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Pour bien utiliser cet ouvrage 

La page d’entrée de chapitre

Elle propose un plan du chapitre, les
thèmes abordés dans les exercices, ainsi
qu’un rappel des points essentiels du cours
pour la résolution des exercices.
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Les méthodes à retenir

Cette rubrique constitue une synthèse des prin-
cipales méthodes à connaître,détaillées étape par
étape, et indique les exercices auxquels elles se
rapportent.
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Énoncés des exercices

De nombreux exercices de difficulté croissante
sont proposés pour s’entraîner. La difficulté de
chaque exercice est indiquée sur une échelle de
1 à 4.

Corrrigés des exercices

Tous les exercices sont corrigés de façon détaillée.

Énoncés des exercices

285

Énoncés des exercices
Exemple de développement en série de Fourier, créneau

Soit f : R −→ R , 2π-périodique, paire, telle que, pour tout t ∈ [0 ;π] :

f (t) = 1 si 0 � t <
π

2
, f (t) = 0 si t = π

2
, f (t) = −1 si

π

2 < t � π .

a) Vérifier f ∈ CM2π et calculer les coefficients de Fourier (trigonométriques) de f.

b) Étudier les convergences de la série de Fourier de f et préciser sa somme.

c) En déduire les sommes de séries suivantes :
+∞∑

p=0

(1) p

2p + 1
,

+∞∑
p=0

1
(2p + 1)2 ,

+∞∑
n=1

1
n2 .

Exemple de développement en série de Fourier, dent de scie continue

Soit f : R −→ R , 2π-périodique, impaire, telle que :f (t) = t si 0 � t <
π

2
,

f (t) = π− t si
π

2 � t � π .
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Pour relier entre elles des sommes
de séries convergentes du genre
+∞∑

n=1

1
n2 , et 

+∞∑
p=0

1
(2p+1)2

Séparer, dans une somme partielle, les termes d’indices pairs, d’in-

dices impairs, puis passer aux limites.

➥ Exercices 7.1 c), 7.2 c), 7.7 c).Pour calculer les coefficients de Fourier
d’une fonction,lorsque le calcul direct ne paraît pas faisable

Exprimer la fonction comme somme d’une série de fonctions et mon-

trer que l’on peut permuter intégrale et série par l’une des trois

méthodes habituelles (cf. les méthodes à retenir du chapitre 5).
➥ Exercices 7.14, 7.15, 7.16, 7.17 a), 7.22 b)

Ne pas confondre l’indice d’un terme de la sommation donnant f ini-

tialement, et l’indice concernant le terme d’une série de Fourier. 

Pour obtenir une égalité entre 
une fonction et une somme 
de série trigonométrique

Essayer d’appliquer un des deux théorèmes de Dirichlet à une fonc-

tion bien choisie.

➥ Exercice 7.6.

Pour obtenir une inégalité
portant sur des intégrales 
de carrés de fonctions

Essayer de se ramener, quand c’est possible, à une inégalité portant

sur des sommes de séries numériques, en utilisant une formule de

Parseval.

➥ Exercices 7.9, 7.11, 7.13.

7.1

7.2

PC, PSI

PSI

∼
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Du mal à démarrer ?

Des conseils méthodologiques sont proposés
pour bien aborder la résolution des exercices.
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VIII

Préface

Alors que, récemment, je feuilletais l’un des manuels de mathématiques qui servait de référence lorsque – voici
quelques décennies ! – j’étais en prépa, me revinrent en mémoire certaines sensations : à la lecture des énoncés des
exercices que j’avais jadis cochés, d’une concision à la fois élégante et provocante, je me rappelais le plaisir que j’avais
éprouvé à la résolution de quelques-uns d’entre eux mais aussi, cette étrange amertume, pas encore totalement estom-
pée aujourd’hui, que j’avais ressentie en abandonnant la recherche de quelques-uns, pourtant signalés d’un simple asté-
risque, après de vains efforts et plusieurs tentatives avortées.

Les volumes Méthodes et Exercices (pour MP d’une part, PC-PSI-PT d’autre part) que J.-M. Monier nous présente
aujourd’hui semblent tout spécialement écrits pour éviter ce traumatisme aux étudiants d’aujourd’hui et de demain.

Chacun de ces ouvrages se compose de deux parties éminemment complémentaires :

• Les méthodes constituent ce guide précieux qui permet à l’étudiant de passer, confiant, efficacement « coaché », du
cours qu’il apprend à la recherche nécessaire et fructueuse des exercices. Si les théorèmes du cours sont les outils de
l’artisan-étudiant, les méthodes et techniques proposées ici en sont les modes d’emploi. Évidemment, ces conseils
sont particulièrement soignés et pertinents : ne sont-ils pas le fruit de la longue et multiple expérience de J.-M.
Monier, pédagogue avéré, interrogateur recherché et auteur apprécié de maints ouvrages reconnus ?

Pour une aide encore plus précise, chaque méthode est assortie de la liste des exercices dans lesquels sa mise en œuvre
est souhaitable.

• Les exercices, nombreux, variés et souvent originaux, couvrent la totalité du programme, chapitre après chapitre. Ils
répondent parfaitement à un triple objectif :
� permettre d’assurer, d’approfondir et d’affiner, pendant son apprentissage, la compréhension du cours ;
� consolider et enrichir ses connaissances par la résolution d’exercices plus substantiels et de questions plus déli-

cates ;
� réaliser des révisions efficaces et ciblées lors de la préparation des épreuves écrites ou orales des concours.

Ces exercices sont judicieusement classés en quatre niveaux de difficulté croissante, permettant ainsi aussi bien au néo-
phyte de se mettre en confiance en traitant une application directe du cours (niveau 1) qu’à l’étudiant chevronné de se
mesurer à des exercices plus difficiles et délicieusement subtils (niveau 4). On notera avec plaisir que chaque chapitre
est couvert par des exercices des quatre niveaux. L’abandon douloureux devant une question trop abruptement posée,
dont je parlais au début, ne saurait se produire avec l’ouvrage de J.-M. Monier : en effet, dans la rubrique « Du mal à
démarrer », il apporte à l’étudiant(e) qui le souhaite une aide discrète, rappelant ici la méthode adéquate, donnant là
une indication précieuse, ouvrant ailleurs une piste de recherche…

Pour chaque exercice, l’auteur s’est imposé la rédaction complète et appliquée d’un corrigé clair, précis, détaillé, osons
le mot, exemplaire. S’il est louable et formateur de chercher, il est plus gratifiant de trouver ! Et, ici encore, le manuel
permet à chacun, soit de constater que sa solution est celle qui est fournie (et il en éprouve un indicible plaisir !), soit
de s’aider du corrigé pour parvenir, rassuré et guidé, à cette solution.

Qu’il me soit aussi permis d’insister sur l’ampleur de ces volumes, liée à la grande variété des exercices choisis, et qui
est rare à ce niveau d’études, en même temps que sur leur prix très modique !
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IX

Ces ouvrages de consultation particulièrement agréable constituent l’outil efficace et complet qui permettra à chacun,
à son rythme mais en magnifiant ses propres aptitudes, de développer son goût pour les mathématiques et ses compé-
tences et, tout à la fois, de forger son succès.

Quant à moi, un regret est en train de m’assaillir : pourquoi n’ai-je pas attendu la rentrée prochaine pour commencer
ma prépa ?

H. Durand,
professeur en Mathématiques Spéciales PT*
au lycée La Martinière Monplaisir à Lyon.
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Programmes PC, PSI, PT

Chapitre 1 : Espaces vectoriels normés

• Les étudiant(e)s de PT n’ont à connaître que le cas de Rn muni de la norme euclidienne : norme euclidienne, dis-
tance associée, boules, parties ouvertes, parties fermées, parties bornées, suites dans Rn ; toute suite convergente est
bornée, opérations algébriques sur les suites.

• Les étudiant(e)s de PC n’ont pas à connaître les notions suivantes : suite de Cauchy, point intérieur, caractérisation
séquentielle des points adhérents ou des parties fermées, image réciproque d’une partie ouverte (resp. fermée) par
une application continue.

Chapitre 2 : Fonctions vectorielles d’une variable réelle

• Pour les étudiant(e)s de PT, les fonctions de ce chapitre 2 sont à valeurs dans Rn muni de son produit scalaire usuel
et de la norme euclidienne associée.

Chapitre 4 : Séries

• La CNS de Cauchy de convergence d’une série à termes réels ou complexes ne concerne que les étudiant(e)s de PSI.
• Les étudiant(e)s de PT n’ont pas à connaître la formule de Stirling ni le produit de deux séries numériques.

Chapitre 5 : Suites et séries d’applications

• Ce chapitre ne concerne pas les étudiant(e)s de PT.
• Les étudiant(e)s de PC n’ont pas à connaître la notion de convergence uniforme. Son intervention est remplacée par

celle de la convergence normale ou par un théorème sur les séries entières. Cependant, le programme PC comporte
une étude de l’approximation uniforme.

Chapitre 6 : Séries entières

• Les programmes PC et PT, pour compenser l’absence de l’étude de la convergence uniforme, contiennent un théo-
rème sur les séries entières appelé théorème de la limite radiale.

Chapitre 7 : Séries de Fourier

• Le programme PT ne comporte pas l’étude des coefficients de Fourier exponentiels.
• Le programme PT comporte une définition de a0 différente de celle figurant dans les programmes MP, PC, PSI. Nous

optons pour les formules classiques qui sont celles de ces derniers programmes, et qui donnent comme série de

Fourier trigonométrique de f :
a0

2
+

∑
n�1

(
an cos nωt + bn sin nωt

)
.

Chapitre 8 : Équations différentielles

• L’étude des systèmes autonomes ne figure qu’en PC.
• Les étudiant(e)s de PT n’ont pas à connaître la notion de wronskien.



Programmes PC, PSI, PT

XII

Chapitre 9 : Fonctions de plusieurs variables réelles

• L’inégalité des accroissements finis pour une application f : U −→ R de classe C1 sur un ouvert convexe U de Rp

ne concerne que les étudiant(e)s de PSI.
• La condition suffisante d’extrémum local pour une application f : U −→ R de classe C2 sur un ouvert U de R2, fai-

sant intervenir l’expression s2 − rt , ne concerne que les étudiant(e)s de PT.

Chapitre 10 : Compléments d’algèbre linéaire

• Pour les étudiant(e)s de PT, la notion de somme directe n’est au programme que dans le cas de deux sous-espaces
vectoriels d’un espace vectoriel de dimension finie.

• L’étude de l’interpolation du point de vue de l’algèbre linéaire et la dualité ne sont pas au programme PT.
• Les notions de base duale et de base préduale ne sont qu’au programme PSI.

Chapitre 11: Déterminants

• L’étude du groupe symétrique et la définition et les propriétés de la comatrice ne sont qu’au programme PSI.

Chapitre 12: Réduction des endomorphismes et des matrices carrées

• Les notions de polynôme d’endomorphisme et de polynôme de matrice carrée ne sont pas au programme PT.
• Le théorème de Cayley et Hamilton et l’étude des idéaux de K [X] ne sont qu’au programme PSI.

Chapitre 13: Espaces préhilbertiens réels

• L’étude des formes bilinéaires symétriques et des formes quadratiques n’est pas au programme PC.
• La notion d’adjoint et la réduction simultanée ne sont qu’au programme PSI.

Chapitre 14 : Géométrie

• L’enveloppe d’une famille de droites du plan, le centre de courbure, la développée d’une courbe du plan et les déve-
loppantes d’une courbe du plan, les surfaces réglées, les surfaces développables, les courbes tracées sur une surface
et satisfaisant une condition différentielle ne sont qu’au programme PT.

• Les cylindres, cônes, surfaces de révolution ne sont pas au programme PSI.



1

1CHAPITRE 1Espaces vectoriels
normés

Thèmes abordés dans les exercices

• Montrer qu'une application est une norme

• Obtention d’inégalités portant sur des normes

• Montrer que deux normes sont (ne sont pas) équivalentes

• Montrer qu’une partie d’un evn est (n’est pas) fermée, est (n’est pas) ouverte

• Manipulation de fermés, d’ouverts

• Calcul de la distance d’un point à une partie

• Utilisation de la continuité, du caractère lipschitzien 

• Montrer qu’une application linéaire f est continue, calculer ||| f |||
• Montrer qu’une partie est (n’est pas) compacte, manipulation de parties com-

pactes

• Utilisation d’une suite de Cauchy

• Montrer qu’une application est un produit scalaire

• Déterminer l’orthogonal d’une partie d’un espace préhilbertien

Points essentiels du cours 
pour la résolution des exercices

• Définition de norme, espace vectoriel normé, distance associée à une norme,
inégalité triangulaire renversée, normes équivalentes 

• Définition de boule ouverte, boule fermée, parties bornées

• Définition et propriétés de : ouvert, fermé, point adhérent

• Définition de la distance d’un point x à une partie A d’un evn E, caractérisa-
tion de d(x,A) = 0

• Définition et propriétés de la convergence des suites, suites extraites

• Définition et propriétés des limites, de la continuité en un point, de la conti-
nuité sur une partie

• Définition du caractère lipschitzien, lien entre continue et lipschitzienne

Les méthodes à retenir 2

Énoncés des exercices 6

Du mal à démarrer ? 9

Corrigés 12

Plan
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Ce chapitre 1 ne concerne que les filières PC et PSI, et non la filière PT.



Essayer d’appliquer l’inégalité triangulaire :

∀ (x,y) ∈ E2, ||x + y|| � ||x || + ||y||,
ou l’inégalité triangulaire renversée : 

∀ (x,y) ∈ E2,
∣∣||x || − ||y||∣∣ � ||x − y||.

➥ Exercices 1.1, 1.23.

Chapitre 1 • Espaces vectoriels normés

2

Les méthodes à retenir

• Caractérisation des applications linéaires continues parmi les applications
linéaires, définition et propriétés de la norme |||.|||

• Définition de la compacité, image continue d’un compact, équivalence des
normes en dimension finie

• Définition d’une suite de Cauchy dans un evn de dimension finie, équivalen-
ce logique entre suite de Cauchy et suite convergente dans un tel evn

• Définition d’un produit scalaire (réel ou complexe), d’un espace préhilbertien,
inégalité de Cauchy et Schwarz et cas d’égalité, inégalité de Minkowski et cas
d’égalité

• Définition et propriétés de l’orthogonalité dans un espace préhilbertien, théo-
rème de Pythagore, procédé d’orthogonalisation de Schmidt, théorème de pro-
jection orthogonale sur un sev de dimension finie. 

On abrège :
espace vectoriel en ev
sous-espace vectoriel en sev
espace vectoriel normé en evn.

Pour montrer qu’une application
N : E −→ R est une norme sur un
K-espace vectoriel E

Pour exprimer la distance d
associée à une norme sur un K-ev E
à partir de cette norme, ou pour
exprimer une norme à partir de la
distance associée d sur E

Revenir à la définition.
Ne pas oublier de montrer que, pour tout x ∈ E , N (x) existe, en par-
ticulier lorsque N (x) est donnée par une borne supérieure ou une
intégrale.

➥ Exercices 1.18 a), 1.19, 1.24.

Utiliser les formules :

∀(x,y) ∈ E2, d(x,y) = N (x − y),

∀x ∈ E, N (x) = d(0,x).

Pour établir une inégalité 
faisant intervenir 
une norme ||.|| sur un K-ev



Les méthodes à retenir

3

Pour montrer que deux normes
N, N′ sur un K-espace vectoriel E
sont équivalentes

Pour montrer que deux normes
N, N′ sur un K-espace vectoriel E
ne sont pas équivalentes

Pour montrer 
qu’une partie A d’un evn E
est fermée dans E

• Lorsque E n’est pas nécessairement de dimension finie, revenir à la
définition, c’est-à-dire montrer :

∃ (α,β) ∈ (R∗
+)2, ∀,x ∈ E, αN (x) � N ′(x) � βN (x).

➥ Exercices 1.3, 1.19, 1.24

• Si E est de dimension finie, d’après le cours, toutes les normes 
sur E sont équivalentes.

Chercher une suite ( fn)n dans E − {0} telle que :

N ′( fn)

N ( fn)
−−→

n ∞
+ ∞ ou

N ( fn)

N ′( fn)
−−→

n ∞
+ ∞.

➥ Exercices 1.13, 1.24.

• Si on peut faire intervenir la notion de suite, utiliser la caractérisa-
tion séquentielle des fermés :
la partie A de E est fermée dans E si et seulement si, pour toute suite
(an)n dans A convergeant vers un élément x de E, on a : x ∈ A.

➥ Exercices 1.2 a), 1.11, 1.12

• Essayer de montrer que :
∗ A est une intersection de fermés de E
∗ A est une réunion d’un nombre fini de fermés de E
∗ A est un produit cartésien d’un nombre fini de fermés

• Essayer de montrer que A est l’image réciproque d’un fermé par une
application continue.

• Si le contexte fait intervenir des ouverts, essayer de montrer que
�E(A) est ouvert dans E .

Pour montrer 
qu’une partie Ω d’un evn E
est ouverte dans E

• Revenir à la définition, c’est-à-dire montrer :

∀x ∈ Ω, ∃ r > 0, B(x ; r) ⊂ �.

• Montrer que �E(Ω) est un fermé de E
• Essayer de montrer que :
∗ Ω est une réunion d’ouverts de E

➥ Exercice 1.4 b)

∗ Ω est une intersection d’un nombre fini d’ouverts de E

• Essayer de montrer que Ω est l’image réciproque d’un ouvert par
une application continue.

➥ Exercices 1.4 a), 1.20.
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Chapitre 1 • Espaces vectoriels normés

4

Utiliser la définition : d(x,A) = Inf
a∈A

d(x,a),

ce qui revient à :{∀ a ∈ A, d(x,A) � d(x,a)

∀ k ∈ R+,
((∀,a ∈ A, k � d(x,a)

) �⇒ k � d(x,A)
)
.

On fera souvent alors intervenir l’inégalité triangulaire ou l’inégalité
triangulaire renversée.

➥ Exercice 1.12.

• Appliquer les théorèmes généraux (opératoires) relatifs à la conti-
nuité en un point.

➥ Exercice 1.14

• Si f est à valeurs dans un produit cartésien, montrer que chaque fonc-
tion-coordonnée de f est continue en a.

• Revenir à la définition, c’est-à-dire montrer :

∀ ε > 0, ∃ η > 0, ∀x ∈ A,
(

dE(x,a) � η �⇒ dF
(

f (x), f (a)
)

� ε

)
.

• Utiliser la caractérisation séquentielle de la continuité, c’est-à-dire
montrer que, pour toute suite (an)n dans A convergeant vers a, la
suite 

(
f (an)

)
n converge vers f (a).

• Appliquer les théorèmes généraux (opératoires) relatifs à la conti-
nuité sur une partie.

➥ Exercice 1.5

• Montrer que f est continue en chaque point de X, en se ramenant aux
méthodes vues plus haut.

• Se souvenir que le caractère lipschitzien entraîne la continuité.

Pour manipuler 
la distance d(x,A)

d’un point x d’un K-evn E
à une partie non vide A de E

Utiliser la définition :

∀ (x1,x2) ∈ X2, dF
(

f (x1), f (x2)
)

� k d(x1,x2).

➥ Exercice 1.6

Montrer d’abord qu’il existe M ∈ R+ tel que :

∀ x ∈ E, || f (x)||F � M||x ||E ,

et on a alors ||| f ||| � M, où, par définition :

||| f ||| = Sup
x∈E−{0}

|| f (x)||F

||x ||E
= Sup

x∈B(0 ;1)

|| f (x)||F .

On peut espérer, si M a été convenablement obtenu, que l’on ait :
||| f ||| = M.

On cherchera donc x0 ∈ E − {0} de façon que 
|| f (x0)||F

||x0||E
= M.

➥ Exercice 1.7, 1.17.

Pour montrer 
qu’une application
f : X ⊂ E −→ F
est continue 
en un point a de X

Pour montrer 
qu’une application
f : X ⊂ E −→ F
est continue sur X

Pour manipuler une application
f : X ⊂ E −→ F k-lipschitzienne

Pour calculer 
la norme |||f |||
d’une application linéaire
f ∈ L(E,F) où E,F sont des evn 
de dimensions finies

PSI
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• Essayer de faire apparaître X comme image directe d’un compact
par une application continue.

• Essayer de montrer que X est fermée et bornée.

➥ Exercices 1.8, 1.15, 1.21.

Revenir à la définition, c’est-à-dire montrer :

∀ ε > 0, ∃ N ∈ N, ∀(p,q) ∈ N
2,

({ p � N

q � N
�⇒ d(up,uq) � ε

)
.

➥ Exercice 1.9.

Revenir à la définition.

➥ Exercice 1.22.

Utiliser la formule qui exprime φ à l’aide de ϕ :

∀ x ∈ E, φ(x) = ϕ(x,x),

ou, si K = R , une des formules exprimant ϕ à l’aide de φ :

∀ (x,y) ∈ E2, ϕ(x,y) = 1

2

(
φ(x + y) − φ(x) − φ(y)

)
,

∀ (x,y) ∈ E2, ϕ(x,y) = 1

4

(
φ(x + y) − φ(x − y)

)
.

Utiliser l’inégalité de Cauchy et Schwarz :

∀ (x,y) ∈ E2, |(x | y)| � ||x || ||y||,
ou l’inégalité de Minkowski, c’est-à-dire l’inégalité triangulaire pour
la norme associée au produit scalaire :

∀ (x,y) ∈ E2, ||x + y|| � ||x || + ||y||.

• Revenir à la définition de l’orthogonal d’une partie A de E :

A⊥ = {
x ∈ E ; ∀ a ∈ A, (x | a) = 0

}
.

• Utiliser les propriétés ensemblistes (globales) de l’orthogonalité :
∗ A ⊂ B �⇒ A⊥ ⊃ B⊥

∗ A⊥ = (
Vect (A)

)⊥

∗ A ⊂ A⊥⊥, E⊥ = {0}, {0}⊥ = E

∗ A ∩ A⊥ ⊂ {0}.
➥ Exercice 1.16.

• Se rappeler que, d’après le théorème de projection orthogonale sur
un sev de dimension finie, si F est de dimension finie, alors :
F ⊕ F⊥ = E .

Pour montrer 
qu’une partie X d’un evn E
de dimension finie 
est compacte

Pour montrer 
qu’une suite (un)n d’un evn E
de dimension finie
est de Cauchy

Pour montrer qu’une application
ϕ : E × E −→ R est un produit
scalaire, où E est un K-ev

Pour relier un produit scalaire
ϕ : E × E −→ K et la forme 
quadratique φ : E −→ R associée

Pour obtenir des inégalités 
dans un contexte 
d’espace préhilbertien

(
E,(. | .))

Pour manipuler 
des orthogonaux de parties 
dans un espace préhilbertien (
E,(. | .))
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Énoncés des exercices

Inégalité sur des normes

Soient (E,||.||) un evn, x,y,z,t ∈ E . Montrer :

||x − y|| + ||z − t || � ||x − z|| + ||y − t || + ||x − t || + ||y − z||.

Une partie est-elle fermée, est-elle ouverte ?

On note E le R-ev des applications continues bornées de R dans R, muni de ||.||∞.

a) Est-ce que F = {
f ∈ E ; ∀ x ∈ R, f (x) � 0

}
est fermée dans E ?

b) Est-ce que U =
{

f ∈ E ; ∀ x ∈ R, f (x) > 0
}

est ouverte dans E ?

Exemple de deux normes équivalentes

On note E = C1
(
[0 ; 1] ; R

)
et ν1,ν2 les applications de E dans R définies, pour toute f ∈ E ,

par : ν1( f ) = | f (0)| + 2
∫ 1

0
| f ′(t)| dt, ν2( f ) = 2| f (0)| +

∫ 1

0
| f ′(t)| dt.

Montrer que ν1 et ν2 sont des normes sur E et qu’elles sont équivalentes.

Somme d’une partie et d’un ouvert  

Soient E un evn, Ω un ouvert de E .

a) Montrer que, pour tout a ∈ E, la partie {a} + Ω = {
a + x ; x ∈ Ω

}
est un ouvert de E .

b) En déduire que, pour toute partie A de E, la partie A + Ω = {
a + x ; (a,x) ∈ A × Ω

}
est un

ouvert de E .

Fonction continue à deux variables

Soient E,F,G des evn, A ⊂ E telle que A =/ ∅, B ⊂ F telle que B =/ ∅, et
f : A −→ G, g : B −→ G deux applications.

On note : ϕ : A × B −→ G, (x,y) �−→ ϕ(x,y) = f (x) + g(y).

Montrer que ϕ est continue sur A × B si et seulement si : f est continue sur A et g est continue 
sur B.

Exemple d’application lipschitzienne

Soit (a,b) ∈ (R+)2. On munit R
2 de la norme ||.||1 définie, pour tout (x,y) ∈ R

2, par :
||(x1,x2)||1 = |x1| + |x2|. On note f : R

2 −→ R
2, (x1,x2) �−→ f (x1,x2) = (ax2, bx1).

Montrer que f est lipschitzienne.

Exemple de calcul de la norme subordonnée d’une application linéaire 
en dimensions finies

On note f : R
2 −→ R, (x1,x2) �−→ 2x1 − 3x2. Vérifier que f est linéaire et calculer ||| f |||

lorsque R2 est muni de ||.||∞ et R est muni de |.|.

1.1

1.2

1.3

1.4

1.5

1.6

1.7
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Une partie est-elle compacte, non compacte ?

On considère l’application f : R −→ R, x �−→ f (x) =



sin x

x
si x =/ 0

1 si x = 0

et on note :

A = {
x ∈ R ; f (x) = 0

}
, B =

{
x ∈ R ; f (x) � 1

2

}
.

Est-ce que A est compacte ? Est-ce que B est compacte ?

Suite proche d’une suite de Cauchy

Soient (E,||.||) un evn, d la distance associée à ||.||, (un)n∈N, (vn)n∈N deux suites dans E telles
que : d(un,vn)−→

n ∞
0. Montrer que, si l’une des deux est de Cauchy, alors l’autre l’est aussi. 

Caractérisation de l’égalité de deux boules pour deux normes

Soient E un K -evn, N1,N2 deux normes sur E . On note, pour tout i ∈ {1,2} :

Bi = {
x ∈ E ; Ni (x) < 1

}
, B ′

i = {
x ∈ E ; Ni (x) � 1

}
,

qui sont la boule ouverte et la boule fermée de E, de centre 0, de rayon 1, pour la norme Ni .

Montrer :

a) B ′
1 = B ′

2 ⇐⇒ N1 = N2 b) B1 = B2 ⇐⇒ N1 = N2.

Exemple de partie fermée dans un espace de fonctions

On note E le R-ev des applications de [0 ; 1] dans R bornées, muni de la norme ||.||∞, et on consi-

dère A = {
f ∈ E ; ∀x ∈ [0 ; 1], e f (x) � 2 + f (x)

}
.

Montrer que A est une partie fermée, non bornée, de E .

Exemple de calcul de la distance d’un point à une partie

On note E = C
(
[0 ; 1] ; R

)
, muni de ||.||∞.

a) On note A =
{

f ∈ E ; f (0) = 1 et
∫ 1

0
f = 0

}
.

1) Montrer que A est une partie fermée de E .

2) Calculer d(0,A). Cette distance est-elle atteinte ?

b) Mêmes questions pour B =
{

f ∈ E ; f (0) = 0 et
∫ 1

0
f = 1

}
.

Exemple de trois normes deux à deux non équivalentes

On note E = C2
(

[0 ; 1] ; R

)
et N∞, N ′

∞, N ′′
∞ les applications de E dans R définies, pour toute

f ∈ E , par :

N∞( f ) = Sup
x∈[0;1]

| f (x)|, N ′
∞( f ) = | f (0)| + Sup

x∈[0;1]
| f ′(x)|,

N ′′
∞( f ) = | f (0)| + | f ′(0)| + Sup

x∈[0;1]
| f ′′(x)|.

1.8
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1.9

1.10

1.11

1.12

1.13



Chapitre 1 • Espaces vectoriels normés

8

a) Montrer que N∞, N ′
∞, N ′′

∞ sont des normes sur E .

b) Comparer les normes N∞, N ′
∞, N ′′

∞ pour la relation d’équivalence entre normes. 

Exemple d’application continue

Soit (E,||.||) un evn. On considère l’application f : E −→ E, x �−→ f (x) = x

1 + ||x ||2 .

Montrer : a) f est continue sur E b) f (E) = B ′
(

0 ; 1

2

)
.

Exemple de partie compacte de R2

La partie E =
{
(x,y) ∈ R

2 ; x2(x − 1)(x − 3) + y2(y2 − 4) = 0
}

de R2 est-elle compacte ? 

Exemple de sev F d’un ev préhilbertien E ,
tel que F⊥ ne soit pas un supplémentaire de F dans E

On note E = C
(
[0 ; 1] ; R

)
, muni du produit scalaire ( f,g) �−→< f , g >=

∫ 1

0
f g et on

considère F = {
f ∈ E ; f (0) = 0

}
.

Montrer : a) F⊥ = {0} b) F ⊕ F⊥ =/ E .

Exemple de calcul de la norme subordonnée d’une application linéaire 
en dimension finie

Soient n ∈ N
∗, A = (ai j )i j ∈ Mn(C), f l’endomorphisme de Mn,1(C) représenté par A dans la

base canonique. Calculer la norme subordonnée de f lorsque Mn,1(C) est muni, au départ et à l’ar-
rivée, de ||.||1.

Exemple de norme sur R2, détermination d’une boule

On note N : R
2 −→ R, (x,y) �−→ Sup

t∈R

|x + t y|
1 + t + t2

.

a) Montrer que N est une norme sur R2.

b) Représenter graphiquement la boule B ′
N (0 ; 1) = {

(x,y) ∈ R
2 ; N (x,y) � 1

}
dans le plan

usuel.

c) Calculer l’aire (dans le plan usuel) de B ′
N (0 ; 1).

Exemple de deux normes équivalentes

On note E le R-ev des applications f : [0; 1] −→ R de classe C1 sur [0; 1] et telles 
que f (0) = 0 . Pour f ∈ E , on note N ( f ) = Sup

x∈[0;1]
| f (x)| + Sup

x∈[0;1]
| f ′(x)| et

ν( f ) = Sup
x∈[0;1]

| f (x) + f ′(x)|. Montrer que N et ν sont des normes sur E , et qu’elles sont équi-

valentes.

Séparation de deux fermés disjoints par deux ouverts disjoints

Soient E un evn, F,G deux fermés de E tels que F ∩ G = ∅ . Montrer qu’il existe deux ouverts
U,V de E tels que : F ⊂ U, G ⊂ V, U ∩ V = ∅.

PSI
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Applications continues de limites infinies en +∞ et en −∞
Soit f : R −→ R une application continue. Montrer que les trois propriétés suivantes sont deux à
deux équivalentes :

(i) L’image réciproque par f de tout compact de R est un compact de R

(ii) lim
−∞

| f | = +∞ et lim
+∞

| f | = +∞

(iii)
(

lim−∞ f = −∞ ou lim−∞ f = +∞
)

et
(

lim+∞ f = −∞ ou lim+∞ f = +∞
)
.

Exemple de norme issue d’un produit scalaire

On note E = C1
(
[0 ; 1] ; R

)
et N : E −→ R l’application définie par :

∀ f ∈ E, N ( f ) =
(∫ 1

0
f

′2 + f (0) f (1)

) 1
2

.

Montrer que N est une norme sur E .

Inégalité sur des normes

Soient (E,||.||) un evn, x,y ∈ E − {0}. Démontrer :

∣∣∣∣
∣∣∣∣ x

||x || − y

||y||
∣∣∣∣
∣∣∣∣ � 2 ||x − y||

Max (||x ||, ||y||) .

Exemple de norme paramétrée par une fonction

On note E = C
(
[0; 1],R

)
et, pour ϕ ∈ E, Nϕ : E −→ R l’application définie par :

∀ f ∈ E, Nϕ( f ) = || f ϕ||∞.

a) Montrer que Nϕ est une norme sur E si et seulement si 
(
ϕ−1({0}))◦ = ∅ .

b) Montrer que Nϕ et || · ||∞ sont des normes sur E équivalentes si et seulement si ϕ−1({0}) = ∅.

Endomorphismes continus tels que u ◦ v − v ◦ u = e

Soit E un evn distinct de {0}. On note e = IdE .

On suppose qu’il existe (u,v) ∈ (
LC(E)

)2
tel que : u ◦ v − v ◦ u = e.

a) Montrer : ∀ n ∈ N, u ◦ vn+1 − vn+1 ◦ u = (n + 1)vn .

b) En déduire : ∀ n ∈ N, (n + 1)|||vn||| � 2 |||u||| |||v||| |||vn|||.
c) Conclure. 

