | v |.Ona:
w
u -1 0 -1 u
S« |v|=]10 0 3 v
w’ 0o 0 O w
u=—-u—w

w(t) = C
< 3(C,,C,,C3) e R, Vi e R, { v(t) =3Cst + C,

u(t) = C, el — Cs.



Cie'—C;
C, 4+ 3Cst
Cs.

=X=PU=| —1

1 0
2 0
z -2 0 1

On conclut que la solution générale de (S) est donnée, pour tout
t e R, par:
x(t) =Cye" +3Cst + (Cy — C3)
y(t) = —Cre™" + 6Cst + 2C, + C3) (C1,C2,C3) € R3.
z(t) = —2C, e +3C;

a) L application F : R? — R?,

(t,x,y) —

-1 2 -|—1 2t +1) : +2
—Dxy— =x+ =y, Xy —=x+ =
Y= 3 37 YT 3 37

est de classe C! sur I’ouvert R? de R3, et (0,1,1) € R?, donc,
d’apres le théoréme de Cauchy et Lipschitz, le probleme de
Cauchy (C) admet une solution maximale et une seule, notée
(x,y), et I'intervalle de définition de cette solution maximale
est ouvert.

b) Lapplication z : t —> (2t + Dx(¢) — (t — 1)y(¢)
est dérivable sur / et, pour tout ¢ € [ :
()= @t + Dx'() +2x(1) — (t = Dy'(1) = y(@)

= (2t + 1)((1 — Dx@)y(t) — %x(l) A %y(l)) + 2x(t)
4 2
= = l)<(2t + Dx(@)y(@) — §X(t) + gy(t)> — ()
2 4
= (— 3(21 4= 1) 4F 2 4F §(’ — l))x(z)

12 1 2 1 1 =0
+(§(t+ === )y(r)— :

Comme 7z’ = 0 sur Iintervalle 7, on déduit que z est constante
sur . Et: z(0) = x(0) + y(0) = 2.

On conclut que z est constante égale a 2.
a) D’apres le cours, la solution générale de (Eg) est don-
née, pourx €] —1; 1[, par:
1
y(x) =/\exp<—f1—dx> =A1—-x), NeR.
—Xx
b)Soity :] — 1; 1[—> R une application dSE(0),
+00
y(x) = Za,lx", de rayon > 1.
n=0
D’apres le cours, on peut dériver terme a terme :

+00
Vxe]l—1;1[ y&x) = Zna,,x"_' .
n=1

On a alors, pour toutx €] — 1; 1] :

(1 =x)y'(x) + y(x)

+00 +00
= (1—-x) E na,x"~' + E a,x"
n=1 n=0

+o00 +o00 +00
= E na,x""' — E na,x" + E a,x"
n=1 n=1 n=0

RO foo +00
= Z(" + Day1x" — Znanx" + Zanx”
n=0 n=0 n=0
+00
= Y (14 Dagss — (0 — Day)x".
n=0

Par unicité du DSE(0) de g, y est solutionde (E) sur | — 1; 1[
si et seulement si :

VneN, n+ Da,.1 — (n— Da, =b, (1).

* Supposons que la suite (a,),en Vérifie (1). La suite (a,),en
est une suite récurrente linéaire du premier ordre, a coefficients
variables, avec second membre. En multipliant par n, on ob-
tient :

VneN, n+ na,., —nn — 1)a, = nb,.
Notons, pour toutn € N : u, = n(n — la,.
On a alors :

VneN, u,.y —u, =nb,,

d’ou, par sommation et télescopage :

n—1
VneN, u,= up +Zkbk,
k=0

S
=0
et donc :
Uy, 1 =
VneN- {01}, &, = s = S ;kbk.

De plus, d’apres (1) (pourn = 0) : a; + ag = by.
Réciproquement, considérons la suite (a,),cn définie par

aoeR,alz—ao+boet:

1 n—1
V=2 ap=——— S kb
n=sd n(n—l)k; k

1l est clair que la suite (a,),en Vérifie (1).

De plus, pour tout x € ] — 1; I[ ettoutn > 2 :

1 n—1
nn < - kb n
janx"| < n(n_l)(; | k|>|x|

1 =1 ; n—1
San-n" T “(Zlka)le <D lbty.

k=0 k=0
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Puisque la série entiere Z bix® est de rayon 2> 1, pour tout

k=0
x €] — 1; 1[ fixé, la série numérique E |brx¥| converge, donc
>0

n—1
la suite E |bkxk|) est bornée.
=0 n>2

11 en résulte que la suite (|a,x"|), _, est bornée.

Ceci montre que le rayon de convergence de la série entiere

Zanx” est > 1.

n=0
D’apres les calculs faits plus haut (par équivalence logique),

la somme de la série entiere E a,x" est solution de (E).
n=0

On conclut que (E) admet au moins une solution y dSE(0),

+00
Y =D anx
n=0

conque, par exemple ay = 0), a; =

—1) 4 Zkbk

", de rayon > 1, définie par ay € R (quel-

—ag + by, et :

Vn =2, an—

c) ¢ L’application g : x —> —ln(l — %) est dSE(0), de

rayon2 (= 1), et:

+ool X n
Vxel—-1;1[ = =) .
x€l-1;1[ g() ; - (2>
En appliquant b), et en choisissant, par exemple, ap =0,

ona:a; =by=0et:

1 n—1 1 n—1
V2 g = —— S k— =
n=ed n(n—l)k; K2k n(n—l)z<>

k=0
1 3 (1)]‘[
_ 1 2 _ 2 (1 -2,
nn—1) l—l nn—1)
2

Une solution y de (E) sur | — 1; 1[ est donc :

+00 Pl
yil-LI—R, x> Y ———(1-2")x".
“~ nn

=1

* Nous allons exprimer la somme de cette derniere série en-
tiere a I’aide des fonctions usuelles.

+00 1
R lons: Vte]l—1;1[ =
appelons ] [ Z —;
+o0 "
et: Viel—1;1], Z———ln(l—t).

En primitivant, on obtient :

+oo l"+l

Viel—1;1], ;7n(n+l>

:/ —In(1 — u) du
0

ipp 1—u

=—tln(l—t)—f (—1+ ! )du
0 1—u

= —tIn(0—=0)+t+In(l—1) = (1 —On(l — 1) +1.

t " u
;[—uln(l—u)]o—/ du
0

D’ou, pour toutx € | — 15 1] :

+00 2
— (1 =2y
() ;n(n_ 5 )x
+00
— Z 2 (1 _ 27(n+l))xn+l
n=1 ( + l)
- 1 +1 1
=79 n 2 X n+
HX:; n(n + 1)( = ) )
400 n+1 +o00 (2—1x)n+1

X
:2;@—1—1)71_2; (n+ D’

carxe]—1;1[et2'x €] —1;1],
x 5

=2((1 =01 = x) +x) =2((1 - 5) In(1- 5) + 5)

=2(1 — x)In(1 —x)—(2—x)]n( _ 5) Lx

Il s’agit d’une EDL2 ASM, normalisable sur O ; +o0[.
Effectuons, comme le suggere 1’énoncé, le changement de va-
riable # = In x, donc aussi le changement de fonction incon-
nue z(¢) = y(x). On a alors :

, ,, . dt , 1
y(x) = z(2), y(X)=Z(t)E=Z(t);,

” ” 1 ’ 1
Y@ =203 -205-

Ainsi, y est solution de (e) sur ]0; +o0[ si et seulement si :
VieR, /() -7 (1) —2z() =te*  (B).
Il s’agit maintenant d’'une EDL2 ASM a coefficients constants,

avec second membre du type polyndome-exponentielle.
Considérons I’EDL2 SSM associée :

Fo) Z"—7—-2z=0.
L équation caractéristique 7> — r — 2 = 0 admet deux solutions

réelles, —1 et 2. D’apres le cours, la solution générale de (Ey)
est :

z:t— ae ' +3e¥,  (o,p) € R%.

Puisque le coefficient 2 de e* du second membre est racine
simple de 1’équation caractéristique, cherchons une solution
de (F) de la forme :

z2:t+—> (at* + bt +c)e*, (a,b,c) € R*.
Ona:

2(¢) = (at* + bt + ¢) e,



Z(t) = (2(at® + bt + ¢) + (2at + b)) *
Z'(t) = (4(at® + bt + ¢) + 4(2at + b) + 2a) ™.

En reportant dans (F) et en identifiant (polyndmes en ¢), on ob-
tient, apres quelques lignes de calcul élémentaire, que z est so-
lution de (F) si et seulement si :

Ainsi, une solution, de (F) est :

1 1
z:t— (=2 ==t )e*.
6 9

La solution générale de (F) est donc :

1
z:t|—><—t2—

1
€ §t>ez'+ae”+ﬁez’, (a,}) € R?.

En remplacant # par Inx, on conclut que la solution générale
de (E) sur |0 ; +oof est:

1 1
yix > (6(lnx)2 ~5 lnx)x2 + % + 8x%, (a,B) € R%.

Il s’agit d’'une EDL2 SSM, normalisée, a coefficients va-
riables.

1) Recherche d’une éventuelle solution polynomiale :

Soientn € N, ay,...,a, € R tels que a, # 0,

n
yiXxb—> E agxk.
k=0

Si y est solution de (E) sur ]1; +oo[, alors le terme de degré
n+1 dans le premier membre doit étre nul, donc :
n(n — 1)a, — 2na, + 2a, = 0,
cest-a-dire: (n* —3n+2) a, =0,

—

+0
donc: n=1oun=2.
Cherchons donc une solution éventuelle de (E) sous la forme

y : x —> ax> + bx +c, (a,b,c) € R?. On a alors, avec des
notations classiquement abusives :

Dy —2(x* — 1)y’ + 2xy
=x(x*—1)2a — 2(x* — 1)ax + b) + 2x(ax’> + bx +¢)
= (2a + 2¢)x + 2b.

x(x?—

Ainsi, y est solution de (E) si et seulement si :
2a+2¢c=0, 2b=0,

c’est-a-dire: b=0etc = —a.

En particulier, 1’application
vy :]1; +oo[— R, x— x2—1

est solution de (E).

2) Recherche d’une deuxieme solution de (E) par la méthode
de Lagrange :

D’apreés la méthode de Lagrange, on cherche une seconde
solution de (E) sous la forme y:x — (x> — DA(x),
ou A :]1; +0o[—> R estla nouvelle fonction inconnue, sup-

posée dérivable. On a, avec des notations classiquement abu-
sives :

y=02=DA ¥ =@ = DX +2x),
V' = @2 = DN +4x )\ + 2,
donc :
1)y” —2(x* — 1)y’ + 2xy
=x(x* — D((* = DA +4x ) +2))
—2(x* = D((* = DN +2xA) + 2x (x> = DA
=x(x* — DN + (4x*(* — 1) — 2> = DN

x(x2 —

+(2x(? = 1) —4x(x* — 1) +2x(x* = 1) )A
=0
=x(@? = DN 420 = DHEP+ DN
=@ = D(xE* = DA 4+ 2%+ DN).

Ainsi, y est solution de (E) si et seulement si A est solution de :
F) x> —DN +2(x>+ DN =0.

Une solution, autre que la fonction nulle, de cette EDL1 en X',
SSM, est donnée par :

2(x2+1
X(x):exp(—f%dx).

Pour calculer I’intégrale, effectuons d’abord le changement de

variable t = x? :

2
/2(x +D f (1l
xG@x2=1) e ) tt—1)

Effectuons ensuite une décomposition en éléments simples :
t+1 1 2
/ I = / -+ —)d
tit—1) t o t—1

= —Int+2In(t — 1).
N(x) =exp (In(x?) —2In(x* — 1)) =

o
(2= 12

Pour calculer A, on, peut effectuer une intégration par parties :

x? 1 —2x
= [ w39 o
1

B 1 +1/ L
- 2xx2—1 2) x2-1

D’ou:

X 1 x+1
=———— ——1In .
2x2—-1) 4 x-—1
On obtient une deuxiéme solution particuliere de (E) :
y2 115 +oo[— R,
21 x+1
oA =-— - .
x — (x A (x) 2 1 n P
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D’apres le cours sur la méthode de Lagrange, la famille (y;,y,)
est libre.

On conclut que I’ensemble S des solutions de (E) sur |1 ; +o0o[
est :

S = {y:]1;+oo[—> R,

2_q i
o a@® = Db E+ X Y by er2L
2 4 x—1

“+00
a) * Soity : x —> Zanx” une fonction dSE(0), de
n=0
rayon > (. On a, pour tout x € ]| — R ; R[ avec des notations
classiquement abusives :

x2y// + 6xy’ + (6 _ x2)y

~+00
= x? Zn(n — Da,x"?
n=2

+00 £500)
+ 6x Z na,x"~' + (6 — x?) Z a,x"
n=1 n=0

+oo +00
= Zn(n — Da,x" + Z(manx"
n=2 n=1
+00 +o00
+ 6Zanx" — Zanx”z
n=0 n=0
+00 +00
= Zn(n — Da,x™ + Z6nanx"
n=2 n=1
+00 +o00
+ 6Zanx” - Za,,_zx”
n=0 n=2
= 6ap+ 12a;x
+o00
+ Z (n(n — Day + 6na, + 6a, — a,_)x"
n=2

+00
6ag + 12a,x + Z ((n2 + 5n + 6)a, — an,z)x".

n=2

Par unicité du DSE(0) de la fonction constante égale a —1, on
a:

y est solution de (E)
6ay = —1, 12a; =0

= IVn =2, WP+5n+6)a, —a,.»=0
—_—

+0
1
ayg = —6, a) = 0
a
Vn>=2, a, 2

T+ +3)

CecirevientaV p € N, a3, = 0 et, pour tout p € N, en ré-
itérant :
ayp—2
Qp=————" "+
2p+3)2p+2)
_ 1 1 1
C 2p+3)2p+2) Qp+D2p) 5.4

do

_ L (_1)__1
T @2p+3)---4 6/ @p+3)!

* Réciproquement, la série entiere E — X% est de

= @2p +3)!
rayon infini et sa somme, d’apres les calculs précédents, est so-
lution de (e) sur R.

On conclut que (e) admet une solution et une seule dSE(0), I’ap-
plication :

+00 x2p
f:R— R, x»—)Z——,
= (@Cp+3)!
et de plus, le rayon est infini.
b) On a, pour tout x € R* :
+00 xzp 1 +00 2p+3

X
f@==2 @p+3) 0 & @p+I)

p=0
1
= ——3(shx —X).
X

D’autre part, f(0) est le terme constant de la série entiere dé-
finissant f.

On conclut :
x —shx
3 si x#0
f:R—R, x+—> *
—é si x=0

11 s’agit d’'une EDL2 ASM, normalisable sur ]0 ; +ool,
a coefficients variables.

1) Effectuons le changement de fonction inconnue z = ey,
d’oly =¢'z.0Ona:
y=¢ez, Y =¢e"(Z+2), Y= +27 +72).

Ainsi, y est solution de (E) si et seulement si z est solution
de :

F) xe* (7" +27 +2) —2(x — D)e* (@ +2) + (x —2)e'z = xe¥,
et: (F) <= x7" +27 = x.

Ennotantv =z, ona: (F) & xv' +2v =x (G).
Il s’agit d’'une EDL1 ASM. La solution générale de ’EDL1 SSM
associée (Gg) xv' +2v=0

2 A
est:  v:ixF— Aexp —/—dx =,
X X

A e R



Cherchons une solution particuliere de (G) sous forme d’un po-
lynome de degré 1 : v : x —> ax + 3, (a,8) € R*>.Ona:
Vx €]0; +oof, xv' +2v =x
& Vx €]0; oo, ax +2(ax +0) =x
<~ 3a=1, 26=0.

1
Ainsi, v : x —> gx est solution de (G).

La solution générale de (G) est donc :

Ul X = = AeR.
x

3

Par v = 7/, la solution générale de (F) est :
L, A 2
Zix+— —x"——+p, (A\p eR.
6 X

La solution générale de (E) est obtenue par y = e*z :
1 2 A X 2
YiXx > gx ——+pjet, \p) e R,
X

2)Ennotantu =y’ — y,ona:u = yz” —y’, donc:
(B) xy" =2(x — 1)y +(x —2)y =xe*
=20 =) =x( = +20 -y =xe’
= axu' —(x —2u=xe* (H).

Il s’agit d’'une EDL1 ASM. La solution générale de 'EDL1
SSM associée (Hy)  xu' — (x —2)u = 0 est :

x—2 &
U:x > A\exp —dx :)\—Z,AER.
X i

Cherchons une solution particuliere de (H) par la méthode de

X

.. € N
variation de la constante, sous la forme u : x —> A(x) — ol
5

A est la nouvelle fonction inconnue, supposée dérivable. On a
alors, avec des notations classiquement abusives :

(H) <=>X% =xe' =\ =x" = A\x) = % @ .

Une solution de (H) est donc :
) & 1
u.xr—))\(x)ngxe .

La solution générale de (H) est donc :

X

1 :
u:xr—>—xe“+/\e—, AeR.
3 2

Onrésoutensuite: (I) Yy —y=u= %x e + )\%.

Il s’agit d’'une EDL1 ASM. La solution générale de ’EDL1
SSM associée y' —y=0est: y:x+—> pue*, p€R. On
cherche une solution particuliere de (I) par la méthode de va-
riation de la constante, sous la forme y : x —— pu(x) e, ou p
est la nouvelle fonction inconnue, supposée dérivable. On a :

1 8 1 &

"—y=—xe'+ = = e = —xe' + \—

vy 3 + 2 : 3 + 72
X

6

<

)
= >

1 A
:§x+ﬁ<:,u(x):

Une solution particuliere de (E) est donc :

— ©_A &
1X - — = .
4 6 x

La solution générale de (E) est donc :

2 B

Vixb—> Fe‘” —/\e; +pet, (\p) eR2.

3) EDL2 SSM associée est :

(Eo)

Cherchons une solution particuliere y de (Ey) sous la forme
y:ix > x%e", ol € Z est atrouver. On a :

xy" =2(x =1y +(x—2)y=0.

y=x%" y =x"+ax e,

y' = (x" +20x ! + a(a — l)x‘kz) e,
d’ou :
xy" =2(x — Dy + (x —2)y
= ()c‘“rl + 2ax + a(a — l)x‘“') e*

—2(x — D(x® + ax® e + (x —2)x%"
= x“’]e"(x2 +2ax +a(a—1)—2(x — D(x + @) + (x — 2)x)

=x%efa(a + 1).

En prenant @« = 0 ou o = —1, on obtient une solution parti-
culiere de (Ep). Ainsi, les deux applications

eX

ViiXx— —, Y»ixr—e'
X

sont solutions de (E).
On cherche maintenant une solution de (E) par la méthode de
variation des constantes, sous la forme :

yix > u(x)y1(x) +ua(x)y2(x) ,

ouuy,u, :]0; 4o00[ sontles fonctions inconnues, supposées dé-
rivables et liées par une certaine condition. On a, par la mé-
thode :

e){
uyyr +uzy =0 uy— +uye* =0
x

xe* —

o Iof — /xex_ex )
U1y T2 Uy——— tuye’ =¢
X
uy +xuy =0
(x — Dy + x%ub = x*
uy +xub =0 u +utx =0
<:> 2
x(u +xuh) —u) = x? ulz—x
u'
—
u)
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Une solution particuliere de (E) est donc :

Y x> u(x)y1(x) + ua(x)y2(x)
x}et x x%e

= —_——— —c =

3 x 2 6

On conclut que la solution générale de (E) est :

2 mis

eX
yiXxrH— —l—)\;—l—uex, O\, ) € R2.

1) Soit f convenant. Par le changement de variable
Xx = sinf,ona:

Vxel[—1;1], fWJI=x?)=+1—-x2f'(x),
d’ou :
Vxel-1;1], f’(x)=ﬁf(vl—x2) (1.

Puisque f est dérivable sur [—1; 1], le second membre est dé-
rivable sur | — 1; 1[, donc f est deux fois dérivable sur
] —1; 1[. On, a alors, en dérivant dans 1’équation de I’énoncé,
pour toutt € R — 77 :

—sinz f'(cost) = —sint f'(cost) + cos’t f”(sint).
Mais, en remplacant ¢ par /2 — t dans 1’énoncé, on a, pour
toutr € R : f(sint) = sint f'(cost).
d’ou, pour toutr € R — 77Z :

cos?t f"(sint) — sint f'(sint) + f(sinz) =0,

ou encore, pour toutx €] — 1; 1] :

(1 =) f"(x) —xf' @)+ f(x) =0 (B).

I1's’agit maintenant d’'une EDSL2 SSM, a coefficients variables,
normalisée sur | — 1; 1[. On remarque que y;; x —> X est so-
lution évidente. Vu les roles analogues de cos 7 et sin 7, on peut
conjecturer que y, : x —> +/1 — x? soit solution de (E). Un
calcul simple montre que y, est solution de (E) sur ] — 1; 1[.
D’apres le cours, la solution générale de (E) sur ] — 1; 1[ est
donc : ay; + azys, (a,0n) € R2.

Ceci montre qu’il existe (ov;,a;) € R? tel que :

Vxe]l—1;1[ f(x)=ax+a1—x2.

Puisque f est continue sur [—1; 1], on a aussi :

Vxe [-1;1], f(x)=ax+ayv]—x2.
Comme fest dérivable en 1 et que x —> /1 — x2 ne I’est pas,
on a nécessairement o, = 0, et donc :

Vx e[—1;1], f(x)=ax.

2) La réciproque est évidente.

Finalement, I’ensemble S des applications convenant est :
S={f:[—1;1]—>]R;xr—>ax; aeR}.

1) Soit (f,g) convenant.

Puisque : Vx €]0; +oo[, f'(x) = _@

et que g est dérivable, f’ est dérivable, donc f est deux fois dé-
rivable sur R.

De méme, g est deux fois dérivable sur R.

Comme: Vx €]0;4o0o[, xf'(x) = —g(x),

on déduit, en dérivant :

Vx €]0; +oof, xf"(x)+ f'(x) = —g'(x) = ¥,

c’est-a-dire :
Va €]0: +ool, x*f"(0) +xf'(x) = f() =0 (1).
Ainsi, f satisfait une EDL2 SSM. Il s’agit d’une ED d’Euler.

Effectuons le changement de variable 7 = Inx, x = ¢/, d’ou
le changement de fonction inconnue f(x) = u(t).Ona:

1 1 1
fE)=u@®), f/x)y=u@®)=, f'x)=u"() —u't)=,

X X X
() e VieR, o) —ult)=0 (2).

Il s’agit maintenant d’une EDL2 SSM a coefficients constants.
La solution générale de (2) est :

d’ou :

u:t— ae +pe’, (a.p) € R?,
d’ou la solution générale de (1) :

f:x»—)ax—ké, (a,ﬁ)eRz.
X

On déduit, pour tout x €]0; +oof :

g(x) = —xf'(x) = —x(a — %) = —ax + @
X X
2) Réciproquement, pour tout («x,3) € IR?, on vérifie aisément
que le couple ( f,g) d’applications de ]0 ; +o0o[ dans R, défini,
pour tout x € ]0; +ool, par :

g

S ) =ozx+é, gx) = —ax + —,
X X

convient.
Finalement, 1’ensemble des couples ( f,g) convenant est donné
par :

f(x) =ax + E
Vx €]0; 400, (o) € R%.

gx) = —ax + —
X

Puisque S € S;*, d’apres le cours, il existe 2 € O, (R),
D = diag (\y,...,\) € D,(RY) telles que : S = 242"
Pour X : R — M, ;(R) deux fois dérivable sur R, notons
Y = 27X, qui est deux fois dérivable sur R. On a :
X'+8SX =0 QY+ (R2A2°H2Y =0
< Y"+ DY =0.



Notons =Y. Alors :

Yn
Y'+ DY =0<=Vke{l,....n}, y/+ =0
< Vkefl,. .. n},3(A,By) €R?

Vt e R, yk(l) = Aj cos (y/ A t) + By sin (y/ Ak t).
Comme cos et sin, sont bornées sur R, chaque y; est bornée

sur R, donc Y est bornée sur R, puis, comme X = 27, et que
§2 ne dépend pas de ¢, X est bornée sur R.

a) Lapplication
F:RxR—R, (x,y) — 2x+y’

est de classe C' sur I’ouvert R?, donc, d’apres le théoréme de
Cauchy et Lipschitz, le probleme de Cauchy (C) admet une so-
lution maximale et une seule, notée f, et I’intervalle de défi-
nition de f est ouvert.

b) 1) Montrons, par récurrence sur n, que f est de classe C”
sur /, pour toutn € N.

* Puisque f est dérivable sur /, f est de classe C° sur /.

* Si fest de classe C” sur /, alors, comme :
Vxel, f'(x) =2x+ (fx)’,

£ est de classe C" sur I, donc fest de classe C"*! sur 1.

Ceci montre, par récurrence sur n, que f est de classe C”
sur /, pour toutn € N.

On conclut que f est de classe C* sur /.

2) Puisque f est de classe C* sur /, d’apres le théoréme de
Taylor-Young, f admet un développement limité & tout ordre
en 0, en particulier, f admet un DL,;(0).

On a déja f(0) = O (par hypothese), eton a :

fr=2+f2 f'=2+42ff, fO=2f+2ff",
f(4) — 6f/f// 4 2ff(3)’
d’ou :
=0, f/0=2, f20)=0, fY0)=0.

D’apres la formule de Taylor-Young, on a donc déja :

(k)
fx )—Zf Oe s + 0 (h=x"+olh).

Le DL,;(0) de fest donc de la forme :

fx) = 577 4 @i b coo e @ 2k o)

ol as,...,a;; sontdes réels a calculer.
D’apres le théoreme de Taylor-Young, puisque f est de
classe C*°, on peut dériver terme a terme :

f'(x) =2x + 5asx* + - - -+ 1lax'° + 0(x'9) .

D’autre part :

22+ (F )
=2x + (x2 + a5x5 + ... —I—a“x“ + o(xlo))2
=2x + (x + 2asx” + 2a6x® + 2a7x° + (2ag +a5)x10 4 o(xlo))
Par unicité du DL(0) de f’, on déduit :
Sas =1, ag =0, a; =0, 2as = 8ag, 2as = ao,

2a; = 10ay, 2ag+a? = llay;,

d’ou :

_1 —0 —0 _1 _1 _2 0
615—5,&6— , a7 = sds—4a5—20,09— ag =V,
010—507 0, all——(208+052) 550"

On conclut au DL;;(0) de f:

_ T 1 11
fx) = x+5x +20x +550x + 0( ).

Si f convient, alors le second membre, dans I’énoncé,
est C', donc fest C', puis, en réitérant, f est C.
On a alors :

f convient

eVreR, f(x)=-1-2x Xf(t)dz+/xtf(t)dt
0 0

fO) =—
Vx eR, f'(x) =—2xf(x)—2/xf(t)dt+xf(x)
0
{f(O):—l, f0)=0
—
Vx eR, f/(x) =—xf"(x) —3f(x).

Autrement dit, la question revient a la résolution d’un probleme
de Cauchy linéaire :

y©0)=-1, y(0) =0
©)
¥ +xy' +3y =0 (B).
La présence de y” + xy’ incite a considérer une nouvelle fonc-

¥/2

tion inconnue : z = ¢*/*y. On a alors :

y=e 1z y = —xe ¥z 4 ey
— (XZ _ 1)67)(2/2Z —2xe ¥ /2 /+67X /2 "
! 2 /)
D’ou : Y 4+ xy +3y =e" (2 — x7 +22).

Pour ’EDL2 SSM (F) z” —xz' + 2z = 0, cherchons une
solution sous forme polynomiale.

Siz:x+— a,x"+---+ay est solution de (E), ou n € N,
ap,. . .,a, € R, a, # 0, alors le terme de degré n du premier
membre de (E) doit étre nul : —na, + 2a, =0 d’ou:n = 2.
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Cherchons donc une solution sous la forme
Z:Xx —> ax>+ bx + ¢, (a,b,c) € R®. Enreportant dans (F),
on obtient facilementb =0, a =1, c = —1.

Ainsi, une solution particuliere de (F) est :
. 2
Z:xH——x"—1,
et une solution particuliere de (E) est :

yix— (x%— 1)e”‘2/2.

De plus: y(0) = —1let:

2

Vx eR, y'(x) = (3x = x3)e_x 25

donc : y'(0) = 0.
Ainsi, y est solution de (C).

D’apres le cours, le probleme de Cauchy linéaire (C) admet une
solution et une seule.

On conclut qu’il y a une application et une seule convenant :

f R—R, x— (x*— l)e’xz/z.

a) L’ application continue p admet au moins une primi-

tive P sur 1. Notons u = ze”. L’application u est dérivable sur
let:

u' =zel +zpel = (&' + pz)ef > 0.
—
>0

Il en résulte que u est strictement croissante sur /, donc # admet
au plus un zéro dans /.

Comme z = ue~ " et que e * ne s’annule en aucun point, on

conclut que z admet au plus un zéro.

b) Notons z = yy'. L’application z est dérivable sur I et :
=0yY =+ =y(=py —gn +y?,
donc : z/+pz=y’2— q )’220-
——
<0
Montrons z’ + pz > 0, en raisonnant par 1’absurde.
Supposons qu’il existe a € [ tel que : (z' + pz)(a) = 0.
2 2
On a alors : (y'(a)) + ( — q(a)) (y(a)) =0,
—_—— ————
>0 >0 >0

donc y'(a) =0 et y(a) = 0. Mais alors, y et la fonction
constante nulle sont solutions sur / du probleme de Cauchy li-

Y'+py +qy=0
y(@) =0, y'(a) =0.

D’apres le théoreme de Cauchy linéaire, il en résulte y = 0,
ce qui est exclu par I’énoncé.

néaire :

Ce raisonnement par 1’absurde montre : 7' + pz > 0.

On peut alors appliquer le résultat de a) et conclure que z admet
au plus un zéro dans /.

a) Soit f une solution de (Ey).
L’application g : R — R, x +— f(—x) est deux fois déri-
vable sur R et, pour tout x € R :

g(x) = f(=x), gx)=—f'(-x), g'x) = f"(-x),
d’ou, pour tout x € R :
g'(x) + p(x)g' (x) + q(x)g(x)

= [f'(=x) = p) f'(=x) + qx) f(=x)

= f'(=x)+ p(=x)f'(=x) + q(=x) f'(=x)

= (f"+pf +qfH)(=x) =0,
et on conclut que g est solution de (Ey) sur R.
b) 1) D’apres le théoreme de Cauchy et Lipschitz linéaire, il
existe une solution f; et une seule de (E,) telle que :

fi(0)=1 et f/(0)=0.

Montrons que f; est paire.
Considérons la symétrisée g; de f;.
D’apres a), g est solution de (Ey) sur R, etona:

21(0) = f1(0) =1, g(0) =—f/(0)=0.
Ainsi, fi et g; sont solutions sur R du probleme de Cauchy li-
néaire : (Ey), y(0) =1, y'(0) =0.
D’apres le théoreme de Cauchy linéaire, on a donc g; = fi,
cest-a-dire: Vx e R, fi(—x) = fi(x),
donc f) est paire.

2) D’apres le théoreme de Cauchy linéaire, il existe une solu-
tion et une seule f> de (Ey) telle que :

HO =0 et f;0) =1.

Montrons que f; est impaire.

Considérons la symétrisée g, de f>. D’apres a), g est solution
de (Eg) sur R, etona:

£200) = £2(0) =0, g,(0) =—f;(0) =—1.
Ainsi, f> et —g, sont solutions du probleme de Cauchy :
(Eg), y(0) =0, y'(0)=1.
D’apres le théoréeme de Cauchy linéaire, on a donc —g, = f,
c’est-a-dire : Vx € R, —fo(—x) = fo(x),
donc f; est impaire.
3) » Montrons que (fi, f>) est libre.
Soit (a1,0,) € R? tel que : o fi + iz fo = 0.
On a alors aussi, par dérivation : o f{ + aa f; = 0.
En prenant les valeurs en 0, on a :
(a1 fi+ a2 f2)(0) =0

(o fi + 2 f)(0) =0

Ceci montre que (f1, f>) est libre.

CM]ZO

Oé2=0.



* D’apres le cours, 1’ensemble Sy des solutions de (Ey) sur R
est un R-espace vectoriel de dimension 2. D’autre part, on vient
de voir que ( fi, f>) est une famille libre dans S.

On conclut : (fi, f>) est une base de Sy.

a) * Puisque (E() estune EDL2 SSM, normalisée, a coef-
ficients continus sur I’intervalle ]0 ; +oo[, d’apres le cours, 1’en-
semble Sy des solutions de (Ey) sur ]0; +o00[ est un R-espace
vectoriel de dimension 2, ¢’est-a-dire un plan vectoriel.

* Soit y € So. Montrons, par récurrence sur 1, que, pour tout
n € N*, y est de classe C” sur ]0; +ool.

Puisque y est deux fois dérivable, y est de classe C'.
Si, pour un n € N*, y est de classe C", alors 1’application

1
X — —y'(x) + <x + 1 4 —)y(x) est C"!, donc y” est
X

Cc1 yest C,
Ceci montre, par récurrence sur 72, que, pour toutn € N*, y est
de classe C”" sur |0 ; +o0l.

On conclut : Sy € C*(]0; +o0[; R).
b) D’apres le théoreme de Cauchy linéaire, 1’application
0:8 — R yr— (y(1).y'(D))
est une bijection linéaire. Comme
S={yeS:y)=2}=6"(2xR),
S est I'image réciproque par 6 de la droite affine {2} x R
de R?. Il en résulte que S est une droite affine.
c) La courbure de v, au point d’abscisse 1 est donnée par :
y'(
(1+ )y

Ici:
y) =2, y'() ==y + A+ 1+ Dy)
=—y'()+6,
donc : 6y

y

d) D’apres le théoreme de Cauchy linéaire, pour tout# € R, il
existe y € Sy unique telle que :
y()y=2 et y(1)=t.
La valeur maximale de -, est donc la valeur maximale (si elle
existe) de I’application »
6—1t

’y:R-)R, tl—)’y(l‘):m

L’application ~y est dérivable sur R et, apres un calcul élé-
mentaire, pour tout 7 € R :

V@) =1+ — 18t — 1) .

On en déduit le tableau des variations de v :

t |—00 21 123 +00
+ () + 0 - 0 +
(@) | 0 /! N S0
9— /83 9++/83
tl = 2 5 [2 = 2 .

La valeur maximale de 7 est donc atteinte en #; :

—1
L ~6,027...

" = T

e Notons ¢ = f” — a® f. Nous allons calculer fen fonc-
tion de g, par résolution de I’'EDL2 (E)
solution générale de 'EDL2 SSM associée (Eg) y” —a’y =0
est (puisque a = 0) :

y' —a’y =g.La

y i x —> Achax + pshax, (\,p) € R?.

Cherchons une solution particuliere de (E) par la méthode de
variation des constantes, sous la forme :

y:x +—> u(x)chax + v(x) shax,

ou u, v sont des fonctions inconnues, dérivables, satisfaisant une
certaine condition.

On a, pour tout x € [0; +o0f :
{ u'(x)chax +v'(x)shax =0

u'(x)ashax + v'(x)achax = g(x)

u'(x) = —lg(x) shax
la

v'(x) = —g(x)chax.
a

La solution générale de (E) est donc donnée par :

1 " 1 "
y(x)=—— chax/ g(t)shat dt + — shax/ g(t)chat dr

a 0 a 0
+ Achax + pshax, (\u) € R2.

On a alors, pour tout x € [0; 400 :

V(x) = —shax/ g(t)shatdt +Chax/
0 0
+ Aashax + pacha.

_ A= f(0
D’ou : { y/(O) a f(/O) <— e
V(0 = £'(0) pa = £(0).

On conclut que, pour tout x € [0; 400 :

X

g(t)shatdt

fx) = —l chax /X g(t)shardt
a 0

sh ax

1 X
+—shax/ g()chatdt + f(0)chax + f'(0)
a 0 a

shax

_ 1/ ¢(1)sh (a(x - t)) dt + £(0)chax + £(0)
a Jo

a
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» Comme, par hypothése, g = 0, et que :
Vx €[0; 400, Vi € [0;x], sh(a(x —1)) >0,
on déduit :

Vx e [0:+ool, f(x)> fO)chax + f/(0) %

a

¢ En appliquant le résultat précédent a (b, a, — f, —g) alaplace
de (a, b, f, g), on déduit I’autre inégalité demandée.

1) Soit (/,y) convenant. On a :
W +y?=0& () =0
7Y
<= JA eR, <7> =yy =A

2

— 3(A,B) R, Vx € R, %:Ax—i—B.

2
De plus, commey? = Ax+ B,etyy = A,ona:

_ B=1/2
{y(O)_lﬁ{ /

y(0) =1 A=1.
D’ou : Vxel, (y(x))2 =2x+1.
1
Il s’ensuit : Vxel, x}—i,

donc, puisque / estouvert: [ C]—1/2; 4oo[.

Comme: Vxel, (y(x))’=2x+10,

y ne s’annule en aucun point de /. Ainsi, I’application y est conti-
nue sur I’intervalle / et ne s’annule en aucun point de /, donc,
d’apres le théoreme des valeurs intermédiaires, y est de signe
strict fixe. Comme de plus y(0) =1 > 0, on déduit y > 0,
d’ou:

Vxel, y(x)=+2x+1.

2) Réciproquement, pour tout intervalle ouvert / tel que
0el C]—1/2;+o0[, ’application

y:l —R, x+—— +/2x+1

est deux fois dérivable sur / et un calcul simple montre que :
' +y?=0.

Finalement, 1’ensemble des couples (/,y) convenant est
défini par : I est un intervalle ouvert quelconque tel que
OelcC]l—1/2;4oc0[ety: ] — R, x —> 4/2x + 1.

Soit y une solution maximale de (E) y' = f(x,y).
D’apres le cours, I’intervalle de définition / de y est ouvert. Il
existe donc (a,3) € R U {—o00, 400} tel que : I =]a; I[.
Nous allons montrer 3 = 400, en raisonnant par 1’absurde.
Supposons 5 € R. Il existe a €]a; f[. On a , pour tout
x €la; Ol :

y(@x) = y(a) +/ y'()dt = y(a) +/ f(ty@)dr

Puisque f est de classe C' et bornée sur R?, 1’application
t —> f(t,y(1)) est continue et bornée sur I'intervalle borné
[a; B[, donc est intégrable sur [a ; G[. Il en résulte que 1’ap-

plication x —— / f (z, y(t)) df, admet une limite finie £
a

lorsque x —> (. D’apres la formule vue plus haut, on dé-
duit: y(x) —> y(a) +¢.

Jo=—=>

Considérons I’application Y :]Ja; f] —> R définie par :

{ y(x) si
Y(x) =
v +¢ si x=0.

a<x<f

Alors, Y est continue sur Jo; ], de classe C' sur Ja; A et :

Y @) = f(x,yx) —é’ f(B.y(@ +¢).

D’apres le théoreme limite de la dérivée, on déduit que Y est
de classe C! sur Ja; 3] et que :

YB = f(By@+1£)=f(BYB).
Ainsi, Y est solution de (E) sur Ja ; 3], ce qui contredit la maxi-
malité de y.
Ce raisonnement par 1’absurde montre : § = +00.
De méme : o = —o0.

On conclut que y est définie sur R.

1) L’application R? — R, (x,y) —> m,

est de classe C! sur I’ouvert R? de R?, et (0,0) € R?, donc,
d’apres le théoreme de Cauchy et Lipschitz (non linéaire) le
probleme de Cauchy (C) admet une solution maximale et une
seule, encore notée y, I’intervalle de définition de y est ouvert,
et toute solution de (C) est restriction de y.
2) Notons J ={x e R; —x € I} le symétrisé de I, et
z:J — R, x+— z(x) = —y(—x) la symétrisée de y.
L’application z est dérivable sur J (par composition, puisque
y est dérivable sur /), on a z(0) = —y(0) =0,
et, pour tout x € J :

1

1+ (=02 + (y(=»)

7(x) =y'(—x) =
. 1
1+ 22 4 (z20)°
Ceci montre que z est solution de (C) sur J.

Il en résulte que z est restriction de la solution maximale y, c’est-
a-dire:J CI et VxeJ, z(x) = y(x).

eEnnotant I =]a; flot —co < a <0< < +oo,ona:

JCl&]-08;—alCla;
— (a<-pf et —a<pP)=p=-a.



On déduit : I =] — a; af, donc [ est symétrique par rapport
a0.

*Et:Vxel, y(x) =z(x) = —y(—x),

donc y est impaire.

3) » L’application y est dérivable sur I’intervalle / et :

Vxel, y(kx)= >0,

2
L+x2+ (y(x))
donc y est strictement croissante sur /.

* On a de plus y(0) =0, donc y est a valeurs > 0 (sur
1 N [0;4oo]).

*Ona, pourtoutx € I N [0; 4o0] :

I 1
y(x) = < ,
L+x24 (y)? 1+

d’ou, en intégrant, pour toutx € I N [0; o0 :

x

y(x) = y(0) + / Y(6)dt
0

</X L = Arctanx < &
= Arctan x -,
Sy 14122 )

ce qui montre que y est majorée.
4) Raisonnons par 1’absurde : supposons qu’il existe
b €l0; +oo[ telque: 1 N [0; +oo[=[0;b[.

Puisque y est croissante et majorée, y admet en b~ une limite
finie, notée L.

Considérons 1’application

x #b

x = b.

y(x) si
Y:[0;b] — R, x+—

IL si
Puisque y est continue sur [0; b[ et que y(x) — L, Y est
x—>b—

continue sur [0; b].

D’autre part, Y, qui coincide avec y sur [0; b[, est dérivable
sur [0; b[ et :

Vxel0;bl, Yy =y®)= —————.
1+x2+ (y()
Puisque y est continue sur [0; b[ (car dérivable), par opéra-
tions, Y’ est continue sur [0; b[, donc Y est de classe C' sur
[0; bl.
Enfin :

, 1 1
Y= +22 4 ()’ b T+ L
donc Y admet en b~ une limite finie.

D’apres le théoreme limite de la dérivée, on déduit que Y est
1

1+52+ L%
Mais alors, Y est solution de (C) sur [0; b], ce qui contredit la
maximalité de y.

de classe C! sur [0; b] et que Y'(b) =

Ce raisonnement par I’absurde montre que 1’extrémité droite
de 7 n’est pas un réel, donc est +00.

5) Puisque y est croissante et majorée, y admet en +o00 une li-
mite finie notée £.

De plus, comme on I’a vu en 3), pour tout x € [0; o0 :
™
0<yx) < 2

On déduit, par passage a la limite lorsque x tend vers +oo :
0<e< g

On a, par exemple : £ 2> y(1) > 0, donc £ > 0.

. T . 5
Sil= > alors, en faisant tendre x vers +o0o dans 1’encadre-

ment obtenu plus haut, on déduit :
+00 1 +00 1
[C e[~
o 1+2+(y®) o 1+t
1

1+224 (y()
nue, a valeurs > 0 et n’est pas I’application nulle. On a donc

ez
-

contradiction, car ¢t —> 5 est conti-

1+

Finalement : 0 < ¢ < g

6) o) Récurrence.

1
e Puisque y est dérivable, donc continue, ————— est
Il 45572 4 3”
continue, donc y’ est continue, y est C'.
e Si y est C", pour un n € N*, alors ———— est C”,
Y P " 1+ x2+ y2
y' est C", y est C"*.
On conclut : y est de classe C* sur [0; +o0l.
. 2x 4+ 2yy’
Ainsi, y est C? et : y/=———""— <0, car
%) y y Tty S
x=20,y20,y2>20.
On conclut que y est concave sur [0 ; +o0l.
1
7)Ona: y(0)= ———— =
) YO=1rere
y
w
2
¢
y =y(x)
0 X
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8) Puisque y est de classe C* sur [0; +o0o[ (et méme sur R),
d’apres le théoreme de Taylor-Young, y admet un développe-
ment limité a tout ordre, y” aussi, et on passe du premier au se-
cond par dérivation terme a terme.

En particulier, y admet un DLs(0). De plus, y(0) =0,
y'(0) = 1, et y est impaire (sur R).
Le DLs(0) de y est donc de la forme :

y(x)=x+ax’ +bx’+ o 0(x5), (a,b) € R?,

etona: y'(x) = 1 4 3ax?® + 5bx* + o(x*).

On reporte dans I’équation différentielle, présentée de préfé-
rence sous forme d’un produit que d’un quotient :

/

y S (+x7+y)y =1

T
<~ (1 +x2+ (x +ax® +bxd + ()(xs))z)
(1+3ax? + 5bx* + o(x")) = 1
<— (1 + 2x2 + 2ax* + 0(x4))
(1+3ax® +5bx* + o(x")) = 1
& 1+ (Ba+2)x* + (5b + 8a)x* + o(x*) = 1

2

3a+2=0 4=-3

{ -

5b+8a =0 p— 16
15°

en utilisant I’unicité du DL4(0) de I’application nulle.
On conclut que y admet le DL5(0) suivant :

yx) =x — 2 4 16 s + o (X))
3 15 x—>0 ’

Notons Sy I’ensemble des solutions de (Eg) sur R.
D’apres le cours, Sy est un C-espace vectoriel de dimen-
sion n.

e Considérons, pour X € Sy, I’application translatée de X
par T :

X1 :R— M, ©), t—>Xt)=Xt+T).
Il est clair que X est dérivable sur R, et :
VieR, X{())=X'@¢+T)
=ACt+T)X@E+T)=A@)X (1),

donc X; € Sy.

On peut donc considérer 1”application :
¢:S — Sy, X— o(X) =X, .

 L’application ¢ est linéaire car, pour tout o € C et toutes
X,Y € S() 5

VieR, (p(aX +Y))1) = @X +Y)t +T)
=aX(t+T)+yt+T)=apX)(@)+ ¢(Y)(?)
= (ad(X) + ¢(V)) (@),

p(aX +7Y) = ap(X) + ¢(y).

* Ainsi, ¢ est un endomorphisme du C-espace vectoriel Sy, et
celui-ci est de dimension finie supérieure ou égale a 1 (car égale
an).

donc :

D’apres le cours (conséquence du théoreme de d’ Alembert),
¢ admet au moins une valeur propre et un vecteur propre as-
socié. Il existe donc A € C et X € Sy tels que : ¢(X) = \X.
Ainsi, X est une solution de (Ey) sur R, autre que 1’applica-
tion nulle, et telle que :

VieR, X(@t+T)=\X(1).

a) Remarquons d’abord que, puisque A est inversible et
que, pour tout t € R, X'(#)X(t) = A, pour tout t € R, X (¢)
est inversible.

Considérons I’application
Y:l—a;a[— M,[R), t — Y () = X(1)A — AX(1).

Puisque X estdérivable sur | — a ; a[, par opérations, Y est dé-
rivable sur | — a ; af et:
Y = (XA - AX) = X'A — AX’
= (AX DA - AAXH = AX'(AX — XA)X!
=—-AX"'vx .
D’apres le cours, le probleme de Cauchy linéaire :
Y =—-AX"'yx™'", v©0) =0

d’inconnue Y :] —a;a[— M, (R) supposée dérivable,
admet une solution et une seule.
Comme Y et I’application constante nulle conviennent, on a donc
Y =0,dou: XA — AX =0, c’est-a-dire :

Viel—a;al, X(t)A = AX(1).

b) Considérons le probleme de Cauchy non linéaire

© Z=AZ""', Z©0) =1,,

d’inconnue Z, a valeurs dans GL, (R).
Puisque I’application :
]1—a;a[xGL,R) — M,(R), (t,Z) —> AZ™'
est de classe C! sur I’ouvert | — a ; a[xGL,(R), (C) admet
une solution maximale et une seule. D’apres le cours, comme

X est solution de (C), la solution maximale est un prolonge-
ment de X.

Considérons I’application

U:l—a;a[— M,(R), t — U@l) = X().



Puisque X est dérivable sur | — a ; a[, par opération, U I’est
aussi, eton a:

U/U — (tX)/tX — ‘(X/)‘X — t(AX—I)tX
— lel lAtX — lel I(XA) =) lel l(AX)
=XIX4="14= A.
Deplus : U) = X(0)="'T,=1,et:
Vtel—a;al, U@) € GL,(R).
Ainsi, X et U sont solutions de (C) sur | — a. a[, d’ou, d’apres
lecours: VYt el—a;al, Uk) = X(@),
Viel—a;al, X()=X@).

On conclut que, pour toutt € | — a; al, la matrice X () est sy-
métrique.

c’est-a-dire :

Puisque (Ey) est une EDL2 SSM, normalisée, a coeffi-
cients continus sur l'intervalle [—1 ; 1], d’apres le cours, Sy est
un R-espace vectoriel de dimension 2. Nous allons montrer que
les applications Ny, N, : So —> R définies, pour tout y € Sy,
par ;

0 1
N.(y)=/ ly" =¥l Nz(y)=/ Iy + ¥,
=il 0

sont des normes sur Sy. Comme S, est un R-ev de dimension
finie (égale a 2), il en résultera que N, et IV, sont équivalentes,
d’ou, en particulier, le résultat demandé.

1) Etude de N :
* On a, pour toutes y;,y, € Sp :

0
Ni(y1 + ) =f |1+ 32)" = 1 + )|
-1
0
=/ |07 = ¥D) + 05 — )|
—1

0 0
</ |y{’—y1/|+f Y = 31 = Na(on) + Na(3).
-1 -1

* On a, pour tout @ € R et toute y € Sy :
0
Ni(ay) = / |(y)” = (ay)'|
-1

0
= IaI/ [y =¥l = laINi (p).
—1

* Soit y € S telle que N, (y) = 0.
Comme y” = x%y’ — y et que yest deux fois dérivable, y” est
dérivable, donc, en particulier, y est de classe C 2
0
Ainsi, / |y —y'| =0, et |y’ — y'| est continue et > 0,
il

Vxe[-1;0] y'(x) —y'(x)=0.
Par résolution de cette EDL1 d’inconnue y’, il existe A € R tel
que:Vx e[—1;0], y'(x)=\e",

d’ou :

puis il existe ;1 € R tel que :
Vx e[-1;0], yx) =Ae" +pu.
On a alors, pour tout x € [—1;0] :

0=y"(x) —x*y'(x) + y(x)
=Xe' —x?he' + (et + p) = —\xe’ +2)he* + L.

En remplagant x par 0, on déduit ;o = —2\, puis :
Vxe[—1;0], A(—x?e" +2e" —2)=0,

donc A =0,dou: Vxe[-1;0], y(x)=0.

En particulier, y est solution de (Ey) sur [—1;1] et
y(0) =0, y'(0) = 0. D’apres le théoreme de Cauchy linéaire,
le probleme de Cauchy linéaire

y//_xzy/+y:O
©)
y©0) =0, y(0)=0

d’inconnue y : [—1; 1] — R, admet une solution et une
seule. Comme y et la fonction constante nulle sont solutions
de (C), on déduit : y = 0.

Ceci montre que N, est une norme sur Sy.
2) On montre, de méme, que N, est une norme sur Sy.

3) Puisque N, et N, sont des normes sur le R-espace vectoriel
Sp qui est de dimension finie (égale a 2), d’apres le cours, N,
et N, sont équivalentes, donc, en particulier, il existe o € RY.
tel que :

VyeSy, Ni(y) < aNaxy),

d’ou le résultat demandé.

a) Notons, pour k € {1,2} :
% R—C, x+— (x+T).

Soit k € {1, 2}. L’application z; est deux fois dérivable sur R
et, pour toutx € R :

() + fMz&) =y (x + T) + f(Onx +T)
=y +T)+ fr+TDyx+T)
=z + fynx+T) =0,
donc z; est solution de (Eg) sur R.
Comme (y;,y,) estune base du R-ev S, des solutions de (Ey),
il existe (ay, () € R* tel que : zx = axy; + Beya,
c’est-a-dire: Vx e R, y(x +7T) = auy1(x) + By (x).

b) Notons

Y :R — My, (C), x —> Y(x) = (y'(x)>.
Y2(x)
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On a, pour tout x € R :

yi(x + T)) _ (alyl(x) 4F 51)’2(?6))
Y (x+T) Y1 (x) + By y2(x)

ar f ) (}’1 (x) )
= = AY (x).
( (e%) /62 ¥2(x)
Mais, de la méme facon, puisque f est aussi —7-périodique, il
existe B € M,(C) telle que :

Y(x+T):(

VxeR, Y(x—T)=BY(x).
On a alors :
Vx eR,
Y(x) = Y((x+T)—T) =BY(x+T)= BAY(x),

c’est-a-dire : Vx eR, (BA—-1L)Y(x)=0.

En dérivant, on obtient :
VxeR, (BA-L)Y'(x)=0.

En groupant les colonnes en matrices carrées d’ordre deux,
ona:

Vx eR, (BA-1,) (yu(x) y{(x))

y2(x) ¥y (x)

Comme (y;,y,) est une base de Sy, d’apres le cours, le wrons-
o »n

’
1 2

d’ou BA — I, = 0, et on conclut que A est inversible.

kien w = y1y, — yjy» = n’est pas la fonction nulle,
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Résolution d’équations aux dérivées partielles du premier ordre (EDP1), du
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Points essentiels du cours
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Définition et propriétés de la continuité d’une fonction f de plusieurs variables
réelles, lien entre la continuité de f et la continuité des fonctions partielles de f
Définition et propriétés algébriques des dérivées partielles premieres, des déri-
vées partielles successives, en particulier le théoréme de composition des fonc-
tions de classe C!, de classe C*, de classe C*®

Définition et caractérisation (faisant intervenir le jacobien) des C'-difféomor-
phismes d’un ouvert de R” sur un ouvert de R”

Définition de la notion d’extrémum local, pour une fonction f de plusieurs
variables réelles, lien avec le notion de point critique de f lorsque f est de clas-
se C! sur un ouvert de R”, et, pour PT, intervention de s —rt lorsque fest de
classe C? sur un ouvert de R?

a
Résolution de 'EDP1 B_f = g, finconnue, g donnée.
X
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Chapitre 9 - Fonctions de plusieurs variables réelles

=mmme | es méthodes a retenir

Pour étudier

Pexistence et la valeur

de la limite en un point

ou pour étudier la continuité
en un point

d’une fonction

de deux variables réelles

ou de plusieurs variables réelles

Pour étudier

Pexistence et la valeur

des dérivées partielles premieres
d’une fonction f

de deux variables réelles

ou de plusieurs variables réelles

x Cas de deux variables réelles :

Essayer d’abord d’appliquer les théorémes généraux.

* S’il s’agit d’une forme indéterminée, se ramener d’abord, par chan-
gement de variables par translation a une étude en (0,0).

Former les fonctions partielles f(-,0) et f(0,-).

* Si I’'une de ces deux fonctions partielles n’a pas de limite en 0, ou si
ces deux fonctions ont des limites en 0 différentes, alors fn’a pas de
limite en (0,0).

* Sif(-,0) et f(0,-) admettent une méme limite finie £ en 0, envisager
des  fonctions  composées du type x+— f(x,x),
x +— f(x, \x), A € R, ou plus compliquées en tenant compte de
I’exemple proposé. Si ces diverses fonctions (d’une variable) ont la
méme limite £ en 0, on peut essayer d’établir que f admet ¢ pour
limite en (0,0), en formant | f (x,y) — £| et en essayant de majorer
cette expression par une expression plus simple et de limite O
lorsque (x,y) tend vers (0,0). A cet effet, il peut &tre intéressant de
faire un changement de variables, par exemple en coordonnées
polaires.

== Exercices 9.1, 9.6, 9.7
x Cas de plusieurs variables réelles :
Essayer d’adapter les méthodes précédentes.

== Exercices 9.16, 9.17.

* Cas de deux variables réelles :

* Essayer d’abord d’appliquer les théoremes généraux, en particulier
le théoréme de composition des applications de classe C'.

°*En un point litigieux (c’est-a-dire en lequel les théorémes
généraux ne s’appliquent pas) (xo,yo), pour étudier 1’existence
et la valeur de %(xo,yo), former la fonction partielle

fGy0) i x —> f(x,y) et étudier sa dérivabilité en xy. On a ainsi,

a /
sous réserve d’existence : B_f (x0,y0) = (f(~,yo)) (x0), etde méme :
by

a /
%(XOJ}O) = (f (x0.")) (o).

* Pour montrer que f n’est pas de classe C'!, on peut essayer de rai-
sonner par ’absurde, en utilisant une fonction composée.

== Exercice 9.1.

* Cas de plusieurs variables réelles :
Essayer d’adapter les méthodes précédentes.
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Pour montrer qu’une application
¢:U—V

est un C!-difféomorphisme

d’un ouvert U de R”

sur un ouvert Vde R” n > 2

Pour étudier

P’existence et la valeur

des dérivées partielles secondes
(ou successives)

d’une fonction

de deux variables réelles

ou de plusieurs variables réelles

Pour montrer

qu’une applicationf : U — R
est de classe C*°

sur un ouvert U de R”

Pour résoudre une équation
aux dérivées partielles
du premier ordre (EDP1)

d’inconnue f : U —> R de classe C!

sur un ouvert (convexe) U de R?

Pour résoudre une équation
aux dérivées partielles
du deuxieme ordre (EDP2)

d’inconnue f : U — R de classe C?

sur un ouvert (convexe) de R>

Les méthodes a retenir

Commencer par montrer que ¢ est de classe C' sur U et bijective.
Ensuite :
* montrer que ¢~ est de classe C! sur V, si ¢~ est exprimable

== Exercice 9.9

° montrer que le jacobien de ¢ en tout point (x,y) de U n’est pas nul.

== Exercice 9.8.

* Essayer d’abord d’appliquer les théoremes généraux, en particulier
le théoréme de composition des applications de classe C? (ou C”,
ou C®), et calculer successivement les dérivées partielles pre-
mieres, puis les dérivées partielles secondes (puis successives).

== Exercices 9.2, 9.3

* En un point litigieux (c’est-a-dire en lequel les théorémes généraux
ne s’appliquent pas), étudier successivement les dérivées partielles
premieres, puis les dérivées partielles secondes (ou successives),
comme indiqué plus haut.

* Essayer d’abord d’appliquer les théoremes généraux.

* Essayer de se ramener a I’intervention d’une fonction d’une variable
réelle. Se rappeler que toute fonction développable en série entiere
en 0 est de classe C* au voisinage de 0.

== Exercice 9.20.

0 b
® On sait résoudre les deux EDP1 : —f =g, —f =h,
ax dy
ou g,h : U —> R sont données (continues), par primitivation. Par
d
exemple, la solution générale de I’EDPI a—f =g est
X

fix,y) — /g(x,y)dx+<p(y), ol ¢ est une fonction quel-

conque de classe C' (sur un intervalle & préciser).

® On essaiera de se ramener a cette EDP1 simple par un changement
de variables (et donc aussi un changement de fonction inconnue)
donné (ou suggéré) par I’énoncé.

== Fxercice 9.11.

® On sait résoudre les trois EDP2 :

3f 2 f _ 3 f
axdy 9y?

FIis

ou g,h,k : U — R sont données (continues), par deux primitiva-
tions successives.

= Exercice 9.4
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Pour déterminer

les extrémums locaux

d’une applicationf : U — R
de classe C! ou C?

sur un ouvert U de R?

Pour déterminer

les extrémums globaux

d’une application f : X — R,
ou X C R?

° Essayer de se ramener a I'une de ces EDP2 par un changement de
variables (et donc aussi un changement de fonction inconnue) donné
(ou suggéré) par 1’énoncé.

== Exercice 9.12.

* SiI’on cherche les solutions d’une forme particuliere d’une EDP, on
peut essayer de se ramener a une ED.

* Commencer par déterminer les points critiques de f, c’est-a-dire les
points en lesquels les deux dérivées partielles premieres de f s’an-
nulent simultanément. En effet, d’apres le cours, sif : U — R est
de classe C' sur I'ouvert U de R? et si f admet un extrémum local
en un point (xg,y) de U, alors (xg,yp) est un point critique de f.

* Si, de plus, fest de classe C? sur U, calculer les trois dérivées par-
tielles secondes de f en tout point de U, en déduire les valeurs de
r= f5(x0.50), 8 = f1,(x0,y0), 1 = f1>(x0,¥0), et former s> — rt.
Si s2 —rt > 0, alors f n’admet pas d’extrémum local en (xg,yo)
(point-col)

Si 2 —rt <0 alors f admet un extrémum local en (xg,yp), un
minimum si » > 0 (out > 0), un maximum si » < 0 (out < 0).

Si s2 — rt = 0, étudier le signe de f(x,y) — f(xo,y0) pour (x,y)
voisin de (xg,yo), par exemple en utilisant des chemins particuliers.

Former f'(x,y) — f(x0,Y0) pour (x,y) voisin de (xg,yo) et montrer
I’un des trois résultats suivants :

1) f(x,y) — f(x0,y0) est > 0 au voisinage de (x¢,yo), auquel cas f
admet un minimum local en (xg, yo)

2) f(x,y) — f(x0,¥0) est < 0 au voisinage de (xo,p), auquel cas f
admet un maximum local en (xg, yo)

3) f(x,y) — f(x0,y0) n’est de signe fixe sur aucun voisinage de
(x0,Y0), auquel cas f'n’admet pas d’extremum local en (xg,yo). Pour
ce dernier cas, on pourra essayer s’utiliser des chemins particuliers.

== Exercices 9.5, 9.13.

* Essayer de montrer que f est bornée et atteint ses bornes, par utilisa-
tion du théoréme de continuité sur un compact.

== Exercice 9.14

* Si f atteint une de ses bornes en un point (xg, o) intérieur a X et si f
est de classe C! sur Uintérieur X° de X, alors flx- admet un extré-
mum local en (x,yp), donc (xg,yo) est un point critique de f]x-.

== Exercice 9.14

* Si f atteint une de ses bornes en un point du bord de X, essayer de
se ramener a une recherche d’extrémum global pour une fonction
d’une variable réelle.

== Exercice 9.21

* Dans certains cas simples, I’étude peut étre résolue par 1’utilisation
d’inégalités classiques.
== Exercice 9.15.
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Enoncés des exercices

=== Fnoncés des exercices

-— m Etude de continuité et de caractere C! pour une fonction de deux variables réelles

- 9.2
- 9.3
— 9.4
- 9.5

Etudier la continuité et le caractére C' sur R? de la fonction f définie par : f(0,0) =0

sin (xy) .
etf(x,y) = m si (x,y) # (0,0).

Fonction harmonique
Soit P € C[X].Onnote : f : R? — C, (x,y) —> P(x +iy).

Montrer que f est harmonique sur R

Laplacien d’une fonction radiale

Soit f :10; +oo[— R de classe C>.

Onnote U =R? — {(0,0,0)}, g: U — R, (x,y,2) —> f(V/x2+y>+272).

Montrer que g est de classe C? sur U et que, pour tout (x,y,z) € U, on a, en notant

2
p=/x2+y2+22: Ag(x,y,2) = f"(p) + — f'(p), ol A désigne le laplacien.
p

Résolution d’une EDP2 avec condition
Trouver toutes les applications f : R> — R de classe C? telles que :

Vx,y) eR: fLry) =0 et f(x.x)=0.

Exemples de recherche d’extrémums locaux
de fonctions numériques de deux variables réelles

Déterminer les extrémums locaux des applications f suivantes, pour lesquelles on donne I’en-
semble de départ et I’'image f (x,y) de (x,y) :

a) R?, 4x 42y — x> —y*—2x* (PT) b) R?, xy+x’y* (PC,PSI,PT).

Exemples d’étude de limite pour des fonctions de deux variables réelles

Etudier I’existence et la valeur éventuelle d’une limite finie en (0,0) pour les fonctions f de deux
variables réelles définies par les formules suivantes :

Xy xzy x3y4 xy4 e —1

d .
x2+xy+y2 xz_xy+y2 c)x4+y6 )x4+y6 e)ex_l

a)

Limite pour une fonction de deux variables réelles

e —Dln(l+y)— (€ —DIn(l+x)
x2+y2

L’application f : R? — {(0,0)}) — R, (x,y) —>

a-t-elle une limite en (0,0) ?

Exemple de C'-difféomorphisme a deux variables

Montrer que I'application f : R? — R?, (x,y) — (x> +3x¢e’, y —x?)
est un C'-difféomorphisme de R? sur R2.
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— 9.12

9.13

— 9.14

9.15

— 917

Exemple de C"-difféomorphisme 2 deux variables

1
Onnote U =]0; +oo[® et ¢ : (x,y) —> <x3y27 ﬁ)

Montrer que ¢ est un C'-difféomorphisme de U sur U.
Etude d’une intégrale dépendant d’un paramétre

Soit f : R? —> R de classe C?, telle que f et Jf; soient 1-périodiques par rapport a la premiere
variable, et que : f/, = f}f’z. Montrer que 1’application

1 1
JiR—R, y+r— J() = Efo (FLa)* + (Fixp)) dx
est constante.

Exemple d’EDP1

Trouver toutes les applications f : (]R";)2 —> R de classe C! telles que :

W e+ 3L gy = -
ax X,y yay X,y —\/my

en utilisant les coordonnées polaires.

V(x,y) € (R} x

Exemple d’EDP2

Onnote U = {(x,y) € R?; y > |x|}. Trouver toutes les applications f : U —> R de classe C'

U tell Vx,y)eU —BZf( )——82f( )—71
sur U telles que : V (x, , X, X, ,
4 J axz Y ay? ) Vy?—x2

en utilisant le changement de variables définipar: 4 =x +y, v =y —x.

Extrémums locaux d’une fonction numérique de deux variables réelles

Déterminer les extrémums locaux de

f:U=]—7/2; 7r/2[2—> R, (x,y) —> tanxthy —thxtany.

Exemple de recherche de borne supérieure
pour une fonction numérique de deux variables réelles

Déterminer Sup sin x sin y sin (x + y).
(x,)€l0;4+00[2, x+y<T
Exemple d’extrémums liés

Calculer la borne supérieure et la borne inférieure de xy + z2, lorsque (x,y,z) € R3 vérifie
X2 +y +22=09.

Limite pour une fonction de trois variables réelles
Existence et valeur éventuelle de la limite en (0,0,0)

xyz
de f(x,y,2) = .
f&.y2) X4y + 24 xy+xz+yz

Limite pour une fonction de trois variables réelles

Onnote U = {(x,y,z) eRY; x2+y2 -2+ O}.
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Du mal a démarrer ?

o Xyt . _ o
Lapplication f : U — R, (x,y,z) —> — 57— admet-elle une limite (finie ou infinie)
X+ y —z
en (0,0,0) ?
— m Dérivabilité par rapport a une variable complexe

Soient {2 un ouvert non vide de R?, f : {2 — C de classe C'.
Onnote: U = {x +iy; (x,y) € Q} et g : U —> C I’application définie, pour tout (x,y) € 2,
par: g(x +iy) = f(x,y).