Du mal à démarrer ?
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1.21

1.22

1.23

1.24

1.25

Appliquer convenablement, plusieurs fois, l’inégalité tri-

angulaire.

a) Utiliser, par exemple, la caractérisation séquentielle des

fermés.

b) Montrer que U n’est pas ouvert, en trouvant f ∈ U telle que,

pour tout ε ∈ R
∗+, B( f ; ε) � U.

1) Montrer que ν1 est une norme sur E en revenant à la

définition d’une norme.

1.1

1.2
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2) De même pour ν2.

3) Remarquer que, pour toute f ∈ E :

ν1( f ) � 2ν2( f ) et ν2( f ) � 2ν1( f ).

a) Considérer, par exemple, pour a ∈ E fixé, la translation

de vecteur −a :

τ−a : E −→ E, y �−→ y − a.

b) Exprimer A + Ω à l’aide des {a} + Ω, a ∈ A.

1) Si ϕ est continue sur A × B, exprimer f à l’aide de ϕ ,

pour déduire que f est continue sur A.

2) Si f est continue sur A et g est continue sur B, exprimer ϕ à

l’aide de f,g et des projections canoniques, pour déduire que ϕ

est continue sur A × B.

Évaluer, pour (x1,x2), (y1,y2) ∈ R
2 :

|| f (x1,x2) − f (y1,y2)||1.

Pour (x1,x2) ∈ R
2, majorer convenablement | f (x1,x2)| à

l’aide de Max (|x1|,|x2|), et chercher (x1,x2) �= (0,0) de façon

qu’il y ait égalité.

1) A n’est pas bornée.

2) B est fermée et bornée.

Majorer d(vp,vq ) en intercalant up et uq et utiliser les deux

hypothèses : la suite (un)n∈N est de Cauchy et d(un,vn)−→
n ∞ 0.

a) • Un sens est immédiat.

• Si B′
1 = B′

2, pour x ∈ E − {0}, considérer 
1

N1(x)
x, qui est

dans B′
1 , donc dans B ′

2.

b) • Un sens est immédiat.

• Si B1 = B2, pour x ∈ E − {0}, considérer 
1

N1(x)
x, qui n’est

pas dans B1 , donc pas dans B2.

1) Utiliser, par exemple, la caractérisation séquentielle des

fermés.

2) Montrer : ∀ t ∈ [2 ;+∞[, et � 2 + t.

En déduire que toute application constante supérieure ou égale

à 2 est dans A.

a) 1) Utiliser, par exemple, la caractérisation séquentielle

des fermés.

2) • Montrer : d(0,A) � 1.

• Considérer f : [0 ; 1] −→ R, x �−→ 1 − 2x .

b) 1) Comme en a)1).

2) • Montrer : d(0,B) � 1.

• Considérer, pour tout n ∈ N
∗, une application gn continue, affi-

ne par morceaux, constante égale à 1 sauf près de 0, telle que

gn(0) = 0. Déduire d(0,B) = 1.

• Montrer que d(0,B) n’est pas atteinte, en raisonnant par l’ab-

surde.

a) Revenir à la définition d’une norme.

b) 1) Remarquer d’abord :

∀ f ∈ E, N∞( f ) � N ′
∞( f ) � N ′′

∞( f ),

en utilisant l’inégalité des accroissements finis.

2) Trouver une suite ( fn)n dans E − {0} telle que, par exemple,

N ′∞( fn)

N∞( fn)
−→
n ∞ +∞.

b) 1) Remarquer : ∀ t ∈ R+,
t

1 + t2
� 1

2
,

et déduire l’inclusion f (E) ⊂ B ′
(

0 ; 1

2

)
.

2) Réciproquement, pour y ∈ B ′
(

0 ; 1

2

)
fixé, chercher λ ∈ R

pour que f (λy) = y.

1) Montrer que E est fermée, comme image réciproque

d’un fermé par une application continue.

2) Montrer que E est bornée, en utilisant les coordonnées

polaires par exemple.

a) Soit g ∈ F⊥. Considérer l’application 

f : [0 ; 1] −→ R, x �−→ xg(x)

qui est dans F , et traduire < f,g >= 0.

Pour X = t(x1,...,xn) ∈ Mn,1(C), majorer convenablement

|| f (X)||1 en faisant intervenir ||X ||1.

Ayant obtenu le coefficient M = Max
1� j�n

n∑
i=1

|ai j |, chercher

X �= 0 de façon que : || f (X)||1 = M||X ||1.

a) • Montrer d’abord, pour tout (x,y) ∈ R
2, l’existence de

N (x,y) , en montrant que l’application t �−→ |x + t y|
1 + t + t2 est bor-

née sur R.

• Revenir à la définition d’une norme.

b) Transformer la condition N (x,y) � 1 en :

∀ t ∈ R, −1 � x + t y

1 + t + t2
� 1,

puis utiliser les résultats sur les trinômes réels.

c) Calculer l’aire comme intégrale double de la constante 1.

1.4

1.5
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1.7
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1) Montrer que N et ν sont des normes. Pour montrer

l’implication ν ( f ) = 0 �⇒ f = 0, utiliser la résolution d’une

équation différentielle.

2) • Montrer : ∀ f ∈ E, ν( f ) � N ( f ).

• Pour f ∈ E, considérer 

g : [0 ; 1] −→ R, x �−→ ex f (x),

exprimer g′ , puis déduire des majorations de |g(x)|,
| f (x)|, | f ′(x)|, à l’aide de ν ( f ).

Considérer l’application 

ϕ : E −→ R, x �−→ d(x,G) − d(x,F)

et les parties U = ϕ−1(]0 ;+∞[), V = ϕ−1(] − ∞; 0[) de E .

(i) �⇒ (ii) : Appliquer l’hypothèse au compact [−A ; A],

pour A ∈ R
∗+ fixé.

(ii) �⇒ (iii) : Utiliser le théorème des valeurs intermédiaires.

(iii) �⇒ (i) : Soit K un compact de R. Il existe A ∈ R
∗+ tel que :

K ⊂ [−A ; A]. Appliquer l’hypothèse pour déduire que f −1(K )

est borné, puis est compact.

Vu l’exposant 12 et le carré dans l’intégrale, on peut conjec-

turer que N soit une norme associée à un produit scalaire.

Montrer que l’application ϕ : E × E −→ R définie, pour tout

( f,g) ∈ E × E par :

ϕ( f,g) =
∫ 1

0
f ′g′ + 1

2

(
f (0)g(1) + f (1)g(0)

)

est un produit scalaire et que N est la norme associée à ϕ.

1.19

1.20

1.21

1.22

Dans le premier membre de l’inégalité demandée, interca-

ler, par exemple,
x

||y|| , puis utiliser l’inégalité triangulaire et les

rôles symétriques de x et y .

a) Montrer que, pour ϕ ∈ E fixée, Nϕ vérifie une partie de la

définition d’une norme.

1) Supposer 
(
ϕ−1({0}))◦ = ∅. Montrer qu’alors :

∀ f ∈ E,
(
Nϕ( f ) = 0 �⇒ f = 0

)
.

2) Supposer 
(
ϕ−1({0}))◦ =/ ∅.Construire un élément f de E tel

que : f �= 0 et Nϕ( f ) = 0.

b) Soit ϕ ∈ E fixée.

1) Supposer ϕ−1({0}) = ∅. Montrer qu’alors Nϕ et ||.||∞ sont

équivalentes, en faisant intervenir 
1

ϕ
.

2) Supposer ϕ−1({0}) �= ∅. Construire alors une suite ( fn)n∈N∗

dans E − {0} telle que :
|| fn ||∞
Nϕ( fn)

−→
n ∞ +∞.

a) Récurrence sur n.

b) Utiliser a) et la sous-multiplicativité de |||.|||.

c) • Montrer, en utilisant a), qu’on ne peut pas avoir :

∀ n ∈ N, vn �= 0.

• Considérer l’ensemble {n ∈ N ; vn = 0} , son plus petit élé-

ment, et obtenir une contradiction à l’aide de b)}.

On conclut qu’il n’existe pas de tel couple (u,v).

1.23

1.24

1.25
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On applique l’inégalité triangulaire, de deux façons à
chaque fois, pour majorer ||x − y|| et pour majorer ||z − t || :{ ||x − y|| � ||x − z|| + ||z − y||

||x − y|| � ||x − t || + ||t − y||
{ ||z − t || � ||z − x || + ||x − t ||

||z − t || � ||z − y|| + ||y − t ||.

Ensuite, on additionne ces quatre inégalités, on simplifie par
un coefficient 2, et on obtient l’inégalité voulue :

||x − y|| + ||z − t ||
� ||x − z|| + ||y − t || + ||x − t || + ||y − z||.

a) Nous allons montrer que F est fermé dans E en uti-
lisant la caractérisation séquentielle des fermés.

Soient ( fn)n∈N une suite dans F, et f ∈ E tels que fn −→
n∞

f

dans (E,||.||∞).

On a : ∀ x ∈ R, | fn(x) − f (x)| � || fn − f ||∞ −→
n ∞

0,

donc : ∀ x ∈ R, fn(x)−→
n ∞

f (x).

Comme, par hypothèse :

∀ x ∈ R, ∀ n ∈ N, fn(x) � 0,

il s’ensuit, par passage à la limite dans une inégalité lorsque
l’entier n tend vers l’infini :

∀ x ∈ R, f (x) � 0,

et donc : f ∈ F.

On conclut que F est fermé dans E .

b) Nous allons montrer que U n’est pas ouvert dans E , en trou-
vant f ∈ U telle que, pour tout ε ∈ R

∗
+, on ait : B( f ; ε) /⊂ U.

Considérons f : R −→ R, x �−→ f (x) = 1

x2 + 1
.

Il est clair que f est continue et bornée, donc f ∈ E .

Soit ε ∈ R
∗
+ fixé.

Considérons l’application g = f − ε

2
.

On a : g ∈ E, || f − g||∞ = ε

2
< ε,

donc g ∈ B( f ; ε).
Mais g /∈ U car g(x) −→

x−→+∞
− ε

2
< 0, donc g prend des valeurs

� 0.

Ceci montre : ∀ ε ∈ R
∗
+, B( f,ε) /⊂ U,

et on conclut que U n’est pas ouvert dans E .

1) • Il est clair que, pour toute f ∈ E, ν1( f ) existe.

• On a, pour tout α ∈ R et toute f ∈ E :

ν1(α f ) = |(α f )(0)| + 2
∫ 1

0
|(α f )′(t)| dt

= |α| | f (0)| + 2|α|
∫ 1

0
| f ′(t)| dt = |α|ν1( f ).

• On a, pour toutes f,g ∈ E :

ν1( f + g)

= |( f + g)(0)| + 2
∫ 1

0
|( f + g)′(t)| dt

= | f (0) + g(0)| + 2
∫ 1

0
| f ′(t) + g′(t)| dt

� (| f (0)| + |g(0)|) + 2
∫ 1

0

(| f ′(t)| + |g′(t)|) dt

=
(

| f (0)| + 2
∫ 1

0
| f ′(t)| dt

)

+
(

|g(0)| + 2
∫ 1

0
|g′(t)| dt

)

= ν1( f ) + ν1(g).

• Soit f ∈ E telle que ν1( f ) = 0.

On a alors : | f (0)| + 2
∫ 1

0
| f ′(t)| dt = 0,

donc f (0) = 0 et   
∫ 1

0
| f ′(t)| dt = 0.

Puisque | f ′| est continue et � 0, il en résulte f ′ = 0, donc f

est constante, f = f (0) = 0.

Ceci montre que ν1 est une norme sur E .

2) De même, ν2 est aussi une norme sur E .

De manière plus générale, pour tout (a,b) ∈ (R∗
+)2 ,

l’application f �−→ a| f (0)| + b
∫ 1

0
| f ′(t)| dt

est une norme sur E .

3) On a, pour toute f ∈ E :
1

2
ν1( f ) � ν2( f ) � 2ν1( f ),

donc les normes ν1 et ν2 sur E sont équivalentes. 

Corrigés des exercices

1.1

1.2

1.3
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a) Soit a ∈ E .

Considérons l’application τ−a : E −→ E, y �−→ y − a

qui est la translation de vecteur −a.

On a, pour tout y ∈ E : y ∈ {a} +Ω ⇐⇒ y − a ∈ Ω,

donc : {a} + Ω = {
y ∈ E ; τ−a(y) ∈ Ω

} = τ
−1
−a(Ω).

Ainsi, {a} +Ω est l’image réciproque de l’ouvert Ω par l’ap-
plication continue τ−a, donc {a} +Ω est un ouvert de E .

b) Soit A ⊂ E . On a : A +Ω =
⋃
a∈A

({a} +Ω).

Ainsi, A +Ω est une réunion d’ouverts de E, donc est un ou-
vert de E .

1) Supposons ϕ continue sur A × B.

Puisque B =/ ∅, il existe b ∈ B. On a alors :

∀ x ∈ A, f (x) = ϕ(x,b) − g(b) .

Comme ϕ est continue sur A × B, par composition,

l’application x �−→ ϕ(x,b) est continue sur A , puis, par ad-
dition d’une constante, f est continue sur A .

De même, g est continue sur B .

2) Réciproquement, supposons f continue sur A et g continue
sur B .

Notons : pr1 : E × F −→ E, (x,y) �−→ x ,

pr2 : E × F −→ F, (x,y) �−→ y

les deux projections canoniques, qui, d’après le cours, sont conti-
nues sur E × F .

On a alors : ϕ = f ◦ pr1 + g ◦ pr2,

donc, par composition, ϕ est continue sur E × F .

Soient (x1,x2), (y1,y2) ∈ R
2 . On a :∣∣∣∣ f (x1,x2) − f (y1,y2)

∣∣∣∣
1 = ∣∣∣∣(ax2,bx1) − (ay2,by1)

∣∣∣∣
1

= ∣∣∣∣(ax2 − ay2, bx1 − by1)
∣∣∣∣

1

= ∣∣∣∣(a(x2 − y2), b(x1 − y1)
)∣∣∣∣

1

= |a(x2 − y2)| + |b(x1 − y1)| = a|x2 − y2| + b|x1 − y1| .

En notant k = Max (a,b) ∈ R+ , on a donc :∣∣∣∣ f (x1,x2) − f (y1,y2)
∣∣∣∣

1 � k|x2 − y2| + k|x1 − y1|

= k
∣∣∣∣(x1 − y1, x2 − y2)

∣∣∣∣
1 = k

∣∣∣∣(x1,x2) − (y1,y2)
∣∣∣∣

1 .

On conclut que f est lipschitzienne.

• Il est clair que l’application

f : R
2 −→ R, (x1,x2) �−→ 2x1 − 3x2

est linéaire.

On a donc, par définition de la norme subordonnée :

||| f ||| = Sup
(x1,x2)∈R2−{(0,0)}

| f (x1,x2)|
||(x1,x2)||∞ .

• On a, pour tout (x1,x2) ∈ R
2 :

| f (x1,x2)| = |2x1 − 3x2| � 2|x1| + 3|x2|
q � 5 Max (|x1|,|x2|) = 5 ||(x1,x2)||∞.

Il en résulte, d’après la définition de la norme subordonnée :
||| f ||| � 5.

• De plus, en notant X = (1,−1), on a X =/ (0,0) et :

| f (X)|
||X ||∞ = 5

1
= 5.

On conclut : ||| f ||| = 5.

Par théorèmes généraux, f est continue sur R∗, et,

comme f (x) = sin x

x
−→
x−→0

1 = f (0),

f est continue en 0, donc f est continue sur R.

Traçons d’abord l’allure de la courbe représentative de f :

1.6

1.7

1.8

1.4

1.5

y

x−π 2ππ
−2π O

1

1
2

B

A

1) On a : A = πZ
∗, donc A n’est pas bornée, donc n’est pas

compacte.

2) • Puisque B = f −1

([
1

2
;+∞

[)
, que f est continue et que

[
1

2
;+∞

[
, est fermé dans R, d’après le cours, B est fermée

dans R.

• On a, pour tout x ∈ R :

|x | > 2 �⇒ | f (x)| =
∣∣∣∣ sin x

x

∣∣∣∣ � 1

x
<

1

2
�⇒ x /∈ B ,

donc : B ⊂ [−2 ; 2], donc B est bornée.

Ainsi, B est une partie fermée bornée de R, donc B est 
compacte.
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Supposons, par exemple, que (un)n∈N est de Cauchy.

Soit ε > 0.

Puisque d(un,vn)−→
n ∞

0, il existe N1 ∈ N tel que :

∀ n � N1, d(un,vn) � ε

3
.

D’autre part, puisque (un)n∈N est de Cauchy, il existe N2 ∈ N

tel que :

∀ p � N2, ∀ q � N2, d(up,uq) � ε

3
.

Notons N = Max (N1,N2) ∈ N . On a alors, pour tout
(p,q) ∈ N

2 tel que p � N et q � N :

d(vp,vq) � d(vp,up) + d(up,uq) + d(uq ,vq) � 3
ε

3
= ε .

Ceci montre que (vn)n∈N est de Cauchy dans E .

a) • L’implication N1 = N2 �⇒ B ′
1 = B ′

2 est évidente.

• Réciproquement, supposons B ′
1 = B ′

2.

Soit x ∈ E tel que x =/ 0.

∗ Considérons y = 1

N1(x)
x . On a :

N1(y) = N1

(
1

N1(x)
x

)
= 1

N1(x)
N1(x) = 1 ,

donc y ∈ B ′
1 = B ′

2 , d’où N2(y) � 1.

Mais : N2(y) = N2

(
1

N1(x)
x

)
= 1

N1(x)
N2(x).

On a donc :
1

N1(x)
N2(x) � 1, d’où : N2(x) � N1(x).

∗ Puisque N1 et N2 jouent des rôles symétriques, on a aussi
N1(x) � N2(x), d’où : N1(x) = N2(x) .

Enfin, pour x = 0, l’égalité N1(x) = N2(x) est triviale.

On conclut : N1 = N2 .

b) • L’implication N1 = N2 �⇒ B1 = B2 est évidente.

• Réciproquement, supposons B1 = B2.

Nous allons adopter la même méthode que dans la solution 
de a).

Soit x ∈ E tel que x =/ 0.

∗ Considérons y = 1

N1(x)
x . On a alors N1(y) = 1, donc

y /∈ B1 = B2 , d’où N2(y) � 1.

Mais N2(y) = 1

N1(x)
N2(x), d’où N2(x) � N1(x).

∗ Puisque N1 et N2 jouent des rôles symétriques, on a aussi
N1(x) � N2(x), d’où : N1(x) = N2(x) .

Enfin, pour x = 0, l’égalité N1(x) = N2(x) est triviale.

On conclut : N1 = N2 .

1) Nous allons montrer que A est une partie fermée de E
en utilisant la caractérisation séquentielle des parties fermées.

Soient ( fn)n∈N une suite dans A , f ∈ E tels que fn −→
n ∞

f dans

(E,||.||∞) .

On a, pour tout x ∈ [0 ; 1] :

| fn(x) − f (x)| � || fn − f ||∞ −→
n ∞

0 ,

donc : fn(x)−→
n ∞

f (x) .

D’autre part :

∀ x ∈ [0 ; 1], ∀ n ∈ N, e fn (x) � 2 + fn(x) .

On déduit, par passage à la limite dans une inégalité lorsque
l’entier n tend vers l’infini :

∀ x ∈ [0 ; 1], e f (x) � 2 + f (x) ,

et donc : f ∈ A .

Ceci montre que A est une partie fermée de E .

2) • Montrons : ∀ t ∈ [2 ;+∞[, et � 2 + t.

L’application 

ϕ : [2 ;+∞[−→ R, t �−→ ϕ(t) = et − (2 + t)

est dérivable et, pour tout t ∈ [2 ;+∞[ :

ϕ
′(t) = et − 1 > 0 ,

donc ϕ est strictement croissante.

De plus : ϕ(2) = e2 − 4 > 0 .

On déduit : ∀ t ∈ [2 ;+∞[, ϕ(t) � 0,

d’où l’inégalité voulue.

• Soient t ∈ [2 ;+∞[ et ft : [0 ; 1] −→ R, x �−→ t l’applica-
tion constante égale à t. On a alors :

∀ t ∈ [2 ;+∞[,
(

ft ∈ A et || ft || = |t | = t
)

,

ce qui montre que A n’est pas bornée.

a) 1) Nous allons montrer que A est une partie fermée
de E , en utilisant la caractérisation séquentielle des fermés.

Soient ( fn)n∈N une suite dans A , f ∈ E tels que fn −→
n ∞

f dans

(E,||.||∞) .

• On a : | fn(0) − f (0| � || fn − f ||∞ −→
n ∞

0,

donc : fn(0)−→
n ∞

f (0) .

Mais : ∀ n ∈ N, fn(0) = 1, d’où : f (0) = 1.

1.9

1.10

1.11

1.12
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• On a :

∣∣∣∣
∫ 1

0
fn −

∫ 1

0
f

∣∣∣∣ =
∣∣∣∣
∫ 1

0
( fn − f )

∣∣∣∣

�
∫ 1

0
| fn − f | � (1 − 0)|| fn − f ||∞ −→

n ∞
0,

donc :
∫ 1

0
fn −→

n ∞

∫ 1

0
f.

Mais : ∀ n ∈ N,

∫ 1

0
fn = 0, donc :

∫ 1

0
f = 0.

On déduit : f ∈ A.

On conclut que A est une partie fermée de E .

2) • Soit f ∈ A .

On a : || f − 0||∞ = || f ||∞ � | f (0)| = 1,

donc : d(0,A) � || f − 0||∞ � 1.

• L’application f : [0 ; 1] −→ R, x �−→ 1 − 2x

est dans A et : d(0, f ) = || f ||∞ = 1.

On conclut : d(0,A) = 1, et cette borne est atteinte, par f
ci-dessus et représentée graphiquement ci-après.

• Considérons, pour tout n ∈ N
∗ , l’application

gn : [0 ; 1] −→ R définie, pour tout x ∈ [0 ; 1], par :

gn(x) =




nan x si 0 � x � 1

n

an si
1

n
< x � 1

,

où an est à calculer pour que 
∫ 1

0
gn = 1.

y

x

y = f(x)

1

1
O

− 1

1
2

b) 1) On montre que B est une partie fermée de E par la même
méthode qu’en a) 1).

2) • Soit f ∈ B . On a :

1 =
∫ 1

0
f �

∫ 1

0
| f | � (1 − 0)|| f ||∞ = || f − 0||∞ ,

donc : d(0,B) � 1.

y

11 x

n

1

O

a

n

On a :
∫ 1

0
gn = 1 ⇐⇒ an − an

2n
= 1 ⇐⇒ an = 2n

2n − 1
.

On a alors : ∀ n ∈ N
∗, gn ∈ B et :

||gn − 0||∞ = an = 2n

2n − 1
−→
n ∞

1 ,

d’où l’on conclut : d(0,B) � 1.

• Supposons qu’il existe f ∈ B telle que d(0,B) = || f ||∞. 
On a :

0 �
∫ 1

0

(|| f ||∞ − f
) = || f ||∞ −

∫ 1

0
f = 1 − 1 = 0 ,

donc, puisque || f ||∞ − f est continue et � 0, on a :
|| f ||∞ − f = 0, f = || f ||∞, f est une constante. 

Mais f (0) = 0 , donc f = 0, contradiction avec 
∫ 1

0
f = 1.

Ceci montre que d(0,B) n’est pas atteinte.

a) • D’abord, E est bien un R-ev, et N∞,N ′
∞,N ′′

∞ sont
définies, car, si f ∈ E , alors f, f ′, f ′′ sont continues sur le seg-
ment [0 ; 1] , donc sont bornées, d’où l’existence de
N∞( f ), N ′

∞( f ), N ′′
∞( f ) .

1.13
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Nous allons montrer que N ′′
∞ est une norme sur E , les preuves

pour N∞ et N ′
∞ étant analogues et plus simples.

• On a, pour toutes f,g ∈ E :

N ′′
∞( f + g)

=|( f + g)(0)| + |( f + g)′(0)| + Sup
x∈[0;1]

|( f + g)′′(x)|

�(| f (0)| + |g(0)|) + (| f ′(0)| + |g′(0)|)

+ Sup
x∈[0;1]

(| f ′′(x)| + |g′′(x)|)

�(| f (0)| + |g(0)|) + (| f ′(0)| + |g′(0)|)

+ Sup
x∈[0;1]

| f ′′(x)| + Sup
x∈[0;1]

|g′′(x)|

=(| f (0)| + | f ′(0)| + Sup
x∈[0;1]

| f ′′(x)|)

+ (|g(0)| + |g′(0)| + Sup
x∈[0;1]

|g′′(x)|)

=N ′′
∞( f ) + N ′′

∞(g).

• On a, pour tout α ∈ R et toute f ∈ E :

N ′′
∞(α f ) = |(α f )(0)| + |(α f )′(0)| + Sup

x∈[0;1]
|(α f )′(x)|

= |α| | f (0)| + |α| | f ′(0)| + |α| Sup
x∈[0;1]

| f ′′(x)| = |α|N ′′
∞( f ) .

• Soit f ∈ E telle que N ′′
∞( f ) = 0.

On a alors : | f (0)|︸ ︷︷ ︸
�0

+ | f ′(0)|︸ ︷︷ ︸
�0

+ Sup
x∈[0;1]

| f ′′(x)|
︸ ︷︷ ︸

�0

= 0,

donc f (0) = 0, f ′(0) = 0, Sup
x∈[0;1]

| f ′′(x)| = 0 .

Il en résulte f ′′ = 0. Il existe donc (a,b) ∈ R
2 tel que :

∀ x ∈ [0; 1], f (x) = ax + b .

De plus :

{
f (0) = 0

f ′(0) = 0
⇐⇒

{ a = 0

b = 0
d’où f = 0.

On conclut : N∞, N ′
∞, N ′′

∞ sont des normes sur E .

b) 1) • Soit f ∈ E .

Pour tout x ∈ [0 ; 1], d’après l’inégalité des accroissements finis,
appliquée à f sur [0 ; x], on a :

| f (x) − f (0)| � x Sup
t∈[0;x]

| f ′(t)| � 1 Sup
x∈[0;1]

| f ′(t)| ,

puis :

| f (x)| = ∣∣ f (0) + (
f (x) − f (0)

)∣∣
� | f (0)| + | f (x) − f (0)|

� | f (0)| + Sup
t∈[0;1]

| f ′(t)| = N ′
∞( f ).

Il en résulte : N∞( f ) � N ′
∞( f ).

• De même : ∀ f ∈ E, N ′
∞( f ) � N ′′

∞( f ) .

2) Montrons que les normes N∞, N ′
∞, N ′′

∞ sont deux à deux
non équivalentes :

Considérons la suite ( fn)n∈N∗ d’applications de [0 ; 1] dans R
définies, pour tout n ∈ N

∗ , par :

∀ x ∈ [0 ; 1], fn(x) = sin (πnx) .

On a, pour tout n ∈ N
∗, fn ∈ E et, pour tout x ∈ [0 ; 1] :

fn(x) = sin (πnx), f ′
n(x) = πn cos (πnx),

f ′′
n (x) = −π2n2 sin (πnx) ,

d’où, pour tout n ∈ N
∗ :

N∞( fn) = 1, N ′
∞( fn) = πn, N ′′

∞( fn) = πn + π
2n2 .

Il s’ensuit :

N ′
∞( fn)

N∞( fn)
= πn −−−→

n ∞
+ ∞,

N ′′
∞( fn)

N ′∞( fn)
= 1 + πn −−−→

n ∞
+ ∞,

N ′′
∞( fn)

N∞( fn)
= πn + π

2n2 −−−→
n ∞

+ ∞ .

Ainsi, les rapports 
N ′

∞( f )

N∞( f )
,

N ′′
∞( f )

N ′∞( f )
,

N ′′
∞( f )

N∞( f )
ne sont pas bor-

nés lorsque f décrit E − {0} , donc les normes N∞, N ′
∞, N ′′

∞
sont deux à deux non équivalentes.

a) L’application 

f : E −→ E, x �−→ f (x) = x

1 + ||x ||2
est continue par opérations sur les applications continues.

b) 1) On a : ∀ x ∈ E, || f (x)|| = ||x ||
1 + ||x ||2 � 1

2
,

car : ∀ t ∈ R+,
t

1 + t2
− 1

2
= −(1 − t)2

2(1 + t2)
� 0.

d’où : f (E) ⊂ B ′
(

0 ; 1

2

)
.

2) Réciproquement, soit y ∈ B ′
(

0 ; 1

2

)
.

Cherchons λ ∈ R pour que f (λy) = y. On a :

f (λy) = y ⇐⇒ λy

1 + ||λy||2 = y

⇐� ||y||2λ2 − λ+ 1 = 0.

1.14
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Si y = 0, on peut choisir λ = 0.

Supposons y =/ 0. L’équation du second degré précédente, d’in-
connue λ ∈ R , admet au moins une solution puisque son dis-

criminant 1 − 4||y||2 est � 0, car ||y|| � 1

2
.

Ceci montre : B ′
(

0 ; 1

2

)
⊂ f (E).

On conclut : f (E) = B ′
(

0 ; 1

2

)
.

Remarque :

Le résultat est apparent dans le cas E = R muni de la norme
|.| usuelle :

a) Soit g ∈ F⊥ .

Considérons l’application 

f : [0 ; 1] −→ R, x �−→ f (x) = xg(x) .

On a f ∈ F , donc :

0 =< f , g >=
∫ 1

0
f (x)g(x) dx =

∫ 1

0
x
(
g(x)

)2
dx .

Comme x �−→ x
(
g(x)

)2
est continue et � 0, on déduit :

∀ x ∈ [0 ; 1], x
(
g(x)

)2 = 0 ,

puis : ∀ x ∈ ]0 ; 1], g(x) = 0.

Comme g est continue en 0, il en résulte g = 0.

On conclut : F⊥ = {0}.

b) On a donc : F ⊕ F⊥ = F ⊕ {0} = F.

Il est clair que F =/ E, puisque l’application constante égale
à 1 est dans E et n’est pas dans F .

On conclut : F ⊕ F⊥ =/ E.

Par commodité typographique, un élément de Mn,1(C)

peut être noté en ligne au lieu de colonne.

1) On a, pour tout X = (x1,...,xn) ∈ Mn,1(C) :

|| f (X)||1 =
n∑

i=1

∣∣∣
n∑

j=1

ai j xj

∣∣∣ �
n∑

i=1

( n∑
j=1

|ai j | |xj |
)

=
n∑

j=1

( n∑
i=1

|ai j |
)
|xj | �

(
Max
1� j�n

n∑
i=1

|ai j |
︸ ︷︷ ︸

notée M

) n∑
j=1

|xj |

= M||X ||1.

Ceci montre que la norme subordonnée de f, notée ||| f |||, vé-
rifie : ||| f ||| � M.

2) Montrons qu’il existe X =/ 0 réalisant des égalités dans la
chaîne d’inégalités précédentes. 

Il existe j0 ∈ {1,...,n} tel que : M =
n∑

i=1

|ai j0 |.

Considérons X = (0,...,0,1,0,...,0), dont toutes les coordon-
nées sont nulles, sauf la j0-ème qui est égale à 1.

On a alors, d’une part,||X0||1 = 1, et, d’autre part,
f (X0) = (a1 j0,...,anj0), donc :

|| f (X)||1 =
n∑

i=1

|ai j0 | = M.

Ainsi : X =/ 0 et 
|| f (X)||1

||X ||1 = M.

Finalement : ||| f ||| = Max
1� j�n

( n∑
i=1

|ai j |
)
.

y

x1

0

Représentation graphique de f : x �→ x

1 + x2

On a ici : f (R) =
[

− 1

2
; 1

2

]
= B ′

(
0 ; 1

2

)
.

1) L’application 

f : R
2 −→ R, (x,y) �−→ x2(x − 1)(x − 3) + y2(y2 − 4)

est continue et {0} est fermé dans R, donc E = f −1({0}) est

fermé dans R2, comme image réciproque d’un fermé par une
application continue.

2) Montrons que E est bornée, en utilisant les coordonnées po-
laires.

Notons, pour (x,y) ∈ R
2 : ρ = √

x2 + y2 .

On a, pour tout (x,y) ∈ R
2 :

(x,y) ∈ E ⇐⇒ x4 − 4x3 + 3x2 + y4 − 4y2 = 0

⇐⇒ x4 + y4 = 4x3 − 3x2 + 4y2 ,

d’où, pour tout (x,y) ∈ E :

ρ
4 = (x2 + y2)2 = x4 + 2x2 y2 + y4 � 2(x4 + y4)

= 2(4x3 − 3x2 + 4y2) � 2(4ρ3 + 4ρ2) = 8ρ3 + 8ρ2 .

En supposant ρ � 1, on a donc, si (x,y) ∈ E :

ρ4 � 16ρ3, d’où : ρ � 16.

Ceci montre : ∀ (x,y) ∈ E,
√

x2 + y2 � 16,

donc E est bornée.

Ainsi, E est une partie fermée bornée de R2, qui est un evn de
dimension finie, donc E est compacte.

1.15
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a) • Existence :

Soit (x,y) ∈ R
2.

Première méthode :

L’application fx,y : t �−→ |x + t y|
1 + t + t2

, est continue sur R, car

le trinôme réel 1 + t + t2 est de discriminant < 0 , et
fx,y(t) −→

t−→±∞
0. Il existe donc t0 ∈ [0 ;+∞[ tel que :

∀ t ∈ ] − ∞;−t0] ∪ [t0 ;+∞[, | fx,y(t)| � 1 .

Ensuite, f étant continue sur le segment [−t0 ; t0] , d’après un
théorème du cours, f est bornée sur ce segment. Il existe donc
A ∈ R+ tel que :

∀ t ∈ [−t0 ; t0], | fx,y(t)| � A .

En notant M = Max (1,A) ∈ R+ , on a donc :

∀ t ∈ R, | fx,y(t)| � M .

Ainsi, fx,y est bornée, donc  N (x,y) = Sup
t∈R

fx,y(t) existe.

Deuxième méthode :

Soit (x,y) ∈ R
2. On a, pour tout t ∈ R tel que |t | � 1 :

|x + t y|
1 + t + t2

� |x | + |t | |y|
1 + t + t2

� |x | + |y|
1

= |x | + |y| ,

et, pour tout t ∈ R tel que |t | � 1 :

|x + t y|
1 + t + t2

� |x | + |t | |y|
1 + t + t2

� (|x | + |y|)|t |
t2

= |x | + |y|
|t | � |x | + |y|.

D’où : ∀ t ∈ R,
|x + t y|

1 + t + t2
� |x | + |y|.

Ainsi, l’application t ∈ R �−→ |x + t y|
1 + t + t2

, est bornée, donc

N (x,y) = Sup
t∈R

fx,y(t) , existe.

• On a, pour tous (x,y), (x ′,y′) ∈ R
2 :

N
(
(x,y) + (x ′,y′)

)

= N (x + x ′, y + y′)

= Sup
t∈R

∣∣(x + x ′) + t (y + y′)
∣∣

1 + t + t2

� Sup
t∈R

|x + t y| + |x ′ + t y′|
1 + t + t2

� Sup
t∈R

|x + t y|
1 + t + t2

+ Sup
t∈R

|x ′ + t y′|
1 + t + t2

= N (x,y) + N (x ′,y′).

• On a, pour tout α ∈ R et tout (x,y) ∈ R
2 :

N
(
α(x,y)

) = N (αx,αy)

= Sup
t∈R

|αx + tαy|
1 + t + t2

= |α| Sup
t∈R

|x + t y|
1 + t + t2

= |α|N (x,y).

• On a, pour tout (x,y) ∈ R
2 :

N (x,y) = 0 ⇐⇒
(

∀ t ∈ R,
|x + t y|

1 + t + t2
= 0

)

⇐⇒ (∀ t ∈ R, x + t y = 0
) ⇐⇒ (x,y) = (0,0).

On conclut que N est une norme sur R2.

b) Soit (x,y) ∈ R
2. On a :

(x,y) ∈ B ′
N (0 ; 1)

⇐⇒ N (x,y) � 1

⇐⇒ Sup
t∈R

|x + t y|
1 + t + t2

� 1

⇐⇒ ∀ t ∈ R,
|x + t y|

1 + t + t2
� 1

⇐⇒ ∀ t ∈ R, −(1 + t + t2) � x + t y � 1 + t + t2

⇐⇒
{∀ t ∈ R, t2 + (1 − y)t + (1 − x) � 0

∀ t ∈ R, t2 + (1 + y)t + (1 + x) � 0

⇐⇒
{

(1 − y)2 − 4(1 − x) � 0

(1 + y)2 − 4(1 + x) � 0.

Ainsi, B ′
N (0 ; 1) est la partie du plan comprise entre les deux

paraboles (voir schéma ci-après) :

P : (y − 1)2 = −4(x − 1), Q : (y + 1)2 = 4(x + 1) .

b) Les points d’intersection des deux paraboles P et Q ont pour

ordonnées −√
3 et 

√
3. L’aire S de B ′

N (0 ; 1) est donnée, par
exemple, par l’intégrale double :

S =
∫ √

3

−√
3

(∫ 1− (1−y)2

4

(1+y)2

4 −1
dx

)
dy

=
∫ √

3

−√
3

(
1 − (1 − y)2

4
− (1 + y)2

4
+ 1

)
dy

=
∫ √

3

−√
3

(
3

2
− y2

2

)
dy =

[
3

2
y − y3

6

]√
3

−√
3

=2

(
3

2

√
3 − 3

√
3

6

)
= 2

√
3.

1.18
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1) Montrons d’abord que N et ν sont des normes sur E .

Pour f ∈ E , N ( f ) et ν( f ) existent dans R car f et f ′ sont conti-
nues sur le segment [0; 1], donc bornées.

Les propriétés, pour tous α de R, f,g de E :

N (α f ) = |α|N ( f ), ν(α f ) = |α|ν( f )

N ( f + g) � N ( f ) + N (g), ν( f + g) � ν( f ) + ν(g)

sont immédiates.

Soit f ∈ E .

Si N ( f ) = 0, alors Sup
x∈[0;1]

| f (x)| = 0, donc f = 0.

Supposons ν( f ) = 0 . Alors f + f ′ = 0, donc il existe λ ∈ R

tel que :

∀x ∈ [0; 1], f (x) = λe−x .

Comme f (0) = 0 , on déduit λ = 0, puis f = 0.

Ainsi, N et ν sont des normes sur E .

2) Soit f ∈ E . On a :

∀x ∈ [0; 1],
∣∣ f (x) + f ′(x)

∣∣ � | f (x)| + | f ′(x)| � N ( f ),

d’où : ν( f ) � N ( f ) .

3) Soit f ∈ E .

Considérons l’application g : [0; 1] −→ R
x �−→ex f (x)

, qui est de 

classe C1 sur [0; 1].

On a, pour tout t de [0 ; 1] :

|g′(t)| = ∣∣et
(

f (t) + f ′(t)
)∣∣ � eν( f ) ,

puis, pour tout x de [0 ; 1] :

|g(x)| =
∣∣∣∣
∫ x

0
g′(t) dt

∣∣∣∣ �
∫ x

0
|g′(t)| dt � xeν( f ) � eν( f ),

d’où : | f (x)| = e−x |g(x)| � |g(x)| � eν( f ) .

Et : | f ′(x)| = ∣∣( f (x) + f ′(x)
) − f (x)

∣∣
�

∣∣ f (x) + f ′(x)
∣∣ + | f (x)| � (1 + e)ν( f ).

D’où : ∀ x ∈ [0 ; 1], | f (x)| + | f ′(x)| � (1 + 2e)ν( f ) ,

donc : N ( f ) � (1 + 2e)ν( f ).

On a montré : ∀ f ∈ E, ν( f ) � N ( f ) � (1 + 2e)ν( f ) ,

donc N et ν sont des normes équivalentes.

Considérons l’application ϕ : E −→ R définie par :

∀ x ∈ E, ϕ(x) = d(x,G) − d(x,F),

et les parties  U = ϕ−1(]0 ;+∞[) , V = ϕ−1(] − ∞; 0[)
de E .

On sait que, pour toute partie non vide A de E , l’application
x �−→ d(x,A) est continue (et même : 1-lipschitzienne), donc
ϕ est continue. Comme ]0 ;+∞[ et ] − ∞; 0[ sont des ouverts
de R, il en résulte que U et V sont des ouverts de E .

Soit x ∈ F. D’une part, d(x,F) = 0. D’autre part, x /∈ G (car
F ∩ G = ∅ ) et G est fermé, donc d(x,G) > 0. Il en résulte
ϕ(x) > 0 , c’est-à-dire x ∈ U . Ceci montre : F ⊂ U . 

De même : G ⊂ V . 

Enfin, il est clair que U ∩ V = ∅ .

(i) �⇒ (ii) :

Supposons que l’image réciproque par f de tout compact de R
est un compact de R.

Soit A ∈ R
∗
+ . Puisque [−A ; A] est un compact de R ,

f −1([−A ; A]) est un compact de R, donc est bornée. Il existe
donc B ∈ R

∗
+ tel que :

f −1([−A ; A]) ⊂ [−B ; B] .

On obtient, pour tout x ∈ R :

|x | > B �⇒ x /∈ [−B ; B] �⇒ x /∈ f −1([−A ; A])

�⇒ f (x) /∈ [−A ; A] ⇐⇒ | f (x)| > A .

On a montré :

∀ A > 0, ∃ B > 0, ∀ x ∈ R,

{
x < −B �⇒ | f (x)| > A

x > B �⇒ | f (x)| > A,

et on conclut : lim
−∞

| f | = +∞ et lim
+∞

| f | = +∞.

1.19
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• Il est clair que ϕ est symétrique et est linéaire par rapport à

la deuxième place.

• Soit f ∈ E . On a : ϕ( f, f ) =
∫ 1

0
f ′2 + f (0) f (1).

En utilisant l’inégalité de Cauchy et Schwarz pour des intégrales,

on a :

(
f (1) − f (0)

)2 =
( ∫ 1

0
f ′

)2

�
(∫ 1

0
12

)(∫ 1

0
f ′2

)
=

∫ 1

0
f ′2.

d’où :

ϕ( f, f ) =
∫ 1

0
f ′2 + f (0) f (1)

� (
f (1) − f (0)

)2 + f (0) f (1)

= (
f (1)

)2 − f (0) f (1) + (
f (0)

)2

=
(

f (1) − f (0)

2

)2

+ 3
(

f (0)
)2

4
� 0 .

En particulier, ceci montre que, pour toute f ∈ E , la racine car-

rée proposée dans l’énoncé existe.

• Avec les mêmes notations, supposons ϕ( f, f ) = 0. On a alors :

(
f (1) − f (0)

2

)2

︸ ︷︷ ︸
�0

+ 3
(

f (0)
)2

4︸ ︷︷ ︸
�0

= 0,

donc : f (1) − f (0)

2
= 0 et f (0) = 0,

d’où : f (0) = 0 et f (1) = 0,

puis :
∫ 1

0
f ′2 = ϕ( f, f ) − f (0) f (1) = 0 − 0 = 0.

Comme  f ′2 est continue et � 0, on déduit f ′2 = 0, puis f ′ = 0,

donc f est constante, puis f = f (0) = 0.

Ceci montre que ϕ est un produit scalaire sur E , et Nest la norme

associée à ϕ, donc N est une norme sur E .

On a, par l’inégalité triangulaire, en intercalant par

exemple 
x

||y|| , entre 
x

||x || , et 
y

||y|| :

1.23

(ii) �⇒ (iii) :

Supposons : lim
−∞

| f | = +∞ et lim
+∞

| f | = +∞.

Soit A ∈ R
∗
+ . Il existe B ∈ R

∗
+ tel que :

∀ x < −B, | f (x)| > A ,

c’est-à-dire :

∀ x ∈ ] − ∞;−B[,
(

f (x) < −A ou f (x) > A
)

.

S’il existe (x1,x2) ∈ ] − ∞;−B[2 tel que f (x1) < −A et
f (x2) > A , alors, comme f est continue sur ] − ∞;−B[ ,
d’après le théorème des valeurs intermédiaires, il existerait
x3 ∈] − ∞;−b[ tel que f (x3) = 0, contradiction.

On a donc :

(∀ x < −B, f (x) < −A
)

ou
(∀ x < −B, f (x) > A

)
,

et on conclut : lim
−∞

f = −∞ ou lim
−∞

f = +∞.

De même : lim
+∞

f = −∞ ou lim
+∞

f = +∞.

(iii) �⇒ (i) :

Supposons : lim
−∞

f = −∞ ou lim
−∞

f = +∞
et : lim

+∞
f = −∞ ou lim

+∞
f = +∞.

Il est clair qu’alors : lim
−∞

| f | = +∞ ou lim
+∞

| f | = +∞,

c’est-à-dire : (iii) �⇒ (ii).

Soit K un compact de R. Alors, K est borné, donc il existe
A ∈ R

∗
+ tel que : K ⊂ [−A ; A] .

D’après l’hypothèse, il existe B ∈ R
∗
+ tel que, pour tout x ∈ R :

|x | > B �⇒ | f (x)| > A,

d’où, par contraposition, pour tout x ∈ R :

x ∈ f −1(K ) �⇒ f (x) ∈ K �⇒ | f (x)| � A

�⇒ |x | � B ⇐⇒ x ∈ [−B ; B].

Ceci montre : f −1(K ) ⊂ [−B ; B], donc f −1(K ) est borné.

D’autre part, puisque f est continue et que K est fermé (car com-
pact), f −1(K ) est fermé.

Ainsi, f −1(K ) est un fermé borné de R, donc, d’après le cours,
f −1(K ) est un compact de R.

Nous allons montrer que N est la norme associée à un
produit scalaire.

Considérons l’application ϕ : E × E −→ R définie, pour tout
( f,g) ∈ E × E , par :

ϕ( f,g) =
∫ 1

0
f ′g′ + 1

2

(
f (0)g(1) + f (1)g(0)

)
,

obtenue à partir de N en « dédoublant » le rôle de f dans(
N ( f )

)2
.

1.22
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Considérons l’application f : [0; 1] −→ R définie par :

f (x) =




0 si 0 � x � α ou β � x � 1

x − α si α � x � α+ β

2

β− x si
α+ β

2
� x � β.

∣∣∣∣
∣∣∣∣ x

||x || − y

||y||
∣∣∣∣
∣∣∣∣

�
∣∣∣∣
∣∣∣∣ x

||x || − x

||y||
∣∣∣∣
∣∣∣∣ +

∣∣∣∣
∣∣∣∣ x

||y|| − y

||y||
∣∣∣∣
∣∣∣∣

=
∣∣∣∣ 1

||x || − 1

||y||
∣∣∣∣ ||x || + 1

||y|| ||x − y||

=
∣∣||y|| − ||x ||∣∣

||y|| + 1

||y|| ||x − y||

� ||y − x ||
||y|| + 1

||y|| ||x − y|| = 2 ||x − y||
||y|| .

Par rôles symétriques, on a aussi :
∣∣∣∣
∣∣∣∣ x

||x || − y

||y||
∣∣∣∣
∣∣∣∣ � 2 ||x − y||

||x || .

On conclut :

∣∣∣∣
∣∣∣∣ x

||x || − y

||y||
∣∣∣∣
∣∣∣∣ � 2 ||x − y||

Max (||x ||,||y||) .

a) Soit ϕ ∈ E.

Puisque f ϕ est continue sur le segment [0; 1], f ϕ est bornée,

et donc Nϕ( f ) existe dans R. 

On a, pour tous α de R et f,g de E :

Nϕ(α f ) = ||α f ϕ||∞ = |α| || f ϕ||∞ = |α|Nϕ( f )

Nϕ( f + g) = ∥∥( f + g)ϕ
∥∥

∞ = ∥∥ f ϕ+ gϕ
∥∥

∞

� || f ϕ||∞ + ||gϕ||∞ = Nϕ( f ) + Nϕ(g).

1) Supposons 
(
ϕ−1({0}))◦ = ∅ .

Soit f ∈ E telle que Nϕ( f ) = 0 ; on a donc f ϕ = 0.

Supposons f =/ 0. Il existe x0 ∈ [0; 1] tel que f (x0) =/ 0.

Puisque f est continue en x0, il existe un intervalle I, inclus

dans [0; 1] et de longueur > 0 , tel que : ∀ x ∈ I, f (x) =/ 0.

On a alors : ∀ x ∈ I, ϕ(x) = 0 ,

ce qui contredit   
(
ϕ−1({0}))◦ = ∅ .

Ceci montre f = 0,

donc : ∀ f ∈ E,
(
Nϕ( f ) = 0 �⇒ f = 0

)
,

et finalement, Nϕ est une norme sur E .

2) Supposons 
(
ϕ−1({0}))◦ =/ ∅ .

Alors 
(
ϕ−1({0}))◦

, étant un ouvert non vide de [0 ; 1], contient

au moins un intervalle [α;β] tel que α < β. On a ainsi :

∀ x ∈ [α;β], ϕ(x) = 0 .

y

xO 1

f

α βα + β
2

β -- α
2

On a alors f ∈ E , f =/ 0, et f ϕ = 0 donc Nϕ( f ) = 0.

Ceci montre que Nϕ n’est pas une norme sur E .

Finalement, Nϕ est une norme sur E si et seulement si(
ϕ−1({0}))◦ = ∅ .

b) Soit ϕ ∈ E.

b) 1) Supposons ϕ−1({0}) = ∅, c’est-à-dire :

∀ x ∈ [0; 1], ϕ(x) =/ 0.

Alors,
(
ϕ−1({0}))◦ = ∅ , donc, d’après a), Nϕ est une norme

sur E .

On a : ∀ f ∈ E, Nϕ( f ) = || f ϕ||∞ � || f ||∞||ϕ||∞ .

D’autre part, puisque ϕ ∈ E et que ϕ ne s’annule en aucun point,
1

ϕ
existe dans E , d’où :

∀ f ∈ E, || f ||∞ =
∥∥∥∥ 1

ϕ
f ϕ

∥∥∥∥
∞

�
∥∥∥∥ 1

ϕ

∥∥∥∥
∞

|| f ϕ||∞ =
∥∥∥∥ 1

ϕ

∥∥∥∥
∞

Nϕ( f ).

On a montré :

∀ f ∈ E,

(∥∥∥∥ 1

ϕ

∥∥∥∥
∞

)−1

|| f ||∞ � Nϕ( f ) � ||ϕ||∞|| f ||∞ ,

et donc Nϕ et || · ||∞ sont équvalentes sur E .

2) Réciproquement, supposons que Nϕ et || · ||∞ soient des
normes sur E équivalentes. 

D’après a), on a déjà 
(
ϕ−1({0}))◦ = ∅ .

Supposons ϕ−1({0}) =/ ∅. Il existe donc x0 ∈ ϕ−1({0}), c’est-
à-dire tel que ϕ(x0) = 0 .

Soit n ∈ N
∗ . Puisque ϕ est continue en x0 et que ϕ(x0) = 0 ,

il existe η > 0 tel que :

∀ x ∈ [x0 − η; x0 + η] ∩ [0; 1], |ϕ(x)| � 1

n
.
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Considérons l’application fn : [0; 1] −→ R définie par :

fn(x) =




0 si
0 � x � x0 − η

ou x0 + η � x � 1

x − x0 + η

η
si x0 − η � x � x0

x0 + η− x

η
si x0 � x � x0 + η.

On  a alors fn ∈ E , || fn||∞ = 1 , et, pour tout x de [0; 1] :




| fn(x)ϕ(x)| � |ϕ(x)| � 1

n
si |x − x0| � η

fn(x)ϕ(x) = 0 si |x − x0| � η,

donc : Nϕ( fn) = || fnϕ||∞ � 1

n
.

Ainsi, || fn||∞ −−−→
n∞

1 et Nϕ( fn) −−−→
n∞

0, donc || · ||∞ et Nϕ

ne sont pas équivalentes.

On a alors :

u ◦ vn+2 − vn+2 ◦ u

= (u ◦ vn+1 − vn+1 ◦ u) ◦ v + vn+1 ◦ u ◦ v − vn+2 ◦ u

= (u ◦ vn+1 − vn+1 ◦ u) ◦ v + vn+1 ◦ (u ◦ v − v ◦ u)

= (n + 1)vn ◦ v + vn+1 ◦ e = (n + 2)vn+1,

ce qui montre la propriété pour n + 1.

On conclut, par récurrence sur n :

∀ n ∈ N, u ◦ vn+1 − vn+1 ◦ u = (n + 1)vn .

b) Rappelons que LC(E) est un espace vectoriel normé, pour
la norme |||.||| définie, pour tout f ∈ LC(E) , par :

||| f ||| = Sup
||x ||�1

|| f (x)|| ,

et que cette norme est sous-multiplicative, c’est-à-dire que :

∀ f,g ∈ LC(E), |||g ◦ f ||| � |||g||| ||| f ||| .

On a donc, pour tout n ∈ N :

(n + 1)|||vn|||

= |||(n + 1)vn||| = |||u ◦ vn+1 − vn+1 ◦ u|||

� |||u ◦ vn+1||| + |||vn+1 ◦ u|||

� |||u||| |||vn||| |||v||| + |||vn||| |||v||| |||u|||

= 2 |||u||| |||v||| |||vn|||.

c) • Si, pour tout n ∈ N, vn =/ 0, alors on déduit :

∀ n ∈ N, n + 1 � 2 |||u||| |||v||| ,

contradiction.

• Il existe donc n ∈ N tel que vn = 0 .

L’ensemble {n ∈ N ; vn = 0} est une partie non vide de N, donc
admet un plus petit élément, noté n0.

Comme v0 = e =/ 0, car E =/ {0}, on a : n0 � 1.

Appliquons la formule de a) à n0 − 1 à la place de n :

u ◦ vn0 − vn0 ◦ u = n0v
n0−1 .

Comme vn0 = 0 et n0 =/ 0, on déduit vn0−1 = 0, contradiction
avec la définition de n0.

On déduit une contradiction et on conclut qu’il n’existe pas (u,v)

convenant.

Autrement dit :

∀ (u,v) ∈ (
LC(E)

)2
, u ◦ v − v ◦ u =/ e .

y

n

n

x

1

1

1

O
1

x0 − n x0 + nx0

y = fn(x)

y = ϕ(x)

Finalement, Nϕ et || · ||∞ sont des normes équivalentes si et seu-

lement si ϕ−1({0}) = ∅.

a) Récurrence sur n.

• La propriété est vraie pour n = 0, par hypothèse :

u ◦ v − v ◦ u = v = 1v0 .

• Supposons que la propriété soit vraie pour un n ∈ N fixé :

u ◦ vn+1 − vn+1 ◦ u = (n + 1)vn .
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2CHAPITRE 2Fonctions vectorielles
d’une variable réelle

Thèmes abordés dans les exercices
• Résolution d’équations fonctionnelles

• Existence et calcul éventuel d’une dérivée première, d’une dérivée n-ème

• Séparation des zéros d’une équation

• Obtention d’inégalités à une ou plusieurs variables réelles

• Obtention d’inégalités portant sur des intégrales

• Calculs d’intégrales

• Détermination de limites de suites liées à des intégrales

• Recherche de limites d’intégrales

• Étude et représentation graphique d’une fonction définie par une intégrale, le
paramètre aux bornes

• Calculs de limites, d’équivalents, de développements limités, de développe-
ments asymptotiques

• Développement limité, développement asymptotique d’une fonction réci-
proque

• Limite, équivalent, développement asymptotique d’une intégrale dépendant
d’un paramètre

• Limite, équivalent, développement asymptotique des solutions d’une équation
à paramètre.

Points essentiels du cours 
pour la résolution des exercices
• Propriétés des fonctions ayant des limites finies ou des limites infinies, pour

les opérations algébriques et pour l’ordre usuel

• Propriétés générales des fonctions continues

• Propriétés générales des fonctions monotones

• Théorème des valeurs intermédiaires, théorème de la bijection monotone,
théorème de continuité sur un compact

• Définition de la lipschitzianité ; lien avec la continuité

• Définition et propriétés algébriques de la dérivabilité, de la dérivée, de la déri-
vée n-ème, formule de Leibniz

• Théorème de Rolle, théorème des accroissements finis, inégalité des accrois-
sements finis 

Les méthodes à retenir 24

Énoncés des exercices 28

Du mal à démarrer ? 35

Corrigés 39

Plan

©
 D

un
od

. L
a 

ph
ot

oc
op

ie
 n

on
 a

ut
or

is
ée

 e
st

 u
n 

dé
lit

.



Chapitre 2 • Fonctions vectorielles d’une variable réelle

24

Revenir aux définitions.
➥ Exercices 2.16, 2.31.

• Raisonner par condition nécessaire, puis condition suffisante : si
une fonction f convient, essayer d’obtenir l’expression de f (x) pour
tout x, puis étudier la réciproque.
Pour obtenir des conditions nécessaires sur f, appliquer l’hypothè-
se à des cas particuliers. Si, par exemple, l’hypothèse est vraie pour
tout (x,y), appliquer l’hypothèse à (x,0) , à (0,y) , à (x,x), etc.

➥ Exercices 2.2, 2.3, 2.17

• Essayer de faire apparaître, dans l’équation fonctionnelle, une fonc-
tion auxiliaire ϕ telle que, par exemple, ϕ ◦ ϕ = Id , et appliquer
l’hypothèse à x, à ϕ(x).

➥ Exercice 2.30.

On peut essayer, par changement de variables ou changement de
fonction inconnue, de se ramener à la recherche des applications
g : R −→ R continues telles que :

Les méthodes à retenir

Pour montrer qu’une fonction
est paire,
est impaire,
est périodique

• Propriétés algébriques et propriétés relatives à l’ordre, pour les intégrales

• Les méthodes usuelles pour transformer l’écriture d’une intégrale : intégration
par parties, changement de variable, relation de Chasles

• Les propriétés de l’application x �−→
∫ x

x0

f (t) dt

• Formule de Taylor avec reste intégral, inégalité de Taylor et Lagrange, formu-
le de Taylor et Young

• Propriétés des fonctions ou des suites ayant une limite finie ou une limite infi-
nie, pour les opérations algébriques et pour l’ordre usuel

• Équivalents et développements limités usuels, à savoir par coeur

• Notion de développement asymptotique.

Pour résoudre 
une équation fonctionnelle,
sans hypothèse de régularité 
sur la fonction inconnue

Pour résoudre 
une équation fonctionnelle 
avec hypothèse de continuité
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∀ (x,y) ∈ R
2, g(x + y) = g(x) + g(y)

qui sont les applications linéaires de R dans R , c’est-à-dire les appli-
cations g : x �−→ λx, λ ∈ R fixé. 

• Voir les méthodes à retenir dans le volume Exercices PCSI-PTSI.
• Se rappeler :

(lipschitzienne) 
⇒ (continue).

➥ Exercice 2.42.

Essayer d’appliquer le théorème du cours : toute application continue
sur un compact et à valeurs réelles est bornée et atteint ses bornes.

➥ Exercice 2.41.

S’assurer d’abord (souvent par un théorème sur les opérations) que f
est n fois dérivable sur I .

• Si f est une fraction rationnelle, utiliser une décomposition en élé-
ments simples, éventuellement en passant par les nombres com-
plexes.

➥ Exercice 2.4

• Appliquer les formules sur les dérivées n-èmes d’une combinaison
linéaire ou d’un produit de deux fonctions (formule de Leibniz) 

• Voir les méthodes à retenir dans le volume Exercices MPSI.

• Étudier les variations d’une fonction, après avoir éventuellement
remplacé l’inégalité voulue, par équivalence logique, par une inéga-
lité plus commode.

➥ Exercice 2.5.

Utiliser le théorème de Rolle ou le théorème des accroissements finis.

➥ Exercice 2.18.

• Fixer une des deux variables et étudier une fonction de l’autre
variable.

➥ Exercice 2.19

• Essayer de ramener la question à la monotonie d’une fonction d’une
variable réelle.

➥ Exercice 2.20 a).

Pour montrer 
qu’une application est continue

Pour obtenir une inégalité plus
renforcée qu’une inégalité initiale

Pour calculer 
la dérivée n-ème d’une fonction f
en tout point d’un intervalle I

Pour établir une inégalité
portant sur une variable réelle

Pour montrer l’existence de zéros
pour une dérivée 
ou pour des dérivées successives
d’une fonction à valeurs réelles.

Pour établir une inégalité 
portant sur deux variables réelles
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• Essayer d’appliquer le théorème : toute application continue sur un
compact et à valeurs réelles est bornée et atteint ses bornes.

➥ Exercice 2.41

• Faire apparaître deux normes sur un espace vectoriel de dimension
finie, et utiliser le théorème affirmant que ces deux normes sont
alors équivalentes.

➥ Exercice 2.21.

Essayer d’utiliser :

• la définition : ∀ x ∈ X,(
Sup ( f,g)

)
(x) = Max

(
f (x),g(x)

)
,(

Inf ( f,g)
)
(x) = Min

(
f (x),g(x)

)
• les formules :

Sup ( f,g) = 1

2

(
f + g + | f − g|) ,

Inf ( f,g) = 1

2

(
f + g − | f − g|) .

➥ Exercice 2.32 a).

Essayer d’utiliser une fonction auxiliaire, de manière à se ramener à
une inéquation différentielle du type : ∀ x ∈ X, g′(x) � 0,

qui traduit que g est croissante.

➥ Exercice 2.33.

Essayer d’utiliser une intégration par parties.

➥ Exercice 2.7.

Essayer d’appliquer les propriétés sur les intégrales, relatives à
l’ordre :

• si a � b et si f,g : [a ; b] −→ R sont continues par morceaux et

vérifient f � g, alors :
∫ b

a
f �

∫ b

a
g

• si a � b et si f : [a ; b] −→ K est continue par morceaux sur

[a ; b] , alors :
∣∣∣
∫ b

a
f
∣∣∣ �

∫ b

a
| f |

• si a � b et si f,g : [a ; b] −→ K sont continues par morceaux sur
[a ; b] , alors (inégalité de Cauchy et Schwarz) :

∣∣∣
∫ b

a
f g

∣∣∣2
�

( ∫ b

a
| f |2

)( ∫ b

a
|g|2

)
.

➥ Exercices 2.9, 2.34.

Pour établir l’existence 
d’une constante 
réalisant une inégalité,
sans pouvoir calculer 
une telle constante

Pour étudier Sup (f , g), Inf (f , g) ,
où f , g : X −→ R sont 
des applications à valeurs réelles

Pour étudier ou résoudre 
une inéquation différentielle
ou une inéquation intégrale

Pour étudier 
l’intégrale d’un produit

Pour obtenir une inégalité
portant sur des intégrales
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Se reporter aux méthodes à retenir pour le calcul des intégrales et des
primitives, volume Exercices PCSI-PTSI.

➥ Exercices 2.25, 2.26.

Appliquer les méthodes de calcul d’intégrales et de primitives :

• primitives usuelles
• linéarité de l’intégration
• relation de Chasles
• changement de variable
• intégration par parties.

On se ramène alors à la formule fondamentale de l’analyse :
∫ b

a
f (x) dx = F(b) − F(a) ,

où f est continue sur [a ; b] et F est une primitive de f.
On peut quelquefois exploiter un changement de variable qui échan-
ge les bornes. 

Essayer d’appliquer la relation de Chasles, ou d’effectuer un change-
ment de variable. 

Essayer de se ramener à une somme de Riemann, et utiliser le 
théorème du cours : si f : [a ; b] −→ K est continue par morceaux,
alors les sommes de Riemann de f tendent vers l’intégrale de f,
c’est-à-dire :

b − a

n

n∑
k=0

f
(

a + k
b − a

n

)
−−→

n ∞

∫ b

a
f .

À cet effet :
• si une somme de Riemann vn ressemble à un proposé, former

un − vn et essayer de montrer que un − vn −−→
n ∞

0

➥ Exercice 2.39

• s’il s’agit d’un produit, se ramener à une somme en prenant le loga-
rithme.

➥ Exercice 2.10.

Utiliser le résultat du cours : si u,v : I −→ R sont de classe C1 sur
un intervalle I et si f : J −→ K est continue sur un intervalle J tel
que u(I ) ⊂ J et v(I ) ⊂ J, alors l’application 

G : I −→ K, x �−→
∫ v(x)

u(x)

f (t) dt

Pour calculer l’intégrale
d’une fonction continue 
sur un segment, dans un exemple

Pour changer la forme 
de l’écriture d’une intégrale,
ou pour calculer ou évaluer 
une intégrale

Pour amener une intégrale
ayant des bornes différentes 
de celles qui interviennent 
dans l’énoncé

Pour trouver la limite, lorsque
l’entier n tend vers l’infini,
d’une sommation
indexée par un entier k,
portant sur un terme 
dépendant de k et n

Pour étudier ou dériver 
une intégrale 
dépendant d’un paramètre,
le paramètre étant aux bornes
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est de classe C1 sur I et :
∀ x ∈ I, G ′(x) = f

(
v(x)

)
v′(x) − f

(
u(x)

)
u′(x) .

➥ Exercice 2.27.

• On peut conjecturer la limite, qui est souvent, dans les exemples
simples, l’intégrale de la limite, et montrer que la différence entre
l’intégrale de l’énoncé et la limite conjecturée tend vers 0.