Montrer que les deux propriétés suivantes sont équivalentes :

MV (x.y) €2, filx.y) +ifi(x.y)=0

(2) pour tout zo € U, I'application z —> M admet une limite finie /(zg) lorsque
Z—20
Z —> 20-
e EJED pifférentielle de X —> X!
Soit n € N*,

a) Montrer que GL, (R) est ouvert dans M, (R).

b) Etablir que 'application f : GL,(R) — M,,(R), X +— X ~!est de classe C! et calculer sa

différentielle.
— Classe C* pour une fonction de deux variables réelles
e —1
) L , i x#£0
Démontrer que I’application f : R — R, (x,y) —> X
y si x=0
est de classe C* sur R
e “J241 Exemple de recherche de borne supérieure
pour une fonction numérique de deux variables réelles
Déterminer Sup 2y2(x2 4+ yH).
(x,9)€[0;+00[2, x+y<2
\ /
memmme Du mal a démarrer ?
m Seul le point (0,0) pose probleme. m Résoudre I'EDP2 f), = 0 et traduire ensuite la deuxieme
« Pour montrer la continuité en (0,0), majorer convenablement condition.
[f(x,y) = £(0,0)]. a) Déterminer les points critiques de f, puis, en ces points,
« Pour montrer que fn’est pas de classe C! surR?, montrer que calculer s> — rt.

x —> f(x,x) n'est pas dérivable en 0. . . . L
Fex) i b) Déterminer les points critiques de f, puis étudier, par exemple,

Décomposer P sur la base canonique, et examiner le cas f(x,x) — £(0,0) et f(x,—x) — f(0,0).
de Xk,
B 92
AN Calculer 22 (x.y.2) alaide de /(o). x. p,puis 55 (xy.2) (LA o) Etudier f(x.0) et/ (x.x).
alaide de f”(p), f'(p), f(p), x, p, et en déduire Ag(x,y,z). b) Mettre le trindbme sous forme canonique.
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Chapitre 9 - Fonctions de plusieurs variables réelles

o) Noter X = x? et ¥ = |y|?, puis p = (X* 4+ ¥?)!/2, et majorer
convenablement | £ (x,y)|.

d) Etudier, par exemple, f (x,x%/3).
e) Montrer que l'application

el —1
9:R— R, t+— t

si t£0

1 si t=0

est continue sur R, et exprimer fa l'aide de ¢.
Utiliser, par exemple, des développements limités.

Pour montrer que f est bijective, se ramener a une équa-
tion d'inconnue x, et montrer, par étude de variations d'une
fonction, que cette équation admet une solution et une seule.

Utiliser le théoréme de caractérisation des C!-difféomor-
phismes.

Montrer que ¢ est bijective, en exprimant sa réciproque.
Appliquer ensuite la définition d’un C'-difféomorphisme.

1
Appliquer le théoréme de dérivation sous le signe / ,
. 0
pour montrer que J est de classe C' et exprimer J'.

En notant ¢ : (6, p) —> (pcosH, psind) et g = f oo,
ag
calculer —.
ap

L'EDP1 proposée se raméne a une EDP1 d’inconnue g, plus
simple a résoudre. Revenir a f.

En notant ¢ : (x,y) —> (x +y.x —y) et g= fogp~ !,
calculer les dérivées partielles premiéres de f en fonction de
celles de g, puis calculer deux des dérivées partielles succes-
sives de fen fonction des dérivées partielles de g.

L'EDP2 de I'énoncé se rameéne a une EDP2 d'inconnue g, plus

simple a résoudre. Revenir a f.

Déterminer les points critiques de f:il y en a un seul, (0,0).
Etudier, par exemple, f (x,x?).

En notant T = {(x,y) € [0; 4+o00[%; x +y< 7r} et
f:T — R, (x,y)+—> sinxsinysin(x + y), montrer que f
est bornée et atteint sa borne supérieure, et montrer que celle-ci
est atteinte a I'intérieur de 7. Déterminer les points critiques de f
sur l'intérieur de 7.
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Utiliser I'inégalité classique :
1
Y@y €R: by < 562 +y7).

On peut ici résoudre la question sans faire intervenir de dérivée
partielle.

Noter X =y+2z, Y=2z+x, Z=x+y, puis majorer
convenablement | f(x,y,z)|.

Etudier f(x,0,0) et f(x,x,+/2x 4+ x*).
Utiliser la formule de Taylor-Young.
a) GL,,(R) = det™' (R*).

b) - Utiliser la formule :

1
VX eGL,R), X '= b X
e GL,(R) e ) com (X)

pour montrer que f : X —> X! est de classe C! sur l'ouvert
GL,(R).
+ Pour déterminer dyf, calculer, pour H assez petite,
X+H)—x"1en faisant apparaitre X — (X + H).
Considérer
el —1
¢9:R—R, t+— 7

si t#0

1 si t=0.
Montrer que ¢ est développable en série entiére en 0, de rayon
infini, donc ¢ est de classe C* sur R.
Exprimer fa l'aide de ¢.

1" méthode Etude d’extrémum pour une fonction numérique
de deux variables réelles :

En notant C = {(x,y) €[0; +ool>; x+y < 2}

et f:C— R, (x,y) — x2y*(x*+y?), montrer que f
admet une borne supérieure et que celle-ci est atteinte.
Déterminer les points critiques de f sur l'intérieur de C et en
déduire que la borne supérieure de f est atteinte sur le bord
de C.Etudier la restriction de fau bord de C.

28 méthode : Se ramener a une étude d'extrémum pour une fonc-
tion numérique d’une seule variable réelle :

Considérer, pour y € [0; 2] fixé, I'application
h:[0;2—y]l — R, x+— f(x,y),
déterminer Sup A(x), puis étudier I'expression obtenue, en

x€[0;2—y]
fonction de y. Il pourra alors étre commode de posert =y — 1.



= Corrigés des exercices

* D’apres les théoremes généraux, fest de classe C' sur
I’ouvert R? — {(0,0)}.

*Ona:
| sin (xy)| lxyl
x,y9)| = < < x —>
=007 S el S oo
d . s —> 0 = O,O 5
onc f(x,y) (e—(0,0) f(0,0)

ce qui montre que f est continue en (0,0).
Il en résulte que f est continue sur R?.
* Considérons 1’application
g:R—R, x+— gx) = f(x,x).

Ona:

g(x) — g(0) sin (x?) X 1

— ~ s 4
x—0 2x|x|

x—0 2|X| x—0% 2
Ainsi, g n’est pas dérivable en 0.

Si f était de classe C' sur R?, par composition, g serait de
classe C! sur R, contradiction.

On conclut : fn’est pas de classe C! sur R

Rappelons qu’une application f : U — C, de classe
C? sur un ouvert U de R? est dite harmonique si et seulement
si son laplacien est nul, le laplacien de f étant :

2f  9*f
Af = — +—.
! ax2  9y?
Vu la linéarité du laplacien, décomposons le polyndome P sur
la base canonique :

n
P = E aX*, ouneN,ay,...,a, €C.
=0

Notons, pour tout k € {0,...,n} :

e :R2— C, (x,y) — (x +iy)k.

n
7= Zakek.
k=0

n
Puisque A est linéaire,ona: Af = ZakAek.
k=0

Ainsi :

Et, pour tout k € {0,...,n} et tout (x,y) € R?:
de . de, . .
) =k i ) =ik i)
a0x ay

. 82ek . k—2
puis : T ) = k= D iy,

Bzek

8_y2(x’y) = —k(k=Dx+iy 2,

d’ou: Ae(x,y) =0, etenfin: Af =0.

On conclut que f est harmonique sur R,

Puisque (x,y,z) —> /x2+ y2 + 22 est de classe C?

sur U etavaleurs > 0, etque f estdeclasse C?sur]0; +oof,
par composition, I’application

g: (x,y,2) —> f(/x%+ y2 +72) estde classe C? sur U.
On a, en notant p = /x? + y% + z2, pour tout (x,y,z) € U :
g X
af(x,y,z) = f'(p)—,

x p

puis :
0%g Lo(x\* ., 1 . —lx
5y =f (p)(—) + f(p)—+ f(p)x——
dx p p P> p
" x2 ’ 1 ! x2
==+ f-—fp-=.
p P P

et de méme par rapporta y ou a z.

N 3’g  9%g  0’g
A TR Tl T
L X2y 42 o1 x2+y* 4+ 22
= P 0 = f

2
= f"(p) + ;f/(p)-

1) Soit f convenant. Par résolution de 'EDP2 £ =0,

il existe A,B : R —> R de classe C? telles que :
V(x,y) € R, fx,y) = A(x) + B(y).
On a, pour toutx € R :

fx,x) =0 A(x) + B(x) =0,

V(xy) €R?fxy) = A(x) — A).
2) Réciproquement, pour toute application A : R — R de

et donc :

classe C? sur R, I’application
iR — R, (x,y) — A®X) — A®Y)

est de classe C? sur R? et convient.

On conclut que les applications cherchées sont les
fiR—R, (x,y) — AK) — A(),

ol A:R — R estdeclasse C?sur R.
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Dans chacun des deux exemples, f est de classe C? sur
I’ouvert R?.

a) On a, pour tout (x,y) € R?:
flx,y) =4 —2x — 6x?
fyx,y) =2 -2y,

donc f admet deux points critiques exactement :
A(=1,1), B(2/3,1).

D’apres le cours, si f admet un extrémum local, comme f est

de classe C! sur I’ouvert R?, celui-ci est en un point critique
de f.

On a, pour tout (x,y) € R?:

feGy)=-2—12x, fi(x,y) =0, f5(xy)=-2.
*EnA:r=105s=0,t=-2 s>—rt=20>0, donc f
n’a pas d’extrémum local en A (il s’agit d’un point-col).

e En B : r=-10,s=0,1r=-2,5>2—rt =—-20<0,
t <0, donc f admet un maximum local en B.

Finalement, f admet un extrémum local et un seul, en (2/3, 1),
c’est un maximum local, et f(2/3,1) =71/27.

b) On a, pour tout (x,y) € R?:
fix,y) =y +3x2y* = y(1 + 3x%y)
) = x +2x%y = x(1 + 2x%y),

fi(x,y) =0 x=0
d’ou I’on déduit : —
y=0.

flxy) =0

Ainsi, f admet un point critique et un seul : (0,0).

Comme :
{f(x,x)—f(0,0=x2+x5>0 si x€]0;1]
fx,—x) — f(0,0) = —x*>4+x> <0 si xe]0;1],

f n’apas d’extrémum local en (0,0).

Finalement, f n’a pas d’extrémum local.

a)Ona:f(x,O):0—>OOet:

fam=2 -1 1.,
X, X)=m — == —> — 5
3x2 3 x—0 3

donc f'n’a pas de limite en (0,0).
b) On a, par mise d’un trindme sous forme canonique, pour tout
(x,y) e R?:

2 2 X\’ 3,
XT—xy+y = y—z —I—Zx.

En particulier, f est définie sur R? — {(0,0)}.

De plus, pour tout (x,y) € R* — {(0,0)} :

X2y [y
X, =— - = —
[f G, y)] x\° 3,  3/4 cn—00
YTz) T
On conclut : X, —
f( y) (x,y)—>(0.0)

c¢)Ennotant X = x> etY = |y|’,ona:

|x|3y4 _ X3/2y4/3

|f(x,}’)| = .X4+y6 - X2+Y2.
Puis, en notant p = (X? + Y2)!/2
X3Py g _ 5 0
X24y? S 2 p—0
On conclut : B —
f( y) (x,y)—>(0,0)

d) Soit a > 0 fixé a choisir.
1

Ona: f(x,xa) = m

2
Pour o = 7 de sorte que 6 =4, ona:

s 1173 1
fx,x™?) = ot = ogin i oo
On conclut : f n’a pas de limite en (0,0).
e)lci: Def(f) =R* xR.
Considérons 1’application
e —1
si t#0
p:R— R, t+— t
1 si t=0.

Comme (1) =

—1

— 1 =¢(0),

t—0
@ est continue en 0, puis ¢ est continue sur R.
On a, pour tout (x,y) € (R*)? :

xv_]

e eV —1 «x
foey) =2

_ Yeby)
e =1 o)

—1 e Xy

D’autre part, le résultat obtenu est aussi vrai lorsque y =0
(etx £ 0).

_ yexy)

e

Comme ¢ est continue sur R et ne s’annule en aucun point,
par opérations, on conclut :

Ainsi: VYV (x,y) e R* xR, f(x,y)

fx,y)

—
(x,y)—>(0,0)



On a, par développements limités en O :
" —1=x(1+¢(x)), ohe(x) —>00
X—>

In(1+x)= x(l +52(x)), ol £5(x) —>00,

€ —Din(14y) — (@ — 1)l +x)
=o((1+2@)(1+&0) - (1+a0) (1 +2Mm))

= xy(e1(x) + £2() + €1 (x)e2(y)

—€1(y) — £2(x) — e1(P)e2(x))

= xye(x,y),
ou: e(x,y) — 0.
(x,y)—>(0,0)
Donc :
xye(x,y) Xy
X, = = e,
P = S| = |y e
1
< - , — 0.
< 2IE(x I 00
On conclut : X, —
f( y) (x,y)—>(0,0)

Il est clair que fest de classe C' sur R?. Pour tout (x,y)
de R?, la matrice jacobienne de fen (x,y) est :

3x2 4 3e” 3xe-V>
—2x 1 ’

det (Jf(x,y)) = 3x2 + 3¢’ + 6x%¢” > 0.

Jr(x,y) = (

qui est inversible car :

Montrons que f est bijective.
Soit (X,Y) € R? fixé. On a, pour tout (x,y) de R? :

X = x3 + 3xe’

fxy) = XY) {Yzy_xz

3e¥xe” +x3 —X =0
y=x+7Y.

L application ¢ : x —> 3¢"xe” 4+ x3 — X estde classe C!
sur R, strictement croissante sur R, et lim ¢(x) = —o0,
xX——00

lim ¢(x) =400 ; il existe donc x € R, unique, tel que
xX—>+00

o(x) =0.

Ceci montre que le systeme d’équations précédent, d’incon-
nue (x,y), admet une solution et une seule, et donc que f est
bijective.

Finalement, f est un C'-difféomorphisme de R? sur R

» U =]0; +oo[? est un ouvert de R? et, d’apres les théo-
remes généraux, ¢ est de classe C'sur U.

* Montrons que ¢ est une bijection de U sur U et explici-
tons ¢~ .

Il est d’abord clair que : V (x,y) € U, ¢(x,y) € U.

Soit (u,v) € U. On a, pour tout (x,y) € U :

o(x,y) = (u,v)
Xyt =u 3y’ =u
— 1 1 =1, 1
— =) = —
x2y Y=Y
yo L 1
vx? X =—
— = uv?
1
XSW =u y—u2v3

Considérons donc I’application
1
Y:U— U, (u,v) —> (—2, u2v3>.
uv

Nous venons de montrer :
Y(x,y)eU,VYu,v)eU,
(,v) = ¢(x,y) <= (x,y) = Pu,v).

Ainsi, ¢ est bijective et ) = ¢~

* D’apres les théoremes généraux,
i 153
¢ (uv) > S UV
uv

est de classe C! sur U.

On conclut que ¢ est un C'-difféomorphisme de U sur U.

Considérons 1’application
. 2 1 2 2
F:R° — R, (x,y)r—)z(fx )+ f (x,y)).

Puisque f est de classe C? sur R?, par opérations, F est de
classe C! sur R?. En particulier :

e pour tout x € [0; 1], F(x,-) estcontinue sur R

e pour tout y € R, F(-,y) estcontinue par morceaux et inté-

grable sur le segment [0; 1]

existe sur [0; 1] x R
oF .
e pour tout x € [0; 1], a—(x,-) est continue sur R
y

oF .
e pour tout y € R, a—(-, y) est continue par morceaux sur
y

[051]

359



360

vérifie I’hypothese de domination locale sur [0; 1] x R

oF .
car . est continue sur R?, donc bornée sur tout compact
y
de R2.
1
D’apres le théoreme de dérivation sous le signe / , J estde
0

classe C! sur R et, pour tout y € R :

1
J') =/ Fy(x,y) dx
0

1 1
- 5/0 (L1 £, ) + 2, (x,3) f12(x,y)) dx

x=1
=

= /Ol(f;m;(x,y)dx =[rr]_ =0

car f, et f, sont 1-périodiques en x.

Ceci montre que J est constante sur R.

L application ¢ : (6,p) —> (pcos 8, psin ) estun C'-
difféomorphisme de 1’ouvert U =]0; g[x]O; +oo[ sur I’ou-
vert (R%)%.

L’application f +—— f o¢ est donc une bijection de
C'(R%)%R) sur C'(U,R).
Soient f € C'((R%)%R), g = f o ¢. On a, pour tout (6, p)

de U, par dérivation d’une fonction composée :

08
— (0
ap( §0)

d a
= —f (pcos 8, psinB)cos O + —f (pcos B, psin O)sin 6.
ax ay

Ainsi, f estsolution de I’EDP (équation aux dérivées partielles)
de I’énoncé si et seulement si g est solution de ’EDP :

vV (0,p) €U,

Comme, pour 6 €]0; g[ fixé, p décrit I'intervalle ]0; +ool,
générale de I1I’EDP
g: (60.p) —> cosflnp+ A(6), ol A € C(10; g[,R).

la solution ci-dessus est

Puisque p = /x2 + y? et § = Arctan X, on conclut que la so-
X

lution générale de I’EDP proposée est :

fi @) — ln(x2+y2)+C<§),

X
NS

ot C e C'(10; +ool, R).

L application ¢, : U —> R? est de classe C? sur

X, y)—(x+y, y—x)

I’ouvert U, et :
¢ (U) = {(u,v) € R* u+v > |u—v|} =]0; +oo[*.

Ennotant V = ¢,(U) et ¢ : <U —V , U et Vsontdes

x,y)—(x+y, y—x)
ouverts de R et ¢ est un C?-difféomorphisme de U
sur V, c’est-a-dire :

¢ est de classe C2, ¢ est bijective, ¢~ est de classe C2.

y v
~, ’
. “ "
b U 2
2
~ 4 Vv
’
A ’
b, ’
b ’
p) ’
b 4
9
o X o u

Soient f € C2(U,R), g = f o¢~'. On a, avec des notations
abusives classiques :

af dgou dgdv dg 0g
9x  udx  dvax ou  dv
af dgou dgdv dg g
By oudy dvoy  ou | v’

?f 9 [of
W25<5>
0 (0g 0g) Ou a (dg dg)\ dv
—5(5‘5>a+5(5‘5)a

_ 9%g 9%g 9%g 9%g
“\ou®  dudv dvdu  9v?

3’8 3 a’g  0%g

= u? dudv | 9v?
2f 0 (of
ay>  dy \dy
a [0 d d a [0 0 av
_ 0 (% 0g\ou 0 (bg Bg\dv
du \du dv/) dy dv \du Jdv/ dy
Ng g Pg g
_ (P8, P8 (8 9%
ou?  dudv ovou  0v?
9%g g g

- du? udv | ov?

Ainsi, f estsolution de I’EDP de I’énoncé si et seulement si:

32
g (u,v) = —.

oudv Juv

Pour v €]0; +o0[ fixé, on « integre » par rapport a u (u décrit
I’intervalle ]0; +o0ol) :

Vu,v)eV, —4




0g 1
%(u,v) = _Eﬁ +a(),

ot a € C'(]0; +o0[, R).
Puis, pour u# €]0; +o0[ fixé, on integre par rapport a v (v dé-
crit I'intervalle 0; +o0[) :
2(u,v) = —Vu/o + A®w) + Bw),
ol A estune primitive de a, et B € Cz(]O; +o00], R).
La solution générale de I'EDP de 1’énoncé est :
fiGy)— =y = x>+ Ay —x) + B(x + ),
ou A,B € C*(]0; +o0[, R).

e L’application f est de classe C' sur 1’ouvert
U =] — /2 ; /2[% donc,si f admetun extrémum local, c’est
nécessairement en un point critique.

* Recherche des points critiques de f :

On a, pour tout (x,y) € U :

1
"(x,y) = thy — ——tan
fi (&) cosZx DY T g, Y
1 1
"(x,y) =tanx —— — thx ———.
15607) ch’y cos2y
Donc :
I shy 1 siny
. fitx,y) =0 cos2x chy ~ ch2x cosy
fixy) =0 sinx 1 _ shx 1
cosx ch’y  chx cos?y

ch?xshycosy = cos?xsinychy
—
sinx chx cos 2y = cos x shx ch’y
(chxcosy)(chxshy) = (cosxchy)(cosxsiny)
(chx cosy)(sinxcosy) = (cosxchy)(shxchy)
— (chxshy)(shxchy) = (sinx cos y)(cosx siny)
<> sh2xsh2y = sin2x sin2y.
Si x #0 et y #0, alors :

sin 2x
sh2x

sin2y
sh2y

S) =

|-t

Mais, on sait (par étude de variations de fonctions, par exemple)

que: Vz€]0;+oo[, |sint| <t < sht,
.. sin 2x sin2y o
d’ou ici : < 1, contradiction.
sh2x sh2y

Cecimontre: x =0 ou y=0.

Six =0, alors :

sh sin
s _ B < thy=tany.
cos y

S) = chy

Mais on sait (par étude de variations de fonctions, par exemple)
que: Vtel0;m/2[, 0 <tht <t <tant.

Il s’ensuit: y = 0.

Ainsi, f admet un point critique et un seul, le point (0,0).
* Etude en (0,0) :

Ona:

f(x,x?) = tanx th (x*) — thx tan (x?)
3
= (x <k % 4k 0(x3)) (x2 4k 0(x4))
o
—(x -3 aF 0(x3)> (x2 A 0(x4))

= 3 bot®) ~ 28
I1 en résulte, au voisinage de O :
f(x,x?) >0 pour x >0
{ f(x,x?) <0 pour x <O0.

On déduit que f n’a pas d’extrémum local en (0,0).

Finalement, f n’a pas d’extrémum local.

e Existence de la borne supérieure :

Notons T = {(x,y) €[0;+00[?; x+y < 7r}.

y

o b4 X

Il est clair que 7" est fermé borné, donc compact.
D’autre part, 1’application

f:T — R, (x,y) —> sinxsinysin(x + y)
est continue sur 7'.

D’apres le cours, il en résulte que f est bornée et atteint ses

bornes. Notons M = Sup f(x,y).
(x,y)eT

Comme f s’annule en tout point du bord de 7 et que, par
exemple, f(mw/4,7/4) > 0, f atteint M en un point de I’in-
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térieur 7° de T. Comme f est de classe C' sur T°, ce point
est un point critique de f.

* Recherche des points critiques de f :

On a, pour tout (x,y) € T° :
fitx,y) =0
fy(x,y) =0

siny (cosx sin (x + y) + sinxcos (x + y)) =
S
£0
=1 . . .

sinx (cosysin (x + y) + sinycos (x +y)) =
£0

sin(2x +y) =0 2x+y=0 [n]
— —
sin(x +2y) =0

{xzy []
— —
x =0 [r/3]

x+2y=0 [nx]
x=y=m/3.

¢ On conclut :

3V3
Sup f(xs)’)=f(7f/3,7f/3)=T-
(x,)€[0;400[2;x+y<T
1
Rappelons : Y (x,y) € R?, |xy| < E(Xz +9).

Soit (x,y,z) € R? tel que x> 4+ y> + 72 =9.
On a alors :

s xy+2° (x +yY)+ 2 <P +y + =9,

atteint (au moms) en (x,y,z) = (0,0,3).

1
c xy+7° > —5(x2+y2)+z2

3

1 2 2 2 32 9 2
_ -2__Z4 2> _ 7
2(x +y +z)+21 2+22/ x

(3/+/2,=3/+/2,0).

On conclut que les bornes inférieures et supérieures demandées
sont, respectivement : —9/2, 9.

atteint (au moins) en (x,y,z) =

eEnnotant X =y +z, Y =z4+x,Z=x+ y,ona:
2(x% + y? + 22+ xy + xz + y2)

=@+ +@+P+0+2>=X>+7"+ 2%,
donc :

2y xy+rz4+yz=0c X2+¥2+22=0

X=0 y+z=0 x=0
=1 Y=0¢=1x+2=04= 1y=0
Z=0 x+y=0 z=0.

Ainsi, f est définie sur U = R3 — {(0,0,0)}.

* Avec les mémes notations, on a, pour tout (x,y,z) € U :

1
x+y+z=§(X+Y+Z), donc :

1 1
x=5(—X+Y-|—Z), y=5(X—Y+Z),

1
z=§(X+Y—Z),
d’ou:
L(X+Y+2D)X Y+ D)X +V — Z)
4 X2+ Y2+ 22

fx,y,2) =

Il en résulte :

3
1(XI+1Y]+121)
< - = 7
If Gyl < iVt 2
1 (3(X? + Y2 + Z)112)° _ 2

2 2 2 2172
4 X2 +Y24 272 (X P2

£
2 2 N
Comme (X°+Y" + Z°)2 —
(x,y,2)—>(0,0,0)
on conclut, par encadrement : f(x,y,z) —
(x,y,2)—>(0,0,0)

o
a: f(x,0,0) == =x>2—0 et:
bYa x—>0

A = (2 2= 55
X V2x +xt) =
fx,x x4+ x7) YERY S

i — (4x4 + 0(x4))
2x2 — (2x2 +24/2 x5 + 0(x5))
—2x* + o(x%) 1
= ~ —
—2/2x5 4+ 0(x5) +—0 /2x x—0t

donc f n’apas de limite, ni finie ni infinie, en (0,0,0).

400,

)= 2):
Y(x,y) € 2, fl(x,y)+if(x,y)=0.

Soient zo,z € U, tels que z # zo, (X0,Y0), (x,y) € {2 tels que
Zo0 =Xo+1Yp,zZ =x +1y. On a, en utilisant la formule de
Taylor-Young a I’ordre O pour une fonction de deux variables

On suppose :

réelles, de classe C! :

8(z) —go)  fx.,y) = f(x0,0)
Z— 20 -

(x — x0) +1(y — yo)
1

T —xo) Fi O — yo) [(x — Xo) f; (X0 0)

+ (5 = 30) 1 x0.30) + oIl & = x0, ¥ = 3l
1
T @ —x0) +i =)

[((X — x0) +1(y — y0)) £ (x0.Y0)

+o(llx = %0,y = )l |
= f(x0.y0) + o(1) : fi(xo.y0)-

(x,y)—>(x0.y0



8(z) — 8(z0)
Z—20
lorsque z — zp, et:
h(zo) = f:\{(-x()vy()) = =il fy,(xo,}’o) .
Q= D:
On suppose qu’il existe une application 4 : U —> C telle que,
pour tout zo € U, on ait
8(z) — 8(z0)
Z—20

Ceci montre que admet une limite finie /(z()

— h(Z()).

z—20
On a, en utilisant la formule de Taylor-Young a 1’ordre O pour
une fonction de deux variables réelles de classe C' :

1
(x —x0) +1(y — yo)

[(x = x0) £} (x0.0) + (¥ — ¥0) f (X0, Y0)
+o(l1(x = x0, y — yo)ll)]

_ 8(2) — g(z0)

—> h(zp).
Z—20 Z

Z—>20

En particulier, pour y = yy et x variable :

(x = x0) £ (x0,Y0)

—> h(z20),
X — Xo 0

X—>X(

donc : h(zo) = f(x0.Y0),

et, pour x = xo et y variable :
(y = y0) 13 (x0, ¥0)
i(y = o)

donc : h(zo) = —i f;(x0,Y0)-

llenrésulte :  f/(x0,y0) = —i f; (X0, Y0),

cest-a-dire : £ (xo,y0) +1i f;(x0,¥0) = 0.

a) Puisque
GL,(R) = {X € M,(R); det (X) # 0} = det”'(R"),

GL, (R) est I'image réciproque de I’ouvert R* de R par I’ap-
plication continue det. D’apres le cours, il en résulte que
GL, (R) est un ouvert de M,,(R).

b) 1) Puisque, pour toute X € GL,(R) :

1
X '=—fcom(X),
det (X)
les coefficients de X! s’expriment comme fonctions ration-
nelles des coefficients de X, alors les coefficients de X! sont

des fonctions de classe C', donc f est de classe C' sur I’ou-
vert GL, (R).

2) Soit X € GL, (R).

Puisque GL, (R) est un ouvert de M,,(R), il existe € > 0 tel
que :

VH e M,(R), (|H||<e= X+ H € GL,(R)).
On a, pour toute H € M, (R) telle que ||H|| < ¢ :
fX+H) —fX)=X+H) '—x!
=X+H) '(X-X+H)X'=-X+H 'HX',
d’ou :
FX+H) - fX)+X"HX!
=X"'-Xx+H HHX "
Lx :M,R) — M,(R), H+— —X 'HX ",

Il est clair que Ly est linéaire.

Notons

D’autre part, comme 1’application f est continue sur GL, (R),
ona: (X+H)’1H—>0X", @)

donc: (X '—(X+H) "HX'= L0 IHID.

@)

Onobtient: f(X+ H) = f(X)+Lx(H)+Hio(||H||)-

On conclut que, pour tout X € GL,(R), Lx est la différen-
tielle de f en X. Autrement dit :

VX € GL,(R), VH € M,(R), dyf(H) = Lx(H).

Considérons 1’application ¢ : R — R définie par :

e —1

o(t) = 4
1 si t=0.

si t#0

Ona: Vx,y) e R flx,y) = yolxy).

Par composition, il suffit donc de prouver que ¢ est de
classe C* sur R ; ainsi, dans cet exemple, on se ramene a 1’étude

d’une fonction d’une variable réelle.

+00 g

S r__ L

On sait: VieR, ¢ —Zn',

n=0 """

d’ou :
et —1 1 +00 n +00 tnfl +00 "

Vs IR P SO Bebd Brnries
t t i nl  ~ nl —~ (n+ 1!

Comme de plus ¢(0) = 1, on obtient :

+00 t"
VteR, o) = —_—
”z:; (n+1)!

Ceci montre que ¢ est développable en série entiere en 0, de
rayon infini, donc ¢ est de classe C* sur R, puis, par com-
position, f est de classe C* sur R2.
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17 méthode : Etude d’extrémum pour une fonction nu-
mérique de deux variables réelles :

Notons C = {(x,y) € [0; 4o00[%; x +y < 2},
f:C—R, (x,y) — x>y*(x%+y?).

Y

0 2 x

e Existence de la borne supérieure de f :

Il est clair que C est fermé borné dans R?, donc C est com-
pact. D’autre part, par les théoréemes généraux, f est continue
sur C. D’apres le cours, il en résulte que f est bornée et
atteint ses bornes. En particulier, la borne supérieure deman-
dée existe et est atteinte.

* Recherche des points critiques :
Notons C° Dintérieur de C, c’est-a-dire :

C°={(x,y) €[0;+00[*; x>0, y>0, x+y <2}.

L application f est de classe C ! sur 'ouvert C°, donc, si f
admet un extrémum local en un point (x,y) de C°, alors (x,y)
est un point critique de f.

On a, pour tout (x,y) € C° :
fite,y) =0 4x3y? +2xy* =0
!
£y =0
2xy*(2x* +y?) =0
2x2y(x* 4+ 2y%) =0

2xty +4x%y* =0
< (x=0ou y=0),

ce qui est exclu.

Ceci montre que f n’a pas de point critique dansC°, donc f
n’a pas d’extrémum local dans C°.

Comme on a vu plus haut que le maximum de f est atteint, il
en résulte que ce maximum n’est pas atteint dans C°, donc est
atteint au bord de C.

* Etude de f au bord de C :

f(1,1)=2>0
Comme : Vx €[0;2], f(x,00=0

Vye[0;2], f(0,y)=0,

le maximum de f est atteint en un point du segment
S ={(x.y) € [0: +oo?; x +y =2}.
Il est clair que, lorsque (x,y) décrit S, le produit
p=xy=x(2—x) décrit[0; 1].
On a, pour tout (x,y) € S :
fy) =22y (* + %) = p*(4 - 2p) =4p* - 2p°.

L’application g : [0; 1] — R, p +—> 4p*> —2p> est déri-
vable et, pour toutp € [0; 1] :

g'(p)=8p—6p>=2p(4—3p) >0,

donc g est croissante sur [0; 1].

Il s’ensuit:  Sup g(p) =g() =2.
pel0;1]
On conclut que Sup X2y (2 + Y,

(x,y)€l0;4002; x+y<2
existe, est €gale a 2, et est atteinte en (1,1) et en ce point seu-
lement.
2¢ méthode : Se ramener & une étude d’extrémum pour une fonc-
tion numérique d’une variable réelle :
* Pour y € [0; 2] fixé, considérons 1’application :
h:[0;2—y] — R,

X h(x) = fy) =27y 00 + %) = xty? +ayt
L’application h est dérivable sur [0;2 — y] et:
Vxe[0;2—yl, W (y) =4x>y> + 2xy*

= 2xy?(22% +y) 2 0,
donc / est croissante sur [0; 2 — y].

Il en résulte que /2 admet une borne supérieure et que celle-
ciestatteinteen2 — y :

Sup h(x) =hQ2—y)=Q2-»Y(Q-y*+y).
x€[0;2—y]
e Par commodité, notons t =y — 1 et :
k:[-1;1] — R, t— k() =h2—Yy)
=1+ -1+ + 1 -1?)
=2(1 — )% +1%).
L’application k est dérivable sur [—1; 1] et, par simple
calcul, pour tout r € [—1; 1] :

K@) =—2t(1 —>)(1+3:%) <0,

donc k est croissante sur [—1 ; O] et décroissante sur [0; 1].

Il en résulte que k atteint sa borne supérieure en ¢ = 0, c’est-
a-dire pour y = 1,etalors x =2 —y=1.

On conclut que Sup x2y(x* 4+ y*) existe, est
(x,y)€[0;400[2 ; x+y<2

égale a 2, et est atteinte en (1,1) et en ce point seulement.
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Pour obtenir des relations
(souvent des inclusions)
entre sev

Pour montrer
qu’une famille infinie est libre

Pour montrer
qu’une famille infinie est liée

Pour déterminer

la base préduale (uq,...,u,)
d’une base (yq,. ..
d’un ev E de dimension finie

Pour montrer qu’une forme

linéaire 1) est linéairement décom-

posable sur une famille libre

(@1, --,9p) dudual E* d’un ev E

,,) du dual E*

mmmme | ¢es méthodes a retenir

K désigne un corps commutatif.
K désigne R ou C.
On abreége espace vectoriel en ev, sous-espace vectoriel en sev.

Essayer de passer par les éléments.

== Exercice 10.1.

Montrer que toute sous-famille finie est libre

= Exercices 10.2 a), 10.11.

Montrer qu’il existe une sous-famille finie liée.

== Exercice 10.2 b).

Résoudre le systeme d’équations

V@i, j)e{l,....n}% pi(u;) =6,

ol uj,...,u, sont les inconnues, et ol §;; est le symbole de

1 si i=j
Kronecker, 0;; = o )

0 st i+#].
En considérant les coordonnées de uy,...,u, dans une base fixée
(e1,...,e,) de E, résoudre n systemes linéaires a n inconnues et n

équations, ayant le méme premier membre.

== Exercice 10.7

En groupant ces systemes linéaires, on peut se ramener a une équation
matricielle '*Q P = I,,, ou P est la matrice de passage de (ey,...,e,)*

a(pg,...,0,) et Qcellede (ey,...,e,) a (uyg,...,u,).
= Exercice 10.9
Dans certains exemples simples, quelques éléments de (ey,...,e,)

peuvent étre évidents.

== Exercice 10.8.

° Essayer éventuellement de montrer que (ipy,. .
de E*

. ,<pp) est une base

== Exercices 10.21, 10.22.
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Pour obtenir un résultat en liaison
avec la dualité, en dimension finie

Pour étudier un ou des projecteurs
en dimension finie

Pour obtenir

une factorisation d’une matrice
en deux matrices

de formats ou de rangs imposés

Pour manipuler des matrices
décomposées en blocs

Enoncés des exercices

° Amener, par un calcul élémentaire, des coefficients «y,...,a, tels
P
que ¢ = E Qg Pk -
k=1

e Utiliser le résultat du cours : i se décompose linéairement sur la
famille libre (¢y,...,¢,) dudual E* d’un ev E de dimension finie

P
si et seulement si ﬂ Ker (¢,) C Ker ().

k=1 = Exercice 10.20.

Penser a faire intervenir une base duale ou une base préduale.

== Exercice 10.7.

Se rappeler que, pour un projecteur en dimension finie, la trace est
égale au rang. La trace, qui est linéaire, pourra étre manipulée en liai-
son avec une sommation. Le rang, qui est un entier naturel, est > 0.

== Exercices 10.11, 10.14, 10.33 d).

Essayer d’utiliser le théoreme du cours caractérisant les matrices
AeM, ,(K) telles que rg(A)=r: il existe P € GL,(K),
0 € GL,(K) telles que A= PJ,,,0, oit on a noté J, ,, =

I. O
<0 O)EM,L,,(K).

== Exercices 10.15, 10.26, 10.27, 10.29.

Essayer d’amener des combinaisons linéaires, des produits de
matrices décomposées en blocs.

== Exercices 10.19 b), 10.25, 10.26, 10.28,
10.29, 10.31.

=mmse FNnoncés des exercices

— Une formule sur somme et intersection de sev
Soient E un K-ev, A,B,C des sev de E.

Montrer: A+ (B N (A+C)) = A+ (C N (A+ B)).

— Famille infinie libre, famille infinie liée

Etudier la liberté des familles d’applications suivantes, pour les lois usuelles :

a) (fa 2 [0; +oo[— R, x +—>

b) (fa:R—HR, x»—>ch(x—a))

X+ a)ae]0;+oo[

acR "
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=

Etude de I’existence d’une factorisation d’une matrice

Existe-t-il A € M3,(R) et B € My 3(R) telles que AB = C, ou C désigne successivement les

1 0 0 1 1 1 1 1 1
matrices: C =0 0 0], 1 1 11, 1 1 01]°7?
0 0 O 0 0 O 1 0 0

Séparation de vecteurs par une forme linéaire

Soient E un K-ev de dimension finie > 1, x,y € E tels que x £ y. Montrer qu’il existe ¢ € E*
telle que : p(x) £ ©(y).

Utilisation de formes linéaires sur un espace de polynomes

Soient n € N, ay,...,a, € R deux a deux distincts. Montrer qu’il existe (Xo,...,\,) € R**!

unique tel que : V P € R,[X], P'(0) =) NP(ar).
k=0

Famille des évaluations sur un ensemble fini

Soient n € N*, X = {xi,...,x,} un ensemble fini & n éléments. On note F = K* et, pour tout
ie{l,...,n},onnote E; : F — K, f+— f(x;),appelée évaluation en x;. Montrer que la
famille (E;);<;<, est une base de F*.

Exemple de détermination d’une base préduale dans un ev de dimension 3

Soient £ un R-ev de dimension 3, B = (e, 2, e3) une base de E, (¢, ¥,, ¢3) les éléments
de E* définis, pour tout x = xje; + xze; + x3e3 de E, par :

o) =x1+x, () =x+x, () =x+x35.
Montrer que (p;, ¢,, ¢3) est une base de E* et en déterminer la base préduale.

Exemple de détermination d’une base préduale dans un ev de dimension 4

On note E = R3[X], ¢, ¥, p3,¢4 les éléments de E* définis, pour tout P € E, par :
ei(P)=P0), @ (P)=P(), ¢3(P)=P0), @ (P)=P(l).

Montrer que (¢;,9,, ©3, @4) est une base de £, et en déterminer la base préduale.

Exemple de détermination d’une base préduale dans un ev de dimension 3

On note E = Ry[X], ¢;, ¢, 5 les éléments de E* définis, pour tout P € E, par :

1
ei(P)=P(1), ¢, (P)=P'(D), 993(P)=/P(X)dx.
0

Montrer que (¢, ¥,, ¢3) est une base de E* et en déterminer la base préduale.

— m Projecteurs de somme nulle, en dimension finie
Soient N € N*, E un K-ev de dimension finie, p,. .., py des projecteurs de E.
N
Montrer : Zpi:0<:>(Vie{1,...,N}, pi:O).

i=1
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Enoncés des exercices

Exemple de famille infinie libre

Montrer que la famille (f, : R — R, x > |x —a[|*/?) _, est libre dans R

Base de polyndmes avec conditions sur les degrés
Soit E un sev de dimension finie de K[X].

a) Montrer que E admet au moins une base formée de polynomes de degrés deux a deux dis-
tincts.

b) Montrer que E admet au moins une base formée de polynomes de degrés tous égaux.

Formes linéaires et trace

Soit n € N*. Montrer que, pour toute A € M,(K), l'application M,(K) — K,
X+— tr(AX) est un ¢élément de M,(K)*, puis montrer que I’application
0:M,(K) — M, (K)* définie par :

YA eM,(K),VX eM,(K), (0(4))(X)=tr(AX)
est un isomorphisme de K-ev.

Projecteurs et coefficients irrationnels

Soientn € N*, A,B,C € M,,(C) tellesque : A=A, B>2=B, C>=C.
Onnote M = A+ +/2B ++/3C et on suppose M2 = M. Montrer: B=C = 0.
Factorisation d’une matrice

Soientn,p € N*, A e M, ,(K),r =rg(A).

Montrer : 3U € M,,,(K), 3V e M, ,(K), A=UV.

Rang d’une matrice décomposée en blocs

a) 1) Montrer que, si une matrice M est décomposée en blocs de colonnes, M = (U | V), alors :
g (M) <rg(U) +rg (V).

R
2) Montrer que, si une matrice M est décomposée en blocs de lignes, M = ( S ) , alors :
rg (M) <1g(R) +1g(9).

A B
3) En déduire que, si une matrice M est décomposée en quatre blocs M = ( c D) , (ou A

et D ne sont pas nécessairement carrées), alors : rg (M) < rg(A) +rg(B) +12(C) +r1g (D).
A B

b) Soient m,n,p € N*telquem <netp <n,M = <C 0) eM,(K),ouAeM, ,(K),

B €M, ,(K), C €M, ,(K).

Déduire de a) que, si M est inversible, alors : rg (A) = m + p — n.

Normes subordonnées 2 ||.||; et a .||
Soient n,p € N*, A = (g;;)i; € M, ,(K).
n

p
Onnote : [|All, = Max Y lay|}.  [IAlle = Max ( Y |a;| ).
1<js<p \ 4 1<i<n =

i=l1
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— | ¥R

P
et, pour tout X = () 1j<p € My (K)  1X]11 =3Iyl 11X = Max [x;].
< <2
IAX]|; 1AX |

Montrer : ||A||, = Sup , 1All. = Sup .
xeM, 1 ®)—o) 11X xeM, 1 ®)—0) 11X loo

Comparaison de normes subordonnées, réelles, complexes
Soientn € N*, A € M,,(R).

IAX]| [|AX]|
2 lAllle=  Sup 2

Onnote: |[||A]llr = Sup .
xeM,  ©-fo) [1X]2

xem, ®-o X[

Etablir:  [[|Alllz = [[|A]llc.

Endomorphismes d’image et de noyau imposés

Soient E un K-ev, F,G deux sev de E supplémentaires dans E. On note :

g= {feE(E); Im(f)=F et Ker(f):G}.

a) Etablir que G est un groupe pour la loi o.

b) On suppose ici que E est de dimension finie. On note n = dim (E), p = dim (F),
By = (ey,...,e,) une base de F, B, = (e,41,...,€,) une base de G, B = (ey,...,e,), qui est
une base de E.

Montrer que 1’application 6 : f — Matz(f) est un isomorphisme de groupes de (G,o0) sur

(H,),od H = { <A04 8) eM,(K); M € GL,,(K)}.

Intersection de noyaux de formes linéaires

Soient p € N*, E un K-ev de dimension finie, f, ¢;,...,¢, € E*. Montrer :

)4
f € Vect(py.....p,) <= () Ker(p,) C Ker(f).

i=l

Intervention de formes linéaires sur un espace de polynomes

Soientn € N*, ay,...,a, € R deux a deux distincts. Montrer que les deux propriétés suivantes
sont équivalentes :

1 n
1) I A, A € R, VP e R,[X], / P(x)dx = Z)\kP(ak)
—1

k=1
1 n
(i) / <1_[(x - ak)) dx = 0.
-1 \ k=1

Etude de formes linéaires sur un espace de polynomes

Soientn € N*, E = K,[X],a € K.

a) On note, pour tout j € {0,....n} : ¢; : E — K, P +— PY(a).
Montrer que (¢y,...,p,) est une base de E*.

b) Soient k € {0,...,n}, p € E*. Montrer que les deux propriétés suivantes sont équivalentes :
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Enoncés des exercices

(VP eK,4[X], o(X—a)P)=0

k—1
(i) Ao, M) €K VP € E, o(P) =) A PY(a).
i=0

1257 Egalité de sommes de carrés de formes linéaires

a) Soient E un R-ev de dimension finie, p,q € N*, ¢,,... \Pps Uy ,wq € E*. Montrer :

)4 2 q 2
(Vx cE Y (go,(x)) = (¢j(x)) ) = Veet (g, - -,ip,) = Vect (ty,...,15,) -
i=1

j=1

A cet effet, on pourra utiliser le résultat de 1’exercice 10.24.

b) Le résultat de a) subsiste-t-il lorsque le corps R est remplacé par C ?

10.24 Hyperplans de M,,(K) rencontrant GL,, (K)
Soit n € N — {0,1}. Montrer que tout hyperplan de M,,(K) rencontre GL,, (K).

([1/2457 Rang d’une matrice triangulaire par blocs, un bloc diagonal étant égal a I’identité

I, B
a) Soientn,p € N*, B e M,, ,(K), C € M,,(K). Montrer: rg (0 C) =n+r1g(C).

b) Soientn,p e N*, R e M, ,(K), S € M,, ,(K). Montrer :

p+rgd, +RS)=n+r1gd,+SR).

10.26 Rang d’une matrice diagonale par blocs
a) Soient n,p € N*, A € M,,(K), B € M,(K). Montrer :

A 0
rg (0 B) =rg(A) +1g(B).

B

A 0
b) Soient n € N*, A,B € M,,(K) . Montrer que, si (O A) et (0

alors A et B sont équivalentes.

¢) Soientn,p e N, A,B e M,,(K), U,V € M,(K) . Montrer que, si A et B sont équivalentes

(A O B 0 P Lo
et si 0o U et 0 v sont équivalentes, alors U et V sont équivalentes.

[1J27F Déformation d’un endomorphisme, pour une image et un noyau imposés

Soient E un K-ev de dimension finie, f € L(E), F un sev de E tel que dim (F) < rg(f), G un

supplémentaire de F dans E. Montrer qu’il existe (u,v) € ([Z(E ))2 tel que :

Im(uo fov)= F et Ker(uo fov)=0G.

|[1J24H] Caractérisation de matrices inversibles par blocs

A B
Soient M = (C D),oﬂ AeGL,(K),BeM, ,(K),CeM,,(K),DeM,(K).Montrer

que M est inversible si et seulement si D — CA~'B est inversible, et calculer alors M~' sous

forme de matrice décomposée en blocs.

0 .
B) sont équivalentes,
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= [124) Etude des matrices X telles que AXB = 0
Soient m,n,p,q e N\, AeM,,,(K),BeM, ,(K).

Onnote: E ={X €M, ,(K); AXB =0}.

Montrer que E est un K-ev et déterminer sa dimension.

=r—r— 1511} Factorisation d’une matrice carrée non inversible

Soient n € N*; A € M,,(K) non inversible. Montrer qu’il existe B,C € M, (K) telles que :
A = BC, B estinversible, C est nilpotente.

] (1511 Etude de rang pour une matrice par blocs
A B
Soient N M =
olent n,p € ( C D)

ouAeGL,(K),BeM, ,(K),CeM,,(K) DecMj,(K).
Montrer : r1g (M) =n <= D = CA™'B.

A cet effet, on pourra utiliser le résultat de 1’exercice 10.26.

—r—r—r— |[1/592 Réunion de plusieurs sev

Soient K un corps commutatif infini, £ un K-ev, p € N*, Fy,...,F, des sev de E tels que

P
U F; = E. Démontrer qu’il existe i € {1,...,p} tel que F; = E.
i=1

e s s | |[1J5755] Projecteur associé 4 un sous-groupe fini de GL(E)

Soient £ un K-ev de dimension finie, ¢ =Idg, G un sous-groupe fini de GL(E),

1
= Card (G). O te:p=— .
n ard (G). On note : p nZg

geG

a) Montrer : Vh € G, poh =p. b) En déduire que p est un projecteur de E.

¢) Etablir : m Ker (g — e) =Im (p). d) Déduire : dim ( m Ker (g — e)) = 1 Ztr (g).
n

geG geG geG
| adé ?
mmmme Du mal a demarrer !
m Montrer deux inclusions, en passant par les éléments. Dans les deux premiers exemples, il existe des matrices

o . A, B trés simples convenant. Pour le troisieme exemple,si (A, B)
Se rappeler que, dans un ey, une famille infinie est dite

. . . L . convient, raisonner sur les rangs et obtenir une contradiction.
libre si et seulement si toute sous-famille finie est libre, et

qu’une famille infinie est liée si et seulement si elle n'est pas (1147 Utiliser un théoréme du cours sur la dualité en dimension
libre, c’est-a-dire si et seulement s'il existe une sous-famille finie finie.
liée. s s

[IJ57 Considérer les formes linéaires :

a) Pour montrer que (fa)ac[0;+o0 €st libre, utiliser I'unicité o E—R, P P@), ke{l,...n}

d’'une décomposition en éléments simples.

. ’
b) Pour montrer que (f;)a.cr est liée, établir, par exemple, que ¥v:E— R, Pr— P(0).

(f=1, fo, f1) estliée. m 1) Vérifier,pour tout i € {1,...,n} :E; € F*.
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2) Montrer que (E;)i<i<, est libre, en exploitant, pour
J € {l,...,n} fixé 'application f; : x; = &;;.

3) Conclure.
1) Vérifier : 1,902,903 € E*.
2) Montrer que (¢1,¢2,93) est libre, en revenant a la définition.
3) En déduire que (¢;1,92,¢3) est une base de E*.
4) La base préduale (u;,u2,u3) est définie par:
Vi) € (L23Y, ¢iw)) = 5.

Résoudre trois systemes linéaires ayant le méme premier
membre.

1) Vérifier : ¢1,02,903,904 € E*.

2) Partant d'une combinaison linéaire nulle, exploiter, par
exemple, des polyndmes simples s'annulant en O et 1 et dont la
dérivée s'annule en 0 ou en 1, pour montrer que (¢1,92,¢3,¢4)
est libre.

3) En déduire que (¢1,92,93,¢4) est une base de E*.

4) La base préduale (P, P, P3, Psy) est définie par :
V(i.j) € {1.2.3.4), ¢i(P)) = 5.

Les polynémes P; et P4 ont pu étre déterminés en 2).

Pour calculer P; et P, résoudre deux systemes linéaires ayant le
méme premier membre.

1) Vérifier : ¢1,¢2,03 € E*.

2) Partant d'une combinaison linéaire nulle, I'appliquer, par
exemple,a 1, X, X2 et en déduire que les coefficients sont tous
nuls, pour montrer que (¢;1,¢2,¢3) est libre.

3) En déduire que (¢1,92,93) est une base de E*.

4) La base préduale (Py, P, P3) est définie par :
Y (i, j) € {1.2,3)%, @i (P;) = dij.

En notant, pour i € {1,2,3}, P = aj1 + ainX+ ai3X2, se rame-
ner a un produit de deux matrices carrées d’ordre 3, égal a Is.

Utiliser le théoreme du cours sur le rang et la trace d'un
projecteur en dimension finie.

Se rappeler que dans un ey, une famille infinie est dite
libre si et seulement si toute sous-famille finie est libre.

Remarquer que, pour tout a € R, f, est de classe C? sur
R — {a}, mais n'est pas de classe C? sur R.

Du mal a démarrer ?

a) Récurrence sur n = dim (E). Partant d’une base
(Py,...,Py41) tellequedeg (Py) < ... < deg (P,41),construire
une base (Qi,...,0n+1) telle que Q,+1 = P41 et que :
Vie{l,...,n}, deg(Q;) < deg(P,+1), puis utiliser 'hypothése
de récurrence.

b) Partant d'une base (Pi,...,P,) telle  que

deg (P;) < ... < deg(Py,),construire une base (Sj,....,S,) telle
que S, = P,etque:Vi e {l,...,n}, deg(S;) =deg(P,).

1) Montrer que, pour toute A € M,,(K), I'application
¢a M, (K) — K, X+ tr(AX)
est élément de M, (K)*.

2) Montrer que 6 est linéaire, injective (en utilisant les matrices
élémentaires), puis conclure.

Se rappeler le théoréme du cours sur rang et trace d'un
projecteur en dimension finie, et montrer que, si («,f8,y) € Z*
esttelquea + B2 +y/3=0,alorsa ==y =0.

Utiliser le théoréme du cours faisant intervenir la matrice I, , .

a) 1) Se rappeler que le rang d’'une matrice est égal a la
dimension du sev engendré par les colonnes de cette matrice.

2) Appliquer 1) en transposant.
3) Combiner 1) et 2).
b) Utiliser a) et rg (M) = n.

1) * Montrer :

VX eM, 1 (K), [[AX[]1 < [IAlle [1X]]:.

* Considérer la matrice-colonne élémentaire Ej, ou j est tel que

n
Alle =Y laijl.
i=1

2) * Montrer :
VX e M, 1(K), [[AX]leo < [IAlle 11X]loc -

€1
- Considérer la matrice-colonne X = ,ou:
Ep
|aiy |
w70
Jap— 1
gj = 0J
1 si a,-oj = O,

P
iy étant tel que ||A||. = Z |aig 1.
=

Une inégalité est immédiate.

Pour l'autre inégalité, pour toute X € M, ;(C) — {0}, noter
X =U +iV,ou U,V € M, | (R), et calculer || X||3 et [|AX][3.
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a) Attention : G va étre un groupe pour la loi o, mais G n'est
pas nécessairement un sous-groupe de GL(E).

Montrer successivement le caractére interne de la loi, 'existence
d’'un neutre, qui est le projecteur sur F parallelement a G, I'asso-
ciativité, I'existence, pour chaque élément, d'un symétrique, en uti-
lisant le théoreme d'isomorphisme.
b) + Montrer que, pour tout f € G, la matrice de f dans B est
M 0 .

de la forme o ,ouM € GL,(K).
* Réciproquement, montrer que, pour toute matrice

M 0 A .
A= 0 0 de H, ou M € GL,(K), I'endomorphisme f

de E, représenté par A dans B, est élément de G.

Construire ainsi deux applications 0 et ¢, réciproques 'une de
I'autre, et montrer que 6 est un morphisme du groupe (G,o) sur
(H,-).Conclure.

1) Le sens — est facile.

P
2) Réciproquement, supposer ﬂ Ker (¢;) C Ker (f).

i=1
Noter r =12 (¢1,...,¢p) et se ramener au cas ou, par exemple,
@r+1s- - - @p se décomposent linéairement sur ¢1,. . . ,¢;.

1) Un sens est facile.

2) Réciproquement, supposer

1 n
/ (l_[(x—ak)>dx:0.
=1 \jk=1

Considérer les formes linéaires :
1
¢ Ry[X] — R, P'—>/ P(x) dx,
=il

o Ry[X] — R, P+— P(ay), kef{l,...,n}.

Montrer que (¢1,. . .,¢,) est libre et montrer, en raisonnant par
I'absurde, que (¢,¢1,...,0,) estliée.

a) - Vérifier:V j € {0,...,n}, ¢ € E*.

* Montrer que (¢;)o< j<n est libre en revenant a la définition et
en utilisant les P, = (X — a)*, 0 < k < n.

+ En déduire que (¢o,. . .,9,) estune base de E*.

b) Pour ¢ € E* fixée quelconque, décomposer ¢ sur la base
(¢0,---,9n) et traduire (i) par équivalences logiques succes-
sives.

P q
a) Montrer : (") Ker (¢,) = | Ker (¢})),
i=1 =il

J
et utiliser le résultat de I'exercice 10.20.

b) Considérer, par exemple B=C, p=2,aq=1,

Y ixX > X, x> ix, ¥, 1 x +—> 0.

374

Soit H un hyperplan de M,, (K) .Raisonner par I'absurde :sup-
poser H N GL,(K) = &.

Montrer que H contient alors toutes les matrices nilpotentes, en
raisonnant par I'absurde.

Construire deux matrices nilpotentes dont la somme est
inversible.

Conclure.
a) Remarquer, par exemple :
<I,, B) (I,, —B) . (I,, 0)
o c)J\o 1,) \o c/°
b) Faire apparaitre I, + RS et I, + SR dans des produits par

blocs de matrices carrées d’'ordre n + p, et utiliser le résultat
de a).

a) Utiliser le théoréme du cours faisant intervenir les
matrices J .

Il suffit de trouver un couple (u,v) € (L(E))2 tel que
uo fov=p,ol p estle projecteur sur F parallelement a G.
Utiliser le théoréme du cours sur les matrices J ..

1"® méthode : Recherche de l'inverse par résolution d'un
systéme :
X Y\ .
En notant N = ,résoudre MN =1, p.
zZz T
2¢ méthode : Utilisation d’une factorisation par blocs :

Remarquer :
I, 0\/A B\ /I, —A"'B
—-cA' 1,/J)\c D/)\O I,
A B >
“\0 D-cA'B)’

1) Montrer que E est un K-ev.

2) Utiliser le théoreme du cours faisant intervenir les matrices J,, .4
etl, 45,00 a =1g(A), b =rg(B) (et,pourlacommodité, a < b).
Utiliser des décompositions en neuf blocs.

Noter r = rg (A) < n et considérer une matrice nilpotente

M, 0
simple M, € M,11(K) derang r,et N, = < Or 0) € M, (K).

Remarquer :

1, 0 A B\ /I, —A"'B
cA™' -1,)J\c D)\oO I,

(A 0 )
~\0 caA'B-D)/’



Du mal a démarrer ?

9P un 159 dgsuone uou ardooojoyd e "poun @
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1) Soitx € A+ (B N (A+0C)).
llexistea € A,be BN (A+C) telsque:x =a +b.
Onaalorsb € B,etilexiste a’ € A,c € Ctelsque:b =a’' +c.
Ondéduit: x =a+b=(a+a)+c.
D’une part: a +a’' € A.
D’autre part,c € Cetc = (—a’) +b € A+ B,
doncc e C N (A+ B).
On obtient: x € A+ (C N (A + B)).
Ceci montre :
A+(BN(A+0)CA+(CN(A+B)).
2) En appliquant le résultat de /) au couple (B,C) a la place
de (C, B), on obtient 1’autre inclusion.

On conclut :
A+(BN(A+C)=A+(CnN(A+B)).

Remarque : On peut aussi montrer que les deux sev étudiés sont
égauxa(A+B) N (A+C).

a) Soient n € N*, ay,...,a, €10; +o0[ deux a deux

distincts, Aj,...,\, € R tels que : Z M far, = 0.
k=1
Onaalors:Vx €[0; +oo[ 2": M
’ ’ ’ X+ a;

k=1

=0.

En réduisant au méme dénominateur, on obtient une égalité de
fonctions polynomiales sur la partie infinie [0 ; +00o[ de R, donc
une égalité de polyndmes, puis, en revenant aux fractions ra-

tionnelles :
n
A
> =0,
X+ ax

k=1

Par unicité de la décomposition en éléments simples de la frac-
tion nulle, on déduit :

Vkefl,...,n}, Ay, =0.
Ceci montre que la famille (f,;)acj0:+o00f €St libre.

b) Remarquons, pour tout a € R :
Vx eR, fu(x)=ch(x —a)=chachx —shashx,

donc f, se décompose linéairement sur les deux applications
ch et sh.

Il en résulte que la famille (f,,)4<r, qui a une infinité d’éléments
(donc strictement plus de 2), est liée.

De fagon explicite, pour tout x € R :
(for+ )@ =ch(x + 1) +ch(x — 1)
=2chlchx = (2chl)fy(x),

= Corrigés des exercices

donc : fo1—=2chl fo + fi =0,

ce qui montre que ( f,).cr est liée.

1) 11 est clair que A =

o o
o o
o]
Il
N
O
o o
o o
N———

conviennent.

1
2) 11 est clair que A = 3

O =

S =

(o]

Il

/N
—_— =
—_ =
—_—
N———

conviennent.

3) S’il existe (A, B) convenant, on a alors :
3=r1g(C) =1z (AB) <r1g(A) <2,

contradiction.

Ceci montre qu’il n’existe par (A, B) convenant.

Puisque x — y # 0 et puisque E est de dimension finie,
d’apres le cours, il existe ¢ € E* telle que p(x —y) =1,

et on a alors p(x) = ¢(y) + 1, donc p(x) = p(y).

Notons E = R, [X] et, pour tout k € {0,...,n} :
ot E— R, P+— P(a).

Comme ay,. . . ,a, sont deux a deux distincts, d’apres le cours
sur I’interpolation polynomiale, (¢y,...,¢,) est une base du
dual E* de E.

D’autre part, ’application ¢ : E —> R, P > P’(0)
est linéaire, donc ¥ € E*.

I existe donc (Ao, .. .,\,) € R**! unique tel que :

b= M@,
k=0

c’est-a-dire tel que :

VP eR,X], P'(0)=) MP(a).
k=0

1)D’abord, pour tout i € {1,...,n}, E; € F*,carE; est
une application de F dans K et E; est linéaire :
VaeK,VfgeF, E(af +g =(af +gx)
= af(x)+ g(xi) = aBi(f) + Ei(g).

2) Soit (ay....0) € K" tel que : Y a;E; = 0.

i=l



Soitj € {1,...,n} fixé. Considérons I’application

1 si i=j
fi: X — K, xj—>
0 si i#].
Ona: 0=>) aifj(x)=a;
i=1
Ceci montre que (Ey,. .. ,E,) estlibre dans F*.

3) Puisque X est fini et a n éléments, F = K ¥ est de dimension
finie égale a n, donc F* est aussi de dimension finie et égale a n.
Comme, d’apres 2), (Ey,. .. ,E,) estune famille libre de n élé-
ments de F*, on conclut que c’est une base de F™*.

1) Ll estclair que ¢, ¢, , 5 sont bien des formes linéaires,
donc : ¢,,p,,p3 € E*.
2) Soit (ay,a2,03) € R*. Ona:
)+ @y +azp; =0
<= Vx e E, ajp(x) 4+ arp,(x) + azps(x) =0
=V (x1,%2,%3) € R3,
o1 (x) + x2) + (X 4+ x3) + az(x; +x3) =0
&V (x1,202,53) €R?,
(a1 + az)x1 + (o + a)x2 + (@2 + a3)x; =0

a;+a3 =0 a3 = —q a; =0
— a+a, =0 < Q) = —Q| < a, =0
a2+a3=0 —ZCMIZO a3=0.

Ceci montre que (¢;,,,¢3) est libre.

3) Puisque (¢,,p,,¢3) est libre et de cardinal 3 dans E* qui

est de dimension 3 (égale a celle de E), on conclut que
(¢1,9,.p3) est une base de E*.

4) Notons B = (u;,us,u3) la base préduale de la base
(1,2,p3) de E*.

En notant u; = x;e; + xoe; + x3e3, (X1,X2,x3) € R>, ona:

o) =1 X1 +x =1
() =0 = {x,+x3=0
w3(u) =0 X +x3=0
X) = —X3 x;=1/2
S =—x3 &= n=1/2
=1 X3 = —1/2.
D’ou:u; = 561 + Eez — %63.

On calcule de méme u; et u3, par permutation circulaire ou par
résolution de systemes linéaires ayant le méme premier membre,
et on obtient facilement :

1 1 1 1

M2=—§€1+§€2+§€3, M3=§€1—562+§€3.

1) 11 est clair que ¢, ,,93,p, sont des applications li-
néaires de E dans R, donc : p,¢,,05,p0, € E*.

4
2) Soit (a1, 0,003, 004) € R* tel que: Zoe,wp,- = (0.Onadonc :
i=1

VP eE, iaigo;(P) = 0, c’est-a-dire :
p=il
VPeE, ajP0)+ aaP(l)+ azP'(0) + asP'(1) =0.

On remarque que X>(X — 1) est zéro de ©;,,,p;.
En notant P, = X>(X — 1), on a, en effet :

Py(0) =0, Ps(1)=0, P,(0)=0, Pi(1)=1,
d’ou I’on déduit oy = 0.
De méme, en notant P; = X(X — 1)>,ona:

P3(0) =0, P;(0) =1, P;(1)=0, Py(1)=0,
d’ot: a3 =0.
Ces deux polyndmes nous serviront plus loin.
On obtient alors : VP € E, a;P(0) +a,P(1) =0.
En appliquant ceci a X, a X — 1, on déduit :

a; =0, ag =0.

Ceci montre que (¢;,%,,93,¢,) est libre dans E*.

3) Comme dim(£*) =dim(E) =4, il en résulte que
(©1,92,93,04) estune base de E*.

4) Nous avons déja obtenu, plus haut, deux polyndmes de la
base préduale B de (,,9,,%3,¢4) -

Ainsi, B = (P, P>, P, Py)
ol Ps=XX-12=X>-2X2+X
et PL=X3X-1) =X -X2

En notant P, = aX° + bX? + cX +d, o (a,b,c,d) € R* est
inconnu, on a :

o (P) =1 P (0) =1

0y (P) =0 Pi(1)=0

©3(P1) =0 P[(0) =0

0 (P) =0 P/(1) =0
d=1 c=0
a+b+c+d=0 d=1

< —
e=0 a =
3a+2b+c=0 = —3.
On obtient : P, =2X3—3X>+1.

De méme, apres résolution d’un systeme linéaire ayant les
mémes premiers membres que le précédent, on obtient :

P, = —2X* +3X>.
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1) Il estimmédiat que ¢, ,,¢3 sont des applications li-

néaires de £ dans R, donc : ¢,;,0,,5 € E*.
2) Soit (a1,00,03) € R? tel que ay + o, + azps = 0.
On a donc :

I
VP eE, alP(l)—l—oczP/(l)—i—O@/ P(x)dx =0.
0

En appliquant cette égalité A P = 1, P = X, P = X? succes-
sivement, on obtient :
a;+a3 =0

a3
a1+a2+;=0

2
a|+2az+%:0.

Par combinaison linéaire ou par substitution, on déduit facile-
ment: a; =0, ap =0, a3 =0.

Ceci montre que (¢,,p,,¢3) est libre dans E*.

3) Comme dim(E*) =dim(E) =3, on conclut que
(¢1,9,,3) est une base de E*.

4) Notons ( Py, P, P3) la base préduale de (¢,,%,,¢3). En no-
tant, pour i € {1,2,3} : P, = a;; + anpX + apX?, ona:

V@, j) e (1,23, ¢;(P)=46;

o1 (P) =1 ©1(P) =0 ©1(P3) =0
= 1 p(P)=0cet { p(P) =1 et { p,(P3) =0
p3(P1) =0 p3(P) =0 03 (P3) =1
ap  ap  as 1 0 1 1 0 O
| a1 axp»p axn 1 1 1/2 =10 1 O
asy asp ass 1 2 1/3 0 0 1
notée A notée M

Un calcul d’inverse de matrice carrée d’ordre 3 inversible

-2 6 -3
fournit: A=M"'=|1/2 -2 3,2
3 6 3

On conclut que la base préduale de (¢;,p,,%3) est la base
(P1, P, P3) définie par :

2 1 3,

P =-2+6X-3X", P, = E_2)(_|_§X i

P; =3 — 6X +3X2.

Un sens est trivial.

N
Réciproquement, supposons Z pi =0.
i=1

Pour tout i € {1,...,N}, comme E est de dimension finie et
puisque p; est un projecteur de E,on a:rg(p;) = tr (p;).

N N N
Dou: 0=t i ) = tr(p;) = (pi) -
ol r(ép) ;rp ;%

>0
Ilenrésulte : Vi € {1,...,N}, rg(p;) =0,
donc : Vie{l,...,N}, p=0.
Soient n € N* et ay,...,a, € R deux a deux distincts,

Ao A € R tel que: Y A fy, = 0.
k=1

Soit i € {1,...,n}. Supposons \; £ 0. On a alors :

1
fa,- =_)\_ Z

i 1<k<n, k # i

/\k ﬁzk o

Remarquons que, pour tout a € R, £, est de classe C? sur
R — {a}, mais n’est pas de classe C? sur R.