• Si l’essentiel de l’intégrale est concentré en un point, essayer de
faire intervenir une continuité en ce point.

➥ Exercice 2.43.

• Voir aussi l’utilisation du théorème de convergence dominée dans le
chapitre 5. 

• Utiliser les DL(0) usuels et les opérations sur ces DL(0) : tronca-
ture, dérivation, primitivation, addition, loi externe, multiplication,
composition, inverse. Se ramener, si nécessaire, au voisinage de 0
par transformation de l’écriture.

• Essayer d’anticiper l’ordre auquel développer certaines parties de
l’écriture, afin d’arriver au bon ordre pour le développement limité
demandé.

➥ Exercices 2.12, 2.24, 2.28.

• Commencer par montrer l’existence et l’unicité de la racine à étu-
dier, dans un certain intervalle.

• Utiliser l’équation elle-même pour essayer d’obtenir la limite 
(si elle existe) de la racine.

• Étudier la différence entre la racine et sa limite, et réitérer si néces-
saire.

➥ Exercices 2.14, 2.15, 2.35, 2.45.

Pour trouver 
une limite d’intégrale

Pour obtenir 
un développement limité

Pour obtenir la limite ou
un développement asymptotique
d’une racine d’une équation
dépendant d’un paramètre

Énoncés des exercices

Inégalités sur des bornes inférieures et des bornes supérieures de f , g, f + g , et de leurs
moyennes

Soient X un ensemble non vide, f,g : X −→ R des applications bornées. On note :

m( f ) = Inf
x∈X

f (x), M( f ) = Sup
x∈X

f (x), µ( f ) = 1

2

(
m( f ) + M( f )

)
,

et de même pour g.

2.1
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a) Montrer :

{
m( f + g) � m( f ) + M(g) � M( f + g)

m( f + g) � M( f ) + m(g) � M( f + g).

b) En déduire : m( f + g) � µ( f ) + µ(g) � M( f + g).

Exemple d’équation fonctionnelle

Trouver toutes les applications f : R −→ R telles que :

∀ (x,y) ∈ R
2, f (x + ey) = x + e f (y) .

Exemple d’équation fonctionnelle

Trouver toutes les applications f : R −→ R telles que :

∀ (x,y) ∈ R
2, f (x) + f (y) = f

(
x + y

2

)
+ f (3x) .

Dérivées successives de Arctan, détermination de leurs zéros

On considère l’application f : R −→ R, x �−→ f (x) = Arctan x .

a) Montrer que f est de classe C∞ sur R, et calculer f (n)(x) pour tout (n,x) ∈ N
∗ × R. On fera

intervenir les nombres complexes.

b) Résoudre, pour tout n ∈ N − {0,1} l’équation f (n)(x) = 0, d’inconnue x ∈ ]0 ;+∞[.

Inégalité à une variable par étude des variations d’une fonction

Montrer : ∀ x ∈ [0 ;+∞[, ex �
(

e x

2

)2

.

Recherche d’une fonction proche de deux fonctions données

Trouver une application f : [0 ; 1] −→ R continue telle que :

∫ 1

0

(
f (x) − x

)2
dx � 10−2 et

∫ 1

0

(
f (x) − x2

)2
dx � 10−2 .

Lemme de Lebesgue pour une fonction de classe C1 sur un segment

Soient (a,b) ∈ R
2 tel que a � b , f : [a ; b] −→ C de classe C1 sur [a ; b]. 

Montrer :
∫ b

a
f (x) eiλx dx −→

λ−→+∞
0.

Équivalents simples de sommations

a) Montrer :
n∑

k=1

1

k
∼
n∞

ln n.

b) En déduire un équivalent simple de un =
n−1∑
k=1

1

k(n − k)
, lorsque l’entier n tend vers l’infini. 

Inégalité sur des intégrales

Soient (a,b) ∈ R
2 tel que a � b , f,g,h : [a ; b] −→ R+ continues.
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Montrer :

(∫ b

a
f gh

)4

�
(∫ b

a
f 4

)(∫ b

a
g2

)2(∫ b

a
h4

)
.

Limite d’un produit

Trouver lim
n∞

( n∏
k=1

2n + k

3n + k

) 1
n

.

Étude de dérivabilité en un point, pour une fonction définie par une intégrale

On note f : R −→ R, x �−→ f (x) =
∫ x2

0
( sin t) Arctan

t

1 + x2
dt.

Montrer que f est dérivable en 0 et calculer f ′(0). 

Exemple de calcul de développement limité

Former le développement limité à l’ordre 2 en 0 de f : x �−→ Arctan

√
tan x

x
.

Exemple de calcul de limite

Trouver lim
x−→π

6

(2 sin x)tan 3x .

Développement asymptotique d’une racine d’une équation dépendant d’un paramètre
entier

a) Montrer que, pour tout n ∈ N
∗ , l’équation 1 + x + ex

n
= 0, d’inconnue x ∈ ] − ∞; 0], admet

une solution et une seule, notée xn.

b) Montrer que la suite (xn)n∈N∗ converge et déterminer sa limite.

c) Former un développement asymptotique de xn à la précision o

(
1

n

)
, lorsque l’entier n tend vers

l’infini. 

Limite, équivalent, développement asymptotique d’une racine d’une équation 
dépendant d’un paramètre entier

a) Montrer que, pour tout n ∈ N
∗ , l’équation cos x = nx , admet, dans [0 ; 1], une solution et une

seule, notée xn .

b) Montrer xn −−−→
n ∞

0, puis xn ∼
n∞

1

n
.

c) Trouver un équivalent simple de xn − 1

n
, lorsque l’entier n tend vers l’infini. 

Condition pour une périodicité

Soit f : R −→ R une application non injective, telle qu’il existe une application g : R
2 −→ R

telle que : ∀ (x,y) ∈ R
2, f (x + y) = g

(
f (x),y

)
.

Montrer que f est périodique. 

2.10

2.11

2.12

2.13
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Exemple d’équation fonctionnelle sur deux fonctions

Soient f,g : R −→ R des applications telles que :

∀ (x,y) ∈ R
2, f

(
x + g(y)

) = 2x + y + 5 .

Calculer, pour tout (x,y) ∈ R
2, g

(
x + f (y)

)
. 

Étude d’une fonction C∞ ayant une infinité de zéros s’accumulant en 0

Soit f : [0 ;+∞[−→ R de classe C∞ telle qu’il existe une suite (xn)n∈N dans ]0 ;+∞[ telle 

que : xn −−−→
n ∞

0 et 
(∀ n ∈ N, f (xn) = 0

)
. Montrer : ∀ k ∈ N, f (k)(0) = 0.

Minimum d’une fonction de deux variables réelles

On considère l’application  f : [0 ;+∞[2−→ R, (x,y) �−→ 1 + x2 y + xy2 − 3xy.

Montrer : ∀ (x,y) ∈ [0 ;+∞[2, f (x,y) � 0, et étudier le cas d’égalité. 

Inégalités à une, deux, trois variables, faisant intervenir des logarithmes

a) Montrer, pour tout (x,y) ∈ R
2 tel que 0 < x < y :

x

y
<

ln(1 + x)

ln(1 + y)
.

b) En déduire, pour tout (x,y,z) ∈ R
3 tel que 0 < x < y < z :

x2

yz
<

(
ln(1 + x)

)2

ln(1 + y) ln(1 + z)
.

c) Déduire, pour tout t ∈ ]1 ;+∞[ : (t − 1)2 ln(t + 1) ln(t + 2) < t (t + 1)(ln t)2.

Inégalité issue d’une comparaison qualitative

Soit n ∈ N
∗ . Montrer qu’il existe C ∈ R+ tel que, pour tout P ∈ Rn[X] :

(
P(−1)

)2 + (
P ′(0)

)2 + (
P ′′(1)

)2 � C
∫ 1

−1

(
P(x)

)2
dx .

Limite d’une intégrale pour une fonction périodique

Soient (a,b) ∈ R
2 tel que a < b, T ∈ R

∗
+, f : R −→ C T-périodique et continue par morceaux.

Trouver lim
n∞

∫ b

a
f (nx) dx .

Calcul de la distance d’une fonction à une partie

On note E le R-ev des applications [0 ; 1] −→ R continues par morceaux, muni de ||.||∞,

ϕ : [0 ; 1] −→ R, x �−→ x et : F =
{

f ∈ E ;
∫ 1/2

0
f =

∫ 1

1/2
f

}
.

Calculer d(ϕ,F), distance de ϕ à F . 

Exemple de calcul de développement limité

Former le développement limité à l’ordre 2 en 0 de f : x �−→ 1

ln cos x
+ 2

sin 2x
.
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Exemple de calcul d’une intégrale d’intégrale

Soit a ∈ ]0 ;+∞[. Calculer I (a) =
∫ a

1
a

(∫ 1

0

1

x2 + y2
dx

))
dy.

Exemple de calcul d’une intégrale

Calculer I =
∫ 1

0

√
1 + x − √

1 − x√
1 + x + √

1 − x
dx .

Étude d’une fonction définie par une intégrale avec le paramètre aux bornes

On considère l’application f : ]0 ;+∞[−→ R, x �−→ f (x) =
∫ x2

x

ln(1 + t2)

t
dt.

Étudier f : définition, classe, dérivée, variations, étude en 0, étude en +∞ , tracé de la courbe repré-
sentative.

Montrer : f (x) = 3 (ln x)2 + O
x−→+∞

(
1

x2

)
.

Développement limité d’une intégrale dépendant d’un paramètre aux bornes

Former le développement limité à l’ordre 3 en 1 de f : x �−→
∫ x

1

et

t
dt.

Exemple de calcul de limite

Trouver lim
x−→0

(
1

( sin x sh x)2
− 1

(tan x th x)2

)
.

Exemple d’équation fonctionnelle

Trouver toutes les applications f : R − {−1,1} −→ R telles que :

∀ x ∈ R − {−1,1}, f

(
x − 3

x + 1

)
+ f

(
3 + x

1 − x

)
= x .

Condition pour une périodicité

a) Soit f : R −→ R bornée telle qu’il existe (a,b) ∈ (R∗
+)2 tel que :

∀ x ∈ R, f (x + a + b) + f (x) = f (x + a) + f (x + b) .

Montrer que f est a-périodique et b-périodique.

b) Soit f : R −→ R telle que, pour tout x ∈ R :

| f (x)| � 1 et f

(
x + 13

42

)
+ f (x) = f

(
x + 1

6

)
+ f

(
x + 1

7

)
.

Montrer que f est 
1

42
-périodique. 

Condition pour que |u| soit dérivable, pour que Sup (f , g) soit dérivable

Soit I un intervalle de R, d’intérieur non vide.

a) Soit u : I −→ R dérivable sur I. Montrer que |u| est dérivable sur I si et seulement si :

∀ x ∈ I,
(
u(x) = 0 
⇒ u′(x) = 0

)
.
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b) Soient f,g : I −→ R dérivables sur I.

On note ϕ : I −→ R, x �−→ ϕ(x) = Max
(

f (x), g(x)
)
.

Trouver une CNS sur f, g, f ′, g′ pour que ϕ soit dérivable sur I. 

Résolution d’une inéquation différentielle

Soient a ∈ R, f : [a ;+∞[−→ R dérivable telle que f (a) = 0.

On suppose qu’il existe λ ∈ R+ tel que : ∀ x ∈ [a ;+∞[, | f ′(x)| � λ| f (x)|.
Montrer : f = 0.

Calcul de bornes inférieures de fonctionnelles quadratiques

Soit λ ∈ R
∗
+ . On note    E = {

f ∈ C1
(
[0 ; 1] ; R

) ; f (0) = 0, f (1) = λ
}
.

Trouver les bornes inférieures de 

{∫ 1

0
f ′2 ; f ∈ E

}
et de 

{∫ 1

0
f 2 ; f ∈ E

}
.

Limite d’une racine d’une équation à paramètre entier

a) Montrer que, pour tout n ∈ N
∗ , l’équation 

n∑
k=1

√
1 + x

k
= 2n, d’inconnue x ∈ [0 ;+∞[,

admet une solution et une seule, notée xn.

b) Montrer : xn −−−→
n ∞

+ ∞. 

Limite d’une sommation

Trouver lim
n∞

1

n

n∑
k=1

(
1 + k

n2

)n

.

Étude d’une inéquation intégrale

Soient f : [0 ; 1] −→ R continue et à valeurs � 0, (a,b) ∈ (R∗
+)2 .

On suppose : ∀ x ∈ [0 ; 1],
(

f (x)
)2 � a + b

∫ x

0
f (t) dt.

Montrer : ∀ x ∈ [0 ; 1],
∫ x

0
f (t) dt � √

a x + b

4
x2.

Développement limité d’une fonction réciproque

Soient I un intervalle ouvert de R, contenant 0, f : I −→ R une application de classe C1 telle que
f (0) = 0 et f ′(0) = 1.

a) Montrer qu’il existe deux intervalles ouverts U, V de R, contenant 0, tels que f réalise une
bijection de U sur V.

On note encore f : U −→ V, x �−→ f (x).

b) On suppose que f admet un développement limité à l’ordre 3 en 0, de la forme :

f (x) = x + ax2 + bx3 + o(x3) ,

où (a,b) ∈ R
2 est fixé.

Montrer que f −1 admet un développement limité à l’ordre 3 en 0, et préciser celui-ci. 
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Équivalent simple d’une sommation

Trouver un équivalent simple de un =
n∑

k=1

1

ln

(
1 + k

n

) lorsque l’entier n tend vers l’infini. 

Étude de fonctions vérifiant une équation faisant intervenir la loi ◦
a) Existe-t-il une bijection f : R −→ R telle que : ∀ x ∈ R, f (sh x) = ch

(
f (x)

)
?

b) Existe-t-il une bijection continue f : R −→ R telle que : ∀ x ∈ R , f ( sin x) = cos
(

f (x)
)

?

Décollement d’une fonction de deux variables

Soit f : [0 ; 1] −→ C une application.

On suppose qu’il existe a ∈ ]0 ; 1[ tel que :

∀ (x,y) ∈ [0 ; 1]2,
(|x − y| � a 
⇒ | f (x) − f (y)| < |x − y|) .

Montrer qu’il existe C ∈ [0 ; 1[ tel que :

∀ (x,y) ∈ [0 ; 1]2,
(|x − y| � a 
⇒ | f (x) − f (y)| � C|x − y|) .

Étude de continuité pour une fonction définie comme borne supérieure

Soient (a,b) ∈ R
2 tel que a < b, n ∈ N

∗, f0,. . . , fn : [a ; b] −→ C bornées. 

On note g : R −→ R, x �−→ g(x) = Sup
t∈[a;b]

∣∣∣∣
n∑

k=0

xk fk(t)

∣∣∣∣.
Montrer que g est continue sur R. 

Limite d’une suite d’intégrales

Soit f : [0 ; 1] −→ R continue. Déterminer lim
n∞

∫ 1

0
n2(xn − xn+1) f (x) dx .

Développement asymptotique d’une intégrale dépendant d’un paramètre entier

Former un développement asymptotique, lorsque l’entier n tend vers l’infini, de

In =
∫ 1

0
(xn + xn−2) ln(1 + xn) dx, à la précision O

(
1

n3

)
. 

Étude asymptotique de la racine d’une équation dépendant d’un paramètre entier

On note, pour tout n ∈ N
∗ : Pn =

n∏
k=0

(X − k).

a) Montrer que, pour tout n ∈ N
∗ , il existe un ∈ ]0 ; 1[ unique tel que P ′

n(un) = 0.

b) Établir : ∀ n ∈ N
∗,

n∑
k=0

1

k − un
= 0.

c) En déduire : un −−−→
n ∞

0.

d) Trouver un équivalent simple de un lorsque l’entier n tend vers l’infini. 

2.39

2.40

2.41

2.42

2.43

2.44

2.45



Du mal à démarrer ?

35

Développement asymptotique du terme général d’une suite définie par une relation de
récurrence

On considère la suite (un)n�1 définie par u1 ∈ R+ et : ∀ n � 1, un+1 = un

n
+ 1

n2
.

a) Montrer : un ∼
n∞

1

n2
.

b) Former un développement asymptotique de un à la précision o

(
1

n3

)
, lorsque l’entier n tend

vers l’infini. 
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2.46

a) Écrire des inégalités convenables pour tout x ∈ X , puis
passer à une borne inférieure ou à une borne supérieure.

1) Soit f convenant. En appliquant l’hypothèse convena-

blement, déduire que f est de la forme x �−→ x + a, où a ∈ R

est fixé. Déduire ensuite a = 0 .

2) Réciproquement, tester f : x �−→ x.

1) Soit f convenant.

Déduire : ∀ x ∈ R, f (x) = f (3x),

puis : ∀ (x,y) ∈ R
2, f (y) = f

(
x + y

2

)
,

et conclure que f est constante.

2) Ne pas oublier d’étudier la réciproque.

a) Pour calculer f (n)(x) , calculer d’abord f ′(x) et utiliser

une décomposition en éléments simples dans C[X]. On obtient,
pour tout (n,x) ∈ N

∗ × R :

f (n)(x) = i

2
(−1)n−1(n − 1)!

(
1

(x + i)n
− 1

(x − i)n

)
.

b) L’équation se ramène à :

(
x − i

x + i

)n

= 1.

Faire intervenir les racines n-èmes de 1 dans C.

On obtient : − cotan
kπ

n
, k ∈ {1,. . . ,n − 1}.

Étudier les variations d’une fonction, après avoir éven-
tuellement transformé l’inégalité demandée en une autre
inégalité logiquement équivalente et plus commode.

Il s’agit de trouver f de façon que les carrés des distances

de f à x �−→ x et à x �−→ x2 soient petites. On peut essayer une

fonction proche de ces deux-là, par exemple leur moyenne

arithmétique, f : x �−→ x + x2

2
.

Puisque f est supposée de classe C1, faire une ipp.

a) Utiliser une comparaison somme/intégrale, à l’aide de la

fonction x �−→ 1

x
.

b) Décomposer 
1

k(n − k)
en éléments simples.

Appliquer convenablement l’inégalité de Cauchy et
Schwarz, plusieurs fois éventuellement.

En prenant le logarithme, amener une somme de Riemann.

Former le taux d’accroissement de f entre 0 et x, pour

x ∈ R
∗, puis en chercher la limite.

Former d’abord le DL2(0) de x �−→
√

tan x

x
,en partant du

DL3(0) de tan x.

Considérer g : R −→ R, u �−→ Arctan (1 + u) et former le

DL2(0) de g à partir du DL2(0) de g′ par primitivation.

Composer enfin les DL2(0).

Repérer la forme indéterminée.

Prendre le logarithme et effectuer le changement de variable

t = x − π

6
−→

x−→ π
6

0.

a) Pour n ∈ N
∗ fixé, étudier les variations de 

fn : ] − ∞; 0] −→ R, x �−→ 1 + x + ex

n
.

b) Montrer : 1 + xn −−−→
n ∞

0.

c) Étudier xn + 1 .

Du mal à démarrer ?
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a) Pour n ∈ N
∗ fixé, étudier les variations de 

fn : [0 ; 1] −→ R, x �−→ cos x − nx .

b) Partir de : cos xn = nxn .

c) Noter yn = xn − 1

n
et reporter dans cos xn = nxn .

Montrer qu’il existe (a,b) ∈ R
2 tel que :

a < b et f (a) = f (b) ,

puis montrer : ∀ y ∈ R, f (a + y) = f (b + y).

Montrer qu’il existe λ ∈ R tel que :

∀ t ∈ R, f (t) = 2t + λ

puis déduire g(y) pour tout y ∈ R.

Calculer enfin g
(
x + f (y)

)
.

Montrer d’abord f (0) = 0 .

Montrer qu’on peut remplacer (xn)n∈N par une suite vérifiant
les mêmes conditions et qui soit, de plus, strictement décrois-
sante. Appliquer convenablement le théorème de Rolle et en
déduire f ′(0) = 0 .

Réitérer.

Pour x ∈ [0 ;+∞[ fixé, étudier les variations de 

g : [0 ;+∞[−→ R, y �−→ f (x,y) .

Distinguer les cas : x � 3, x < 3 .

a) Étudier les variations de :

f : ]0 ;+∞[−→ R, x �−→ ln(1 + x)

x
.

b) Appliquer a) à (x,y) et à (x,z).

c) Appliquer b) à (t − 1, t, t + 1) .

Montrer que l’application 

N : Rn[X] −→ R, P �−→
( ∫ 1

−1

(
P(x)

)2
dx

) 1
2

est une norme, et que les applications de Rn[X]dans R définies
par :

P �−→ P(−1), P �−→ P ′(0), P �−→ P ′′(1)

sont linéaires continues.

Effectuer le changement de variable u = nx , puis décou-
per l’intervalle [na ; nb] en sous-intervalles consécutifs de

longueur T (sauf le dernier, par exemple), pour utiliser la T-
périodicité de f.

1) Pour f ∈ E , majorer 

∫ 1/2

0
f, et minorer 

∫ 1

1/2
f , à l’aide

de ||ϕ||∞ . Déduire : || f − ϕ||∞ � 1

4
.

2) Chercher f ∈ E , si elle existe, de façon que l’on ait

|| f − ϕ||∞ = 1

4
.

Remarquer d’abord :

1

ln cos x
∼

x−→0
− 2

x2
et

2

sin 2x
∼

x−→0

2

x2 .

Déterminer l’ordre auquel développer ln cos x et sin 2x pour
obtenir le DL2(0) de f.

• Pour y ∈ ]0 ;+∞[ fixé, calculer 

∫ 1

0

dx

x2 + y2
.

• Pour exploiter ensuite la présence de 
1

a
et de a aux bornes

d’une intégrale, utiliser le changement de variable u = 1

y
, qui

échange les bornes, ce qui fournit une deuxième évaluation de
I (a).

• Combiner ces deux expressions de I (a) et se rappeler :

∀ u ∈ ]0 ;+∞[, Arctan u + Arctan
1

u
= π

2
.

Transformer l’expression sous l’intégrale, par exemple en
utilisant une expression conjuguée (quitte à supposer tempo-
rairement x �= 0 ). Utiliser ensuite le changement de variable

y = √
1 − x2 .

• Montrer d’abord que, pour tout x ∈ ]0 ;+∞[, f (x) existe.

• Montrer que f est de classe C1 sur ]0 ;+∞[ et exprimer f ′(x)

pour tout x ∈ ]0 ;+∞[ , en utilisant le théorème du cours sur la
dérivée d’une intégrale avec paramètre aux bornes. En déduire
le tableau de variation de f. On fera intervenir un réel α solution
d’une équation polynomiale. Calculer (à la calculatrice ou à l’ai-
de d’un logiciel de calcul) une valeur approchée de α et une
valeur approchée de f (α) .

• Montrer que f admet une limite finie en 0 et déterminer cette

limite. Montrer ensuite que l’application f (prolongée en 0 par

continuité) est alors de classe C1 sur [0 ;+∞[ et calculer f ′(0).

• Pour l’étude en +∞ , en décomposant ln(1 + t2) par mise en

facteur de t2, obtenir f (x) = 3(lnx)2 + B(x), où B(x) est une
intégrale dépendant de x et pour laquelle on montrera

B(x) = O

(
1

x2

)
.

• Terminer par le tracé de la courbe représentative de f.

Faire un changement de variable par translation pour se
ramener au voisinage de 0, c’est-à-dire considérer :

g : ] − ∞; 0] −→ R, u �−→ f (1 + u).

Montrer que g est de classe C1 sur ] − 1 ;+∞[ , former le

DL2(0) de g′ , puis le DL3(0) de g .
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Transformer l’écriture de façon à se ramener à la
recherche d’un équivalent simple de 1 − cos x ch x lorsque
x −→ 0 . Pour obtenir cet équivalent, utiliser des DL4(0) de
cos x et de ch x.

Considérer l’application 

ϕ : R − {−1} −→ R, x �−→ x − 3

x + 1
.

Montrer que ϕ envoie R − {−1,1} dans lui-même.

Remarquer que 
3 + x

1 − x
= ϕ ◦ ϕ(x), et calculer ϕ ◦ ϕ ◦ ϕ(x) .

a) Considérer l’application 

g : R −→ R, x �−→ f (x + a) − f (x) .

Montrer que g est b-périodique.

Calculer f (x + a) − f (x), f (x + a + b) − f (x + a), . . . ,

f (x + a + nb) − f
(
x + a + (n − 1)b

)
pour tout n ∈ N

∗.

Sommer et utiliser le fait que g est bornée.

En déduire que f est a-périodique.

b) Remarquer :
1

6
+ 1

7
= 13

42
.

a) 1) Supposer |u| dérivable sur I .

Soit x ∈ I tel que u(x) = 0 .

En étudiant le taux d’accroissement de |u| entre x et x + h , pour
h ∈ R

∗ tel que x + h ∈ I , déduire u′(x) = 0.

2) Réciproquement, supposer :

∀ x ∈ I,
(
u(x) = 0 
⇒ u′(x) = 0

)
.

Soit x ∈ I . Montrer que u est dérivable en x, en séparant en trois
cas : u(x) > 0, u(x) < 0, u(x) = 0.

b) Se rappeler que :

∀ (a,b) ∈ R
2, Max (a,b) = 1

2

(
a + b + |a − b|) .

Considérer l’application 

g : [0 ;+∞[−→ R, x �−→ e−2λx
(

f (x)
)2

et étudier les variations de g .

1) • Pour toute f ∈ E , minorer 

∫ 1

0
f ′2 , en utilisant l’inéga-

lité de Cauchy et Schwarz.

• Chercher f0 ∈ E, si elle existe, de façon que l’inégalité obtenue
ci-dessus soit une égalité.

2) Trouver une suite ( fn)n∈N∗ dans E telle que :

∫ 1

0
f 2
n −−−→

n ∞
0.

a) Étudier, pour n ∈ N
∗ fixé, les variations de 

fn : [0 ;+∞[−→ R, x �−→
( n∑

k=1

√
1 + x

k

)
− 2n .

b) Utiliser l’inégalité classique 

∀ (a,b) ∈ (R+)2,
√

a + b � √
a +

√
b ,

puis un équivalent simple de 
n∑

k=1

1

k
, à l’aide d’une comparaison

somme/intégrale.

Faire intervenir une exponentielle. Montrer, par exemple à
l’aide de la formule de Taylor avec reste intégral :

∀ x ∈ [0 ;+∞[, x − x2

2
� ln (1 + x) � x .

En déduire, pour tout n ∈ N
∗ :

e− 1
2n

1

n

n∑
k=1

e
k
n � 1

n

n∑
k=1

(
1 + k

n2

)n

� 1

n

n∑
k=1

e
k
n .

Pour terminer, calculer 
n∑

k=1

e
k
n , qui est une sommation géomé-

trique.

Considérer l’application 

g : [0 ; 1] −→ R, x �−→ a + b
∫ x

0
f (t) dt

et montrer : ∀ x ∈ [0 ; 1],
g′(x)

2
√

g(x)
� b

2
.

Intégrer de 0 à x.

a) Montrer que f est strictement croissante au voisinage de 0.

b) Raisonner par condition nécessaire et condition suffisante.

• Supposer que f −1 admet un DL3(0), nécessairement de la

forme : f −1(y) = y + γ y2 + δy3 + o
y−→0

(y3) et reporter dans

x = f −1
(

f (x)
)

, plutôt que dans y = f
(

f −1(y)
)

, pour obtenir

γ et δ en fonction de (a,b) .

• Réciproquement, montrer, avec les valeurs de γ et δ obtenues

ci-dessus en fonction de (a,b) , que f −1(y) − (y + βy2 + γ y3)

est un o(y3) .

Considérer, pour tout n ∈ N
∗ : vn =

n∑
k=1

1
k
n

.

• En utilisant 
n∑

k=1

1

k
∼

n∞ ln n, qui s’obtient, par exemple, par une

comparaison somme/intégrale, obtenir un équivalent simple 
de vn :

vn ∼
n∞ n ln n .
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• Montrer que l’application 

ϕ : ]0 ; 1] −→ R, x �−→ 1

ln(1 + x)
− 1

x

admet une limite finie en 0, et en déduire que ϕ est bornée.

Majorer alors convenablement |un − vn | .

a) Supposer qu’il existe f convenant.

Déduire f (R) ⊂ R+ , contradiction.

b) Supposer qu’il existe f convenant.

Déduire f ([−1 ; 1]) = [−1 ; 1] ,

puis 
(

f (−1), f (1)
) ∈ {

(−1,1), (1,−1)
}

.

Évaluer alors f ( sin 1) et f (− sin 1) pour obtenir une contradic-
tion.

Noter E = {
(x,y) ∈ [0 ; 1]2 ; |x − y| � a

}
et 

F : E −→ R, (x,y) �−→
∣∣∣∣ f (x) − f (y)

x − y

∣∣∣∣ .

Montrer que E est compact et que F est continue sur E .

• Montrer d’abord, pour tout (x,y) ∈ R
2 et tout t ∈ [a ; b] :

|g(x) − g(y)| �
n∑

i=1

|xi − yi | || fi ||∞.

• En déduire que g est lipchitzienne sur tout segment

[−A ; A], A ∈ R+ , et conclure.

On peut conjecturer, à cause de la présence de xn , que la
partie essentielle de la fonction sous l’intégrale est concentrée
près de 1, donc que l’intégrale proposée In se comporte de
façon analogue à l’intégrale 

Jn =
∫ 1

0
n2(xn − xn+1) f (1) dx .

Calculer Jn .

Former |In − Jn |. Pour ε > 0 fixé, décomposer l’intervalle [0 ; 1]
en [0 ; 1 − η] et [1 − η ; 1], où η vient de la continuité de f en 1,
de façon à majorer l’intégrale de 0 à 1 − η (en utilisant le fait que

f est bornée) et l’intégrale de 1 − η à 1 (en utilisant la continui-

té de f en 1).

Considérer Jn =
∫ 1

0
2xn−1ln(1 + xn) dx, qui ressemble 

à In .

D’une part, calculer Jn .

D’autre part, évaluer In − Jn .

a) Utiliser le théorème de Rolle et compter les zéros du
polynôme P ′

n .

b) Utiliser la formule du cours relative à 
P ′

P
, lorsque P ∈ K[X]

est scindé sur K .

c) Dans 
n∑

k=0

1

k − un
, isoler le terme d’indice k = 0.

d) Dans 
n∑

k=1

1

k − un
, isoler le terme d’indice k = 1.

a) • S’assurer d’abord que, pour tout n � 1, un existe et
un � 0.

• Montrer : un � un−1 + 1 et déduire, par sommation,

un � u1 + (n − 1) , puis déduire, successivement, que (un)n est

bornée, que un � C

n
, où C est une constante, que un � D

n2 , où

D est une constante, et enfin que un ∼
n∞

1

n2 , par un raisonne-

ment correct sur les équivalents.

b) Remplacer un par 
1

n2
+ o

(
1

n2

)
, dans l’expression de un+1 ,

puis décaler l’indice.
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a) 1) • On a :

∀ x ∈ X, m( f + g) � f (x) + g(x) � f (x) + M(g) ,

d’où, en passant à la borne inférieure lorsque x décrit X :

m( f + g) � m( f ) + M(g) .

• Puisque − f et −g sont bornées, on a, en appliquant le ré-
sultat précédent à (− f,−g) à la place de ( f,g) :

m(− f − g) � m(− f ) + M(−g) .

Mais :

m(− f − g) = Inf
X

(− f − g) = − Sup
X

( f + g)

= −M( f + g)

et m(− f ) = −M( f ), M(−g) = −m(g),

d’où : −M( f + g) � −M( f ) − m(g),

c’est-à-dire : M( f ) + m(g) � M( f + g).

2) Puisque f et g ont des rôles symétriques, on a aussi, en échan-
geant f et g dans les résultats précédents :

m( f + g) � m(g) + M( f )

et                    M(g) + m( f ) � M( f + g),

d’où les encadrements demandés :{
m( f + g) � m( f ) + M(g) � M( f + g)

m( f + g) � M( f ) + m(g) � M( f + g).

b) En additionnant, puis en divisant par 2, on obtient :

m( f + g) � µ( f ) + µ(g) � M( f + g) .

1) Soit f convenant.

• On a alors, en appliquant l’hypothèse à (x − ey, y) :

∀(x,y) ∈ R
2, f (x) = f

(
(x − ey) + ey

) = (x − ey) + e f (y) .

En particulier, en remplaçant y par 0 :

∀ x ∈ R, f (x) = x − 1 + e f (0) .

Il existe donc a ∈ R tel que : ∀ x ∈ R, f (x) = x + a.

• On a, alors, pour tout y ∈ R , en appliquant l’hypothèse à 
(0,y) : f (0 + ey) = 0 + e f (y),c’est-à-dire : ey + a = ey+a,

d’où : ey(ea − 1) = a.

En appliquant ceci à deux valeurs de y, différentes entre elles,
par exemple y = 0, y = 1, on déduit a = 0, et donc :

∀ x ∈ R, f (x) = x .

2) Réciproquement, il est évident que l’application

f : R −→ R, x �−→ x convient.

On conclut qu’il y a une solution et une seule, f = IdR .

1) Soit f convenant.

En appliquant l’hypothèse à (x,x), on obtient :

∀ x ∈ R, f (x) = f (3x) .

En reportant dans l’hypothèse, on a alors :

∀ (x,y) ∈ R
2, f (y) = f

(
x + y

2

)
.

En appliquant ceci à (2t,0), on a :

∀ t ∈ R, f (0) = f (t) ,

donc f est constante.

2) Réciproquement, il est évident que toute application constante
convient.

On conclut que l’ensemble S des applications cherchées est :

S = {
f : R −→ R, x �−→ C ; C ∈ R

}
.

a) D’après le cours, f : x �−→ Arctan x est de classe C∞

sur R et on a : ∀ x ∈ R, f ′(x) = 1

x2 + 1
.

En utilisant une décomposition en éléments simples, on obtient,
en passant par les nombres complexes :

∀ x ∈ R, f ′(x) = i

2

(
1

x + i
− 1

x − i

)
.

D’où, par une récurrence immédiate, pour tout n ∈ N
∗ :

f (n)(x) = i

2
(−1)n−1(n − 1)!

(
1

(x + i)n
− 1

(x − i)n

)
.

b) Soit n ∈ N
∗ fixé tel que n � 2. On a, pour tout x ∈ R :

f (n)(x) = 0 ⇐⇒ 1

(x + i)n
− 1

(x − i)n
= 0

⇐⇒
(

x − i

x + i

)n

= 1 .

En notant, pour tout k ∈ {0,. . . ,n − 1}, θk = 2kπ

n
, et ωk = ei θk,

on a : (
x − i

x + i

)n

= 1

⇐⇒ ∃ k ∈ {0,. . . ,n − 1}, x − i

x + i
= ωk

39

Corrigés des exercices

2.1

2.2

2.3

2.4



⇐⇒ ∃ k ∈ {0,. . . ,n − 1}, x − i = ωk x + iωk

⇐⇒ ∃ k ∈ {0,. . . ,n − 1}, (1 − ωk)x = i (1 + ωk)

⇐⇒ ∃ k ∈ {1,. . . ,n − 1}, x = i
1 + ωk

1 − ωk
.

Et :

i
1 + ωk

1 − ωk
= i

1 + ei θk

1 − ei θk
= i

ei
θk
2 2 cos θk

2

−ei
θk
2 2 i sin θk

2

= − cotan
θk

2
.

On conclut que, pour tout n ∈ N tel que n � 2, l’ensemble Sn

des solutions de l’équation f (n)(x) = 0, d’inconnue x ∈ R ,
est :

Sn =
{

− cotan
kπ

n
; k ∈ {1,. . . ,n − 1}

}
.

Commençons par transformer l’équation proposée en une
inéquation équivalente et plus commode :

∀ x ∈ [0 ;+∞[, ex �
(

e x

2

)2

⇐⇒ ∀ x ∈ [0 ;+∞[, 4ex−2 � x2

⇐⇒ ∀ x ∈ ]0 ;+∞[, 2 ln 2 + (x − 2) � 2 ln x,

le cas x = 0 étant d’étude immédiate.

Considérons l’application 

f : ]0 ;+∞[−→ R, x �−→ f (x) = 2 ln 2 + x − 2 − 2 ln x .

Il est clair que f est dérivable sur ]0 ;+∞[ et :

∀ x ∈ ]0 ;+∞[, f ′(x) = 1 − 2

x
= x − 2

x
.

On en déduit les variations de f :

x 0 2  +∞
f ′(x) – 0 +

f (x) +∞ ↘ 0   ↗ + ∞

Comme f (2) = 0 , on obtient :

∀ x ∈ ]0 ;+∞[, f (x) � 0 ,

ce qui établit l’inégalité demandée.

Puisqu’il s’agit de trouver une application « proche » de
x �−→ x et de x �−→ x2, on peut essayer leur moyenne arith-

métique, f : x �−→ 1

2
(x + x2). On a alors :

∫ 1

0

(
f (x) − x

)2
dx =

∫ 1

0

(
x + x2

2
− x

)2

dx

=
∫ 1

0

(
x − x2

2

)2

dx = 1

4

∫ 1

0
(x2 − 2x3 + x4) dx

= 1

4

[
x3

3
− 2

x4

4
+ x5

5

]1

0

= 1

4

(
1

3
− 1

2
+ 1

5

)

= 1

120
� 10−2

et ∫ 1

0

(
f (x) − x2

)2
dx =

∫ 1

0

(
x + x2

2
− x2

)2

dx

=
∫ 1

0

(
x − x2

2

)2

dx

= 1

120
� 10−2.

Ainsi, f : [0 ; 1] −→ R, x �−→ x + x2

2
, convient.

Soit λ ∈ ]0 ;+∞[ fixé.

Effectuons une intégration par parties, pour des applications
de classe C1 sur [a ; b] :∣∣∣∣

∫ b

a
f (x) eiλx dx

∣∣∣∣

=
∣∣∣∣
[

f (x)
eiλx

iλ

]b

a

−
∫ b

a
f ′(x)

eiλx

iλ
dx

∣∣∣∣

=
∣∣∣∣ f (b)eiλb − f (a)eiλa

iλ
− 1

iλ

∫ b

a
f ′(x)eiλx dx

∣∣∣∣

� | f (b)| + | f (a)|
λ

+ 1

λ

∫ b

a
| f ′(x)| dx

=
(

| f (b)| + | f (a)| +
∫ b

a
| f ′(x)| dx

)
1

λ

−→
λ−→+∞

0.

On conclut :
∫ b

a
f (x)eiλx dx −→

λ−→+∞
0.

a) Il s’agit d’un étude classique.

On va effectuer une comparaison somme/intégrale.

L’application f : ]0 ;+∞[−→ R, x �−→ 1

x
, est continue et

décroissante sur ]0 ;+∞[, donc :

∀ n ∈ N
∗, ∀ x ∈ [n ; n + 1],

1

n + 1
� 1

x
� 1

n
.

Il s’ensuit, en intégrant :

∀ n ∈ N
∗,

1

n + 1
�

∫ n+1

n

1

x
dx � 1

n
,

puis, en sommant :

∀ n ∈ N
∗,

n∑
k=1

1

k + 1
�

n∑
k=1

∫ k+1

k

1

x
dx �

n∑
k=1

1

k
.
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On a, pour tout n ∈ N
∗ , en utilisant la relation de Chasles :

n∑
k=1

∫ k+1

k

1

x
dx =

∫ n+1

1

1

x
dx = [ln x]n+1

1 = ln(n + 1) .

D’où, en notant Hn =
n∑

k=1

1

k
:

∀ n ∈ N
∗, Hn+1 − 1 � ln (n + 1) � Hn ,

ou encore : ∀ n ∈ N
∗ − {1}, ln (n + 1) � Hn � 1 + ln n.

Comme 

ln(n + 1) = ln n + ln

(
1 + 1

n

)
= ln + o

n∞
(1) ∼

n∞
ln n

et                                1 + ln n ∼
n∞

ln n,

on déduit, par encadrement :
n∑

k=1

1

k
= Hn ∼

n∞
ln n.

b) Soit n ∈ N tel que n � 2.

On a, pour tout k ∈ {1,. . . ,n − 1}, par exemple à l’aide d’une
décomposition en éléments simples :

1

k(n − k)
= 1

n

(
1

k
+ 1

n − k

)
.

D’où, pour tout n � 2 :

un =
n−1∑
k=1

1

k(n − k)
= 1

n

n−1∑
k=1

(
1

k
+ 1

n − k

)

= 1

n

( n−1∑
k=1

1

k
+

n−1∑
k=1

1

n − k

)
=

k −n−k

2

n

n−1∑
k=1

1

k
.

En utilisant le résultat de a), on déduit :

un ∼
n∞

2

n
ln (n − 1) = 2

n

(
ln n + ln

(
1 − 1

n

))
∼
n∞

2

n
ln n .

Appliquons deux fois l’inégalité de Cauchy et Schwarz,
en faisant intervenir 

√
g , qui est continue, puisque g est conti-

nue et à valeurs � 0 :
(∫ b

a
f gh

)4

=
(∫ b

a
( f

√
g)2(

√
gh)2

)4

�
(∫ b

a

(
f
√

g)2

)2(∫ b

a

(√
g h)2

)2

=
(∫ b

a
f 2g

)2(∫ b

a
gh2

)2

�
((∫ b

a
f 4

)(∫ b

a
g2

))((∫ b

a
g2

)(∫ b

a
h4

))

=
(∫ b

a
f 4

)(∫ b

a
g2

)2(∫ b

a
h4

)
.

Notons, pour tout n ∈ N
∗ :

un =
( n∏

k=1

2n + k

3n + k

) 1
n

> 0 .

On a, pour tout n ∈ N
∗ :

ln un = 1

n

n∑
k=1

ln
2n + k

3n + k
= 1

n

n∑
k=1

ln
2 + k

n

3 + k

n

.

L’application [0 ; 1] −→ R, x �−→ ln
2 + x

3 + x
, est continue sur

le segment [0 ; 1] , donc, d’après le cours sur les sommes de

Riemann : ln un −−−→
n ∞

∫ 1

0
ln

2 + x

3 + x
dx .

On calcule cette intégrale, notée I :

I =
∫ 1

0
ln (2 + x) dx −

∫ 1

0
ln (3 + x) dx

= [
(2 + x) ln (2 + x) − (2 + x)

]1

0

− [
(3 + x) ln (3 + x) − (3 + x)

]1

0

= (
(3 ln 3 − 3) − (2 ln 2 − 2)

)
− (

(4 ln 4 − 4) − (3 ln 3 − 3)
)

= 6 ln 3 − 10 ln 2.

Comme l’exponentielle est continue sur R, on déduit :

un −−−→
n ∞

eI = e6 ln 3−10 ln 2 = 36

210
.

D’abord, pour tout x ∈ R , f (x) existe comme intégrale
d’une application continue sur un segment.

On a, pour tout x ∈ R
∗ :∣∣∣∣ f (x) − f (0)

x − 0

∣∣∣∣ =
∣∣∣∣ 1

x

∫ x2

0
( sin t) Arctan

t

1 + x2
dt

∣∣∣∣

� 1

x

∫ x2

0
| sin t |

∣∣∣∣Arctan
t

1 + x2

∣∣∣∣ dt

� 1

x

∫ x2

0
1 · π

2
dt = π

2
x .

Il en résulte, par encadrement :
f (x) − f (0)

x − 0
−→
x−→0

0,

ce qui montre que f est dérivable en 0 et que : f ′(0) = 0.

D’abord, f : x �−→ Arctan

√
tan x

x
, est définie, au

moins, sur 

]
− π

2
; π

2

[
− {0}.

41

2.9

2.10

2.11

2.12

−→



Comme tan x ∼
x−→0

x, on a f (x) −→
x−→0

Arctan 1 = π

4
, donc 

f admet un prolongement continu en 0, en notant f (0) = π

4
.

De plus, il est clair que f est paire.

On calcule des développements limités en 0 :

tan x = x + x3

3
+ o(x3),

tan x

x
= 1 + x2

3
+ o(x2) ,

√
tan x

x
=

(
1 + x2

3
+ o(x2)

) 1
2

= 1 + 1

2

x2

3
+ o(x2) = 1 + 1

6
x2 + o(x2).

Ainsi : f (x) = Arctan

(
1 + x2

6
+ o(x2)

)
.

Considérons l’application 

g : R −→ R, u �−→ g(u) = Arctan (1 + u) .

Il est clair que g est de classe C1 sur R, et on a, pour tout 
u ∈ R :

g′(u) = 1

1 + (1 + u)2
= 1

2 + 2u + u2
= 1

2

1

1 + u + u2

2

= 1

2

(
1 − u + o(u)

) = 1

2
− 1

2
u + o(u).

Il en résulte, par primitivation pour une application de classe C1

dont la dérivée admet un DL1(0) :

g(u) = g(0) + 1

2
u − 1

2

u2

2
+ o(u2)

= π

4
+ 1

2
u − 1

4
u2 + o(u2).

On déduit, par composition, le DL2(0) de f :

f (x) = π

4
+ 1

2

x2

6
+ o(x2) = π

4
+ 1

12
x2 + o(x2) .

Il s’agit d’une forme indéterminée 1∞.

Notons, pour x au voisinage de 
π

6
: f (x) = (2 sin x)tan x .

On a, par le changement de variable t = x − π

6
−→

x−→π
6

0 :

ln
(

f (x)
)

= (tan 3x) ln (2 sin x)

=
(

tan

(
π

2
+ 3t

))
ln

(
2 sin

(
π

6
+ t

))

= − 1

tan 3t
ln

(
2 · 1

2
cos t + 2 ·

√
3

2
sin t

)

= − 1

tan 3t
ln

(
cos t +

√
3 sin t

)

= − 1

3t + o(t)
ln

(
1 +

√
3 t + o(t)

)

∼
t−→0

− 1

3t

√
3 t = − 1√

3
,

donc : ln
(

f (x)
)

−→
x−→π

6

− 1√
3
.

On conclut, par continuité de l’exponentielle :

f (x) −→
x−→π

6

e
− 1√

3 .

a) Soit n ∈ N
∗ .

Considérons l’application 

fn : ] − ∞; 0] −→ R, x �−→ fn(x) = 1 + x + ex

n
.

L’application fn est dérivable sur ] − ∞; 0] et :

∀ x ∈ ] − ∞; 0], fn(x) = 1 + ex

n
> 0 .

On dresse le tableau de variation de fn :

x −∞ xn 0 

f ′
n(x) +

fn(x) −∞ ↗ 0   ↗ 1 + 1

n

Puisque fn est continue et strictement croissante sur l’intervalle
] − ∞; 0] et que l’on a 

lim
−∞

fn = −∞ < 0 et fn(0) = 1 + 1

n
> 0, d’après le théorème

de la bijection monotone, l’équation fn(x) = 0 ,
d’inconnue x ∈ ] − ∞; 0], admet une solution et une seule,
notée xn.

De plus, comme fn(0) =/ 0 , on a : xn =/ 0.

b) On a, pour tout n ∈ N
∗ : |1 + xn| = exn

n
� 1

n
,

donc : 1 + xn −−−→
n ∞

0, d’où : xn −−−→
n ∞

− 1.

c) On a : n(xn + 1) = −exn −−−→
n ∞

− e−1,

donc : xn + 1 ∼
n∞

−e−1

n
.

On conclut au développement asymptotique suivant, à la pré-

cision o

(
1

n

)
: xn = −1 − 1

e n
+ o

n∞

( 1

n

)
.

a) Soit n ∈ N
∗ .

Considérons l’application 

fn : [0 ; 1] −→ R, x �−→ cos x − nx .
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L’application fn est dérivable sur [0 ; 1] et :

∀ x ∈ [0 ; 1], f ′
n(x) = − sin x − n � −n < 0 .

On dresse le tableau de variation de fn :

x 0  1

f ′
n(x) −

fn(x) 1   ↘ cos 1 − n

Puisque  fn est continue et strictement décroissante sur l’in-
tervalle [0 ; 1] et que :

fn(0) = 1 > 0 et fn(1) = cos 1 − n < 0 ,

d’après le théorème de la bijection monotone, l’équation
fn(x) = 0, d’inconnue x ∈ [0 ; 1], admet une solution et une
seule, notée xn.

b) • On a : |xn| =
∣∣∣∣ cos xn

n

∣∣∣∣ � 1

n
−−−→

n ∞
0,

donc : xn −−−→
n ∞

0 .

• Ensuite : xn = cos xn

n
∼
n∞

1

n
.

c) Notons, pour tout n ∈ N
∗ : yn = xn − 1

n
.

Puisque xn ∼
n∞

1

n
, on a déjà : yn = o

(
1

n

)
.

On a :

cos

(
1

n
+ yn

)
= cos xn = nxn = n

(
1

n
+ yn

)
= 1 + nyn ,

d’où :

nyn = cos
( 1

n
+ yn︸ ︷︷ ︸

−→0

)
− 1 ∼

n∞ −1

2

(1

n
+ yn︸︷︷︸

=o
(

1
n

)
)2

∼
n∞ − 1

2n2
,

donc : yn ∼
n∞

− 1

2n3
.

On conclut : xn − 1

n
∼
n∞

− 1

2n3
.

Puisque f n’est pas injective, il existe (a,b) ∈ R
2 tel 

que : a < b et f (a) =/ f (b) . On a alors :

∀ y ∈ R, f (a + y) = g
(

f (a),y
) = g

(
f (b),y

) = f (b + y) .

En notant c = a − b > 0, on a donc :

∀ z ∈ R, f (c + z) = f
(
(a − b) + z

) = f
(
a + (−b + z)

)
= f

(
b + (−b + z)

) = f (z).

On conclut que f est c-périodique.

En remplaçant y par 0, on a :

∀ x ∈ R, f
(
x + g(0)

) = 2x + 5 ,

puis :

∀ t ∈ R, f (t) = f
((

t − g(0)
) + g(0)

)
= 2

(
t − g(0)

) + 5 = 2t + (
5 − 2g(0)

)
.

Il existe donc λ ∈ R tel que : ∀ t ∈ R, f (t) = 2t + λ.

• On a donc, en remplaçant, dans l’hypothèse, f par son ex-
pression obtenue ci-dessus :

∀ (x,y) ∈ R
2, 2x + y + 5 = f

(
x + g(y)

)
= 2

(
x + g(y)

) + λ = 2x + 2g(y) + λ,

d’où : ∀ y ∈ R, g(y) = 1

2
y + 5 − λ

2
.

On déduit :

∀ (x,y) ∈ R
2, g

(
x + f (y)

) = 1

2

(
x + f (y)

) + 5 − λ

2

= 1

2
(x + 2y + λ) + 5 − λ

2
= 1

2
x + y + 5

2
.

Puisque : xn −−−→
n ∞

0 et 
(∀ n ∈ N, xn ∈ ]0 ;+∞[

)
,

on peut extraire de la suite (xn)n∈N une suite strictement dé-
croissante et de limite 0.

Il existe donc une suite (un)n∈N, strictement décroissante, de
limite 0, telle que : ∀ n ∈ N, f (un) = 0.
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x

y = f(x)

u3 u2 u1
u0v1

v0v2

O

Puisque f est continue en 0, on déduit : f (0) = 0 .

D’autre part, d’après le théorème de Rolle, puisque f est déri-
vable sur ]0 ;+∞[ , pour chaque n ∈ N , il existe
vn ∈ ]un+1 ; un[ tel que : f ′(vn) = 0. On construit ainsi une suite
(vn)n∈N , strictement décroissante, de limite 0, telle que :

∀ n ∈ N, f ′(vn) = 0.

D’après l’étude précédente, appliquée à f ′ à la place de f, on
déduit : f ′(0) = 0.



En réitérant le raisonnement, ou par une récurrence, on 
conclut : ∀ k ∈ N, f (k)(0) = 0.

1) Inégalité :

Soit x ∈ [0 ;+∞[.

Notons g : [0 ;+∞[−→ R l’application définie, pour tout
y ∈ [0 ;+∞[, par : g(y) = f (x,y) = 1 + x2 y + xy2 − 3xy.

L’application g est dérivable sur [0 ;+∞[ et :

∀ y ∈ [0 ;+∞[, g′(y) = x2 + 2xy − 3x = x(x + 2y − 3) .

1er cas : x � 3

On a alors : ∀ y ∈ [0 ;+∞[, g′(y) � 0,

donc g est croissante.

Comme g(0) = 1, on déduit :

∀ y ∈ [0 ;+∞[, g(y) � g(0) = 1 > 0 .

2ecas : 0 � x < 3

On dresse le tableau de variations de g :

y 0   
3 − x

2
+∞

g′(y) − 0   +
g(y) ↘ ↗

On calcule le minimum de g, obtenu en 
3 − x

2
:

g

(
3 − x

2

)

= 1 + x2 y + xy2 − 3xy

= 1 + xy(x + y − 3)

= 1 + x
3 − x

2

(
x + 3 − x

2
− 3

)

= 1 + 3x − x2

2

(
x − 3

2

)

= 1

4

(
4 − x(x − 3)2

)

‘ = 1

4
(−x3 + 6x2 − 9x + 4)

= 1

4
(−x + 1)(x2 − 5x + 4)

= 1

4
(−x + 1)(x − 1)(x − 4)

= 1

4
(x − 1)2 (4 − x)︸ ︷︷ ︸

�0

� 0.

Finalement : ∀ (x,y) ∈ [0 ;+∞[2, f (x,y) � 0.

2) Étude du cas d’égalité

• Supposons qu’il y ait égalité dans l’inégalité de l’énoncé.
D’après 1), on a alors nécessairement :

x � 3, y = 3 − x

2
, g(y) = 0 ,

d’où, comme 4 − x > 0 : x = 1 , puis y = 1.

• Réciproquement : f (1,1) = 1 + 1 + 1 − 3 = 0.

On conclut qu’il y a égalité si et seulement si :

(x,y) = (1,1) .

a) Considérons l’application 

f : ]0 ;+∞[−→ R, x �−→ f (x) = ln(1 + x)

x
.

L’application f est dérivable sur ]0 ;+∞[ et, pour tout
x ∈ ]0 ;+∞[ :

f ′(x) = 1

x2

(
x

1 + x
− ln (1 + x)

)
.

Considérons l’application 

g : [0 ;+∞[−→ R ; x �−→ g(x) = x

1 + x
− ln (1 + x) .

L’application g est dérivable sur [0 ;+∞[ et, pour tout
x ∈ [0 ;+∞[ :

g′(x) = 1

(1 + x)2
− 1

1 + x

= − x

(1 + x)2

{� 0

< 0 si x =/ 0.

Il en résulte que g est strictement décroissante sur [0 ;+∞[.

Comme g(0) = 0, on en déduit :

∀ x ∈ ]0 ;+∞[, g(x) < 0 ,

donc : ∀ x ∈ ]0 ;+∞[, f ′(x) < 0.

Il en résulte que f est strictement décroissante.

On a donc, pour tout (x,y) ∈ ]0 ;+∞[2 :

x < y �⇒ f (y) < f (x)

⇐⇒ ln(1 + y)

y
<

ln(1 + x)

x
⇐⇒ x

y
<

ln(1 + x)

ln(1 + y)
.

b) Soit (x,y,z) ∈ R
3 tel que 0 < x < y < z .

Appliquons le résultat de a) à (x,y) et à (x,z) :

x

y
<

ln(1 + x)

ln(1 + y)
et

x

z
<

ln(1 + x)

ln(1 + z)
,

d’où, par multiplication (pour des nombres tous > 0) :

x2

yz
<

(
ln(1 + x)

)2

ln(1 + y) ln(1 + z)
.

c) Soit t ∈ ]0 ;+∞[ . Appliquons le résultat de b) à
x = t − 1 ∈ ]0 ;+∞[ , y = t, z = t + 1 :
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(t − 1)2

t (t + 1)
<

(ln t)2

ln(t + 1) ln (t + 2)
,

d’où, les dénominateurs étant > 0 :

(t − 1)2 ln(t + 1) ln(t + 2) < t (t + 1)( ln t)2 .

Notons, pour abréger, E = Rn[X] et confondons poly-
nôme et application polynomiale sur [−1 ; 1] .

D’après le cours, l’application 

N : E −→ R, P �−→
(∫ 1

−1

(
P(x)

)2
dx

) 1
2

est une norme sur E .

Considérons les applications u,v,w : E −→ R définies, pour
tout P ∈ E, par :

u(P) = P(−1), v(P) = P ′(0), w(P) = P ′′(1) .

Il est clair que u,v,w sont linéaires.

Puisque E est de dimension finie, u,v,w sont donc continues
et il existe a,b,c ∈ R+ tels que, pour tout P ∈ E :

|u(P)| � aN (P), |v(P)| � bN (P), |w(P)| � cN (P) .

On a alors, pour tout P ∈ E :(
P(−1)

)2 + (
P ′(0)

)2 + (
P ′′(1)

)2

= (
u(P)

)2 + (
v(P)

)2 + (
w(P)

)2

� (a2 + b2 + c2)
(
N (P)

)2
.

En notant C = a2 + b2 + c2, on a donc, pour tout P ∈ E :

(
P(−1)

)2 + (
P ′(0)

)2 + (
P ′′(1)

)2 � C
∫ 1

−1

(
P(x)

)2
dx .

Soit n ∈ N
∗ .

On a, par le changement de variable u = nx :

In =
∫ b

a
f (nx) dx = 1

n

∫ nb

na
f (u) du .

Notons N = E

(
n(b − a)

T

)
∈ N , (qui dépend de n) de sorte

que : na + N T � nb < na + (N + 1)T .

On a, par la relation de Chasles :

In = 1

n

( N−1∑
k=0

∫ na+(k+1)T

na+kT
f (u) du +

∫ nb

na+N T
f (u) du

)
.

Puisque f est T-périodique, on déduit :

In = 1

n

( N−1∑
k=0

∫ T

0
f (u) du +

∫ nb

na+N T
f (u) du

)

= N

n

∫ T

0
f (u) du + 1

n

∫ nb

na+N T
f (u) du .

D’une part, d’après la définition de N :

b − a

T
− 1

n
<

N

n
� b − a

T
,

donc, par théorème d’encadrement :

N

n
−−−→

n ∞
b − a

T
.

D’autre part :∣∣∣∣ 1

n

∫ nb

na+N T
f (u) du

∣∣∣∣ � 1

n

∫ nb

na+N T
| f (u)| du

� 1

n

∫ na+(N+1)T

na+N T
| f (u)| du = 1

n

∫ T

0
| f (u)| du −−−→

n ∞
0.

On conclut :
∫ b

a
f (nx) dx −−−→

n ∞
b − a

T

∫ b

a
f (u) du.

1) Soit f ∈ E .

On va essayer de minorer || f − ϕ||∞ par une constante conve-
nable.

• On a :∫ 1/2

0
f =

∫ 1/2

0

(
ϕ+ ( f − ϕ)

) =
∫ 1/2

0
ϕ+

∫ 1/2

0
( f − ϕ) .

D’une part :
∫ 1/2

0
( f − ϕ) �

∫ 1/2

0
| f − ϕ| � 1

2
|| f − ϕ||∞.

D’autre part :
∫ 1/2

0
ϕ =

∫ 1/2

0
x dx =

[
x2

2

]1/2

0

= 1

8
.

On a donc :
∫ 1/2

0
f � 1

8
+ 1

2
|| f − ϕ||∞.

• On a :∫ 1

1/2
f =

∫ 1

1/2

(
ϕ+ ( f − ϕ)

) =
∫ 1

1/2
ϕ+

∫ 1

1/2
( f − ϕ) .

D’une part :∫ 1

1/2
( f − ϕ) � −

∫ 1

1/2
| f − ϕ| � −1

2
|| f − ϕ||∞ .

D’autre part :∫ 1

1/2
ϕ =

∫ 1

1/2
x dx =

[
x2

2

]1

1/2

= 1

2
− 1

8
= 3

8
.

On a donc :
∫ 1

1/2
f � 3

8
− 1

2
|| f − ϕ||∞.

On déduit, puisque f ∈ E :

1

8
+ 1

2
|| f − ϕ||∞ �

∫ 1/2

0
f =

∫ 1

1/2
f � 3

8
− 1

2
|| f − ϕ||∞ ,

D’où : || f − ϕ||∞ � 1

4
.

Il en résulte : d(ϕ,F) = Inf
f ∈E

|| f − ϕ||∞ � 1

4
.
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2) Considérons l’application f : [0 ; 1] −→ R définie, pour tout
x ∈ [0 ; 1], par :

f (x) =




x + 1

4
si 0 � x � 1

2

x − 1

4
si

1

2
< x � 1.

On a :

ln cos x

= ln

(
1 − x2

2
+ x4

24
− x6

720
+ o(x6)

)

=
(

− x2

2
+ x4

24
− x6

720

)
− 1

2

(
x4

4
− x6

24

)

+ 1

3

(
− x6

8

)
+ o(x6)

= − x2

2
+

(
1

24
− 1

8

)
x4

+
(

− 1

720
+ 1

48
− 1

24

)
x6 + o(x6)

= − x2

2
− x4

12
− x6

45
+ o(x6),

et :

sin 2x

=
(

x − x3

6
+ x5

120
+ o(x5)

)2

= x2 − x4

3
+

(
1

36
+ 1

60

)
x6 + o(x6)

= x2 − x4

3
+ 2x6

45
+ o(x6).

D’où :
f (x)

= 1

− x2

2
− x4

12
− x6

45
+ o(x6)

+ 2

x2 − x4

3
+ 2x6

45
+ o(x6)

= 2

x2

(
−

(
1 + x2

6
+ 2x4

45
+ o(x6)

)−1

+
(

1 − x2

3
+ 2x4

45
+ o(x4)

)−1)

= 2

x2

(
−

(
1 −

(
x2

6
+ 2x4

4(
+ x4

36

)

+
(

1 +
(

x2

3
− 2x4

45
+ x4

9

)
+ o(x4)

)

= 2

x2

((
1

6
+ 1

3

)
x2 +

(
2

45
− 1

36
− 2

45
+ 1

9

)
+ o(x4)

)

= 2

x2

(
1

2
x2 + 1

12
x4 + o(x4)

)

= 1 + 1

6
x2 + o(x2).
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Il est clair que : f ∈ E,

∫ 1/2

0
f =

∫ 1

1/2
f, || f − ϕ||∞ = 1

4
.

On conclut : d(ϕ,F) = 1

4
.

Si on effectue un DLn(0) (n � 2) de ln cos x , comme 

ln cos x︸ ︷︷ ︸
−→1

∼
x−→0

cos x − 1 ∼
x−→0

− x2

2
,

ce DLn(0) sera de la forme :

ln cos x = − x2

2
+ · · · + an xn + o(xn) ,

d’où :

1

ln cos x
= − 2

x2

(
1 + · · · − 2an xn−2 + o(xn−2)

)−1

= − 2

x2

(
1 + · · · + bn xn−2 + o(xn−2)

)

= − 2

x2
+ · · · − 2bn xn−4 + o(xn−4).

Comme on veut un DL2(0) de f, il faut prendre n de façon que
n − 4 = 2, c’est-à-dire n = 6.

y

x

1

1

3
4

1
2

1
4

1
4

1
2

3
4

y = f(x)
y = ϕ(x)
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• On a, pour tout y ∈ ]0 ;+∞[ fixé, par le changement

de variable z = x

y
:

∫ 1

0

dx

x2 + y2
=

∫ 1
y

0

y dz

y2z2 + y2
= 1

y

∫ 1
y

0

1

1 + z2
dz

= 1

y
[Arctan z]

1
y

0 = 1

y
Arctan

1

y
.

• On déduit :

I (a) =
∫ a

1
a

(∫ 1

0

dx

x2 + y2

)
dy =

∫ a

1
a

1

y
Arctan

1

y
dy .

Mais, par le changement de variable u = 1

y
, qui échange les

bornes, on a :

I (a) =
∫ 1

a

a
u Arctan u

(
− du

u2

)
=

∫ a

1
a

1

u
Arctan u du .

D’où, par addition :

2I (a)

=
∫ a

1
a

1

y
Arctan y dy +

∫ a

1
a

1

y
Arctan

1

y
dy

=
∫ a

1
a

1

y

(
Arctan y + Arctan

1

y

)
dy

=
∫ a

1
a

1

y

π

2
dy = π

2

[
ln y

]a

1
a

=π

2

(
ln a − ln

1

a

)
= π ln a.

On conclut : I (a) = π ln a

2
.

L’application x �−→
√

1 + x − √
1 − x√

1 + x + √
1 − x

, est continue

sur le segment [0 ; 1] , donc son intégrale I existe.

On a, pour tout x ∈ ]0 ; 1], par utilisation d’une expression
conjuguée :

√
1 + x − √

1 − x√
1 + x + √

1 − x
=

(√
1 + x − √

1 − x
)2

(1 + x) − (1 − x)

= 2 − 2
√

1 − x2

2x
= 1 − √

1 − x2

x

= 1 − (1 − x2)

x
(
1 + √

1 − x2
) = x

1 + √
1 − x2

,

et cette dernière expression est aussi valable pour x = 0.

On a donc : I =
∫ 1

0

x

1 + √
1 − x2

dx .