Alors, d’une part f,, n’est de classe C? sur aucun intervalle ou-
vert contenant «;, et, d’autre part, d’apres 1’égalité précédente,
par opérations, f,, est de classe C? sur un intervalle ouvert assez
petit, contenant a;, contradiction.

Cecimontre : Vi € {1,...,n}, \; =0.

On conclut : la famille ( f,)qer est libre.

a) Récurrence sur n = dim (E) .
* La propriété est évidente pourn = 1.
* Supposons la propriété vraie pour 7.
Soit £ un sev de K[X], de dimension n + 1. Alors, £ admet

au moins une base B = (Py,...,P,;1). En réordonnant B, on
peut se ramener au cas ou :

Viefl,...,n+ 1}, deg(P;) < deg(P,s1) .

Considérons la famille C = (Qy,...,0,+1) définie par
Qi1 = Pyet,pourtout i € {1,...,n}:

P; si  deg(P;) < deg(Puy1)

0; =

Pi— ;P si deg(P;) = deg (Puy1),

ou o est tel que deg (P; — o Pyyy) < deg (Py41) .-

A cet effet, il suffit de prendre pour a; le quotient des termes
de plus haut degré de P; et P,;.

Par construction, les polynomes Qi,. .., Q,+ se décomposent
linéairement sur Py,..., P, .

Réciproquement, comme P,;; = Q0,4+ et que, pour tout
iefl,....,n}, P, =Q;ouP; = Q; + a;Q,41,les polyndomes
Py,..., P, se décomposent linéairement sur Qy,...,Q,41-
Il en résulte : Vect (C) = Vect (B) = E.

Comme dim (E) =n + 1 = et que C engendre E etan + 1
éléments, on conclut que C est une base de E.

Considérons F = Vect(Qy,...,0,), qui est un sev de di-
mension n de R[X]. D’apres I’hypothese de récurrence, F' admet



au moins une base = (Ry,. ..,R,) formée de polyndmes de
degrés deux a deux différents.

Notons G = (Ry,...,R,,P,+1).

Comme E = F @ P, K[X] et que F est une base de F, il
est clair que G est une base de E.

Enfin, comme : Vi € {1,...,n}, R; € Vect(Qy,...,0,)
etque (Qy,...,0,) sont tous de degrés < deg (P,+1),ona:
Vie{l,...,n}, deg(R;) < deg(P,+1)-

Finalement, G est une base de E formée de polyndmes de de-
grés deux a deux différents.

Ceci montre le résultat voulu, par récurrence sur 7.

b)Notons n = dim (E) . D’apres a), E admet au moins une base
formée de polyndmes de degrés deux a deux différents. En
réordonnant, £ admet au moins une base 5 = (Py,...,P,) telle
que :

deg(P)) < ... <deg(P,).
Notons, pour tout i € {1,...,n}:

P+ P, si i<n

Il est clair qu’alors :
Vie({l,...,n}, deg(S;) =deg(P,).

Par construction, les polynémes Si,. . ., S, se décomposent li-
néairement sur Py,...,P,.

Réciproquement, comme :

Si—S8, si i<n
Viel{l,...,n}, P,=
S, si i =mn,
Py,....P, se décomposent linéairement sur Sj,...,S,.

Comme dim (E) = n et que la famille C = (S;,...,S,) an
éléments et engendre E, on conclut que C est une base de E.

Finalement, £ admet au moins une base formée de polyndmes
de degrés tous égaux.

1) Soit A € M,,(K).

L’application ¢, : M,(K) — K, X +— tr (AX)
est linéaire car :

YVae K,VX,Y e M,(K),

pa(aX +Y) =tr(A(aX +Y)) = tr (@AX + AY)

=atr(AX) +tr (AY) = ap (X)) + @4 (Y).

Ainsi: p, € M, (K)*.
2) Considérons 1’application § : M,,(K) —> M,,(K)* définie
par :

VA eM,(K), VX eM,(K), 0(A)(X)=tr(AX).

Autrement dit, avec les notations de /) ci-dessus :
VA eM,(K), 0(A)=qp,.
» Montrons que 6 est linéaire.

Soienta € K, A,B € M,,(K).
On a, pour toute X € M, (K) :

0(aA + B)(X) = tr ((aA 4 B)X)
= tr(aAX + BX) = atr (AX) + tr (BX)
= af(A)X) + 6(B)(X) = (af(4) + 6(B) ) (X),

donc : (A + B) = af(A) + 6(B),

ce qui montre la linéarité de 6.

» Montrons que 6 est injective.

Soit A € Ker (A). On a §(A) = 0, c’est-a-dire :
VX e M,(K), tr(AX) =0.

Notons A = (a;;);;. Soit (i,j) € {1,...,n}.
On a, en utilisant les matrices élémentaires :
aii
0=trAE;;) =1tr (0) ) | =i,
Apj
car la colonne numéro i de A a été ainsi déplacée en colonne
numéro j.
Onadonc: A=0.
Ainsi, Ker (/) = {0}, donc 6 est injective.
* Puisque 6 : M,,(K) —> M, (K)* est linéaire, injective, et que
M, (K) etM,, (K )* sont de dimensions finies égales, on conclut
que 6 est un isomorphisme de K-ev.

Puisque A, B,C, M sont des matrices de projecteurs, leurs
traces sont égales a leurs rangs et sont des entiers naturels. D’ou :
tr (M) =tr(A++~2B++/30)
= tr (A) + V21tr (B) + V31t (C),

donc :

(tr(A)—tr(M)) T+ tr(B) V2 + tr(C) V3 =0.
. —— —

noté « noté (3 noté

On a donc (o, 3,7) € Z3 et + Bv/2 + /3 = 0.

Montrons : («,3,7) = (0,0,0).

On a en faisant passer y+/3 dans le second membre, puis en
élevant au carré : o + 2 + 2a4v2 = 3+,

392 —a? — 2

d’ou, si 0:vV2=
ou, si aff £ V2 200

€qQ,
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contradiction, car on sait que +/2 est irrationnel.
Il en résulte : o = 0.

De méme, on obtient : ary=0cet y=0. Si a # 0, il en ré-
sulte 3 = 0 ety = 0, puis @ = 0, contradiction.

On adonc o= 0.

Comme fy=0,onaf=0o0uy=0,puis 3=0ety=0.

On conclut : a=0,6=0,v=0.
Ici: tr(B) =0 et tr (C) =0,
donc: rg(B)=tr(B)=0 et rg(C) =tr(C) =0,

et on conclut : B=0¢et C=0.
D’apres le cours, puisque » = rg (A),
il existe P € GL,(K), O € GL,(K) telles que :

L 0.,
A= PJn,p,rQ, ou : Jnvar = (0 bl > )

On—r. p—r

I,
estclairque:J, ,, = (O ) (0 =),

d’ou la décomposition de A en produit :

I
A=P(0’ )(L 0.p-) 0,
n—r,r —/_J

——— notée V
notée U

etonabien: U e M, ,(K), V e M, ,(K).

a) 1) En notant Uj,...,U, les colonnes de U, et
Vi,...,V, les colonnes de V, on a:

Vect (Uy,...,U,,Vi,...,V,)
= Vect (Uy,...,U,) + Vect (Vy,...,V,),
donc :
dim Vect (Uy,...,U,,Vi,..., V)
< dim Vect (Uy,. .. ,U,) 4 dim Vect (V4,...,V,),

c’est-a-dire : rg(M) <rg(U) +rg (V).

2) On applique /) en transposant :

R ‘'R
1g (M) =rg <S> =rg(<5>> =1g (‘R 'S)
<rg(‘R) +1g('S) =18 (R) + 18 ().

3) On combine les deux résultats précédents :

eon=re (p p)<re(8)+re(p)
< (rg(A) +12(0)) + (rg (B) + 18 (D)).

b) D’apres a) et puisque M est inversible, on a :

n =g (M) < 1g(A) + 18 (B) + 12 (C) .

Comme B e M, ,_,(K) et C € M,,_,, ,(K), on a, en parti-
culier: rg(B) <n—p et 1g(C) <n—m,

n<rg(A)+ (n—p)+ @m—m),
1g(A) = m+p—n.

d’ou :
et on conclut :

X1
1) * On a, pour tout X = eM, ;(K) :

Xp

n

NAX| =)

i=l1

< Xn:Z laij| x| = zp: (2": |aij|>|xj|

NE

a;;jXj

1

N~
I

i=1 j=1 j=1 \i=1
)4 P
< Al 11 = 1Al Y x5 = 1 Alle [1X 1]
j=1 j=1
IAX]];

dou: VXeM,,(K) — ({0},

X1l < N Alle
1

n
» Puisque [|All, = Max ( ) |a;| ), il existe un indice
ISise \

jell....p)telque: [|A]l =) layl.

i=1
Considérons la matrice-colonne X = E;, dont tous les éléments
sont nuls, sauf celui situé a la ligne numéro j, et qui est égal
al.

alj
Ona: || X|l; =1etAX = , donc :
anj
P
HAXIL =" laj| = |All,
=1
N [IAXI
d’ou : = ||A]le.
X1l

Autrement dit, le majorant ||A||, obtenu ci-dessus, est atteint.
[|AX]]

xem,  ®—-oy |1XIh

On conclut :

= ||Alle.

X1

2) * On a, pour tout X = eM, (K) :

Xp
n
E a;jXj
j=1

P P
< Max Y "yl 1] < Max (> Jaij | [1X |l
1<i<n = 1<i<n =

[|AX||loc = Max
1<i<n

p
= (}‘&"]ZI |a,-,-|>||X||oo = [1Alle 11X 1.



AX
14Xl

d’ou : < 1Al
[1X oo

VX eM, (K)— {0},
)4
* Puisque ||A]]. = 1M<f‘£§ (;Wiﬂ)’ il existe un indice

P
io € {1,....n} tel que: ||Alle =) lai,l-

Jj=1

€1
Considérons la colonne X = € M, ; (K) définie, pour
€p
toutj € {1,...,p}, par:
M si a,; #0
gj =14 %j
1 si aj,; =0.

On a ||X||s = 1, car chaque terme de X est de module 1, et
donc aussi X # 0.

P P
Ona: [|[AX||oo = Max E laije;l ) = E [ B
Isisn \ 95 j=1

Mais, pour tout j € {1,...,p} : |aj gl = laiyl,

comme on le voit en séparant les cas a;,; # 0, a;,; = 0.

P
D ol : AX oo = D laigj| = 1Al
j=1
AX
Ainsi, il existe X € M, ; (K) tel que : ||||X||||OC = ||A]l.-
oo

Autrement dit, compte tenu de 1'inégalité obtenue au point pré-
cédent, le majorant obtenu au point précédent est atteint.

[1AX||oo

xeM,, 1 K)—0} 11X |loo

On conclut :

= |[A]lc.

1) Linégalité ||| A||lr < |||A]||c estimmédiate, puisque
M, (R) — {0} € M, 1 (C) — {0}.

2) Soit X € M,, | (C) — {0}.
Nexiste U,V e M, ;(R) telque: X =U +iV.Ona:
||X||§ =U+iV)*U+iV)="U—-iV)U +1iV)
= UUHVV+i(UV - VU) = |lUI3+ VI3
=0
et, puisque A,U,V sont réelles :
IAXI3 = |IAU +i V)| = ||AU +iAV||3
= |AU|3 + 1AV < HAINR UL + NAINR VB
= 1A AU+ 1IVI) = HAIlR 1X]15.
Ceci montre :

VX eM, () — {0}, [JAX]]2 < [[IAllle 1X]]2.

Par définition de |||A|||c, il en résulte :
Allle < 1Alllr-

Finalement, on conclut : [||A]||lr = |||All]c.

a) 1) Caractere interne de la loi :
Montrons que la loi o est interne dans G.
Soient f1, f> € G.

**Ona: Im(f0 f1) CIm(fy) = F.

*Soitz € F.Ona:z € F =Im(f,), doncil existe y € E tel
que:z = fo(y).Puisque E = F @ G,ilexisteu € F,ve G
telsque y = u + v. On a alors :

2= f£(y) = ilu+v) = fL(w) + £r(v).
Maisu € F =Im (f),doncilexistex € Etelqueu = fi(x),
et, d’autre part, v € G = Ker (f>), donc f>(v) = 0.
Dod: z= fo(filx)) = fao filx) € Im(fr0 f1).
F CIm(f;0 f1).
On conclut : Im(foo fi) =F.
e *Ona: Ker (f> 0 f1) D Ker (f1) = G.
*Soitx € Ker (f,0 fi); Ona fz(fl(x)) =0, donc :

Ceci montre :

fix) € Im (f) N Ker(f2) = F N G = {0},

d’oux € Ker(f)) =G.

Ceci montre : Ker (f> 0 fi) C G.
On conclut : Ker (f> 0 fi) = G.
Onaobtenu: f, o f1 € G.

2) Neutre :

Considérons le projecteur p sur F parallelementa G. On a :

p e L(E), Im(p) = F, Ker (p) = G, donc : p €.

Soit f € G.
e Comme : Vx€eE, f(x)elm(f)=F,
ona: Vx€eE, p(fx) = fx),

cequimontre: po f = f.

*Ona:Vx € E, x — p(x) € Ker(p) = G = Ker (f),
Vx € E, f(x—p(x))=0,

Vx€eE, f(x)= f(px)),

ce qui montre : f = f o p.

donc :

c’est-a-dire :

Ainsi, p est neutre pour o dans G.

3) Associativité :

Il est connu que la loi o est associative.

381
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4) Symétriques :

Soitf € G. Puisque F estun supplémentaire de G = Ker (f)

dans E, d’apres le théoreme d’isomorphisme, I’application
[ F—TIm(f)=F, x+— f(x)

est un isomorphisme de K-ev.

Considérons g E— E, x+— f'(p).

ou p a été défini plus haut.

* [l est clair que g est linéaire.

Ona: 1Im(g)=f""'(p(E))=f~""(F)=F.

On a, pour tout x € E :

x eKer(g) < gx) =0« f”'(p(x)) =0
— plx) =0 x € G,

donc: Ker(g) =G.

Ceci montre : g € G.

*On a, pour toutx € E :

(fo)) = f(f(p()) = f(f(p()) = p).
donc: fog=p.
e Soitx € E.

Comme f(x) € Im(f) = F,ona: p(f(x)) = f(x), puis :
g(f@) =r"(p(f®)) = r'(f).
Mais f = f o p, donc :
@) =1 (F(p)) = £71(f'(p)) = p(r).

Ainsi: go f = p.
Ceci montre : gof=fog=p,
donc f admet g pour symétrique dans (G,0).
Finalement : (G,0) est un groupe.

b) e Pour tout f € G, comme Im (f) = FetKer(f) =G, la

M
matrice de f dans B est de la forme < 0 8) ,ou M estla

matrice de ’endomorphisme f” induit par f sur F.

De plus :

M 0 .
rg (M) =rg ( 0 0) =r1g(f) =dim(F) = p.

M
Il en résulte M € GL,(K), donc ( 0 8) € H.

On peut donc considérer 1’application
0: g — H, f > Matg(f).

* Réciproquement, considérons 1’application ¢ qui, & une ma-
trice A de H, associe I’endomorphisme f de E tel que
Mats(f) = A.

. . M 0
Avec ces notations, puisque A = ( 0 0) = Matz(f), ou

M e GL,(K), on a :
fegqg.

* Il est clair que 6 et o sont des applications réciproques I'une
de I’autre, donc sont bijectives.

Im(f) =F et Ker(f) =G, donc:

* De plus, avec des notations évidentes :

vnes wom=(4 D)4 1)

5 (MZM]

. 8) —0(fr0 f1).

Ainsi, 0 est un isomorphisme de (G,0) sur (H,-).

* Comme (G,0) estun groupe, par transport de structure, (H,-)
est un groupe.

Finalement, I’application 0 : f — Matz(f) est un isomor-
phisme du groupe (G,0) sur le groupe (H,-).

1) Supposons f € Vect(py,...,p,). Il existe

P
(aq,...,ap) € KPtelque: f = Zaigai. On a alors, pour tout

i=1
)4 )4
x e )Ker(p) :f(x) =Y i (x) =0,
i=1 i=1
etdonc: x € Ker (f).

P
Ceci montre : m Ker (p;) C Ker (f).
i=1
2) Réciproquement, supposons :
P
Ker (p;) C Ker (f) .
=1

i

Notons r =rg (¢y,. - - ,,). Quitte & permuter ©y,...,p,, on

peut supposer que (¢y,. . .,p,) estlibreetque @, ,...,¢p, se

décomposent linéairement sur ¢, ,. ..,®,.

Pourtoutk € {r +1,...,p},d apres /) appliqué a ¢, alaplace

de f,ona: ﬂKer (¢;) C Ker (¢y).
i=1
r P
Il en résulte : Ker (¢;) = ﬂ Ker (¢;).

i=1 i=1

D’apres le cours, puisque (¢,...,,) est libre dans E*, la

r
forme linéaire f, qui s’annule sur m Ker (¢;) , est combinai-

i=1

son linéaire de ¢;,...,y,, donc :
S € Vect(py,...,0,) = Vect (py,...,0,) .
(i) = (ii) :

11 suffit d’appliquer (i) a P = H(X —a) € R,[X] :
k=1



1 n n
(x—a))dx: M P(ay) =0.
[l(g g ; I\RL

=0

(i) = () :
1 n
On suppose : / (H(x — ak)> dx = 0.
=1 \g=1

1
Notons : ¢ : R,[X] — R, P+r— / P(x)dx,
—1

et, pour toutk € {1,...,n} :
o RX]— R, Pr—— P(a).

I est clair que ¢, ¢y, . . . ,¢, sontdes éléments du dual de R, [X].

D’autre part, d’apres le cours sur I’interpolation polynomiale,
puisque aj,...,a, sont deux a deux distincts, la famille
(5. --,p,) estlibre.

Montrons, en raisonnant par 1’absurde, que la famille

(0,015 -+
cette famille de n + 1 éléments est libre dans R, [X]*, qui est de

,¢,) estliée. Supposons (¢,¢,. ..,p,) libre. Alors,

dimension n + 1, donc cette famille est une base de R, [X]*.
D’apres le cours, il existe une base (Py,. . ., P,) de R,[X], pré-
duale de (¢,®;,- .. ,9,)-
Onadonc:Vk e {1,...,n}, o (P) =0,
c’est-a-dire: Vk e {l,...,n}, Py(ay) =0
Comme P € R,[X], il existe alors aw € R tel que :
Py=« H(X — a;). D’apres ’hypothese (ii) :

k=1

n
P(Po) = rw(]_[(X - a@) =0.
k=1
Mais, d’autre part : o(Pp) = 1, contradiction.

Ce raisonnement par 1’absurde montre que la famille

(0,015 --,p,) estliée.

Comme (¢y,...,p,) est libre, il en résulte qu’il existe

n
Al,-- s \) eR" telque: p = Z)\kgok, c’est-a-dire :

k=1
1 n
VP € R,[X], / P(x)dx =) MP(a),
-1 k=1

ce qui montre (i).

a) Notons, pour tout j € {0,...,n} :
i E—K, P— PY().

Ilestclairque: Vj €{0,...,n}, @; € E*.

Montrons que (¢, - . ,®,) est une base de E*.

n
,a,) € K tel que ZO‘J"P./' — (0},

¢ Soit («,. . .
=0
On a alors :
VP e E, 0= (Za}@])(P) = Zajp(j)(a) .
Jj=0 =

Soit k € {0,...,n}.

En appliquant ceci a P, = (X — a)* € E, puisque les PV (a)

sont tous nuls si j # k et que Pk(k) (a) = k! # 0, on déduit :
Vk e {0,...

,,) est libre.

Y, o =0.

Ceci montre que (¢, . - -

*Commedim (E*) = dim (E) = n + 1 etque (¢y,. . .,p,) est

libre dans E*, on conclut que (gy,. - . ,,) estune base de E*.

b) Soit p € E* fixée quelconque. Puisque (i, . . . ,¢,) estune

base de E*, il existe (g, . - - ,7,) € K"*! unique tel que :

0= 1%
i=0

estune base de K,,_4[X], on a, par

0<g<n—k

Puisque ((X —a)? )
linéarité :

(i) VP eK,4[X], o(X—a)P)=0
Vg ef0,....n—k}, (X —a)*(X—a)?) =0
Vreik,....n}, o(X—a))=0

11

< Vreik,...,n}, Z’yigoi((X—a)r) =
i=0

Mais :
Vrelk,...,n},Vi €{0,...,n},
_ i Osii <roui>r
%-((X—a)')=((X—a)’)“(a)={ N
rlsii =r.
On a donc :
i) < Vrelk,...,n}, rly,=0
< Vrefik,...,n}, v=0
< ¢ € Vect(®g,---,P_1)
k=1
— H(Ao...,Ak,l)EKk,(,O:Z)\igOi
i=0
<~ 3(}\0,...,/\](,1) EKk,
k=1
VPeE, o(P)=)Y \NPP@).
i=0
a) Supposons :
q
Vx eE, Z cp(x) 1/1 (x)

Jj=1
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)4 q
¢ Montrons : ﬂ Ker (¢;) = Ker (;).
i=1 j=1
)4
Soit x € ﬂKer(api).
i=1
Onadonc:Vie{l,...,p}, p;(x)=0,

V4

) (pi)’ =0,

i=1

d’ou:

4 2
puis, d’apres I’hypothese : Z (u‘;j(x)) =0.
j=le—

>0
), b (x) =0,

Il en résulte : Vjefl,...

donc :

q
X € ﬂ Ker ().
=l

P q
Ceci montre : m Ker (¢;) C m Ker (;).
i=1 =i

Vu les roles symétriques des deux familles (¢y,...,p,) et

(t1,. .- ,1,), on a aussi I’autre inclusion, d’ou I’égalité :
P q
[\ Ker () = () Ker (¥).
i=1 j=1
* D’apres I’exercice 10.24, on a donc, pour toute ¢ € E* :

P
@ € Vect(¢y,...,p,) = ﬂKer(cp,-) C Ker (¢)

i=1
q
= [ Ker (¥),) C Ker () <= ¢ € Vect (1;.....1,),
Jj=1
ce qui montre : Vect (@y,. . .,p,) = Vect (¢y,...,1,).

b) Le résultat de a) ne subsiste pas lorsque le corps R est rem-
placé par C, comme le montre I’exemple suivant :

E=C, p=2,q9=1,
Y X=X, Yy ixF—>ix, Y 1x+— 0.

Dans cet exemple :

()%,

VieE, Y (p) =22+ ()’ =0=
=1

V4 q
i=1 J=

et cependant :

Vect (y,,) = Vect (i) # {0} = Vect () .

Soit H un hyperplan de M,,(K). Raisonnons par 1’ab-
surde : supposons : H N GL,(K) = @.

1) Montrons que H contient toutes les matrices nilpotentes.
Soit N € M,,(K), nilpotente.

Raisonnons par 1’absurde : supposons N ¢ H.

D’apres le cours, puisque N ¢ H et que H est un hyperplan
de M, (K),ona: M,(K)=H®KN.
En particulier, il existe M € H et a € K tels que :
I, =M+ aN.Alors: M =1, — aN.
Puisque N est nilpotente, il existe k € N* tel que N* = 0 d’ou :

k—1

1T, — aN)(Z(aN)P) =1, — *N* =1,

p=0

k—1

p=0
d’ou: I, —aN € GL,(K).
Ainsi : M € H N GL,(K), contradiction.
Ceci montre que H contient toutes les matrices nilpotentes.

2) Considérons les matrices suivantes de M, (K) :

01 0 ... 0
0 ... ... 0 o
©0) o O
Ny = . Na=1| L0
0o © . .
1 0 ... 0 O 1
0 ... ... ... 0

Il est clair que N; et N, sont nilpotentes.

Draprés 1) : Ny € H et N, € H, puis, comme H est un sev :
N+ N, € H.

0O 1 0 ... 0
0 o
Mais : Ni + No = | : 0o
0 (0) R
1 0 ... ... 0

qui est inversible, contradiction.

Ce raisonnement par I’absurde montre que tout hyperplan de
M, (K) rencontre GL,(K).

a) On a, par exemple :
n B In - B _ In 0
© o 1,/ \o c)°

L —
Lamatrice | "
0 1,

tous non nuls (car égaux a 1), donc cette matrice est inversible,
d’ou, d’apres le cours :

. L, B\ _ i I, O
flo ¢)7%\o )
D’autre part, il est clair (par la méthode de Gauss, par exemple)

que rg <I('; 2‘) =n+r1g(C).

o

) est triangulaire, a éléments diagonaux



0 C
b) On a, a I’aide de produits par blocs :

IV’ R In 0 _ In + RS R

-S L,J\S 1,) 0 I/’
In R In —R _ In 0
-s 1,J\0 1, ) \-S I,+SR)/"

Les mat (L, 0 I,
€S malrices carrees 9
S I, 0

sibles (comme en /)), donc, d’apres le cours :
ol RY_ o (WtRS R
Elos 1,)7%0 o 1)
. L, RY . I, 0
Elos 1,) 7%\ =s 1,+sr)

D’apres a) et le résultat analogue pour des matrices triangu-
laires inférieures par blocs (se démontrant comme en a), ou par
transposition a partir du résultat de a)), on a :

I, +RS R
Lo g,

I, B
On conclut : rg( ):n—}—rg(C).

—R )
sont inver-
L,

>:p+rg(1,,+RS),

1, 0
= I, + SR).
rg(—s Ip-l—SR) n+rgd, +5R)

On conclut : p +rg (I, + RS) =n +rg, + SR).

a) Notons a =rg (A), b =rg (B). D’apres le cours, il
existe P,0 € GL,(K),R,S € GL,(K) telles que:
A=PJ, .0, B=RJ,;S, ou

L, 0 I, 0
Jn@ = M, (K),J,, = M,(K).
n,a (0 O) € n( )7 p.b <0 O) S p( )

On a alors, en faisant des produits de matrices diagonales par
blocs :

A 0\ _ (PL.,0 O

(0 B>_< 0 RJp_;,S>
(P O\ (L. O 0 0
(0 (5 )@ 5)

P
Il est clair que (O 2) et (g g) sont inversibles.

On a donc :
. A 0 _, oo O
8lo B)7%\ 0o 1,
=a+b=r1g(A) +1g(B).

b) On suppose que les matrices A0 et B0 sont
B S o a 0 B

équivalentes. D’apres a), ona alors : 2rg (A) = 2rg (B), donc

rg (A) = rg (B), et on conclut que les matrices A et B sont équi-
valentes.

. A 0
c) On suppose que A et B sont équivalentes et que < 0 U )

B 0
et < 0 v ) sont équivalentes. On aalorsrg (A) = rg (B), et,

d’apres a) ;g (A) +1g (U) =1g(B) +12(V).

Ils’ensuit: rg (U) = rg (V), donc les matrices U et V sont équi-
valentes.

11 suffit de trouver un couple (u,v) € ([Z(E ))2 tel que
uo fov= p,oup estle projecteur sur F parallelementa G.
Notons r =r1g(f), d = dim (F) =rg(p).

Le K-ev E, de dimension finie, admet au moins une base 5.
Notons A, P, les matrices respectives de f, p dans 5.

D’apres le cours, il existe P,Q, R,S € GL,(K) telles que
A= PJ.Qet P, =RJ;S,ou:

L 0 (L, 0
Jr—<0 O)GMM(K)st—<O 0>€M,1(K)

Soient (u,v) € (E(E ))2 quelconque. Notons U, V les matrices
respectives de u,v dans B.
Ona:
uofov=p<= UAV =P, < UPJ.QV = RJ;S
< (RT'UP)I(QVS™) =1,.
Choisissons : U = RJ, Pt et V = 0711,S.
Onaalors: (RT'UP)I.(QVS™") =111, =14,

card <r.

Ainsi, il existe (u,v) € (E(E))2 convenant.

1" méthode : Recherche de ’inverse par résolution d’un
systeme :

Cherchons I’éventuel inverse de M sous forme de matrice dé-
composée en blocs, dans le méme format que pour M. Soit

X Y
N_<Z T).Ona.

e (& 2)(5 -5 9
AX+BZ=1, (1)
AY+BT =0 (2
CX+DZ=0 (3
CY+DT =1, (4).

Les équations (1) et (3) ont pour inconnues X et Z,

les équations (2) et (4) ont pour inconnues Y et 7.
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Puisque A est inversible :
2) Y =—-A"'BT
—
@ (D-CA'B)T =1, (5.

Si D — CA~!B n’est pas inversible, 1’équation (5) n’a pas de
solution (en 7'), donc M n’est pas inversible.

Supposons D — C A~! B inversible.
Alors :

2) Y=—-A"'"B(D—-CA'B)!
—
C))
D’autre part, puisque A est inversible :
(D) X+A'BZ=A""
—
3)
X+A'BZ=A""!
(D—-CA'BYZ=—-CA™! [L,

Z=—(D-CA'B)~'cA!
—

T=(D—-CA'B)"".

CX+DZ=0

—L,—CLy]

X=A"'1"+A"'B(D-CA'B)"'CA".
On conclut que la matrice carrée M est inversible si et seule-
ment si D — CA~!'B est inversible et que, dans ce cas, en no-
tant E= (D — CA~'B)~!,ona:
M1 = (A*1 +A'BECA™! —A’IBE)
- —ECA™! E ’

2¢ méthode : Utilisation d’une factorisation par blocs :

On remarque (cf. aussi I’exercice 10.31) :
M

s
I, 0 A B\/I, —A'B
-cA™' 1,J\c DJ)\o I,
(A 0
“\0 D—-CA'B)’

Les deux matrices autour de M sont triangulaires et a termes

diagonaux tous non nuls (car égaux a 1), donc ces deux ma-

trices sont inversibles. Il en résulte que M est inversible si et
0

0 D-CA™'B

puisque A est supposée inversible, a ce que D — CA~! B soit

inversible.

seulement si ( ) est inversible, ce qui revient,

On a alors, en notant E = (D — CA~! B pour la commodité :

v W | 0\ /A 04 I, —A'B
—cAa' 1,) \o E 0o 1,
—AT'B\ (A" 0 I, 0
I, o E)\-ca' 1,

A'+ AT'BECA™' —A"'BE
—ECA™! E ’

I
N O

I)*OnaECM, ,(K)etOeE.
*On a, pour tout @ € Kettous X,Y € E:
A(aX+Y)B=a AXB+AYB =0,

N
=0 =0

doncaX +Y € E.

On conclut : E est un K-ev.

2) D’apres le cours, il existe des matrices P,Q € GL,(K),

R,S € GL,(K) tellesque: A = PJ,, , ,O et B=RJ, ;S,

ouonanoté:a=rg(A), b=rg(B),

L. O
= M, . (K
Jm.n.a ( 0 0) € m,n( ) s

I, 0O
Jpap = <O O) eM,,(K).

On peut supposer, par exemple a < b, et décomposer en neuf
blocs :

I, 0 0 I 0 0
Jm,n,a = 0 0 0 9 Jp,q,b = 0 Ib—a 0
0 0 O 0 0 0

Soit X € M, ,(K), quelconque. On a :
XeE < AXB=0
— (PlunaQXRIpg58) =0
< L0 (QXR), 4 = 0.

Décomposons Q X R en blocs :

u vi w
oxR=\|v, v w
U; V3 W;

On obtient, par produit par blocs de trois matrices :

u Vi 0
Jm,n,a(QXR)Jp,q,[; = 0 0 0
0O 0 O

Donc : XeE+= (U =0cetV,=0).

Ainsi, I’application X — QX R est un isomorphisme d’es-
paces vectoriels de E sur le K-ev des matrices décomposées
en neuf blocs et telles que les deux premiers blocs soient nuls.

Il en résulte : dim (E) = np — ab.
Le résultat est identique lorsque a = b.

On conclut: dim (E) = np —rg (A)rg (B).

Notons r =1g (A) <net:

0 1 o ... ... 0
o o . . ©) .
Mr: EMI‘-H(K)v
() o, Yo, ()
0O ... ... ... 0 1



M, 0
N,:( o O)EM,,(K).

Il est clair que M, est nilpotente, donc N, est nilpotente.

Commerg (A) =r =rg (N,),ilexiste P,Q € GL, (K) telles
que: A= PN,Q.Onaalors :
A=( PO )Q 'N.0).
—_ —

notée B notée C

Alors, B,C sont dans M,,(K), B est inversible car P et Q le
sont, et C est nilpotente, car :

Cr+l — (Q_lNrQ)r+l — Q—lNrr+1Q — Q—IOQ =0.

Le couple (B,C) convient.

On a I’égalité matricielle suivante, par produit par blocs :

I, 0\(A B\[I, —A'B
ca?' -1,)\c bp)\o I,

(A 0
~\o ca'B-D)

Les matri L 0 t I, —A"B
es matrices CA-! 1, e 0 I, s

sont triangulaires, a termes diagonaux tous non nuls (car égaux
a 1), donc ces deux matrices sont inversibles.

Il en résulte, d’apres le cours :

(A BY_. (A 0
E\c p)™"\o ca'B-D)"

D’apres I’exercice 10.26 :

A 0 _ 4
rg(o CA’lB—D>_rg(A)+rg(CA B — D)

=n+1g(CA'B— D).
D’ou:
rg(M)=n<=n=n+rg(CA"'B— D)
<= 1g(CA'B—D)=0
<« CA'B-D=0+= D=CA'B.

Récurrence sur p.
* La propriété est évidente pour p = 1.
* Supposons-la vraie pour un p € N*. Soient Fi,. ..
p+l

sev de E tels que U F; = E. Si F,, = E, alors le résultat

i=1

,F,4 1 des

voulu est acquis.

Supposons donc F,;; # E. Il existe alors x € E tel que

x ¢ F,.;. Comme E = UF,-, on a alors x €
i=1 i=1

p+1 r
F;. Si

P
U F; = E, alors, d’apres ’hypothese de récurrence, il existe
i=1
iefl,...
iell,...

,p} tel que F; = E, donc, a fortiori, il existe
,p + 1} tel que F; = E, d’ou le résultat voulu.

P
Supposons donc U F, £ E.

i=1
p
Il existe alors y € E tel que y ¢ U F;, c’est-a-dire :
i=1
.r}, vy & Fi.
L’idée consiste maintenant a remarquer que la droite affine pas-

sant par y et dirigée par x ne rencontre les F; qu’en un nombre
fini de points.

Viell,...

Puisque K estinfini, il existe A;,. .., Ap;2 € K deux a deux dis-

tincts. Les p + 2 vecteurs y + A\¢x, pour k € {1,...,p + 2}
p+1

sont dans E = UF,-. Il existe donc i € {1,...
i=1

k.l € {l,...,p+ 2} distincts, tels que :

v+ \ex € F;.

,p+1} et

Y+ Mx € F; et

1
Comme y = —)\()\e(y + \ex) — A (y + )\zx)) € F,
— A

Ae
on a nécessairement i ¢ {1,...,p},donci =p+ 1.

Comme x =

1
o (0 — ) € By

on a nécessairement i = p + 1.
On aboutit a une contradiction.
p+1}, FF=E,

et établit le résultat voulu, par récurrence sur p.

Ceci montre : 3i € {1,...

a)On a, pour touth € G :
1 1 1
pon=r(Ts)on=1 Y gon=r3k=p,
geG geG keG
car I’application g — g o h est une permutation de G.
b) On déduit :
1 1 1 1
2 — = — = — = — =
p—pO(nzg> anog an —np=p,
geG geG geG
donc p est un projecteur de E.

c) 1) Soit x € ()| Ker (g —e).

geG
VgeG, (g—e)x) =0,
c’est-a-dire: Vge G, gx)=nx,
1 1 1
d’ou : = - = - = —nx =x,
ou p(x) . Zg(X) . Zx =X

geG geG

On a alors :

etdonc: x € Im(p).

Ceci montre : ﬂ Ker (g —e) C Im (p).
geG
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2) Réciproquement, soit x € Im (p). Puisque p est un projec-
teur, on a alors : p(x) = x. D’ou :

Vg eG, gix) =g(px)) =gop).
Mais, comme en a) (de 1’autre co6té), on a :
VgeG, gop=p.
D’ou :

et donc :

VgeG, gix)=pkx)=x,
VgeG, xeKer(g—e).
Vg € G, Im(p) CKer(g—e),

Im(p) C ﬂ Ker (g —e).

geG

Ceci montre :

et donc :

On conclut a I’égalité : Im (p) = ﬂ Ker (g —e).
geG

d) D’apres c¢) et puisque p est un projecteur en dimension finie :

dim ( [ Ker (g — e)) = dimIm (p) =rg (p)

geG
1 1
=tr(p) :tr(;Zg) = ;Ztr(g).

geG geG

Remarque : 1l en résulte que Z tr (g) estun entier naturel mul-
geG
tiple de n.



Déterminants,

systemes linéaires

Thémes abordés dans les exercices

e Calculs de déterminants

o FEtude de linversibilité d’une matrice carrée, par I’étude de son déterminant
Etude de comatrice (PSI)

e Résolution de systemes linéaires.

Points essentiels du cours
pour la résolution des exercices

e Définition et propriétés de : déterminant d’une famille de n vecteurs dans un
ev de dimension n, déterminant d’un endomorphisme, déterminant d’une
matrice carrée

e Formuler det <13 g) = det (A) det (C) lorsque A et C sont des matrices

carrées

* Calcul pratique des déterminants : opérations licites sur les colonnes, sur les
lignes, développement par rapport a une rangée

e Définition de la comatrice d’une matrice carrée A € M,,(K) et formule (PSI) :

A'com (A) = 'com (A) A = det (A)],,.
C—————

s | es méthodes a retenir

K désigne un corps commutatif.

» Essayer de faire apparaitre des O par des opérations licites sur les
lignes ou sur les colonnes, pour développer ensuite par rapport a une
rangée ne contenant qu’un terme non nul, si possible.

= Exercices 11.1, 11.2

* Factoriser le plus possible au fur et a mesure des calculs.

== Exercices 11.1, 11.2.

© Dunod. La photocopie non autorisée est un délit.
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Pour calculer un déterminant
d’ordre n

Pour calculer le déterminant
d’une matrice carrée A
non donnée par ses éléments

Pour calculer le déterminant
d’un endomorphisme
d’un ev E de dimension finie

Pour obtenir des égalités portant
sur des déterminants de matrices
décomposées en blocs

Pour résoudre un systeme affine
avec parametre(s)

* Essayer de faire apparaitre des O par des opérations licites sur les
lignes ou sur les colonnes, pour développer ensuite par rapport a une
rangée ne contenant qu’un terme non nul, si possible, ou pour se
ramener au déterminant d’une matrice triangulaire.

W= Exercices 11.7 a), b), ¢), d), f), 11.13

* Factoriser le plus possible au fur et & mesure des calculs.

= Exercice 11.7

 Essayer, dans certains cas, de voir si une colonne est combinaison
linéaire des autres colonnes, ou si une ligne est combinaison linéaire
des autres lignes, auquel cas le déterminant est nul.

== Exercices 11.2 ¢), 11.7 e)

* Essayer de faire apparaitre des 0 par opérations licites sur les lignes
ou sur les colonnes, pour ensuite, en développant, faire apparaitre une
relation de récurrence, souvent d’ordre un ou d’ordre deux, et enfin
calculer le terme général de la suite ainsi considérée.

== Exercices 11.7 f), g), 11.13

e Le cas particulier des matrices tridiagonales a coefficients constants
est important.

= Exercice 11.7 f)
e Utiliser la multilinéarité et I’alternance du déterminant, lorsque les

colonnes (ou les lignes) se décomposent linéairement sur des colonnes
(ou des lignes) particulieres.

W= Exercice 11.11.

Essayer d’amener une équation polynomiale satisfaite par A.

== Exercices 11.8, 11.12.

Se ramener au déterminant d’une matrice carrée, en considérant la
matrice de f dans une base convenable de E.

== Exercice 11.6.
Partir d’une égqlité convenable de matrices décomposés en blocs
(souvent issues de produits de matrices) et passer aux déterminants.
== Exercice 11.18, 11.19.
Utiliser des combinaisons linéaires d’équations pour se ramener a un
systeme équivalent plus simple.

== Exercices 11.5, 11.10.
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Pour manipuler la comatrice

Enoncés des exercices

Essayer d’utiliser :

e la définition de com (A) : les termes de com (A) sont les cofacteurs
des termes de A
e la formule du cours :

A'com (A) = "com (A)A = det (A)1,,

d’une matrice carrée A d’ordre n qui, dans le cas particulier o A est inversible, permet de relier
com (A) et A~! par la formule :
A7l = ! tcom (A)
det (A) '

W= Exercices 11.14, 11.15, 11.21.

== Fnonceés des exercices

- m Exemples de calculs de déterminants d’ordre trois

Calculer les déterminants d’ordre trois suivants, en exprimant le résultat sous forme factorisée, pour
(a,b,c) e K3

a b ab 1 a bc 1 1 1 2a a—b—c 2a
a)la ¢ ac|b)|l b calc)|la*> b | d)|b—c—a 2b 2b .
b ¢ bc 1 ¢ ab a b A3 2¢ 2¢ c—a—>b

Exemples de calculs de déterminants d’ordre quatre

Calculer les déterminants d’ordre quatre suivants, en exprimant le résultat sous forme factorisée,
pour a,b,c,d,x € K :

a b ¢ b 1 a a* b+4c+d
) b a b c b) 1 b bV c+d+a
a c b a b 1 ¢ ¢* d+a+b
b ¢ b a 1 d & a+b+c
(1+x)? 24+x)?2 GB+x)? @+x)?
22 32 42 52
c) 2 2 2 2
3 4 5 6
42 52 62 72

Déterminant d’une famille de p formes linéaires prises en p points
Soient p € N*, E un K-ev de dimension finie, ¢;,...,p, € E*. Montrer que (¢,...,¢,) est
libre si et seulement s’il existe (x1,...,x,) € E? tel que : det ((cp,(xj))m j<p) +0.
Etude d’inverse pour une matrice triangulaire par blocs
. A B
Soientn,p € N, M = (0 C) ot A e M,(K),BeM, ,(K),CeM,(K).
a) Montrer que M est inversible si et seulement si A et C sont inversibles.

b) Lorsque A et C sont inversibles, exprimer M~ sous forme de blocs.
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— Exemple de résolution d’un systeme affine a trois équations et trois inconnues, avec
parametre

Pour m € R fixé, résoudre le systeme d’équations, d’inconnue (x,y,z) € R?:
mx+y+z=1
(S) x+my+z=m
X+y+mz= m?.
— m Déterminant de ’endomorphisme de transposition sur M, (R)
Soitn € N*. Onnote: f:M,(R) — M,(R), M —> f(M) = "M.

a) Vérifier: f € L(M,(R)).

b) Calculer rg (f), tr (f), det (f).

— Exemples de calculs de déterminants d’ordre n
Calculer les déterminants suivants, pour n € N*, ay,...,a,,x,a,b € K :
1 n n ... n a a, as a,
n 2 n ... n a a +a—x as a,
a)|n n 3 ... n b) | @ a ata—x ... a,
n on n ... njy ap ay a cee Guertan — Xy,
X +a ag a L. a;
a x+a ar ... a
c) det (aMax (i"j))lgi,jgn dy| @ as x+a ... as
a, a, a, e X tay
1 -1 o ... 0
a b . (0
e)det(Gj +i+ Mi<ijen) Hla2  ab - .0
: : b -1
av a"'b ... ab b |,
14 a? a 0 . 0
a 1+4d> . (0) :
81 o 0
I © .o 1+d
0 ... 0 a 1+ a* !,
— m Déterminant de la matrice obtenue en multipliant le terme général d’une matrice carrée

par (—1)"7
Soientn € N*, A = (a;;);; € M,,(K).On note B = ((—1)i+fa,-j)l.j e M, (K).

Montrer : det(B) = det(A).
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Enoncés des exercices

m Matrices de rang 1

Soient n € N*, H € M,,(C) telle querg (H) = 1.

a) 1) Montrer qu’il existe U,V € M, ;(C) telles que : H = U'V.
2) En déduire : H> = tr (H)H.

b) Montrer : det(I, + H) =1+ tr (H).

¢) 1) Etablir que I, + H est inversible si et seulement si tr (H) = — 1 et que, dans ces condi-

1

tions : @I, + H) IZI"_mH
2) Soit A € GL,(C) telle que tr (HA™") & — 1.
Montrer que A + H est inversible et que : (A + H) ' = A~! — mA"HA".
Exemple de résolution d’un systeme affine a n équations et n inconnues
Résoudre le systéme d’équations suivant :

X, =ax; +b

X3 =ax,+b

: , d’inconnue (xy,...,x,) € C", de parametre (a,b) € C2.
X, =ax,_; +b
x|y =ax, +b

Exemple de calcul d’un déterminant d’ordre n

Calculer le déterminant d’ordre n suivant, pour ay,...,a,,x € K fixés :
af—i—x aap aa,
a)a a% +x ... ara,
D=
2
a,a, a,a, B e AT

Signe du déterminant d’un polyndme particulier de matrices carrées
Soientn € N*, A,B € M,,(R) telles que AB = BA, (p.,q) € R? tel que p> — 4q < 0. Montrer :
det (A> 4+ pAB +¢qB* > 0.

Déterminant de Vandermonde

a) Soient n € N*, (xy,...,x,) € K". On appelle déterminant de Vandermonde, et on note ici
V(xy,...,x,), ’élément de K défini par :
1 ox xp o a!
. . . . j—1
V(xi,....x) = : : : : = det ((x,] )lgi,jgn)-
Lox, x2 o0 X,
Montrer :
Vo= [ G—x.
nzi>j=1
b) Calculer, pourn € N — {0,1} et x,...,x, € K le déterminant :
1 x ... x;“Z X3 ... Xp
D =
1 x, X7 X Xl
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] [[11“2 Matrice semblable 4 une comatrice et réciproquement
Soient n € N*, A,B € GL,(K) telles que det (A) = det (B). Montrer :

A ~com(B) <= B ~ com (A),

ou com désigne la comatrice, et ~ désigne la similitude des matrices carrées.

] Exemple de calcul de la comatrice d’une matrice carrée inversible
1+n (1)
Soient n € N —{0,1}, A = e M, (R).
1) 1+n

a) Montrer que A est inversible et exprimer A~! 4 1’aide de A.
b) Calculer det (A).

¢) Déterminer com (A).

] m Exemple de résolution d’un systeme de n + 1 équations a n + 1 inconnues
Soient n € N*, a € C. Résoudre le systtme d’équations (S) d’inconnue (xo,...,x,) € C**':
Xo = 1
Xo+x1=a

X0+ 2x1 + x, = a?

n ' n
xO—|—< >—|—...—|—< )xn:a".
1 n

] E 7/ Lien entre (4B)> =0 et (BA)? =0

Soitn € N*. A-t-on: Y A,B € M,,(K), (AB)> =0 = (BA)>=0?

On étudiera successivement lescasn =1, n =2, n > 3.

] m Lien entre les polynomes caractéristiques de AB et de BA
Soient (p,q) € N*2, A e M,, ,(K), B € M, ,(K). Montrer :

(—X)?det (AB — XI,,) = (—X)"det (BA — XI,) .

] m Déterminant d’une matrice par blocs
Soientn € N*, A,B,C € M,,(K), D € GL,(K) telles que CD = DC. Montrer :

A B
det(c D)—det(AD—BC).

s e s | 52401) Etude de det (xA + B)

Soient n € N*, A, B € M,,(C). On considere 1’application

P:C—C, x+—— P(x) =det(xA+ B).
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Du mal a démarrer ?

a) Montrer que P est une application polynomiale, de degré < n.

b) Etablir : 1) deg (P) < rg (A)

Soientn € N — {0,1}, A € M,,(K). Etablir :

msse Du mal a démarrer ?

Essayer de faire apparaitre des O par opérations licites sur
les lignes ou sur les colonnes, pour développer ensuite par rap-
port a une rangée contenant deux 0, ou pour combiner avec la
regle de Sarrus, valable pour les déterminants d’ordre 2 ou 3.

a) Essayer de faire apparaitre des O par opérations licites
sur les lignes ou sur les colonnes, pour développer ensuite par
rapport a une rangée contenant trois 0.

b) Remarquer que, en notant s = a + b + ¢ +d, la quatriéme
colonne est combinaison linéaire des deux premiéres colonnes.
¢) Par opérations licites sur les colonnes, se ramener a des
déterminants plus simples.

1) Si le déterminant proposé n’est pas nul, montrer que
(@1, -.,9p) estlibre en revenant a la définition.

2) Réciproquement, si (¢1.. . .,¢p) est libre, utiliser le théoreme
de la base incompléte, puis envisager une base préduale.

a) Passer par les déterminants.

X Y
b) Noter M = (Z T) et résoudre un systeme de quatre

équations matricielles.

Par exemple, commencer par remplacer (S) par un systé-
me équivalent plus simple.Ceci fera apparaitre m — 1 en facteur
et incitera a séparerencas: m # 1, m = 1.

b) Former la matrice de fdans une base de M, (R) formée
d’une base de S, (R) suivie d’'une base de A, (R).

a) Opérer Cj«—C; —Cy pour j=1,....,n—1, et se
ramener au déterminant d'une matrice triangulaire.

b) Opérer Lij<— L; — L| pour i =2,...,n, et se ramener au
déterminant d'une matrice triangulaire.

c) Opérer L; <— L; — Ljy1 pour i =1,...,n — 1, et se rame-
ner au déterminant d'une matrice triangulaire.

2)val(P) =2 n—r1g(B).

Rang de la comatrice d’une matrice carrée

1g(A) =n = rg(com(A)) =n
g(A)=n—-1—= rg(com(A)) =1.
rg(A) < n —2 = rg(com(A)) = 0.

d) Opérer C;j<— C;j — Cy pour j =2,....n, pour faire appa-

n

raitre des 0, des x, des —x, puis opérer Lj<— L + Z L;, et

i=2
se ramener au déterminant d'une matrice triangulaire.
e) Remarquer que les colonnes du déterminant proposé se
décomposent linéairement sur deux colonnes fixes.
f) Développer le déterminant D, | proposé par rapport a la
derniére colonne et obtenir une relation de récurrence donnant
D, en fonction de D,,.
g) Développer le déterminant D,, proposé par rapport a sa pre-
miére ligne (par exemple), puis développer le déterminant
d’'ordre n — 1 obtenu par rapport a sa premiere colonne.
Montrer ainsi que la suite (D,), est une suite récurrente linéai-
re du second ordre a coefficients constants et sans second
membre, d'ou le calcul de son terme général.

Premiére méthode : revenir a la définition du déterminant
d’une matrice carrée comme sommation de produits, indexée
par le groupe symétrique.

Seconde méthode : remarquer que B = DAD, ou D est la
matrice diagonale diag ((—l)i)lgign.

a) 1) + 1" méthode : Utilisation de J; :

Utiliser une décomposition de H faisant intervenir la matrice

i ( : (O)) .
© O
* 2° méthode : Considération des éléments de H :
Remarquer qu'il existe U € M, ;1(C) telle que les colonnes
de H soient colinéaires a U.
2) Utiliser:'VU € C.
b) 1) 1" méthode : Utilisation de la multilinéarité et de I'alternance

du déterminant :

Noter B = (ey,. .. ,e,) la base canonique de M,, 1 (C) et dévelop-
per det (I, + H) par multilinéarité et alternance.
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2) 2¢ méthode : Utilisation d’une trigonalisation de H :

Montrer que H est semblable a une matrice triangulaire dont la
diagonale est formée de n — 1 fois 0 et de tr (H), et en déduire
det(I, + H).

¢) 1) En notant M =1, + H, former une équation de degré 2,
satisfaite par M, et en déduire M1

2) Appliquer 7)a HA~! a la place de H.

Remplacer (S) par un systéme équivalent, obtenu en
exprimant xz,...,x, en fonction de x;, et avec une derniére
équation portant sur xj.

Séparerencas: a" #1,a" = 1.

En notant B = (E;,...,E,) la base canonique de

aj

M, R),A= , le déterminant proposé est celui d'une

dn
famille de colonnes décomposées linéairement sur
Ei,...,E,, A. Utiliser la multilinéarité et I'alternance de detg.

Utiliser la factorisation de X? + pX + ¢ dans C[X].

a) Commencer par calculer le déterminant de
Vandermonde pourn = 1,n =2,n = 3.

Montrer le résultat voulu, par récurrence sur n, en utilisant des
opérations licites sur les colonnes, permettant, dans le calcul du
déterminant a l'ordre n, de faire apparaitre le déterminant a
l'ordren — 1.

b) En multipliant, pour chaque i, la ligne numéro i par x;, se
ramener a un déterminant de Vandermonde.

« Se rappeler que deux matrices carrées de méme ordre
A,C sont dites semblables si et seulement s'il existe une matri-
ce carrée inversible P telle que A = PCP~!.
« Puisque A et B sont inversibles, on peut exprimer les coma-
trices de A et B al'aide des inverses de A et B.

a) Décomposer linéairement A sur I, et la matrice
U € M, (R) dont tous les termes sont égaux a 1. Remarquer
que U? = nU, d'ou l'on déduit une équation du second degré
satisfaite par A, puis I'inversibilité de A et le calcul de A~

b) Opérer C1<«— C1+Co+...+C,, puis Cj <= C; —C
pourj = 2,...,n, pour se ramener au déterminant d’'une matri-
ce triangulaire.

¢) Puisque A est inversible, on peut exprimer com (A) a l'aide de
A~! et utiliser le résultat obtenu en a).

Remarquer que le systéme est triangulaire. Calculer xq, x1,
X7 et conjecturer une formule pour xi,1 < k < n+ 1, que l'on
montrera par récurrence forte sur k.

Casn = 1 : Evident.
2) Casn =2 : Se rappeler :

VM e Ma(K), M*>—tr(M)+det(M)I, =0.

3)Casn >3 :
compléter par des 0 pourn = 3.

Construire un contrexemple pour n =3, et le

Faire apparaitre AB — XI,, et BA — XI,, dans des produits
par blocs de matrices carrées d’ordre p + g.

Remarquer, pour D inversibleet CD = DC :

A B D 0\ (AD-BC BD!
¢ p)\-c D') 0 L, )’
a) Développer le déterminant.

b) 1) En notant r = rg (A), utiliser le théoréme du cours faisant

. . (Ir 0>
intervenir J, = .
0 0

2) Par définition, pour P € C[X] — {0}, val (P) est le degré du
terme de plus bas degré de P, et val (0) = +o0.

1

Considérer le changement de variable y = —, et:
X

S:C—C, yr——>det(yB+A).

Séparer |'étude en trois cas : rg(A) =n,1g(A)=n—1,
rg(A) <n-—2.

1) Dans le cas rg (A) = n, faire intervenir l'inversibilité de A.

2) Dans le casrg (A) = n — 1, montrer rg (com (A)) = 1 en uti-
lisant la formule du cours A 'com (A) = det (A) I, et en remar-
quant qu‘alors Im (‘com (A)) C Ker (A).

3) Dans le casrg (A) < n — 2, montrer com (A) = 0.



= Corrigés des exercices

a)
a b ab a b ab
a c¢ ac = 0 c—b a(c—D>b)
b ¢ bl b—a 0 (b-ac
Raxe—fig=liy
a b ab
=(cc—-bb—-—a)|0 1 a
1 0
= ac(c—>b)(b—a).
Sarrus
b)
1 a bc 1 a bc
1 b ca = 0 b—a cla—>b)
1 ¢ ab|PP g c—q b(a —c)
Ly<—L3—L,
1 a be
=0b-a)(c—a)|0 1 —c
0O 1 —b
1 —c
=(0b—a)(c—a) | b’:(a—b)(b—c)(c—a).
c)
1 1 1 1 0 0
P2 B P _ P P E=g?
B b 3|05 BB B
(O — %~
1 0 0
=b—-a)c—a)l|a® b+a c+a
a b*+ba+a* A+ca+a®
b+a c+a
= b— =
( @e—a) b>+ba+a®> c*+ca+ad?
b+a c+a
L2<—fz—aL](b_a)(C_a) b2 c?
b+a c—b
CZ‘_—_CZ*CI b —a)lc—a) b? c* —b?
b+a 1
:(b—a)(c—a)(c—b)‘ b2 c—i—b‘

= (b —a)(c —a)(c—b)(ab + ac + bc).

d)
2a a—b—c 2a
b—c—a 2b 2b
2¢ 2c c—a—>b
2a —(a+b+c) 0
= b—c—a a+b+c a+b+c
rTasal e 0 —(a+b+o)
C3<—C3—-Cy
2a -1 0
=@+b+c)|b—c—a 1 1
2c 0 -1
a+b+c 0 O
= (@+b+c)Y|b+c—a 1 0
Ly«—L1+Ly+L3 Ve 0 -1
Ly<—Ly+L3
=—(a+b+c).
a)
a b ¢ b a b c—a 0
b a b c _ b a 0 c—a
c b a b CSH_C:s—Cl c b a-—c 0
b ¢ b alcec,-c b c 0 a—c
a+c 2b 0 0
_ 2b a+c 0 0
Li<—L1+L3 c b a—=c 0
Ly«Lytis | b c 0 a—c
_ . alatc 2
=@-9 2b a+c

= (a —c)*((a+c)* — (2b)?)
=(a—c)*(a+c—2b)(a+c+?2b).

b)Ennotants = a + b + ¢ +d et Cy, C,, C3, Cy4 les colonnes
du déterminant proposé, on a :

b+c+d s—a 1 a

g_ ctd+a | |s-=0> _ 1 _ b

“ld+a+b | |s—c| 1 G

a+b+c s—d 1 d
=SC1—C2.
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Ainsi, les colonnes du déterminant proposé forment une famille
liée, donc ce déterminant est nul.

c)
1+x)? Q+x)> G+x)? @+x)?
22 32 42 52
32 42 52 62
42 52 62 72
(1+x)? 2x+3 2x+5 2x+7
3 22 5 7 9
C/'(_—C/'_Cj—l- 32 7 9 1]
=234 6> 9 11 13
A+x)? 2x+3 2 2
B 7 52 2|,
Gt | F 722
j=3,4 42 9 2 2

1) Supposons qu’il existe xi,...,x, € E tels que :

det (((p,-(xj))lgl.ngp) *+ 0.

)4
Soit (av,. . .,q,) € K” tel que Za,«pi =0.

i=1

P
Onaalors: V) € {l,...,p}, Za,-api(xj) =0,
i=1
V4
donc Z ao;L; = 0, en notant L; la ligne numéro i du déter-
i=1
minant envisagé.
Comme ce déterminant n’est pas nul, il en résulte :
o =0,...,a, =0.
Ceci montre que (.. .,p,) est libre.
2) Réciproquement, supposons (¢y,. . . ,¢,,) libre.

D’apres le théoreme de la base incomplete, puisque E* est de
dimension finie et que dim (E*) = dim (E) = n, il existe

Ppi1s- sy € E* telles que la famille By = (¢4,...,0,,
Ppils- -+ sp,) soit une base de E*. Considérons la base pré-
duale B = (xy,...,X,,Xp11,...,%,) de By. On a alors :

Y (i, j) € {L,....n}% @) =6,
donc, en particulier :
V(i j) €{l,....pY" ¢(x) =6,

et donc : det ((991‘ (xj))lgi,jgp) 70

a) Puisque

det (M) = det (3 g) = det (A) det (C),

ona:
det (M) # 0 —> <det (A) £ 0 et det(C) £ 0) ,

donc M est inversible si et seulement si A et C sont inversibles.

b) On suppose A et C inversibles, donc, d’apres a), M est in-
versible.

Décomposons M~! en blocs inconnus, de méme que pour M :

X Y
M’lz(z T>.Alors:

A B X Y I, O
=i __ _ n
== (5 )z 7)= (6 0)
Z=0
T=C

AX +BZ =1,

AY + BT =0 =C!
= L=,
CZ=0 Cinversible | Ax =1,
CT =1, AY = —BC™!
Z=0
T =cC"!

—
A inversible | x = A-!

A7 —A'BC!
O lut: M~ =
n conclu ( 0 c-1 )

En notant L;, L,, L3 les lignes successives (S), en
effectuant Ly «— L, — Ly et Ly«— Ly — L), ona:

mx+y+z=1
S)3x+my+z=m

x+y+mz=m?
mx+y+z=1

S U=—mx+m—1y=m-—1
(I —m)y+@m—1Dz=m>—m
mx+y+z=1
—1U-mx—-y+1)=0

1-—m)(y —z+m)=0.
Séparons en deux cas :

1" cas:m £ 1 :

Alors :
mx+y+z=1
S)<—{x—y+1=0
y—z+m=0



y=z—m
= ix=z—-1-m
miz—1—-m)y+(Z—m)+z=1 (E).
Et:
(B) &= (m+2)z — (m* +2m+1) = 0.

. (m+1° .
*Sim # — 2, alors: (E) <= z = ————, puisonobtient :
m+2
. _(m+1)2 1
= T om+2 T m+2
(m + 1)? m+ 1
tes " m—+2 (m+1) m—+2
e Sim= -2, alors : (E) <= 0z —1=0, qui n’a pas de
solution.

2cas:m=1:
Alors: (S)<=x+y+z=1.

On conclut que I’ensemble S des solutions de (S) est :

1 1 1)?
_ntl okl si mEletmE —2
m+2 m+2 m+2

S= %] si

{(x»)’,lfxfy):(x,y)elkz} siom=1.

a) On a, pour tout @ € R et toutes A,B € M,,(R) :
f(@A+B)="'"(@aA+B)=a'A+"'B
=af(A)+ f(B)

donc f € L(M,(R)).

b) D’apres le cours, les sev S, (R) et A, (R), formés respecti-
vement des matrices symétriques et des matrices antisymétriques,
sont supplémentaires dans M,, (R) et :

nn+1)

_nn—=1)
2 )=

dim (S,(R)) = 5

dim (A, (R)

Il existe donc une base B de M, (R) formée successivement par
une base de S,,(R) et une base de A, (R).

La matrice de f dans cette base est la matrice diagonale

n+1)
2

D =diag(l,...,1,—1,...,—1) formée de > termes

) S . oonn—1) ) X
égaux a 1, suivis de termes égaux a —1.

11 est clair alors que :

n(n+1)_n(n—1) _

2
= 1 =
g(f)=n", t(f) > > n,
det (f) _ l/x(/x;l) (_l)n(nz—l) _ (_l)n(nz—l) )
a)
1 n n
2 n n
3
n n n n [n]
1—n 0 0 0 n
0 2—n 0 0
0 0 3—n 0 n
Q(——E—C,, :
j=1,..n—1 0 0 0 —1 n
0 0 0 0 nly

=(1-n@—n)...(—Dn=(=1""n!.

b)
ap ay as 500 ay
a ay+a;—x as a,
a a) a+ay—x ... a,
a) a az an—1 = a, — X
ap ay as ay
0 a —x 0 0
_ 0 0 a, — x 0
T
: . . 0
i=2,...n
0 .. - 0 a_1—x
=a(a —x)(a —x) ... (a1 — x).
c) a a® a ... a
a’ a* a a"
Max (i, /) —|a & 4 a”
det (a )lgi,_jgn N K . .
at a* a" a"
a—a® 0 0 0
a’ —a’ 0 0
Li<—Li—Lj,
an—l a 0
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=@—-a)@-a))... @ "'"=aHa"

= (a(l —a))(@*(1 —a))...(a" ' A —a))a"

n(n+1)

— al+2+,,.+n(1 —(1)"71 — GT(I _a)nfl.
d)
X +a; ap ap ... a;
a, X+ ap a, ce a
as as x+ay ... as
a, a, a, X +a,
xX+a —x —Xx —X
a X 0 0
— as 0 X 0
Cj«—C;—Ci .
- : : : : :
a, 0 0 ... x
x+a+...4a, 0 0 ... O
a, x 0 ... 0
= as 0 X
Li<—L1+(Ly+..+Ly)
: : . .0
a, 0O ... 0 «x

n
_ ! <x 4 Z)
i=1

e) Notons, pour j € {1,...,n}, C; la colonne numéro j du

déterminant proposé. On a, pour tout j € {1,...,n} :
CJ = (lj +l + j)lgién = (l(] + 1) + j)lgisn
1 1
=0+Df: )+
n 1
Ainsi, C; se décompose linéairement sur deux colonnes fixes
(c’est-a-dire indépendantes de j).
Sin > 3, alors la famille des colonnes est liée, donc le déter-
minant proposé est nul.
Sin =1, alors le déterminant est égal a 3.

5

Sin = 2, alors le déterminant est 2 g ' = —1.

f) En notant D, le déterminant d’ordre n + 1 proposé, on a,
par développement par rapport a la derniére colonne :

1 —1 o ... O
a b . (0)
Duyi= g2  ab O ()
: : b -1
a a7 'b ... ab b 1]

1 —1 0O ... 0
a b . (0
=bD,+| ; . 0
a? a3 ... b -1
a a7 'b ab |,

En mettant a en facteur dans la derniére ligne de ce dernier dé-
terminant, on fait apparaitre encore D,,, d’ou :

D,y = bD, +aD, = (a +Db)D,.
Il en résulte, par suite géométrique :
Dy = (a+0b)"Dy = (a +b)".

g) Notons D, le déterminant proposé.

On a, pour n > 3, en développant par rapport 2 la 1°™ ligne :

1+ad®> a
a 0
D, =
0\ N
a 14d? nl
14+d*> a 0 a a 0—o0
2
=(1+4d? a\\\ 7110 ke a\o
a a
0 it a
a +a” -y O\\

a l+a?p,_
= (1+a*)Dy—1 — > Dys. (=1
En notant Dy = 1,
comme D; = 1 +a? et D, = (1 +a?)? —a?,

laformule D, = (1 + a?)D,_, — a*D,_, est valable pour tout
n>=?2.

On déduit: D, — D,_, = a*(D,_,
d’ou, par remplacements successifs :
D, — D,y = (@) (D — Dy) = @™,

puis, en sommant :

- Dn—Z) s

D,=a”+a”?2+.. . +a®>+Dy=a”+...+a*+ 1.
l_a2n+2

Si a® # 1, on peut écrire : D, = ——
—a

Et,sia®>=1,alors D, =n+ 1.

Premiere méthode (PSI) :

En notant B = (b;;);;, on obtient par la définition du détermi-
nant :

det(B) = Y e(@boay. ---bowa
0e6,

1)+1
=Y @D gy (D)7 g,
0e6,

(0’(1)+,..+0’(n)>+(l+.“+n)
= Z e(o)(=1) Ag(1),1 - - - Ao(n),n

e,



2(14..
= Z (@) (=1) Ly +")fla(l),l <« Agn),n

e,

= Y &(@)asq).1 - - Aoay.n = det (A).