Effectuons le changement de variable y = √
1 − x2 .

On a alors x2 = 1 − y2, x dx = −y dy, d’où :

I =
∫ 0

1

−y dy

1 + y
=

∫ 1

0

y

1 + y
dy =

∫ 1

0

(
1 − 1

1 + y

)
dy

= [
y − ln (1 + y)

]1

0
= 1 − ln 2.

• L’application 

g : ]0 ;+∞[−→ R, t �−→ g(t) = ln(1 + t2)

t

est continue sur ]0 ;+∞[, donc, pour tout x ∈ ]0 ;+∞[, g est
continue sur le segment joignant x et x2 , ce qui montre que l’in-

tégrale f (x) =
∫ x2

x

ln(1 + t2)

t
dt existe.

• Puisque les applications x �−→ x et x �−→ x2 sont de
classe C1 sur ]0 ;+∞[ et à valeurs dans ]0 ;+∞[ et que g est
continue sur ]0 ;+∞[, d’après le cours, f est de classe C1 sur
]0 ;+∞[ et, pour tout x ∈ ]0 ;+∞[ :

f ′(x) = ln(1 + x4)

x2
2x − ln(1 + x2)

x
1

= 1

x

(
2 ln(1 + x4) − ln(1 + x2)

)
.

D’après les théorèmes généraux, cette dernière fonction est de
classe C∞ sur ]0 ;+∞[, donc f est de classe C∞ sur ]0 ;+∞[.

On a, pour tout x ∈ ]0 ;+∞[ :

f ′(x) = 0

⇐⇒ 2 ln (1 + x4) − ln(1 + x2) = 0

⇐⇒ (1 + x4)2 = 1 + x2

⇐⇒ x8 + 2x4 − x2 = 0

⇐⇒ x6 + 2x2 − 1 = 0.

Notons 

P : [0 ;+∞[−→ R, x �−→ P(x) = x6 + 2x2 − 1 .

L’application P est dérivable sur [0 ;+∞[ et :

∀ x ∈ [0 ;+∞[, P ′(x) = 6x5 + 4x

{� 0

> 0 si x > 0.

On dresse le tableau de variation de P :

x 0 +∞
P ′(x) +
P(x) −1 ↗ +∞

Puisque P est continue et strictement croissante sur l’intervalle
[0 ;+∞[, et que l’on a P(0) = −1 < 0 et P(x) −→

x−→+∞
+∞,

d’après le théorème de la bijection réciproque,
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il existe α ∈ [0 ;+∞[ unique tel que l’on ait P(α) = 0 , et on
dispose du signe de P(x) selon la position de x par rapport 
à α.

La calculatrice fournit une valeur approchée de α :

α � 0,673 . . .

On en déduit le signe de f ′(x)et le tableau de variation de f :

x 0   α +∞
f ′(x) − 0   +
f (x) ↘ ↗

La calculatrice fournit une valeur approchée de f (α) :
f (α) � −0,107 . . .

• Étude en 0 :

Comme : ∀ u ∈ [0 ;+∞[, 0 � ln(1 + u) � u,

on a, pour tout x ∈ ]0 ; 1] :

0 � − f (x) =
∫ x

x2

ln(1 + t2)

t
dt �

∫ x

x2
t dt

=
[

t2

2

]x

x2

= x2 − x4

2
.

Il s’ensuit, par le théorème d’encadrement : f (x) −→
x−→0

0.

On peut donc prolonger f en 0 par continuité en posant
f (0) = 0 .

De plus :

f ′(x) = 1

x

(
2 ln(1 + x4) − ln(1 + x2)

)

= 1

x

( − x2 + o
x−→0

(x2)
) = −x + o(x) −→

x−→0
0.

Comme f est continue sur [0 ;+∞[, que f est de classe C1 sur
]0 ;+∞[ et que f ′(x) −→

x−→0
0, d’après le théorème limite de la

dérivée, f est de classe C1 sur [0 ;+∞[et f ′(0) = 0.

• Étude en +∞ :

On a, pour tout x ∈ [1 ;+∞[ :

f (x) =
∫ x2

x

ln(1 + t2)

t
dt =

∫ x2

x

1

t
ln

(
t2

(
1 + 1

t2

))
dt

=
∫ x2

x

1

t

(
2 ln t + ln

(
1 + 1

t2

))
dt

= 2
∫ x2

x

ln t

t
dt

︸ ︷︷ ︸
notée A(x)

+
∫ x2

x

1

t
ln

(
1 + 1

t2

)
dt

︸ ︷︷ ︸
notée B(x)

.

On a :

A(x) = [
(ln t)2

]x2

x
= (

ln (x2)
)2 − ( ln x)2

= 4(ln x)2 − ( ln x)2 = 3(ln x)2.

D’autre part :

0 � B(x) �
∫ x2

x

1

t

1

t2
dt =

∫ x2

x

1

t3
dt

=
[

t−2

−2

]x2

x

= 1

2

(
1

x2
− 1

x4

)
� 1

2x2
,

donc : B(x) = O
x−→+∞

(
1

x2

)
.

Ainsi : f (x) = 3( ln x)2 + O
x−→+∞

(
1

x2

)
.

En particulier : f (x) −→
x−→+∞

+∞ ,

et    
f (x)

x
∼

x−→+∞
3(ln x)2

x
−→

x−→+∞
0.

Ceci montre que la courbe représentative de f admet,
lorsque x −→ +∞, une branche parabolique de direction
asymptotique x ′x .

• Valeurs remarquables :

f (1) = 0 et f ′(1) = ln 2 � 0,693 . . .

• Tracé de la courbe représentative de f :

48

Considérons l’application g : ] − 1 ;+∞[−→ R définie,
pour tout u ∈ ] − 1 ;+∞[, par :

g(u) = f (1 + u) =
∫ 1+u

1

et

t
dt ,

obtenue en notant u = x − 1 dans l’expression de f (x) , de
façon que la variable (u) tende vers 0 lorsque x tend vers 1.

Puisque t �−→ et

t
, est de classe C∞ sur ]0 ;+∞[, d’après le

cours, g est de classe C∞ sur ] − 1 ;+∞[ et :

∀ u ∈ ] − 1 ;+∞[, g′(u) = e1+u

1 + u
.

On va former le DL2(0) de g′, puis primitiver pour obtenir le
DL3(0) de g. On a :

g′(u) = e eu 1

1 + u

= e
(

1 + u + u2

2
+ o(u2)

)(
1 − u + u2 + o(u2)

)

= e

(
1 + u2

2
+ o(u2)

)
= e + e

2
u2 + o(u2) .

y

O

f(α)

α

1 x

y = f(x)

2.28



On déduit, par primitivation, pour une fonction de classe C1

dont la dérivée admet un DL2(0) :

g(u) = g(0) + e u + e

2

u3

3
+ o(u3) .

Et : g(0) =
∫ 1

1

ey t

t
dt = 0.

On conclut :

f (x) = e u + e

6
u3 + o(u3), u = x − 1 −→

x−→1
0 .

On a, pour tout x ∈
]

− π

2
; π

2

[
− {0} :

f (x) = 1

( sin x sh x)2
− 1

(tan x th x)2

= 1

sin 2x sh2x
(1 − cos 2x ch2x).

Pour le dénominateur : sin 2x sh2x ∼
x−→0

x4.

On va chercher un équivalent simple du numérateur.

On remarque :

1 − cos 2x ch2x = (1 − cos x ch x)(1 + cos x ch x)

et : 1 + cos x ch x −→
x−→0

2 =/ 0.

On va chercher un DL4(0) de 1 − cos x ch x , pour en avoir
un équivalent simple :

1 − cos x ch x

= 1 −
(

1 − x2

2
+ x4

24
+ o(x4)

)(
1 + x2

2
+ x4

24
+ o(x4)

)

= 1 −
(

1 − 1

6
x4 + o(x4)

)
= 1

6
x4 + o(x4) .

On a donc : f (x) ∼
x−→0

1

x4

1

6
x4 · 2 = 1

3

et on conclut : f (x) −→
x−→0

1

3
.

• Considérons l’application 

ϕ : R − {−1,1} −→ R, x �−→ ϕ(x) = x − 3

x + 1
.

On a, pour tout x ∈ R − {−1,1} :

ϕ(x) = 1 ⇐⇒ x − 3

x + 1
= 1 ⇐⇒ 4 = 0 ,

impossible, et, d’autre part :

ϕ(x) = −1 ⇐⇒ x − 3

x + 1
= −1

⇐⇒ x − 3 = −x − 1 ⇐⇒ x = 1,

impossible.

Ainsi : ∀ x ∈ R − {−1,1}, ϕ(x) ∈ R − {−1,1}.

On peut donc considérer l’application, encore notée ϕ, de
R − {−1,1} dans lui-même, définie par :

∀ x ∈ R − {−1,1}, ϕ(x) = x − 3

x + 1
.

Calculons, pour tout x ∈ R − {−1,1}, les itérées de ϕ en x, pour
la loi de composition, notées ϕ[2](x),ϕ[3](x),. . . :

ϕ
[2](x) = ϕ

(
ϕ(x)

)

= ϕ(x) − 3

ϕ(x) + 1
=

x − 3

x + 1
− 3

x − 3

x + 1
+ 1

= −2x − 6

2x − 2
= 3 + x

1 − x
,

ϕ
[3](x) = ϕ

(
ϕ

[2](x)
)

= ϕ[2](x) − 3

ϕ[2](x) + 1
=

3 + x

x − 1
− 3

3 + x

x − 1
+ 1

= 4x

4
= x .

• 1) Soit f convenant.

On a donc :

∀ x ∈ R − {−1,1}, f
(
ϕ(x)

) + f
(
ϕ

[2](x)
) = x .

Appliquons ceci à x , ϕ(x), à ϕ[2](x) :


f
(
ϕ(x)

) + f
(
ϕ[2](x)

) = x E1

f
(
ϕ[2](x) + f (x) = ϕ(x) E2

f (x) + f
(
ϕ(x)

) = ϕ[2](x) E3.

En effectuant E2 + E3 − E1, on élimine f
(
ϕ(x)

)
et f

(
ϕ[2](x)

)
,

et on obtient f (x) , d’où :

f (x) = 1

2

(
ϕ(x) + ϕ

[2](x) − x

)

= 1

2

(
x − 3

x + 1
+ 3 + x

1 − x
− x

)
= 1

2

x3 + 7x

1 − x2
.

2) Réciproquement, un calcul direct (un peu long sans logiciel
de calcul formel) montre que l’application f trouvée en 1)
convient.

On conclut qu’il y a une application f et une seule conve-
nant :

f : R − {−1,1} −→ R, x �−→ f (x) = 1

2

x3 + 7x

1 − x2
.

a) Considérons 

g : R −→ R, x �−→ f (x + a) − f (x) .

On a, d’après l’hypothèse de l’énoncé :

∀ x ∈ R, g(x + b) = f (x + a + b) − f (x + b)

= f (x + a) − f (x) = g(x),

donc g est b-périodique.
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On a alors, pour tout n ∈ N et tout x ∈ R :



f (x + a) − f (x) = g(x)

f (x + a + b) − f (x + b) = g(x + b) = g(x)

...

f (x + a + nb) − f
(
x + a + (n − 1)b

) = g(x)

d’où, par sommation et télescopage :

f (x + a + nb) − f (x) = ng(x) .

On déduit, puisque f est bornée, pour tout x ∈ R :

|g(x)| =
∣∣ f (x + a + nb) − f (x)

∣∣
n

� 2|| f ||∞
n

−−−→
n ∞

0 ,

donc : ∀ x ∈ R, g(x) = 0,

c’est-à-dire : ∀ x ∈ R, f (x + a) = f (x).

Ceci montre que f est a-périodique.

Par rôles symétriques dans les hypothèses, on conclut que f est
aussi b-périodique.

b) L’application f vérifie les hypothèses de a), puisqu’elle est

bornée, avec a = 1

6
, b = 1

7
, a + b = 13

42
.

D’après a), on déduit que f est 
1

6
-périodique et que f est 

1

7
-

périodique. Comme 
1

42
= 1

6
− 1

7
, il en résulte que f est 

1

42
-

périodique, l’ensemble des périodes de f formant, d’après le
cours, un sous-groupe additif de R.

a) 1) Supposons |u| dérivable sur I.

Soit x ∈ I tel que u(x) = 0.

On a :
|u|(x + h) − |u|(x)

h
−→
h−→0

|u|′(x),

et :

|u|(x + h) − |u|(x)

h
= |u(x + h)|

h
=

∣∣u(x + h) − u(x)
∣∣

h

= sgn (h)

∣∣∣∣u(x + h) − u(x)

h

∣∣∣∣



−→
h−→0+

|u′(x)|

−→
h−→0−

−|u′(x)|.
On a donc |u′(x)| = −|u′(x)|, d’où u′(x) = 0.

Ceci montre : ∀ x ∈ I,
(
u(x) = 0 �⇒ u′(x) = 0

)
.

2) Réciproquement, supposons :

∀ x ∈ I,
(
u(x) = 0 �⇒ u′(x) = 0

)
.

Soit x ∈ I.

* Si u(x) > 0, alors, comme u est continue en x (car dérivable
en x), au voisinage de x, |u| coïncide avec u, donc |u| est dé-
rivable en x.

* Si u(x) < 0, alors de même, au voisinage de x , |u| coïncide
avec −u, donc |u| est dérivable en x .

* Si u(x) = 0, alors, par hypothèse, u′(x) = 0, donc :∣∣∣∣ |u|(x + h) − |u|(x)

h

∣∣∣ = |u(x + h)|
|h|

=
∣∣∣∣u(x + h) − u(x)

h

∣∣∣∣ −→
h−→0

|u′(x)| = 0,

donc :
|u|(x + h) − |u|(x)

h
−→
x−→0

0,

ce qui montre que |u| est dérivable en x , et que de plus
|u|′(x) = 0.

On conclut que |u| est dérivable en x , pour tout x ∈ I , donc
|u| est dérivable sur I.

b) On a, pour tout x ∈ I :

ϕ(x) = Max
(

f (x), g(x)
)

= 1

2

(
f (x) + g(x) + | f (x) − g(x)|) .

Comme f et g sont dérivables sur I, il s’ensuit que ϕ est déri-
vable sur I si et seulement si | f − g| l’est.

En appliquant le résultat de a) à f − g à la place de u, on conclut
que ϕ est dérivable sur I si et seulement si :

∀ x ∈ I,
(

f (x) = g(x) �⇒ f ′(x) = g′(x)
)

.

D’après l’hypothèse, on a, pour tout x ∈ [a ;+∞[ :

f ′(x) f (x) � | f ′(x)| | f (x)| � λ| f (x)|2 = λ
(

f (x)
)2

.

Considérons l’application 

g : [a ;+∞[−→ R, x �−→ g(x) = e−2λx
(

f (x)
)2

.

Puisque f est dérivable sur [a ;+∞[ , g l’est aussi, et, pour tout
x ∈ [a ;+∞[ :

g′(x) = 2e−2λx
(

f ′(x) f (x) − λ
(

f (x)
)2) � 0 .

Il en résulte que g est décroissante sur [a ;+∞[ .

Mais il est clair, par sa définition, que g � 0 , et on a

g(a) = e−2λa
(

f (a)
)2 = 0 .

Il en résulte g = 0, puis f 2 = 0 et donc f = 0.

a) • Soit f ∈ E .

On a, d’après l’inégalité de Cauchy et Schwarz :(∫ 1

0
f ′

)2

�
(∫ 1

0
12

)(∫ 1

0
f ′2

)
.

Mais :
∫ 1

0
f ′ = f (1) − f (0) = λ.

On a donc :
∫ 1

0
f ′2 � λ

2.
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• Considérons l’application particulière :

f0 : [0 ; 1] −→ R, t �−→ λt .

On a f0 ∈ E et :
∫ 1

0
f ′2
0 =

∫ 1

0
λ

2 = λ
2.

On conclut : Inf
f ∈E

∫ 1

0
f ′2 = λ

2,

et cette borne inférieure est atteinte (au moins) pour l’appli-
cation f0 définie plus haut.

b) Considérons, pour tout n ∈ N
∗ :

fn : [0 ; 1] −→ R, x �−→ λxn .

Il est clair que : ∀ n ∈ N
∗, fn ∈ E .

Et on a :

∫ 1

0
f 2
n =

∫ 1

0
λ

2x2n dx = λ
2

[
x2n+1

2n + 1

]1

0

= λ
2

2n + 1
−−−→

n ∞
0 .

On conclut : Inf
f ∈E

∫ 1

0
f 2 = 0.

a) Soit n ∈ N
∗ . Considérons l’application 

fn : [0 ;+∞[−→ R, x �−→
( n∑

k=1

√
1 + x

k

)
− 2n .

L’application fn est dérivable (donc continue) sur [0 ;+∞[

et : ∀ x ∈ [0 ;+∞[, fn(x) =
n∑

k=1

1

k

2

√
1 + x

k

> 0,

donc fn est strictement croissante sur [0 ;+∞[.

De plus : fn(0) = n − 2n = −n < 0 et fn(x) −→
x−→+∞

+∞ .

D’après le théorème de la bijection monotone, il existe donc
xn ∈ [0 ;+∞[ unique tel que fn(xn) = 0 .

b) On sait : ∀ (a,b) ∈ (R+)2,
√

a + b � √
a +

√
b

(ce que l’on peut redémontrer en développant les carrés).

On a donc, pour tout n ∈ N
∗ :

2n =
n∑

k=1

√
1 + xn

k
�

n∑
k=1

(
1 +

√
xn

k

)
= n + √

xn

n∑
k=1

1√
k

.

Évaluons 
n∑

k=1

1√
k

, par comparaison d’une somme à une inté-

grale.

L’application x �−→ 1√
x

, est continue et décroissante sur

[1 ;+∞[, donc :
n∑

k=1

1√
k

� 1 +
∫ n

1

1√
t

dt

= 1 + [2
√

t]n
1 = 1 + 2(

√
n − 1) = 2

√
n − 1 � 2

√
n.

On déduit : 2n � n + √
xn2

√
n,

donc 
√

xn �
√

n

2
, puis xn � n

4
.

On conclut : xn −−−→
n ∞

+ ∞.

Remarquons d’abord que, dans les conditions de 

l’énoncé : 0 � k

n2
� n

n2
= 1

n
−−−→

n ∞
0,

et que, d’autre part :

(
1 + k

n2

)n

= exp

(
n ln

(
1 + k

n2

))
.

• Montrons : ∀ x ∈ [0 ;+∞[, x − x2

2
� ln(1 + x) � x .

Soit x ∈ [0 ;+∞[. En appliquant la formule de Taylor avec reste
intégral à ϕ : t �−→ ln(1 + t) sur [0 ; x], on a :

ϕ(x) = ϕ(0) + ϕ
′(0)x +

∫ x

0

(x − t)

1!
ϕ

′′(t) dt ,

c’est-à-dire : ln (1 + x) = x −
∫ x

0
(x − t)

1

(1 + t)2
dt.

Mais :

0 �
∫ x

0

x − t

(1 + t)2
dt �

∫ x

0
(x − t) dt

=
[

− (x − t)2

2

]x

0

= x2

2
.

On a donc : x − x2

2
� ln(1 + x) � x .

• Soit n ∈ N
∗ .

Appliquons le résultat précédent à 
k

n2
à la place de x , pour tout

k ∈ {1,. . . ,n} :

k

n2
− k2

2n4
� ln

(
1 + k

n2

)
� k

n2
,

d’où :
k

n2
− 1

2n2
� ln

(
1 + k

n2

)
� k

n2
,

donc, en multipliant par n

k

n
− 1

2n
� n ln

(
1 + k

n2

)
� k

n
,

puis, en passant aux exponentielles :

e
k
n e− 1

2n �
(

1 + k

n2

)n

� e
k
n .

On déduit, en sommant pour k allant de 1 à n, puis en divisant
par n :

e− 1
2n

1

n

n∑
k=1

e
k
n � 1

n

n∑
k=1

(
1 + k

n2

)n

� 1

n

n∑
k=1

e
k
n .

51

2.35

2.36



On a, par sommation géométrique :

n∑
k=1

e
k
n =

n∑
k=1

(
e

1
n
)k = e

1
n

(
e

1
n
)n − 1

e
1
n − 1

= e
1
n

e − 1

e
1
n − 1

,

puis, comme e
1
n − 1 ∼

n∞
1

n
:

1

n

n∑
k=1

e
k
n = e

1
n (e − 1)

1

n
e

1
n − 1

−−−→
n ∞

e − 1 .

On conclut, par le théorème d’encadrement :

1

n

n∑
k=1

(
1 + k

n2

)n

−−−→
n ∞

e − 1 .

Considérons 

g : [0 ; 1] −→ R, x �−→ g(x) = a + b
∫ x

0
f (t) dt .

Puisque f est continue sur [0 ; 1] , g est de classe C1 sur [0 ; 1]
et : ∀ x ∈ [0 ; 1], g′(x) = bf (x).

De plus, d’après l’hypothèse de l’énoncé :

∀ x ∈ [0 ; 1], g(x) � a > 0 .

On déduit : ∀ x ∈ [0 ; 1], g′(x) � b
√

g(x),

puis : ∀ x ∈ [0 ; 1],
g′(x)

2
√

g(x)
� b

2
.

En intégrant sur [0 ; x], pour tout x ∈ [0 ; 1] :∫ x

0

g′(t)
2
√

g(t)
dt =

[√
g(t)

]x

0

=
√

g(x) −
√

g(0) =
√

g(x) − √
a.

On a donc :
√

g(x) − √
a �

∫ x

0

b

2
dt = bx

2
,

d’où : g(x) �
(√

a + bx

2

)2

,

c’est-à-dire :

a + b
∫ x

0
f (t) dt = g(x) � a + √

a bx + b2

4
x2 ,

et on conclut :
∫ x

0
f (t) dt � √

a x + b

4
x2.

a) Puisque f ′(0) = 1 > 0 et que f ′ est continue en 0, il
existe η > 0 tel que : ∀ x ∈ ] − η ; η[, f ′(x) > 0,

donc f est strictement croissante sur ] − η ; η[ .

Notons U = ] − η ; η[ et V = f (U) = ] − f (η) ; f (η)[ .
Puisque f (0) = 0 , on a alors f (−η) < 0 < f (η) .

Enfin, puisque f est continue et strictement croissante sur l’in-
tervalle U, d’après le théorème de la bijection monotone, f réa-
lise une bijection de U sur V.

b) 1) Supposons que f −1 admette un DL3(0) :

f −1(y) = α+ βy + γy2 + δy3 + o
y−→0

(y3) .

On a alors α = f −1(0) , et, puisque f −1 est dérivable en 0,

d’après le cours, β = ( f −1)′(0). Mais f (0) = 0 et f ′(0) = 1,

donc f −1(0) = 0 et 

( f −1)′(0) = 1

f ′( f −1(0)
) = 1

f ′(0)
= 1

1
= 1 .

Le DL3(0) de f −1 est donc de la forme :

f −1(y) = y + γy2 + δy3 + o(y3) .

On a, pour x ∈ U :

x = f −1
(

f (x)
)

= f −1
(
x + ax2 + bx3 + o(x3)

)
= (x + ax2 + bx3) + γ(x + ax2 + bx3)2

+ δ(x + ax2 + bx3)3 + o(x3)

= (x + ax2 + bx3) + γ(x2 + 2ax3) + δx3 + o(x3)

= x + (a + γ)x2 + (b + 2γa + δ)x3 + o(x3).

Par unicité du DL3(0) de x �−→ x, on déduit :
{

a + γ = 0

b + 2γa + δ = 0
d’où :

{
γ = −a

δ = 2a2 − b.

2) Réciproquement, montrons que la valeur obtenue ci-dessus
pour (γ,δ) convient, c’est-à-dire montrons :

f −1(y) = y − ay2 + (2a2 − b)y3 + o(y3) .

Notons x = f −1(y) , de sorte que y = f (x) et x −→
y−→0

0 . 

On a :

f −1(y) − (
y − ay2 + (2a2 − b)y3

)
= x − (

(x + ax2 + bx3) − a(x + ax2 + bx3)2

+ (2a2 − b)(x + ax2 + bx3)3 + o(x3)
)

= x − (
(x + ax2 + bx3) − a(x2 + 2ax3)

+ (2a2 − b)x3 + o(x3)
)

= o(x3) = o(y3), car x ∼
y−→0

y.

On conclut que f −1 admet un DL3(0) et que :

f −1(y) = y − ay2 + (2a2 − b)y3 + o
y−→0

(y3) .
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Considérons, pour tout n ∈ N
∗ :

vn =
n∑

k=1

1
k

n

= n
n∑

k=1

1

k
.

• On sait, par comparaison somme/intégrale (cf, par exemple,

exercice 2.8) :
n∑

k=1

1

k
∼
n∞

ln n,

donc : vn ∼
n∞

n ln n .

• Notons, pour tout n ∈ N
∗ :

wn = un − vn =
n∑

k=1

(
1

ln

(
1 + k

n

) − 1
k

n

)
.

Considérons l’application 

ϕ : ]0 ; 1] −→ R, x �−→ ϕ(x) = 1

ln(1 + x)
− 1

x
.

On a, au voisinage de 0 pour la variable x :

ϕ(x) = x − ln(1 + x)

x ln (1 + x)
=

x −
(

x − x2

2
+ o(x2)

)

x ln (1 + x)

=
x2

2
+ o(x2)

x2 + o(x2)
= 1

2
+ o(1) −→

x−→0

1

2
.

On peut donc compléter ϕ par continuité en 0, en posant

ϕ(0) = 1

2
. L’application ϕ : [0 ; 1] −→ R ainsi construite est

continue sur le segment [0 ; 1] , donc, d’après un théorème du
cours, ϕ est bornée. Il existe donc M ∈ R+ tel que :

∀ x ∈ [0 ; 1], |ϕ(x)| � M.

On a alors : ∀ n ∈ N
∗, ∀ k ∈ {1,. . . ,n},

∣∣∣∣ϕ
(

k

n

)∣∣∣∣ � M,

d’où, en sommant pour k allant de 1 à n :

∀ n ∈ N
∗, |wn| =

∣∣∣∣
n∑

k=1

ϕ

(
k

n

)∣∣∣∣ �
n∑

k=1

∣∣∣∣ϕ
(

k

n

)∣∣∣∣ � Mn .

Ceci montre : un − vn = O
n∞

(n) .

On obtient : un = vn + O(n) et vn ∼ n ln n, donc :

un ∼
n∞

n ln n .

a) Supposons qu’il existe f convenant.

On a alors, pour tout x ∈ R :

f (x) = f
(
sh (Argsh x)

) = ch
(

f (Argsh x)
) ∈ R+ ,

contradiction, puisque, par exemple, f n’atteint pas −1.

On conclut qu’il n’existe pas de f convenant.

b) Supposons qu’il existe f convenant.

• * Soit t ∈ [−1 ; 1] . Notons x = Arcsin t . On a :

f (t) = f ( sin x) = cos
(

f (x)
) ∈ [−1 ; 1] .

* Réciproquement, soit u ∈ [−1 ; 1]. Notons y = Arccos u .
Puisque f est bijective, il existe x ∈ R tel que y = f (x) . 

On a alors : u = cos y = cos
(

f (x)
) = f ( sin x).

Comme sin x ∈ [−1 ; 1], ceci montre :

∀ u ∈ [−1 ; 1], ∃ v ∈ [−1 ; 1], u = f (v) .

Ceci établit que f réalise une bijection de [−1 ; 1] sur [−1 ; 1] .
Comme f est continue, d’après un exercice classique, f est stric-
tement monotone.

En particulier :

{
f (−1) = −1

f (1) = 1
ou 

{
f (−1) = 1

f (1) = −1.

Il existe donc ε ∈ {−1,1} tel que :

f (−1) = −ε et f (1) = ε .

• On a : f ( sin 1) = cos
(

f (1)
) = cos ε et :

f (− sin 1) = f
(

sin (−1)
) = cos

(
f (−1)

)
= cos (−ε) = cos ε ,

donc : f ( sin 1) = f (− sin 1).

Comme f est injective, il s’ensuit sin 1 = − sin 1 , d’où
sin 1 = 0, contradiction.

On conclut qu’il n’existe pas de f convenant.

Notons E = {
(x,y) ∈ [0 ; 1]2 ; |x − y| � a

}
.

• Montrons que E est compact.
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Considérons l’application 

ϕ : R
2 −→ R, (x,y) �−→ |x − y| .

On a donc : E = ϕ−1([a ;+∞[) .

Ainsi, E est l’image réciproque du fermé [a ;+∞[ par l’ap-
plication continue ϕ, donc E est fermé dans R2, ce qui se voit
aussi sur le schéma.

2.41

y

x

E

E

a

a

1

1O



D’autre part, E est borné, puisque E ⊂ [0 ; 1]2 .

Ainsi, E est une partie fermée bornée de R2, qui est un R-es-
pace vectoriel normé de dimension finie, donc E est compact.

• Considérons d’autre part l’application 

F : E −→ R, (x,y) �−→ F(x,y) =
∣∣∣∣ f (x) − f (y)

x − y

∣∣∣∣ .

L’application F est définie et continue sur E , puisque le dé-
nominateur x − y ne s’annule pas.

Puisque F est continue sur le compact E et est à valeurs 
dans R, d’après le cours, F est bornée et atteint ses bornes.

Notons C = Sup
(x,y)∈E

F(x,y) ∈ R+.

Il existe (x0,y0) ∈ E tel que : C = F(x0,y0) < 1.

On conclut :

∃ C ∈ [0 ; 1[, ∀ (x,y) ∈ [0 ; 1]2,(|x − y| � a �⇒ | f (x) − f (y)| � C|x − y|).

• Soit (x,y) ∈ R
2.

On a, pour tout t ∈ [a ; b], en utilisant l’inégalité triangulaire
renversée, puis l’inégalité triangulaire :∣∣∣∣
∣∣∣∣

n∑
i=0

xi fi (t)

∣∣∣∣ −
∣∣∣∣

n∑
i=0

yi fi (t)

∣∣∣∣
∣∣∣∣

�
∣∣∣∣

n∑
i=1

xi fi (t) −
n∑

i=1

yi fi (t)

∣∣∣∣ =
∣∣∣∣

n∑
i=1

(xi − yi ) fi (t)

∣∣∣∣
=

∣∣∣∣
n∑

i=1

(xi − yi ) fi (t)

∣∣∣∣ �
n∑

i=1

|xi − yi | | fi (t)|

�
n∑

i=1

|xi − yi | || fi ||∞.

• Soit A ∈ R+ .

On a, pour tout (x,y) ∈ [−A ; A]2 :

∀ i ∈ {1,. . . ,n}, |xi − yi | =
∣∣∣∣(x − y)

i−1∑
k=0

xk yi−1−k

∣∣∣∣
� |x − y|

i−1∑
k=0

|x |k |y|i−1−k � |x − y|i Ai−1,

d’où, en sommant :
n∑

i=1

|xi − yi | || fi ||∞ � |x − y|
n∑

i=1

|| fi ||∞i A−1

︸ ︷︷ ︸
noté M

.

On obtient, pour tout (x,y) ∈ [−A ; A]2 :∣∣∣∣
∣∣∣∣

n∑
i=0

xi fi (t)

∣∣∣∣ −
∣∣∣∣

n∑
i=0

yi fi (t)

∣∣∣∣
∣∣∣∣ � M|x − y| ,

et donc :

∣∣∣∣
n∑

i=0

xi fi (t)

∣∣∣∣ �
∣∣∣∣

n∑
i=0

yi fi (t)

∣∣∣∣ + M|x − y|.

En passant aux bornes supérieures lorsque t décrit [a ; b],
on déduit : g(x) � g(y) + M|x − y|,
d’où : g(x) − g(y) � M|x − y|.
En appliquant ceci à (y,x) à la place de (x,y), on a aussi :

g(y) − g(x) � M|x − y| ,

et donc : |g(x) − g(y)| � M|x − y|.
On a a montré :

∀ A ∈ R+, ∃ M ∈ R+, ∀ (x,y) ∈ [−A ; A]2,

|g(x) − g(y)| � M|x − y|.
Ainsi, g est M -lipschitzienne sur [−A ; A] , donc g est conti-
nue sur [−A ; A].

Puisque g est continue sur [−A ; A] pour tout A ∈ R+, on
conclut que g est continue sur R .

Pour tout n ∈ N
∗ , notons :

In =
∫ 1

0
n2(xn − xn+1) f (x) dx

et considérons : Jn =
∫ 1

0
n2(xn − xn+1) f (1) dx .

1) On calcule Jn, pour tout n ∈ N
∗ :

Jn = n2

[
xn+1

n + 1
− xn+2

n + 2

]1

0

f (1)

= n2

(
1

n + 1
− 1

n + 2

)
f (1) = n2

(n + 1)(n + 2)
f (1).