0e6,
Seconde méthode (PC, PT) :
On remarque : V (i,) € {1,...,n}%, b; = (—=1)'a;;(—1).
Ainsi, B est le produit B = DAD, ou D est la matrice dia-

gonale D = diag ((—1)') . On a alors :

I<i,j<n

det (B) = det (DAD) = det (D) det (A) det (D)

— (det (D))’ det (A) = (H(—l)f)zdet (A) = det (A).
i=1

a) e 1" méthode : Utilisation de J; :

D’apres le cours, il existe P,Q € GL,(C) telles que

_ . _ (1 (0
H—PJ]Q,OUJ1—<(O) (O))

1 (ORI
Comme ((0) (O)) = <(0)> (1 ©),

1
0

1 1

En notant U = P et V=" ),
((0)) Q((O)
onadonc: U,V €M, (C) et H=U"V.

ona: H=P( )(1 0)) 0.

e 2¢ méthode : Considération des éléments de H -

Puisque rg (H) = 1, il existe U € M, ;(C) telle que les co-

lonnes de H soient colinéaires a U, donc il existe vy,. .. ,v, € C
tels que :
H=(wvU | ... | vU)
ViU VU uj
= = (v ... wv,).
Vily Uplty Uy

En notant U = €M, (C),ona: H=UW.

u}l
2) De 1), on déduit :
H?> = U'V)(UV)=U VU) V
N —
eC
=(vuU)u'v = (‘VU)H.
u U
En notant U = ,ona:

Up Up

H=UV
Uy ViU Uplly
= (1)1 vn) =
U, v U, VU,
et:
uj
WU =(vi ... v)| " | =viug +---+vu,,
M}l

donc : tr (H) = viuy + - - - + vyu, =' VU.
On conclut : H? = tr (H)H.

b) 1) 1"® méthode : Utilisation de la multilinéarité et de I’al-
ternance du déterminant :

En notant B = (ey,. . .,e,) la base canonique de M,, ;(C), on

a, par multilinéarité du déterminant :

1+M]U| 1Z3%%) Uuiv,
UV 1+ urv Us vy
det(I, + H) =
Up vy Uy V2 1+ u,v,
=detg(e; + viU, e + 02U, ... e, +v,U)

= detB(el,. 0o ,en) F (vldetB(U,ez,. oo ,e,,)
+ -+ vadets(er.. . . eu_1.U)),
car les autres déterminants, contenant deux fois la colonne U,
sont nuls.

Et, comme U = uje; + - - - + u,e,, on a, par multilinéarité et

alternance du déterminant, pour chaque k € {1,...,n} :
detg(ey,. ... ex—1,U,ey1,. .- ,€4)
= uy detg(eq,. .. ex,...,e,) = uy.
On obtient :

det (I, + H) =l+kauk =1+t (H).

k=1
2) 2¢ méthode : Utilisation d’une trigonalisation de H :
Puisque H € M,,(C), d’apres le cours, H est trigonalisable.

D’autre part, puisquerg (H) = 1, on a, d’apres le théoreme du
rang : dimKer (H) =n —rg (H) = n — 1, donc 0 est valeur
propre de H, d’ordre > n — 1.

En notant \ la derniére valeur propre de H, on a :
tr(Hy=n—1)-0+1-A=X\,

d’ou: A=tr(H).

Ainsi, il existe P € GL,(C) telle que H = PTP~', ot T est
de la forme :
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,_ |0 ()
© 0
0 ... 0 t(H

On a alors :

det(I, + H) =det, + PTP™")

= det (P(I,, + T)P’1> — det(I, + T)

1
_ (_) S =1+ tr(H).
Lo 1
0 ... 0 I1+u(H

c) 1) » D’apres le résultat de b), I, + H est inversible si et seu-
lement si | +tr (H) # 0, c’est-a-dire tr (H) # — 1.

e Supposons tr (H) # — 1. Notons M =1, + H.
Onaalors H=M —1,,d’ou, d’apres a) :

(M —1,)* =t (H)(M —1,),

donc: M>—(2+tuw(H)M=—(1+t(H))L.
—————
£0

Ceci montre que M est inversible et que :

M'=——— (M- Q2+t (H))I,
1—|—tr(H)( @+u)L,)
1
= (- (14w, H)
1thr(H)( (14 tr ()L, +
1
=I,———H.
1 +tr(H)
2)Ona: A+ H=(,+HA HA
et rg(HA™Y) <rg(H) = 1.
Le cas HA™! = 0 étant d’étude immédiate, on peut supposer

rg (HA™") = 1, et on peut alors appliquer le résultat de /) a
HA~!"alaplace de H.

On déduit que I, + HA~!" est inversible et que :

1

- ——————HA".
1+tr(HA™)

@ +HA) ' =1
d’ou :

A+ H) ' = ((In + HA*I)A)il
1

- AT'HA™
1+t (HA)

=A"'0,+HATH) ' = A"
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X, =ax;+b
X3 =ax, +b=a(ax; +b)+b
=a*x; + (a+ Db
S) =
Xp=a"'x;+ @ ?*+...+ b
X =ax + @ '+...+1b.
1) Casa” 1

=l L+ Db b
On obtient x| = @ & ) =

, puis en repor-
a

1—a" 1-—
tant :
b b
Xo =ax; +b= oo o ol = .
l—a l—a
2)Casa" =1
n_ 1
a)Sia#l,alorsa””—i—...—i—l:a =0, et donc :

a—
Xo =ax; +b
X3 =a*x; + (a+ Db

S) < {.

X, =a"'x; + @2 +...+ Db.

B) Sia=1etb#0,comme x; = x; +nb, (S)n’a pas de

solution.

v) Sia=1etb=0,alors (S) <= x;=x, =...=x,.

Finalement :

(2}

{(xl,uxl +b,a’x; 4+ (a+ D)b,. ..,

sia" # 1

@ 4 (@0 4, L A 1)b>; x| € (C}
si(@"=1leta# 1)
(%] si(@a=1lethb #0)
{(x1,...,x1); x; € C} si(a=1eth=0).

Notons B = (E;,...,E,) la base canonique de
M, (R), C; la colonne numéro j du déterminant D proposé,
ai
pourj=1,...,n,A = . On a alors :
a}'l
a,z—i—x aap aa,
aa, a% +x ... aa,
D =
a,a, a,as a+x

= detB(alA + xE4,...,a,A + xE,).

En développant par multilinéarité et alternance, il ne reste que
n + 1 déterminants :



D = detg(xE.....xE,) + ) _dets(xEi.....q;A.... xE,)

j=1

=x"+x"""Y adets(E.....A,....E,).
j=1

Ona, pourj € {1,...,n} fixé, en développant successivement
par rapport a la derniere colonne, depuis la colonne n jusqu’a
la colonne j :

detz(E,...,A,... ,E,) =

1 0 ... 0 a 0 ... ... 0
5 @ .
SO .0 (0
0 0o 1 :
0 0 a O 0
S 1 0 ... 0
© o0 .o(0)
S .0
0 0 a, O 0 1y
1 0 a
0 . 0 :
= . 0 =aq;
SN (0) IR
0 ... ... 0 aly

n
o o — N n—1 2
Finalement: D =x"+x E a;.
Jj=1

Puisque p?> —4¢g < 0, le trindme réel X> + pX + g
admet deux zéros complexes conjugués (égaux sip?> — 4q = 0,

distincts si p> — 4¢g < 0). Il existe donc z € C tel que :
X2+ pX+q=X-2)(X—73).
Ainsi: z+4+Zz= —petzz=gq.Onaalors:
(A—zB)(A—7B) = A> — zBA — 7AB + 7ZB*
= A’ - (z+2)AB +ZB’
= A’ 4+ pAB + ¢B?,
d’ou :
det (A* + pAB + gB?) = det ((A — zB)(A — ZB))
=det (A — zB)det (A — ZB)
= det (A — zB) det (A — zB)

= |det(A —zB)[* > 0.

a)eSin=1: V(x;) = x;.

1
“Sin=2: V(xl,xz)z' 1
1 X2
eSin=3:
1 x x
V(xi,x,x3) =1 x x22
1 x3 x7
1 0

= X2 — X1.

0

= 1 x—x1 x5 —x1%

Cr«—Cr—x1Cq 1

C3«—C3—x1C2

1
= (02 — x1)(x3 — x1) ‘ |

X3 — X1 )Cg — X1X3

X2
X3

= (%2 — x1)(x3 — x1)(x3 — x2).

*Ona, pourtoutn € N tel quen > 3 :

X
n—1
X
: Cj<—Cj—xiCj_1.
n—1 P
xn I 0000 n
0
o x X2
n—1 n—2
BT =
n—2
X
n—2
X T lin-11

1 x x?
1 x x3
V(Xl,. . vxn) = 5
1 x, x2
1 0 0
I x—x; x%—xlxz
1 x,—x; xn2 — X1X,
1 X2
= (x2 —x1)...(x —x1)
1 x,
= (2 —x1) ... (0 —x) V02, .., %).

On conclut, par récurrence sur 72, ou encore, de proche en proche :

n—1 n
Virn...x) =[] < [T -

j=1 Ni=j¥1

) = 1_[ (x; —Xj)-

nzi>j>1

b) Pour faire apparaitre 0, = x;...x,, comme la derniere

colonne contient ce produit en omettant un facteur, multiplions,

pour chaque i € {1,...,n}, laligne numéro i du déterminant

D proposé par x; :

1 X1
X1...X, D =x1...x, 5
1 x,
=il
X oxF ...
2 n—1
Xp Xy ... X

n—2

i X2 ... Xp
-2

X, X1 e Xn1 |[n)

O)l

On l[n)
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o X2 0 oatd

On

2 n—1
Ty B ooo I Iy

On reconnait alors un déterminant de Vandermonde, a 1’ ordre
pres des colonnes.
2 ... n ‘
es
1 ... n—1

composée de n — 1 transpositions échangeant deux éléments
consécutivement, donc e(c) = (—1)""!, d’ou, d’apres I’alter-
nance du déterminant :

g . . 1
La permutation circulaire ¢ = (
n

oaD =x1...%,D = 0, (=1)" 'V (xy,....x,).
Si x1,...,x, sont tous non nuls, on conclut :
D= (—=1D)"""V(xi,....,x).

Supposons, par exemple x; = 0. Alors, en revenant a la défi-
nition de D :

1 x ... xffl X2...Xp
1 x ... x! 0
D=
1 Xn 506 x:il 0 [n]
1
=(—D""x% ... x,V(x2,...,X,)

=(=1)""' (2= 0)...(x — OV (x2,... %)
= (—D"'V(0,x2,....x,) = (=D 'V(x1,x2,. .., x,).
Finalement, pour tout (xy,. ..

JX,) € K™ .

D= (—D"""V(x,...,x,).

Puisque A,B € GL,(K), d’apres une formule du
cours :

com(A) =det(A)'A™", com(B) =det(B)'B~\.

1) Supposons A ~ com (B).
Il existe P € GL,(K) telle que : A = P com (B)P~!.
Onaalors: A= Pdet(B)'B~'P!,

donc: 'B7'= P~ 'AP, puis :
onc det (B) puis
— t(P—IAP)—l= 1 tP—ltA—ltP
det (B) det (B)
1
= tplta=ltp = (*P)"'com (A)' P.
det (A)

Ceci montre : B ~ com (A).

2) Comme A et B ont des roles symétriques, la réciproque
s’obtient en échangeant A et B, d’ou le résultat voulu.

a) En notant U la matrice carrée d’ordre n dont tous
les termes sont égaux a 1, on remarque que A = nl, + U.
Comme U? = nU, onobtient (A — nl,)*> = n(A — nl,),d ot
A% —3nA +2n’I, =0, puis :

1

et

1
<— (A —3n1,,))A =1,

Ceci montre que A est inversible et que

1
=i __
b)On a:
l+n (1)
det (A) = )
1) 14+n
2n 1 1
nm 14+n . ()
C1<——C1+:Cz+...+Cy, 1
2 c O 1
2n 1 e I AT
1 1 1
1 14+n . (1)
=2n|: 1 . .
S G)) 1
1 1 1 1+nly
1 0 0
1 n 0)
= 2n|: =2nn"" ! = 2n".
Ci«<—C;—Cy, . . .
Jj=2,...n o : (O) . O
1 0 ... 1 nly

c) Puisque A est inversible, on a, d’apres une formule du cours :

=1 tcom (A), donc :

= det(A)

com (A) =det(A) A7 = 20" ¢ ( = i(A —3n I,,))
2n?

=—n""%(A-3nl,).

Il s’agit d’un systéme linéaire en cascade, c’est-a-dire
d’un systeéme linéaire dont la matrice A est triangulaire. De plus,
les termes diagonaux de cette matrice triangulaire A sont tous
égaux a 1, donc non nuls, donc A est inversible. Ceci montre
que le systeme proposé (S) admet une solution et une seule.



Calculons les valeurs des premiéres inconnues :
xo=1,x1=a—xy=a—1,
v=a>—(xo+2x)=a’>—1-2(a—1) = (a — 1)
Montrons, par récurrence forte (bornée) sur k que :
Vke{0,....n}, xx=(a— D"
La propriété est vraie pour k = 0.
Supposons-la vraie de 0 jusqu’a k. On a alors :

k
k+1
xk+1=ak+l—2( : )x,-

i=0

k
k+1 ;

:ak“—;( ; )(a—l)
(k-ll.—1>(a_1)i_(a_1)k+l)

= gt _
(2
=gkt — (((a D+ 1) —@- 1)"“)

= (a =D,
ce qui établit le résultat pour k 4 1.
On obtient ainsi :
Yk e€{0,...,n}, xp = (a— D).

Finalement, I’ensemble S des solutions de (S) est :

S {<l,a— L@a—1>... (a— 1)")}.

1)Casn=1":

Il est évident que la réponse, pour n = 1, est oui.

2)Casn =2:

Rappelons la formule suivante, que 1’on peut montrer par un
calcul élémentaire, ou bien par application du théoreme de
Cayley et Hamilton :

VM e My(K), M* —tr(M)M +det(M)L, =0 (1).

Soient A,B € M, (K) telles que (AB)> = 0.
Alors, AB n’est pas inversible, d’ou, d’apres (1) appliquée a
M =AB:—tr(AB)AB=0 (2).

Si AB = 0, alors :
2 _ _ —
(BA)" = (BA)(BA) = B(AB)A =0.
=0

Supposons AB # 0.
On a alors, d’apres (2) : tr (AB) = 0.
D’ou, en appliquant (1) a M = BA, et puisque 1’on a
tr (BA) =tr(AB) =0 etdet(BA) =det(AB) =0:

(BA)? —tr (BA)BA + det (BA)I, =0,

etdonc: (BA)> =0.

La réponse, pour n = 2, est donc : oui.

3)Casn =3 :

Donnons un contrexemple pour le cas n = 3, ce contrexemple
se généralisant a ’ordre n, pour n 2> 3, en complétant partout
par des 0.

1 0 0 0O 1 0
PourA=({0 I OjetB=|0 0O O],ona:
0 0 O 1 0 0
0 1 0 0 1 0
AB=|0 0 O] ee BA=|0 0 0]},
0 0 O 1 0 0

puis: (AB)> =0 et (BA)* =

oS o O
—_ O O

0

0] #0.
0

La réponse, pour n 2> 3, est donc : non.

Faisons apparaitre AB — XI,, et BA — XI,, dans des pro-
duits par blocs de matrices carrées d’ordre p + ¢ :

-XI, A\(l, 0\ [(AB-XI, A

-B 1,J\B 1,)] 0 I,
—_—

notée M
I, 0 -XI, A\ _(-XI, A
B —Xl, -B I,) \ 0 BA-XL)/)’

—_——
M

En, passant aux déterminants, on obtient :
{ det (M)1719 = det (AB — XI,)17

17(=X)?det (M) = (—=X)Pdet (BA — XI,),
d’ou :
(—=X)?det (AB — XI,,) = (=X)?det (M)
= (=X)’det (BA — XI,),
ce qui établit le résultat demandé.

On a I’égalité matricielle suivante, par produit par
blocs, pour D inversible et CD = DC :

A B D 0\ _ (AD—-BC BD'
c p)\-c D) 0 L )
En passant aux déterminants, on obtient :

det (é g) det (D) det (D™') = det (AD — BC),

A B
donc : det (C D) =det(AD — BC).
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a) 11 est clair, par exemple par développement par rap-
port a une rangée et par récurrence, que

P :x+— det(xA+ B)
est une application polynomiale, de degré < n.

b) 1) Notons r =rg(A). D’apres le cours, il existe
O.R € GL,(C) telles que A= QJ,R, ou on a noté

. 0
U = (0 0) € Mn((c)

On a alors, pour tout x € C :

P(x) = det(xA + B) = det(xQJ,R + B)
=det (Q(xJ, + Q"'BR™)R)
=det (Q)det (xJ, + O 'BR ) det (R).

En notant QO 'BR' = (w;);, la matrice carrée

xJ, + O 'BR7! est 4 termes constants (vis-a-vis de x), sauf
les r premiers de la diagonale, qui sont les x + ;.

En développant ce déterminant, il est clair qu’il s’agit d’une
fonction polynomiale de degré < r.

On adonc : deg (P) < r =r1g(A).

2) On a, pour tout x € C* :

iP(x) = det (l(xA + B)) = det (lB 4F A) .
x" X X

Notons § : C — C, y —— det(yB + A).

D’apres a), appliqué a (B, A) aulieude (A, B), S est une fonc-
tion polynomiale de degré < rg (B).

Ennotant P = ap + - - - + a,X", on a, pour tout y € C* :

= aOyn +a1yn71 + -+ ay,

|
donc le degré de la fonction polynomiale y —> y" P (—) est:
y

n — val (P), ou val (P) désigne la valuation de P.
On déduit : n —val (P) < rg(B),
et on conclut : val (P) = n —rg (B).

1) Si rg(A) =n, alors det(A) #0 et, comme

1
'A ) com(A) =1,, com(A) est inversible, donc
det(A)

rg(com(A)) = n.
2) Supposons rg(A) =n — 1.
Comme A 'com(A) = det(A)I, =0,
ona Im(lcom(A)) C Ker(A), et donc :

rg(com(A)) = rg(lcorn(A)) < dim (Ker(A)) .
Mais, d’apres le théoréme du rang :

dim (Ker(A)) =n—r1g(A)=1.

D’autre part, comme rg(A) = n — 1, il existe une matrice car-

rée d’ordre n — 1 extraite de A et inversible, et donc au moins
un des cofacteurs de A est = 0, d’ot com(A) # 0.

Finalement : rg(com(A)) = 1.

3) Sirg(A) < n — 2, alors tous les cofacteurs de A sont nuls,
puisque ce sont des déterminants de matrices carrées d’ordren — 1
extraites de A, et on a donc com(A) = 0, rg(com(A)) = 0.
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Chapitre 12 - Réduction des endomorphismes et des matrices carrées

408

e | es méthodes a retenir

Par commodité, on utilise les abréviations suivantes :

ev pour : espace vectoriel

sev pour : sous-espace vectoriel
vp pour : valeur propre

VP pour : vecteur propre

SEP pour : sous-espace propre

K désigne un corps commutatif.
K désigne R ou C.

Sauf mention contraire, n désigne un entier > 1.

Pour déterminer

les valeurs propres

et les vecteurs propres

d’un endomorphisme f

d’un K-ev E,

ou d’une matrice carrée A de M,, (K)

Pour déterminer une ou deux
valeurs propres manquantes,
pour une matrice carrée A

Pour étudier les valeurs propres et
les vecteurs propres d’une matrice
A € M(C) dont les coefficients
interviennent explicitement

Essayer I'une des trois méthodes suivantes :

1) Revenir a la définition, ¢’est-a-dire résoudre 1’équation f (x) = Ax,
d’inconnues A € K, x € E — {0}.
A cet effet, on pourra raisonner par équivalences successives, ou par
analyse-synthese.

== Exercice 12.5.

2) Déterminer les valeurs propres de f, par exemple en formant le
polyndme caractéristique x,de f (si E est de dimension finie), cher-
cher les zéros de X puis déterminer les sous-espaces propres asso-
ciés.

== Exercices 12.3, 12.5, 12.34.

Si E est un ev de polyndmes, lors de la résolution de
(f(P)=AP et P # 0), envisager le degré de P, ou des polyndmes
P simples, ou des diviseurs simples de P.

== Exercices 12.4, 12.25.

Si E est un ev de fonctions, envisager I'intervention d’une équation
différentielle.
== Exercice 12.7.

3) Faire intervenir la notion de polyndme annulateur, si f ou A satis-
fait une équation simple.

== Exercices 12.5, 12.17.

Penser 2 utiliser tr (A) et éventuellement tr (A?).

== Exercice 12.8.

Traduire I’égalité AX = AX, ou X € M,,;(C) — {0} par un systeme
d’égalités portant sur A et sur les termes de X et, si nécessaire, faire
intervenir la notion de module d’un nombre complexe, souvent a I’ai-
de d’inégalités.

== Exercice 12.24.
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Pour calculer
le polynome caractéristique
d’une matrice A € M,,(K)

Pour étudier
les valeurs propres réelles
d’une matrice A € M,,(R)

Pour déterminer
le polynome caractéristique
d’une matrice-compagnon

Pour étudier
la diagonalisabilité
d’une matrice carrée A

et éventuellement la diagonaliser,

dans un exemple numérique

pouvant comporter des parametres

Pour étudier la diagonalisabilité

d’une matrice carrée A

Pour résoudre
une équation matricielle,
par exemple B> = A,

ou A est donnée et B inconnue

Les méthodes a retenir

Former x 4 (\) = det (A — Al,) et calculer de déterminant en essayant
de privilégier les factorisations.

== Exercices 12.5, 12.10, 12.21, 12.34, 12.51 a 12.53.

Essayer de se ramener, lorsque c’est possible, a des déterminants de
matrices triangulaires par blocs.
== Exercice 12.27.

Penser éventuellement a faire intervenir des arguments issus de 1’ana-
lyse, en particulier le théoreme des valeurs intermédiaires, sur le
polyndme caractéristique de A ou (PC, PSI) sur un polyndme annula-
teur de A.

== Exercices 12.17, 12.39, 12.52.
Effectuer une transformation du genre :
Ly«—Ly+ AL,y +--+XN"'Ly.
== Exercice 12.52.

Essayer de former le polyndme caractéristique x4, en déduire les
valeurs propres de A, et, pour chaque valeur propre A de A, détermi-
ner une base de SEP (A,)\). La matrice carrée A est diagonalisable
dans M,,(K) si et seulement si : x4 est scindé sur K et, pour chaque
valeur propre A de A, dimSEP (A,)\) est égale a I’ordre de multipli-
cité de A dans 4. Dans ce cas, on aura alors A = PDP~!', ou D est
la matrice diagonale des valeurs propres de A, dans un ordre arbitrai-
re, et P est la matrice obtenue en mettant cote a cote les vecteurs d’une
base de vecteurs propres de A associés, dans I’ordre, aux valeurs
propres. Lors du calcul de x4, essayer de factoriser au maximum.

== Exercices 12.10 a 12.12, 12.15, 12.21

Se rappeler aussi le théoreme spectral, vu dans un autre chapitre :
toute matrice symétrique réelle est diagonalisable dans M,,(R).

== Exercices 12.8, 12.13, 12.29, 12.40.

® Lorsque les valeurs propres et les vecteurs propres sont calculables,
appliquer la CNS de diagonalisabilité.

W= Exercices 12.10 a 12.12, 12.21, 12.29 a).

* Lorsque A satisfait une équation, appliquer la CNS de diagonalisa-
bilité faisant intervenir un polyndme annulateur.

== Exercices 12.32 b), 12.35, 12.36.

Essayer d’utiliser, si c’est possible, une diagonalisation de A, pour se
ramener a une équation C 2 =D, ol D est diagonale et C inconnue.
Avant de résoudre C? = D, on peut souvent préciser la forme de C,
en utilisant le fait que C et D commutent.

== Exercices 12.13, 12.28, 12.29, 12.46 a 12.48.
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Pour étudier le commutant
d’une matrice A de M,,(K)

Pour étudier une équation
matricielle dans un contexte de
polynomes de matrices carrées

Pour résoudre une question faisant
intervenir la trigonalisabilité

Pour étudier une matrice carrée
satisfaisant une équation

Pour étudier une matrice A € M, (R)
qui annule un polynome P € R[X]
non scindé sur R

Pour obtenir des renseignements,
par exemple sur la trace

ou le déterminant, d’une matrice A
de M,,(K), lorsqu’on dispose

d’un polynéme P annulateur de A

Pour calculer les puissances
d’une matrice carrée

Chapitre 12 - Réduction des endomorphismes et des matrices carrées

Essayer, lorsque A est diagonale ou diagonalisable, de se ramener a
des calculs sur les éléments ou a des calculs par blocs

= Exercice 12.63.

Essayer de faire intervenir une diagonalisation ou une trigonalisation.

== Exercices 12.20, 12.42, 12.43, 12.62.

Essayer d’utiliser la CNS de trigonalisabilité : A est trigonalisable
dans M,,(K) si et seulement si x4 est scindé sur K.

== Exercice 12.42.

Penser a faire intervenir la notion de polyndme annulateur.

== Exercices 12.16 a 12.19, 12.39, 12.40, 12.44, 12.45.

Essayer d’utiliser une diagonalisation ou une trigonalisation de A
dans M,,(C), puis de revenir aux réels.

== Exercices 12.39, 12.40.

Utiliser : le spectre de A est inclus dans I’ensemble des zéros de P
dans K.

== Exercices 12.15, 12.39, 12.40.

Essayer d’utiliser une diagonalisation ou une trigonalisation de A.

== Exercices 12.14, 12.20.

=mmme Fnoncés des exercices

— Condition sur les coefficients d’une matrice carrée
pour qu’un vecteur donné soit vecteur propre

Déterminer tous les (x,y) € R? tels que la matrice 1

propre.

1 1 1
y 1| admette | 2
1 0 3

X
pour vecteur
1

— Condition sur les coefficients d’une matrice carrée
pour que deux vecteurs donnés soient vecteurs propres

1 2 1
Trouver tous les (a,b) € R? tels que la matrice A = ( Z) admette U = ( 1) et < )

-1 1

pour vecteurs propres.
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Enoncés des exercices

‘257 Exemples de détermination des éléments propres de matrices triangulaires

0 1 1
Déterminer les valeurs propres et les sous-espaces propresde A= | 0 0 1 | € M3(R), etde
0 0 1

0 1 1
B=|0 1 1] eM;@R).
0 0 0

12.4 Spectre d’un endomorphisme d’un espace de polynomes
On note £ = R, [X] et f'application P —— f(P) = X(P(X) —PX - 1)).
a) Vérifier que f est un endomorphisme du R-ev E.

b) Former la matrice A de f dans la base canonique B = (1,X,...,X") de E.

c¢) Déterminer noyau, rang, image, spectre de f.

Eléments propres d’un endomorphisme de M,(R)

Déterminer les valeurs propres et les sous-espaces propres de

£ My(R) —> My(R), (a b).—>
c d

d —b
— a )’
2417 Eléments propres d’un endomorphisme d’un espace de polynomes
On considere Iapplication f : R[X] — R[X] définie, pour tout P € R[X], par :
fP)=XX-=DP)+X+DHX-=DPO) + X+ DHXP(1).
a) 1) Vérifier que f est linéaire.
2) Déterminer Ker (f) et Im (f).

b) Déterminer les valeurs propres et les sous-espaces propres de f, en considérant la matrice A de
I’endomorphisme induit par f sur E, et en utilisant a) 2).

Eléments propres d’un endomorphisme d’un espace de fonctions
Onnote £ = C*(R,R) et on considere I'application 7 : E — E, f+—— g,ou g estdéfinie
par: VxeR, gx)= f'(x)—xf(x).

a) Montrer que T est un endomorphisme surjectif de E.

b) Déterminer les valeurs propres et les sous-espaces propres de 7.

Exemple de détermination du spectre d’une matrice carrée

1 ... 1
Soientn € N telquen >3, A, = | : (0) ]l e M, (R).

a) Calculer les valeurs propres de A,,. b) CNS sur n pour que Spp(A,) CZ ?

[240)| Non-diagonalisabilité de matrices élémentaires

Soientn € N —{0,1}, (i,j) € {1,...,n}? tel que i # j. Montrer que E;;, matrice élémentaire de
M, (K), n’est pas diagonalisable.
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- 4111} Exemple d’étude de diagonalisabilité
3—a —5+a a
CNS sur a € R pour que la matrice M (a) = —a a—2 a € M;(R) soit diagona-
5 =5 -2
lisable ?
— 22111 Exemple d’étude de diagonalisabilités
0 a
Etudier, pour (a,b,c) € R3, la diagonalisabilit¢ de M =|b 0 ¢ | dans M3(R), dans
b —a 0
M;(C).
— 2212 Exemple de condition de diagonalisabilité
0 a b c
6 0 0 d e oo .
CNS sur (a,...,f) € C° pourque A = 00 1 f soit diagonalisable dans My (C) ?
0 0 0 1
— 221155 Exemple d’étude d’une équation matricielle
0 1 1
Trouver au moins une matrice X € M;(C) telle que : X =11 0 1
1 1 0
— 221127 Exemple de détermination de la limite de la suite des puissances d’une matrice carrée
| 1 0 2
Onnote A==-1]2 1 0] eM;3(R). Déterminer lim A".
3 noo
0 2 1
- 241551 Etude d’un endomorphisme d’un espace de fonctions de dimension finie

On note fi, f2, f3, f1 : R — R les applications définies, pour tout x € R, par :
fikx) =chx, fo(x) =shx, f35(x)=xchx, fi(x)=xshux,

etonnote B = (fi, f2. f3, f1), E = Vect(B).

a) Montrer que B est une base de E. Quelle est la dimension de E ?

b) Montrer que D : f —> f’ est un endomorphisme du R-ev E et exprimer A = Matg(f).
c) 1) Calculer A%, A*. (On pourra utiliser une écriture en blocs.)

2)Endéduire: VfeE, f@ -2+ f=0.

d) Déterminer les valeurs propres et les sous-espaces propres de D.

Est-ce que D est diagonalisable ?

- 4117 Etude d’une équation matricielle
Trouver toutes les matrices A € M,,(R) diagonalisables dans M,,(R) telles que : A+ 24 =31,

— P21/| Etude d’une équation matricielle
Soit A € M,,(R) telle que : 243 + 342 —6A —1; =0.

Montrer que A est diagonalisable dans M, (R).
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Enoncés des exercices

|72 [1}| Exemple d’équation portant sur un endomorphisme
Soient £ un R-ev de dimension 3, f € L(E).

On suppose : f* = f2? et {—1,1} C Sp(f). Montrer que f est diagonalisable.
2211} Etude d’une équation matricielle avec transposition

Soit M € M,,(R) telle que : M? + ‘M =2I,.

Démontrer que M est diagonalisable dans M, (R).

2424\ Utilisation de la trigonalisation pour I’étude d’une matrice nilpotente
Soit A € M,,(C) nilpotente. Montrer : A" = 0.

(7224 || Exemple de trigonalisation
1 1 -1

1
Onnote A = 3 1 —1 1 € M;(R).
2 0 0
a) Calculer x ,. b) Est-ce que A est diagonalisable ?
01 0
c) Montrer que A estsemblablea 7 =0 0 1
0 0 0

Liens entre les spectres de f o g et g of
Soient E un K-ev, f,g € L(E).
a) Montrer : Sp(f og) U {0} =Sp(go f) U {0}.
b) Etablir que, si E est de dimension finie, alors : Sp (f o g) = Sp (g o f).
¢) Donner un exemple d’ev E (non de dimension finie) et d’endomorphismes f, g de E tels que :

Sp(fog) # Sp(go f).

Inégalité sur le rayon spectral d’une matrice carrée
Soit ||.|| une norme d’algebre sur M,,(C), c’est-a-dire une norme sur I’ev M,,(C) telle que :
VA,BeM,(C), [[AB]| < lIAlllIB]].
Soit A € M,,(C). On note p(A) = Max ||, appelé rayon spectral de A.

€Spe(A)
Démontrer : p(A) < ||All.

24224 Valeurs propres d’une matrice stochastique
Soit A = (a;5);; € M, (R) telle que :

(V(i,j)e{l,...,n}z, a,-,-e[O;l]) et <Vie{1,...,n}, Zai,=1>.
j=1

a) Montrer que 1 est valeur propre de A.

b) Etablir: VX € Spe(A), 3i € {1,....n}, N\ —ai| <1 —ay,

et conclure : Spe(A) C U B'(aii, 1 — a;).

i=1
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— 204 Eléments propres d’un endomorphisme d’un espace de polynémes
Onnote f : R[X] — R[X], P— X3+ X)P' — (3X>2—1)P.
a) Vérifier que f est un endomorphisme de R[X].

b) Déterminer les valeurs propres et les sous-espaces propres de f.

— 24247 Spectre d’un endomorphisme d’un espace de fonctions

On note E le R-ev des applications f : [0; +-00[— R continues et de limite nulle en +o00, et T
I’endomorphisme de E qui, a f € E, associe 1’application

T(f):[0;400[— R, x +—— f(x 4+ 1). Déterminer le spectre de T'.

— 22257 Polynéme caractéristique d’une matrice par blocs
I, 1
Soient A € M,(K), M = (A A) € My, (K).

Exprimer le polyndme caractéristique de M en fonction de celui de A.

— 274 Exemple de résolution d’équation matricielle
- p q
-1 0
Onnote A = ( 0 4) € Mh(R).

Résoudre I’équation M 3 _2M = A, d’inconnue M € M,(R).

— Exemple de résolution d’équation matricielle
1 2 =2
Onnote A= 2 1 2 € M;(R).
-2 2 1

a) Montrer que A est diagonalisable et diagonaliser A.
b) Résoudre I’équation (1) M? = A, d’inconnue M € M;(R).

— 2511) Exemple d’étude de diagonalisabilité
Onnote A, = (a;;)ij € M, (R) la matrice définie par :
aj=1si (i=1ouj=n), a;=0 sinon.

La matrice A, est-elle diagonalisable ?

— 12.31 Exemple de recherche d’anticommutant

Soit A € M,,(K) diagonalisable telle que : ¥ (\, ) € (SpC(A))Z, A+ #0.
Montrer, pour toute M € M,,(C): AM + MA=0<= M =0.

— 22572 Etude de matrices vérifiant une équation
Soient k € N*, A € M,,(K) tels que : A = A%,
a)Montrer : Vg € N, A*e = Ak, b) Etablir que A* est diagonalisable.

¢) Démontrer que, pour tout p € {1,...,k — 1}, A* — A? est nilpotente.

— | 25%7 Matrices symétriques complexes non diagonalisables

a) Déterminer I’ensemble des matrices symétriques complexes d’ordre 2 non diagonalisables.
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b) En déduire que, pour tout n € N — {0,1}, il existe une matrice symétrique complexe d’ordre n
non diagonalisable.

22570 Matrices de permutation circulaire, déterminant circulaire

0 1 o ... ... O
. o .
. : R (R
a)Soientn € N —{0,1},J, = | . ) € M, (C).
: o - 1 0
0 R
1 0 ... ... 0 O
Déterminer les valeurs propres de J, et montrer que J,, est diagonalisable.
b) En déduire, pour n € N—{0,1} et aop,...,a,_; € C, le déterminant circulant
ap aj e ay—q
[ ap . [ )
D, =
ai ay ‘e ap

'[225%] Diagonalisabilité a partir d’une hypothése sur des images
Soient £ un K-ev de dimension finie, a,b € K tels que a # b, e =1dg, f € L(E) tel que :
Im (f —ae) N Im (f — be) = {0}. Montrer que f est diagonalisable.

P2510) Etude de diagonalisabilité pour un endomorphisme sur un espace de matrices carrées
Soient A,B,C € M, (K) telles que : B> = B, C* = C, BAC =0, CB =0, tr (A) # 0.
Onnote f : M,,(K) — M, (K), M +—— tr (M)A +tr(A)BMC.

a) Vérifier que f est un endomorphisme de M, (K).

b) Démontrer que f est diagonalisable.

2459/ Involutions qui anticommutent, en dimension 4
Soient A,B € My(C) tellesque: A2 =B>=1, et AB+ BA=0.
a) En calculant tr (BAB) de deux facons, montrer : tr (A) = tr (B) = 0.

b) Montrer que A et B sont diagonalisables, et déterminer les valeurs propres de A et B, ainsi que
leurs ordres de multiplicité.

c)Onnote C =iAB.
1) Vérifier: C> =1, AC+CA=0, BC+CB=0.
2) En déduire les valeurs propres dei AB et tr (AB).

24514 Spectres disjoints

Soient A, B € M,,(C). Montrer que les propriétés suivantes sont équivalentes :

(1) Spc(A) N Spe(B) =& (i) xa(B) € GL, ().

251 ) Exemple de propriété des solutions d’une équation matricielle
Soit A € M, (R) telle que A*> —3A — 41, = 0. Démontrer : det (A) > 0.

415



Chapitre 12 - Réduction des endomorphismes et des matrices carrées

— 24711) Exemple de propriété des solutions d’une équation matricielle
Soit A € M,,(R) telle que : A3 —4A%+6A = 0. Montrer : 0 < tr (A%) < 2n.

— 12.41 Polynomes caractéristiques de A et de P(A)
Soient A € M,,(K), P € K[X]. On suppose que le polyndme caractéristique de A est scindé, et

onnote x, = (—1)" [ [(X = A.
k=1

Montrer : xp4) = (—1)" 1_[ (X = P(M\)), et donc, X ps) est scindé.
k=1

— 22222 Lien entre f nilpotent et Sp (f) = {0}

Soient E un K-ev de dimension finie > 1, f € L(E).
a) Montrer que, si f est nilpotent, alors Sp(f) = {0}.
b) On suppose ici K = C. Montrer que, si Sp(f) = {0}, alors f est nilpotent.

— 24253 Etude d’une équation matricielle
Soient A € M,,(R), p,q € N*. On suppose : A?(A —1,)? =0 ettr (A) = 0. Montrer : A? = 0.

— P2 T Etude d’une équation matricielle
Trouver toutes les matrices A € M,,(R) telles que : A> = A% et tr (A) = n.

— '[222 557 Une équation matricielle qui n’a pas de solution
0 1 0
Montrer que I’équation X>=|0 0 1|, d’inconnue X € M;(C), n’a pas de solution.
0 0 O

(On pourra utiliser I’exercice 12.20.)

— 24717 Exemple d’équation matricielle
1 0 0
OnnoteA=|1 1 0| €M;(R). Résoudre I’équation X 2 = A, d’inconnue X € M3(R).
1 0 4
— P27l Exemple d’équation matricielle
1 0 =2
OnnoteA=|2 -1 —-2]eM@R),etP =X +X+1eR[X].
0 0 3

Résoudre I’équation P (M) = A, d’inconnue M € M;(R).

— 2471 Exemple d’équation matricielle faisant intervenir la comatrice

Soientn € N tel que n = 3, A € M,,(C)telle que ‘com (A) = I, — A. La matrice A est-elle dia-
gonalisable ?

— 4“0 ) Polyndmes caractéristiques de AB et de BA
Soient A, B € M,,(K). Montrer : X 5 = Xpa-
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Ftude de det (AZ +1,)
Soit A € M,,(C).
a) Etablir : X a7 € R[X]. (On pourra utiliser I’exercice 12.49
b) En déduire : det (AA +1,) € R.

2257 1| Exemple de calcul de polyndéme caractéristique et d’étude de diagonalisabilité
Soientn € N — {0,1}, A, = (a;;);; € M,,(R) définie par :

aj=1sii>jou(@=1etj=n), a;=0 sinon.
a) Calculer le polyndme caractéristique 4, de A,.

b) Démontrer que, dans ]1 ; +o00[, A,admet une valeur propre et une seule.

A cet effet, on pourra considérer ¢ : [1; +oo[— R, A +—— (A — DA 1.

24574 Polyndme caractéristique d’une matrice-compagnon

a 1 0 ... ... 0
a 0 . .0
Soient a,,...,a, € C,A = - - - oo e M, (C).
. '. .. '. 0
N (1)) R |
a, 0 ... ... ... 0

a) Former 4.
b) On suppose ici : Vk € {1,...,n}, a; €]0; +ool.

Démontrer que, dans ]0; +00o[, A admet une valeur propre unique.

'[245%5) Exemple de calcul de polyndme caractéristique et d’étude de spectre

1 0 ... 0 z
| S () 0]
On note, pour (n,z) € (N—{0,1}) xC: A(n,z) = | : e o eML(O).
1 (1) L0
1 1 ... 1 1

a) Calculer le polyndme caractéristique x,, de A(n,z).

b) Montrer :  Sp(A(n,z)) C B'(0, Max (2, 1 + /[z| 2§_l).

12577 Etude de diagonalisabilité pour une matrice par blocs

1 4
a) On note M = ( 11 ) € Mh(R). Montrer que M est diagonalisable et diagonaliser M.

A 4A 3 0
ient A € M,(R), B = = .
b) Soient A € M,,(R), (A A),C (O —A)
1) Montrer que B est semblable a C.

2) Etablir que B est diagonalisable si et seulement si A est diagonalisable.
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12.55 Décomposition d’un endomorphisme diagonalisable

en combinaison linéaire de projecteurs
Soient £ un K-ev de dimension finie, e = Idg, f € L(E) diagonalisable. On note, pour tout
A€ Sp(f), Ey =SEP(f,)\),etp) le projecteur sur £y parallelement a @ Ey.
JeSp ()—{A}
a)Montrer: YA € K[X], Y A(Npx= A(f). En particulier: Y Apy = f.
AeSp (f) AeSp (f)
b) Btablir: VA € Sp(f), 3L € K[X], pr = L(f).

Minoration de la dimension du commutant d’une matrice carrée

On note T, s(C) le C-ev des matrices triangulaires supérieures de M,,(C), et T, (C) le sev de
T, <(C) formé des matrices de T, ;(C) a termes diagonaux tous nuls. On note, pour A € M,,(C) :
fa M, (C) — M, (C), M+—> AM — MA et C(A) = {M €M, (C); faM) = 0}.

a) Vérifier, pour toute A € M,(C), fi € L£L(M,(C)), et, pour toute A €T, (C),
fA (Tn,s((c)) C Tn,s((c)-

b) En déduire : VA € M,,(C), dim (C(A)) > n.

Etude de diagonalisabilité

Soient n € N — {0,1}, A € M,,(C) telle que : rg(A) =2, tr(A) =0, A" # 0. Montrer que
A est diagonalisable dans M, (C).

Liens entre les diagonalisabilités de A et de A2, pour A inversible

Soit A € GL,(C). Montrer que A est diagonalisable si et seulement si A” est diagonalisable.

Etude de diagonalisabilité pour une matrice par blocs
0

A 0
AB est diagonalisable. (On pourra utiliser I’exercice 12.58.)

Soient A,B € GL,(C), M = ( ) . Démontrer que M est diagonalisable si et seulement si

Etude de diagonalisabilité pour une matrice par blocs

A B
Soient p,g € N*, A € GL,(K),B €M, ,(K),M = (O 0) eM, ., (K).

A 0
a) Montrer que M est semblable a ( 0 O) .

b) En déduire que M est diagonalisable si et seulement si A est diagonalisable.

Liens entre les qualités de f — Ae et de P(f) — P(\) e
Soient E un C-ev, e = Idg, f € L(E), P € C[X].

a) Soit A € C. Montrer que, si f — Ae n’est pas injective (resp. n’est pas surjective), alors
P(f) — P()\)e n’est pas injective (resp. n’est pas surjective).

b) On suppose ici deg (P) = 1. Soit © € C. Montrer que, si P(f) — pe n’est pas injective (resp.
n’est pas surjective), alors il existe A € C tel que = P()\) et que f — A e ne soit pas injective
(resp. ne soit pas surjective).
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Du mal a démarrer ?

e 12.62 Exemple de déterminant d’une somme de matrices
Soient A € GL,(C), N € M,,(C) nilpotente, telles que AN = NA. Montrer :
det (A + N) =det(A).

—r—Tr—T— 1147%7 Commutant et bicommutant d’une matrice diagonalisable

Soit A € M,,(K) diagonalisable. On note )\, (I <k < p) les valeurs propres de A,
wy (1 <k < p) Pordre de multiplicité de A, D = diag (M, ),, P € GL,(K) telle que

1<k<p

A= PDP~'.Onnote C(A) le commutant de A dans M,,(K) :
C(A) ={X e M,(K); AX = XA},

et C'(A) le commutant de C(A) dans M,,(K) :

C'(A)={BeM,(K); VX € C(A), XB=BX}.

a) Déterminer C(A) et préciser dim (C(A)).

b) Déterminer C'(A) et préciser dim (C'(A)).

— m— — — ]2.64 Diagonalisation simultanée
Soient E un K-ev de dimension finie n 2> 1, Iun ensemble non vide, ( f;);c; une famille d’endo-
morphismes diagonalisables de £, commutant deux a deux, c’est-a-dire tels que :

Y@i,j)el? fiofi=folf.

Démontrer qu’il existe une base de E dans laquelle tous les f; sont diagonalisables (on pourra faire
une récurrence forte sur n).

s e e 227557 Conséquence d’une diagonalisation simultanée

Soient E un K-ev de dimension finie, M I’ensemble des f € L(E) tels qu’il existe k € N* (dépen-
dant de f) tel que f* soit diagonalisable. Démontrer que, pour tout (f,g) € M> tel que
fog=go fiona:foge M.(Onpourra utiliser I’exercice 12.64.)

s s s P40 Etude de matrices proportionnelles semblables

a) Soit A € M,,(C). Montrer que, si A et 2A sont semblables, alors A est nilpotente. (On pourra
utiliser ’exercice 12.42.)

b) Donner un exemple de C-ev (non de dimension finie) et de /' € L(E) tels que : f n’est pas nil-

potent et il existe g € GL(E) telque 2f =go fog™ .

mmsse Du mal a démarrer ?

Revenir a la définition d’'un vecteur propre. 2¢ méthode : Utilisation d’une matrice de passage :

1 méthode : Utilisation de la définition : Ennotant P = (U V), traduire que P~' AP est diagonale.
Revenir 3 la définition d'une vecteur propre, en traduisant que 2457 Revenir a la définition. Dans cet exercice, les matrices A et
les familles (AU,U) et (AV,V) sont lies. B semblent peu différentes par leurs écritures, mais A ne sera

pas diagonalisable et B sera diagonalisable.
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a) Immédiat.
b) Calculer £ (X/) pourtoutj € {0,...,n}.

¢) Remarquer que A est triangulaire supérieure, a termes diago-
naux tous # 0 sauf le premier.

1" méthode : Etude matricielle :
Former la matrice de fdans la base canonique de M (R).
2¢ méthode : Utilisation d’un polynéme annulateur :
Remarquer que f2 est l'identité.

a) 1) Immédiat.
2) + On obtient : Ker (f) = (X + DXX — DR[X].
* Montrer :Im ( f) = Rp[X].
b)+ 0 estvp de fet SEP (f,0) est déja obtenu.

* Montrer que, si (\,P) € R* x (R(X] — {0}) vérifie f(P)=AP,
alors P € Ry[X].

a) - Vérifier: T € L(E).

+ Pour montrer que 7 est surjectif, utiliser le théoreme de Cauchy
et Lipschitz sur les ED linéaires du premier ordre.

b) Revenir a la définition et résoudre une EDL1.
Remarquer d’abord que A, est symétrique réelle.
a ) Montrer que 0 est vp et préciser dim SEP (A,,,0) .

« Il manque (au plus) deux valeurs propres Aj,A,. Utiliser
A2, tr (A, tr(AD).

b) Traduire v/2n — 3 € N.
Raisonner par I'absurde.

Former le polynéme caractéristique de M (a) et détermi-
ner dim SEP (A, —2).

Former le polynéme caractéristique de M. Discuter selon
le signe de ab — ac + bc.

Les valeurs propres sont évidentes. Déterminer les dimen-
sions des SEP associés a 0,1.

1" méthode : Réduction :}

Diagonaliser A, A = PDP~!, et chercher X sous la forme
X = PAP~!, A diagonale.

2¢ méthode : Utilisation d’une particularité de A :

En notant / = I3 et U la matrice dont chaque terme est égal a
1, chercher X sous la forme X = (a — b)I + bU.

Diagonaliser A, en déduire A”, puis lim A".
noo

a) Montrer que B est libre, par exemple en utilisant des
DL5(0).

b) Calculer Df; pour 1 < i < n.

1 0 0 1
¢) 1) En notant I = ( ), J= ( >, remarquer

0 1 1 0
J 1
A= ,
& )
2) Calculer A* —2A% + 1.
d) D'aprés ¢), X* — 2X? + 1 est annulateur de f.

Utiliser la notion de polynéme annulateur.

Utiliser la notion de polynéme annulateur. Etudier les varia-
tions de ce polynome.

Séparer en deux cas selon que 0 est ou n'est pas vp de f.

Exprimer ‘M, puis M = “(*M), pour obtenir un polynéme
annulateur de M, de degré 4.

Trigonaliser A dans M,,(C), et étudier la forme des puis-
sances successives d'une matrice triangulaire supérieure dont
les termes diagonaux sont tous nuls.

a) Immédiat.
b) Raisonner par l'absurde.

¢) Noter B = (e, e2, e3) la base canonique de M3 ; (R), fI'endo-
morphisme de M3 | (R) représenté par A dans B, et chercher
une base C = (v, vz, v3) de M3 | (R) telle que f soit représenté
dans C par T.

a) Montrer:Sp (f o g) — {0} C Sp (g o f), enrevenant aux
définitions.

b) 17 méthode : Etude des caractéres bijectifs :

Séparer en cas selon que fou g est bijectif ou non.

2¢ méthode : Utilisation des polynémes caractéristiques :
Utiliser I'exercice 12.49.

c) Envisager, par exemple, E = C*([0; 1].R) et f : u —> u/,
g :vi+—> g(v),ol g(v) estla primitive de g s'annulant en 0.

Soient 4 € Spc(A), X € SEP (A,1) — {0}.

Considérer la matrice M de M,,(C) obtenue en répétant X cote
a cote, n fois.

a) Calculer AU,ou U € M,, 1 (R) estatermes tous égauxa 1.

b) Soient A € Spr(A), X € M, 1(C) — {0} tel que AX =1X.
Montrer, en passant aux éléments :
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Viefl...n), Ih—aillxal <D ailxl,
i
et considérer i tel que: |x;| = Max |x;].
1<j<n

a) Immédiat.

b) Montrer que, si P est Vp de £, alors deg (P) = 3, puis noter
P =aX’ +bX? +cX+d, (a,b,c,d) € R*,

1) Soit A € Sp(T), f € E — {0} telle que T(f) = Af.
Calculer f(x +n) pourx € [0; +oo[ etn € N.
Déduire:x €] —1; 1.

2) Réciproquement, montrer que, pour tout A € ] — 1; 1[, il exis-
te f € E — {0} telle que T'(f) = Af, en construisant f par inter-
valles successifs.

Former le polyndme caractéristique x» de M, en mani-
pulant des blocs. On peut commencer par multiplier des
colonnes par 1 — X.

1) Commencer par diagonaliser A, A = PDP L,

2) Si M convient, alors M commute avec A, et en déduire la
forme de N telle que M = PNP~'. Résoudre ensuite
N3 —2N =D.

a) Méthode du cours.

b) Remarquer que, si une matrice M vérifie (1), alors M commu-
te avec A.Déterminer la forme des matrices commutant avec D,
matrice diagonale obtenue en a).

Ecrire la matrice A,,.

Raisonner par I'absurde, en remarquant que les valeurs propres
de A, sontOet 1.

Avec les notations usuelles, A = PDP~!.

Pour M e M, (K), noter N=P'MP et résoudre
DN +ND =0.

a) Récurrence sur gq.
b) Montrer : (A¥)? = A* et utiliser un polynéme annulateur.

¢) Calculer (AK — AP)k en utilisant la formule du binéme de
Newton.

a b
a) Noter A = <b ) et traduire que A admet une vp
@
double et que le SEP associé est de dimension 1.
b) Compléter un exemple obtenu en a) par des termes tous nuls.

a) Former le polynome caractéristique de J,,, par exemple
en développant par rapport a la premiere colonne, puis faire
intervenir les racines n-emes de 1 dans C.

Du mal a démarrer ?

b) Remarquer que la matrice envisagée se décompose linéaire-

ment sur L, J,, J2,...,J0~ L.

Montrer:Vx € E, (f —ae)o (f —be)(x) =0,
puis utiliser la notion de polynéme annulateur.

a) Immédiat.

b) Calculer f2(M) pour toute M € M, (K), et en déduire un
polynéme annulateur de f.

a) Utiliser la formule :
VX,Y e My(C), tr(XY)=tr(YX).

b) Utiliser la notion de polynéme annulateur et l'ordre (4) des
matrices envisagées.

¢) 1) Immédiat.

2) Le couple (A,C) vérifie les mémes hypothéses que le couple
(A,B).

Utiliser une factorisation de x4, qui est scindé sur C.

Utiliser la notion de polyndme annulateur et faire interve-
nir une diagonalisation dans M,,(C).

Utiliser la notion de polynéme annulateur et faire interve-
nir une diagonalisation dans M,,(C) .

Utiliser une trigonalisation de A dans M, (K).

a) Supposer f* = 0, k € N*. Montrer :

Sp(f) C {0} et 0€Sp(f).
b) Réciproquement, si K = C et Sp (f) = {0}, utiliser une trigo-
nalisation de f, et étudier la forme des puissances successives
d’une matrice triangulaire supérieure dont tous les termes dia-
gonaux sont nuls.

Utiliser la notion de polynéme annulateur.
Montrer que A — I, est inversible.

Utiliser la notion de polynéme annulateur et utiliser une
trigonalisation de A dans M,,(C).

Raisonner par I'absurde et utiliser I'exercice 12.20.

Commencer par déterminer les matrices qui commutent
avec A.

1) Diagonaliser A, A = QDQ~".

2) Montrer que, si M convient, alors M commute avec A, d’ou la
forme de N telle que M = QN Q~!.Résoudre des équations du
5éme degré dans R.

Utiliser la formule : det (A)I, = A'com (A), et la notion de
polynéme annulateur.
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Envisager, par exemple, les produits matriciels :
AL A I, O
(s )G )
AL A —I, A
(s ) )

et passer aux déterminants.

a) Calculer x ,7(2), en utilisant I'exercice 12.49.
b) Envisager A = —1.

a) Former le polynéme caractéristique de A,, par exemple
en développant par rapport a la premiére ligne.

b) Etudier les variations de ¢.

a) Utiliser: L, «— Ly +ALy_1+---+A""'L;.
(=1)"xa ()

Nz :
a) Former le polynébme caractéristique x, de A(n,z) en

b) Etudier les variations de: ¢ : A —>

développant, par exemple, par rapport a la premiere ligne.

b) Soit A € Spe(A(n,2)). Supposer |A| = 2, noter, pour la commo-
dité, u = |A — 1] et obtenir une inégalité sur w, puis sur |A|.

a) Immédiat.

b) 1) Remarquer que B se déduit de C comme M se déduit de
30
D= ( ),dans a).
0 -1
2) Séparer en deux sens.
a) Soitx € E.
Onax =) px(x),etdéduire A(f)(x).

x
b) Noter Sp (f) = {A1,..., AN} OU Aq,...,Ay sont deux a deux

distincts. Utiliser le cours sur l'interpolation polynomiale.
a) La linéarité de f4 est immédiate.

Pour l'inclusion, examiner les termes diagonaux de f4(T) pour
T €T, ().

b) Utiliser une trigonalisation de A dans M,,(C), A = PTP !,

1) Montrer que § : B —> P~ BP est un isomorphisme d’ev de
C(A) sur C(T).

2) Appliquer le théoréme du rang a :
gr : Ty s(C) — T,,5s(C), Ur— TU —UT.
Utiliser une trigonalisation de A.
1) Un sens est immédiat.

2) Supposer A% diagonalisable. Utiliser un polynome scindé
simple P annulateur de A% et montrer que l'on peut supposer

P(0) # 0. Faire intervenir les deux racines carrées complexes
d'un complexe non nul.

Calculer M? et utiliser 'exercice 12.58.

A 0
Noter N = < )
0 0

a) Chercher une matrice X € M, ,(K) telle que, en notant

b X i -1 ST
e o 1) °" ait:M = PNP~',cest-a-dire MP = PN.
q

¢) Séparer en deux sens.
a) 1) Si f — Ae n'est pas injectif, revenir a la définition.

2) Montrer la non-surjectivité par contraposition. Supposer
P(f) — P(X)e surjectif. Factoriser P(X) — P(X) par X — 1, et
déduire que f — Ae n'est pas surjectif.

n
b) Factoriser: P(X) —p = o [ [(X— ).
k=1
Montrer que A~!' N est nilpotente et utiliser une trigonali-
sation.
Noter A= PDP~!, D = diag (Mily,.. .. Apla,) -

a) Pour X e M,(K), noter M =P 'XP et résoudre
DM = M D en utilisant des blocs.

2)Pour B € M,,(K),noter Z = P~'BP etrésoudre MZ = ZM
en utilisant des blocs.

Récurrence forte sur n.
Pour le passage de n an + 1, séparer en deux cas :
le cas ou toutes les f; sont des homothéties, immédiat

le cas ou il existe ip € I tel que f;, ne soit pas une homothétie.
Considérer les vp et les SEP de f;, et appliquer I'hypothése a la
famille (fix)ier, ou fi x est 'endomorphisme induit par f; sur le
SEP numéro k de f;,.

Soit (f,g) € M*tel que f o g = g o f. Appliquer le résultat
de l'exercice 12.64 a la famille (f7,g”) ou p € N* est a définir.

a) Supposer A et 2A semblables. Montrer :
Vi € Spe(A), Yk e N, 2kx € Spe(A)

etdéduire: VA € Spc(A), A =0.

Utiliser I'exercice 12.42.

b) Considérer, par exemple, E = CZ et :

[ Gn — Q"undn, & : Wn)n —> Wnt1)n-



= Corriges des exercices

Pour (x,y) € R?, notons

X
A=11

1 1 1
y 1|, U=[]2
1 1 O 3

On, a, puisque U # 0 :

UVpde A 3INeR, AU =\U

x+5=XA
< 3INeR, {2y+4=2\
3 =3\

x+5=1 x=—4
— —
2y +4=2 y=—1.
On conclut qu’il y a un couple (x,y) convenant et un seul,
(x,y) = (=4,-1).

1" méthode : Utilisation de la définition :

Puisque U #0 et V #0, A admet U et V pour vec-
teurs propres si et seulement si :

AU estcolinéairea U, et AV estcolinéaire a V.

1 a 2 2+a
Ona: AU—(_1 b)(l)—(_2+b>,donc.

AU colinéaire a U

24a 2
—2+b 1

) _ 1 a 1 _ 1+a )
Et: AV—(_1 b>(1>—<_l+b),donc.

AV colinéaire a V

=0<=a—-2b+6=0.

1+a 1
‘—1+b 1‘_0<:>a—b+2_0.
a—2b+6=0 a=2
Enfin : <:>{
a—b+2=0 b =4.

On conclut qu’il y a un couple (a,b) convenant et un seul,
(a,b) = (2,4).

2¢ méthode : Utilisation d’une matrice de passage :

2 1
> . Il estclair que P estin-

NotonsP = (U V)= <1 1

1 -1
versibleet P! = < > . Lamatrice A admet U et

-1 2

V pour vecteurs propres si et seulement si P~'AP est dia-
gonale. On calcule le produit P~' AP et on obtient :

_ 44a—>b 24+a—->b
PT'AP = .
(—6—a+2b —3—a—|—2b>
Ona: P 'AP diagonale
2—a+b=0 a=2
— <:>{
—6—a+2b=0 b=4.

* Puisque A (resp. B) est triangulaire, les valeurs
propres de A (resp. B) se lisent sur sa diagonale, donc : les va-
leurs propres de A (resp. B) sont 0 (double) et 1 (simple).

X
eSoitX = | y
Z
1)x X € SEP(A,0) <= AX =0

€ M; (R). Ona:

y+z=0 y=0
<:>{ ——
z=0 z2=0,
1
donc SEP (A,0) = Vect | O |, dimSEP (A,0) =1
0

%X € SEP(A,]) &= AX =X

2
donc SEP(A,1) = Vect | 1
1
2)x* X € SEP(B,0) <= BX =0 y+z=0,
1 0
donc SEP (B,0) = Vect( 0], 1 ),
0 1

, dimSEP (A, 1) = 1

dim SEP (B,0) = 2
y==x
* X € SEP(B,1) & BX = X < { o
z=Y,

1
donc SEP (B,1) = Vect | 1
0

Remarque : 11 en résulte que A n’est pas diagonalisable dans
M;(R), et que B est diagonalisable dans M;(RR).

, dimSEP (B,1) = 1.
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a) » On a, pour tout o € R et tous P, Q € R(X] :
f(aP + Q)
=X(@P + O)X) — (aP + Q)X - 1))
=X(aPX) + 0(X) —aPX - 1) — 0(X - 1))
=aX(P(X) - PX— 1) +X(0X) - 0(X - 1))
=af(P)+ f(Q),

donc f est linéaire.
e Soit P € E = R,[X].

Onaalors: P(X) — P(X—1) € R,_{[X], car les termes de
degré n se simplifient, puis :

f(P)=X(PX)— PX—-1) eR,[X]=E.
On conclut que f est un endomorphisme de E.
b) On a, pour tout j € {0,...,n} :
fX) =X(X - (X ~1))

- X(Xf - XI: ({) (—1)f-"xf)

i=0

= X[ — - ] (_1)jflxt _ i ] (_1)j7i71Xi+1
- i=0 i B i=0 i

. J ke
= (—1)/ X",
k=i+1 ; (k - 1)
D’ou la matrice A de f dans la base canonique de E :

0

©)

n

ol le terme situé a la k-eme ligne et a la j-eéme colonne est égal
A (k J 1) (=)™, pour (k. j) € {0,....n}2.

c) * Noyau :

Puisque A est triangulaire, que le premier terme diagonal est
nul et que les autres termes diagonaux sont tous non nuls,
Ker (f) est de dimension 1, de base (1).

* Rang :
D’apres le théoréeme du rang :

rg (f) =dim(E) —dimKer(f) =(n+1)—1=n.
e Image :

Par définition def, on a :

VP eE, f(P)=X(PX)-PX—1))eXR, [X],

donc: Im(f) C XR,_[X].
D’autre part :

dimIm (f) =rg (f) =n =dim (XR,_[X]).
On conclut: Im(f) = XR,_[X] = Vect (X,...,X").
e Spectre :

Puisque A est triangulaire supérieure, les valeurs propres de f
se lisent sur la diagonale de A, donc :

Sp(f) =1{0,1,...,n}.

D’abord, il est clair que f est un endomorphisme
de E.

17 méthode : Etude matricielle

Formons la matrice M de f dans la base canonique
B = (Ei1, E12, Ear, Ezp) de M (R).

Ona: f(Ei) =En, f(Ep)=—-Ep,
f(Ez) = =By, f(Exn) =Ei,

0 O 0 1

|0 -1 0 0
d’ou : M = 0 0 -1 0
1 0 0 0

On calcule le polyndme caractéristique de M, par exemple en
développant par rapport a la premiere colonne :

A0 0 1
0 —1-XA 0 0
X =\ 0 —1-Xx 0
1 0 0 -\
“1-=x 0 0 0 0o 1
—A 0 —1—-X 0l|=l-1=x 0 0
0 0 -\ 0 —1-Xx 0

= (==l =N = (=1 = N)?
=1+ -D=0-DO+1)°.

On déduit que les valeurs propres de M sont :
—1 (triple) et 1 (simple).
On a, pour toute X =

e My (R) :

*MX =—X < x4 = —x;,donc :

SEP (M,—1) = Vect

)

1
0
0

S O = O

=1

1 0 0 1 0 0
g -s((y )8 (0 2)



*MX =X < (x; =x4, x, =0, x3 =0) donc

SEP (M, 1) = Vect , SEP(f,1) = Vect (1 0).

0 1

_—0 O =

2¢ méthode : Utilisation d’un polynéme annulateur (PC, PSI)

b
On remarque que, pour toute A = <i d) :

f2(A)=f(d "’)=(“ ”)zA,
—c a c d

donc : f2 = Isz(]R) o
Remarque : f est une symétrie.

Ainsi, le polyndme X? — 1 est annulateur de A.
Tlenrésulte : Sp(f) C {—1,1}.
a b
On a, toute A = :
n a, pour toute (c d)

*f(A) = —A < d = —a, donc

1 0 0 1 0 0
wgnva(y 213 1 0)

*f(A)=A<+= (d=a, b=0, c=0),donc:

1 0
SEP(f,l):Vect(O 1).

a) 1) On a, pour tout @ € R et tous P,Q € R[X] :

f(aP + Q)
=XX-D@P+ ) (1) + X+ DHX - 1D(aP + 0)(0)

+ (X + DX(aP + Q)(1)
= (XX = DP(=1)+ X+ DHX—=1)P(0)
=+X+DXP(D)) + (XX -1DQ(-1)
+(X+ DX = DOO) + (X + DHXQ(D)
=af(P)+ f(Q),
done f est linéaire.
2)+ On a, pour tout P € R[X] :
P e Ker(f) <= f(P)=0
— XX -DP(D+ X+ DHX-DPO)
+ X+ DXP(1) =0
= (P(=D+ P(0)+ P())X?

+(=P(=D)+ P())X—P0) =0

P(=1)+ PO)+P(1)=0
e« { -P(-)+P(1)=0
P0)=0
P(-1)=0
= {P0)=0 < X+DXX-1)|P.
P(1)=0

On conclut : Ker (f) = (X + DX(X — DR[X].
* % D’apres la définition de f, il est clair que :

VP eR[X], f(P)eR;X],
donc: Im(f) C Ry[X].
FXX—-1)=2X(X-1)
X+ DX -D)=-X+DX-1
F((X+DX) =2(X+ DX,

donc les trois polynomes

*Ona:

A=XX-1,B=X+DHX-1D,C=X+DX

sont dans Im ( f).
De plus,

—A+C=2X,A+C=2X>2B—A—-C=-2,
donc 1,X,X? se décomposent sur A, B,C.
Ainsi :

R,[X] = Vect (1,X,X?) C Vect (A4,B,C) =Im(f).
On conclut : Im (f) = R,[X].
b) * On a étudié plus haut Ker (f).
Il en résulte que O est valeur propre de f et que :

SEP (f,0) = Ker (f) = X+ DXX — DR[X].

*Si(\,P) € R* x R(X] — {0} esttel que f(P) = AP, alors :

1 1
P=1fP)= f(;”) € Im (f) C Ry[X].

Le sev R,[X] est stable par f, car Im(f) C R,[X].
Considérons I’endomorphisme g de R,[X] induit par f sur
R,[X]. La matrice de g dans la base (A, B,C) de R,[X] (dé-

2 0 0
finie plus haut)est: | 0 —1 O |.

0 0 2
Il en résulte que les valeurs propres de g sont2et—1,etque :
SEP (g,2) = Vect (A,C), SEP (g,—1) = Vect(B).

On conclut :

Sp(f) = {~1,0,2)

SEP (f,—1) = Vect (X + D(X — 1))

SEP (f,0) = Vect (X + DX(X — 1))

SEP (f,2) = Vect (X + DX, (X — 1)X) = Vect (X,X?).
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a) * Il est clair que, pour toute f € E, ’application
T(f):x+— f'(x) —xf(x) est définie sur R et que
T(f)€E.

On a, pour tout o € R et toutes f,g € E :
Vx eR, T(af +g)(x)
= (af +8)'(x) —x(af +8)(x)
=af'(x) +8'(x) —axf(x) —xgx)
a(f' () = xf(x)) + (8'x) — xg(x))
al (f)(x) + T(g)(x)
(aT(f) +T(g))x),

T(af +8)=al(f)+T(g),

ce qui montre que 7 est linéaire.

donc :

On conclut : 7" est un endomorphisme du R-ev E.

* Soit g € E. D’apres le théoreme de Cauchy et Lipschitz li-
néaire, il existe f : R — R, dérivable sur R, telle que :

VxeR, fi(x)—xf(x)=g).

De plus, a I’aide d’une récurrence immédiate, f est de classe
C*®,donc: f € E.

Ainsi : VgeE , AfeE, T(f)=g,
donc T est surjective.
b) Soit (A, f) e R x (E —{0}).Ona:
T(f)=Af
— VxeR, fl(x)—xf(x)=Af(x)

= VrxeR, /) —@+Nfx)=0

x2
&5 3CeR VxeR, f(x)=CeTtM

On conclut :
Sp(T) =R

VA eR, SEP(T,\) = Vect(f)),

Y2
oufy:R— R, x+—> eTHAx

On peut d’abord remarquer que A, est symétrique réelle,
donc diagonalisable dans M, (R) . En particulier, le polyndme
caractéristique de A, est scindé sur R.
a)*Ona:rg(A,) =2, donc, d’apres le théoreme du rang :
dimKer(A,) =n—r1g(A)=n—2 > 1.

Ceci montre que 0 est valeur propre de A, et que :

dimSEP (4,,0) =n —2.
¢ [l nous manque donc (au plus) deux valeurs propres, notées
AL, Ag.

* Puisque x4 est scindé sur R :
tr(A) =M\ +M+®m—2)-0,
et d’autre part : tr(A) =2,donc: \; + A\, =2.

* Calculons A2. On obtient :

n 2 ... 2 n
2 2 2 2
2 .. ..
A= @ : :
2 ... 2
n 2 ... 2 n

d’ou : tr(A,zl) =2n+(n—2)2=4n —4.
Et, d’autre part : tr(Aﬁ) = )\% + )\g + (n —2) 0%,
d’oii: A} + \; = 4n — 4. On déduit :
A=+ )= X+ X420 = @n—4) +2)\ ),

d’ou : /\1)\224—21’1

)\1 + )\2 =)

donc A; et A, sont les solutions
)\1)\2 =4 — 211,
de I’équation > — 2t + (4 —2n) =0, d’inconnue ¢ € R.
Le discriminant de cette équation du second degré est
A=4—-44—-2n)=8n—12> 0, d ou, a’ordre pres :

M=1-v2n—3, \y=1+2n—3.

Ainsi, les valeurs propres de A, sont :

Ainsi :

0 (dordre n — 2),
1 — +/2n — 3 (dordre 1), 1+ +/2n — 3 (dordre 1).
b)On a:

1-V2n—-3€Z
Spr(A,) CZ <~
1+/2n—-3€Z

= V2n-3eZ+<3IkeN, V2n-3=k
< 3JkeN, 2n-3=k> (D).
Si n convient, nécessairement k est impair. Donc :
(1) =3t eN, 2n—3= (2t + 1)
< 3reN, n=20"+1+1).
Puisque, de plus, n 2> 3, on conclut :
Spr(A,) CZ = At eN*, n=2>+t+1).

Les premieres valeurs de n sont : 6, 14, 26...

Puisque E;; est triangulaire, ses valeurs propres se li-
sent sur sa diagonale, donc Spy (E;;) = {0}. Si E;; était diago-
nalisable, alors il existerait P € GL,(K) telle que
E;; = POP~! = 0, contradiction.

On conclut que E;; n’est pas diagonalisable.



Formons le polyndme caractéristique de M (a) :

XM(a)()\)
3—a—\ —S5+a a
= —a a—2—M\ a
5 -5 —2—-A
3—X =34+ 0
= —a a—2—M\ a
L =Li=L| 5 -5 —2-2
3—\ 0 0
= —a —2-) a
G —G+C | 5 0 —2-A
—2—-A a
- G=N) —— )

= B=N(=2-X1 = =\ +2%(\—3).

Ainsi, les valeurs propres de M (a) sont :
—2 (double) et 3 (simple).
Déterminons la dimension de SEP (A,—2).

X
On a, pourtout X = | y
Z

S—ax+(-5+a)yy+az=0

€ M3y1 (R) :

AX = 2X = { —ax+ay+az=0

S5x =5y =0

<=>({)ZC:(); sia#O) ou (x:ysia:O).

1 sia#0
Ilen résulte : dim SEP (A,—-2) = {
2 si a=0.
On conclut que M (a) est diagonalisable si et seulement si :
a=0.

Formons le polyndme caractéristique de M, par exemple
en développant par la regle de Sarrus :

-\ a @
N =|b A ¢
b —a -\

= -\ 4+ bch —ach +ab) = —)\()\2 — (ab — ac + bc)).

1" cas : ab —ac +bc >0 :

Alors, M admet trois valeurs propres réelles deux a deux dis-
tinctes, donc M est diagonalisable dans M3(R), donc M est
diagonalisable dans M;(C).

2¢cas: ab—ac+bc <0 :

Alors, M admet trois valeurs propres complexes deux a deux
distinctes, donc M est diagonalisable dans M;(C), mais,

comme Y, n’estpas scindé sur R, M n’est pas diagonali-
sable dans M;(R).

3¢cas: ab—ac+bc=0 :

Alors, x (N = —\*, donc M n’acomme valeur propre (réelle
ou complexe) que 0.

Si (a,b,c) = (0,0,0), alors M = 0, donc M est diagonalisable
dans M3 (R) et dans M3(C).

Supposons (a,b,c) # (0,0,0). Si M était diagonalisable dans
M;(R) ou M3(C), M serait semblable a 0, donc M =0,

contradiction. Ceci montre que M n’est pas diagonalisable
dans M3 (R) ni dans M3(C).

En conclusion :

* M est diagonalisable dans M;(R) si et seulement si :
ab —ac+ bc >0 ou (a,b,c) = (0,0,0)

* M est diagonalisable dans M;(C) si et seulement si :
ab—ac+bc #0 ou (a,b,c) =(0,0,0).

Puisque A est triangulaire, les valeurs propres de A
se lisent sur sa diagonale : O (double), 1 (double).

X

On a, pour tout X = eM; (R) :

Z
t

ay+bz+ct=0

ay =0
dz+et =0
AX =0« — 312z=0
z+ ft=0
t=0.
t=0

Il en résulte : dimSEP (A,0) =2 <= a = 0.
ay+bz+ct=x
AX =X &

De méme : dz+et=y

fr=0
dimSEP (A4,1) =2 <<= f =0.
On conclut que A est diagonalisable si et seulement si :
a=0etf=0.

11 en résulte :

1" méthode : Réduction :

0 1 1
Lamatice A= |1 0 1 | estsymétriqueréelle, donc dia-
1 1 0
gonalisable dans M;(R).
Un calcul élémentaire fournit A = PDP~!, ou :
1 1 2 0 0
P = —1 ,D=10 -1 0 |,
1 0 -1 0 0 1



Sl
P = g 1 -2 1
1 1 -2
V2 0 0
Ennotant A=| 0 i O et X=PAP ! onaalors:
0 0 1

X>=(PAP ") = pPpA’P~' = PDP ! = A.
Ainsi, X convient. On calcule X par produit de trois ma-
trices et on obtient :

" V2421 V2-1 V2-i
X:§ D=0 2L  JB=i
V2—i  2—-i 2420

2¢ méthode : Utilisation d’une particularité de A :

Vu la forme de la matrice A, on conjecture qu’il existe

a b b
X=|b a b | convenant,ou (a,b) € C°.
b b a

1
Ennotant/ =LetU=|1 1 1
1

,ona:

X = A ((a—bI+bU) =-1+U
= (a—b)>1+2b(a—b)U+b> U> =—1+U
——
=3U
> ((@a—b)>+ DI+ (2b(a—b)+3b> - 1)U =0
{(a—b)2+1=0
2ab+b —1=0

a—b=i a=b+i
— —
2ab+b*—1=0 2b(b+i)+b*—1=0
V242
a=b+i 8= 3
=
32 +2ib—1=0 N2-i
3
et on retrouve la méme solution X que dans la premiere mé-

thode.

Remarque : On a déterminé une matrice X convenant, mais
il se peut, a priori, qu’il y en ait d’autres. es.

On forme le polyndme caractéristique de A, on cal-
cule les valeurs propres de A (dans C) et les SEP de A, et,
apres quelques calculs élémentaires, on obtient A = PDP !,

ou :
11 10 0
p=(1 2 j|. p=l0 & o |,
Loy 0 o -if
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1
Pl=z|1 7
1 j* ]
i3
Comme % <l,ona:
10 0
pr=[0 () o
iV3)n
0 0 (=5
1 0 O
—— A=1(10 0 0],
n oo O O 0

d’ou, par continuité des opérations dans M;(C) et en effectuant
le produit de trois matrices :

1
A"=PD'"P' — PAP'=-|1 1 1
noo SN0 0

4
a) Soit (ay,0n,03,04) € R* tel que : Zaif,- =0.
=

Ona:
Vx €R, ajchx 4+ a;shx + azxchx + ayxshx =0.

En prenant le DL3(0),on a:

2 P 2
a1<1 + E) —l—az(x + €> +a3x<1 + ?> + aux?
+ o (x*)=0,
x—>0
c’est-a-dire :

(03] 2
ay + (ap + az)x + (7 4F a4>x
+<% + %))ﬁ +o(x*) =0.
Par unicité du DL5(0) de la fonction nulle, on a alors :

a (€%] [€%]
=0, v +a3 =0, —+a3=0, Z-F?:O,

d’ou : ar =0, ay =0, apb =0, a3 =0.
Ceci montre que B = (fi, f2, f3, f1) estlibre, donc B est
une base de £ = Vect(B), et: dim(E) = 4.
b)*Ona, pourtoutx € R :

Dfi(x) = shx = f>(x),

Dfy(x) = chx = fi(x),

Df;(x) =chx +xshx = fi(x) + fa(x),

Dfy(x) =shx +xchx = fr(x) + f3(x).
Comme D est linéaire, il en résulte :

VfeE, DfeE.

On conclut que D est un endomorphisme du R-ev E.



*Ona:

Dfi = fo, Dfa=fi, Dfs = fi+ fa, Dfa=fo+ f3,
donc la matrice de D dans B est:

0

—_—0 O =
S = = O

S O =
S O O =

1 0 0 1
c)])EnnotantI_<0 1>,et1_<1 0),

onaA=<g ;),d’oﬁ, par produit par blocs :
A2 — J I J I\ J?2 2J (1 2J
~\o J)\o J) \o ) \o 1)
1 2J I 2J I 4J
4 oA22 _ _
w=wr=(5 7)o 7)=(0 7)
2) On a alors :

1 4J 1 2J I 0
4_92A2 = _ —

donc : D* —2D? +1d; =0,
Cest-d-dire: VfeE, f@—2f"+ f=0.

d) * D’apres c), le polyndme P = X* —2X% + 1 est annula-
teurde D.Comme P = (X2 — 1)2 = (X + 1)2(X — 1)?,ilen
résulte, d’apres le cours :

Sp(D) C {—1,1}.

X2

Soit X = e M, (R). Ona:

X4
X1 +x,=0

* AX—X<:>‘x3—O

x4 =0,
1
—1
donc —1 € Spp(A) et SEP(A,—1) = Vect 0
0
Xy = X
¥ A X=X {x=0
X4 :0,
1
1
donc 1 € Spp(A) et SEP(A,1) = Vect 0
0
On conclut :
Sp(D) ={-1,1},

SEP (D,—1) = Vect (f; — f3).
SEP (D, 1) = Vect (fi + f>).

* Puisque la somme des dimensions des SEP de E est 2 # 4,
on conclut que D n’est pas diagonalisable.

1) Soit A convenant.
Le polyndome P = X3 +2X —3 annule A,
et P=(X—1)(X>*+X+3),donc: Spgp(A) C {1}.

—————
A<0

Comme A est supposée diagonalisable dans M, (R), il existe
alors P € GL,(R) telle que A = PI,,P~',d’ou A =1,.
2) Réciproquement, il est clair que I, convient.

Finalement, il y a une matrice et une seule convenant : A = I,,.

Le polynéme P = 2X3 +3X? — 6X — 1 est annula-
teurde A.

Etudions les variations de P.

Ona: P =6X>4+6X—-6=6X>+X—1),
- -1-5 —1++/5
qui s’annuleen x; = ————et X, = ———.
2 2
D’ou le tableau des variations de P :
X |- a X1 p Xy y + o
[ [
P'(x) + (? - +
Tl >0 e
P(x) /“ \l\<0 (/
— ‘ ‘ ~ /‘
Deplus: x; < -1 <0< x,

et: P(—1)=6>0, P(O)=—-1<0.

Il en résulte, par le théoréme des valeurs intermédiaires (P est
continu sur I'intervalle R) et la stricte monotonie par intervalles,
que P admet, dans R, exactement trois zéros «, /3,7, deux a
deux distincts.

Ainsi, P estscindé simple dans R[X] et annulateur de A, donc,
d’apres le cours, A est diagonalisable dans M, (R).

1) Si 0 est valeur propre de f, alors —1, 0, 1 sont va-

leurs propres de f et dim (E) = 3, donc (condition suffisante
du cours), f est diagonalisable.
2) Supposons que 0 ne soit pas valeur propre de f. Alors, f est
inversible. Comme 2o (f> —e) = f* — f> =0, on déduit
f?—e =0. Ainsi, le polyndme X?> — 1 est annulateur de f.
Comme X’ —1=(X—1)(X+ 1), ce polynéme est scindé
simple et annulateur de f, donc, d’apres le cours, f est dia-
gonalisable.

On conclut que f est diagonalisable.
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Ona: ‘M =21, — M?,
d’ou :
M ="'QI, — M?) =21, — (‘M)?
=21, — 21, — M?)? = —M* +4M* - 21,
et donc : M*—4AM> + M + 21, = 0.

Ceci montre que le polyndme P = X* — 4X? + X + 2 estan-
nulateur de P.

De plus :
P=X-DX+X*-3X-2)
=X-DX+2)X>*-X—-1)

=(X—l)(X+2)<X— 1‘2*6)()(_ “”/5).

2

Ainsi, P estscindé simple et annulateur de M, donc, d’apres
le cours, M est diagonalisable.

Puisque A € M,,(C), A est trigonalisable dans M, (C).
Il existe P € GL,(C), T € T, ((C) tellesque : A = PTP~".

Comme A est nilpotente, il existe k € N* tel que A¥ = 0. 11
en résulte que le spectre de A est inclus dans {0}, donc les termes
diagonaux de 7 sont tous nuls :
0 *

=
(0) 0
On voit alors que, dans le calcul des puissances successives
de T, la diagonale de 0 se décale vers le haut :

0 0 *
T2 =
() N
0 ... ... 0
0 0 0
0 0
Tnfl= ,T"=0
(1)) .0
0 ... ... 0 0

dou: A"=(PTP "' =PT"P'=0.

a) Formons le polynome caractéristique :

5[ 1—2) 1 -1
xa\) = (5) 1 —1-2x 1
2 0 —2\
=22 1 0
= 1 —1-2x —2x
G—C+G 8|, . o

1 -2\ 1 0

1
= - -1 —1-22 0
Lo L LS 0 -2x

1 1—2) 1 A ;

=g@V | T W=

b) D’apres a) : Spp(A) ={0}. Si A était diagonalisable,
A serait semblable a la matrice nulle, donc A = 0, exclu.
On conclut : A n’est pas diagonalisable.

c) Notons B = (e, e,, e3) la base canonique de M3 ; (R) et
f T’endomorphisme de M;;(R) représenté par A dans 5.
On cherche une base C = (v;,v;,v3) de M3 (R) telle que f
soit représenté par 7" dans C. On a :

Mate(f) = T<=(f (1) =0, f(v2) = v, f(v3) = 1),

donc, si C convient, alors f2(v3) = f(v2) = v; # 0.

0 0 O
On calcule A% eton obtient: A% = 1 2 2 =2
2 2 =2

1
Par exemple, v; = | 0 | vérifie f2(v3) # 0.
0

1 1
1
Notonsdonc v, = f(vz3) =A|0|==1|1],
2
0 2
Fo) =24 i ! g ! (1)
Ulz Uz = - = - = -
2 2 4 2 2 1

La famille C = (vy,v,,v3) est libre, car :

dets(C) 1(1) i (1) ]‘1 1‘ ]#0
($197] = - = — = — .
L 2 0 411 2 4

Puisque A représente f dans Betque T représente f dansC,
A estsemblablea T.

a)e Soit A € Sp (f o g) — {0}.
On a donc A#0 et il existe x € E — {0} tel que
fogkx)=Ax.Dou:

(80 Ng) = g((f 0 9))) = gOx) = Ag().

Si g(x) =0, alors Ax = f(g(x)) =0, contradiction, car
A#£0Oetx #0.
On a donc g(x) £ 0, etil s’ensuit: A € Sp(go f).
Ainsi: Sp(fog)—{0} CSp(go f).
*Ondéduit: Sp(fog) U {0} CSp(go f) U {0}

* Par roles symétriques de f et g, on conclut :

Sp(fog) U{0}=Sp(gof) U {0}.



b) On suppose ici que E est de dimension finie.

17 méthode : Etude de caractéres bijectifs :

*Si f et g sont bijectifs, alors fog et go f sont bijec-
tifs,donc 0 ¢ Sp (f o g) et0 ¢ Sp(g o f),etondéduitdea) :

Sp(fog)=Sp(gof)
*Si f ou g n’est pas bijectif, alors f og et go f ne sont
pas bijectifs, donc ne sont pas injectifs, (car E est de dimen-

sion finie), donc 0 € Sp (f o g) et0 € Sp (g o f), et on déduit
dea): Sp(fog)=Sp(gof).

2¢ méthode : Utilisation des polynémes caractéristiques :

12.55, Xfog:Xgo]’
Sp(f og) =Sp(go f),puisque le spectre est I’ensemble des
z€ros du polyndme caractéristique.

c) Prenons E = C*([0; 1],R), f: E— E, g: E — E,
ur—u’

v—>g(v)

D’apres 1’exercice donc

ol g(v) est la primitive de v s’annulant en 0.

Alors, go f(1) =0,donc 0 € Sp(g o f), mais f o g = Idg,
donc O ¢ Sp(fog).

Dans cet exemple : Sp(f o g) # Sp(go f).

Soit A € Spe(A).
Ilexiste X € M, (C) — {0} tel que : AX = A\X.

Considérons la matrice carrée M de M,,(C) obtenue en ré-
pétant X cote a cote, n fois, c’est-a-dire que les colonnes de
M sont toutes égales a X.

Onaalors M #0 et AM =AM, d’ou:
MM = 1AM = [|AM]] < Al IM]].
Comme M # 0,ona ||M|| > 0, d’ou finalement :
Al < [1A]].

1

a) En notant U = €M, (R),ona:

I
j=1

AU =

I
I
S

n
E Anj
j=1

Ceci montre que 1 est valeur propre de A. De plus, U est un

vecteur propres pour A, associé a la valeur propre 1.

b) Soit A € Spc(A). 11 existe X € M, 1(C) — {0} tel que
X1

AX = A\X. Notons X = . On a donc :

Vi e {1, .,n}, Za,-jxj = )\)C,',
=1

d’ou: Vie{l,...,n}, A—a;)x; = Zaijx.i’
J#i

puis, en passant aux modules :

A —ail |xi] = |(A — a@ip)xi| =

E :aijxj

J#i
<D laylx] =) iyl
J#i J#i
Ilexiste i € {1,...,n}) tel que : |x;| = Max |x;],
1<j<n -

et on a alors :
A —aiil x| < (Zai,-)|xi| =1 —an)lxi|.

JF#i

Comme X # 0, on a |x;| > 0, et on déduit :

AN—ail <1—a.

n

On conclut : Spe(A) C U B'(a;;, 1 — a;;).
i=1

y

Exemple:n =3,0 < aj; <axn <33<1

a) * Il est clair que f va de R[X] dans R[X].

e La linéarité de f est immédiate, résultant de la linéarité de
la dérivation.

b) Soit (A, P) € R x (R[X] — {0}) tel que f(P) = AP.

Il existe n € N, (ag,...,a,) € R"™! tel que P = Zaka,
k=0

et a, #0.

Alors, f(P) estde degré < n + 2, et le terme de degré n + 2

de f(P) est (n — 3)a,X"*2, d ol nécessairement n = 3.

431



432

Ennotant P = aX> + bX?> + cX +d, (a,b,c,d) € R*, on ob-
tient :

f(P)= AP
— (X* +X)(3aX> +2bX + ¢)
—(3X* — D)(@X® + bX? + cX +d)
= \aX® + bX> + X +d)
— —bX* + (4a —20)X> + (3b — 3d)X*> + 2cX +d
= \aX® +bX> 4+ X +d)
& (b=0,)a=4a—2c, \b=3b—3d,
A =2¢c,\d = d)
<~ (b:O, d =0, \a=4a —2c, /\c:26)

A=2 a=c, b=0, d=0
— ou
c=0, A\=4, b=0, d=0.

Finalement : Sp (f) = {2, 4},

SEP (f,2) = Vect (X> + X), SEP(f,4) = Vect (X°).

Il est immédiat que E est bien un R-ev etque 7 est
bien un endomorphisme de E.

1) Soit A € Sp(T).
Ilexiste f € E — {0} telleque: 7T(f) = \f.

Vx €[0; 400, f(x+1)=Af(x).

Par une récurrence immédiate, il en résulte :

On a donc :

Vx €[0;4o00[, VrneN, f(x+n)=\Nf(x).

Puisque f # 0, il existe xo € [0; +o0[ tel que f(xp) # O,

[+ n) ——> 0, etdonc: Ae]—1;1[.

dot: \' =
fxo)  neo

2) Réciproquement, soit A € ] — 1; 1[.

11 est clair qu’il existe fp : [0; 1] —> R, continue, telle que :
fo(1) = Afo(0) et fo £ 0.1l suffit, par exemple, de prendre pour
Jfo P'application, affine sur [0; 1], qui envoie O en 1 et envoie
lenA.

Considérons I’application f : [0 ; +00[—> R définie, pour tout
x € [0; +oo[,par: f(x) = \"fo(x + n), oun désigne la par-

tie entiere de x.

Tlestclairque: f € EetT(f) = A\f,donc A est valeur propre
de 7.

Sp(f)=1-1;1[

On conclut :

y =f(x)

7»2
7\‘3

-

1 2 3 X

Formons le polyndme caractéristique x,, de M :

I, — XI, L, )

Xu(X) = det < A A—XI,

En multipliant les colonnes numéros n + 1 a 2n par (1 — X),
on obtient :

., B 1- X)In (1 - X,
(1 =X)"xp(X) —det< A (1 —X)(A—Xln))'

En, faisant C;

(I =X)"xu(X)

B 1 =X, 0
_det< A (1—X)(A—XI,,)—A>

Ci—Cj_,pourj=n+1,...2n,0na:

= det (1 — X)I,)) det (— XA — X(1 — X)1I,)
=(1—-X)"(=X)"det (A — (X — DI,)
= (1 =X)"(=X)"xs X =1).

Ainsi: (1= X)"(xy (X — (=X)"x4(X = 1)) = 0.

Comme I’anneau K [X] est integre et que (1 — X)" # 0, on peut
simplifier et on conclut :

xuX) = (=X)"x,X=1).

1) Réduction de A :
Un calcul élémentaire montre que A est diagonalisable et que
A= PDP ' ou:

1 0 -1 0 L, (10
(5 0) o= (3 8 =0 )

2) Résolution de I’équation M®> — M = A :

Si M convient, alors M commute avec A, puisque M com-
mute avec tout polynome en M.

Notons N = P~'MP.



Puisque AM = M A, on déduit DN = ND.

b
EnnotantD:(a ),ona:
c d

R N [
~(F -9

—b=4b b=0
< <:>{
dc = —c e =W,

a 0
il ésulte N =
en résulte <0 J

>,(a,d)e]R2.

On a alors :

M -2M =A< N —-2N=D

a*>—2a+1=0

a® —2a=—1

d*—2d=4 d*—2d—4=0

{(a—l)(a2+a—l)=0
(d—2)(d*+2d+2)=0

—1-v5 —1++5
aeil, ,
2 2
d=2.
Pour chacune des trois matrices N ainsi obtenues, on calcule

M, par produit de trois matrices, et on conclut que I’ensemble
S des solutions de 1’équation proposée est :

—1—/5 —1+4/5

— Y- 0 0
1607 ) (2
5445 2 5—-J5 2

a) * Puisque A est symétrique réelle, A est diago-
nalisable dans M3 (RR) .
e Un calcul élémentaire fournit une diagonalisation de A,
A=PDP~! ou:

1 0 1 30 0
P=|1 1 —-1),D=|0 3 0 ]|,
0 1 1 0 =3

0
2 1 -1
-1 1 2 1.
1 -1 1

b) Remarquons que, si une matrice M vérifie (1), alors M
commute avec A.
Soit M € M3(R). Notons X = P~'MP.Ona:

AM = MA < DX =XD.

I
Comme D = (302 _03> , décomposons X de méme :
Y L
X = (C ; ) .Ona:
DX =XD

— 3L, 0 Y L\ (Y L\(3L 0
0o -3)\c z) \c z 0 -3
PR 3y 3L\ _(3Y -3L

—-3C -3z) \3C -3z

SL =-3L L =0
— <:>{
—3C =3C C=0.

Ceci montre que, si M est solution de (1), alors, en notant

X =P 'MP, X est de la forme Xz(g 0), ol
z
Y e Mh,(R), z € R.

Avec les notations précédentes :

() M*=A<=X*>=D

Yy 0\° (3L 0 Y?=3L
— o “\lo 3)
< - 2 =-3.
Comme I’équation z> = —3 n’a pas de solution dans R, on
conclut que I’équation proposée n’a pas de solution dans M5 (RR) .

Il s’agitde A, = (0) e M, (R).

1

Puisque A, est triangulaire, les valeurs propres de A, se li-
sent sur sa diagonale, donc A, admet pour valeurs propres :
0 (d’ordre n — 2) et 1 (d’ordre 2).

Supposons A, diagonalisable. Alors, A, est semblable a la
matrice diagonale D = diag(1,1,0,...,0). En particulier,
comme D> = D,ona: A*> = A. Mais le (1,n) éme terme de
A? est n, contradiction.

Ceci montre que A n’est pas diagonalisable.

Puisque A est diagonalisable dans M,,(K), il existe
P € GL,(K), D = diag (\;,...,\,) € D,(K)
A=PDPL.

telles que

Soit M € M,,(K). Notons N = P"'MP.Ona:
AM +MA =04 DN+ ND =0.

Notons N = (v;;);;- Ona:
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DN +ND =0
< V(i,j) ef{l,....n}" Nvj+v;\=0
= V(i,j) efl,....n*, N+ =0
——
#0
== V(@,j)efl,....n}* v; =0
& N=0 < M=0.
On conclut, avec les hypotheses de I’énoncé :

AM +MA=0= M =0.

a) Récurrence sur g.
La propriété est évidente pour g = 0.
Si, pour g € N fixé, A¥T7 = A* alors :
Ak+(¢1+1) — A(k+q)+l — Ak+£1A — AkA — Ak+l — Ak .
On conclut, par récurrence sur ¢ :
Vg eN, AF7 = A,

b) En particulier : ARk = Ak cest-a-dire (A¥)? = A*. Ainsi,
le polynéme X> — X = X(X — 1) est scindé simple sur K et
annulateur de A, donc, d’apres le cours, A* est diagonali-
sable.

Plus précisément, A* est une matrice de projecteur.

¢)Soitp € {1,...,k — 1}. Puisque A* et A? commutent, on
peut appliquer la formule du bindme de Newton :

k
(Ak _ Ap)k — Z <Il€) (Ak)i(_l)k—i (Ap)k—i
i=0
- <k) (_1)k7iA(k7p)i+pk'
i=0 i

Vielo,....k}), (k—p)i+ pk>pk >k,

Comme :

ona: Viel{l,. ..k}, AkPiHrk_— gk

d’ou :

k_ aopy ( S (k> kf,-) k
(Af — An = S =D )A
i=0 L

= (1+ (=D)" A% = 0FA* =04* = 0.

On conclut : A*¥ — A” est nilpotente.

a b . 2.9
a)Notons A = ( b ) une matrice symétrique com-
c

plexe d’ordre 2, quelconque, (a,b,c) € C.

Comme x4 est scindé sur C, A n’est pas diagonalisable si et
seulement si : A admet une valeur propre double et le SEP
associé est de dimension 1.

On calcule le polyndme caractéristique de A :

a— \ b

Xa(\) = b c— )\

l:)\z—(a—{—c))\—f—(ac—bz).

Alors :

X4 admet une racine double
= (a+c) —4ac—b)=0
& (@—0c)+4* =0
< c=a+2ib, ¢ ==l1.

Sachant que A admet une valeur propre double, A n’est pas
diagonalisable si et seulement si A n’est pas une matrice d’ho-
mothétie, c’est-a-dire si et seulement si on n’a pas b = 0 et
a = c.Mais,avecc =a +2¢eib,ona: a=c<=b=0.
Finalement, I’ensemble S des matrices symétriques complexes
d’ordre 2 non diagonalisables est :

a b )
S:{<b a+2sib> i (ea,b) e (=L} xCxC }

. . 0 1
b) En particulier, d’apres a), la matrice A, = (1 21)’

obtenue pour ¢ =1,a =0,b =1 est symétrique complexe

non diagonalisable.

Il est alors clair que, pour tout n € N — {0,1}, la matrice

Ay (0)> .
A, = € M,,(C), obtenue en complétant A, par
( ©) () © p 2 p

des termes tous nuls, est symétrique complexe et non diago-
nalisable.

En effet, si A, était diagonalisable, par endomorphisme in-
duit, d’apres le cours, A, serait diagonalisable, contradiction.

On conclut que, pour toutn € N — {0, 1}, il existe une matrice
symétrique complexe non diagonalisable.

a) * Formons le polynome caractéristique de J,,, par
exemple en développant par rapport a la premiere colonne :

-2 1 0)
Xn, A = :
o -1
1 -\ [n]
-2 1 (0)
= (=N )
o -1
A —1]



+ (_ 1)n+1 (0)

©) =A -1
= (NEN"TTH D) = =Dt = .
Il en résulte que les valeurs propres de J, sont les
2i pw .
wr=exp| —— ), p € {0,...,n — 1}, toutes simples.
n
* Puisque J, € M,,(C)) et que J,, admet n valeurs propres deux

a deux distinctes, d’apres la condition suffisante du cours,
J,, est diagonalisable.

b) D’apres a), en notant D = diag (wo,. . .
P € GL,(C) telle que J, = PDP~!.

,wy_1), 1l existe

Soit (ag,..,a,—1) € C". On remarque que :

ap ap 000 (]
ap—1 ag R )
ag [25) 000 dp

=aol, + a1 J, + aZan e ooods an—IJ:_] )

d’ou
ap ap coo a1
a,—q ap coo [ )
D, =
aj ay coo ap [n]
n—1 n—1
- det(ZakJ") - det(zakpmp4>
k=0 k=0
n—1 n—1
= det (P(Y_aD*)P") = det(Y_aD¥)
=0 =0
) n—1 ) n—1 n—1 2i kpﬂ'
=det| diag Z awy | = l_[ Z a exp .
0<sp<n=15=o p=0 k=0 n

Par exemple, pour n = 3, on obtient :

ap ap a
a ap a
a a

= (ao + a1 + @) (ao + a1j + @j)(ao + a1j’ + aj) .

Soit x € E. En notant y = (f — ae) o (f — be)(x),
y = (f —ae)((f —be)(x)) € Im(f — ae)
y = (f —be)((f — ae)(x)) € Im (f — be),

donc: y=Im(f —ae) N Im(f — be) = {0}.

Cecimontre: Vx € E, (f —ae)o(f —be)(x)=0,

(f —ae)o(f —be) =0.

Le polyndme P = (X — ae)(X — be) est donc annulateur
de f. De plus, comme a #= b, P est scindé simple sur K.

c’est-a-dire :

D’apres le cours, on conclut que f est diagonalisable.

a) Il est clair que f estune application de M,,(K) dans
M, (K).

Lalinéarité de f estimmédiate : on a, pour tout @ € R et toutes
M,N e M,(K) :

f(aM + N) =tr(aM + N)A + tr (A)B(aM + N)C
= (atr (M) +tr (N))A + atr (A)BMC + tr (A)BNC
= a(tr (M)A + tr (A)BMC) + (tr (M)A + tr (A)BNC)
=af(M)+ f(N).
On conclut que f est un endomorphisme de M, (K).
b) Cherchons un polynome annulateur de f, scindé simple.

Commencons par calculer f2.
On a, pour toute M € M,,(K) :

F2M) = f(f (M) = (f(M))A +t (A)Bf(M)C

=tr(tr (M)A +tr (A)BMC)A
+tr (A)B(tr (M)A + tr (A)BMC)C

= (tr (M)tr (A) + tr (A)tr (BMC)) A

2 np2 2
+tr (A)tr (M) BAC +(tr(A)) B° M .
De plus :
tr (BMC) = tr (B(MC))
=t ((MC)B) =tr (M(CB)) =0.
=0
D’ou :
FAHM) =tr (M) tr (A)A + (tr(A))zBMC
= tr (A)(tr (M)A + tr (A)BMC) = tr (A) f(M).
Ceci montre : fA=t(Af
Ainsi, le polyndme P = X* — tr (A)X est annulateur de f.
De plus, P =X(X —tr(A)) est scindé simple sur K, car
tr (A) # 0.
D’apres le cours, on conclut que f est diagonalisable.

a)Ona:

tr (B(AB)) =tr ((AB)B) = tr (AB?) = tr (A)
tr (BA)B) = tr (—AB)B) = —tr (AB?) = —tr (A),

donc: tr(A) =0.
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Comme A et B ont des roles symétriques dans les hypo-
theéses, on a aussi : tr(B) = 0.

b)  Puisque A% =14, le polyndme X> — 1 est annulateur
de A. De plus, X2 — 1 = (X — 1)(X + 1) est scindé simple
sur C. D’apres le cours, on déduit que A est diagonalisable.
De méme, B est diagonalisable.

* Puisque X2 — 1 est annulateurde A,ona:Sp (A) C {—1,1}.
Notons « (resp. [3) 1’ordre de multiplicité de la valeur propre

—1 (resp. 1) de A, avec la convention o = 0 si —1 n’est pas
valeur propre de A, 5 = 0 si 1 n’est pas valeur propre de A.

Comme x, estscindé sur C,ona: a+(=4.
D’autre part : 0 = tr (A) = a(—1) + S1.
On déduit : o = = 2.
On conclut que les valeurs propres de A sont :
—1 (double) et 1 (double).
De méme pour B.
c)l)Ona:
C*=(iAB)* = —(AB)(AB) = —A(BA)B
= A(AB)B = A’B*> =L, =1,,
AC+CA=i1(AAB+ ABA)=1A(AB+ BA) =0,
BC+CB=i(BAB+ ABB)=i(BA+AB)B=0.

2) Le couple (A,C) vérifie les mémes hypotheses que le
couple (A, B), donc, d’apres a) et b), les valeurs propres de C
sont —1 (double) et 1 (double), et on a tr (C) =0, d’ou
tr (AB) = —itr (C) =0.

Le polyndéme y, est scindé dans C[X] ; il existe

donc (Af,...,\,) € C" tel que x, = 1_[()\,- —X), d'ou:

i=1
n

Xa(B) = H(/\,‘L, — B).On aalors :

i=l1

x4(B) € GL,(C)

<— (Vi e{l,...,n}, NI, — B e GL,(C))

— (Yiel{l,....n}, N & Spc(B))

<= Spc(A) N Spe(B) = @.
Remarque : Puisque A et B ontdes roles symétriques dans

(1), les conditions (i) ou (ii) sont aussi équivalentes a :
x5(A) € GL,(C).

Par hypothése, le polyndme P = X® — 3X — 4 estan-
nulateur de A.
Ona: P =3X>-3=3X-DX+1),
d’ou le tableau des variations de P :

X —0o0 —1 1 400

P'(x) 0 = 0+

P(x)| —o0 2 Ny -6 S 4

On déduit, par le théoreme des valeurs intermédiaires et la stricte
monotonie par intervalles, que P admet, dans R, un zéro et
un seul, noté . De plus : v > 1.

Il existe donc 3 € C — R tel que :
P=X-a)X-HX-p).

Ainsi, P est scindé simple sur C et annulateur de A, donc,
d’apres le cours, A est diagonalisable dans M, (C).

Il existe donc P € GL,(C) telle que A = PDP~!, ol :

D = diag (a,...,a.0,....0.5....0).
——

—_——— ——

p fois g fois ¢ fois

d'od: det(A) = det(D) = o’ 77 = o”| 48" > 0.

Par hypothése, le polyndme P = X® — 4X? + 6X est
annulateur de A. On a:
P =X(X*—4X +6)
=X((X-2-iv2)(X - 2 +iv2).
donc P est scindé simple sur C.

D’apres le cours, il en résulte que A est diagonalisable dans
M, (C). Il existe donc P € GL,(C) telleque A = PDP~!,0u:

D =diag 0,...,0,,...,Q,@,...,Q),
p fois g fois g fois
eta=2—1i+/2, p,q € N.
Onaalors: A?>=PD?P7!,
doi: tr(A?) =tr(D?) = p-0?+qga? + q@)7>
=q(’ + @)% =4q.
Comme: 0<4q <2(p+2q)=2n,

on conclut : 0 < tr(A%) < 2n.

Puisque x4 est scindé sur K, A est trigonalisable dans
M, (K). Il existe donc Q € GL,(K)

Al *
et T = eT,(K)
©0) An
telles que A = QT Q~!.

Onaalors: P(A) = P(QTQ )= QP(T)Q",
donc :
P()\]) —X k
XP(A) X) = XP(T)(X) = .
0) P\ —X

n

=[] (PO —X) = D" [[(X = POW).
k=1

k=1




a) Supposons f nilpotent.
Il existe donc k € N* tel que f* = 0.
» 1) (PC, PSI) Puisque le polynome X* est annulateur de f, d’apres
le cours,onadonc: Sp(f) C {A€K; A= 0} = {0}.
2) (PT) Soit A € Sp(f). Il existe x € E — {0} tel que
f(x) = Ax. On déduit (a ’aide d’une récurrence immédiate :
F*x) = Xx. On a donc N =0, puis A = 0. Ceci montre
Sp (f) c {0}.
* Montrons que 0 est valeur propre de f.
Puisque f¥ = 0,0na: (det(f))" = det(f*) =0,
donc det(f) =0, f n’est pas injectif, O est valeur propre
de f.
Ainsi: {0} C Sp(f).
Sp (f) = {0}.
b) On suppose ici K = C et Sp (f) = {0}. Puisque K = C,
d’apres le cours, f est trigonalisable. Il existe donc une base

B de E telle que lamatrice 7' de f dans B3 soit triangulaire su-
périeure.

On conclut :

Comme Sp (f) = {0}, les éléments diagonaux de 7" sont tous
nuls, donc 7T est de la forme :

0 *

(0) 0

On voit alors que les puissances successives de 7 sont de la
forme :

0 O *
T? =
© .0
0
0 0 =x
I (0) J0)
RIS = F) ;o T"=0
o -
0

Ainsi, f" =0, donc f est nilpotent.

Par hypothese, le polyndbme P = X?(X —1)? est
annulateur de A. Comme P est scindé sur R, d’apres le cours,
A est trigonalisable dans M,, (R).

D’autre part : Spp(A) C {A e R; P(\) =0} ={0,1}.
En notant a (resp. b) ’ordre de multiplicité de O (resp. 1)
dans x4, onadonc: tr(A) =a0+ bl =b.

Comme, par hypothese, tr (A) = 0, on déduit b = 0, donc
1 n’est pas valeur propre de A.

Il en résulte que A — I, estinversible. En multipliant par I’in-
verse de (A —1,)¢ dans I’égalité d’hypothese, on conclut :

AP =0.

1) Soit A convenant.
Le polyndome P = X° — X? est annulateur de A, et :
P=XX-1)=XX-DX-)X-7
est scindé sur C, donc, d’apres le cours, A est trigonalisable
dans M, (C).
Il1 existe donc P e GL,(C), T € T, (C)
A=PTP "

De plus, les termes diagonaux de 7 sont, a I’ordre pres :

telles que

0 (m fois), 1 (p fois), j (g fois), j* (g fois), ot m,p,q € N
etm+p+2qg=n.

En effet, comme j € C — R, les ordres de multiplicité de j et
j? dans le polyndme y , de R[X] sont égaux.

Alors: tr(A) =tr (T) =m0+ pl +qj+qgi°=p—q.
Ainsi: m,p,q e N, m+p+2g=n, p—q =n,
O=@m+p+29) —(p—q)=m+3q,
doncm =0et g =0, puisp =n.

N

d’ou :

1 *
T = 5
(0) 1

et 0,j,j> ne sont pas valeurs propres de A.

On a donc :

Il en résulte que A, A — jI,, A — j’I,, sont inversibles.
Comme A%(A —I,)(A — jL)(A — ?I,) = 0,
ondéduitA—1,=0, A =1,.

2) Réciproquement, pour A =1,, on a bien A% = A? et
tr (A) = n.

On conclut qu’il y a une matrice et une seule convenant,
A =1,

0O 1 0
Notons N=|0 0 1| eM;(C).
0 0 O

Supposons qu’il existe X € M;(C) telle que X> = N.

On a N3 =0, donc (X?)® =0, X° = 0. Ainsi, X est nilpo-
tente.

D’apres I’exercice 12.20, puisque X € M3(C) est nilpotente,
onaX?®=0.
Alors : N =X’ =X*=XX=0.

Mais N2 = # 0, contradiction.

e 9 @

0
0
0

S O =
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On conclut qu’il n’existe pas de matrice X € M3(C) telle que 1) Réduction de A :

2 214 : . .
X°=N. Un calcul élémentaire montre que A est diagonalisable et
fournit une diagonalisation de A, A = QDQ", ou:
Remarquons que A est triangulaire (inférieure).

0 1 1 -1 0 O
Si une matrice X € M5(R) vérifie X> = A, alors X com- o=\|1 1 1 , D= 0o 1 01,
mute avec A. Déterminons d’abord les matrices qui commu- 0 0 -1 0O 0 3
tent avec A. Dans cet exemple, on peut y arriver par un simple 11 0
calcul sur les éléments des matrices. 0! = 1 o0 1
a b c 0o 0 -1

Notons X = | x y z
2) Soit M € M;(R).

Notons N = Q~'MQ, ou Q est définie ci-dessus.
Onadonc M = QNQ~!,d’ou :

u v w

On a, en effectuant le produit matriciel :

a+b+c b 4c

XA=AX < | x+y+z y 42 P(M)=A < P(ONQ™") = 0DQ"!
u+v+w v 4w
& QP(N)Q~'=0DQ ' < P(N) = D.
a b G
=| a+x b+y c+z
a+4u b+4v c+4w

Si P(N) = D, alors N commute avec D, donc, d’apres 1’exer-
cice 12.63 ou par un calcul élémentaire, on déduit que N est

diagonale.
<:>(c:0,b:0,z:0,v:O,}*:u,u+w:a+4u), x 0 O
NotonsdoncN =0 y 0], (x,y,2) e R®.
a 0 0 0 0 z
donc, en particulier, X estdelaforme X =|x a O |,
P(x)=—1
u 0 w
ou (a,x,u,w) € R*. Ona: P(N)=D = | P(y) =1
En reportant dans 1’équation de I’énoncé : P(z) =3.
a’ 0 O 1 0 0 Il nous reste a résoudre trois équations du 5eme degré dans R.
2 _ 2 _
X'=A 2ax a 02 = 10 L’application P : R — R, 7+ > 41+ 1 est dérivable
autwu 0 w 0 4 (donc continue) sur R et :
— <a2=1,2ax=1,au+wu= 1, w2=4> VieR, P(t)=5"+1>0,
] ] donc P est strictement croissante sur R.
<~ (a:l,w:Z,x=5,u=§) D’autre part :

P(t) — —o0 et P(t) — +o00.
—>—00 t—> 400

( D’apres le théoreme de la bijection monotone, il s’ensuit que,
ou d= -1 w=2 x— _l =1 pour tout C € R, I’équation P(¢t) = C, d’inconnue ¢ € R,
admet une solution et une seule.

1 1 De plus, on remarque :
ou a:—l,w:—z,xz—i,u=_§.
P(-1)=-1, PO)=1, P()=3.

On conclut que ’ensemble S des solutions de 1’équation de P(x)=—1 = —Il
1’énoncé est S = {Xl,Xz,—Xh—Xz}, ou: Il en résulte : P(y)=1 <= 3y=0

1 0 0 I 0 O P(z) =3. z=1.

Xp=|1/2 1 0, Xo={1/2 1 0 ]. On conclut que 1’équation proposée admet une solution et une
1/73 0 2 -1 0 -2 seule, que I’on calcule enfin par produit de trois matrices :



-1 0 0 0 0 -1
M=0| 0 1 0Jo'=|1 -1 -1
0 0 3 0 0 1

On a, d’apres une formule du cours :
det(A)I, = A'com (A) = A(I, — A) = A — A?,
d’ou: A* — A +det (AT, =0.

Notons A =1 —4det(A) le discriminant de cette équation
du second degré.

1 cas: A £0:

Le polynome X?> — X + det (A) estannulateur de A et scindé
simple sur C, donc, d’apres le cours, A est diagonalisable.

2)A=0:

1 1.\?
Onaalors: 0=A>—A+-1,=(A—-=1,),
4 2

donc : Spc(A) C {%}

1
Si A estdiagonalisable, alors A est semblable a Eln, donc

1 1 n 1
A= EI"' Mais alors : det(A) = <E) + 7

car n > 3, contradiction.

Il en résulte que A n’est pas diagonalisable.

On conclut :

1
A est diagonalisable si et seulement si det (A) #= e

On a, dans M, (K) :
AL, A =, 0\ (AB-), A
B 1, B 1,) 0 L)’
AL, A —I, A [ =AL 0
B I, 0 =M,/ \—-B BA-), )’
D’ou, en passant aux déterminants :

. M, A
det (AB — M) = (—1)"det ( 5 Iﬂ),

(=N)"det (BA = I,) = (=1 (=))"det (A; : ) ,

et donc :
(=A)"(det (BA — AlL,) —det (AB — Al,)) = 0.

Comme K [\] estun anneau integre et que le polyndme (—\)"
n’est pas le polyndme nul, on peut simplifier par (—\)”, et on
déduit :

det (BA — AL,)) =det(AB — \lL,),

c’est-a-dire : XAB = XBA-

Voir aussi I’exercice 11.18.

a) On a, pour tout A € C :
Xai V) = det (A4 — L) = det (44 — ML)

= det (AA — \1,) = x5,V X7V -

exercice 11.55

D’apres le cours sur les polynomes, il en résulte que x ,7 est

a coefficients réels, ¢’est-a-dire, avec I’indéterminée X au lieu
de A : x,7 € R[X].

b)Onaalors: det(AA+1,) = x,z(—1) e R.

a) Formons le polynéme caractéristique de A,, par
exemple en développant par rapport a la premiere ligne :

I-x 0 ... 0 1
I 11— (0) 0
XA,,()\): :
: 1) 1-x 0
1 I = Al[n]
il = A (0)
==X .
(1) =X —1]
I 1-X 0 ... 0
c R () N
+(=1)" .0
SN C)) o =4
1 L @ —-1]
noté D,_;
=1 —=N"+(=D""D,_
et:
I 1-X 0 0
(0)
D, = 0
(1) 11—\
1 1 [n]
A l=X 0 0
0 1 L(0)
¢ c_c | 0 =AD,_;.
1 .o1=2A
0 1 i1 g
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De proche en proche :
D,=AD,_ 1 =...=X'""D,

! I_A‘ =N =N

— An—Z
1 1

doti: x,, (V) =1 =N+ (=D"IN2
b) Considérons I’application ¢ : [1; +oo[—> R, définie,
pour tout A € [1; 400, par :

(=1"Xa, (V)

o = (- DA — 1.

P\ =

Ainsi, les valeurs propres de A, situées dans [1; +oo[ sont
les z€ros de .

L’application ¢ est dérivable sur [1; 4-o0[ et, pour tout
A€e|[l;4ool:

80/()\) — I’l()\ _ l)n—l/\7n+2 4 (/\ _ l)n(_n =+ 2)/\7n+l
== D""A" A+ (=n +2)(A = 1))

=A=D""A"(20+ (n—-2)).
D e ——
>0

On en déduit le tableau de variation de ¢ :

A 1 +o0
@' (N 4
e\ | =1 /' too

Puisque I’application ¢ est strictement croissante et continue
sur D’intervalle [l;4o00[ et que ¢(1)=-1 et
p(A) —> o0, d’apres le théoreme de la bijection mono-

—>+00

tone, ¢ admet un z€ro et un seul dans ]1 ; +o0[.

On conclut que A, admet, dans ]1 ; +oo[, une valeur propre et
une seule.

a) Formons le polyndme caractéristique de A :

a—-X 1 0 ... ... 0
a N ()}
0
xan=| “
0
: © .o=x 1
a, 0 ... ... 0 =Xlp

Ln <~ Ln +/\Ln—] G oeo +)\n_1Ll

a— A 1 o ... ... 0
P U )
_ as 0
0
) -2 1
o 0 0 Ol
1 0 0
-\ 0)
— (_1)n+la 0 — (—l)"“a,
o © . .0
0 ... 0 =X llp—1]

a=a, +Mp_1+ -+ N 2a+ N a — N
=a,+ Ny + - Fa N =\
On conclut :
XaQ) = (D" (N = @X'™' + - +ay).
b) On supposeici: Yk € {l,...,n}, a €]0; +oo[.
Notons ¢ :]0; +oo[—> R,

—D)"x 4\ b
/\r—>¢()\):())\#=1_<ﬂ+... ”_>_
Il est clair que x, et ¢ ont, dans ]0; 4+o00[, les mémes zéros.
L’application ¢ est dérivable (donc continue) sur ]0; 4+oo[

, a; na,
et: YA el0; oo, ¢ (\) = F“‘--"{' G >0,

donc ¢ est strictement croissante sur 0 ; 400

Deplus: () — —oo et p(A) — 1.
A—0t A—>

+00
A 400
o' (N o
o(A) -0/ 1

D’apres le théoreme de la bijection monotone, ¢ admet un zéro
et un seul.

On conclut que, dans ]0; +00[, A admet une valeur propre et
une seule.

a) Formons le polyndme caractéristique x, de A(n,z),

la variable étant notée classiquement \, en développant, par
exemple, par rapport a la premiere ligne :

1-Xx 0 ... O z
1 PSP (1) T
Xn(A) = :
B .0
1 .. L 1=



==X\
* 1—)\[”_1]
- 1 1-X 0 0
1 ©)
+(_1)n+lzz 0
G)! =4
1 1 1 [n—1]
noté D,_;
Ona,par Cj«— C; —Cjyy,pourj=n—2,...,1
A 0
0 X *
D, = =",
A 1=A 0
()] 0 A =2
0o ... ... .. 0 I =1

Ainsi : x,(\) = (1 — X" + (=1)"Hz\"72
b) Soit A € SpC(A(n,z)). D’apres a), on a :

A =N+ (=1D)**1z22"2 = 0.
Supposons |A| = 2.
Notons u=[A—1]| =2 |A\|—=1>1>0.0na:
== A =12 = 2| - D+ 1"

<lal(IA = 1+ 1)"7 < Jzl(u + D2

n 1 n—2
Dot : =t gm(ﬂ) :

1 1
LB i,
poop

Comme i > 1,0na:

puis: p? < [z12"72, donc < \/]z]277"

Enfin :
M=[1-1=N|<T+[1=A=1+p

<1+ /]z[257".
On conclut : [A] < Max (2, 1 ++/|z[2271).

Finalement :

Spc(A(n,2)) C B/(O,Max 2.1+ IZIZ%*')).

a) Un calcul élémentaire montre que M est diagona-
lisable et que : M = PDP~', ou:

2 2 3 0 Lo 11 2
P_(l —1)’D_<0 —1)’P _1(1 —2)'

b) 1) On remarque, par un calcul par blocs suggéré par la dia-
gonalisation précédente, en notant / =1, :

A 4AN\ (2 21 3 0\ L1 21
A A) 1 -—I 0 —-A)4a\I =21)°
B notée Q C

I 0
. R = :Ins
Ona 0 <O I> 2

notée R

donc Q estinversibleet R = Q~!.
Ceci montre que B est semblable a C.

2) * Supposons A diagonalisable.

Ilexiste U € GL,(R), A € D,(R) tellesque: A = UAU".
On a alors :

C:(ng —OA)
- (50) (0 W0 &)

——
notée V, inversible =y-!

diagonale

ce qui montre que C est diagonalisable.
3A
0

alors, par endomorphisme induit, —A est diagonalisable, donc
A est diagonalisable.

. . 0 . .
* Réciproquement, si C = ( A) est diagonalisable,

On conclut : B est diagonalisable si et seulement si A est
diagonalisable.

Par commodité, si une somme est indexée par
A € Sp (f), nous la noterons indexée par A seulement.

a) Soit A € K[X].
Puisque f est diagonalisable,ona: E = @ Ey.
A

Soit x € E. Par définition de p), on a :

x=) pax) et VAeSp(f), pa(x) € Ex.
A

On a alors :

APE) =AY pa@) =D A (pax)
A A
cdirs 2 AN = (;Amm)(x),

d’ou :

A(f) =) A)pa.
A

En particulier, pour A = X (polynome de degré 1), on a :
£=>Ap
A

b) Notons Sp (f) = {A1,...,Ax}, ol Aj,..., Ay sont deux a
deux différents.
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Soitj € {1,...,N}. D’apres le cours sur I'interpolation poly-
nomiale, il existe A; € K[X] tel que :

Vi e {1, .,N}, A/()\I) = (5,‘_/ =
On a alors, d’apres a) :
N
Ai(f) =Y AiNpx=Y_A;N)px, = p-
By =

Ainsi: V € {l,...,N}, 3A; € K[X], p,\/.:Aj(f).

Autrement dit, chaque p) (pour A € Sp (f)) est un polynome

en f.

a) e Soit A € M,,(C).

N estclairque f4 : M — AM — M A est une application de
M, (C) dans M,,(C).

La linéarité de f, est immédiate : pour tout a € C et toutes
M,N € M,,(C) :

faaM + N) = A(aM + N) — (aM + N)A
— (AM — MA) + (AN — NA) = afs(M) + fA(N).
Onconclut: VA € M,(C), fa € L(M,(C)).
*Soient A € T, (C), M € T, ;(C).
Notons A = (a;;)ij, M = (m;;);;.

Alors, fa(M)=AM — MA €T, (C)
i €f{l,...,n}, le terme diagonal numéro i de f4(M) est

et, pour tout

ajimi; — m;;a; =0.
Cecimontre : YM € T, (C), fa(M) eT, (C).

Onconclut: YA €T, (C), fa(T,.s(C)) C T, (C).
b) Soit A € M,,(C).
D’aprés le cours, A est trigonalisable dans M,,(C). 1l existe
P € GL,(C), T € T, (C) tellesque A = PTP~".
1) Montrons que I’application 6 : B —> P~'BP estun iso-
morphisme de C(A) sur C(T).
* f est bien une application de C(A) dans C(T), car, pour toute
BeC(A),ona:
0(B)T = (P~'BP)T = P"'B(PTP~")P = P"'BAP

=P 'ABP = (P'AP)(P"'BP) =TO(B),
donc 6(B) € C(T).
e Il est clair que C(A) et C(T) sontbien des C-ev.
e La linéarité de # est immédiate.
e Pour tout U € C(T), il existe B € C(A) unique tel que
O(B) =U,cestB= PUP~".
Ainsi, 0:C(A) — C(T), B— P 'BP

est un isomorphisme d’ev.

Onadonc: dim(C(A)) = dim (C(T)).
2) D’autre part, d’apres a) et le théoreme du rang, appliqué a
gr ' T,s(C) — T,,C), Ur—TU —UT,
ona:
dimKer (¢7) = dim (T, (C)) — dimIm (gr)
> dim (T, 5(C)) — dim (T, 4(C)) = n.
Enfin :
Ker (g7)={U € T,s(C); TU =UT}=T,(C) N C(T).
D’ou :
dim (C(T)) > dim (T, ((C) N C(T)) = dimKer (g7) > n.

On conclut : dim (C(A)) > n.

Puisque A € M,,(C), d’apres le cours, A est trigona-

lisable.
)\1 k

Il existe P e GL,(C), T = eT,(C),
0 An

tellesque : A = PT P~

Comme rg (A) = 2, d’apres le théoréme du rang :

dimKer(A) > n—2.
On peut donc supposer A; = ... = \,_, =0, par exemple.

On a alors :
O0=tr(A) =) N=0n—20+ 1+
k=1

/\n—l T /\n =0.
0 *

donc :

Si\,_;1=0,alors\, =0,T = .
0 0
En calculant les puissances successives de 7', on obtient 7" = (0

(cf. aussi I’exercice 12.20), puis :

A" =(PTP'Y'=PT"P' =0,

contradiction.
Onadonc: A\, | #0.
Puisque A\, = —\,_; # 0, les trois nombres complexes

0, Ay—1, A\, sont deux a deux distincts. De plus :
dimKer(A) =n —1g(A) =n—2,
dimKer (A — \,_1I,) > 1, dimKer (A — \,1,) > 1.

On conclut : A est diagonalisable dans M, (C).



1) Il est clair que, si A est diagonalisable, A = PD P!
ot P € GL,(C), D € D,(C), alors A? est diagonalisable,
puisque A2 = PD?P~L,

2) Réciproquement, supposons A? diagonalisable.

D’apres le cours, il existe P € C[X] scindé simple tel que
P (A?%) = 0.On peut supposer P normalisé, c¢’est-a-dire dont
le coefficient du terme de plus haut degré égal a 1.

* Supposons X | P.

Il existe alors k € N*, O € C[X] tels que P =X*Q et
0(0) # 0, d’ ot A*Q(A?) = 0.Comme A est inversible, on
déduit Q(A?) = 0, et on est ramené au cas suivant.

* Supposons X | P, c’est-a-dire P(0) # 0.

Ainsi, P est scindé simple non multiple de X. Il existe donc
N € N*, zy,...,zy € C* deux a deux distincts tels que

N
P=]]X-z.
k=1

N
On a donc : I_I(A2 —zI,) = P(A*) =0.

k=1

Notons, pour chaque k € {1,...,N}, u; une racine carrée com-
N

plexede z, et R = 1_[ ((X —up) (X + uk)). Il est clair que R

k=1
est scindé simple et annulateur de A, puisque

R(A) = P(A%) =0.

D’apres le cours, on conclut que A est diagonalisable.

On remarque :

=5 G -5 &)

a) 1) Supposons A B diagonalisable.
Comme BA = B(AB)B™! ~ AB, BA est aussi diagonali-

BA
sable. Il est clair alors que ( 0 0 ) est diagonalisable.

AB

D’autre part :
(det (M) = det (M?) = det (BA) det (AB)
= (det (4))*(det (B))® # 0,
car A,B € GL,(C).
Ainsi, M est inversible et M? est diagonalisable.

D’apres I’exercice 12.58, on conclut que M est diagonalisable.

2) Réciproquement, supposons que M est diagonalisable.
Alors, M? est diagonalisable.

BA 0
0 AB

morphisme induit par un endomorphisme représenté par M>,
donc A B est diagonalisable.

Comme M? = ( ) AB est matrice d’un endo-

Finalement, M est diagonalisable si et seulement si A B est dia-
gonalisable.

A 0
Notons N = .
otons (0 O)

a) Cherchons, par exemple, une matrice X € M,, ,(K) telle que,
I
0 I,
M=PNP ' Ona:

en notant P = ( ), qui est inversible, on ait :

M =PNP~' &< MP = PN
A B\ (I, X\ _ (I, X\(A O
"Lo o)\o 1,)7\o 1,/ o o
A AX+B\ (A 0O
"o 0 ~\o 0
< AX+B=0 < X=-A"'B.
I, —A7'B

0o I

versibleet M = PN P!, ce qui montre que M et N sont sem-
blables.

b) D’apres a), M est diagonalisable si et seulement si N est dia-
gonalisable.

Ainsi, en notant P = ( >, la matrice P est in-

D’autre part :

A 0
* si A est diagonalisable, alors ( 0 0) est diagonalisable

A 0
*si < 0 O) est diagonalisable, alors, par endomorphisme

induit, A est diagonalisable.

A O
Ainsi, (0 0) est diagonalisable si et seulement si A 1’est.

A B
On conclut que ( 0 0 ) est diagonalisable si et seulement

si A est diagonalisable.

a) 1) Supposons f — Ae non injective.

Alors, il existe x € E — {0} tel que (f — Ae)(x) = 0, c’est-a-
dire f(x) = Ax.

Il s’ensuit, d’apreés le cours :
(P(f) = POV) ) =0.

Ceci montre que P(f) — P(\)e n’est pas injectif.

P(f)(x) = P(A\)x, donc

2) Raisonnons par contraposition.

Supposons P (f) — P(Ne surjectif. Puisque le polyndme
P(X) — P(A\) s’annule en ), il existe Q € C[X] tel que :

PX)—PN)=X-1)0X).
Onadonc: P(f)—PNe=(f—Ae)o Q(f).
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Soity € E.Puisque P(f) — P(\) estsurjectif, il existex € E
telque: y = (P(f) — P(NV)(x).

Onaalors: y=(f — Ae)(Q(f)(x)).

Cecimontre: Vye E,dx € E, y=(f — Ae)(x),

donc f — Ae est surjectif.

On a montré, par contraposition, que, si f/ — Ae n’est pas sur-
jectif, alors P(f) — P(\)e n’est pas surjectif.

b) Le polyndme P(X) — p est scindé sur C. Il existe donc
neN aeC*t,...,t, €Ctels que:

PX)—p=a][X-u).
k=1

Onaalors: P(f)—pe=oa(f —tie)o---o(f —tye).

Si, pour tout k € {1,...,n}, f — tre estinjectif (resp. surjec-
tif), alors, par composition, P(f) — pe estinjectif (resp. sur-
jectif).

Il en résulte, par contraposition, que, si P(f) — pe n’est pas
injectif (resp. n’est pas surjectif), alors il existe k € {1,...,n}
tel que f — e n’estpas injectif (resp. n’est pas surjectif), donc
il existe A € C tel que x = P()\) etque f — Ae n’estpas in-
jectif (resp. n’est pas surjectif).

Puisque A et N commutentetque A estinversible,
A~! et N commutent. En effet :
AN = NA = A '(AN)A ' = A {(NA)A!

= NA'=A"'N.

Comme A~' et N commutentetque N estnilpotente, A~'N
est nilpotente. En effet, il existe k € N* tel que N* = 0, et
ona: (AT'N)*=(A"HENF = 0.
D’apres le cours, AN est trigonalisable dans M, (C).
Comme de plus A~'N est nilpotente, sa seule valeur propre

est 0. Il existe donc P € GL,(C) telle que A™'N = PT P!,
ou 7 est triangulaire supérieure a termes diagonaux tous nuls :

0 *
T =
(0) 0
On a alors :
det (A + N) = det (AL, + A™'N))
= det (A)det (I, + A~'N) = det(A) det (I, + PTP~")
= det (A)det (P(I, + T)P~") = det (A) det (I, + T).

1 *
Comme : det(I,+7) = . =1,
0) 1
on conclut: det(A + N) = det (A).

Puisque A estdiagonalisable, il existe P € GL,(C),
D eD,(C) tellesque: A= PDP~! ou:

D =diag (\1,..., A1, Ap, 0 A)
e —_—
w, fois w, fois
Alw, 0)
Ainsi : D = .
0) Aplw,

a)* Soit X € M,,(K). Notons M = P"'XP.Ona:
X € C(A) &= AX = XA < DM = MD.

Décomposons M en blocs de la méme fagon que pour D ci-
dessus : M = (m;;)i<i j<p OUles M;; sontdes blocs. Ona:

DM = MD
— V(l,]) & {1,...,]7}2, )\l‘ Iw[M,'j = M,//\j Iw/.

=V (@,j) ell...,p, N —\)M; =0
&V (Q,j) €{l,....p}, (i # j = M;; =0),

car Aj,. .., A, sont deux a deux distincts.
On conclut :
M, 0)
C(A):{PMP";M: ,
©0) M,

M, € ka(K)}.

Il est clair que C(A) est un K-ev et que 1’application

M+ PMP~" est un isomorphisme d’ev de C(D)
sur C(A).
On a donc :
J JJ
dim (C(A)) = dim (C(D)) = Y " dim (M, (k) = Y _w}.
k=1 k=1

b) ¢ Soient B € M,,(K), Z= P~'BP.
On a, avec les notations de a) :
BeC'(A) < VXeC(A), XB=BX

—VMeCD), MZ=7ZM.
Décomposons Z en blocs de la méme fagon que pour D,
Z = (Zij)ij, ou les Z;; sont des blocs.
Ona:

B € C'(A)
= VYMy,...,M,, Y (i,j)ef{l,....p}" M;Zij=Zi;M;
= V@) efl,....pY, (i#j=Z;=0),

comme on le voit en examinant le cas particulier M; = I, et
M; =0.



Ainsi, si B € C'(A), alors Z est diagonale par blocs, de la

Z 0)
forme Z = . , et alors :
0 Z,
B € C'(A)
= VYM,... .M,V G,j) ell,....p}*, M;Z; =Z;M;
= Viel{l,...,p}, YM; e My, (K), M;Z; = Z;M;.

De méme qu’en @), on montre que, si une matrice carrée M;
commute avec toute matrice carrée, alors M, est de la forme
aily,, ol a; € K.

La réciproque est évidente.

On a donc :
B e C'(A)
allwl 0)
— I(v,...,0) € K?, Z= )
0) aply,
Finalement :
aqly, 0)
C'(A) = {PZP’I; Z= )
) aply,

(ovq,...,0p) € K"}.
* Il est clair alors que C’(A) est un K-ev et que :

dim (C'(A)) = p.

Récurrence forte sur 7.
La propriété est évidente pourn = 1.
Soit n € N*,
Supposons la propriété vraie pour tout entier p € {1,...,n} et
soient £ un K-ev de dimension finie #n + 1, / un ensemble non

vide, (f;)ic; une famille d’endomorphismes diagonalisables
de E commutant deux a deux.

Le cas ou toutes les f; sont des homothéties est d’étude im-
médiate.
Supposons qu’il existe iy € I tel que f;, ne soit pas une ho-
mothétie.
Notons Aj,...,A. les valeurs propres distinctes de f;,
E,...,E,les SEP pour fj, associés respectivementa \j,. .., \,.

Puisque f;, est diagonalisable et n’est pas une homothétie,
ona:Vke({l,...,r}, 1 <dim(Ey) < n.

Soient k € {1,...,r},i € I. Puisque f; et fj, commutent,
d’apres le cours, Ej est stable par f;. Notons f;; ’endo-
morphisme de E; induit par f;. Pour chaque k € {1,....,r},
(fix)ier estune famille d’endomorphismes de E; commutant

deux a deux, donc, par hypothese, il existe une base By de Ej
telle que :

Vi el, Matg (fix) € D, (K),

ol ny = dim (Ey) < n.

Notons B la réunion ordonnée de By,. . .,B,. Alors, B est une
base de E et, pour tout i € /, la matrice de f; dans B est dia-
gonale.

Ceci montre le résultat pourn + 1.

On a établi la propriété demandée, par récurrence forte sur la
dimension de E.

Soit (f,g) € M> telque fog=go f.
Puisque f € M, il existe k € N* tel que f* soit diagonalisable,
et, puisque g € M, il existe £ € N* tel que g* soit diagonali-
sable. Notons p = k¢ € N*. Puisque f et g commutent,
ona:

(fog)” = fFog”=(fo(g".

Comme f* et g' sont diagonalisables, il est immédiat que
(f9¢ et (g9* sont diagonalisables. Puisque f et g com-
mutent, ¥ et g” commutent. D’apres I’exercice 12.64, il en
résulte que f7 et g” sontsimultanément diagonalisables, c’est-
a-dire qu’il existe une base B de E telle que les matrices de f”
et g” dans B soient diagonales. Par produit, la matrice de
f? o g? dans B est diagonale. Ceci montre que (f o g)” est
diagonalisable. On conclut: fog e M.

a) Supposons A et 2A semblables.
Soit A € Spc(A). Alors, 2)\ € Sp(A), puis, par une récurrence
immédiate : Vk € N, 25\ € Spp(A).
Si A £ 0, alors les 2€)\, lorsque k décrit N, sont deux a deux

distincts, donc A admet une infinité de valeurs propres, contra-
diction.