On a donc : Jn −−−→
n ∞

f (1).

D’autre part, pour tout n ∈ N
∗ :

|In − Jn| =
∣∣∣
∫ 1

0
n2(xn − xn+1)

(
f (x) − f (1)

)
dx

∣∣∣
�

∫ 1

0
n2(xn − xn+1)

∣∣ f (x) − f (1)
∣∣ dx .

Soit ε > 0 fixé.

• Puisque f est continue en 1, il existe η > 0 tel que :

∀ x ∈ [1 − η ; 1],
∣∣ f (x) − f (1)

∣∣ � ε .

On a alors, pour tout n ∈ N
∗ :

∫ 1

1−η

n2(xn − xn+1)
∣∣ f (x) − f (1)

∣∣ dx

� ε

∫ 1

1−η
n2(xn − xn+1) dx � ε

∫ 1

0
n2(xn − xn+1) dx

= ε
n2

(n + 1)(n + 2)
� ε.

• D’autre part, puisque f est continue sur le segment 
[0 ; 1], d’après le théorème fondamental, f est bornée, d’où, pour
n ∈ N

∗ :
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∫ 1−η

0
n2(xn − xn+1)

∣∣ f (x) − f (1)
∣∣ dx

�
∫ 1−η

0
n2(xn − xn+1)2|| f ||∞ dx

�
∫ 1−η

0
n2xn2|| f ||∞ dx

= 2n2|| f ||∞
[ xn+1

n + 1

]1−η

0

= 2n2|| f ||∞(1 − η)n+1

n + 1
−−→

n ∞
0,

par prépondérance classique.

Il existe donc N ∈ N tel que :

∀ n � N ,

∫ 1−η

0
n2(xn − xn+1)

∣∣ f (x) − f (1)
∣∣ dx � ε .

On a donc, par addition :

∀ n � N ,

∫ 1

0
n2(xn − xn+1)

∣∣ f (x) − f (1)
∣∣ dx � 2ε .

Ceci montre : In − Jn −−−→
n ∞

0.

Enfin : In = (In − Jn) + Jn −−−→
n ∞

0 + f (1) = f (1).

Considérons, pour tout n ∈ N tel que n � 2 :

Jn =
∫ 1

0
2xn−1ln(1 + xn) dx ,

qui ressemble à In et semble plus accessible à un calcul.

• On a, pour tout n ∈ N tel que n � 2 :

|In − Jn|

=
∣∣∣∣
∫ 1

0

(
xn − 2xn−1 + xn−2

)
ln (1 + xn) dx

∣∣∣∣
=

∣∣∣∣
∫ 1

0
xn−2(x − 1)2 ln (1 + xn) dx

∣∣∣∣
=

∫ 1

0
xn−2(x − 1)2 ln (1 + xn) dx

�
∫ 1

0
xn−2(x − 1)2 ln 2 dx

= ln 2
∫ 1

0

(
xn − 2xn−1 + xn−2

)
dx

= ln 2

[
xn+1

n + 1
− 2

xn

n
+ xn−1

n − 1

]1

0

= ln 2

(
1

n + 1
− 2

n
+ 1

n − 1

)

= 2 ln 2

(n − 1)n(n + 1)
,

donc : In − Jn = O
n∞

(
1

n3

)
.

• D’autre part, pour tout n � 2 :

Jn =
∫ 1

0
2xn−1 ln (1 + xn) dx

=
u=xn

∫ 1

0

2

n
u ln (1 + u) du

=
ipp

1

n

([
u2 ln (1 + u)

]1

0
−

∫ 1

0
u2 1

1 + u
du

)

= 1

n

(
ln 2 −

∫ 1

0

(
u − 1 + 1

1 + u

)
du

)

= 1

n

(
ln 2 −

[
u2

2
− u + ln (1 + u)

]1

0

)

= 1

n

(
ln 2 −

(
1

2
− 1 + ln 2

))
= 1

2n
.

On conclut : In = Jn + (In − Jn) = 1

2n
+ O

n∞

(
1

n3

)
.

a) Le polynôme Pn est dérivable sur R et s’annule en
0,1,. . . ,n , donc, d’après le théorème de Rolle, P ′

n s’annule en

au moins n points x1,. . . ,xn tels que :

0 < x1 < 1 < . . . < xn < n .

Comme deg (P ′
n) = n , on a là tous les zéros de P ′

n.

En particulier, il existe un ∈ ]0 ; 1[ unique (c’est le x1 dans les
notations précédentes) tel que P ′

n(un) = 0.

b) On a, puisque Pn =
n∏

k=0

(X − k) :

P ′
n

Pn
=

n∑
k=0

1

X − k
,

d’où :
n∑

k=0

1

k − un
= −

(
P ′

n

Pn

)
(un) = − P ′

n(un)

Pn(un)
= 0.

c) Isolons, dans le résultat précédent, le terme d’indice 0 :

1

un
=

n∑
k=1

1

k − un
�

n∑
k=1

1

k
.

D’autre part, par comparaison somme/intégrale, puisque l’ap-

plication x �−→ 1

x
, est décroissante et continue, on montre 

(cf. aussi l’exercice 2.8) :
n∑

k=1

1

k
∼
n∞

ln n.

D’où :
1

un
−−−→

n ∞
+ ∞, et donc : un −−−→

n ∞
0.

d) Reprenons l’étude précédente, en isolant aussi le terme d’in-
dice 1 :
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n∑
k=1

1

k
� 1

un
=

n∑
k=1

1

k − un
= 1

1 − un
+

n∑
k=2

1

k − un

� 1

1 − un
+

n∑
k=2

1

k − 1
= 1

1 − un
+

n−1∑
k=1

1

k
.

On a :
n−1∑
k=1

1

k
∼
n∞

ln(n − 1) = ln n + ln

(
1 − 1

n

)
∼
n∞

ln n.

Enfin :
1

1 − un
−−−→

n ∞
1, car un −−−→

n ∞
0.

On obtient, par encadrement :
1

un
∼
n∞

ln n ,

et on conclut : un ∼
n∞

1

ln n
.

a) • Une récurrence immédiate montre que, pour tout
n ∈ N

∗ , un existe et un � 0 .

• On a : ∀ n ∈ N
∗, 0 � un+1 = un

n
+ 1

n2
� un + 1,

ou encore, par décalage d’indice, pour tout n � 2 :

un � un−1 + 1 .

On a, en réitérant :

un � un−1 + 1

un−1 � un−2 + 1

...

u2 � u1 + 1,

d’où, en sommant et en simplifiant :

un � u1 + (n − 1) .

On reporte alors cette inégalité dans la définition de la suite :

∀ n � 2, 0 � un+1 = un

n
+ 1

n2
� u1 + (n − 1)

n
+ 1

n2

� u1 + 1 − 1

n
+ 1

n2
� u1 + 1 .

Il en résulte que la suite (un)n�1 est bornée.

• Il existe donc M ∈ R+ tel que : ∀ n � 1, un � M.

D’où, en reportant dans la définition de la suite :

0 � un+1 = un

n
+ 1

n2
� M

n
+ 1

n2
� M

n
+ 1

n
= M + 1

n
,

et donc, par décalage : ∀ n � 2, un � M + 1

n − 1
.

On déduit, en reportant encore :

0 � un+1 = un

n
+ 1

n2
� M + 1

n(n − 1)
+ 1

n2
,

ce qui montre : un = O
n∞

(
1

n2

)
.

Alors : un+1 = un

n
+ 1

n2
= O

(
1

n3

)
+ 1

n2
∼
n∞

1

n2
,

puis, par décalage d’indice : un ∼
n∞

1

(n − 1)2
∼
n∞

1

n2
.

b) On a :

un+1 = un

n
+ 1

n2

= 1

n

(
1

n2
+ o

(
1

n2

))
+ 1

n2

= 1

n2
+ 1

n3
+ o

(
1

n3

)
,

d’où, par décalage d’indice :

un = 1

(n − 1)2
+ 1

(n − 1)3
+ o

(
1

(n − 1)3

)

= 1

n2

(
1 − 1

n

)−2

+ 1

n3

(
1 − 1

n

)−3

+ o

(
1

n3

)

= 1

n2

(
1 + 2

n
+ o

(
1

n

))
+ 1

n3
+ o

(
1

n3

)

= 1

n2
+ 3

n3
+ o

(
1

n3

)
.
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57

3CHAPITRE 3Intégration sur un
intervalle quelconque

Thèmes abordés dans les exercices
• Intégrabilité ou non-intégrabilité d’une application f : I −→ C, où I est un

intervalle quelconque

• Existence et calcul d’intégrales sur un intervalle quelconque 

• Pour une intégrale dépendant d’un paramètre, détermination de la limite, d’un
équivalent simple, d’un développement asymptotique

• Détermination de la nature d’une intégrale impropre

• Étude de la continuité et de la classe pour une fonction définie par une inté-
grale dépendant d’un paramètre

• Calcul de certaines intégrales dépendant d’un paramètre

• Étude et représentation graphique d’une fonction définie par une intégrale
dépendant d’une paramètre

Points essentiels du cours 
pour la résolution des exercices
• Définition et propriétés de l’intégrabilité sur un intervalle quelconque, pour les

fonctions à valeurs dans R+, pour les fonctions à valeurs dans C. En particu-
lier, le théorème de majoration, le théorème d’équivalence, les exemples de
Riemann en +∞, en 0, en a, a ∈ R, les règles xα f (x) en +∞ et en 0, les
exemples du cours sur le logarithme et l’exponentielle

• Les inégalités sur les intégrales de fonctions intégrables

• La relation de Chasles

• Le changement de variable pour des intégrales sur un intervalle quelconque
• La définition de la convergence et de la divergence pour les intégrales

impropres, et l’exemple classique 
∫ →+∞

1

sin x

x
dx

• Les théorèmes de continuité et de dérivation sous le signe intégrale, avec hypo-
thèse de domination ou hypothèse de domination locale

Les méthodes à retenir 58

Énoncés des exercices 60

Du mal à démarrer ? 68

Corrigés 74
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Les méthodes à retenir

S’assurer d’abord que f est continue par morceaux sur I .
• Le plus souvent, procéder pour | f | à une étude locale en b, par uti-

lisation du théorème de majoration ou de minoration, du théorème
d’équivalence, de la règle xα f (x) ou d’une règle analogue, par com-
paraison à l’exemple de Riemann ou à un exemple du cours.

➥ Exercices 3.1 a) à f), 3.7, 3.9, 3.10 a), 3.11 a),
3.12, 3.13 a), 3.20 a), 3.28, 3.41, 3.48 a)

• S’il existe g : I −→ R , continue par morceaux, � 0, intégrable
sur I , telle que | f | � g , alors f est intégrable sur I , sans que l’on ait
besoin d’effectuer une étude locale en une extrémité de I .

➥ Exercices 3.2, 3.36, 3.39.

S’assurer que f est continue par morceaux sur I .
• Le plus souvent, procéder pour | f | à une étude locale en a et à une

étude locale en b. Par définition, f est intégrable sur ]a ; b[ si et seu-
lement s’il existe c ∈ ]a ; b[ tel que f soit intégrable sur ]a ; c] et sur
[c ; b[.

➥ Exercices 3.1 g) à i), 3.13 b) à d), 3.14, 3.16 b, f)

• S’il existe g : I −→ R , continue par morceaux, � 0, intégrable 
sur I , telle que | f | � g , alors f est intégrable sur I , sans que l’on ait
besoin d’effectuer des études locales en les extrémités de I .

➥ Exercices 3.5, 3.6, 3.16 a), 3.21 a).

En règle générale, séparer l’existence et le calcul.
• Pour l’existence, voir les méthodes ci-dessus. Le plus souvent, un

argument qualitatif (comparaison avec des fonctions usuelles) per-
met de montrer l’intégrabilité.

• Pour le calcul, dans les cas simples, passer par un calcul de primi-
tives.

Un changement de variable peut être fait directement.
Mais, pour une intégration par parties, on procèdera d’abord sur un
segment, puis on fera tendre une borne vers la valeur indiquée.

➥ Exercices 3.3 a) à e), 3.4, 3.8,
3.13, 3.16 c) à f), 3.17, 3.26, 3.34

• Dans certains exemples, un changement de variable qui échange les
bornes permet de calculer l’intégrale ou de se ramener à une autre
intégrale.

➥ Exercices 3.14, 3.15, 3.16 a), b), 3.34, 3.36, 3.37. 

Pour étudier l’intégrabilité
d’une application f : I −→ C,
où I est un intervalle semi-ouvert,
par exemple fermé à gauche et
ouvert à droite,
I = [a ; b[, −∞ < a � b � +∞

Pour étudier l’intégrabilité
d’une application f : I −→ C,
où I est un intervalle ouvert,
I =]a ; b[, −∞ � a � b � +∞

Pour étudier 
l’existence d’une intégrale
et calculer cette intégrale,
dans un exemple
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Essayer de :
• conjecturer la limite, qui est souvent, dans les exemples simples,

l’intégrale de la limite, et montrer que la différence entre l’intégrale
de l’énoncé et la limite conjecturée tend vers 0

➥ Exercices 3.10 b), 3.20 b), 3.21 b), 3.29 c), 3.41

• former une intégrale qui ressemble à l’intégrale de l’énoncé et est
plus simple que celle-ci, puis montrer que leur différence tend 
vers 0

➥ Exercice 3.18

• se ramener à une étude de continuité, et utiliser le théorème de conti-
nuité sous le signe intégrale

➥ Exercices 3.19, 3.27.

En général, on aura d’abord trouvé la limite de cette intégrale, cette
limite étant presque toujours 0 ou +∞ .
Essayer de :
• se ramener à une recherche de limite d’intégrale, par changement de

variable ou intégration par parties

➥ Exercices 3.10 c), 3.22

• former une intégrale ressemblant à l’intégrale de l’énoncé et qui est
plus simple que celle-ci, puis montrer que leur différence est négli-
geable devant l’une des deux, ce qui établira que ces deux intégrales
sont équivalentes, et calculer l’intégrale simple

➥ Exercice 3.52

• utiliser une intégration par parties et montrer que la nouvelle inté-
grale est négligeable devant le crochet

➥ Exercices 3.11 b), 3.42 a).

• Si le paramètre est aux bornes, se ramener à une recherche de déve-
loppement limité (éventuellement par changement de variable) et
utiliser le théorème sur la dérivation pour les développements limi-
tés.

➥ Exercice 3.23

• Si le paramètre est à l’intérieur de l’intégrale, on peut essayer de
transformer l’écriture de l’intégrale.

➥ Exercice 3.43.

On peut souvent se ramener à l’étude de l’intégrale impropre∫ →+∞

1

sin x

xα
dx, α ∈ R, par développement asymptotique, ou par

changement de variable, ou par intégration par parties.

➥ Exercices 3.24, 3.25. 

Pour trouver 
la limite d’une intégrale 
dépendant d’un paramètre

Pour trouver 
un équivalent simple 
d’une intégrale 
dépendant d’un paramètre

Pour trouver 
un développement asymptotique
d’une intégrale 
dépendant d’un paramètre 

Pour étudier la nature 
d’une intégrale impropre
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Essayer d’appliquer le théorème de continuité sous le signe intégrale,
ou le théorème de dérivation sous le signe intégrale.

➥ Exercices 3.29 b), 3.30 à 3.33.

Essayer d’utiliser le théorème de dérivation sous le signe intégrale,

qui donne, sous certaines hypothèses, f ′(x) =
∫

I

∂ F

∂x
(x,t) dt.

• Il se peut que cette dernière intégrale soit calculable, d’où l’on

déduira l’expression de f ′(x) par un calcul de primitive.

➥ Exercice 3.47

• Il se peut que f ′(x) ressemble à f (x) et que f satisfasse une équation
différentielle linéaire du premier ordre, que l’on essaiera de
résoudre.

➥ Exercices 3.49, 3.50.

• Il se peut aussi que f satisfasse une équation différentielle linéaire du
second ordre.

Pour montrer 
qu’une application définie 
par une intégrale à paramètre
est continue,
est de classe C1,
est de classe C∞

Pour calculer 
certaines intégrales à paramètre,

f (x) =
∫

I
F(x,t) dt

Énoncés des exercices
Exemples faciles d’études d’intégrabilité

Étudier l’intégrabilité des applications suivantes :

a) f : x �−→ 1

x

(√
x2 + x + 1 −

√
x2 − x + 1

)
sur [1 ;+∞[

b) f : x �−→ sin x + cos x√
x3 + 1

sur [0 ;+∞[ c) f : x �−→ lnx√
x3 + 1

sur [1 ;+∞[

d) f : x �−→
√

x2 + 1

x2 + x
sur ]0 ; 1] e) f : x �−→ 1 + x√

x + x2
sur ]0 ; 1]

f) f : x �−→ lnx

x3 + x2
sur ]0 ; 1] g) f : x �−→ 1√

1 − x6
sur ] − 1 ; 1[

h) f : x �−→ sin x√
x3 + x4

sur ]0 ;+∞[ i) f : x �−→ 1 + x2 e−x

x2 + e−2x
sur ] − ∞;+∞[.

Exemple facile d’étude d’intégrabilité

Étudier l’existence de 
∫ 1

0

∣∣∣∣ sin
π

x

∣∣∣∣
1
x

dx .

3.1

3.2
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Exemples faciles d’existence et calcul d’intégrales sur un intervalle quelconque

Existence et calcul des intégrales suivantes :

a)
∫ +∞

0

1

(x + 1)(x + 2)
dx b)

∫ +∞

0

x4

x10 + 1
dx

c)
∫ +∞

−∞

ch x

ch 2x
dx d)

∫ 1

0

x2

√
1 − x2

dx e)
∫ 1

2

0
ln(1 − 3x + 2x2) dx .

Exemple de calculs d’intégrales liées à l’intégrale de Gauss

Existence et calcul, pour tout n ∈ N , de In =
∫ +∞

0
xn e−x2

dx .

Lien entre les intégrabilités de f et de f 2 , lorsque f est bornée

Soient I un intervalle de R, f : I −→ C continue par morceaux et bornée. Montrer que, si f 2 est
intégrable sur I, alors f l’est aussi (où f 2 désigne f · f). Le résultat subsiste-t-il si on ne suppose
pas que f est bornée ? 

Intégrabilité par encadrement

Soient I un intervalle de R, f,g,h : I −→ R continues par morceaux. On suppose que f et h sont
intégrables sur I et que f � g � h. Montrer que g est intégrable sur I.

Une norme sur R2 définie à partir d’une intégrale sur un intervalle quelconque

Montrer que l’application N : R
2 −→ R, (x,y) �−→

∫ +∞

0
|x + t y| e−t dt

est une norme sur R2. 

Calcul direct d’une intégrale sur un intervalle, avec paramètre

a) Existence et calcul, pour tout a ∈ R , de I (a) =
∫ +∞

1

(
1

x
− a

x2

)2

dx .

b) Déterminer Inf
a∈R

I (a) , et Inf
a∈Z

I (a).

Intégrabilité par majoration

Soit f : [1 ;+∞[−→ R continue telle que : ∀ (a,x) ∈ [1 ;+∞[2, 0 � f (x) � a

x2
+ 1

a2
.

Montrer que f est intégrable sur [1 ;+∞[. 

Équivalent d’une intégrale dépendant d’un paramètre entier

On note, pour tout n ∈ N
∗ , sous réserve d’existence : In =

∫ +∞

0

e−x

n + x
dx .

a) Montrer, pour tout n ∈ N
∗ , l’existence de In.

b) Établir : In −−−→
n ∞

0. c) Montrer : In ∼
n∞

1

n
.

Équivalent d’une intégrale dépendant d’un paramètre entier

On note, pour tout n ∈ N , sous réserve d’existence : In =
∫ +∞

1

1

xn(1 + x2)
dx .
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a) Montrer, pour tout n ∈ N , l’existence de In.

b) À l’aide d’une intégration par parties, trouver un équivalent simple de In lorsque l’entier n tend
vers l’infini. 

Exemple d’étude d’intégrabilité

Trouver tous les P ∈ R[X] tels que l’application f : x �−→
√

P(x) − (x2 + x + 1)

soit intégrable sur [0 ;+∞[. 

Exemples d’existence et calcul d’intégrales sur un intervalle quelconque

Existence et calcul des intégrales suivantes :

a)
∫ +∞

1

1

x
√

x2 + x + 1
dx b)

∫ +∞

−∞

1

(x2 + x + 1)2
dx

c)
∫ +∞

0

x − Arctan x

x3
dx d)

∫ 1

0

1 + x√
x(1 − x)

dx .

Exemples d’existence et calcul d’intégrales sur un intervalle quelconque,
par changement de variable qui échange les bornes

Existence et calcul des intégrales suivantes :

a)
∫ +∞

0

1

(x2 + 1)(x2 + x + 1)
dx b)

∫ +∞

0

lnx

x2 + a2
dx, a ∈ R

∗
+ c)

∫ +∞

0

√
x ln x

(1 + x)2
dx .

Exemple de calcul d’une intégrale de fonction à valeurs complexes

Calculer I =
∫ 2π

0

dx

i + cos x
.

Exemples de calcul direct d’intégrales à paramètre

Existence et calcul éventuel des intégrales suivantes :

a)
∫ +∞

0

1

(1 + x2)(1 + xa)
dx, a ∈ R b)

∫ +∞

0

dx

a2 +
(

x − 1

x

)2 , a ∈ ]0 ;+∞[

c)
∫ π

0

sin 2x

(a − cos x)(b − cos x)
dx, (a,b) ∈ ]1 ;+∞[2

d)
∫ +∞

−∞

1

x2 − 2x cos a + 1
dx, a ∈ R e)

∫ +∞

−∞

sin a

ch x − cos a
dx, a ∈ R

f)
∫ 1

0

1

(1 + ax)
√

x(1 − x)
dx, a ∈ ]0 ; 1[. 

Exemple de calcul d’une intégrale de fonction à valeurs complexes

Existence et calcul, pour z ∈ C , de I (z) =
∫ +∞

−∞
ezt e−|t | dt.

3.12

3.13

3.14

3.15

3.16

3.17
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Limite d’une intégrale à paramètre, le paramètre étant aux bornes

Trouver lim
x−→0+

∫ 3x

2x

sin t

sh2 t
dt.

Limite d’une intégrale à paramètre

Trouver lim
x−→0

∫ +∞

1

(t + 2)x−1

(t + 1)x+1
dt.

Limites d’une intégrale à paramètre

a) Montrer que, pour tout x ∈ ]0 ;+∞[, l’intégrale f (x) =
∫ +∞

0

t3

√
1 + t4

e−xt dt existe.

b) Déterminer les limites de f en 0 et en +∞ . 

Équivalent d’une intégrale à paramètre

Soient f : [0 ;+∞[−→ R continue, � 0, intégrable sur [0 ;+∞[, g : [0 ;+∞[−→ R , conti-
nue, � 0.

On note, pour tout λ ∈ ]0 ;+∞[, sous réserve d’existence : φ(λ) =
∫ +∞

0

f

λ+ g
.

a) Montrer que, pour tout λ ∈ ]0 ;+∞[, φ(λ)existe.

b) Établir que, si de plus g est bornée, alors : φ(λ) ∼
λ−→+∞

1

λ

∫ +∞

0
f.

Équivalent d’une intégrale à paramètre

Trouver un équivalent simple de 
∫ π/2

0
e−x sin t dt, lorsque x −→ +∞. 

Développement asymptotique d’une intégrale à paramètre,
le paramètre étant aux bornes

Former un développement asymptotique de f : x �−→
∫ x2

x

dt√
t4 + 1

, à la précision

o

(
1

x12

)
, lorsque x −→ +∞.

Exemple de nature d’une intégrale impropre

Déterminer la nature de l’intégrale impropre 
∫ →+∞

→0

sin x√
x

(√
x + cos x − √

x
)

dx .

Exemple de nature d’une intégrale impropre

Déterminer la nature de l’intégrale impropre 
∫ →+∞

→0

sin x√
x + √

x sin x
dx .

Calcul d’intégrales liées à l’intégrale de Gauss

Soient a ∈ R, P ∈ R[X] . Montrer l’existence de I =
∫ +∞

−∞
e−x2

P(x + a) dx, et exprimer I à

l’aide des dérivées successives de P en a. 
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Limite d’une intégrale à paramètre

Déterminer lim
x−→0+

∫ 1

0

1 − t x

1 − t
dt.

Étude d’intégrabilité pour une fonction définie par une intégrale à paramètre

Soit a ∈ ]0 ;+∞[ fixé.

a) Montrer, pour tout x ∈ ]0 ;+∞[, l’existence de f (x) =
∫ +∞

x

ta

et − 1
dt.

b) Est-ce que f est intégrable sur ]0 ;+∞[ ? 

Étude d’une intégrale à paramètre

On note, sous réserve d’existence, pour x ∈ R : f (x) =
∫ π

2

0

sin (xt)

sin t
dt.

a) Montrer que f est définie sur R.

b) Établir que f est de classe C1 sur R. c) Déterminer lim
x−→0+

f (x).

Utilisation de la continuité pour une intégrale à paramètre

On note, pour tout x ∈ [0 ;+∞[ : f (x) =
∫ π

2

0
t x cos t dt.

Montrer qu’il existe c ∈ [0 ;+∞[ tel que : f (c) = 3

4
.

Étude complète d’une fonction définie par une intégrale à paramètre

Étude et représentation graphique de la fonction f d’une variable réelle donnée par :

f (x) =
∫ π

2

0
Arctan (x tan t) dt.

Étude complète d’une fonction définie par une intégrale à paramètre

On note, sous réserve d’existence, pour x ∈ R : f (x) =
∫ +∞

1

1

t x (1 + lnt)
dt.

a) Déterminer l’ensemble de définition de f.

b) Étudier le sens de variation de f et la convexité de f.

c) Déterminer les limites de f en 1 et en +∞ .

d) Tracer la courbe représentative de f.

e) Montrer : f (x) ∼
x−→+∞

1

x
.

Étude de log-convexité pour certaines transformées de Laplace

Soit f : [0 ;+∞[−→ R continue, � 0, telle que, pour tout p ∈ R, l’application t �−→ f (t) e−pt

est intégrable sur [0 ;+∞[.

a) Montrer que l’application F : R −→ R, p �−→
∫ +∞

0
f (t) e−pt dt

est de classe C2 sur R et que : ∀ p ∈ R,
(
F ′(p)

)2 � F(p)F ′′(p).

b) En déduire que, si de plus f =/ 0, alors l’application ln ◦ F est convexe sur R. 

3.27

3.28

3.29

3.30

3.31

3.32

3.33
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Existence et calcul d’intégrales sur un intervalle quelconque

Existence et calcul de : I =
∫ π

2

0
ln sin x dx et J =

∫ π
2

0
ln cos x dx,

puis de : K =
∫ π

2

0

x

tan x
dx, L =

∫ π
2

0

x sin x

1 − cos x
dx, M =

∫ +∞

0

Arctan x

x(1 + x2)
dx .

Utilisation d’intégrales à propos de polynômes

Soit P ∈ R[X] tel que : ∀ x ∈ R, P(x) � 0. On note n = deg (P) et Q =
n∑

k=0

P (k).

Montrer : ∀ x ∈ R, Q(x) � 0. 

Existence et calcul d’une intégrale à paramètre entier

Existence et calcul, pour n ∈ N
∗ , de In =

∫ +∞

1

xn−1

(1 + x)n+1
dx .

Calcul d’une intégrale à paramètre

Existence et calcul, pour x ∈ [0 ;+∞[, de f (x) =
∫ +∞

0
Min

(
x,

1√
t
,

1

t2

)
dt.

Liens entre les intégrabilités de trois fonctions

Soit f : [0 ;+∞[−→ R , continue par morceaux, � 0, décroissante.

On note g,h : [0 ;+∞[−→ R les applications définies, pour tout x ∈ [0 ;+∞[, par :

g(x) = f (x)| sin x |, h(x) = f (x)| cos x | .

Montrer que les intégrabilités de f,g,h sont deux à deux équivalentes. 

Limite pour une fonction vérifiant des conditions d’intégrabilité

Soit f : [0 ;+∞[−→ R de classeC1. Montrer que, si f 2 et f ′2 sont intégrables sur [0 ;+∞[, alors
f −→

+∞
0.

Sommes de Riemann pour une fonction intégrable et monotone, exemple

a) Soit f : ]0 ; 1] −→ R continue par morceaux, décroissante, intégrable sur ]0 ; 1]. 

Montrer :
1

n

n∑
k=1

f

(
k

n

)
−−−→

n ∞

∫ 1

0
f.

b) Application : Déterminer lim
n∞

n∑
k=1

n

(k + n)
√

k(k + 2n)
.

Limite d’une intégrale à paramètre

Trouver lim
x−→−∞

∫ +∞

0

x − t

ex − et
dt.

Équivalent d’une intégrale à paramètre

a) Montrer :
∫ +∞

x
e−t2

dt ∼
x−→+∞

e−x2

2x
.
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b) En déduire, pour tout (a,b) ∈ R
2 tel que 0 < a < b, la limite de 

(∫ b

a
e−nt2

dt

) 1
n

, lorsque l’en-

tier n tend vers l’infini. 

Développement asymptotique d’une intégrale à paramètre

Montrer :
∫ 1

0

et

x + t
dt = − ln x + I + o

x−→0
(1), où on a noté I =

∫ 1

0

eu − 1

u
du.

Nature d’intégrales impropres

Soit α ∈ R. Montrer :

• Les intégrales impropres 
∫ →+∞

1

sin x

xα
dx et   

∫ →+∞

1

cos x

xα
dx convergent si et seulement

si α > 0

• Les applications x �−→ sin x

xα
et x �−→ cos x

xα
sont intégrables sur [1;+∞[ si et seulement si

α > 1. 

Ainsi :

• α � 0 �⇒
∫ →+∞

1

sin x

xα
dx et 

∫ →+∞

1

cos x

xα
dx divergent

• 0 < α � 1 �⇒
∫ →+∞

1

sin x

xα
dx et 

∫ →+∞

1

cos x

xα
dx sont semi-convergentes

• 1 < α �⇒
∫ →+∞

1

sin x

xα
d x et 

∫ →+∞

1

cos x

xα
d x sont absolument convergentes.

Calcul de 
∫ +∞

0

sin x

x
dx

a) α) Montrer :

∀x ∈ R − πZ, ∀n ∈ N,
1

2
+

n∑
k=1

cos 2kx = sin(2n + 1)x

2 sin x
.

β) En déduire : ∀n ∈ N ,
∫ π

2

0

sin(2n + 1)x

sin x
dx = π

2
. 

b) Soient (a,b) ∈ R
2 tel que a < b, ϕ : [a; b] −→ R de classe C1. Montrer :

∫ b

a
ϕ(x)sin nx dx −−−→

n∞
0.

c) α) Vérifier que l’application f :
[
0; π

2

]
−→ R définie par :

f (x) =
{ 1

x
− 1

sin x
si x ∈

]
0; π

2

]

0 si x = 0

∣∣∣∣∣
est de classe C1 sur 

[
0; π

2

]
.

β) En déduire :
∫ π

2

0

sin(2n + 1)x

x
dx −−−→

n∞
π

2
.

d) En déduire que 
∫ →+∞

→0

sin x

x
dx converge et que :

∫ +∞

0

sin x

x
dx = π

2
. 
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Calcul d’intégrales déduites de 
∫ +∞

0

sin x

x
dx = π

2

On admet (cf. exercice 3.45) :
∫ +∞

0

sin x

x
dx = π

2
.

a) Existence et calcul de :
∫ +∞

0

1 − cos x

x2
dx,

∫ +∞

0

(
sin x

x

)2

dx .

b) Existence et calcul, pour λ ∈ R, de :
∫ +∞

0

sinλx

x
dx,

∫ +∞

0

1 − cosλx

x2
dx .

c) Existence et calcul, pour (a,b) ∈ R
2, de :

∫ +∞

0

sin ax sin bx

x2
dx,

∫ +∞

0

1 − cos ax cos bx

x2
dx .

d) Existence et calcul de 
∫ +∞

−∞

sin x

x(π− x)
dx .

Calcul d’une intégrale à paramètre,
utilisation du théorème de dérivation sous le signe intégrale

Existence et calcul éventuel, pour x ∈ R , de f (x) =
∫ +∞

0

ln(x + t2)

1 + t2
dt.

Intégrale d’une fonction elle-même définie par une intégrale à paramètre

a) Montrer, pour tout x ∈ ]0 ;+∞[, l’existence de f (x) =
∫ +∞

x

e−t

t
dt.

b) Montrer que f est continue et intégrable sur ]0 ;+∞[, et calculer 
∫ +∞

0
f (x) dx .