A=0.
Ceci montre : Sp(A) C {0}.

On a donc :

D’autre part, puisque A € M, (C),ona Spp(A) £ @.
Il en résulte : Sp(A) = {0}.
D’apres I’exercice 12.42, on conclut que A est nilpotente.

Remarque : La réciproque est vraie, c’est-a-dire que, si A est
nilpotente, alors A est semblable a 2A. Mais la résolution clas-
sique de cette question utilise la réduction de Jordan, qui n’est
pas au programme.

b) Prenons E = C%, le C-ev des suites complexes indexées
par Z. Considérons 1’application

f E— E7 u = (un)nEZ > (znun)neZ .
Ilestclairque: f € L(E).

* On a, en notant 1 la suite constante égale a 1 :

J) = 2%nez,
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puis, par récurrence immédiate :
VkeN, f1) = @z £0,
donc: VkeN fk+£0.

Ceci montre que f n’est pas nilpotent.

* Considérons I’application

g§:E—E, (un)nez —> (Upt1)nez-

Ilestclairque: g e L(E).

On a, pour toute u = (U, )nez :
(go fog Hw) = (go f)(n-1Inez) = g((2"ttn—1)nez)
= Q"Mu)nez = 2Q2" Uy ez = 2f ().

Ainsi : gofogl=2f
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Espaces

prehilbertiens réels

Il Plan I

Les méthodes a retenir 448
Enoncés des exercices 451
Du mal a démarrer ? 460
Corrigés 465

Thémes abordés dans les exevcices

Montrer qu’une application ¢ : E x E —> R est une fbs

Montrer qu’'une application ¢ : E —> R est une fq, et expliciter la forme
polaire ¢ de ¢

Etude de signe pour une fq

Obtention d’inégalités faisant intervenir des ps ou/et des normes euclidiennes

Etude des endomorphismes orthogonaux, manipulation des matrices orthogo-
nales

Etude de sev orthogonaux, de sev supplémentaires orthogonaux, détermination
d’un projeté orthogonal, d’une distance

Détermination d’un adjoint, manipulation d’un ou plusieurs adjoints (PSI)

Etude de matrices symétriques réelles, de matrices symétriques positives, de
matrices symétriques définies-positives

Inégalités issues de matrices symétriques positives

Décomposition de matrices en divers produits.

Points essentiels du cours
pour la résolution des exercices

Définition de fbs, de fq, formules les reliant, propriétés de calcul

Définition de fq positive, de fq définie-positive

Interprétation matricielle des fbs (PT)

Définition de ps, d’eve, produits scalaires usuels

Inégalité de Cauchy et Schwarz, inégalité de Minkowski, études des cas d’éga-
lité

Définition et propriétés de I’orthogonalité

Théoréme de projection orthogonale sur un sev de dimension finie dans un
espace préhilbertien réel

Définition et propriétés des endomorphismes symétriques (ou : auto-adjoints)
Définition et propriétés des endomorphismes orthogonaux

Définition et propriétés de I’adjoint d’un endomorphisme d’un eve, interpréta-
tion matricielle dans une b.o.n. (PSI)

Théoréme fondamental (ou: théoréme spectral) pour un endomorphisme
symétrique, pour une matrice symétrique réelle
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Définition de S, de S}, de matrice symétrique positive, de matrice symé-
trique définie-positive

Caractérisation des éléments de S} ou S+ parmi ceux de S, (R) a I'aide de
leur spectre

mmmme | es méthodes a retenir

Par commodité, on utilise les abréviations suivantes :

ev pour : espace vectoriel
sev pour : sous-espace vectoriel

fbs pour : forme bilinéaire symétrique

fq pour : forme quadratique
ps pour : produit scalaire

eve pour : espace vectoriel euclidien

b.o.n. pour : base orthonormale.

Sauf mention contraire, n désigne un entier > 1.

Pour relier
fbs et fq associées

Pour montrer

qu’une application
¢o:E— R

est une fq sur un R-ev E

Pour établir
une inégalité portant
sur des produits scalaires

ou/et des normes euclidiennes

Pour montrer

qu’une matrice rectangulaire

(éventuellement carrée) M
est nulle

Utiliser :
— I’expression de la fq ¢ associée a ¢ : Vx € E, ¢(x) = ¢(x,x)

== Exercice 13.1
— une expression de la fbs ¢ associée a la fq ¢ :
1
V(@))€ % px,y) = 2 (60 +3) — () = 6(y),
1
V(x,y) € B, p(x,y) = 7 (6G+3) = o0 — ).

== Exercice 13.1.

Exprimer la forme polaire ¢ de ¢ par dédoublement, et vérifier que ¢
est une fbs sur E et que ¢ est la fq associée a ¢.

== Exercices 13.3, 13.7, 13.25, 13.26.

Essayer d’utiliser I’'inégalité de Cauchy et Schwarz, moins fréquem-
ment 1’inégalité triangulaire.

== Exercices 13.4, 13.46.

11 suffit de montrer ||M||5 = 0, ¢’est-a-dire : tr (M M) = 0.
== Exercices 13.14, 13.42, 13.46, 13.47.
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Pour obtenir des inégalités
ou des égalités portant

sur des produits scalaires
ou des normes euclidiennes

Pour montrer que deux sev
F,G d’un espace
préhilbertien (E,(.|.))

sont orthogonaux entre eux

Pour montrer qu’un sev G
d’un eve (E,(.|.))

est ’orthogonal

d’un sev F de E

Pour calculer

le projeté orthogonal pr(x) d’un

élément x d’un espace
préhilbertien (E,(.].))
sur un sev F

de dimension finie de E

Pour étudier

un endomorphisme
orthogonal f

d’un eve (E.(.|.))

Pour traduire
qu’une matrice A € M3(R)
est orthogonale

Les méthodes a retenir

Essayer, si les inégalités usuelles semblent inopérantes, d’introduire
un parametre A réel dans une inégalité liée a la notion de produit sca-
laire, puis faire varier \ et choisir A au mieux, ce qui revient souvent
a traduire qu’un certain discriminant est < 0, comme dans la preuve
classique de I’inégalité de Cauchy et Schwarz.

== Exercice 13.56.

Revenir a la définition, c¢’est-a-dire montrer :

Vxe F,VyegG, (x|y)=0.

== Exercice 13.6 a).

Montrer : VxeF,VYyeG, (x]y)=0
et : F®&G=E ou dim(F)+dim(G) =dim(E).
== Exercice 13.6 a).

* Si on connait un sev G de E tel que E = F @ G, décomposer x en
x=y+zouye FetzeG,etonaalors pp(x) =y.

== Exercice 13.6 b).

* Si on connait une b.o.n. (fi,...,f,) de F, appliquer la formule du

P
cours : pp(x) = Z(fk [ ) fi-
k=1 == Exercice 13.5.

Essayer d’utiliser :
—la définition :  V (x,y) € E?, (f(x) | f(y)) =]y
== Exercice 13.30

— la caractérisation par la conservation de la norme :
Vx e E, |[f()ll = [lx]l

— la caractérisation par le fait que I’image d’une b.o.n. soit une b.o.n.
— la traduction matricielle dans une b.o.n. B : Matz(f) € O,(R).

En plus des caractérisations des matrices orthogonales d’ordre n quel-
conque, penser a utiliser un produit vectoriel.

== Exercices 13.19, 13.20.
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Pour calculer ’adjoint
d’un endomorphisme f
d’un eve (E.(.|.))

Pour manipuler
un (ou des) adjoint(s)

Pour résoudre

une question
faisant intervenir
une (seule) matrice
symétrique réelle S

Pour résoudre

une question
faisant intervenir
une (seule) matrice
de S, oudeS;

Pour transformer
une expression
faisant intervenir
une matrice S de S;

Essayer de :
— se ramener a la définition de 1’adjoint, c’est-a-dire exprimer, pour
(x,y) € E? quelconque, (f(x) | y) sous la forme (x ’g(y)), ou g est
indépendant de x et y.

== Exercice 13.21

— utiliser la matrice A de f dans une b.o.n. B de E, et on a alors :
Matgz(f*) = A.

Utiliser la définition :  V (x,y) € E%, (f(x)|y) = (x| f*().
eten particulier:  Vx € E, [[f(0)[* = (x| f*o f(x)).

w= Exercices 13.32, 13.33, 13.48, 13.49.

Utiliser :

— la définition : 'S = §

— le théoréeme fondamental (ou : théoreme spectral), sous sa forme
matricielle :

VS eS,(R), I(2,D) € 0,(R) x D,(R), S=02DN"".

On est ainsi ramené a 1’étude d’une matrice diagonale, pour laquelle
on pourra passer aux éléments.

w= Exercices 13.14, 13.37 a 13.40, 13.43, 13.58, 13.64, 13.67,
13.70, 13.72 2 13.74, 13.76 & 13.78.

Utiliser ’un ou/et 1’autre des deux résultats suivants :
—la définition de S € S oude S € S} :

S e8! <= (SeS,®) et (VX €M, (R), XSX >0))
S €S = (S eS,R) et (VX €M, (R) — (0}, XSX > 0)).
> Exercices 13.10, 13.13, 13.17, 13.40, 13.62. 13.63, 13.69

— la caractérisation des matrices de S;" ou de S parmi celles de
S, (R) al’aide de leur spectre :

SeS < (SeS,(R) et Spr(S) C Ry)
SeSt < (SeS,(R) et Spr(S) CRY),

qui n’est pas dans le cours, mais est un exercice incontournable.
== Exercices 13.9, 13.11, 13.15 a 13.18, 13.60, 13.61, 13.64,

13.67, 13.72, 13.78.

Essayer d’utiliser ’existence d’une matrice R de S telle que R* = S,
cf. exercice 13.11.

== Exercices 13.41, 13.53 a 13.55, 13.59, 13.71, 13.72.
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Pour résoudre

une question

dans laquelle interviennent
deux matrices

symétriques réelles A,B

Enoncés des exercices

Essayer de :
— appliquer le théoréme fondamental a A et répercuter la transforma-
tion sur B :

A=0D27', 2€0,R), DeD,R), B=0C",

ou C n’est pas nécessairement diagonale, mais C est quand méme
symétrique.

Se ramener ainsi a une matrice diagonale (D) et une matrice
pleine (C) au lieu de deux matrices pleines (A, B).

== Exercices 13.55, 13.60.

=mmme Fnoncés des exercices

—

—

— 13.3

Etude de sev inclus dans le cone isotrope d’une forme quadratique

Soient E un R-ev, ¢ une fbs sur E, ¢ la fq associée a ¢. On note C(¢) le cone isotrope de ¢,
c’est-a-dire : C(¢) = {x € E; ¢(x) = 0}.

Etablir, pour toutsev Fde E: F C C(¢) < (V(x,y) € F?, p(x,y) = O).

Réciproque de I’inégalité de Cauchy et Schwarz

Soient £ un R-ev, ¢ une fbs sur E, ¢ la fq associée a .
On suppose : ¥ (x,y) € E2, (c,o(x,y))2 < d(x)é(y). Montrer : ¢ > 0 ou ¢ < 0.
Exemple de forme quadratique positive sur un espace de fonctions

1 1 2
Onnote E = C([0;1]; R)yet ¢ : E —> R, f,_>/ f2_<f f)'
0 0

a) Montrer que ¢ est une fq sur E et exprimer sa forme polaire.

b) Montrer que ¢ est positive et déterminer le noyau de .

Exemple d’intervention de ’inégalité de Cauchy et Schwarz

Soient (E,||.||) un espace vectoriel normé réel, n € N*, (xy,...,x,) € E", (ay,...,a,) € R".
n 2 n n

> <(Za?)<2nx,~n2).

i=1 i=1 i=1

Matrice d’une symétrie orthogonale

Montrer :

Former, dans R” usuel muni de sa base canonique B et de son produit scalaire canonique (. | .), la
matrice de la symétrie orthogonale autour de la droite vectorielle engendrée par un vecteur unitaire

v=(vq,...,0,).

Orthogonalité entre S, (R) et A, (R)

Soit n € N*. On munit M,, ; (R) de son produit scalaire canonique

(M,N)— (M |N)=tr("MN).
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a) Montrer que S, (R) et A, (R) sont deux sev supplémentaires orthogonaux dans M,,(R).

b) 1) Pour toute M € M,,(R), calculer la distance d(M .S, (R)) en fonction de M.

2) Exemple : Pour M = » " E;, calculer d(M.S, (R)).

i=1
— 577/ Exemple de fq définie positive sur un espace de polynémes
- p q p P poly
1
Onnote E = XR[X]etg: E— R, Pr— / (P+P)HP'.
0

Montrer que E est un R-ev et que g est une fq définie positive sur E.

- Calcul d’une borne inférieure par théoréme de la projection orthogonale

1
Calculer Inf / 2*|Inx —ax — b|’ dx.
(a.b)eR? Jo

_— o aractérisation des matrices symétriques positives parmi les matrices symétrique réelles
C érisation d . ymétriques positives p il . ymétriq éell
Soit § € S, (R). Montrer :
a)S €8S} < Spr(S) C Ry b) S € ST <= Spr(S) C R%.

- | [531[1)| Somme de matrices symétriques positives

p
Soientn,p € N*, §,,...,S, € S;/. Montrer : ZSk =0 (Vk e{l,....p}, S =0>.
=1

— 531 Existence de la racine carrée symétrique positive d’une matrice symétrique positive
Montrer: @) VS €S, AR €S, S=R? b)VSeSit ARSI, S=R>.
(On pourra utiliser I’exercice 13.9.)

- |57 24| Inversibilité de la somme d’une matrice symétrique définie positive et d’une matrice
antisymétrique

Soient S € S, A € A, (R). Montrer: S + A € GL,(R).

- |[53157| Exemple de matrice symétrique positive
n—1 si i=j

—1 si i#j

Soientn = 2, A = (a;;);; € M,,(R) définie par : a;; =
Montrer: A € ST. A-ton A € S ?

- |53 ['7 Matrices symétriques nilpotentes, matrices normales nilpotentes
a) Soit S € S, (R) nilpotente. Montrer : S = 0.

b) Soit A € M,,(R) normale, ¢’est-a-dire telle que '‘AA = A'A, et nilpotente. Montrer : A = 0.

— 531 5)) Matrice de S; issue d’une matrice de S}

Montrer: VS € S+, S+ 57! — 21, € S}.
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Enoncés des exercices

571 13)| Matrices symétriques telles que S” = I,

pimpair — S=1I,
Soient p € N*, § € S,,(R) telle que S” = I,. Montrer :

p pair = 2 =1,.
5517/ Matrices de la forme 4A
Soient A € M,(R), S = 'AA.
a) Montrer: S € ST. b) Etablir: § € §;* <= A € GL,(R).

'[53111) Factorisation d’une matrice diagonalisable
Soit M € M,,(R) diagonalisable dans M, (R).

Montrer: 34 € ST+, 3B € S,(R), M = AB.

‘531 E)| Matrices orthogonales d’ordre 3 dont la premiére ligne est imposée

Trouver toutes les matrices A € O3(R) de premiere ligne ( % g O) .

1[59241) Matrices de similitude directe dont les deux premiéres colonnes sont données

2 =1 a
CNS sur (a,b,c) € R? pour que la matrice A = 2 2 b | soitla matrice, dans une b.o.n.,
-1 2 ¢

d’une similitude directe.

' [5774 1| Exemple de détermination d’un adjoint
Soient (E,(.|.)) uneve, a,b € E. Déterminer I'adjoint f* de f € L(E) défini par :

VxeE, f(x)y=(|x)b—(b|x)a.

57724 CNS pour que p* € Vect (e,p)
Soient (E,(. | .)) uneve, e = Idg, p € L(E) tel que p> = p.

Montrer : p* € Vect (e, p) < p* = p.

|[517457 Image d’une forme quadratique

Soient £ un R-ev non réduit a {0}, ¢ une fbs sur E telle que ¢ # 0, g la forme quadratique asso-
ciée a . Montrer :

1) q positive <= q(E) = R, 2) g négative < ¢g(E) = R_

3) g ni positive ni négative <= g(E) = R.

[5972:7 Exemple de fq définie par un polynéme homogene de degré 2
Soitn e N telquen > 2.0Onnote: ¢ : R" — R, (xq,...,x,) —> Z (x; —xj)z.

I<i<j<n
a) Vérifier que ¢ est une fq positive sur R".

b) Déterminer le cone isotrope de ¢, c’est-a-dire C(¢) = {x € R"; ¢(x) = 0}.
'[577457 Etude de signes pour une fq sur un espace de polynémes

+00
Onnote E=R[X]et¢p: E — R, Pr— ZP(n)P(—n) e,

n=0
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a) Montrer que ¢ est une fq sur E.

b) On note E (resp. E_) le sev de E formé des polyndmes pairs (resp. impairs). Montrer que
E. et E_ sont des sev de E supplémentaires dans E, orthogonaux pour la forme polaire ¢
de ¢, et que :

(VP eEL—{0}, ¢(P)>0) et(VP e E_—{0}, ¢(P)<0).

— 1159747 Etude d’une forme quadratique
Soient (E,(.|.)) uneve, p € N*, (a,...,) € (RD)?, (uy,... ,u,) € E.

P
Onnote: ¢: E — R, x —> ¢(x) = Zai(ui |x)*.
io1

a) Montrer que ¢ est une fq sur E, et exprimer sa forme polaire .

b) CNS sur (uy,...,u,) pour que  soit un produit scalaire sur E.

— '[537°47 Annulation d’un produit scalaire
Soient (E,(. | .)) un eve, f € L(E), A\, € Sp(f) tels que A < 0 < g, x (resp. y) un vecteur
propre de f associé a A (resp. p0). Btablir : 3z € [x; y], (f(2)|z) =0,

ou [x; y] désigne le segment de E joignantx ety : [x;y] ={(1 —t)x +ty; t € [0; 1]}.

— 157741 Exemple de produit scalaire sur un espace de polynomes
Soit (ay,. . . ,a,) € R™!. Onnote E = R,[X] et :

pExEr—R, (P.O)— Y PYa)0% ).
k=0

a) Montrer que ¢ est un produit scalaire sur E.

b)Danslecasn =2, ap = —1, a; =0, a, = 1, trouver une b.o.n. de E pour .
— 5774’} Comportement d’une forme quadratique au voisinage de 0
Soient (E LG .)) un eve, ||.|| la norme euclidienne associée a (. |.), ¢ une fq sur E. Montrer :
lp(x) [
[lx[l x—o0
— 13.30 Endomorphisme orthogonal d’un espace de matrices carrées

On note, pour A € M,(R) : fa : M,,(R) — M,,(R), M — AM.
CNS sur A pour que f,4 soit un endomorphisme orthogonal de M,,(R) muni de son produit sca-

laire canonique.

— 57571 Orthogonaux de sev dans un espace de fonctions
LEZEAN Orthog p

1
Onnote E = C'([0; 115 R) et, pour (f.g) € E>: (f]g) = f(0)g(0) + / f(0g () dr.
0

a) Vérifier que (. |.) est un produit scalaire sur E.
b) 1) Quel est I’orthogonal de F = Vect (eg),ouey: [0;1] — R, t+— 17

2) Quel est I’orthogonal de G = {g € E; g(0) =0} ?



© Dunod. La photocopie non autorisée est un délit.

Enoncés des exercices

1153594 Etude de Ker (f +/*) pour f tel que f2 = 0
Soient (E,(.|.)) une eve, f € L(E) tel que f? = 0.

Montrer : Ker (f + f*) = Ker (f) N Ker (f*).
'[57575) Noyaux de polynomes de f ou de f*
Soient (E,(.|.)) uneve, f € L(E), P,Q € R[X] premiers entre eux.
Montrer : Ker (P(f)) L Ker (Q(f%)).
|[5357. 1 Endomorphismes orthogonaux f tels que Sp (f +f*) = {2}
Soient (E,(.|.)) uneve,e =1dg, f € O(E), g = f + f*.
Montrer : Sp(g) = {2} < f =e.

'[575%7 Exemple de matrice symétrique définie positive
On note A = (Min (i, j)) € M,,(R). Montrer: A € S},

1<i,j<n

|[51517) Terme diagonal nul dans une matrice symétrique positive

Soit § = (a;;)i; € S, Montrer que, si un terme diagonal de S est nul, alors tous les termes de S
situés dans la ligne ou dans la colonne de celui-ci sont nuls.

|[5757/ Expression variationnelle du rayon spectral

Soit S € S. On note \j,...,\, les valeurs propres de S (non nécessairement distinctes),

p(S) = ]1\</[a<x [A\il, le rayon spectral de S, ||.||, la norme euclidienne canonique sur M, (R).
<i<sn

Démontrer : p(S) = Sup [1SX]],.

XM, 1 (R), [IX]2=1
'[5751 Endomorphismes symétriques dont le spectre évite un intervalle
Soient (E,(.|.)) uneve, f € S(E), (a,b) € R* tel que a < b.
On suppose : Sp (f) Nla; b[= @. Montrer: Vx € E, (f(x) —ax| f(x) — bx) >0,
et étudier le cas d’égalité lorsque Sp (f) N [a; b] = &.

1
[5753°) Encadrement des vp réelles de A a P’aide des vp de 2 A +'A)

1
Soient A € M,,(R), S = E(A + 'A).,

On note « (resp. [3) la plus petite (resp. grande) valeur propre de S.

Montrer, pour toute valeur propre réelle A de A : o < A < .

[57211) Matrice symétrique par blocs
A B
Soient (p.q) € N*)*, AeS/*.CeS* BeM,,(R), M = (lB _C> eM,;,(R).

Démontrer que M est symétrique et inversible.

57271 Inégalité issue de I’inégalité de Cauchy et Schwarz
Montrer: Y S € S, VX, Y e M, ;(R), (XSX)('YS™'Y) > (XY)%
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— (|53 74 Trace et matrices antisymétriques, symétriques, symétriques positives
Soit (A,B) € (A, (R))z. Montrer : tr ((AB — BA)*) > 0 et étudier le cas d’égalité.
— |53 57 Exemple d’équation matricielle faisant intervenir une transposée
Résoudre 1’équation X' X X = I,, d’inconnue X € M,,(R).
— {57227 Caractérisation des matrices de SO, (R)
tr('AA) =2
Soit A € M(R). Montrer : A € SO,(R) <—
det(A) = 1.
— 1155205 Etude de noyau pour une matrice vérifiant une condition de positivité

Soit A € M,,(R) telle que : VX € M, | (R), 'XAX > 0. Montrer : Ker (A) = Ker (‘A).

e — '[57217 Borne supérieure sur un cercle de matrices

Déterminer la borne supérieure de tr (X) + tr (Y) lorsque le couple (X,Y) de (M,, (]R))2 véri-
fie: ' XX +'YY =1,.

— |53 7/| Matrices M nilpotentes telles que I,, + M soit orthogonale
Déterminer ’ensemble des M € M, (R) telles que M soit nilpotente et que I, + M soit
orthogonale.

= 1[5 1] Noyau et image d’un endomorphisme normal

Soient (E,(. | .)) un eve, f € L(E) normal, c’est-a-dire tel que : f o f* = f* o f. Montrer :
a) Ker (f*) = Ker (f) b)Ker(f) @ Im(f)=E ¢ Im(f*) =Im(f).

= (5722 ) Endomorphismes tels que f o f* = f>
Soient (E,(. | .)) uneve, f € L(E). Montrer: f o f* = f? < f = f*.

= |[53411) Expression de tr (f* of) a P’aide de deux b.o.n.
Soient (E,(. | .)) uneve,n =dim (E) = 1, f € L(E), B=(ey,...,e,), B' = (¢},...,e,) deux
b.o.n. de E. Montrer : Z (fed |ej’-)2 =tr(f*o f).

I<i,j<n

T 13.51 Endomorphisme d’un espace de polynomes

On note £ = R[X] muni du produit scalaire (.|.) défini par :

1

1 P(x)Q(x)dx.

Y(P,Q) € E*, (P|Q) =/

On note, pour tout n € N, E, = R, [X].

a) 1) Montrer que, pour tout n € N, il existe f, € L(E,) unique tel que :
VP.Q € E. (P[fi(Q)=(XP|Q).

2)Etablir: Vn e N, Vk €{0,...,n— 1}, f,(X5) = X**!.
3) Est-ce que f, est auto-adjoint ?

b) Calculer f>(X*) pour k € {0,1,2}.



© Dunod. La photocopie non autorisée est un délit.

Enoncés des exercices

| [575724 Racine carrée symétrique positive d’une matrice symétrique positive

a)Montrer: VS € S+, 3R e S, R*=S.
On dit que R est la racine carrée symétrique positive de S, et onnote : R = S'/2.
b) Etablir: VS eSH, 3P eR[X], $'*=P(S).

c) En déduire que, pour tout (A,B) € (S;)?, A et B commutent si et seulement si A'/? et B!/2
commutent.

| 575755) Décomposition polaire dans GL, (R)
Démontrer : VA € GL,(R), £2,5) € O,(R) x Sf+, A= (28S.

n

| [5957 | Diagonalisabilité de certains produits de deux matrices

Soient A € S§*, B € S,,(R). Montrer que A B est diagonalisable dans M,,(R). (On pourra utiliser
I’exercice 13.11.)

|[§35757 Trace d’un produit de deux matrices symétriques positives
Soient A,B € S;". Montrer : 0 < tr (AB) < tr(A) tr (B).

Noyaux de blocs d’une matrice symétrique positive

A B
B C
AeM,R), BeM,,[R), C € M,(R). Montrer :

Soit S €S} partitionnée en blocs : S = ( ), ot (p,q) e N2, p+q=n,

Ker (A) C Ker (B) et Ker(C) C Ker(‘B).

|[5357/| Concavité, convexité de fonctions liées 2 un spectre

Soient A,B € S,(R). On note, pour tout r € R, f(r) (resp. g(¢)) la plus petite (resp. grande)
valeur propre de A + ¢ B. Montrer que f est concave et que g est convexe. (On pourra utiliser
I’exercice 13.37.)

(5751 Matrices satisfaisant une condition de trace
Soit A € S, (R) telleque : VB € St*, tr(AB) > 0. Montrer: A € S;.

n

K708 Spectre complexe de SA, pour S € S/t et A +'A € S
Soient S € ST, A € M,,(R) telleque A +' A € S

Démontrer : VA € Sp(SA), Ré(N) > 0. (On pourra utiliser I’exercice 13.11.)
K370 Etude de AB + BA = 0, pour A € S;, B € S,(R)

a) Soient A € S, B € S, (R) telles que AB + BA =0. Montrer: AB=BA=0.

b) Donner un exemple de couple (A, B) tel que :

AeS;—{0}, BeSf—{0}, AB=BA=0.

|[5301 1| Produit scalaire issu d’une matrice par blocs

Soit A € St

, . 2 0 Y
Montrer que I'application ¢ : (M, ;(R))” — R, (X,Y) —> —det X A

est un produit scalaire.
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—r—r |[53174 Matrice de Hilbert
1
On note H, = (—) € M,,(R). Montrer: H, € S}*.
i+j—1 1<i.j<n
] |[531757 Matrice inversible issue de matrices symétriques positives

Démontrer : VA € S}, VB € Sf, I, + AB € GL,(R).

] | [5372 | Inégalité sur un déterminant de matrice symétrique positive

Montrer: V.S € S, 1+ (det (8))"" < (det (1, + $))"".

o e ——1 {53051 Famille obtusangle
Soient (E,(. | .)) uneve,n =dim(E) > 1.

Une famille finie (xy,...,x,) d’éléments de E est dite obtusangle si et seulement si :
Vi) el{l..p (i # )= (ilx) <0).

a) Soit p € N —{0,1}. Montrer que, si (xy,...,X,) est obtusangle, alors (xi,...,X,_1) est
libre.

b) En déduire qu’il n’existe pas de famille obtusangle dans E, de cardinal > n + 2.
e e | '[53011) Déterminants de matrices carrées extraites d’une matrice orthogonale
Soientn € N—{0,1}, p € {1,...,n — 1}, 2 = (w;;)ij € 0,(R),

A %
A= (w,'j)lgi,jgp, B = (wij)erlgl‘,jgn, de sorte que : = <** B) .

Montrer : |det (A)| = |det (B)| € [0; 1]. (On pourra utiliser I’exercice 12.49.)

e s | | [53 7/ Inégalité de convexité, inégalités de Hadamard

a) 1) Soit S = (s;j);; € S; 7. Onnote Ay,...,\, les valeurs propres de S (non nécessairement dis-

tinctes). Soit f : [0; +00[— R une application convexe. Démontrer : Z f(sii) < Z FOw).
i k=1

i=1

n’

2) En déduire : VS = (sij)ij € Sr, det (S) < HS,’,‘.
i=1

n n 1/2
b) Etablir : VA = (a;j);; € M,,(R), |det(A)] < (]‘[Zuﬁ) .

i=1 j=I

e e e K111 Majoration d’une valeur absolue de déterminant
Soient (., 8) € (R})?, A € M,,(R) telle que : 'AA = A + FA.

Démontrer : |det (A)| < (a+ B)". (On pourra utiliser I’exercice 13.67 b).)

o s s s |[5110°) Matrice symétrique positive dont les termes sont des aires
Soient Dy,...,D, des domaines simples de R? (pour lesquels on puisse définir I’aire). On note,
pour tout (i,j) € {1,... n)?, a;j laire de D; N D;, et A = (a;;);j € M,(R). Démontrer :
AeS/.
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Enoncés des exercices

———— 5371} Etude de matrices normales

Soit A € M,,(R) telle que A'A = 'AA. On suppose que les valeurs propres de 'AA sont toutes
simples. Démontrer : 'A = A.

e s s | 53741 Caractérisation des matrices A diagonalisables, par une factorisation de ‘A

Soit A € M,,(R). Montrer que les deux propriétés suivantes sont équivalentes :

(i) A est diagonalisable dans M,,(R) (i) 3S € S}, 'A = ST1AS.

—r—r—r— | [537/2 Inégalités sur déterminants et traces
n 1
a) Montrer : VS € S, (det (8))"/" < —tr (S).
n

b) En déduire :

n/2
)Y A € M, (R), |det(4)] < (%tr (‘AA))

1 n
2)VA,BeS;}, det(A)det(B) < (— tr(AB)) .
n

—r—r—r— |[537/57 Les matrices 'AA et A4 sont orthogonalement semblables

Soit A € M,,(R). Montrer que A'A et 'AA sont orthogonalement semblables, ¢’est-a-dire qu’il
existe 12 € 0, (R) telle que : AA = QUAAN".

e —— — '[597£7 Mineurs de Gauss

a) Soit A = (a;;);j € S,(R). Pour chaque p € {1,...,n}, on note A, = (a;;)1<i.j<p € Sp(R).
Les det(A,), 1 < p < n, sont appelés les mineurs de Gauss de A.

@) Montrer: A € S| = (V p € {1,...,n}, det(4,) >0).

) La réciproque du résultat précédent est-elle vraie ?

~) Démontrer : A € S| <— (Vp e{l,...,n}, det(4,) > 0).
b) En déduire que S, est un ouvert de S;.

c)Soienta €] —1;1[ et A = (a"/1) 1 j<,.Montrer : A € Sf+.

e s s | | [537/:7 Décomposition de Choleski

Soit § € S, (R). Démontrer :
a)SeSf < (AT €T, (R), S="TT)

b)S €St < (AT € T,s N GL,(R), S ='TT).

e — — 1747 Inégalité sur les vp d’une matrice symétrique réelle a termes > 0

Soient A € S, (R) a termes tous > 0, Aj,...,\, les valeurs propres de A, rangées de sorte que :
A1 = ... 2 N\, Démontrer : \; > |\,].

—=r—r—1— 5370/ Orthodiagonalisation simultanée d’une famille commutative de matrices symétriques
réelles

Soient I un ensemble non vide, (S;);<; une famille d’éléments de S, (R), commutant deux a deux.
Démontrer qu’il existe £2 € 0, (R) telle que : Vi € I, £27'5;02 € D,(R).
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53741 Simplification de matrices symétriques positives

Soit P € R[X] tel que P(0) =0 et que P|g, soit strictement croissante.

Soient A,B € S telles que P(A) = P(B). Montrer : A = B.

(On pourra utiliser I’exercice 13.77.)

Soient S € S,,(R), Aj,...,\, les valeurs propres de S, rangées de sorte que : A\; > ...
1}, on note F, I’ensemble des sev de M,, ; (R) de dimensionn — r.

— 1}, Ay = Inf (

Pour chaque r € {0,...,n —

Démontrer : Vr € {0,...,n

15974 Théoreme du minimax de Courant et Fischer

Sup

XeF et XX=1

‘XSX).

eFr

msese Du mal a déemarrer ?

Utiliser, pour le sens =, I'expression de ¢(x,y) a l'aide
de ¢p(x +y), ¢ (x), ¢(y), et, pour le sens <=, I'expression de
¢ (x) al'aide de ¢.

Raisonner par l'absurde.

a) Considérer I'application ¢ : E x E —> R obtenue par
dédoublement de ¢, et montrer que ¢ est une fbs et que ¢ est
la fq associée a ¢.

b) 1) Utiliser I'inégalité de Cauchy et Schwarz pour des inté-
grales.

2) Utiliser le cas d'égalité dans I'inégalité de Cauchy et Schwarz
pour des intégrales.

Appliquer convenablement l'inégalité triangulaire et I'in-
égalité de Cauchy et Schwarz.

Avec les notations usuelles, et en notant p I'orthoprojec-
teur sur Rv,ona:s =2p —e et p(x) = (v|x)v.

a) Pour montrer |'orthogonalité, calculer (S|A) pour
SeS,(R) et AeA,(R),etobtenir (S|A) =0.

b) 1) Décomposer M sur S, (R) et A, (R).

Considérer l'application ¢ : E x E —> R obtenue par
dédoublement de ¢.

13.8

pour tout x € [0; 1], par :

xInx si
f(x)={
0

si x=0

Noter, par exemple, f,¢1,¢2 les éléments de E définis,

x#0

o1(x) =27, pa(x) = x,

et F = Vect (¢1,92) .

Interpréter la question comme le calcul du carré de la distance
de fa F. Appliquer le théoreme de projection orthogonale et
chercher le projeté orthogonal ¢ de f sur F sous la forme
agy + bga, (a,b) € R,

a) 1) Supposer S € S;7. Soit A € Spg(S). Utiliser un vecteur
propre V pour S, associé a la valeur propre A.
2) Réciproquement, supposer : Spg(S) C R.

Utiliser le théoréme fondamental (ou : théoreme spectral), puis
se ramener a un calcul faisant intervenir une matrice diagonale.

b) Reprendre a) en précisant le caractére strict de certaines
inégalités.

13.10

B
‘X(Zsk>x, pour X € M,, 1 (R).

k=1

Un sens est évident. Pour l'autre sens, calculer

{5911 a) Utiliser le théoréme fondamental, 'exercice 13.9, et la
matrice diagonale formée des racines carrées des valeurs
propres de S.

b) Compléter a) par une étude d'inégalités strictes ou d'inversi-

bilité.

1507 soit X €M, (R) telle que (S+A)X =0. Déduire
'XSX =0,puis X =0.

m PourX = "(x;

quer:

x,) € M, ;(R), calculer'XAX et remar-

XAX = |U|PNXIP = U |X)*, ouU="1 ... 1).

Z M.
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a) Utiliser le théoréme fondamental.

b) Appliquer a) a S = 'AA, puis utiliser la norme euclidienne
associée au ps canonique sur M, (R).

Utiliser le théoreme fondamental et |'exercice 13.9 pour se
ramener a des matrices diagonales.

Utiliser le théoréme fondamental pour se ramener a une
matrice diagonale.

a) Calculer'XSX pour X € M,, 1 (R).
b) Compléter a) par une étude d'inversibilité.
Utiliser le théoréme fondamental et I'exercice 13.17.

En notant Lj,L,,L3 les lignes de A, vérifier ||L;|| =1,
¢), traduire (L1 |Ly) =0 et ||L2|3 =1,
puis, au signe prés, L3 = L A L.

noter L, = (a b

D’aprés le cours, A est la matrice, dans une b.o.n., d'une
similitude directe si et seulement si :

Ja eRY, aA €SO3R).
1
Noter Ci,C>,C3 les colonnes de §A, et traduire la condition

1
§A € SO3(R), en utilisant un produit vectoriel.

Exprimer (f(x)|y), pour tout (x,y) € E? sous la forme

(x]...).
Un sens est évident.

Réciproquement, supposer p* = ae + Bp, (a,8) € R?.Calculer
p*opetséparerencas: a+ B #0, o+ B =0.

» Montrer d'abord les implications directes, dans les trois
cas:

1)sig =0 et g #0,il existe x € E tel que g(x) > 0 et remar-

quer:Vs e Ry, t:q(%}c)
q(x

2) le cas ¢ < 0 estanalogueaucas g = 0

3) si g n'est ni positive ni négative, utiliser u,v € E tels que :
qu) <0etg(v) > 0.

« 1) Montrer la réciproque en raisonnant par I'absurde et en uti-
lisant les implications directes de 2) et 3).

2),3) Analogues a 7).

a) Remarquer qu'il s'agit d’'un polynéme homogéne de
degré 2,a valeurs > 0.

b) Immédiat.

Du mal a démarrer ?

a) * Ne pas oublier de montrer que, pour tout P € E, la série

Z P(n)P(—n)e™", converge.
n=0

- Considérer I'application ¢ : E x E —> R obtenue par dédou-
blement de ¢.

a) Considérer 'application ¢ : E x E —> R obtenue par
dédoublement de ¢.

b) Remarquer ¢ > 0 et traduire que ¢ est définie-positive.
Se rappeler que le segment joignant x et y dans E est, par
définition :
lr;yl={(0—nx+ty; t€[0;1]}.
Considérer l'application u : [0; 1] —> R définie par :
re0;1] — u@t) = (f((l —0)x +1y) ’ a —t)x+ty),
et appliquer le théoreme des valeurs intermédiaires.

a) Certaines vérifications sont immédiates. Pour montrer
@(P,P) = P = 0, raisonner sur les degrés.

b) Appliquer le procédé d'orthogonalisation de Schmidt a la
base canonique (1, X, X2) de E.

Utiliser le résultat du cours sur une majoration relative aux
applications bilinéaires en dimension finie.

Traduire que, pour tout (M, N) € (M, (R))2 3
(faM) | fa(N)) = (M| N).
a) Immédiat.

b) 1) Pour f € E, traduire f € F*.

2) Montrer G- C F en considérant, pour f e G',
g = f — f(0)ep.Verifier :eg € G*.

1) Une inclusion est immédiate.
2) Réciproquement, soit x € Ker(f+ f*). Déduire

f o f*(x) =0, puis, en utilisant le ps, montrer f*(x) = 0.
Appliquer le théoreme de Bezout.
+ Un sens est évident.

* Réciproquement, supposer Sp (g) = {2}. Remarquer que g est
symétrique et appliquer le théoréme fondamental, puis déduire
g =2e.Calculer (f —e)*o(f —e).

1" méthode : Utilisation d’une factorisation de A :

Remarquer A = 'TT ou T est une matrice triangulaire trés
simple. Appliquer alors I'exercice 13.17.
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2¢ méthode : Décomposition de la fq en somme de carrés :
Obtenir, avec les notations usuelles :

XAX = (0 + 4+ x)2 + 22,

Soit ief{l,...,n} tel que a; =0. Considérer,
pourj € {l,...,n}telquej #i,etpoura € R :
Y(aE; +E,‘)S(OzE,‘ +E_,‘).

Utiliser le théoréme fondamental pour se ramener a une
matrice diagonale.

1) Inégalité :
Utiliser le théoréme fondamental.
2) Etude du cas d’égalité :
Reprendre les calculs de 7) en supposant qu'il y a égalité.

Il existe X € M,, 1 (R) — {0} tel que : AX = 1 X. Calculer
X SX et utiliser le théoréme fondamental.

Pour X eM,(R) et YeM,;(R), traduire

X 0
M ( v ) = (0> , en faisant apparaitre XAX et'Y CY.

Utiliser I'exercice 13.11.
Noter C = AB — BA.

1) Inégalité : Obtenir successivement :

CeA,(R), C*eS,(R), C*eS;.

2) Etude du cas d’égalité :
Utiliser la norme euclidienne canonique sur M, (R).

Déduire que X est symétrique, puis X° = I,,. Utiliser le
théoreme fondamental pour se ramener a une matrice diago-
nale.

1) Un sens est évident.

2) Réciproquement, supposer : tr(AA) =2 et det(A) =1.
Former le polynéme caractéristique x4, de ‘AA et utiliser le
théoréme fondamental.

Soit x € Ker (A).Pour Y € M,, 1 (R), remarquer :
VAeR, (X +A\V)AX + \Y) > 0.

1) Appliquer l'inégalité de Cauchy et Schwarz dans
M, (R) usuel al, et X, pour obtenir :

(r ()’ <ntr(XX).

Remarquer :V (a.b) € R?, (a +b)> < 2(a® + b?).
1
V2

2) Examinerlecas X =Y = I,.

1) Soientk € N — {0,1} et M € M,,(R) tels que :
MK =0, M*1 £0,1,+ M € O,(R).

Obtenir: 'M + M +'MM = 0, multiplier par M*~!,
et amener une contradiction.
2) M = 0 convient.

a) - Soit x € Ker(f). Calculer ||f*(x)||*> et déduire
f*(x) =0.

* Appliquer le résultat précédent a f* a la place de f.
b) « Montrer :Ker (f) L Im (f).
» Utiliser le théoréme du rang.

¢) + Soit y € Im (f*). Utiliser b) pour décomposer y sur Ker (f)
etIm (f).

« Appliquer le résultat précédent a /* a la place de f.
+ Un sens est immédiat.
- Réciproquement, supposer f o f* = f2.

Noter g = f — f™* et calculer g* o g, puis utiliser le produit sca-
laire usuel sur L(E).

Noter A = (a;;);; = Matg(f).
Calculer, pour tout (i, j) € {1.....n}%, (f(e)|¢€}).

Noter E = (e |e}))1<k,,<,l et montrer :

> (fled|e) = I'4EI3.

1<i,j<n
a) 1) Soientn € N, Q € E,. Montrer que

9o E, — R, Pr— (XP|Q)

est une forme linéaire sur E,, et en déduire qu'il existe Q; € E,
unique telque:Y P € E, ¢o(P) = (P|Q1).

Remarque : On ne peut pas définir directement f, comme un
adjoint, car P —— XP n’est pas un endomorphisme de E,,.

2) Calculer (P | X¥t1) pour tout P € E,,.
3) Revenir a la définition.
b) + On a déja f2(1) et fo(X) d'apres a) 2).
*Noter o(X?) = a + BX + y X2, (a.B8,y) € R}
et traduire la définition de f>.

a) 1) Existence : Cf. exercice 13.11.

2) Unicité :
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Soit R € S telle que R? = S.

Considérer les sous-espaces propres pour R et pour S, et mon-
trer que ce sont les mémes.

b) Utiliser un polynéme d’interpolation.

¢) Utiliser b) et le cours sur les polynémes de matrices carrées.
1) Unicité :

Si (£2,5) convient, déduire'AA = S?, appliquer I'exercice 13.52,

et déduire aussi (2.

2) Existence :

Utiliser les exercices 13.17 et 13.52.
Utiliser I'exercice 13.11 et R?B = R(RBR)R™".

Appliquer le théoreme fondamental a A, d’'ou, avec des
notations classiques, A = 2D~ puis noter C = 27'B2.0n
se ramene ainsi, au lieu de (A,B),a (D,C),ou D est diagonale.
Passer alors aux éléments.

Soient X e M, 1(R),Y e My 1(R). En considérant
¢ (Cj;) S <5Y> pour tout o« € R, déduire :
(YBX)* — (XAX)(YCY) < 0.
Appliquer I'exercice 13.37 (et un résultat analogue) pour

obtenir, par exemple :

VieR, f(n)= Min (X(A+1B)X).

Pour u,v e R, € [0; 1], X € M, 1 (R) tel que || X]|]> =1, cal-
culer: X (A + ((1 - a)u +av) B)X.

Utiliser le théoréme fondamental pour se ramener a une
matrice diagonale et utiliser I'hypothése convenablement
appliquée.

Utiliser I'exercice 13.11 pour se ramener a RAR a la place
de SA. Faire intervenir les nombres complexes. Pour
A € Spc(RAR) et X € M, 1(C) — {0} tels que (RAR)X = AX,
calculer (X*R)(A +' A)(RX).

a) Appliquer le théoréme fondamental a A pour obtenir
A= 0D, ot 2 est orthogonale et D diagonale, et noter
C=0"'B0.

Se ramener a (D,C) au lieu de (A, B).
Calculer le produit matriciel

0 v I, 0
X A —A7lx A1)

puis passer aux déterminants.

Du mal a démarrer ?

1

1
Remarquer :Vk € N*, E=,/ =1 Gl

0
X1

et calculer ‘X H, X pour X = e M, 1(R).

Xn
Montrer que A est inversible et factoriser par A, pour se
ramener a étudier A=! + B.

Appliquer le théoreme fondamental pour se ramener a une
matrice diagonale. Utiliser la convexité de

¢9:R— R, t+— In(l +¢"),

et I'inégalité de Jensen.
p—1
a) Soit (ai,...,ap—1) € RP™1 tel que Za,-x,— =0.
i=1
p—1
Considérer y = Z | | x;, et calculer
i=1

2

2

p—1
D il
i=1

A U
-NoterQ:( )
V B

Traduire {2 € O, (R) pour déduire :

p—1
S
i=1

‘AA+'VV =1, VV+BB=1,_,.

Utiliser I'exercice 12.49 pour déduire :
det ('AA) = det (‘BB) .
* Montrer:Sp (‘AA) C [0; 1].

a) 1) Utiliser le théoréeme fondamental, S = PDP~!, ou
P € 0,(R),D =diag (A1,...,Ay) € D,(R). Noter P = (p,'j),‘j.

n
Obtenir:¥i € {1,....n}, si =Y Mpj-
k=1

Utiliser la convexité de f en les A; avec coefficients
pizk, 1<i<n.

2) + Supposer d'abord S e SfT et utiliser I'application

fix+— —Inx.
*Traiterlecas: S € ST et S ¢ S,

b) Considérer S = A'A et appliquera)a S.

+8
2

1
En notant 2 = — A —I,,, obtenir: 2 € 0, (R).
14

> 0.

o
Déduire'AA = yA +~v'A,ou y =

Appliquer I'inégalité de Hadamard a A = y 2 + y1,,

en notant 2 = (w;j)ij.
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Considérer, pour tout domaine simple D de R?, |a fonc-
tion caractéristique ¢p de D, définie par :

1 si MeD
(pD:RZ—>]R, M +—
0 si M¢D

et remarquer :

V(@i.j) € {l,....nY, ¢p,nD; = D, 9D;-

Noter S ='AA = A'A et appliquer le théoréme fonda-
mental pour obtenir, avec les notations usuelles, S = PDP~!.
Noter B = P~' AP et déduire BD = DB, puis B est diagonale.

« (i) = (i) :
A partirde A = PDP~!, exprimer 'A.
* (i) = (i) :

A partir de ‘A = S~ AS, déduire que AS est symétrique et utili-
ser I'exercice 13.11 pour avoir R € S7™ telle que S~ = R%,
Considérer alors R(AS)R.

a) Utiliser le théoreme fondamental et la comparaison
entre moyenne arithmétique et moyenne géométrique.

b) 1) Appliquera) a S = AA.
2) Soient A,B € S;I.
*Si A ¢ S;T, obtenir I'inégalité voulue.

*Si A € S, utiliser I'exercice 13.11 pour avoir R € S} telle
que A = R?, et appliquer a) 8 RAR.

Les matrices A'A et'AA sont symétriques réelles et ont le
méme polyndme caractéristique.
a) @) Supposer A € S;.Soit p € {1,...,n}.
X1
Pour X = € M, 1(R), compléter X par des termes nuls
Xp
pour obtenir un élément X’ de M, (R) et appliquer
X'AX" > 0.
B) Considérer, par exemple, — Ez».
y) 1) Soit A € S+ Montrer,comme en a) ) :
Vpefl,...n}, det(4,) >0.
2) Réciproquement, supposer :
Vpe(l,...n}, det(4,)>0.
Montrer: Vp e {l,...,p}, A, € S,f*

par récurrence (bornée) sur p.

Pour passer de p a p + 1, utiliser une décomposition en blocs et
I'exercice 13.11.

b) Considérer I'application
f:ST — R, Ar— (det(A)),....det(4,)) .
¢) Calculer les mineurs de Gauss de A et appliquer a) y).
a) Pour le sens =, faire une récurrence sur n, en utilisant
une décomposition en blocs et un trinome réel.
Pour le sens <, cf. exercice 13.17 a).
b) Utiliser a) et calculer des déterminants.

Utiliser le théoréme fondamental.
X1 1]
Pour X = € M, 1(R), considérer X =
Xn |
Calculer [ XAX| et XAX.
Récurrence sur n.
Le casn = 1 estimmédiat.

Supposer la propriété vraie pour tout p € N* tel que p < n, et
soit 7 un ensemble non vide, (S;);c; une famille d’éléments de
S, (R) commutant deux a deux.Le cas (Vi € I, S; € RI,) est tri-
vial. Supposer qu'il existe i € I tel que S;, ¢ RI,.Appliquer le
théoréme fondamental a S;, et décomposer en blocs.

« Appliquer le théoreme fondamental a A et montrer, en
utilisant I'nypothése portant sur P et un polynéme d'interpola-
tion, que A est un polynéme en P(A).

De méme pour B.
En déduire que A et B commutent.

« Utiliser I'exercice 13.77.

Noter D = diag(Aj,...,A,) et 2 € 0,(R) telle que
S=2DR .

Pour i € {1,...,n}, noter C; la i-€me colonne de la base cano-
niqgue de M,, 1 (R).

Remarquer que (£2C;)i<i<x est une b.o.n.de M, | (R).
Noter, pour r € {0,...,n — 1} :
E, 11 = Vect($2Cy,...,82Cr41)
E, = Vect(2Cr41,...,2Cy).
1) Soit X € E;.Montrer: XSX = A.  XX.
Déduire une inégalité.
2) Soit F € F,.Montrer:F N E,;; # {0}.
Utiliserun X € F N E, 4+ tel que X # 0 et obtenir:
XSX =2l XX.

Déduire l'autre inégalité.



= Corrigés des exercices

1) Supposons F C C(¢).
Soient x,y € F.On aalors : ¢(x) =0 et p(y) =0,
et, puisque F estunsevde E : x +y € F C C(¢),
donc : ¢(x + y) = 0. On déduit :

1
plx,y) = §(¢(x +) = ¢(x) = p(y) =0.
2) Réciproquement, supposons :
Y(x,y) € F, o(x,y) =0.

En particulier : Vx € F, ¢(x) = p(x,x) =0,
donc: F C C(¢).

Raisonnons par 1’absurde : supposons que ¢ ne soit ni
positive ni négative. Il existe alors u,v € E tels que :
o(m) <0 et ¢(v) > 0.

D’aprés ’hypothese : 0 < (cp(u,v))2 < ow)p(v) < 0,
contradiction.
On conclut : ¢ = 0 ou ¢ < 0.

a) Considérons 1’application

¢ ExE—>R, (f,g)r—>/01fg—(/0]f)</olg>,

obtenue a partir de ¢ par dédoublement.

Il est clair que ¢ est symétrique et que ¢ est linéaire par rap-
port a la deuxieme place donc ¢ est une fbs sur £. Eton a :

1 1 2
VfeE, <p<f,f>=/0 fz—(/o f) — 6().

On conclut que ¢ est une fq sur E et que la forme polaire
de ¢ est .

b) 1) D’apres I'inégalité de Cauchy et Schwarz sur les intégrales,
appliquée a fet1 :

vree (1) <([)([r)=[
donc:V f € E, ¢(f)=/01f2—</0|f>2>0.

On conclut : ¢ est positive.

2) ¢+ Soit f € Ker (¢), c’est-a-dire telle que :

VgeE, o(f,g) =0.

1 1 \2
Enparticulier:O:qﬁ(f):/(; f—(/(; f) .

D’apres I’étude du cas d’égalité dans 1’inégalité de Cauchy et
Schwarz, il en résulte que la famille (1,f) est lie, donc
feRl.

* Réciproquement, pour tout & € R :

1 1 1
VgekE, go(a,g):/ ag—(/ a)(/ g):O,
0 0 0

donc : a € Ker ().
On conclut : Ker (p) = R1.

On a, par I'inégalité triangulaire :

n 2 n
‘ D x|l < <Z|ai|||x,«||>
i=1 i=l

En appliquant I'inégalité de Cauchy et Schwarz, dans R"
usuel, a (ay,. .. ,a,) et ([[x]],...,][x.|[), ona:

(glail IIJCI-I|>2 < (§|ai|2><i2:;”xi”2> :
I_X;:aixi 2 < (glaf)(gllxillz)

2

On conclut :

Notons s la symétrie orthogonale autour de la droite
vectorielle engendrée par le vecteur unitaire

U= (V1,...,V,).
Soit x € R”.
D’apres le cours, le projeté orthogonal p(x) de x sur Rv est
donné par : p(x) = (|1|1v||)|c2) v=(v|x)v.

Onadonc: s(x) =2p(x) —x =2 |x)v — x.

En passant aux matrices dans la base canonique 5 de R", et en
notant X la matrice-colonne des coordonnées de x dans B, et
S la matrice de s dans 3, on a :

SX =2(VX)V-X=2V VX)) —X=QVYV -1,)X.
——
eR

On conclut que la matrice cherchée est S = 2V 'V — I, ou en-
core :

207 —1 2vv, 20,0,
S = 2U2U1
2vn—1 Up
2v,V; 20,0, ZUf —1

Remarque : S est symétrique et orthogonale.
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a) ¢ 1l est connu que S, (R) et A, (R) sont des sev de

M, (R).
e Soient S € S,(R), A€ A,(R).Ona:

(S|A) =tr(SA) =tr (SA) = tr (AS)

=tr((—'4)S) = —tr (AS) = —(A|S) = —(S| A),

d’ou: (S|A) =0.
Ceci montre que S, (R) et A, (R) sont orthogonaux pour (. | .)
dans M, (R).
Il en résulte en particulier : S,(R) N A,(R) = {0}.
* On a, pour toute M € M,,(R) :

1 1
M = E(M +'M)+ z(M —'M),

€S, ([R) €A, (R)

donc : M,(R) =S, (R) + A,(R).
Finalement, S, (R) et A,, (R) sont supplémentaires orthogonaux
dans M, (R).

b) 1) Soit M € M,,(R).
Notons : S = %(M +'M), A = %(M —'M).
On a alors :
M=S+A, S€S,[R), AcA,R) = (S,(R))".

Ceci montre que S est le projeté orthogonal de M sur S, (R).
On a donc :

(d(M,S,(R))> = 1M — SIP> = ||AIP = tr (AA)

— i R%(M —‘M))%(M —‘M)] = —% tr (M —'M)?).

. 1 0 ... 0O
2)Pour M =y "By = ©) :|-ona:
i=l 1 0 ... 0
0 —1/2 =172
| 12 0 ... 0
A:*(M—[M): o . o ’
2 : : 0) :
12 0 ... 0
n—1
(@M.S,®))° =114IF = Y () =5~
I<i,j<n
n—1
On conclut : d(M.S,(R)) = >

e [l est clair que £ = X R[X] est un sev de R(X].

Considérons 1’application :

1
0: ExE — R, (P,0Q) —> %/ (PO"+P'Q+2P'Q),
0

obtenue par dédoublement a partir de ¢g. Il est clair que ¢ est
symétrique, linéaire par rapport a la seconde place, et que :
VP eE, o(P,P)=q(P).

Il en résulte que ¢ est une fq sur E, la fq associée a la fbs ¢.
On a, pour tout P € E :

1 1 1
q(P):/ (P+P/)P/=/ PP’+/ P'?
0 0 0
-5k
2 Jo 0

2 2 .
POP_(COF [
0

2
—
=0

* Soit P € E tel que g(P) = 0. D’apres le calcul précédent,
2
P(l 1
on a alors : &—i—/ P'?2=0,
2 0

—_—— =
>0 >0

1
donc: P(1) =0 et /P’2=0.
0

Puisque P’ 2 est continue et > 0, on déduit P’ = 0, donc P est
une constante. Comme P (1) = 0, on obtient P = 0.

On conclut : g est une fq définie positive sur E.

Notons £ = C([0; 1]; R) muni du produit scalaire :

1
(f.9) — (f1g) =/ F0g() dx.
0

Considérons les éléments f, ¢, ¢, de E définis, pour tout
x €[0; 1], par :
xlnx si x#0

fx) = { o (x) = X2, 0y (x) = x,
0 si x=0
et notons F' = Vect (¢;,¥,).

On a alors :

1
Inf / x*|Inx —ax — b>dx = (d(f,F))z‘
(a,b)eR? Jo

D’apres le théoreme de la projection orthogonale,
il existe ¢ € F unique tel que d(f,F) = || f — ¢l|
etpestdonnépar: pe F et ¢ — f e F..
Soient (a,b) € R?, p = ap; +byp,.Ona:

p—fLlop
p—fLlF <
v—fLle
{(a991+b<P2_f|<P1)=0
—
(ap; +bp, — fle) =0

{ a(py ) +b(py ) = (f | e1)
a(py 192) +b(py [ 03) = (f [2)-



On calcule :
! 1 ! 1
4 3
(‘Pl|‘191)=fde:—s(W1|<P2)=/de:—y
0 & 0 4

1 5 1
(palpr) = X dx=§.
0

Pour € €]0; 1], on a, par intégration par parties :

1

1 4 1 4
1

/x3lnxdx:[x—lnx] —/ x——dx
< 4 - c 4 x
4

1
1
donc:(flgol)=/ PlInxde = ——,
1
et de méme : (f|<,02):—§.
Ainsi :
1 5
—a4-b=—— .
“ty 16 “=3
S) = 1 | = 0
—a+4-b=—— b= —.
2413 9 12

Enfin, puisque ¢ — f L ¢, d’apres le théoreme de Pythagore :

(@(£.F) =l — £IE = I1£12 = llgl?

! 15 19\2
:/ (xlnx)zdx—/ (fxz——) dx
0 o \3 12

On calcule la premiere intégrale comme plus haut (intégration
par parties sur [e; 1], puis e —> 0), et, apres un calcul élé-
mentaire, on conclut :

1
1

Inf / xzflnx —ax —b|2dx = —.

(a,b)eR? Jo 432

Puisque S € S, (R), d’apres le théoreme fondamental,
il existe 2 € O,(R), D = diag (\;,...,\,) € D,(R) telles
que: S =02DN".
a) 1) Supposons S € S
Soit A € Spg(S).
Ilexiste V € M, 1 (R) — {0} tel que : SV = AV.
Ona: 0<'VSV="VQV)=AVV =)\||V|]?,
——
>0
d’ou: > 0.
Ceci montre : Spy(S) C R;.
2) Réciproquement, supposons Spp (S) C R..
Soit X € M, ;(R).Ona:

XSX = XD 'X =127 X)D(7'X) .

Vi

Notons ¥ = 27'X = . On a alors :
yll

XSX ='YDY =) Xy} >0,

i=1
ce qui montre : S € S

b) On reprend I’étude précédente en précisant le caractere strict
de certaines inégalités.

1) Soit S € Sf*. Soit V € Spr(S).

Ilexiste Ve M, (R) — {0} tel que : SV = AV.

Ona: 0<'VSV ="VOAV)=\VV = \||V|?,
vy

d’ou: A > 0.

Ceci montre : Spy(S) C RY.

2) Réciproquement, supposons Spg (S) C RY.

Soit X e M,, ;(R) — {0}.Ona:

XSX =" XD HX = (2" X)D(27'X).

Vi
Notons ¥ = 27'X = . On a alors :
Yn
XSX ='YDY = X ¥y2>0.
;Vy, >
>0
De plus, si Z N y? =0,alors:
i1 o~
>0>0

Vie{l,...,n}, yy=0,
donc Y = 0, puis X = 2Y = 0, contradiction.
Onamontré : VX € M, | (R) — {0}, XSX > 0,

etonconclut: S € Sit.

Le sens <= est immédiat.
V4
Réciproquement, supposons Z Sy =0.
k=1
On a, pour tout X € M,, ; (R) :
P P
0=‘X( Sk>X= XS X .
=0

Il en résulte :
Vke{l,....p},YX e M, (R), XX =0.
Comme de plus: Vk € {1,...,n}, S; € S,(R),

ilenrésulte: Vk € {1,...,n}, Sy =0,

puisque, Sy est alors la matrice de la forme quadratique nulle
dans la base canonique.
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a) Soit S € S;. D’apres le théoreme fondamental, il
existe 2 € 0,(R), D = diag (\y,...,\,) € D,(R) telles que

S = 02D Comme S € S;F, d’apres ’exercice 13.9, on a:

Vke{l,. ...n}), \=0.
Notons A = diag (v/A,...,v/A), R = 02D,
Alors :
*ReS,(R) car:
R =LA =0T'AR = QA =R

*ReS car:

R € S,(R) et Spg(R) = [JA—k;k e {1,...,n}] CR,,

cf. exercice 13.9.

e R2=(RA NV =N 0 ' =D ' =8,

donc S convient.

b) Soit S € S .

D’apres a), il existe R € S telle que S = R?>. Comme
SeSit cGL,(R), on a :
(det (R))” = det (R?) = det (S) # 0, on a :
Ainsi, R € S N GL,(R) = S;+.

det(S) # 0, puis, comme
det(R) # 0.

Remarque : On peut montrer qu’il y a unicité de R, cf. exer-
cice 13.52, mais, dans la plupart des utilisations, c’est seule-
ment I’existence de R qui sert.

Soit X € M,, 1 (R) tel que (S + A)X = 0.
Onaalors: 0 ="X(S+ A)X ='XSX +'XAX.
Puisque A € A, (R),ona:
KAX ='X(4)X = “X'4X = ~(XAX) = ~(XAX),
eR
d’ot: XAX =0.
On déduit : XSX = 0.
Comme S € St*, il s’ensuit: X = 0.

On a montré :
VXeM, (R), (§+A)X=0= X=0).

On conclut : S+ A € GL,(R).

Il est clair que A € S,(R).
X1

On a, pour tout X = eM, (R) :

lXA)(Z Z ajXiX;j

1<i,j<n
n n n 2
—n3 A= ¥ =y w—(2n).
i=1 1<i,j<n i=1 i=1
1) D’apres I'inégalité de Cauchy et Schwarz dans M, ; (R) usuel,
1 X1
appliquée a U = etaX=] : |,ona:
1 X,

n 2
(in) = W1 X7 < IIUIPIIXIP

i=1
= (iﬁ)( s x}) =n2n:x,.2,
i i i=1

i=1 i=1
d’oti: XAX > 0.

Ceci montre : A € S;'.

2) On a, avec U ci-dessus : U =0 et UAU =0,
donc: A ¢ St

a) Puisque S € S, (R), d’apres le théoreme fonda-
mental, il existe {2 € O, (R), D = diag (\,...,\,) € D,(R)
telles que : S = 2DN".

Puisque S est nilpotente, il existe p € N* telle que S” = 0. On
a alors :

DP = (27'SQ)P = 27'sP0 = 2700 =0.
Mais:  D” =diag (\},....\}).
Dou: Vkel{l,...,p}, )\,’::0,

2 A =0,
etdonc D = 0, puis S = 0.

puis : Vkell,...

b) Par hypothese, A et 'A commutent, et il existe p € N* tel
que A? = 0.

Notons S ='AA € S, (R). Puisque A et'A commutent, on a :

SP = (AA)? ='APAP = 0.
Ainsi, S € S, (R) et S est nilpotente. D’apres a), on déduit :
§ =0

Enfin, en faisant intervenir le produit scalaire canonique sur
M, (R) et la norme euclidienne
[JA|? =tr(AA) =tr(S) =0, donc:A =0.

associée

Puisque S € S C S, (R), d’apres le théoreme fon-
damental , il existe 2 € O, (R),

D = diag (\;,....\y) € D,(R) telles que : S = 2D,

D’apres I’exercice 13.9, puisque S € S+, ona:
Vkell, ..,n}, \y >0.

En particulier, S est inversible.

Notons A =S+ S~ —21,.



Ona: A=Q(D+D ' —21,)027",

et: D+ D' — 21, = diag(u,,....1t,),
ou, pour tout k € {1,...,n} :
1 A — 1)?
b= MAN =2 = 212 = BT D
Ak Ak

Ainsi, A € S, (R) et Spp(A) C Ry,
donc, d’apres 1’exercice 13.9 : A € Sf{.
Onconclut: S+ S~' — 21, € S;".

Puisque S € S, (R), d’apres le théoreme fondamental,
il existe {2 € O,(R), D = diag (\,...,\,) € D,(R) telles
que: S = 0D
Ona:DP = ('SP =0 'sPQ=0"'0=1,.
Mais: D = diag (\],...,\?).
dou: Vke{l,...,n}, X\ =1
* Si n est impair, on a alors, puisque les \; sont réels :
Vke{l,...,n}, =1,
dou:D =1,,puis: S =1,.
* Si p est impair, on a alors :

Vke{l,...,n}, & € {=1,1},

donc: Vke{l,....n}, \=1,

d’ott: D? =1,,puis: $> = QD> =1,.

a)Ona:'s ='(AA) ='A"A ='AA = §,
donc S € S,(R), et :
VX e M, (R), XSX ='X(AA)X
= (X'A)(AX) =" (AX)(AX) = [|AX|[; > 0.
On conclut : S € S

b) ¢ Supposons S € S;t. Alors (cf. exercice 13.9),
Spr(S) C R*, donc 0 ¢ Spyp(S), S est inversible.

Comme
det (S) = det (‘AA) = det (‘A) det (A) = (det (A))z,
on déduit det (A) # 0, et donc A € GL,(R).
* Réciproquement, supposons A € GL, (R). Alors :
det (S) = (det(A))* # 0,

donc 0 ¢ Spy(S). D’apres a) et I’exercice 13.9, on a donc
Spr(S) C R*, etonconclut: S € Sf.

Par hypothese, il existe P € GL,(R), D € D, (R)
telles que : M = PDP~"'. On alors :

M= (PP)(PT'DP").

En notant A= PP et B='P~'DP!, on a M = AB,
A € St (cf. exercice 13.17) et B € S, (R), car :

B='(P'DP")='P"'DP' =B.

Notons L,L;,,L3 les lignes de A.

3 4
Par hypotheése, L| = ( S —
yp 1 5 3

3 2 4 2
||L1||§=<§> +(§> _ 1

1>,et0nabien:

Notons L, =(a b c¢).Ona:
{(L1|Lz)=0
lIL2]3 = 1
3
3 4 —_=
Za+-b=0 b=-34a
= R 5 — 25
2 2 2 _ g 2_q_ 22
a-+ b +c c 16a
25 4
Et: 1—1—602>0<:?|a|<§

Ainsi, L, =(a b c¢),ou:

4 4 3 / 25
_ .- S — = 1 — —a? = el .
ae[ 5,5], 4a,c € 16a,5

Enfin, L3 est, au signe pres, le produit vectoriel de L, et L,,
que I’on va présenter plus commodément en colonnes :

4 4
3 —c =@
3 5 5
a
4IAlb]= —§c = —éc
5 . 5 5
3 4 5
0 == =@ ==@@
5 5 4
On conclut que les matrices cherchées sont les
3 4
= = 0
5 5
3
A= a —7¢ c 5
, 3 5
—c —€—-c —e-a
- - €7

4 4 25
;g}, c=g/l— Ea{

ee{-11}, £ e{-11}.

o
=
S}

m
—
|

|

* D’apres le cours, A est la matrice, dans une b.o.n.,
d’une similitude directe si et seulement si :

Ja R, aA € SO;(R).

Le carré de la norme euclidienne de la premiere colonne de A
est: (2> +2% + (—1)?), c’est-a-dire 902,
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1
Si A convient, nécessairement, o = 3 Il en résulte que A
. . .1
convient si et seulement si : §A € SO3(R).

1
¢ Notons C;,C,,C5 les colonnes de §A :
2 1 —1
21, CG==| 2|, C3=
—1 2

1 1
Ci=- -
3 3

o S

Comme (Cy,C,) est une famille orthonormale, on a :

1
gA €SO;(R) <= C3=C, AC,
2

“ 1 1~
bl==| 2 |Ar=]| 2
c e —1 S 2
a 2
— b)z —11.
c 2

On conclut que A convient si et seulement si :

1

(a,b,c) =(2,—-1,2).

On a, pour tout (x,y) € E?:
(f® ) = (@lxb = Gloaly)
=(alx)@]y)—@lx)(@ly)
= (x| @lya—(@lnb)=—(x|f»),

d’ou, par définition de I’adjoint : f* = — f.

Autrement dit, f est antisymétrique.

* Le sens < est évident.
* Supposons : p* € Vect (e, p). Il existe (o, ) € R? tel que :
p* = ae+ Bp.Onaalors :
p*op=(ae+PBp)op=ap+pBp’=(@+Pp.

1
x*Sia+ 0 +£0,alorsp=——p*“op,donc:
a+f

*

p:

*

* 1 *
op)f=——p op=p.

(p a4+ p

o+ 3

x Sia+ F=0,alors p* o p =0, d o, pour tout x € E :
lp@IP = (p) | p@)) = (x| p*(p(x))) = (x|0) =0,

etdonc:Vx € E, p(x) =0, puisp =0, donc p* = p.

On conclut : p* = p.

¢ 1) Si g est positive, alors, par définition: g(E) C R,.
D’autre part, comme ¢ # 0, d’apres le cours, ¢ = 0, donc il
existe x € E tel que g(x) # 0, donc g(x) > 0.

Vit
q(x

Alors: ViteR,, t:q( x) e q(E).

3

Onconclut: ¢g(E) =R,.

2) Si g est négative, de méme : g(E) = R_.

3) Supposons ¢ ni positive ni négative. Il existe alors u,v € E
telsque: g(u) <0 et g(v) > 0.

Comme I’application o — g (au) = a?q(u) est une surjec-
tion de R sur R_, on déduit : R_ C ¢g(F). De méme, I’ap-
plication 8+ ¢(Bv) = 3°q(v) estune surjection de R, sur
Ri,donc: R, C q(E).

Enfin: R=R, UR_ Cq(E) CR,

donc: ¢(E) = R.

* /) Supposons g(E) = R, . Si g était négative ou si gn’était
ni positive ni négative, d’apres /), on aurait g(E) = R_ ou
q(E) = R, contradiction. On conclut que g est positive.

2), 3) De méme, par raisonnement par 1’absurde, on montre les
deux autres réciproques.

a) Il est clair que

¢:R" — R, (x1,...,%,) —> Z (x; — %))

1<i<j<n

est un polyndme homogene de degré 2, donc ¢ est une fq
sur E, et

Vi =(x,..%) €RY g = Y (i—x)* 20,
1<i<j<n
donc ¢ est positive.

b) On a, pour tout x = (xy,...,x,) € R" :

XeC@) =) =0 >  (i—x)=0
1<i<j<n

>0

VG, j)efl,....n% (i <j=x—x;=0)

Y 3Q,j) efl,....n}% x = x;.

Ennotant u = (1,...,1), on conclut : C(¢) = Ru.

+00
a) * Pour tout P € E, $(P) = ZP(n)P(—n) e
n=0

existe. En effet, par prépondérance de 1’exponentielle sur les
polyndmes : n*P(n)P(—n)e " — 0,
noo

donc, a partir d’un certain rang :

1
[P(m)P(—n)e™| < —,
n

ce qui montre que la série Z P(n)P(—n)e™" estabsolument

n=0
convergente, donc convergente.



* Considérons I’application ¢ : E x E —> R définie par :
1 &
(P.Q) — 3 ) (P Q(=n) + P(=m)Q(m)) ™",
n=0

dont I’existence est assurée de la méme facon que pour ¢. Il
est immédiat que ¢ est symétrique, linéaire par rapport a la
deuxieme place, donc ¢ est une fbs, et on a :

P(P).

On conclut que ¢ est une fq, la fq associée a la tbs ¢.

VP eE, o(P,P)=

b) Il est connu que E, et E_ sont des sev de E = R[X] sup-
plémentaires dans E.

eSoient P e E;,Q€ E_.Ona:

VneN, Pmn)Q(—n)+ P(—n)Q(n)
=—P(n)Q(n) + P(n)Q(n) =0,

donc: @(P,Q)=0.
Ainsi, E; et E_ sont orthogonaux pour ¢.
*Soit P € E, —{0}.Ona:
#(P)=) Pm)P(-n)e" =) (P(m) e >0.
n=0 n=0 ~"———"
>0
Supposons ¢(P) = 0.
Onadonc: Vn eN, (P(n))2 1 =0,
puis : VneN, Pn)=0.

Ainsi, le polynome P s’annule en une infinité de points, donc
P =0, exclu.

Onconclut: VP € E. — {0}, o(P) > 0.
e De méme :
+00
VPeE_— {0}, 6(P)=) —(Pm)e™ <0.
n=0

a) Considérons 1’application

P
p:ExXE— R, (x,y)— Zai(ui [x)(ui|y),

i=1
obtenue par dédoublement de ¢.

Il est clair que ¢ est symétrique et que  est linéaire par rap-
port a la deuxieme place. On a :

p
Vx e E, ox,x)= Za,-(u,v [x)? = ¢(x) .
i=1
On conclut que ¢ est une fq sur E et que la forme polaire ¢
de ¢ est donnée par la formule vue plus haut.

D o wilx)’>0.

=
>0 >0

b)Ona:Vx e E, ¢(x) =

D’ou :

( estun ps sur E

<~ Vx eLE, (¢(x)=0=>x=0)
= VxcE, Za,(u,|x) —0:>x—0)

(
< Vx eE, (Vze ...p}s (u,|x)_0):>x_0)
(

< Vx€eE, (xe (Vect(u,.. ,u,,))L —x = 0)
— (Vect(ul,. .. ,up))l = {0}
= Vect (uy,...,u,) =

On conclut: ¢ estun ps sur E si et seulement si (u;,...,u,)

engendre E.

Considérons I’ application
u:[0;1] — R, t —> (f((l —t)x—l—ly)’(l —l)x—l—ty).

En développant par bilinéarité (et symétrie), il est clair que u
est un polyndme du second degré, donc u est une application
continue sur ’intervalle [0; 1]. De plus :

{ u(0) = (f(x)|x) =
u) = (f|y) =

D’apres le théoreme des valeurs intermédiaires, il existe
t €[0;1] tel que u(z) = 0.

dzelx;yl (f@]2)=0

(x| x) = Allx|]?

\\/ //\

2

(py 1y) = pllyll

On conclut :

a) * 11 est clair que ¢ est symétrique et que ¢ est li-
néaire par rapport a la seconde place.

* On a, pour tout P € E :
S 2
> (PP@)” >0
——

k=0
=20

p(P,P) =

* Soit P € E tel que ¢(P,P) = 0. On a alors :

Vk €{0,....,n}, PP(a)=0.

Comme P™(a,) =0 et deg (P) < n, doncdeg (P™) <0,
ona: P™ =0, donc deg (P ") <0.

Comme P V(a,_;) =0 et que deg(P" D) <0, on a
P~ =0, donc deg (P"~?) < 0.

En réitérant, on déduit P = 0.

On conclut : ¢ est un produit scalaire sur E.

b) Nous allons appliquer le procédé de Schmidt a la base ca-
nonique (1 X, X?) de E, de facon a obtenir une base (P, Py, P)
de E orthogonale pour ¢, puis normer pour obtenir une base
(Uy,U,,U;) de E orthonormale pour .
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Py
[|Pol|”

Ona: ||Py|* = (P, Py) = 1,
donc || Pyl| =1, Uy = 1.
eOnnote P, =aX + b, (a,b) e R*.Ona:

* On note Py = 1, puis Uy =

©(Po, P1) =0
< Py(—1)Pi(—1) + P;(0)P/(0) + P/ (1)P'(1) =0
& —a+b=0&=b=a,
dou: Pp=a(X+1).Et:

PP = (P(=D) + (P'(0)* + (P"(1)* = &,

P

Pl
eOnnote P, = aX?>+ BX +7, (a,37) € R}.Ona:
{@(PO,P2)=0 {a—ﬁ+’y=0
—
w(P1,Py) =0 B8=0

d’ou, par exemple, || P;|| = a, puis U; = X+ 1.

7= —«
B=0,
dot: P=aX®-1).

Et: (P2 = (Po(=D)) + (PL0)) + (P (1)’ = 4a?,

1
d’ou, par exemple : o = >
Py
[Pl

On conclut : une b.o.n. de E pour ¢ est, par exemple :

. [
puis: U, = =5(X —1).

1 2
<1, X+1, 50 = 1)).

Notons ¢ la forme polaire de ¢. Puisque ¢ est bili-
néaire et que E est de dimension finie, d’apres le cours, il existe
M € R, tel que :

V(x,y) € E*, lp(,y)| < Mllx|[Iyll.
En particulier : Vx € E, |¢(x)| = |o(x,x)| < M||x]|>
D’ou :

_s™ _ o
SIS Il

= M3**|x||'* — 0.
x—>0

On conclut, par théoreme d’encadrement :

(6(0))™*

] o0

Soit A € M,,(R). Il est clair que I’application
fa:M,(R) — M,(R), M — AM

est linéaire.

L’endomorphisme f, de M, (R) est un endomorphisme or-
thogonal si et seulement si :

VYM,N € M,(R), (fa(M)|fa(N))=(M|N).
On a, pour toutes M,N € M, (R) :
(faD) | fa(N)) = (AM | AN)
=t ((AM)(AN)) =t (M'AAN).
D’ou :
fa € O(M,(R))
& VM.N e M,(R), tr(M'AAN) = tr (MN)
& VM,N e M,(R), tr(M(AA —1,)N) =0

& VM,N e M,(R), tr ([(AA —,)M]N) =0
— VM e M,(R), (VN e M,(R), (AA— I,,)MJ_N)

VM eM,®), (AA—1)M =0
= 'AA-1,=0 & AcO,R).

On conclut : f4 est un endomorphisme orthogonal de M,, (R)
si et seulement si A € O,(R).

a) * Il est clair que (. | .) est symétrique et linéaire par
rapport a la seconde place.

* On a, pour toute f € E :

1
(15 = (FO) + fo (F®)dt > 0.

* De plus, pour toute f € E, comme f’ est continue et que
f?>0,ona:

1
f1H=0 (f(O))2+/ (F0)*dr=0
e e’ 0

—_—

1
= f(0)=0 et / (f'0)*dt =0
0

< (f(0)=0 et f'=0)< f=0.
On conclut que (. |.) est un ps sur E.
b)1)Soitf € E.Ona:
feF <= (alf)=0

1
<~ eo(O)f(O)—i—/ eo(t) f'(1)dt =0 <= f(0) =0,
— 0 ——
donc: Fr={feE;f(0)=0}=G.
2)Soit f € E.
* Supposons f € G*. Considérons g = f — f(0)eo.
Ona: ge E et g(0) =0,donc g € G.



Il s’ensuit (f|g) =0.Ainsi:
0=(flg)=(f|f—f©e)=(f1F)— fONS|eo)

1 1

= ()’ + fo (f'®)dt = () = fo (f'®)’ dr.

Comme f’ est continue et que f’> > 0, il s’ensuit f’ = 0, donc
f est constante, f € F.

* Réciproquement, il est clair que ey € G+, car :

I
VgeG, (elg) =€0(O)g(0)+/ ey g'(t)dr =0.
—— Jo =<
=0 =0
On conclut : G+ = Vect (eg) = F.

Ainsi, dans cet exercice : FX =G et Gt = F.

1) Soit x € Ker (f) N Ker (f*).
Onaalors f(x) =0 et f*(x) =0,dou:
(f+fHE®)=fx)+ ff(x)=0+0=0,
donc x € Ker (f + f*).

Ceci montre : Ker (f) N Ker (f*) C Ker (f + f7).
2) Réciproquement, soit x € Ker (f + f*). On a donc
(f + f9(x) =0.Comme f> = 0, on déduit :
0=f0) = f((f+H)
=2+ fo fH) = f2@) +f o f*(x).
N—
=0
Ensuite, en utilisant le produit scalaire :
0= (fof*W|x)= (@[ )= @I,
d’ou: f*(x) =0, puis :
fO = +fH%) - ffx)=0-0=0.
On obtient : x € Ker (f) N Ker (f*).
Ceci montre : Ker (f + f*) C Ker (f) N Ker (f*).
On conclut : Ker (f + f*) = Ker (f) N Ker (f*).

Puisque P et Q sont premiers entre eux, d’apres le
théoreme de Bezout, il existe U,V € R[X] tels que :
UP +VQ = 1.0n adonc, pour tout x € Ker (P(f)) :

x =Idg(x) = (UP +VO)(f)x)
=U(N)(PNH®))+ 2N (VHX) = 2N (V(NHE)),
——
=0
puis, pour tout (x,y) € Ker (P(f)) X Ker(Q(f*)) :
@19 =(2HVHW) )

= (vih@ | (@) m) = (Vihw | 2¢Hm) =0.
=0

On a montré :
V (x,y) € Ker (P(f)) x Ker (Q(f%)), (x|y)=0,
eton conclut : Ker (P(f)) L Ker (Q(f™).

* Le sens <— est évident.
* Supposons Sp (g) = {2}.

Comme g* = (f+ f")"= f*+ f =g, g est symétrique.
D’apres le cours, g est donc diagonalisable. Puisque g est
diagonalisable et que Sp(g) = {2}, ona: g = 2e, en notant
e = Idg. Alors :

(f—&'o(f-e=(f"—eo(f—e
=ffof—(f"+f)+e=e—2e+e=0,

puis, en utilisant le ps (#,v) —> tr (u* o v) sur L(E) :
If —ell3 =t ((f =& o(f —e) =0,

doncf —e=0, f=e.

1" méthode : Utilisation d’une factorisation de A :

Ona:
1 1 1
1 2 2
A= .
1 2 n
1 (0) 1 (1)
(1) 1 (0) 1
c’est T notée T

Comme 7 est triangulaire et a termes diagonaux tous non nuls,
ona:T € GL,(R).

D’apres I'exercice 13.17, on déduit: A € S}+.
2¢ méthode : Décomposition de la forme quadratique en somme
de carrés :

D’abord, il est clair que : A € S, (R).
X1
On a, pour tout X = eM, (R) :
Xn
XAX = Y x;Min(i,j)x;
1<i,j<n
=(x1+---+x,,)2+(x2+---+x,1)2+~--+x5,
comme on le voit en développant cette derniere expression.

Il en résulte, d’une part X AX > 0, et, d’autre part :
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X;4+--4+x,=0

X]:O
Xp+--4+x,=0
XAX =0 ; =
x, =0
x, =0
<— X=0

On conclut : A € S,

Soit i € {1,...,n} tel que a;; = 0.

Soitj € {1,....,n} telque j #i.

On a, pour tout « € R :

0 Sl (O’,E,' +EI)S(O£El ar E/)

= o’ E:SE; + 2aE; SE; +'E; SE;
= O[z a;; —|—2cm,-j +a]2]

—
=0

Ainsi: Va €R, 204, +aj; > 0.

Si a;; > 0,2aa;; +a?, —> —oo, contradiction.
1 o—s—o00

Si a;; < 0, 20a;; + ajzj —> —o0, contradiction.

: —>+00
Il s’ensuit : a;; = 0.
On a montré ainsi que, si un terme diagonal de S est nul, alors
tous les termes de S situés sur la ligne ou la colonne de celui-
ci sont nuls.

Puisque S € S, (R), d’apres le théoréme fondamental,
ennotant D = diag(\y,...,\,),ilexiste 2 € O,(R) telle que
S=0DN".

* Soit X € M,,.|(R) tel que || X||, = 1. Ennotant Y = Q7'X,

puisque {2 est orthogonale, on a : || X[, =|[|Y]l, et

[1SX]l2 = ||DY]]2.
Vi

Notons Y = . On obtient :
yll

IDYI2 =" iy)* < (0(9)* Y 32 = (0(9))’
i=1 i=1

d’ou: [|SX|2 = [|DY]l2 < p(S).

* D’autre part, il existe k € {1,...,n} tel que p(S) = ||, et,
en notant X = (2E; (o E; est le k™ vecteur de la base cano-
nique de M, ; (R),ona:

X[z =1 et [[SX]|l2 = [[DEkll2 = [Al = p(S).

Finalement, I’application X —— [|SX]||, est bornée sur la
sphere-unité de (M, (R),|| - ||»), sa borne supérieure est

p(S), et celle-ci est atteinte.

1) Inégalité :
Puisque f € S(E), d’apres le théoreme fondamental, il existe

une b.o.n. B = (ey,...,e,) de E et une matrice diagonale
D = diag (\,...,\,) € D, (R) telles que Mats(f) = D.

X1
Soit x € E. Notons X = Matzg(x) =| : |.Ona:

Xn

f(x) —ax = f(ixie,-) — a(i%&')
i=1 i=1
= Xn:x,-/\,-e,« — iax,-e,- = Xn:()\i —a)xe;.
i=1 i=1 i=1

D’ou, puisque (ey,. . .,e,) est une b.o.n. :
(f&x) —ax| f(x) —bx) =Y (N —a)(\i — b)x}.
i=1

Comme Sp (f)N]a;b[=2, ona:
Vie{l,...,n}, ()\l- <a ou N >b),
donc: Vief{l,...,n}, N\ —a)\,—b) =0,
d’our : (f(x)—ax|f(x)—bx)>0.
2) Etude du cas d’égalité :
On suppose ici plus précisément : Sp (f) N [a; b] = @.
Avec les notations de 1), on a, pour tout x € E :
(f) —ax| f(x) —bx) =0
=Y h—a)\i—b) xF =0
;%/_‘\,-/
>0 >0
& (Viefl,....n}, x7 =0) < x =0.

On conclut qu’il y a égalité si et seulement si x = 0.

Il existe X € M,, ; (R) — {0} tel que AX = AX.On a
alors :

1
"XSX = 5 X (A+ 'A)X
1 t 1 t t
= 5 'X(AX) + S (AX)X = A'XX.

Puisque S € S, (R), d’apres le théoreme fondamental, il existe
Ay, A) R et 2€0,(R) tels que, en notant
D = diag(\,...,\,),onait S = Do

Vi
Notons ¥ = 27'X = . Alors :

Yn



'XSX='YDY =) Ny} et 'XX='YY=) y]
i=1 i=1

d’ou : /\iy,-2 :i)\iyiz.
i=1 i=

Vi e{l,...,n}, («a <\ <ﬂetyi2>0),

on obtient : ozX:y,2 < /\Zyiz < ﬂzyiz~
i=1 i=l i=1

Comme :

Enfin, puisque Z yl.2 > 0,onconclut: o< A<

i=1

* [l est clair que M est symétrique.

X
e Soit (Y) eM,, 1 R), ot XeM, (R),Y e M, (R)
Ona:

wl(X) (0 A B\ (X)_ (0
v)=\o) 7\ —c)\v)7 o
AX+BY =0 AX+BY =0

— —
BX —CY =0 XB—'YC=0
X (AX + BY) =0 XAX +'XBY =0
(XB—-'YC)Y =0 XBY —'YCY =0

X=0
— XAX+YCY =0 {
e e

>0 >0

=
——

AeS;*,CeS;r+
(X (0
Yy) \o/°

Puisque S € S/, d’apres I’exercice 13.11, il existe

Y=0

On conclut : M est inversible.

R € S telle que S = R?. On a alors, en utilisant 1’inégalité
de Cauchy et Schwarz dans M,, ; (R) usuel :

(XSX)(YS~'Y) = (XR*X)(Y(R™)?Y)
= ((RX)(RX)) ((R'Y)(R7'Y))
= [IRX|ZIIR™'Y]I3 > (RX | R™'Y)?
= (RX)(R7'V))* = (X(RRHY)’ = (XY)?.

Notons C = AB — BA.
1) Inégalité :
Ona:
'C ='(AB — BA) ='B'A —'A'B
= (—B)(—A) — (—A)(—B) = BA — AB = —C,

c’est-a-dire que C est antisymétrique.

Ensuite : {(C?) = (0)* = (-C)* = C?,
donc C? est symétrique.

Enfin : C* ='(C?)C? € S}, cf. exercice 13.17. D ol :

tr (AB — BA)*) =t (C*C?) = ||C?|5 > 0.
2) Etude du cas d’égalité :
* Si tr (C*) = 0, alors ||C?||3 = 0, donc C? = 0, puis :
IICI; =tr (CC) = r (-C*) =0,
donc C =0.

* Réciproquement, si C = 0, alors tr (C*) = 0.

On conclut qu’il y a égalité si et seulement si : AB = BA.

1) * Soit X convenant.
Onaalors: X ='X(XXX) = (XX)? € S, (R),
X €S, (R).
Ilenrésulte: X = XXX =1,.

* D’apres le théoreme fondamental, puisque X € S, (R), il
existe {2 € O, (R), D = diag (\y,...,\,) € D,(R) telles que :
X = 02D " Onaalors :

donc :

X’ =1, D =1, (Vke(l.....n}, N\ =1)
< (Vkefl,...n}, x=1)<= D=1, X =1I,.
Ceci montre que, si X convient, alors X =1,,.

2) La réciproque est évidente : I, convient. On conclut qu’il
y a une matrice et une seule convenant: X =1,.

1) Si A € SO,(R), alors '"AA =1, et det(A) =1,
donc tr (‘AA) =2 et det(A) =1.
2) Réciproquement, supposons :
tr('AA) =2 et det(A) =1.
Comme 'AA € M>(R),ona:
XiuaN) = A — tr (AA)X + det (‘AA)
=22~ (AAA + (det(A))’ = N2 =22+ 1= (A — D%

Puisque 'AA € S,(R), d’aprés le théoreme fondamental, ‘A A
est diagonalisable dans M, (R).

Ainsi, 'AA est diagonalisable et Spp(‘AA) = {1}, donc
UA =1,, A € O,(R).
Comme, de plus, det (A) = 1, on conclut: A € SO, (R).

1) Soit X € Ker(A).Onadonc: AX =0.
Soit Y € M,, 1 (R). D’apres I’hypothese, on a :

VAeR, (X +\V)AX +\Y) >0,
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VAeR, \XAY + N2'YAY >0,

et donc, en simplifiant par \ :

c’est-a-dire :

VA eR:, XAY +AYAY > 0.
En faisant tendre \ vers 0", on déduit : XAY > 0.
En appliquant ce résultat a —Y a la place de Y, on a aussi :

—XAY > 0.

On déduit: 'XAY =0.
On a ainsi montré : VY € M, | (R), XAY = 0.
Ilen résulte : XA =0, puis: 'AX ='(XA) =0,
donc : X € Ker (‘A).
Ceci montre : Ker (A) C Ker (4).
2)Comme: VX eM, (R), X'AX ='(XAX),
ona: VX eM, (R), XAX > 0.

On peut donc appliquer le résultat de 7) a ‘A a la place de A,
d’ou: Ker('A) C Ker(A).

Finalement : Ker ("A) = Ker (A).
1) Soit (X,Y) € (M,(R))” tel que : XX +'YY =1,.

Appliquons I'inégalité de Cauchy et Schwarz, dans M, (R) muni
de son produit scalaire canonique (. | .), au couple (I,,,X) :

(tr ()" = (tr (1,X0)" = (1, | X)?
<@ IL)X | X) = ntr (XX),
et de méme : (tr (Y))2 <ntr(YY).
D’autre part, on remarque :
Y (a,b) € R?, (a+b)* <2(a® +b%),
comme on le voit en développant. D’ou :
(ir (X) + tr (V)" < 2((tr (0)” + (ir (1))
<2n (r (XX) +tr (YY)
=2ntr (XX +'YY) =2ntr(,) = 2n°.
On déduit : tr (X) +tr (Y) < v2n.

1
2)Pour X =Y =—1,,0ona:

N2
lXX—I—‘YY—ll +1I =}
_2 n 2”_I’l

et tr(X)—f—tr(Y):\%n—i—%n:ﬁn.

On conclut que la borne supérieure demandée est égale 2 /2 7.

1) Soit M convenant.
Supposons M # 0. Puisque M est nilpotente, il existe
k € N—{0,1} tel que : M* =0 et M £ 0.
D’autre part :
L, +Me0,R) "1 +M7TA,+ M) =1,
—'M+M+'MM = 0.
En multipliant & droite par M*~!, on déduit :
MM+ MY+ MM =0,
—_ =
donc: MM+ =0.
Puis, en multipliant & gauche par M*=2 : M1 pM*-1 = 0.

Alors, en utilisant la norme euclidienne associée au produit sca-
laire canonique sur M, (R) :

MNP = (e Hm*) = o,

d’ou M*! =0, contradiction.

Cecimontre : M =0.

2) Réciproquement, il est clair que M = 0 convient.

On conclut qu’il y a une matrice M et une seule convenant :
M =0.

a)* Soitx € Ker(f).Ona:
@I = (£ ) [ f@) = (x| fo f*()
=(x[f o fW) = (x| f©®) =0,
dou: f*(x) =0, x € Ker(f*).
Ceci montre : Ker (f) C Ker (f*).
*Ona: (f)*of*=fof"=f"of=/f"o(f")
donc f* vérifie la méme hypothese que f.

D’apres le résultat précédent, appliqué a f* a la place de f,
ona: Ker(f*) C Ker(f*) = Ker(f).

Ker (f*) = Ker (f).

On conclut :

b) * Soit (x,y) € Ker (f) x Im (f). Alors, x € Ker (f) et il
exister € E telque y = f(¢).Ona:

xIy)=(x|fm)=(w|r).

Mais x € Ker(f) =Ker(f*), donc f*(x) =0, puis
(x|y)=0.
Ceci montre : Ker (f) L Im (f).

* On a alors, en utilisant le théoreme du rang :

dim (Ker (f) @ Im (f))
= dim (Ker (f)) 4 dim (Im (f)) = dim (E),



donc: Ker(f)@®Im(f)=E.
Ker(f) © Im(f) = E.

Finalement :

c) * Soit y € Im(f*). Il existe x € E tel que y = f*(x).
D’apres b), il existe u € Ker(f), v e Im(f) tels que
x =u+v.0On aalors :

y=fx)=fw+v) ="+ ).
Mais u € Ker (f) = Ker(f*), donc f*(u) =0, puis :
y = f*).

Ensuite, comme v € Im (f), il existet € E telque v = f (7).
On a alors :

y= @) = f(f@®) = (f*o /)
=(fo fH0) = f(f*®) € Im(f).
Im (f*) C Im (f).

* Comme f* vérifie la méme hypothese que f, en appliquant
le résultat précédent a f* a la place de f, on a aussi :

Im (f) C Im (f7).

On conclut :

Ceci montre :

Im (f*) = Im ().
* Le sens <= est évident.

« Supposons f o f* = f2.Notonsg = f — f*.Ona:
gog=(f—f)olf—fI="=Holf—f"

= frof—fP—f2+fof =fof—f?
=fof =D =fof—(fofY

=f*of—fof"
Considérons le produit scalaire sur £(E) défini par :
¥ (u.v) € (L(E)), (u|v) =tr @ ov),

et la norme euclidienne associée ||.||. On a alors :

lIgl> =tr(g*og) =tr (f*o f — fof*
=u(ffof)—tr(fof)=0,

d’'ou g =0, c’est-a-dire: f = f*.

Notons A = (a,-j),-j = Matg(f) eM, (R)
Ona: Vie{l....n}, fle) =Y aue
k=1

puis, pour tout (i, j) € {1,...,n}*:

(fle|e)) = (Zakiek ‘e,’) = aulec|e).
k=1 k=1
Notons E = (ex | €) 1<k, j<n € M, (R).

Ainsi, pour tout (i, j) € {1,... )2, (f(e,-) | e/’.) estle (i, j)eme
terme de ‘AE.

Les colonnes de E sont les coordonnées des ej’- dans B.

Autrement dit, E est la matrice de passage de B a 5'. Comme
B et B’ sontdes b.o.n., on déduit: E € O,(R). On a alors :

3 (fen|e)’ =11AEI3 =t ((AE)(AE))

1<i,j<n
= tr (E(A'AE)) = tr ((A'AE)E)

= ((AA)(E'E)) = tr (A'4) = tr (AA) = tr (f* o f).

a) Soitn € N.
* Soit Q € E,. L’application
0o En — R, Pr— (XP|Q)

est une forme linéaire sur I'eve (E,,(.|.)), donc, d’apres le

cours, il existe Q; € E, unique tel que :
VP eE, po(P)=(P|Q)).

Ceci montre qu’il existe une application et une seule
fu: E, — E, telle que :

V(P,Q) € E;, (P|f(Q)=XP|Q).
* Montrons que f;, est linéaire.
Soientx € R, 0,0, € E,.On a, pourtout P € E, :
(P| falaQ1 + 02)) = XP |aQ + Q1)
=a(XP| Q1)+ XP| Q)
=a(P| £,(Q)) + (P| £,(Q2)
= (P|afui(Q) + f2(Q2),
donc : f,(aQ; + Q2) = af,(Q1) + fu(Q2),

et on conclut que f, est linéaire. Finalement, pour toutn € N,
il existe f, € L(E) unique tel que :

V(P,Q) € E}, (P|fi(Q)=XP|Q).

Remarque : On ne peut pas définir directement f, comme un
adjoint, car P — X P n’est pas un endomorphisme de E,,.

2) Soitn € N.

On a, pour toutk € {0,...,n — 1} ettout P € E,, :

1 1
(P | XM = / P(x)x**dx = / (xP(x))x* dx
-1

= (XP| X" = (P| fu(X).
dot: f,(Xr = Xk,
Remarque : On n’a pas f,(X") = X"t car X"t ¢ E,.
3) On a, pour tout (P,Q) € E,f :

(P| £(Q) =XP|Q)
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1 1
=f (xP(x))Q(x)dx:/lP(x)(xQ(x))dx

1 _
= (PIXQ) = (XQ|P) = (Q] fu(P)).

On conclut : f, est auto-adjoint.
b)eD’apresa)2),ona: fr(1) =X, fL,(X) =X>.
* Notons f>(X?) = a + X + X2, (a,3,7) € R>.
On a, en utilisant la définition de f; :

(1] LX) = X1X?)

(X] LX) = X 1X)

(X[ LX) = X1 X?)

a1+ 60 X) ++(11X%) = (X|X?)

= (9] aX| D+ BXIX) +7X|X?) = (X* | X?)
aX? | D) + X | X) + (X | X?) = (X | XP).
Calculons les produits scalaires qui interviennent.
Par imparité :

11X)=0, X|X>) =0, X|X>=0.

et : 111 =2, (1|X2):(X|X):§, (x2|x2):§.

D’ou :
2a+g’y=0
3 a=0
S) = %5:% — ﬁ=§
3 5 5
§a+§7=0 7=0

3
On obtient :  f5(X?) = §X'

On conclut : /(1) =X, £ (X) = X3, LH(X?) = %X'

a) 1) Existence
D’apres le théoreme fondamental, il existe (\y,. .., \,) € (R)"
et 2 € 0,(R) tels qu’en notant D = diag (\,...,\,), on ait
S = 0D ", Considérons A = diag(v/A,....v/ ), et
R = NAQ". Alors :
CRZ=QA'=0D2 ' =5
*'R='0"A'Q= QA" =R, donc R €S,(R)
*R eSS carR € S,(R) et Spp(R) C R,.
2) Unicité
Soit R € S telle que R* = S.

Spr(R) C {/t; it € Spr(S)}

*Ona: 5
VA e Spp(R), SEP(R,\) C SEP(S,\?)

car:

VIeR, VX e M, (R),
(RX = A\X = SX = R2X = \*X).
Puisque R et S sont diagonalisables, on déduit :

M, (R)= € SEPR.NC @O SEP(S.N)
AeSpg (R) AeSpg(R)

c P SEPS.m) =M, (R),
HESPR(S)

d’ou nécessairement :
Spg(S) = {\%; )\ € Spr(R)}
VA€ Sps(R), SEP(R.\ = SEP(S,\%)

« Il existe 2 € O,(R), D € D,(R) telles que S = 2D

D’apres le résultat précédent, il existe D’ € D, (R) telle que
R =2D'27'.Comme R € S, D' est formée des racines car-
rées des éléments de D, d’ou I’unicité de R.

b) Soit S € S;'. Avec les notations de la solution de a), d’apres
le cours sur I’interpolation polynomiale, il existe P € R[X] tel

que: Vk e {l,....n}, VA = P(\).
En effet, il suffit de prendre pour P un polyndome interpolant

les v/ Ax en les )\, en ne considérant que des \; deux a deux
distincts.

On a alors :
A = diag (v/\) = diag (P(\))
1<k<n I<k<n
= P( diag (\)) = P(D),
1<k<n
puis :

S12 = QAR = QP(D) ! = P(2DY = P(S).
Onconclut: ¥S €S, IP e R[X], S'/? = P(S).
c) Soit (A, B) € (S})2.

1) Supposons que A'/? et B> commutent. D’apres le cours,
tout polyndéme en A'/> commute alors avec tout polyndme en
B'2.Comme A = (A'/?)? et B = (B'/?)2, on conclut que A
et B commutent.

2) Réciproquement, supposons que A et B commutent.
D’apres le cours, tout polyndme en A commute alors avec tout
polyndme en B. Comme, d’aprés b), A'/? est un polyndme en
A et B'Y? est un polyndme en B, on conclut que A'/? et
B'2 commutent.

Soit A € GL,(R).
1) Unicité :

Si un couple (£2,S) convient, alors :



AA =1 (025)(2S) =SS = 2,

donc, d’apres I’exercice 13.52: S = (‘AA)!/2,
Ensuite, comme S € ST € GL,(R),ona: 2= AS~!.
Ceci montre 1’unicité de (£2,5).
2) Existence :
D’apres Iexercice 13.17,ona: '‘AA € S}, Puis, d’aprés I’exer-
cice 13.52, il existe S € S; telle que: '‘AA = S%.
Notons 2 = AS~!. Onaalors A = (2, et :

0 ="(ASTHAST ='571(AA)S = 5718?57 =1,
donc: 2 € O,(R).

Ceci montre I’existence d’un couple ({2,S) convenant.

Puisque A € S, d’aprés I’exercice 13.11, il existe
R € S/ telle que A = R*.
Ona: AB=R’B=R(RBR)R',
donc AB est semblable a RBR.
Mais, RBR est symétrique, car :
(RBR) ='R'BR = RBR.
D’apres le théoreme fondamental, R BR est diagonalisable.

Puisque AB est semblable a une matrice diagonalisable, on
conclut que A B est diagonalisable dans M,, (R).

Remarque : En particulier, X 45 est scindé sur R.

1" méthode :
Soit (A, B) € (S;")?. Puisque A € S,
il existe (A,...,\,) € (Ry)" et 2 € O,(R) tels que, en no-
tant D = diag(\,...,A\,),onait: A = 2D
Notons C = 27 'BQ2.
Comme B € S et 2€ O,(R),ona C € S

- ; en effet :
‘C=0'BW'=0"'BR=C
VX € M, (R),

'XCX = 'X27'BRX = Y(2X)B(2X) > 0.

Notons C = (¢;;);j ;ona:
tr(A) = tr(D) = Z Ai, tr(B) =tr(C) = Zcfi,
i=1 =l

tr(AB) = tr(DC) = Z AiCii-
i=1

D’une part, puisque A € ST: Vi e{l,...,n}, X\ =0.

D’autre part, puisque C € S;", en notant E; le i*™ vecteur de

la base canonique de M,, ;(R), on a :

Cij = tE,‘ CE, 20

Onadonc: 0< i/\icﬁ < ( S Ai)(icii),
=i =i =

i=

et finalement : 0 < tr(AB) < tr(A) tr(B).

2¢ méthode, pour la premiere inégalité :
D’apres I'exercice 13.11, puisque A, B € S, ilexiste R,S € S,
telles que : A = R? et B = S%. On a alors, en faisant interve-

nir le produit scalaire canonique sur M, ; (R) et la norme eu-
clidienne associée :

tr (AB) = tr (R*S*) = tr (R(RS?)) = tr (RS*)R)
=tr ((RS)(SR)) =tr (‘(SR)(SR)) =||SR|3 > 0.

1) Obtention d’un résultat préliminaire :
Soient X e M, ;(R), Y e M, ;(R).

On a, pour tout & € R :

(X X
o< () s( )
o o (A B\(X
=X ay)(B c)(w)

='XAX 4+ 2aYBX + o*YCY.
Le discriminant de ce trindme du second degré est donc < O :
(YBX)> — (XAX)(YCY) <0.
2)* Soit X € Ker (A). On a alors, d’apres /) :
VY eM, (R), (YBX))*<0.

Cecimontre: VY e M, 1(R), Y(BX) =0,

c’est-a-dire que BX est orthogonal a tout vecteur de M, ; (IR),
donc BX =0, X € Ker (B).

Ker (A) C Ker (B).

* Soit ¥ € Ker (C). On a alors, d’apres a) :

On a montre€ :

VX eM, (R), (YBX)*<O0.

Cecimontre: VX € M, |(R), (‘BY)X =0,

c’est-a-dire que '‘BY est orthogonal a tout vecteur de M, ; (R),
donc'BY =0,Y € Ker (‘B).

On amontré : Ker (C) C Ker (B).

Puisque (4,B) € (S,,(R))z, ona:
VieR, A+tBeS,(R).

De méme que dans I’exercice 13.37, on a alors, pour tout# € R :
f@) = H%inl (X (A +1B)X)
ot

g(0) = Max (X(A+1B)X).
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Soientu,v € R, a € [0; 1].
On a, pour tout X € M, | (R) tel que || X]|, =1:

%(A+ ((1 = a)u+av)B)X
='XAX + ((1 — ®u + av)XBX
= (1 — a)(XAX 4+ uXBX) + a(XAX + vX BX)
Z (1 -a)fw+af()
{ < (1 —a)g) + ag(v).

Il en résulte, par définition de f((l —a)u —I—av) et de
g((l —a)u + av) :

F((1 = u + av)
g((l —a)u + av)

A —a)fu)+af)
(I —a)gu) + ag).

AN\

On conclut : f est concave et g est convexe.

* Puisque A € S, (R), d’apres le théoréme fonda-
mental, il existe {2 € O, (R),
D = diag (\y,...,\,) € D,(R) telles que : A = 2D
Soit (py,....4,) € (R%)" quelconque.

Notons A = diag (jty,....11,), B = QAQ™".
Il est clairque: B € S/,

D’aprés I’hypothese, on a alors : tr (AB) > 0.
Mais :

n
tr(AB) = tr (2D 0AQT") = w(DA) =Y Ny
i=1

Ceci montre : ¥ (py.. ... 1) € (RY)", > Nipy; > 0.
i=1

*Soit i € {1,...,n} fixé. Choisissons x; = 1 et faisons tendre
p; (pour j # i) vers O par valeurs > 0. On obtient, par pas-
sage a la limite : \; > 0. Ainsi, A € S,(R) et Spg(A) C R,.

D’apres I’exercice 13.9, on conclut : A € S.

Puisque S € S, d’apres 'exercice 13.11, il existe
R € S/ telleque : S = R?.
Alors: SA = R*A = R(RAR)R™!,
donc SA est semblable a RAR.
Soit A € Spr(A) = Spe(RAR) . Tl existe X € M, ; (C) — {0}
tel que : (RAR)X = AX. On a alors, en utilisant la notion de
transconjuguée et la norme hermitienne sur M, ; (C) :
(X*R)(A+'A)(RX) = X*(RAR)X + X*(R'AR)X

= X*((RAR)X) + (RAR)X)"X = X*AX + A\ X)*X

= AX*X +AX*X = (A + V)| |X] 3.

D’autre part :
(X*R) (A +'A)(RX) = (RX)"(A +'A)(RX) > 0,
car RX #0
(puisque X #0 et Re S/t c GL,(R) C GL,(C)) et
A+'AeSH.

Ainsi: A+ N [|X]3 >0, dott: A+ X > 0.

——
>0

On conclut: VA € Spe(SA), RE(N) > 0.

a)Puisque A € S C S, (R), d’apres le théoreme fon-
damental, il existe 2 € O, (R),
D = diag (\,,...,\,) € D,(R) tellesque: A = 2D

De plus, d’apres ’exercice 13.9, puisque A € ST, ona:
Vkefl,...,n}, \ =0.
Notons C = 2 'BR2 de sorte que : B = 2CN".
On a alors :
AB+BA =0+ DC+CD)2"'=0
< DC+CD =0.
Passons aux éléments : D = diag (A1,...,\,), C = (¢;j)ij-

On a, pour tout (7, ) € {1,... )y

(DC + CD)’J = )\iCij =+ Cij)‘j = ()\, =+ /\j)Cij-

Ainsi: V@i, j) € {L,....n}*, (i +Ae;; =0.

Soit (i, /) € {1,...,n}%

Ona: X\ +X =0 ou ¢; =0.

Comme les A\, sont tous > 0, si A; +A; =0, alors \; =0 et
Aj = 0.0nadonc:

()\,20 ou C,'j=0) et ()\IZO ou C,'jZO).
Ceci montre : DC =0 et CD =0, puis :
AB=2(DC)2 ' =0 et BA=Q2(CD)2'=0.

b) L’exemple suivant convient :

A:((l) 8>es;—{0}, B:(g ?)es;—{O},

dans lequelona: AB = BA =0.

Puisque A € S, d’apres I’exercice 13.9, les valeurs
propres de A sont toutes > 0, donc A est inversible. On a,
pour tout (X,Y) € (M,,,l (]R))2

0 v 1 0\ (-YAa'x wa!
x A)\-a'x A1)~ 0 L )



d’ou, en passant aux déterminants :
—(X,Y)det(A™) = —YA'X.
Ainsi : p(X,Y) =Y (det (A)A™") X

Comme A €S/", on a det(A) >0, A~' €S+, donc
det (A)A~! € S

Il en résulte, d’apres I’expression matricielle des fbs, que ¢ est
un produit scalaire sur M, ; (R).

* D’abord, il est clair que '‘H, = H,,donc: H, € S,(R).

1 1
Remarquons : Yk € N*, = =/ <=1 ds.
0

X1
e Soit X = eM, (R).Ona:
Xn
XH,X= xi;xj
1€en U +Jj—1

1
f t"”‘*zxx dr
0
z+] 2 >dl
)( tf"xj) dt
=1

) dr > 0,

f(
- (%
-[ (5

donc: H, € S;'.
X1
*Soit X = €M, (R) tel que X H, X = 0. Avec les no-

xn
tations précédentes, on a donc :

1 n . 2
/ (Zt"'x,») dr =0.
0 i=1

n
Comme I’application polynomiale 7 — Z t'~!x; est conti-
i=1

nue, il en résulte : V7 € [0; 1], Zz’”xi =0.

i=1

1
Ainsi, le polynome E xX~! g’annule en une infinité de
i=1

points, donc est le polynome nul, d’ou :

Viell,...,n}, x; =0,

puis: X =0.

On conclut : H, € ;.

Soient A € S;}t, B € S;'.
Puisque A € S/ C GL,(R), A est inversible.
I, + AB = A(A" + B).
leS,(R) et:

On a alors :

eComme A €S ona: A~

VX eM, (R) —{0},XA'X
= A HAA'X) = AX)AA'X) > 0,

donc: A7' e SHt.

e Comme A~' eSftetBeS/,onaA™! +BeS,(R) et

pour tout X € M, ;(R) — {0} :

X(A'+B)X =%XA" X+‘XBX >0,
——
>0 2 0
A7'+ B eSS cGL,(R).
* Enfin, comme A € GL,(R) et A~! + B € GL,(R), on dé-
duit: A(A~! + B) € GL,(R).
On conclut : I, + AB € GL,(R).

donc :

Soit § € S;F.
e D’apres le théoreme fondamental, il existe {2 € O,(R),
D = diag (\1,...,\,) € D,(R) telles que : S = 2DN".

De plus, comme S € S:, d’apres I’exercice 13.9 :

Vie{l,...,n}, \; =0

n

+ (det(8))" =1+ (]_[ Ai)'/"

i=1

et: (det(I, + S))l/” = (ﬁ(l 4k )\i))l/
i

On a alors : 1

11 suffit donc de montrer :

n 1/n n 1/n
1+ (]JA) < (H(l +A,-))

S’il existe i € {1,...
lue est triviale.

,n} tel que \; = 0, alors I’inégalité vou-

Supposons désormais : Vi € {1,...,n}, \; > 0.

* Considérons I’application

p:R— R, t+——In(1+¢€).
L application ¢ est deux fois dérivable sur R et, pour toutz € R :
e &
’ M = . //t > 0
PO =g S O= e 2

Ceci montre que ¢ est convexe.

D’apres I’inégalité de Jensen, on a donc :

1L &£
Vt,...,t, € R, — L) < - t; 1).
! e ga(n;)\n;@() (1
Mais :
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1 n 1 n
1 In|1 SN 5 )<= nd et
(1) = n[ +exp<n; )]\n; n(l+e)
n 1/n n 1/n
<=>1+(]_[e’f> <<]‘[(1+e’f)> :
i=1

i=1
En appliquant cette inégalité az; = In )\;, on conclut a I'inégalité
demandée.

a) Supposons (xi,...,x,) obtusangle.

p—1
,a,—1) € RP! tel que Za,xi =0.

p=il

Soit (o, ...

p—1
Considérons y = E |ci|x;.,Ona:

i=1

p—1 p—1 2
2
lIyIP? = Z|a,~|xl- Z|al|x,
i=1
———
=0
p—1
2 2
=[Z|ai| IxlP+2 |a,-||a,~|<x,-|x,)]
i=1 1<i<j<p-1
p—1
2 2
—[Za,-nxin +2 > aia,(x,wx,-)]
i=l 1<i<j<p-1
=2 Y (leillojl — ey ) (i | x7) <0,
1<i<j<p—1 —_—

>0 <0

d’ou: y = 0. Il s’ensuit :

p—1 p—1
0=<x,,|y>=<x,, me) EANEAEDE
i=1 = e =
>0 <0
Ilenrésulte: Vie{l,...,p—1}, |oy| =0,

dot: Vie{l,....,p—1}, a; =0.

Ceci montre que la famille (x;,...,x,_;) estlibre.

b) S’il existait une famille obtusangle (xi,...,x,) telle que

p = n + 2, alors, d’apres a), la famille (x;,. . . ,x,_;) serait libre
et de cardinal > n + 1, dans un ev de dimension n, contra-
diction.

On conclut que, dans un eve de dimension #, il n’existe pas de

famille obtusangle de cardinal > n + 2.

Remarque : On peut, dans tout eve de dimension 7, construire
une famille obtusangle de cardinal n + 1.

A U
* Notons Q—(V B>' Ona:

20 =1,,
Ne€0,R)
N=1,

(‘A lV)(A U>_<I,, 0 )
v 8)\v B) \o 1.,
(A U>(‘A tV)_(I,, 0 )
v BJ\vu B 0 I,
AAHVV =1,
{ VV + BB =1, ,.
D’apres I’exercice 12.49, on déduit :
det (AA) =det (I, —'VV) = (—=D)"xiyy (1)
= (=1)" "Xy (1) = det (I,_, — V'V) = det (B'B),
d’ou:
(det (4))” = det (AA) = det (B'B) = (det(B))’,
et donc : |det (A)| = |det (B)|.
*Ona: AAeS;}.

Soit A € Sp(‘AA). Il existe X e M, ;(R) —
‘AAX = AX. Puisque AA +'VV =1,,

{0} tel que

onaalors : X(AAX) +'XVVX ='XX,
d’ot: AlXIP 4+ VX = [1XI,

et donc : MIXI1? < 1X1P

Comme || X|| > 0, il s’ensuit: A < 1.

Ainsi : Sp (‘AA) C [0; 1].

Comme ‘A A est diagonalisable dans M,,(IR), il en résulte :
det("AA) € [0; 1].

(det (4))*.

On conclut : |det (A)| € [0; 1].

De méme : |det (B)| € [0; 1].

Mais : det (AA) =

a) 1) Puisque S € S} C S,(R), d’apres le théo-
il existe P € O,(R) telle que
,ou D =diag (Ay,...,\,).

reme fondamental,
S=PDP =PDP!

Notons P = (p;;);j- On a, pour tout (i, j) € {1,... ,n}z,parpro-
duit matriciel : s;; = Zpik)\kpjk~
k=1
En particulier, pour tout i € {1,...,n}:
Sii = Z /\kpjzk .
k=1
Soit i € {1,...,n} fixé.

Puisque les pizk,(l <k <n) sontdes réels > 0 tels que

n
Z pizk =1, (car P est orthogonale) et que f est convexe, on
k=1
a, d’apres I’inégalité de Jensen :



flsw) = (Zp,,ﬁ) <Y PRS-
k=1

D’ou, en sommant pour i de 1 an :

> fsin) ZZp,kfw)
i=1 i=1 k=
= Z (Zp?k)f(m =Y fOw.
k=1 i=1 k=1

’n}a Zptzk =1
i=1

puisque P est orthogonale.

car: Vke{l,...

2) * Supposons d’abord S € S;. On a alors :

Vi e {l,...,n}, S ZLE,'SE,‘ > O,

et, d’apres I’exercice 13.9: Vk e {1,...,n}, A > 0.

Considérons 1’application
f:10;+oo[— R, x — —Inx,

qui est convexe. On peut adapter le résultat de /) (ou f était
convexe sur [0 ; +00[) et on obtient :

D FEi) <D FON).
i=1 k=1

Mais : ’Zlf(s,-,-) = Z—ln (s;;) = —1In (HS,',')
i=1

= i=1

Xn:f()\k) ZXn:—lnAk = —ln(ll[)\k)
=1

k=1 k=1

n
| |Sii
i=1

*SiSeStetS¢SH, alors 0 est valeur propre de S, donc
det (S) = 0, et, d’autre part, les s;; sont tous > 0, d’ou I’in-
égalité voulue.

b) Soit A = (a;;)i; € M, (R). Notons § = A'A € S}
< l_[Sii~

i=1
(det (4))?,

n
_ 2
= E ai.
=1

(det (4))° ( e )

t:l j=1

n

> ]‘[Ak = det (D) = det (S).

k=1

On déduit :

Draprés a) 2) : det (S)

Mais :  det (S) = det (A'A) =

et, pour tout i € {1,...,n}

On déduit :

=

n

On conclut : |det (A)| < (HZaé)l/z.

i=1 j=1

*Puisque'AA = aA + (3 'A, on déduit, en transposant :
'AA = «a'A+ PBA, puis, en additionnant et en notant
a+ g

=5 : AA=9A+~'A.

On a alors :
(A —vL)A —41,) = AA —yA —y'A + 7L, =1,

1
donc, ennotant 2= —A —1I,,ona: 202 =1,,
v

e 0,R).
* Nous allons appliquer I’inégalité de Hadamard, cf exercice

172
13.67b): |det(A)|<(1_[Z ,J> .

i=1j

c’est-a-dire :

Notons {2 = (w,»,—),-j.

On a alors, puisque A = ¥2+ 1, :
Vi e {1,...,1’1}, aij = YWiji +’Y
V@, j) efl,

..,l’l}z, i 7«'/: ] :>a,~j = YWijj.

D’ou, pour tout i € {1,...,n}:
Zau =a} + Za” (i +7)° + Z ’Yzwlz,
E jer e
=¥ + 20wy + 7 ZU-’I-Z,- =27 + 27wy < 47
=1
L/_J
=1
Dot |det(4)] < (D)2 = 21" = (@ +9)".

Notons A(D) I’aire d’un domaine simple D de R?.
* On a, pour tout (i, ) € {1,...,n}*:
ajj = A(D; N D;) = A(D; N D)) = ajj,
donc: A €S,(R).

* Notons, pour tout domaine simple D de R?, ¢, la fonction

caractéristique de D, définie par :

1 si MeD

D:R2—>R, Mr—){

0 si M¢D.

11 est clair que, pour tous domaines simples D, D’ de R? :
Ponp = PpPp'-
On a donc, pour tout (i, j) € {1,...,n}*:

ay =D 0 D) = [ o5, 0p,ry)arey
R

= //Rz ©p, (x.¥)¢p, (x,y) dx dy.
D’ou, pour tout X = eM, R) :

Xn

t)(A}(: Z a,-jx,-x.,v

1<i,j<n
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>, ( / / b, (X, )pp, (x,y) dx dy)xix,-
R2 ’

1<i,j<n

//Rz< > %,(x,y)wpl(x,y)xixj)dxdy

1<i.j<n

n 2
=/f (Z(pDi(x,y)x,-) dxdy > 0.
R? \ =]

On conclut : A € Sf.

Notons § = A'A ="AA.
Il est clair que S € S, (R) . D’apres le théoréme fondamental,
il existe P € O,(R), D = diag (\;,...,\,) € D,(R) telles
que:S=PDP "
Notons B = P~'!AP,desorte que : A = PBP L.
Ona: AS = A(AA) = (A'A)A = SA,
donc :
BD = (P'AP)(P™'SP) = P"'(AS)P
= P '(SA)P = (P"'SP)(P"'AP) = DB.
Passons aux éléments. Notons B = (b;;);;. On a alors :

BD = DB
=V ,j) e(l,....n}% byjd; = dib;

=V i,j)ell,....n}% (dj—d)b; =0
S VG, ) ell,....n? (i #j= by =0),

card,,...,d, sont deux a deux distincts, par hypothese.
Ceci montre que B est diagonale, donc symétrique.

On a alors :

‘A="(PBP')= P 'B'P=PBP '=A.

* (i) = (i) :
Supposons A diagonalisable dans M, (R). Il existe

P € GL,(R), D € D,(R) telles que : A= PDP~'. On a
donc :

‘A='PDP)y="P'D'P

= 'P'P{(PDP )PP = (PP THA(P'P).
Notons S = P'P. Puisque P € GL,(R), d’apres I’exercice
13.17,ona: S ="PP € S;*.
Et: ' =(PP)"' = PP
Onconclut: 35 € S, 'A = ST'AS.
* Supposons qu’il existe S € S, telle que : ‘A = ST1AS.
Onaalors : '(AS) = 'S'A = S(S7'AS) = AS,

donc: AS € S, (R). Notons B = AS.

Puisque S € S;* € GL,(R), on déduit: A = BS~'.
Puisque S € S, ona S~! € S*. D’apres I'exercice 13.11,
il existe R € S/ telle que : S~' = R.

Onaalors: A = BR> = R"Y(RBR)R,

ce qui montre que A est semblable a RBR.

Mais : '(RBR) = 'R'BR = RBR,

donc: RBR € S, (R).

D’apres le théoreme fondamental, R B R est diagonalisable dans
M, (R). Puisque A est semblable 8 RBR et que RBR est
diagonalisable dans M,,(R), on conclut que A est diagonali-
sable dans M,,(R).

a) Soit S € S:. D’apres le théoreme fondamental, il
existe 2 € 0,(R), D = diag (\,...,\,) € D,(R) telles que :
S=0Da".

De plus, puisque S € S, d’aprés I’exercice 13.9 :

Vkell,...,n}, \x =0.

n (T N
(det (5)) _(1])\)

1 £
t —tr(S) = — A
® nr() n;

D’apres la comparaison entre moyenne arithmétique et moyenne
géométrique pour des réels > 0, on a :

n 1/n n
(]‘[Ai) <o >

i=1

Alors :

.
dou: (det($))"" < =t (S).
n

b) 1) Soit A € M,,(R). Notons S ='AA. D’apres I’exercice
13.17 : S € S§. 1l s’ensuit, d’apres a) :
a
(det ()" < e (S).
n
Mais :
det (S) = det (‘AA) = det (‘A) det (A) = (det (A))Z.

1 n/2
On conclut :  |det (A)| < (7 tr (tAA)> .
n

2) Soient A,B € S.

* Supposons A ¢ St*. Alors, comme A € ST, 0 est valeur
propre de A, donc det (A) = 0. D’autre part, d’apres 1’exer-
cice 13.55, puisque A,B € S, ona: tr (AB) > 0, d’ou I'in-
égalité voulue.

* Supposons A € S/, D’apres 'exercice 13.11, il existe

R eS/ttelleque A=R>.Ona:

AB = R’B = R(RBR)R',



det (A) det (B) = det (AB) = det (RBR)
donc {

tr (AB) = tr (RBR).
De plus, il est clair que RBR € S;.
D’apres a), appliqué a S = RBR,ona:
(det (RBR))"" < %tr(RBR).

1 n
On conclut : det (A) det (B) < (— tr (AB)) .
n

Puisque A'A et 'AA sont symétriques réelles et que,
d’apres 1’exercice 12.49, elles ont le méme polyndme carac-
téristique, il existe P,Q € O,(R), D € D, (R) telles que :

AA=PDP" et AA=QDQ".
On a alors :

‘AA=QDQ ' =Q(P (A4 P)0"!
= QPI(AA)(QP™H .
En notant 2= QP~!, comme P,0 € 0,(R), on a :

2 € 0,(R). Ceci montre que AA et AA sont orthogo-
nalement semblables.

a) o) Supposons A € S}, etsoitp € {1,...,n}.

X1

Soit X = eM, (R) ; complétons X en
B

X =(x1...x,0...0)eM, (R).

Comme A € S;',ona X'AX' > 0.

Mais: X'AX = XA,X,

dou XA,X > 0.Ainsi: A, € S;'.

Puisque A, € S;’, d'apres le théoreme fondamental, il existe

(A1,. -0 € Ry)P et Q € O,(R) tels que, en notant
D = diag(\y,...,\,), onait A, = QDQ.

p
Diou : det(A,) = det(D) = [ [ A > 0.
i=l

() Laréciproque de ) est fausse (sin > 2), comme le montre
I'exemple A = —E,, (matrice élémentaire). En effet, tous les
mineurs de Gauss de A sont nuls, mais A ¢ S}, puisque
[EzAEZI—l < 0.

) 1) Soit A € S} En raisonnant comme plus haut (solution

de a) ) ), on obtient, pour tout p de {1,...,n}, det(A,) > 0.

v) 2) Réciproquement, supposons :
Vp e {l,...,n}, det(A,) > 0.

Montrons : Vp € {1,...,n}, A, € S;*, par récurrence (bor-

née) sur p. Il en résultera, en particulier, A = A, € S;’*.

Il est clair que A = (det(Al)) € ST*.

Supposons A, € S, et décomposons A, en blocs :

P’

A ‘C
Ap+l:( P P

Cp Apt1 p+1

>,ou C, €M, (R).

D'apres I'exercice 13.11, il existe R, € S;* telleque A, = R!Z,.

Cherchons o € Ret L, € M, ,(R) pour que, en

R L
w p),on ait A1 = '‘MM.
a

tant M =
notan (0

Ona:

R, O R, L
MM = A P P P
(i, 2)(52)

(&)
Cp Ap+1 p+1
= (R; = Ay, R,L,='Cp, 'L, L, + @ = Apt1 l’“)'
Comme R, € S+ C GL,(R), on peut choisir L, = R, ‘C,,.
Alors :

t 2
Lpr + o = Ap11 p+l1
—1p-1t 2
— C,,Rp Rp Cp +a = Ap+1 p+1
2 -1t
— a = Ap+1 p+1 — CI’Ap C],.

11 suffit donc de montrer : @,y p41 — C‘,,A;1 ‘C, > 0.

Remarquons :
A, ‘Cs A;l —A;“Cp
lg wole 3 )
L, 0
- (CPA;' Bpil prl — cpA;lc,,) ’
d'ol, en passant aux déterminants:

det(A,1)det(A,") = api1 ps1 — Cp A, 'C,.

Comme, par hypothése, det(A,) > 0 etdet(A,+;) > 0, ondé-
duit: @, pr1 — C,,A;' 'C, > 0, et on choisit, par exemple,

« > 0 convenant.
R, L
Alors M = ( O” a”) € GL,,(R),

etdonc A, ='MM € S;Il,

ce qui établit la récurrence.
b) L'application f : S} — R définie par :

VA eSS, f(A) = (det(A))....,det(A,))
est continue, et d'apres a) 7), S = f~1(10; 4o0[").
Comme ]0; +oo[" est ouvert dans R”, on en conclut que S,
est ouvert dans SF.

De méme, S;* est ouvert dans S, (R).
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¢) Notons, pour p € N*, D, = det(A,) = det((a" /1)1, <p).
On a, par développement par rapport a la premiere ligne :
Vp e N*, D,y = (1 —a®)D,,
d’ou, par une récurrence immédiate :
Vp e N, D, = (1 —a*)Pr".
Vp e {l,...,n}, det(A,) = (1 —a*>)”"' > 0.

On conclut, en utilisanta) ) : A € Si+.

Ainsi :

a) = :
Récurrence sur 7.
La propriété est évidente pour n = 1.
Supposons-la vraie pour un n de N*, et soit S € S/, ;.
Décomposons S en blocs :

o er .
S = c s ,ouaeR, CeM, (R),S; €S,(R).
1

Nous allons déterminer § € R, L € M, ,(R), T} € T, (R) de

IL,
B ),onaitS:‘TT.

f: | tant 7 =
acon qu'en notan < 0 T

Ona:

- a '\ _(B O\(B L
§ = TT‘:’<C S1>_(‘L ‘Tl>(0 T1>

= (F=aBL="C 'LL+'TiT=5).

Soientx € R, X, € M,;(R), X = (; )
1

+

1> ON A XSX > 0, clest-a-dire, en dévelop-

Puisque S € S
pant :

ax® +2x'CX; + 'X; 51X, > 0.
En particulier, en remplacant x par 1 et X, par 0, on déduit
a > 0. En choisissant 8 = \/a, on adonc 3% = a.

eCasa >0

1
Notons L = — 'C. On a, pour tout X; de M,, ;(R), en rem-

Ja

1
placant plus haut x par —— 'CX; :
e}

1
_E(‘CXI)Z + X181 X, >0,

clest-a-dire : 'X;(S; — 'LL)X, > 0.
Ainsi, S, — 'LL € S}

D'apres I'hypothese de récurrence, il existe 77 € T, ((R) telle
que S; — 'LL = 'Ti T;.
B

En notant 7' =
n notan (0 T,

) , on obtient ainsi :

T €T, R et S='TT.

eCasa=0

On a alors :

VXI € M,,J(R),VX € ]R, 2X‘CX1 + ‘XlSle 2 0,

dou: VX, eM, (R),
etdonc: C =0 et

(‘fCX; =0 et
Si GS’T

"X181X, 2 0),

D'apres I'hypothese de récurrence, il existe 77 € T, ((R) telle

0 0
que S; = 'T| Ty, d'ou, en notant 7 = :
0 T

T €T, R et S='TT.

=>3
Stlexiste T € T, s(R) telle que S = 'T'T, alors, pour toute X
de M, (R):

'XSX = 'X'TTX = (TX)TX =||TX|3 >0,

etdonc: SeS§S;.

) => 3

Soit § € S

D'apres a), il existe T € T, (R) telle que S = 'T'T.

Comme : (det(T))2 = det(!TT) = det(S) # 0,

ona det(T) #0, etdonc T € GL,(R).

—

Silexiste T € T, ((R) telleque S = 'T'T, alors (cf.a)) S € S,
et : det(S) = (det(T))” # 0,

donc S € SF NGL,(R) =S;+.

Remarque : Pour b), —, on peut utiliser le procédé d'or-
thogonalisation de Schmidt, appliqué a la base canonique By
de M, (R) et au produit scalaire de matrice S dans 5.

Puisque A € S, (R), d’apres le théoreme fondamental,
il existe 2 € O,,(R), D = diag (\y,...,\,) € D,(R) telles
que: A=0D0 "
Ilexiste X € M, 1 (R) — {0} tel que : AX = \, X.
Ona: XAX =\XX =)\,[|X|]
X1 [

Notons X = et X = e M, (R).
Xn |, |
Ona: lXVA}( = Z a,-/-x,«xj.

1<i,j<n

Puisque les a;; sont tous 2> 0, on déduit :

2 2l

1<i,j<n

IXAX| =

< Y aylnllxy] = XAX.

1<i,j<n



Notons Y = (Zil)N(, de sorte que : X = (2Y, et notons

Y1

Y = . On a alors :
yil

XAX = (RY)AQY) ='Y'RAQY

=YDY = AyE< Y Ayi=n )y
i=1 i=1 i=1
= MIIYIP = MI127Y 12 = M IIXI2 = M ]1X]2
Ainsi: A [IXIP = [XAX| <'XAX <\ |IXI2

~
Comme ||X||> > 0, on conclut: |\, < A.

Récurrence sur n.
La propriété est triviale pourn = 1.
Supposons-la vraie pour tout p de N* tel que p < n, et soient
I un ensemble non vide, (S;);e; une famille d'éléments de S,, (IR)
commutant deux a deux.
Lecas (Vi € I, S; € R1,) est trivial.
Supposons donc qu'il existe iy € I tel que S;, ¢ RI,,.
D'apres le théoreme fondamental, il existe {2 € O,(R),
D € D,(R) telles que S, = 2D,

Comme S;, ¢ RI,, les éléments diagonaux de D ne sont pas

ML 0
tous égaux. On peut donc supposer D = ( Oor D’)’ ou

MeER, refl,....n—1}, D' €D, . (R) atermes diago-

naux # A.
Pour chaque i de I, décomposons £2~'S;2 en blocs :
A;  B;
aise=,,
(% 2).

ol Ai € Sr(R)y Bi € Mrﬂnfr (R)7 Ci € Snfr(]R)-

Comme les S;(i € I) commutent deux a deux, en particu-
lier: Viel, S,'S,'O = S,'OS,'.
En effectuant un produit par blocs, on en déduit :

Viel, /\0B,‘ = Bl*D/,

cest-a-dire : Vi € I, B;(D' — \oI,_,) =0.

Mais D’ — A\ol,,_, est inversible, dou: Vi eI, B; =0.
A,'Aj = AJAI

On déduit alors: V (i,j) € 17, { .
Ci Cj - CjCl'

On peut donc appliquer I'hypothese de récurrence aux deux
familles (A;);c; et (Ci)ies.
Il existe donc {2 € O, (R) et 2, € O,_,(R)

telles que :

27'A:02, €D, (R)

Viel, { 5
QEIC,' 02 € Dn—r(R)

2, 0

En notant (2 = Q( 0 0

) , on a alors facilement :
2'€0,[R) et:
Viel, 27'S02 eD,(R).

* Puisque A € S C S,(R), d’apres le théoreme
fondamental, il existe {2 € O, (R),
D = diag (\;) € D,(R) telles que : A = 2D,

1<k<n

De plus, comme A € Sj, d’apres I’exercice 13.9, on a :
Vke{l,...,n}, \x 20.

Notons, pour tout k € {1,...,n}, g, = P(\) € Ry

et A = diag (1) . On adonc :

1<k<n
P(A) = P(2DR""H = PD)2 ' = Q.

Puisque I'application R, — R,, A —— P(})
est injective, d’apres le cours sur I’interpolation polynomiale,
il existe Q € R[X] tel que :
Vke{l,....n}, O(w) = A
On a alors :
0(4) = diag (Q(1)) = diag () = D,
1<k<n 1<k<n

puis :
0(P(A) = oA ) =000 ' =0oD0 ' = A.

Ceci montre que A est un polynome en P(A). De méme,
B estun polyndme en P(B). Comme P(A) = P(B),il enré-
sulte que A et B sont des polyndmes d’une méme matrice, donc
A et B commutent.

e D’apres ’exercice 13.77, puisque A,B €S,(R) et
AB = BA, A et B sont simultanément orthodiagonalisables,
c’est-a-dire qu’il existe R € O,(R), E,F € D, (R) telles que :
A=RER™ et B=RFR™"

P(A) = P(RER™') = RP(E)R™!
On a alors :
P(B) = P(RFR™") = RP(F)R,

donc, puisque P(A) = P(B),ona: P(E) = P(F).
Notons E = diag (ay), F = diag (G;),

1<k<n 1<k<n

ol ay,...,Qp, B1,...,0, € Ry.

Onadonc: Vke{l,...,n}, P(w) = P(B).

Comme P |, est injective, il s’ensuit :
Vke{l,...,n}, o =By,

d’ou E = F,puis: A=B.
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Notons D =diag(A;,...,\,). Il existe donc
e 0,R) telle que : S = NDN".

Pour i € {1,...,n}, notons C; le i-¢me vecteur de la base ca-
nonique de M,, ; (R), et, pour tout r € {0,...,n — 1}, notons
E, ;1 = Vect (2Cy,...,02C,,1)

et E/ = Vect (£2C,4y,...,02C,).

1)Soit X € E..

n

Il existe (X,41,....X,) € R"" telque X = Y x,0C;.
i=r+1

On a alors :

n

SX = Z XiSQC,’ = Z X,’QDC,‘ = Z X,‘/\,‘.()C,‘,
i=r+1 i=r+1 i=r+1
puis, comme ({2C;); est orthonormale :

n

XSX = Y xi(xi\) = Z P

i=r+1 i=r+1

< /\r+1 Z xiZ = )\1+1XX

i=r+1

Ceci montre :
VX €E, (XX =1='XSX < A1),

d’ou : Sup XSX < Agrs

XeE, et XX=I

et donc : Inf < Sup

‘XSX) < Aar
FEFr \ XeF et XX=1
2)Soit F € F,

Comme dim (F) =n —retdim(E,;) =r+ 1l,ona:
dim (F) +dim(E,,;) =n+1,

donc nécessairement : F N E,; £ {0}.

Il existe donc X € F N E,;; —{0}. Ensuite, il existe

r+1
(X15. .., Xr11) € R+ tel que X = Zx,—QC,».

i=1

r+l1

Onaalors: SX = in)\iQC,-,
i=1

puis, comme ({2C;); est orthonormale :

laisl r+l
ASX =Y Nx? = A1 X7 = A XX,
=i =1
Ceci montre : Sup XSX > A\

X€eF et XX=1

‘sz> > Ayt

FeFr \ XeF et tXX=1

Ilenrésulte :  Inf < Sup

Finalement: A\, = Inf < Sup

FEFr \ XeF et XX=1

‘XSX).



Geomeétrie

Bl Plan MR  Theémes abordés dans les exervcices

Les méthodes a retenir 490 e Détermination de I’enveloppe d’une famille de droites du plan (PT)

Enoncés des exercices 493 e Détermination de la développée d’une courbe du plan (PT)

Du mal a démarrer? 496 e Détermination des développantes d’une courbe du plan (PT)

Corrigés 499 * Reconnaitre si une courbe de I’espace est plane, et si oui, déterminer son plan

e Calcul d’une abscisse curviligne, d’une longueur d’arc
* Détermination de la tangente en un point régulier d’un arc paramétré

* Détermination la normale ou/et du plan tangent en un point régulier d’une sur-
face

* Réduction des quadriques
¢ Détermination de toutes les droites tracées sur une surface donnée

e Former une EC d’un cylindre donné par une directrice et la direction des géné-
ratrices (PT)

e Reconnaitre un cylindre sur son EC (PT)
e Former une EC d’un céne donné par le sommet et une directrice (PT)
e Reconnaitre un céne sur son EC (PT)

* Reconnaitre si une surface est réglée, développable (PT).

Points essentiels du cours
pour la résolution des exercices

e Théoréme donnant I’enveloppe d’une famille de droites (D;),c; du plan a par-
tir d’une EC de D, (PT)

* Les deux caractérisations de la développée d’une courbe du plan : lieu du
centre de courbure, enveloppe des normales (PT)

e Caractérisation des développantes d’une courbe du plan par la formule :

OM=0C+(sp—5)T (PT)
* Formule donnant la dérivée de 1’abscisse curviligne sur un arc paramétré

* Vecteur directeur de la tangente en un point régulier d’un arc paramétré

*  Pour une surface S donnée par une EC F(x,y,z) =0, le plan tangent a S en
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un point régulier M (x,y,z) de S est orthogonal a gr—ac)i F(x,y,2)
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* Pour une surface S donnée par une RP (u,v) — M (u,v), le plan tangent a

P oM oM
S en un point régulier M (u,v) de S est normal a a—(u,v) A a—(u,v)
u v

* Le tableau des quadriques sur leur équation réduite

* Définition des cylindres, cones, surfaces de révolution, surfaces réglées, sur-
faces développables (PT)

*  Forme de I’EC d’un cylindre, d’un cone, d’une surface de révolution (PT)
* Définition des surfaces réglées (PT)

e Caractérisation des surfaces développables parmi les surfaces réglées. (PT)

memms | es méthodes a retenir

Par commodité, on utilise les abréviations suivantes :

RP pour : représentation paramétrique
EC pour : équation cartésienne
SEC pour : systeme d’équations cartésiennes.

Obtenir d’abord une EC a(¢)x + b(t)y + c(¢t) =0 de D;,.
Une RP de I’enveloppe C de (D;);c; est obtenue en résolvant le sys-
teme de deux équations formé par I’EC de D, et 1’équation de la

Pour déterminer « droite-dérivée »:

I’enveloppe C
d’une famille de droites (D;);c; a()x + b))y +c() =0 D,
ax+b®)y+cit)y=0 Dj.
== Exercices 14.3, 14.10, 14.11.
Utiliser I’'une des deux méthodes suivantes :
e C est le lieu du centre de courbure a I
Sur C, donnée par une RP x = x(¢), y = y(¢), calculer successi-
POlll" détern}iner vement x', 7y, s, s',tanp, ¢, R, 7) ﬁ et enfin le centre de
la’ développée C courbure / en M a I', et en déduire une RP de C, qui est le lieu de
d’une gourbe r I lorsque M décrit I.
donnnée par une RP w> Exercices 14.12, 14.23.

* C est I’enveloppe des normales a I'. Former une EC de la normale
N, en le point courant M de " puis chercher I’enveloppe de la famil-
le de droites (N;);.
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Pour déterminer
les développantes
d’une courbe C

Pour montrer
qu’une courbe
donnée par une RP
est plane

Pour calculer
une abscisse curviligne
sur un arc paramétré

Pour étudier

le plan tangent

ou la normale

en un point régulier M
d’une surface S

Les méthodes a retenir

Sur C, donnée par une RP, calculer successivement x’,y’, s,
%
s’,s, T . Une RP d’une développante Iy, de C est alors donnée par :

— - — : :
OM = OC+(so—s) T, ou le point C est le point courant de la
courbe C.

== Exercice 14.13.

» Essayer d’éliminer le parametre ¢ entre x(t), y(¢), z(¢), de facon a
obtenir une EC de plan.

== Exercices 14.1, 14.14
e Chercher (A,B,C,D) € R*, tel que (A,B,C) # (0,0,0), et tel que :
Vt, Ax(t) 4+ By(t) +Cz(t)+ D =0.

En particulier, se rappeler qu’un polyndme P est le polyndme nul si et
seulement si P s’annule en une infinité de points.

== Exercice 14.14.

Appliquer la formule du cours, pour la dérivée de 1’abscisse curvi-

ligne : s'(t) = \/(x’(t))z + (y’(t))2 + (z’(t))2, puis, pour la lon-

b
/ s/(t)dt‘.

== Exercice 14.2.

gueur d’'un arc : L = [s(b) — s(a)| =

* Si la surface S est donnée par une EC F(x,y,z) =0, ou F est de

classe C' sur un ouvert de R?, la normale 2 S en un point régulier
M(x,y,z) de S est la droite passant par M et dirigée par

gr_ac)i F(x,y,z), et le plan tangent en M a S admet pour EC :
X —x0)F(x,y,2) + (Y =Y Fy(x,y,2) + (Z = ) F,(x,y,2) = 0.

== Exercices 14.4, 14.16

* Si la surface S est donnée par une RP (u,v) — M (u,v), ou M est
de classe C' sur un ouvert de R?, la normale a S en un point régulier

o oM oM
M (u,v) de S est dirigée par B—(u,v) A a—(u,v), et le plan tangent
u v
—
N L oM
en M & S est le plan passant par M et dirigé par a—(u,v) et
u
—
oM

W(H,U).

= Exercice 14.5.

491



Chapitre 14 - Géométrie

492

Pour étudier

la tangente

en un point régulier M (¢)
d’un arc paramétré C

Pour déterminer

la nature

d’une quadrique S,
donnée par une EC
F(x,y.2) =0,

et pour nommer S

Pour déterminer
toutes les droites A
tracées sur une surface S

Pour former une EC
d’un cylindre S

dont on donne

une directrice I"

et la direction

des génératrices

par un vecteur w

Pour reconnaitre
un cylindre S sur une EC

Pour former

une EC d’un cone S
dont on donne

une directrice I"

et le sommet §2

Utiliser le fait que la tangente en M (¢) a C est dirigée par T

== Exercice 14.15.

Il est d’abord nécessaire de retenir le tableau des quadriques, qui est
dans le cours.

Ecrire la matrice Q de la forme quadratique canoniquement associée
as.

* Si Q est inversible, alors S est une quadrique a centre. Le centre

—_— —
2(x,y,z) de S est obtenu en résolvant grad F(x,y,z) = 0 . Changer
d’origine, nouvelle origine {2. Déterminer une base orthonormée (direc-

- = — . - = —
te) (1, J, K) deréduction de Q. Dans le repere (2; [, J, K),
S admet une équation réduite. Reconnaitre alors la nature de S et
nommer S.

* Si O n’est pas inversible, déterminer une base orthonormée (directe)

— > —> , . L. . .
(I, J, K) de réduction de Q, et écrire I’équation de S dans le

repere (O; I, J, K). Utiliser des mises sous formes canoniques
de trindmes, pour obtenir une équation réduite de S.

= Exercice 14.17.

Si A n’est pas horizontale, A admet un SEC de la forme :
xX=az+p A
{ (a,b,p,q) € R".
y=bz+gq
Reporter dans ’EC de S. L’inclusion de A dans S se traduit par un
systeme d’équations d’inconnue (a,b, p,q). Résoudre ce systeme.

= Exercice 14.24 a)

Un point M(X,Y,Z) est sur S si et seulement s’il existe un point
—> . SN . .
m(x,y,z) de I tel que mM soit colinéaire 2 0, ce qui se traduit par :
—
I m, mM = )\7, et passer aux coordonnées.

== Exercice 14.6.

Mettre I’EC de S sous la forme f(P,Q) = 0, ou P, Q sont deux (pre-
miers membres d’EC de) plans. Les génératrices de S ont alors pour
direction: P =0 et Q =0.

== Exercice 14.7.

Un point M(X,Y,Z) est sur S si et seulement s’il existe un point
=5 - - . .
m(x,y,z) de I"tel que £2M soit colinéaire & {2m ce qui se traduit par :

—_ RN
AN\,m, QM = \{2m, et passer aux coordonnées.
= Exercice 14.20.
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Pour reconnaitre
un cone sur une EC

Pour montrer
qu’une surface S,
donnée par une RP,
est réglée

Pour décider
si une surface réglée S
est développable

Enoncés des exercices

¢ Essayer de mettre I’EC de S sous la forme f (i , X) = 0, auquel cas
S est un cone de sommet O. <L

== Exercice 14.8

P
® Essayer de mettre ’'EC de S sous la forme f(— 2) =0, ou

R’R
P,Q,R sont des (premiers membres d’EC de) plans, auquel cas S
est un cone dont le sommet {2 est définipar: P =0, Q0 =0, R =0.

Pour trouver (2 on peut chercher un point de S en lequel S n’a pas

— —
de plan tangent, et résoudre grad F'(x,y,z) = 0 et F(x,y,z) =0,
ol F(x,y,z) =0est’ECde S.

= Exercice 14.21.

— —
Mettre la RP de S sous la forme : OM (u,v) = m(u) + v G(u).
== Exercices 14.9, 14.22.

Obtenir d’abord une RP de S sous la forme

— —
OMu,v) =m(u) +vGu).

La surface S est développable si et seulement si :

_— s ——>
V(u,v), det 5 _ - (m' (), G(u), G'(w)) = 0.
(r.,],.K)
Calculer ce déterminant.

== Exercices 14.9, 14.22.

=mm=e [noncés des exercices

— 14.1

Courbe plane dans ’espace

m m
Montrer que la courbe C de RP : x = cos (t - 5), Yy = COst, z = COs (t + 5), teR
est plane, déterminer son plan, et reconnaitre la nature de C.

Exemple de calcul d’abscisse curviligne
Calculer I’abscisse curviligne s(¢) en tout point M (¢) de I’arc paramétré C de RP :
x =¢'cost, y=¢'sint, z = V2e, teR

en prenant comme origine des abscisses curvilignes le point de C de parametre ¢ = 0.

Exemple de détermination de I’enveloppe d’une famille de droites du plan

Déterminer, par une RP puis par une EC, I’enveloppe C de la famille de droites :

D, : ’x4+2ty+2=0, t € R".
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14.4

Condition sur la normale en un point d’une surface

Existe-t-il un point M de la surface S d’EC x> + y*> — z> = 1 en lequel la normale soit dirigée par
W(1,2,3) 2par V3,2, 1) 2

Plan tangent en un point d’une surface donnée par une RP
Soit S la surfacede RP: x = e, y =e¢°, z=uv, (u,v) € R,

Montrer que tout point de S est régulier, et déterminer le plan tangent en tout point M (1,v) de S.

Former une EC d’un cylindre
xtr+yt=1

Former une EC du cylindre S de directrice 1" et de génératrices dirigées par le vec-
z=0

teur  (1,3,2).

Reconnaitre un cylindre sur son EC

Reconnaitre la surface S I’EC : 22 + x? — 2xy + y* +2x —2y — 1 = 0.

Reconnaitre un cone de sommet O sur son EC

Reconnaitre la surface S d’EC : x° + y3 +72 - 2xyz =0.

Une surface est-elle réglée, développable ?

Pour chacune des surfaces suivantes, dont on donne une RP de parametre (u,v) € R2, est-elle
réglée ? développable ?
3
u 2
a)x=u+v, y=1+uv, z=—?+u v

u? w o uv
b)x =u-+wv, y=7+uv, z=?+7.

Exemple de détermination de I’enveloppe d’une famille de droites du plan

Soient p > 0, P la parabole d’EC y? = 2px. Un point M décrit P sauf O. La normale en M & P
coupe Ox en un point /. On note D la perpendiculaire en / a (1 M). Déterminer, par une RP et une
EC, I’enveloppe C de (I M), reconnaitre C et tracer C.

Exemple de détermination de I’enveloppe d’une famille de droites du plan

On considere, pour A € R*, la courbe Iy de RP :

A 1 1+
X = — —_—, = —
t t+1 ) t

A
—, t e R—{-1,0,1}.
po— { }
a) Montrer que, pour tout A € R*, I'\ admet une droite asymptote D) lorsque ¢ tend vers O, et
former une EC de D).

b) Déterminer, par une RP puis par une EC, I’enveloppe C de (D)) \cr+, et reconnaitre C.

Exemple de développée
Déterminer la développée C de la courbe I'de RP: x =3t — %, y =3¢%, t € R.

Exemple de détermination des développantes d’une courbe

Déterminer, par des RP, les développantes de la courbe C de RP :

x =3tan’t, y = 2tan’s, 1 € [0 7/2[.



© Dunod. La photocopie non autorisée est un délit.

4.20

Enoncés des exercices

Courbe plane dans I’espace

t—1 t+1
Montrer que la courbe I'de RP: x = ; ,y:t 1 =23

est plane et déterminer son plan.

Condition sur la tangente en un point d’une courbe
Soit I'la courbe de RP: x =€’ cost, y =¢'sint, z=2¢ +1, t € R.

Montrer que la tangente en tout point M de I fait un angle constant avec le plan xOy.

Plan tangent contenant une droite donnée
Déterminer le (ou les) plan(s) tangent(s) 4 la surface S d’EC x? 4+ y> — z> = 1 et contenant la
droite D de SEC =l
y=2z+2.
Réduction des quadriques
Pour chaque quadrique S d’équation donnée, préciser :
* un repere orthonormé (direct) dans lequel S admet une équation réduite
e une équation réduite de S
* la nature de S.
a) Ix*> +4xy —dxz +4y> —2yz +472 —2x +8y — 1474+ 16 =0
b) 11x* — 16xy — 4xz + 5y* — 20yz + 2z* 4+ 30x — 66y + 24z +45=0
) x2=2xy+y>+22+2x —5=0
d)2(x+y)(y—2)—3x=0
€) 2x2 +3y? + 22+ 2V/6xy + 2¢/2x2 + 243y +v2x + 243y +4z+1=0.

Exemple de nature d’une quadrique

Quelle est la nature de la quadrique S ’EC : (2x +3y)> + (y +22)* + Bz —x)> =12

Lieu des points équidistants de deux droites données

Soit (8,h) €10; 7/2[x]0; +o00[ . Former une EC de la surface S lieu des ponts M de &; équi-

xcosf = ysinf xcosf = —ysinf
distants des deux droites D D’

z=h z = —h.

Quelle est la nature de S ?

Former une EC d’un cone

Former une EC du cone S de sommet £2(1,1,1) et de directrice

X4y —3xy—1=0
F{ y y
z=0.

Reconnaitre un cone sur une EC

Reconnaitre la surface S 'EC : xz> + y* + 3y — 22+ 3y +1 = 0.
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— (22222 Exemple de surface réglée, condition de développabilité
Soit f : R —> R une application de classe C' telle que f(0) = 1. On note S la surface de RP :
X = sinu+4vcosu, y= cosu —vsinu, z= f(u)+ve*, (u,v) R
a) Montrer que S est réglée.

b) Montrer qu’il existe une application f et une seule telle que S soit développable, et déterminer f.

1 [L295T Exemple de développées successives
(L5 Exemp pp
On considere la courbe I'd’EC : y = —Incosx, x € [0; 7/2][.

a) Déterminer une RP de la développée C, de C.
b) Déterminer une RP de la développée C, de C;.

c) Tracer C, Cy, C, sur un méme schéma.

ey Droites tracées sur une surface, plan tangent
On note S la surface ’EC x3 4 y3 +z° = 1.
a) Déterminer les droites tracées sur S.
b) Montrer que ces droites sont situées dans un méme plan P, que I’on déterminera.

¢) Quel est le plan tangent a S en chacun des points d’intersection de ces droites deux a deux ?

] 1277253 Ensemble des points équidistants de deux droites données

Former une EC de la surface S, réunion des droites A de & rencontrant les trois droites :

x=0 y=0 xX=y
Dl{ D, D3{
Z:l Z:—l Z:O.

—— ) [T mal él démarrer ?

m Sl s (t _ Z) — (t n ﬁ)y s oty de S, de la forme F(x,y,z)_:)O.Traduire que % (resp. v") diri-
3 3 ge N par la colinéarité de grad F(x,y,z) & @ (resp. 7).
x,y,z pour faire apparaitre une EC de plan.
oM M
’ / !
Calculer x(1), y'(1), 2'(@), Calculer — A —— en tout point M (u,v) de S, montrer
ou dv
puis s'(t) = \/(x’(t))z + (y’(t))2 + (z’(t))z, que ce vecteur n’est pas nul, puis écrire une EC du plan passant
' M M
etenfin s(t) = /(; s'(u) du. par M (u,v) et dirigé par el et o
u v

Résoudre le systéme formé par I'EC de D, et I'équation

dérivée Un point M (X,Y,Z) est sur S si et seulement s'il existe un

point m(x,y,z) de I' tel que mM soit colinéaire a 7.
La normale N en tout point M (x,y,z) de S est dirigée par

grad F(x,y,z), ou F(x,y,z) est le premier membre d'une EC Grouper les termes pour faire apparaitre x — y.
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Montrer que S admet une EC de la formef(f, X) =0,
Z z

donc S est un céne de sommet O.

a) et b) : 1) Mettre la RP de S sous la forme :
OM =m(u) +vGu).

2) Calculer det —, _, - (m’—(us G—(u>) Wu})
(i.j. k)

Former une EC de la normale N en M a P, calculer les
coordonnées de I, puis former une EC de la droite D; perpen-
diculaire en I a (I M). Enfin, résoudre le systeme formé par I'EC
de D; et I'équation dérivée.

a) On obtient:D; : Ay —x + %> +1=0.
b) Résoudre le systeme formé par I'EC de D, et I'équation déri-
vée.

Calculer successivement :

X',y s pars’? =x'24+y'?ets' >0, tang par tang = X, ¢
x

s/ am

par dérivation, R par R = —/ 7 par 7 = P ﬁ par
() Ay

N = Rotn/z(?), et enfin le centre de courbure C en M par

MC =RN.

Calculer successivement :

X'y, s pars’2=x"24+y 2 ets’ >0, s en intégrant, et enfin
le point courant M d'une développante I, par :

O—M) = 7 + (so —s)?.

1) 1" méthode : Combinaison judicieuse de x,y,z :

1 1
Exprimer x,y,z en fonction de " et de Pt puis combiner

1 1
X,y,z pour éliminer — et ——.
VL t t—1

2) 22 méthode : Recherche de tout plan pouvant convenir :

Ecrire I'EC générale d’un plan P :
Ax+By+Cz+D=0,

puis traduire I" C P.

—
Déterminer un vecteur directeur V;(7) de la tangente a I’
en M(t), puis calculer I'angle 6 entre cette tangente et le plan
s s . . = =
x Oy, al'aide du produit scalaire de Vi (¢) et k .

Former une EC du plan tangent Iy en un point quel-
conque My(xo,y0,20) de S, puis traduire que ce plan contient la
droite D.Ne pas oublier la condition My € S.

Pour une quadrique S d’EC, dans un repere orthonormé
(direct) R=(0; 7,7, %) :

Du mal a démarrer ?

Ax? +2Bxy +2Cxz + Dy2 +2Eyz + Fz?
+2Gx +2Hy +2Iz+J =0,

A B C
notonsQ=| B D E | €S3[R).
C E F

+ Si O est inversible, alors S est une quadrique a centre, et le
centre 2(x,y,z) de S est obtenu en résolvant I'équation

g.m_EIF(x,y,z) = 6),00 F:(x,y,2) —> Ax2 4.+ .
Ayant calculé (2, on se place dans le repere orthonormé (direct)
- = —
R =(2; i, j, k),etSadmetpour ECdansR’:
AX? +2BXY +2CXZ + DY> +2EYZ + FZ* + J; =0,

ou J; est a calculer.

On détermine ensuite une base orthonormée (directe)
(7, 7 ?) de réduction de la matrice symétrique réelle Q.
DansR" = (£2; 7 7 T<)),S admet une EC de la forme :
i +[LU2 +vw? + Ji=0.

+Si O n'est pas inversible, on calcule une base orthonormée (direc-
te) (7, 7 ?) de réduction de Q.DansR' = (0O ; 7 7 75),
S admet une EC de la forme :

AX? A+ uY? +vZ2 +2G1X +2H Y +211Z+J =0.

Des mises sous formes canoniques de trindbmes permettront
ensuite d'aboutir a une équation réduite.

Remarquer que les expressions 2x + 3y, y + 2z, 3z — x
sont liées.

Déterminer un point de D et un vecteur directeur de D.En

déduire, pour tout M (x,y,z) € &, 'expression de (d(M,D))z.

Faire de méme pour (d(M,D’))z.Traduire ensuite M (x,y,z) € S
2 2
par:(d(M,D))” = (d(M,D’))".
Un point M(X,Y,Z) est sur S si et seulement s'il existe un

point m(x,y,z) de I' tel que 2M soit colinéaire a 2m.

Remarquer le groupement de termes :
Y3243y +1=0+1)7%
a) Mettre la RP de S sous la forme :
OM = m() + v G ).

_— s —>
b) Calculer det _, _, - (m'(w), G(u), G'(w)).
(i, j.k)

a) Calculer successivement :
’

X',y s pars’? =x'2 +y' % ets’ >0, tang par tang = % 7

s/
en remarquant ¢ =x [n], R par R=a, 7 par
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= Corrigés des exercices

* En développant les formules données dans 1’énoncé,
la courbe C admet la RP :

1 3
x(t) = Ecost + %_ sin ¢

y(t) = cost
(t) = ! cost V3 sin ¢
% = ) ) s

d’ol, en combinant : V¢ € R, x(¢) —2y(t) + z(t) = 0,

ce qui montre que C est plane, contenue dans le plan P d’EC :
x—2y+z=0.

* On a, pour tout M (x,y,z) € & :

x = x(t)
MeC<3teR, {y=y@
z =2z(?)
X +z = cost
<= 3dt € R, y = cost
x —z = +/3sint
X+z=y

= y2+<x_z>2:1
V3

Ainsi, C = P N S, ou P estun plan et S un cylindre elliptique.

On conclut que C est une ellipse.

Les applications x, y,z sont de classe C! sur R et, pour
x'(t) = e'(cost — sint)
toutt € R: { y'(¢r) =e'(sint + cost)
2(t) = V/2¢'.

D’ou, pour toutr € R :

(M) = @®) + (Y ©®) +E@Z0)
= 62’((0051 — sin)? + (sinz + cost)® + 2) — 4e2

Comme s" > 0 (par définition), on déduit :
VteR, s'(t) =2¢".
Enfin :

13
Vit eR, s(t)=/ 2e"du = [2e"]y =2 —1).
0

* Une RP de I’enveloppe C de la famille de droites
(D,)cr+ est obtenue en résolvant le systeme de deux équations
formé par I’EC de D, et I’équation dérivée (par rapport a t) :

Bx+2ty+2=0

3t2x +2y =0
1
—2t3x+2=0 x=t—3
— 32x —
y=-2% __3
2 V= 2%

* Une EC de C est obtenue a partir de la RP précédente en éli-
minant ¢ :

3t € R¥,

y=—z-

3 =3 D) 3
(E)X#Oetx=(—ﬂ> :—<§>y3

Une EC de Cestdonc: 27x +8y> =0 et x # 0.

L’ application
F:RP—R, (x,y20)— x2+y>—z*—1

est de classe C' sur R? et, pour tout (x,y,z) € R3 :
grad F(x,y,2) = (2x,2y, —22).

D’ou : gr—ac)lF(x,y,z) =0 (x,y,2) = (0,0,0),
mais (0,0,0) ¢ S. Ainsi, tout point de S est régulier.
La normale N en un point M(x,y,z) de S est dirigée par
g—m_a F(x,y,z), ouencore par (x, y, —z).
1)
7dirige N <= (x,y,—z) colinéaire a (1,2,3)
<— I\ eR, (x:)\, y =2, z:—3)\).

On a alors :
Wy ==l (12422 -3\ =1 < —4X>=1,

impossible.
On conclut qu’il n’existe aucun point de S en lequel la normale

a S soit dirigée par u .
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2)
7 dirige N <> (x,y,—z) colinéaire 2 (3,2,1)
<— 3dpeR, (x:3u, y =2u, z:—,u).
On a alors :
ey - =l P22 -t =1

3
<:>12u2=14:>u=:t%.

On conclut qu’il existe exactement deux points de S en lesquels

la normale 2 S est dirigée par .

e L’application

M:(u,v)|—>M(u,v)=0+e“?+e”7+uv7

est de classe C! sur I’ouvert R?, et, pour tout (u,v) € R?:

u
My =(0 ), M= :
o u,v) = e u,v) = | e’ |,
v u
m —ve
d’ou: —(m,v) A —(Wu,v) = | —ue"
au v u+v
e

. W A -
Comme "™ # 0, onaza—(u,v)/\ a—(u,v) = 0,
u v

donc tout point M (u,v) de S est régulier.

* On a, pour tout point P(X,Y,Z) de &, en notant /] le plan
tangent en M (u,v) a §':

X—e“ e 0
Pell<— |Y—-¢" 0 ¢e'|=0
Z—uv v u

= —ve'(X —e") —ue'(Y —e') +e"(Z —uv) =0.

On conclut que le plan tangent en M (u,v a S admet pour EC,

aprés simplification par —e~“*v) :

ve "X4ue'Y—Z+w+v—uv)=0.

Un point M (X,Y,Z) estsur S si et seulement s’il existe
un point m(x,y,z) de I tel que mM soit colinéaire 2 % :
MeS
< I(\,x,y,2) € R,

X—x=/\,Y—y=3)\,Z—z=2/\,x4+y4=1,z=0

Z 4 4
< 3\ eR, A:E, X =MD"+ -=3)N)"=1

— (x Z 4+ Y 32 4—1
2 2 )
— 2X -2+ QY -32)*—-16=0,

ce qui donne une EC de S.

Par groupement de termes, S admet I’EC :
D@ —y+2x—y)—1=0,

qui est de la forme f(P,Q) =0ou P =zet Q = x — y sont
des (premiers membres d’EC de) plans. D’apres le cours, S est
un cylindre. Les génératrices de S sont dans la direction d’EC
P =0et Q =0, donc les génératrices de S sont dirigées par
le vecteur (1,1,0).

On a, pour z # 0, en divisant par 2

X+y 4+ —2xyz=0

3 3

= () ) -2
z z Zz

P

E,%):O,oﬁP:x,Q:y,

R = z sont des (premiers membres d’EC de) plans. D’apres le
cours, S est un cone. Le sommet {2 de S est défini par P = 0,
0=0,R=0, donc 2 = O.

qui est une EC de la forme f <

a) 1) En notant m () le point de coordonnées
u? — 3
u, 1, -3 et G(u) le vecteur de composantes (1, u, u”),

. —_—
on voit que S admet la RP : (u,v) —> m(u) + v G(u),

donc S est réglée.

2) Les applications m et G sont de classe C' sur R et, pour
toutu € R :

1 1

0 u 1

—u® u® 2u

_— . ——
det —, _, - (m' (), Gw), G'(w)) =
(i j. k)

:0,

donc, d’apres le cours, S est développable.

2 3
b) 1) En notant m (u) le point de coordonnées (u, LR %) et

2
— u .
G (u) le vecteur de coordonnées <1, u, 7) on voit que S

—
admet la RP : (u,v) —> m(u) + v G(u),
donc S est réglée.

2) Les applications m et G sont de classe C' sur R et, pour
toutu € R :



_ — /—)
det__> — — (m(u), G(M),G (M))
(i, j. k)
1 I 0 )
1 u
—|u ’;42 :?#O(pouruy‘:O),
TE—

2
donc S n’est pas développable.

=

2
Notons M(z—,t) le point courant de P — {0}, t € R*.
4

t
Un vecteur tangent en M a P est (—,1), ou encore (¢, p),
p

donc la normale N en M a P admet pour EC :

12
t(x——)—l—p(y—t):O.
2p

Cette normale coupe Ox en un point / dont les coordonnées
(x,y) sont la solution du systéme :

tZ 2
tffx——)+poy—0=0 X=p+—
e R

y=0 y =0.

—
Le vecteur /M a pour composantes : (p, —t).

Une EC de la droite D;, perpendiculaire en / a (I M), est :

t2
P(x—(p+—>>—t(y—0)=0
2p

2
<:>px—ty—<p2+5>:0.

Une RP de I’enveloppe C de (D,),cr+ est donnée par la réso-
lution du systeme de deux équations formé par 1’équation de
D, et I’équation dérivée :

2
2

px—ty—(p +E>—0

—y—t=0

t2
—
px_p——zl

y=—t

On obtient une EC de C en éliminant ¢ dans la RP précédente
de C:
2

px=p -

3t € R¥, 2

y=—t
2
2 Y
< px=p -7 et y#=0

— y>=2p(x —p) et y 0.

Sur cette EC, on reconnait que C est une parabole (privée d’un
point), la parabole symétrique de P par rapport a la droite d’EC
14

XZE.

a) Soit A € R* fixé. On a :

A 1
M) ==4— — ==
x(t) t+t+1tﬁo 00
1 A
;—|———>:i:oo,

y(t) = 1

donc I'y admet une branche infinie lorsque t — 0.

Ona: t A t :
na: X()t—>07 € y(t) t—0 ?7
. y(?) 1
donc : %:}X’
puis :
1 1 A 1/ 1
Y(”‘xx(”-(#m)‘X(ﬂm)
ZL— ! —)—)\—l.
t—1 Xt+1) +—o0 A

On conclut que [\ admet, lorsque 1 —> 0, 1’asymptote D),
1 1

dEC: y— —x=-\——,
YT By

Ay —x+X+1=0.

ou encore :
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b) Une RP de I’enveloppe C de (D)) \cgr+ est obtenue en ré- On conclut : 1a développée C de I'admet la RP :
solvant le systeme de deux équations formé par 1’équation de

D) et I’équation dérivée : x=—43, y= %(1 +2:2 -1, teR.
Ay—x+XN+1=0 x=-XN+1
— y
y+22=0 y= =2\
r
On obtient une EC de C en éliminant A entre les deux équa- 9

tions précédentes :

x=-X+1 2
EIAeR*,{ e yEO0et x=—2 41 32\
y=—2X 4 0|24 o

Ainsi, C admet ’'EC y> = —4(x — 1) ety # 0,
donc C est une parabole, privée de son sommet. )
On a successivement, avec les notations usuelles, les

. L. . dérivations se faisant par rapport a z :
On calcule successivement, les dérivations se faisant p PP

S "
par rapport A : «x' = 6tant(l +tan’r) = 6 m3
'x/=3—3t2, y’:ﬁ[, 2Sl‘
t
os'2=x'24+y2 =B =32+ (61)> = 9(1 + t* +21%) y' = 6tan’t(1 + tan’s) = 6 Or;%

=9(1+1>2 0< s =3(1+1?), 6 sin s 0

o 2 2 sin , sin

/ ° = = 9 0< =6 5

otanspzy—: o = L, ’ oty (cos“t) e cos*t

x' 3—3t2 1—1¢2

231 — 2) — 26(—21) 24272 d’ou, en primitivant, a une constante pres :

(1 + tan’p)y’ =

_ 12)2 T (1 — £2)2° int 2
(1—12) (1—12) s:/GSm g —
et cos*t cos3t
1 +tan’p =1+ 2 : — —
any = -2 = _ dM _ dr dM
(1 _ t2)2 o (2[)2 _ (1 4L t2)2 ds ds dr
_ 12)2 T (1 — £2)2° t 6sint
(1 —1%) (1= —g sin (cost i —{—Sln[_])—COSl—l)-FSlnlj
2 6sint cos*t
donc : = ——, —
v Il 4 2 Avec les notations classiques OM = oc + (5o — s)?, pour

s’ 3 chaque sy € R, une RP de la développante [, est :
-R:v—/zi(l—ktz)z, que o ppante Iy,
2

2
X:x+(s0—s)cost:3tan2t+(so— 3 )cost
cos’t

—>_d_1l)/l_dtd—ll)4 1

e Ba=-)T +6 7
ds  ds df 3(l—|—t2)(( VG

2
Y=y+(so—s sint:2tan3t+<s — )sint.
(a- tz)? e 217) AR 07 cos’t

T 1+
~ = 1 - PN o
N =Rotr,(T) = m(—Zt i +(1—1%) ]) 1" méthode : Combinaison judicieuse de x,y,z :
— — N . . o ]
*MC = RN, d’oules coordonnées (X,Y) du centre de cour- Faisons apparaitre — et T
bure Cen M : ror=
Y Y On a, pour toutr € R — {0,1} :
¥+ R =3t—£+= (1+z2)2
1412 14¢2 t—1 1
xX=—=1—-
=3t—1 —3r(1 +1%) = 41, t t
1—¢2 i 51 ) _t+1_1+ 2
Y=y+Rl+t2=3t 4+ = (1+t) 1+t2 Y= =1
_32 31 4N 1 22 4 7 = 1 — 1 — 1 _l
_t+§(_t)_§(+l_’)' 22—t -1t t—1 ¢t
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.1
Combinons pour éliminer " et T Par exemple :

7=

0 e
= ——=2 4x-1.
ET T ; ¥

Ainsi, tout point M (x,y,z) de I vérifie :
2%y —2z—3=0.

On conclut que " est plane, incluse dans le plan P d’EC :
2x +y—2z—-3=0.

2¢ méthode : Recherche de tout plan pouvant convenir :

Soient (A,B,C,D) € R* tel que (A,B,C) # (0,0,0), et P le
plan ECAx + By + Cz+ D =0.Ona:
rcpe
<= VreR-{0,1},
t—1 t+1 1

A B C
t + t—1+ 12—

+D=0
t
—ViteR—{01},

At —1D*+Btt+1)+C+Di*—1)=0

= VieR-—{01},
(A+B+D)*+(—2A+B—-D)t+(A+C)=0

A+B+D=0 A=2B
<4 2A+B—-D=0<+=3C=-2B
A+C=0 D = -3B.

Ainsi, A, B,C,D sont déterminés a un coefficient multiplica-
tif non nul pres.

On conclut que I"est plane, incluse dans le plan P d’EC :

2%y —2z—3=0.

* Les applications x,y,z sont de classe C! sur R, et,
x'(t) = e'(cost — sint)
pourtouts € R : { y'(z) = €'(sinz + cost)
z(t) = 2¢'.

En particulier, comme 7' () = 2 ¢ # 0, tout point de I”est ré-
gulier.

* La tangente en M () a I est dirigée par :

— dM
Vl(t):?:e’(cost— sint)_i)+e’(sint+ cost)?+26’7 .

En notant 6 1’angle de la tangente en M a [" avec xOy, on a
0el0;m/2] et:

. Vi) - kK
NAGHEA

2¢!

12
(ezl(cost — sint)? 4+ eX(sint + cost)? + 4e2’>

T 6N T 6

On conclut que la tangente en tout point de /' fait un angle

2¢! 2 V6
T

s . /6
constant, égal a Arcsin 3 avec le plan xOy.

Une EC du plan tangent I/ en un point quelconque
Mo (x0,0,20) de S est :

(xr = x0)2x0 + (y — ¥0)2y0 + (z — 20)(=220) = 0,
ou encore : Xox + Yoy — 20z = 1.
Ona:
DClly<=VzeR, xo+y(z+2) —zz=1
= VzeR, (yo—z0)z+ (xo+2y—1)=0

Yo—20=0

20 = Yo
= {

Xo+2y—1=0 X0 = —2y0 + 1.
Alors :

MyeS<x+ys—z=1
= (25 +1D2+y2—y2=1
= Qyu-—1’=1<= (yo=0ou y=1).

On a alors :
Xo==2y0+1=1, yo=0, 2=y =0

ouxo=—-2y+1=—-1, yo=1, zo0=y = L.
I1'y a donc exactement deux plans convenant, les plans d’EC :
x—y+z+1=0, x=1.

7 2 2
a) La matrice Q = 2 4 —1
-2 -1 4
donc S est une quadrique a centre.

est inversible,

Le centre {2(x,y,z) est obtenu en résolvant le systeme d'équa-
14x +4y —4z—-2=0

tions 4x +8y —27+8=0 .
—4x —2y+8z—-14=0

On obtient 2(1,—1,2).

Considérons le r.o.n.d. R’ = ({2; 7), 7, 7). Les formules

de changement de repere, pour un point M de coordonnées
(x,y,z) dans R et (X,Y,Z) dans R/, sont:

x=X+1, y=Y -1, z=7Z+2.
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On obtient donc une équation cartésienne de S dans R’ :
TX*+4XY —4XZ +4Y* —2YZ +4Z° -3 =0.

On calcule les valeurs propres de Q ; on trouve : 3 (double)

et 9 (simple).

Une base de SEP (Q, 9) est (T()), ou 7() a pour coordonnées
2

1 - = —
— 1 |dans (i, j, k).
Ve _, /
Un vecteur normé de SEP (Q, 3) est, par exemple, 7 de co-
donné _; dans (7, 7, %)
ordonnées — ans (i, J, .
N /
| 2
En notant 7 = ? A 7, de coordonnées —— | 1 | dans
/30 5
(_l), 7 k), ( I J s Tg) est une b.o.n.d. de réduction
de Q.

. L. = =
Une équation cartésienne de S dans R” = (£2; [, J

est alors :

. K)

3 +3C 4+ 97 -3=0,

P
ou encore : & 4+ ¢ + =1

)

On conclut : S est un ellipsoide, de révolution.
11 -8 =2

b) Lamatrice Q = | —8 5 —10 | estinversible, donc
-2 =10 2

S est une quadrique a centre.

Le centre 2(x,y,z) est obtenu en résolvant le systeme d'équa-
22x — 16y —4z+30=0

tions § —16x + 10y — 20z — 66 = 0.
—4x —20y +4z+24 =0

On obtient £2(—1, 1, —2).

Considérons ler.o.n.d. R’ = (£2;
de changement de repere sont :

l , ] , k) Les formules

x=X-—-1, y=Y+1, z2=27Z-—2.

On obtient donc une équation cartésienne de S dans R’ :

11X> — 16XY —4XZ +5Y> —20YZ +27*> —27 = 0.

Une b.o.n.d. de vecteurs propres associés respectivement aux
- = —
valeurs propres 9, 18, -9 de Q est (/, J, K), ou

7 7 K ont respectivement pour coordonnées dans

- = -
(i, j, k):

12 1_211
£l e T O R
-2 —1 2

— —
Une équation cartésienne de Sdans R" = (§2; [, J, K)
est alors:

9¢% +18C — 91> — 27 =0,

ou encore :

+ =1.

W |,

T
3

| WY,

On conclut : S est un hyperboloide a une nappe.

1 -1 0
c)Lamatrice Q = | —1 1 0 | n'estpasinversible, donc
0 0 2

S n'est pas une quadrique a centre.

On calcule les valeurs propres de Q : 2 (double), O (simple),

- = — .,
etuneb.o.nd. (/[ , J, K) de vecteurs propres associés, par

exemple ceux de coordonnées, dans (7), 7 7):
| —1 0 | 1
— — 11

V2 0 1 V2 0

Considéronsler.o.nd. R’ = (O 7, 7, 73) . Les formules

de changement de repere sont données par :

1 1
n [0 A x
Y| = L 0 L Y,
z V2 V2 z
0 1 0
c'est-a-dire : x:ﬂ, y=X+Z, z=Y
V2 V2
Une équation cartésienne de S dans R’ est donc :
2X2+2Y2+V2(-X+2)-5=0 (1.
Puis :
(1)<:>X2+Y2—ix+ ! 7z — é=0
V20T 2T 2

<:><X 1>2+Y2+ 1Z 21—o
22 V2 8

Sl

. ) 1 214/2
Notons A le point de coordonnées | —, 0, ——— | dans
24/2 8

R,etR"lerond R"=(A; _1), 7, T()).



Une équation de S dans R” est :

e+e=—2—n
22
On conclut : S est un paraboloide elliptique, de révolution.
0 1 -1
d) La matrice Q = 1 2 —1 | n'est pas inver-
-1 -1 0

sible, donc S n'est pas une quadrique a centre.
On calcule les valeurs propresde Q : 3, —1, 0 simples.

On calcule une b.o.n.d. de vecteurs propres associés, par
- = — —- = —

exemple(/, J, K),ou I, J, K ontpourcoordonnées
dans (?, 7), 7) :

1 ! 1 1

_ 21, —1lo], _

v\ _, V2 \ V3,
Considérons ler.o.nd. R’ = (O; 7, 7, ?). Les formules
de changement de repere sont données par :

1 1 1
V6 V2 3
X X
2 0 1 7
y|I=| = === ]
z V6 V3 Z
1 1 1
Vo V2 o 3
X+Y+Z
T == == —
Vo V2 3
et 2X Z
c'est-a-dire : ===
Y 6 3
X Y Z
I==—=ar === —
V6 V2 3

Une équation cartésienne de S dans R’ est donc :

ERAICRARICIE AN

D).
Puis :
3X 3y
1 == e = = 3Z =
() = 25 V3
<:>3<X—L>2—l—<1/+i>2+2—«/§z—0
27/6) 8 22 8 B

A S BT

3
Notons A le point de coordonnées (

- = —
dans R, etR"=(A; I, J, K).
Une équation cartésienne de S dans R” est :

&€ -¢ =3,
g ¢ _ V3
ou encore : = —==2—0.
1 1 2
3
On conclut : S est un paraboloide hyperbolique.
2 V6 V2

e)Lamatrice 0= | v6 3 /3| nlest pas inversible,

V2 B

donc S n'est pas une quadrique a centre.

On calcule les valeurs propres de Q : 6 (simple), O (double).
On calcule une b.o.n.d. de vecteurs propres associés, par

exemple (7, 7, 73),01] 7 7, ? ont pour coordonnées

—

dans (7, 7, k):

A 1 RS
e A V3
o Q 1
V2 I ’ 2
o 2 !
NG V6 NG

—

Considérons ler.o.n.d. R’ = (O; _I), J, T()) Les formules
p

de changement de repere sont données par :

1 1 1
VeV
X 1 1 X
yl=1| —= 0 === Y |,
z V2 V21 \z
1 2 1
NI/
1(X Y+ Z)
x=—(X-—
V3
1
c'est-a-dire : = —(X=%
y ﬁ( )
1
7= —(X+2Y + 2).
NG
Une équation cartésienne de S dans R’ est donc :
V32 273
6X2+—(X Y+2)+ —=X-2)
V3 V2
+—(X+2Y+Z)+1:O
NG

13 L)
26 22" 3

(1.

505



506

Puis :
(1) = 6X>+2V/6 X+/6Y+1=0

<:>6<X+;6>2=—\/5Y.

1
Notons A le point de coordonnées (—— 0 O) dans R/, et

7o
R'=(A; 1,7, K).
Une équation cartésienne de S dans R” est :

2./6
g——="C

On conclut : S est un cylindre parabolique.

Voyons si les expressions
A=2x+3y, B=y+2z,C=3z—x

sont liées entre elles.

Ou bien on remarque :
3B—2C =3(y+27) —2B3z—x)=2x+3y=A,

ou bien on résout le systéme d’équations d’inconnue (x,y,z),
et on s’apercoit que les trois formes linéaires envisagées sont
liées.

Ainsi, ennotant X = 2x + 3y, Z = 3z — x par changement de
repere (non orthonormé), S admet pour EC :

BY =22 +Y*+ 27> =1,

donc S est un cylindre elliptique.

Un point de D est, par exemple, A(0,0,4), et un vec-

teur directeur de D est, par exemple, o (sinf, cos6,0).
D’apres le cours, on a alors, pour tout point M (x,y,z) de &; :

AN 2
(d(M,D))2 = M

IedlE
= (cosf(z — h))2 + (sinf(z — h))2 + (x cos @ — ysin 6)*
=(z—h)>+ (xcosl — y sin6)2.
De méme, en remplagant (6,4) par (—0,—h),on a:
(d(M,D))* = (z+h)? + (xcos 0 + ysin6)*.
D’ou :
M€ S« (d(M,D))’ = (d(M, D))
< (z — h)*+ (xcos O — ysin@)2
= (z+ h)* + (x cos @ + y sin)?

< hz + sinfcosfxy = 0.

La surface S est un paraboloide hyperbolique.

Un point M (X, Y, Z) estsur S si et seulement s’il
existe un point m(x, y,z) de I"tel que £2M soit colinéaire a 2m :
MeS

< 3I(\x,y,2) €R,

X—1=Xx—-1), Y—-1=X0y—-1), Z—-1=Xz—-1),
X4y —3xy—1=0, z=0

<~ 3IAxy)eR, z=0, A=—(Z-1),

X—1 y—1
x—l:——, y_lz_—,
Z—1 Z—1
¥4y —3xy—1=0
7 Z-Y
=3Iy eR, x="—2 y=2"——|
(o, ) X=o T Y=
X4y =3xy—1=0
Z—X3+ Z-y\ _,zZ-Xz-vy
zZ—1 Z—1 Z—12Z-1 N

=S Z-XP+@Z-Y)
3(Z-X)(Z-Y)(Z~-1)—(Z—1)=0,

ce qui fournit une EC du cone S.

Si S est un cone, alors son sommet {2(x, y,z) est un point
en lequel S n’admet pas de plan tangent, donc, en notant
F(x,y,z) le premier membre de I’EC de S, on a :

grad F(x.y.2) =0
Ici, F: (x,y,2) —> xz22 +y> +3y? — 22+ 3y + 1

est de classe C! sur R? et, pour tout (x,y,z) € R? :

F(x,y,2) =0
grad F(x,y,2) = 0 <= Fl(x,5,9) =0
F.(x,y,2) =0
)
z2=0
= 132 +6y+3=0 |
y=-L

2xz —2z=0
On va donc faire apparaitre y + 1 et z dans 'EC de S :
x4y 43y -2 +3y+1=0
S E-DZ++ D=0,

1 2
(y—i——) =0.
b4

P Q

—,— ) =0, ou P,Q,R sont des
R R

(premiers membres d’EC de) plans :

O0=y+1,

, . . x—1
c’est-a-dire, siz #0 : ——
z

Cette EC est de la forme f (

P=x-1, R =7z,

donc S est un cone.



Le sommet {2 de S est définipar P =0, Q =0, R = 0, donc :
2(1,—1,0).

Une directrice /" de s est obtenue en coupant S par le plan d’EC
x—D22+1=0

y = 0, par exemple : I’
y=0.
a) En notant m (u) le point de coordonnées
. —_—
(sinu, cosu, f(u))et G(u) le vecteur de composantes
(cosu, —sinu, e"), on voit que S admet la RP :
—

(u,v) —> m(u) + v G(u),

donc S est réglée.

b) Les applications m, G sontde classe C' surR et, pour tout
uelk:

—_— — —>
det — 5 s (m'(w), G(u), G'(u))

(i,j.k)
cos u cosu  —sinu
= |—sinu —sinu —cosu
f/(u) eu eM
0 cosu  —sinu
= 0 —sinu —cosu
C]<—C1 —Cz f/(u)_eu el el
= —f'(u) +¢".

S développable

—_— —— ——
@ﬁVueR,@Lﬁf,?(meGwycxm)=o
t,J],K)

= VueR, f(u)=e¢"
e 3ICEeR VueR, f(u)=e"+C.
f0) =1 C=0.

On conclut qu’il existe une application f et une seule conve-
nant: f:R— R, u+— e".

De plus, on a alors :

a) La courbe C admet la RP

x=x, y=—Incosx, x el[0n/2[.

On a successivement, avec les notations usuelles, les dériva-

tions se faisant par rapport a x :

ex' =1, y =tanx

1
cos2x’

1
cosx

os'?=x'"2+y? =1+ tan’x <s' =

/
etanp = L =tanx, donc ¢ =x [x], puis ¢ =1
X

- =

@ COS X

?_m_dxm
T ds  ds dx

— — = | e

=cosx(i +tanx j )= cosx i + sinx j
= =7 oo =
* N =Rotg)(T )= —sinx i + cosx j

o m =R ﬁ, d’ou les coordonnées (X,Y) du centre de cour-
bure len M a C:

X =x+ R(—sinx) = x —tanx

Y =y+ Rcosx = —Incosx + 1.
On conclut que la développée C; de C admet la RP :
Y = —Incosx + 1,

X =x —tanx, x € [0 7/2].

b) On applique la méme méthode qu’en a), mais avec C; ala
place de C. Pour la commodité, on garde les notations clas-
siques, en partant de la RP de C; obtenue ci-dessus :

e X' = —tan’x, Y’ =tanx
sin®x
os'?2=X'24Y'?=tan*x + tan’x = e
cos*x
sin x
donc 0< s = 5
Ccos%x
. Y’ 1 . T N
etanp = — = ——— =tan| = +x |,
# X’ tan x 2
s .
donc = E—i—x [7], puis ¢ =1
R s’ sin x
. = — =
@ cosx
— —
— dM  dx dM
. - — = —
ds s dx
cos’x 2 = — — -
= ——(—tan’x i +tanx j )= —sinx i + cosx j
sin

. ﬁ = Rotmz(?) = —cosx? — sinx?

o m = Rﬁ, donc les coordonnées (X,,Y,) du centre de
courbure Jen C a C; sont :

sin x
X, =X+ R(—cosx) =x —tanx —
@

=x —2tanx,
08 X

Y> =Y + R(—sinx) = —Incosx + 1 — tan’x.
On conclut que C, admet la RP :

X =x—2tanx, Y = —Incosx + 1 — tan’x, x € [0 /2[.
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(SIE]

a) Soit A une droite de &;.
1) Si A n’est pas horizontale, A admet un SEC
X =az+p
. (a.b,p.q) e R".
y=bz+gq
Ona:
ACS<=VzeR, (az+p)P’+ (bz+q)>° + =1
= VzeR, (@ +b+ D+ Ba’p +3b%q)7?

+ @Bap® +3bg>)z+ (PP +¢°—1)=0

@+ +1=0

a’p+b*q =0
= (S)

ap®> +bg> =0

pPP+qg>—1=0.
Exprimons, par exemple, ¢ en fonction de a,b, p dans la der-
niere équation de (S) :
S) =
(b=0, a+1=0,
a’p=0, ap’=0, p’+¢°—1=0)
2
a
ou (quO,as—i-bS—f—l:O,q:—ﬁp,

2 at 2 3 a 3
ap +bﬁp =0,p +ﬁp —1=0)

<:>(b:0, a=—1, p=0, q:l)

2
a
ou (b+#0, a3+b3+1=o,q=_ﬁp7
aPZ(a3+b3)=0’ p3(a6+b6)_b6=0)
< (b=0,a=-1, p=0, g=1)
ou (b£0, a=0b=—1, g=0, p=1).

Ceci donne deux droites, correspondant aux quadruplets
(a,b,p,q) = (=1,0,0,1), (0,—1,1,0) :

¥ ==z x =1
D, D,
y=1 y=-—2z.

2) Si A est horizontale, comme S est invariante par toute per-
mutation de (x,y,z), A correspond, par permutation, a D; ou
D5, d’ou la troisieme droite :

x=-y
03{
7=l

On conclut qu’il y a trois droites exactement tracées sur S, les
droites :

x+z=0 y+z=0 z+x=0
D| ,Dz{ ,D3{

y:l x =1 z=1.

b) 1l est évident que les trois droites D;, D,, D3 sont incluses
dansleplan P : x +y+z=1.
¢) 1" méthode : Détermination des plans tangents :
L’application

F:R— R, (x,y,2) |—>x3+y3+z3— 1

est de classe C! sur I’ouvert R? et, pour tout (x,y,z) € R3 :

grad F(x,y,2) = (3x%, 3y%,32).
0

Comme : gr—ac)lF(x,y,z) = — (x,y,2) = (0,0,0)

etque O ¢ S,ona:
VM(x.y.2) €S, gnd F(r.y.2) £ 0 .
donc tout point de S est régulier.
Une EC du plan tangent a S en My(x¢,y0,20) € S est:
(X — x0)3x5 + (Y — y0)3y8 + (Z — 20)3z5 = 0.

D’autre part, les points d’intersection des trois droites Dy, D5, D3
deux a deux sont :

A(l,1,-1), B(—1,1,1), C(1,—1,1) .
Une EC du plan tangenten A a S est :

X-13+-D3+(Z+13=0,
cest-a-dire: X +Y +Z =1,

donc ce plan tangent est le plan P obtenu en b).

De méme pour les points B et C.



On conclut que les trois plans tangents en les trois points d’in-
tersection de D;,D,,D; deux a deux sont confondus et sont
égaux a P.

2¢ méthode : Utilisation de tangentes a des courbes tracées sur
une surface :

Puisque D; et D, se coupent en A et que D; et D, sont tra-
cées sur S, le plan tangent en A a S contient les tangentes en
A a D, et D,, c’est-a-dire contient D, et D,, donc ce plan est
le plan P de la question b).

De méme pour les points B et C.

Une droite horizontale A ne peut pas rencontrer D; et
D, qui sont dans des plans horizontaux distincts.

Une droite non horizontale A admet un systeme d'équations
cartésiennes :

{xzaz+p

; b,p.q) € R,
y=bztgq (a.b,p.q) €

Ona:
*AND, + 2 (H(x,y,z)€R3,

(x:O,zzl,x:az+p,y=bz+q))<:>a+p=0

CAND, £ @ —> (El(x,y,z) cR3,
(y=0,z=—1,x=az—|—p,y=bz+q)) < —b+4q=0
cAND; + @ < <H(x,y,z) eR3,
(X=y,z=0,X=aZ+p,y=bz+q))<=>p=q-
Donc A rencontre Dy, D,, Djs si et seulement si A admet un
x=az—a

aelR.

SEC : { 5
y=—az—a

Puis, pour tout point M (x,y,z) de l'espace :

X=az—a
M€S<:><ElaeR,{ )

y=—az—a
(z=1letx =0)
ou
—
x(z+1)
lety=——"—=
(Z# o z—1 )

< xz+yz+x—y=0.
Ainsi, S admet pour équation cartésienne :

xz2+yz+x—y=0.
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Index alphabetique

A

abscisse (— curviligne), 491

addition (— des DL), 28

adjoint, 450

alternance, 390

application (— continue), 25

approximation (— uniforme par des polyndmes), 160
arc (— paramétré), 491

b.o.n., 448
base (— duale), 367
base (— préduale), 366, 367

C'-difféomorphisme, 351

caractérisation (— séquentielle de la continuité), 4

caractérisation (— séquentielle des fermés), 3

caractérisation (— séquentielle des limites), 159

Cauchy (suite de —), 5

changement (— de fonction inconnue), 24, 351, 352

changement (— de variable(s)), 24, 27, 58, 59, 224, 310, 351,
352

changement (— de variable qui échange les bornes), 58

classe (— C!, C*, C*, pour la limite d’une suite
de fonctions), 159

classe C*, 225, 351

coefficients (— de Fourier), 284, 285

colonne, 389, 390

comatrice, 391

combinaison (— linéaire), 224

commutant, 410

compacte (partie —), 5

comparaison (— série/intégrale), 114, 117, 164

comparaison (— somme/intégrale), 116

comparaisons (pour les séries), 117

composition (— des DL), 28

cone, 492, 493

constante (— d’Euler), 116

continue, 4, 159

continue (— en un point), 4

continue (— par morceaux), 58

convergence (— absolue d’une série d’applications), 161
convergence (— normale d’une série d’applications), 161
convergence (— uniforme d’une suite d’applications), 158
convergence (— uniforme d’une série d’applications), 162
convergence (— d’une série), 114

convergence (— simple d’une suite d’applications), 158
convergence (— simple d’une série d’applications), 161
convergence (— uniforme), 158

convergences (— d’une série d’applications), 160
convergences (— de la série de Fourier), 284

convergente (série absolument —), 115

courbe, 491

cylindre, 492

D

décomposition (— en éléments simples), 25, 223

dédoublement, 448

dérivation, 28, 223, 224

dérivée (— n-eéme), 25

dérivées (— partielles premieres), 350

dérivées (— partielles secondes), 351

déterminant, 389, 390, 410

déterminants (— d’ordre n), 390

déterminants (— d’ordre trois ou quatre), 389

déterminants (— d’un endomorphisme), 390

déterminants (— d’une matrice carrée), 390

déterminants (— d’une matrice triangulaire), 390

déterminants (— de matrices triangulaires par blocs), 409

développable, 493

développantes, 491

développée, 490

développement (— asymptotique), 28, 115

développement (— asymptotique d’une intégrale dépendant
d’un parametre), 59

développement (— limité), 28

développer, 389, 390

diagonalisabilité, 409

diagonalisable, 409

diagonalisation, 410

diagonaliser, 409
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512

directrice, 492

distance, 2

distance (— d(x,A)), 4

distance (— associée a une norme), 2

diverge (— pour une série), 115

diverge (— grossierement, pour une série), 115
dSE(0), 224, 226

dual, 366

dualité, 367

EC, 490, 491, 492

EC (— de plan), 491

EDLI1 (— ASM normalisée), 308

EDL1 (— ASM non normalisée), 308

EDLI1 (— SSM), 308

EDLI1 (— SSM normalisée), 308

EDL2 (— SSM), 310

EDL2 (— SSM, normalisée), 309

égalités, 449

enveloppe, 490

équation (— polynomiale), 390

équation (— fonctionnelle), 24, 311

équation (— intégrale), 311

équation (— matricielle), 409, 410

équation (— aux dérivées partielles du deuxiéme ordre
(EDP2)), 351

équation (— aux dérivées partielles du premier ordre (EDP1)),
351

équation (— caractéristique), 309

équation (— réduite), 492

équivalent (— simple), 222

équivalent (— simple d’une intégrale dépendant d’un para-
metre), 59

espace (— préhilbertien), 5, 449

espace (— vectoriel ev), 2

espace (— vectoriel normé evn), 2

ev, 360, 448

eve, 448

extrémums (— globaux), 352

extrémums (— locaux), 352

F

factorisation (— d’une matrice), 367
famille (— infinie libre), 366
famille (— infinie liée), 366

fbs, 448

fermée, 3

fonction (— impaire), 24

fonction (— paire), 24

fonction (— périodique), 24
fonction (— coordonnée), 4
fonctions (— partielles), 350

forme (— quadratique), 5

forme (— linéaire), 366

forme (— polaire), 448

formule (— de Leibniz), 25

formule (— de Parseval), 284

formule (— de Stirling), 116

formule (— fondamentale de 1’analyse), 27
fq, 448

fraction (— rationnelle), 25

génératrice, 492

inégalité, 25, 285

inégalité (— de Cauchy et Schwarz), 5, 26, 448
inégalité (— de Minkowski), 5

inégalité (— portant sur des intégrales), 26
inégalité (— triangulaire), 2, 4, 448

inégalité (— triangulaire renversée), 2, 4
inégalités, 449

inéquation (— différentielle), 26

inéquation (— intégrale), 26

intégrabilité, 58, 116

intégrale, 27, 58

intégrale (— a parametre), 60

intégrale (— d’un produit), 26

intégrale (— = série), 226

intégrale (— = somme de série), 164

intégrale (— dépendant d’un parametre), 225
intégrale (— dépendant d’un parametre), 27
intégrale (— impropre), 59

intégrales (— a parametre), 60

intégrales (— de carrés de fonctions), 285
intégration (— par parties), 26, 27, 58, 59, 160, 284
intervention (— de I’exponentielle complexe), 284
inverse (pour un DL), 28

inversible, 391

jacobien, 351
L

lemme (— fondamental pour les séries), 115
lien (— suite/série), 115, 116

ligne, 389, 390

limite, 28

limite (— d’une intégrale dépendant d’un parametre), 59

limite (— d’intégrale), 28

limite (— en un point), 350
linéarisation, 284

linéarité (— de I’intégration), 27, 160
lipschitzienne, 4, 25

loi (— externe, pour un DL), 28
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M

majoration, 222

majoration (— géométrique), 164

matrice (— orthogonale), 449

matrice (— symétrique réelle), 450

matrice (— compagnon), 409

méthode (— de Lagrange), 309

méthode (— de variation de la constante) 308
méthode (— de variation des constantes), 310
minoration, 222

mises (— sous formes canoniques de trindmes), 492
monotonie, 25

multilinéarité, 390

multiplication (— des DL), 28

N

nature (— d'une quadrique), 492
nature (— d’une série), 114, 115
nature (— d’une suite), 115
normale, 491

norme, 2

norme (— équivalente), 3

norme (— non équivalente), 3
normes (— euclidiennes), 448, 449

(o)
orthogonal, 449
orthogonaux, 5
ouverte, 3

P

paquet (— de termes), 115

parametre (— a I'intérieur de ’intégrale), 59
parametre (— aux bornes), 59

partie (— compacte), 5

permutation (— intégrale/série), 164
permuter (— intégrale et limite), 159
permuter (— intégrale et série), 225
plan (— tangent), 491

plusieurs (— variables réelles), 350
point (— régulier), 491

points (— critiques), 352

polyndme (— caractéristique), 408, 409
polyndme (— annulateur), 408, 410
polynomes (— de matrices carrées), 410
primitivation, 28, 223, 224

primitives usuelles, 27

produit, 5, 224

produit (— scalaire) 5, 448, 449
projecteurs, 367

projeté (— orthogonal), 449

ps, 448

puissances d’une matrice carrée 410

Index alphabétique

quadratique, 5

raccords, 308, 310

radiale (théoréme de la limite —) 226
rang, 367

rangée, 389, 390

rayon (— d’une série entiere), 223
rayon (— de convergence d’une série entiere), 222
regle (— n®u,), 114

regle (— x“ f(x)), 58

regle (— de d’Alembert), 114, 222
réglée, 493

relation (— de Chasles), 27, 160
relation (— de récurrence), 390

restes (— de séries convergentes), 117
RP, 490

S, 450

S, 450

SDL1 (— ASM, a coefficients constants), 309
SDLI1 (— SSM, a coefficients constants), 309
SEC, 490

série, 115

série (— de Fourier), 164

série (— entiere), 164, 222

série (— entiere dérivée), 223

série (— trigonométrique), 285

séries (— entieres connues), 223

sev, 366, 448

sev (— orthogonaux), 449

solution générale 308

solution (— maximale d’un probleme de Cauchy), 310
solution (— particuliere), 308

solutions (— y d’une ED (E) développables en 0), 311
sommation, 27

somme (— d’une série entiere), 223

somme (— d’une série numérique), 225
sommes (— partielles de la série), 114
sommes (— partielles de séries divergentes), 117
sous-espaces (— vectoriel, sev), 2
sous-espaces (— propres), 408

sous-famille (— finie), 366

spectre, 410

suite, 3

suite (— d’applications), 158

suite (— de Cauchy), 5

surface, 491, 492

symbole (— de Kronecker), 366

systeme (— affine), 390
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T

tableau (— des quadriques), 492

télescopage, 117

terme (— constant de la série entiere), 224

théoreme (— d’équivalence), 58

théoreme (— de Cauchy et Lipschitz), 310

théoréme (— de continuité sous le signe intégrale), 59, 60

théoréme (— de convergence dominée), 28, 159

théoréme (— de dérivation sous le signe intégrale), 60

théoreme (— de majoration), 58

théoréme (— de minoration), 58

théoréme (— de projection orthogonale), 5

théoréeme (— de Rolle), 25

théoréme (— de Weierstrass), 160

théoréme (— des accroissements finis), 25

théoreme (— fondamental), 450

théoreme (— spectral), 409, 450

théoreme (— sur convergence uniforme et continuité), 226

théoréme (— sur convergence uniforme et continuité en un
point), 162

théoréme (— sur convergence uniforme et intégration sur un
segment), 163

théoréme (— sur convergence uniforme et limite), 162

théoréme (— sur convergence uniforme sur tout segment et
continuité sur 'intervalle de départ), 162

théoréme (— sur l'intégration sur un intervalle quelconque
pour une série de fonctions), 225

théoremes (— de Dirichlet), 284

théorémes (— généraux), 4, 350, 351

trace, 367, 410

tracées, 492

tridiagonale, 390

trigonalisabilité, 410

trigonalisation, 410

troncature (— d’un DL), 28

TSCSA, 115, 164

valeurs (— propres), 408

valeurs (— propres réelles), 409
variables (deux — réelles), 350
variations (— d’une fonction), 25
vecteurs (— propres), 408

vp, 408

VP, 408
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