Calcul d’intégrales à paramètre

Établir, pour tout (a,x) de R∗
+ × R :




∫ +∞

0
e−at2

cos xt dt =
√
π

2
√

a
e− x2

4a

∫ +∞

0
e−at2

sin xt dt = 1

2a
e− x2

4a

∫ x

0
e

t2

4a dt.

Calcul d’une intégrale de fonction à valeurs complexes

Existence et calcul, pour x ∈ ]0 ;+∞[ et z ∈ C tel que Re (z) < 0, de 
∫ +∞

0
t x−1 ezt dt.

Le résultat fera intervenir la fonction 
 d’Euler, définie par :

∀ x ∈]1 ;+∞[, 
(x) =
∫ +∞

0
t x−1e−t dt. 

Étude de 
∫ +∞

0

f (ax) − f (bx)

x
dx, exemples

I. Soient f : [0 ;+∞[−→ R continue, telle que l’intégrale impropre 
∫ →+∞

1

f (x)

x
dx, converge,

et (a,b) ∈ (R∗
+)2 .
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a) Montrer que, pour tout ε ∈ ]0 ;+∞[, l’intégrale impropre 
∫ →+∞

ε

f (ax) − f (bx)

x
dx conver-

ge et que :
∫ +∞

ε

f (ax) − f (bx)

x
dx =

∫ b

a

f (εx)

x
dx .

b) En déduire que l’intégrale impropre 
∫ →+∞

→0

f (ax) − f (bx)

x
dx converge et que :

∫ +∞

0

f (ax) − f (bx)

x
dx = f (0) ln

b

a
.

II. Exemples :

a) Existence et calcul, pour (a,b) ∈ (R∗
+)2 , de :∫ +∞

0

cos ax − cos bx

x
dx,

∫ +∞

0

e−ax − e−bx

x
dx,

∫ +∞

0

th ax − th bx

x
dx ,

∫ +∞

0

1

x

((
Arctan (ax)

)2
−

(
Arctan (bx)

)2
)

dx .

b) Existence et calcul, pour x ∈ ] − 1 ; 1[, de 
∫ +∞

0

sh xt

t
e−t dt.

c) Existence et calcul, pour (a,b) ∈ ] − 1 ;+∞[2, de 
∫ 1

0

xa − xb

lnx
dx .

d) Existence et calcul, pour (a,b) ∈ ]0 ;+∞[2, de 
∫ +∞

0

1 − e−ax

x

1 − e−bx

x
dx .

Équivalent d’une intégrale à paramètre

On note, pour tout x ∈ [0 ; 1[ : f (x) =
∫ π

2

0

dt√
1 − x cos 2t

.

a) Montrer : f (x) −→
x−→1−

+∞.

b) Trouver un équivalent simple de f (x) lorsque x −→ 1−. 

Du mal à démarrer ?
Dans chaque exemple, préciser l’intervalle de continuité

de la fonction f sous l’intégrale et effectuer une étude à chaque

borne ouverte de cet intervalle, par majoration, minoration,

équivalent, règle xα f (x), pour des fonctions à valeurs � 0 .

a) En +∞ : f (x) ∼
x−→+∞

1

x
.

b) On a : | f (x)| � 2

x3/2
.

c) En +∞ : x5/4 f (x) −→
x−→+∞ 0.

d) En 0 : f (x) ∼
x−→0

1

x1/2
.

e) En 0 : f (x) ∼
x−→0

1

x1/2
.

f) En 0 : f (x) ∼
x−→0

lnx

x2
.

g) En 1 : f (x) ∼
x−→1

1

6

1

(1 − x)1/2
.

En −1 : parité.

h) On a : f (x) ∼
x−→−∞ x2ex , notée g(x),

et x2g(x) −→
x−→−∞ 0.

En +∞ : f (x) ∼
x−→+∞

1

x2
.

L’application x �−→
∣∣∣∣ sin

π

x

∣∣∣∣
1
x

, est continue et bornée sur

l’intervalle borné ]0 ; 1].

3.1
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Dans chaque exemple, montrer d’abord l’existence, puis

effectuer le calcul.

Pour l’existence, on pourra souvent utiliser les théorèmes de

majoration, d’équivalence, la règle xα f (x) pour les fonctions

� 0 .

Pour le calcul, passer par des primitives.

a) Décomposer en éléments simples.

b) Changement de variable t = x5 .

c) Changement de variable t = sh x.

d) Changement de variable t = Arcsin x .

e) Décomposer le logarithme. Une primitive de

t �−→ ln t sur ]0 ;+∞[ , est t �−→ t ln t − t.

Effectuer le changement de variable t = x2 et exprimer In

à l’aide de la fonction 
 d’Euler défini par :

∀ s ∈]1 ;+∞[, 
(s) =
∫ +∞

0
t s−1e−t dt.

Se rappeler (exercices classiques) 


(
1

2

)
= √

π , et :

∀ s ∈ ]0 ;+∞[, 
(s + 1) = s 
(s) .

1) Remarquer : | f 2| � || f ||∞| f | .

2) Considérer, par exemple : f : x ∈ ]0 ; 1] −→ x−3/4 .

Considérer g − f et h − f .

Vérifier d’abord l’existence de N (x,y) , par exemple par la

règle tα f (t) en +∞ .

Revenir à la définition d’une norme.

a) 1) Existence : fa(x) ∼
x−→+∞

1

x2
.

2) Calcul : Réponse : I (a) = 1 − a + a2

3
.

b) Mettre I (a) sous forme canonique.

1re méthode : Remplacer a par xλ et choisir λ .

2è méthode : Déterminer, pour x ∈ [1 ;+∞[ fixé, la borne infé-

rieure de 
a

x2
+ 1

a2 , par étude de variation d’une fonction de a.

a) On a : 0 � fn(x) � e−x .

b) Majorer convenablement.

c) Puisque In ressemble à Jn =
∫ +∞

0

e−x

n
dx, étudier In − Jn et

calculer Jn .

a) En +∞ : fn(x) ∼
x−→+∞

1

xn+2
.

b) On obtient, par intégration par parties sur [1 ; X] , puis en fai-

sant tendre X vers +∞ :

In = 1

2(n − 1)
− 2

n − 1
Jn ,

où : Jn =
∫ +∞

1

x−n+2

(1 + x2)2
dx . Montrer Jn = O

(
1

n

)
.

Montrer que, si f est intégrable sur [1 ;+∞[ , alors P est de
degré 4 et de coefficient dominant égal à 1, puis montrer, par
exemple en utilisant une expression conjuguée, que P est de la
forme :

P(x) = (x2 + x + 1)2 + c, c ∈ R .

Chercher alors un équivalent de f (x) lorsque x −→ +∞ .

Dans chaque exemple, montrer d’abord l’existence, puis

effectuer le calcul.

Pour l’existence, on pourra souvent utiliser les théorèmes de

majoration, d’équivalence, la règle xα f (x) pour les fonctions

� 0 .

a) Changement de variable t = 1

x
, mise sous forme canonique

du trinôme t2 + t + 1, puis changement de variable

u = 2t + 1√
3

.

b) Mise de x2 + x + 1 sous forme canonique, puis changement

de variable t = 2x + 1√
3

.

Pour calculer J =
∫ +∞

−∞
1

(t2 + 1)2
dt, utiliser une ipp.

c) Utiliser une intégration par parties et se ramener au calcul de∫
dx

x2(1 + x2)
, puis décomposition en éléments simples.

d) Mise de x(1 − x) sous forme canonique, puis changement de

variable t = 2x − 1.

Montrer d’abord l’existence.

Pour le calcul, utiliser un changement de variable qui échange

les bornes.

Changement de variable t = tan
x

2
. On se ramène à calcu-

ler A =
∫ +∞

0

1

1 + t4
dt , et B =

∫ +∞

0

t2

1 + t4
dt.

Montrer A = B par le changement de variable u = 1

t
.

Former A + B et utiliser la factorisation de 1 + X4 dans R[X].

Montrer d’abord l’existence, puis effectuer le calcul.

Pour l’existence,on pourra souvent utiliser les théorèmes de majo-

ration, d’équivalence, la règle xα f (x) pour des fonctions � 0 .
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Pour le calcul, utiliser des primitives ou un changement de

variable qui échange les bornes.

a) Changement de variable t = 1

x
.

b) Changement de variable t = 1

x
, puis remarquer :

d

(
x − 1

x

)
=

(
1 + 1

x2

)
dx .

c) Décomposer 
1 − X2

(a − X)(b − X)
en éléments simples et se

ramener au calcul de J (c) =
∫ 2π

0

dx

c − cos x
, c ∈ ]1 ;+∞[.

Changement de variable t = tan
x

2
.

d) Réponse :

• L’intégrale existe si et seulement si a ∈ R − πZ

• I (a) = π

sin a
, si a ∈ ]0 ;π[ , I est paire, 2π-périodique.

e) Réponse :

• L’intégrale existe si et seulement si a ∈ R − 2πZ

• I (a) = 2π − 2a si a ∈ ]0 ;π] , I est impaire et I est 2π-pério-

dique.

f) Mise sous forme canonique de x(1 − x), changements de

variable t = 2x − 1, u = Arccos t , v = tan
u

2
.

1) Noter z = x + i y, (x,y) ∈ R
2 et calculer |ezt e−|t || .

Se rappeler : ∀ u ∈ C, |eu | = eRé (u).

2) Utiliser la relation de Chasles.

Comme 
sin t

sh2t
∼

t−→0

1

t
, considérer les intégrales

f (x) =
∫ 3x

2x

sin t

sh2t
dt et g(x) =

∫ 3x

2x

1

t
dt, calculer g(x) et mon-

trer f (x) − g(x) −→
x−→0

0 .

Utiliser le théorème de continuité sous le signe intégrale.

a) Règle tα f (t) en +∞ .

b) 1) En 0 : minorer f (x) .

2) En +∞ : majorer f (x) .

a) Théorème de majoration.

b) Montrer :
∣∣∣φ(λ) − 1

λ

∫ +∞

0
f
∣∣∣ = o

λ−→+∞

(
φ(λ)

)

par une majoration convenable.

L’intégrale I (x) =
∫ π/2

0
e−x sin t dt

ressemble à J (x) =
∫ π/2

0
e−x sin t cos t dt .

Montrer I (x) − J (x) = O

(
1

x3

)
, en utilisant :

∀ u ∈ [0 ;π/2],
2

π
u � sin u � u .

D’autre part, calculer J (x).

Utiliser le changement de variable u = 1

t
, et se ramener à la

recherche d’un DL(0) en notant y = 1

x
.

En 0 : f (x) −→
x−→0+ 0.

En +∞ : utiliser un développement asymptotique.

On sait que 

∫ →+∞

1

sin x

x
dx converge, cf. exercice 3.44 ou 3.45.

En +∞ : utiliser un développement asymptotique.

On sait que l’intégrale 

∫ →+∞

1

sin x√
x

dx converge et que l’inté-

grale 

∫ +∞

1

sin 2x

x
dx , diverge, cf. exercice 3.44.

Pour l’existence, utiliser la règle xα f (x) en ±∞ .

Pour le calcul, utiliser la formule de Taylor pour les polynômes et

la valeur de l’intégrale de Gauss :

∫ +∞

0
e−x2

dx =
√

π

2
.

Utiliser le théorème de continuité sous le signe intégrale.

a) Utiliser la règle tα f (t) en +∞ .

b) • Montrer que f est continue sur ]0 ;+∞[ (et même de 

classe C1).

• En 0 : montrer que f a une limite finie en 0.

• En +∞ : utiliser une majoration convenable.

a)
sin xt

sin t
−→
t−→0

x .

b) Utiliser le théorème de dérivation sous le signe intégrale.

c) Majorer convenablement.

1) Vérifier : f (0) <
3

4
< f (1).

2) Montrer que f est continue, en utilisant le théorème de conti-

nuité sous le signe intégrale, et utiliser le théorème des valeurs

intermédiaires.

1) Obtenir Déf ( f ) = R .

2) f est impaire.
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3) Montrer que f est continue sur [0 ;+∞[ , par le théorème de

continuité sous le signe intégrale.

4) En utilisant le théorème de dérivation sous le signe intégrale,

montrer que f est de classe C1 sur ]0 ;+∞[ , exprimer f ′(x)

comme intégrale, et en déduire le sens de variation de f.

5) Concavité, à l’aide de f ′′(x), comme en 4).

6) En 0, montrer, par une minoration convenable :

f ′(x) −→
x−→0+ +∞ .

7) f (1) = π2

8
, f ′(1) = 1

2
.

8) En +∞ , utiliser le changement de variable u = π

2
− t , pour

obtenir : f (x) = π2

4
− f

(
1

x

)
.

9) Tracer la courbe représentative de f.

a) Étude en +∞ , en redémontrant l’exemple de Bertrand,

dans le cas en question.

Réponse : Déf ( f ) = ]1 ;+∞[.

b) Utiliser le théorème de dérivation sous le signe intégrale.

c) 1) Étude en 1 : minorer convenablement f (x) .

2) Étude en +∞ : majorer convenablement f (x) .

e) Changement de variable u = t x, puis utilisation du théorème

de continuité (en 0) sous le signe intégrale.

a) 1) Utiliser le théorème de dérivation sous le signe inté-

grale, deux fois.

2) Utiliser l’inégalité de Cauchy et Schwarz.

b) Calculer ( ln ◦ F)′′.

a) Étude de I et J :

1) Existence :

Montrer f (x) ∼
x−→0+ − ln x et déduire l’existence de I .

Par le changement de variable t = π

2
− x , l’existence de J se

ramène à celle de I , et I = J .

2) Calcul :

Considérer 2I = I + J , puis changement de variable u = 2x.

Réponse : I = J = −π

2
ln 2.

b) Étude de K :

1) Existence :

Montrer que 
x

tan x
a une limite finie en 0 et une limite finie en 

π

2
.

2) Calcul :

Utiliser une intégration par parties, pour se ramener à I .

Réponse : K = −I = π

2
ln 2.

c) Étude de L :

Utiliser des formules de trigonométrie pour se ramener à K.

Réponse : L = 4K = 2π ln 2.

d) Étude de M :

Partir de K et faire le changement de variable u = tan t .

Réponse : K = π

2
ln 2.

Remarquer :
d

dx

(
e−x Q(x)

) = − e−x P(x),

et déduire : ∀ x ∈ R, Q(x) = ex
∫ +∞

x
e−t P(t) dt.

1) Existence : fn(x) ∼
x−→+∞

1

x2
.

2) Calcul :

1re méthode :

En utilisant une intégration par parties, obtenir une relation

entre In et In−1 .

2è méthode :

Changement de variable t = x + 1, développement par la for-

mule du binôme de Newton, et calcul d’intégrales.

Il s’agit, pour x ∈ [0 ;+∞[ fixé et t décrivant ]0 ;+∞[ , de

déterminer le plus petit des trois réels x,
1√
t
,

1

t2
.

Séparer en cas selon x : x = 0, 0 < x � 1, 1 � x .

Dans chaque cas, calculer le minimum en question, puis calculer

f (x) .

Réponse : f (x) =



2
√

x si x � 1

3 − 1

x
si x > 1.

1) Majorer g et h à l’aide de f.

2) Si g est intégrable sur [0 ;+∞[ , utiliser l’inégalité

sin 2x � | sin x | et la décroissance de f pour déduire que

x �−→ f (x) sin 2x et x �−→ f (x) cos 2x sont intégrables sur

[0 ;+∞[ .
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Montrer que f f ′ est intégrable sur [0 ;+∞[ et en dédui-

re que f 2 admet une limite finie L en +∞ , puis montrer que

cette limite L est nécessairement nulle, et conclure.

a) Comparer somme et intégrale pour déduire :

∀ n � 2,

∫ 1

1
n

f � 1

n

n−1∑
k=1

f

(
k

n

)
�

∫ 1− 1
n

0
f .

b) Appliquer a) à f : x �−→ 1

(x + 1)
√

x(x + 2)
.

1) Montrer d’abord que, pour tout x ∈ ] − ∞; 0[, l’inté-
grale proposée existe.

2) Utiliser le changement de variable u = t − x , puis minorer

convenablement.

Réponse : +∞ .

a) En utilisant une intégration par parties, obtenir, pour

tout x ∈ ]0 ;+∞[ :

∫ +∞

x
e−t2

dt = e−x2

2x
− 1

2

∫ +∞

x

e−t2

t2
dt .

b) Utiliser le changement de variable u = √
n t.

Pour x ∈ ]0 ; 1] fixé, à l’aide du changement de variable

u = t + x , obtenir :∫ 1

0

et

x + t
dt = e−x

∫ x+1

x

eu − 1

u
du + e−x

(
ln(x + 1) − ln x

)
.

Montrer que u �−→ eu − 1

u
, est intégrable sur ]0 ; 2].

Séparer en cas : α > 1, 0 < α � 1, α � 0 .

1) Traiter d’abord le cas α > 1 .

2) Pour le cas 0 < α � 1 , utiliser une intégration par parties et

l’étude du cas précédent.

3) Dans le cas α � 0 , montrer que les intégrales proposées

divergent grossièrement.

a) α) Passer, par exemple, par les nombres complexes et

une sommation géométrique.

β) Montrer d’abord que l’intégrale proposée existe.

Utiliser α).

b) Utiliser une intégration par parties.

c) α) • f est C1 sur ]0 ;π/2].

• Montrer f (x) −→
x−→0

f (0) par utilisation de DL(0) ou d’équiva-

lents.

• Montrer que f ′ a une limite finie en 0, par utilisation de DL(0) .

Conclure à l’aide du théorème limite de la dérivée.

β) Utiliser a) α) et b).

d) Par le changement de variable x = u

2n + 1
, montrer :

∫ (2n+1) π
2

0

sin u

u
du −−−→

n ∞
π

2
.

D’autre part (cf. exercice 3.44), montrer que l’intégrale impropre∫ →+∞

0

sin x

x
dx , converge.

a) α) Montrer l’existence de 

∫ +∞

0

1 − cos x

x2
dx .

Pour le calcul, utiliser une intégration par parties.

β) Pour 

∫ +∞

0

(
sin x

x

)2

dx, se ramener à la précédente par le

changement de variable t = 2x .

b) Attention : λ n’est pas nécessairement � 0 .

Si λ > 0 , utiliser le changement de variable x = t

λ
.

L’étude du cas λ = 0 est immédiate.

Pour λ < 0 , utiliser un argument de parité.

c) Utiliser des formules de trigonométrie circulaire pour se

ramener à des intégrales précédentes.

d) 1) Montrer l’existence, par des études en −∞ , 0, π, +∞ .

2) Utiliser une décomposition en éléments simples.

1) Existence :

Montrer que f (x) existe si et seulement si x � 0.

2) Calcul :

α) Utiliser le théorème de dérivation sous le signe intégrale,

pour montrer que f est de classe C1 sur ]0 ;+∞[ et que :

∀ x ∈ ]0 ;+∞[, f ′(x) =
∫ +∞

0

dt

(x + t2)(1 + t2)
.

β) Utiliser le théorème de continuité sous le signe intégrale

pour montrer que f est continue en 0.

γ ) Calculer l’intégrale donnant f ′(x) et obtenir :

∀ x ∈ ]0 ;+∞[, f ′(x) = π

2
√

x(1 + √
x)

.

δ) Réponse : ∀ x ∈ [0 ;+∞[, f (x) = π ln (1 + √
x) .

a) Règle tα f (t) en +∞ .

b) 1) Montrer que f est continue, et même C1, comme primitive

d’une application continue.
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2) Majorer convenablement f (x) , pour x ∈ [1 ;+∞[ , et déduire

que f est intégrable sur ]0 ;+∞[ .

3) Utiliser le théorème de Fubini sur les intégrales doubles.

Grouper les deux études, en passant par les nombres

complexes.

Pour a ∈ ]0 ;+∞[ fixé, appliquer le théorème de dérivation

sous le signe intégrale pour déduire que 

f : x �−→
∫ +∞

0
e−at2

ei xt dt

est de classe C1 sur R et que :

∀ x ∈ R, f ′(x) =
∫ +∞

0
e−at2

i tei xt dt .

À l’aide d’une intégration par parties, montrer que f satisfait une

EDL1. Résoudre celle-ci en utilisant la méthode de variation de

la constante.

Séparer enfin partie réelle et partie imaginaire.

1) Existence :

Procéder à une étude en 0 et à une étude en +∞ .

Ne pas oublier que : ∀ z ∈ C, |ez | = eRé (z).

2) Calcul :

Noter u = −Ré (z) > 0, v = Im (z) , de sorte que :

∫ +∞

0
t x−1ezt dt =

∫ +∞

0
t x−1e−ut ei vt dt .

Appliquer le théorème de dérivation sous le signe intégrale

pour montrer que g : v �−→
∫ +∞

0
t x−1e−ut ei vt dt

est de classe C1 sur R et exprimer g′(v) par une intégrale.

À l’aide d’une intégration par parties, montrer que g satisfait

une EDL1. Résoudre celle-ci et déduire g .

I. a) Pour 0 < ε � X fixés obtenir , par des changements de

variable et la relation de Chasles :∫ X

ε

f (ax) − f (bx)

x
dx =

∫ b

a

f (εt)

t
dt −

∫ bX

aX

f (u)

u
du .

Faire tendre X vers +∞ .

b) Utiliser le théorème de continuité sous le signe intégrale pour

montrer :

∫ b

a

f (εt)

t
dt −→

ε−→0+

∫ b

a

f (0)

t
dt.

II. a) • Montrer que les intégrales impropres 

∫ →+∞

1

cos x

x
dx,

∫ →+∞

1

e−x

x
dx,

∫ →+∞

1

1 − th x

x
dx

convergent, et appliquer le résultat de I. b).

• Considérer f : x �−→ π2

4
− (Arctan x)2.

b) Remplacer sh (xt) par son expression à l’aide d’exponen-

tielles, et se ramener à la deuxième intégrale de a).

c) Par le changement de variable t = e−x, se ramener à la

deuxième intégrale de a).

d) À l’aide d’une intégration par parties, se ramener à la deuxiè-

me intégrale de a).

a) Utiliser le changement de variable u = tan t , puis minorer

convenablement.

b) En notant g(x) =
∫ 1

0

du√
1 + u2

√
1 − x + u2

,

montrer : f (x) ∼
x−→1− g(x) ,

puis, en considérant h(x) =
∫ 1

0

du√
1 − x + u2

,

montrer : g(x) ∼
x−→1− h(x). Calculer h(x).

Réponse : f (x) ∼
x−→1− − 1

2
ln (1 − x).
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a) • L’application 

f : x �−→ 1

x

(√
x2 + x + 1 −

√
x2 − x + 1

)

est continue sur [1 ;+∞[, et f � 0.

• Étude en +∞ :

On a, en utilisant une expression conjuguée :

f (x) = 1

x

(x2 + x + 1) − (x2 − x + 1)√
x2 + x + 1 + √

x2 − x + 1

= 2√
x2 + x + 1 + √

x2 − x + 1
∼

x−→+∞
2

2x
= 1

x
.

D’après l’exemple de Riemann en +∞ et le théorème d’équi-
valence pour des fonctions � 0, on conclut :

f n’est pas intégrable sur [1 ;+∞[.

b) • L’application  f : x �−→ sin x + cos x√
x3 + 1

est continue sur

[0 ;+∞[.

• Étude en +∞ :

On a, pour tout x ∈ [1 ;+∞[ :

| f (x)| = | sin x + cos x |√
x3 + 1

� 2√
x3 + 1

� 2

x3/2
.

D’après l’exemple de Riemann en +∞ (3/2 > 1) et le théo-
rème de majoration pour des fonctions � 0, on déduit que | f |
est intégrable sur [1 ;+∞[, donc sur [0 ;+∞[, puis, par défi-
nition, on conclut : f est intégrable sur [0 ;+∞[.

c) • L’application  f : x �−→ ln x√
x3 + 1

est continue sur

[1 ;+∞[, et f � 0.

• Étude en +∞ :

On a : f (x) ∼
x−→+∞

ln x

x3/2︸︷︷︸
notée g(x)

.

Et : x5/4g(x) = ln x

x1/4
−→

x−→+∞
0,

par prépondérance classique.

D’où, au voisinage de +∞ : x5/4g(x) � 1,

puis : 0 � g(x) � 1

x5/4
.

D’après l’exemple de Riemann en +∞ (5/4 > 1) et le théo-
rème de majoration pour des fonctions � 0, g est intégrable

sur [1 ;+∞[, puis, par théorème d’équivalence pour des fonc-
tions � 0, on conclut : f est intégrable sur [1 ;+∞[.

d) • L’application  f : x �−→
√

x2 + 1

x2 + x
est continue sur ]0 ; 1],

et f � 0.

• Étude en 0 :

On a : f (x) ∼
x−→0

√
1

x
= 1

x1/2
.

D’après l’exemple de Riemann en 0 (1/2 < 1) et le théorème
d’équivalence pour des fonctions � 0, on conclut : f est inté-
grable sur ]0 ; 1] .

e) • L’application  f : x �−→ 1 + x√
x + x2

est continue sur ]0 ; 1],

et f � 0.

• Étude en 0 :

On a : f (x) ∼
x−→0+

1√
x

= 1

x1/2
.

D’après l’exemple de Riemann en 0 (1/2 < 1) et le théorème
d’équivalence pour des fonctions � 0, on conclut : f est inté-
grable sur ]0 ; 1] .

f) • L’application  f : x �−→ lnx

x3 + x2
est continue sur ]0 ; 1] ,

et f � 0. Considérons g = − f � 0.

• Étude en 0 :

On a : g(x) = −ln x

x3 + x2
∼

x−→0

−ln x

x2︸ ︷︷ ︸
notée h(x)

.

On a, pour tout x ∈ ]0 ; 1/e] : −ln x � 1,

donc : h(x) � 1

x2
� 0.

D’après l’exemple de Riemann en 0 (2 � 1) l’application

x �−→ 1

x2
, n’est pas intégrable sur ]0 ; 1] . D’après le théorème

de minoration pour des fonctions � 0, il s’ensuit que h n’est
pas intégrable sur ]0 ; 1], puis, par théorème d’équivalence pour
des fonctions � 0, g n’est pas intégrable sur ]0 ; 1] . Enfin,
comme f = −g , on conclut que f n’est pas intégrable sur ]0 ; 1].

g) • L’application  f : x �−→ 1√
1 − x6

est continue sur

] − 1 ; 1[ , et f � 0.

Corrigés des exercices

3.1



75

• Étude en 1 :

On a :

f (x) = 1√
1 − x6

= 1√
(1 − x2)(1 + x2 + x4)

= 1√
(1 − x)(1 + x)(1 + x2 + x4)

∼
x−→1

1√
(1 − x) · 2 · 3

= 1√
6

1

(1 − x)1/2
.

D’après l’exemple de Riemann en 0 (1/2 < 1) et le théorème
d’équivalence pour des fonctions � 0, on déduit que f est in-
tégrable sur [0 ; 1[ .

• Étude en −1 :

Comme f est paire et que f est intégrable sur [0 ; 1[ , il s’en-
suit que f est intégrable sur ] − 1 ; 0] .

Puisque f est intégrable sur ] − 1 ; 0] et sur [0 ; 1[ , on conclut :
f est intégrable sur ] − 1 ; 1[ .

h) • L’application  f : x �−→ sin x√
x3 + x4

est continue sur

]0 ;+∞[.

• Étude en 0 :

On a : | f (x)| = | sin x |√
x3 + x4

∼
x−→0

|x |√
x3

= 1

x1/2
.

D’après l’exemple de Riemann en 0 (1/2 < 1) et le théorème
d’équivalence pour des fonctions � 0, | f | est intégrable sur
]0 ; 1] , donc, par définition, f est intégrable sur ]0 ; 1] .

• Étude en +∞ :

On a : | f (x)| = | sin x |√
x3 + x4

� 1

x2
.

D’après l’exemple de Riemann en +∞ (2 > 1) et le théorème
de majoration pour des fonctions � 0, | f | est intégrable sur
[1 ;+∞[, donc, par définition, f est intégrable sur [1 ;+∞[.

Puisque f est intégrable sur ]0 ; 1] et sur [1 ;+∞[, on conclut :
f est intégrable sur ]0 ;+∞[.

i) • L’application  x �−→ 1 + x2 e−x

x2 + e−2x
est continue sur

] − ∞;+∞[, et f � 0.

• Étude en −∞ :

On a :

f (x) = 1 + x2 e−x

x2 + e−2x
∼

x−→−∞
x2 e−x

e−2x
= x2ex︸︷︷︸

notée g(x)

.

et : x2g(x) = x4ex −→
x−→−∞

0,

donc, au voisinage de −∞ : x2g(x) � 1 ,

puis : 0 � g(x) � 1

x2
.

D’après l’exemple de Riemann en −∞ (2 > 1) et le théorème
de majoration pour des fonctions � 0, g est intégrable sur
] − ∞;−1], puis sur ] − ∞; 0]. Par théorème d’équivalence
pour des fonctions � 0, il s’ensuit que f est intégrable sur
] − ∞; 0].

• Étude en +∞ :

On a : f (x) = 1 + x2 e−x

x2 + e−2x
∼

x−→+∞
1

x2
,

car x2e−x −→
x−→+∞

0, par prépondérance classique.

D’après l’exemple de Riemann en +∞ (2 > 1) et le théorème
d’équivalence pour des fonctions � 0, il s’ensuit que f est in-
tégrable sur [0 ;+∞[.

Puisque f est intégrable sur ] − ∞; 0] et sur [0 ;+∞[, on
conclut : f est intégrable sur ] − ∞;+∞[.

L’application f : x �−→
∣∣∣ sin

π

x

∣∣∣∣
1
x

, est continue sur ]0 ; 1]

et : ∀ x ∈ ]0 ; 1], | f (x)| � 1.

Ainsi, f est continue et bornée sur l’intervalle borné ]0 ; 1], donc,
d’après le cours, f est intégrable sur ]0 ; 1] , et on conclut que
l’intégrale proposée existe.

a) 1) Existence :

• L’application  f : x �−→ 1

(x + 1)(x + 2)
est continue sur

[0 ;+∞[, et f � 0.

• Étude en +∞ :

On a : f (x) ∼
x−→+∞

1

x2
.

D’après l’exemple de Riemann en +∞ (2 > 1) et le théorème
d’équivalence pour des fonctions � 0, il s’ensuit que f est in-
tégrable sur [0 ;+∞[.

On conclut que l’intégrale  
∫ +∞

0

1

(x + 1)(x + 2)
dx existe.

2) Calcul :

On a, à l’aide d’une décomposition en éléments simples im-
médiate, pour X ∈ [0 ;+∞[ :
∫ X

0

1

(x + 1)(x + 2)
dx =

∫ X

0

(
1

x + 1
− 1

x + 2

)
dx

= [
ln (x + 1) − ln (x + 2)

]X

0

= ln (X + 1) − ln(X + 2) + ln 2

= ln
X + 1

X + 2
+ ln 2 −→

X−→+∞
ln 2 .

On conclut :
∫ +∞

0

1

(x + 1)(x + 2)
dx = ln 2.

3.2
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b) 1) Existence :

• L’application f : x �−→ x4

x10 + 1
, est continue sur [0 ;+∞[,

et f � 0.

• Étude en +∞ :

On a : f (x) = x4

x10 + 1
∼

x−→+∞
1

x6
.

D’après l’exemple de Riemann en +∞ (6 > 1) et le théorème
d’équivalence pour des fonctions � 0, f est intégrable sur
[0 ;+∞[.

On conclut que l’intégrale proposée existe.

2) Calcul :

On a, par le changement de variable t = x5 :
∫ +∞

0

x4

x10 + 1
dx =

∫ +∞

0

1

5

du

u2 + 1

= 1

5
[Arctan u]+∞

0 = 1

5

π

2
= π

10
.

c) 1) Existence :

• L’application  f : x �−→ ch x

ch 2x
est continue sur

] − ∞;+∞[, paire, et f � 0.

• Étude en +∞ :

On a :

f (x) = ch x

ch 2x
= ex + e−x

e2x + e−2x
∼

x−→+∞
ex

e2x
= e−x .

D’après le cours, l’application x �−→ e−x est intégrable sur
[0 ;+∞[, donc, par théorème d’équivalence pour des fonctions
� 0, f est intégrable sur [0 ;+∞[.

• Étude en −∞ :

Comme f est paire et intégrable sur [0 ;+∞[, f est aussi in-
tégrable sur ] − ∞; 0].

Puisque f est intégrable sur ] − ∞; 0] et sur [0 ;+∞[, f est
intégrable sur ] − ∞;+∞[.

2) Calcul :

On a :
∫ +∞

−∞

ch x

ch 2x
dx =

∫ +∞

−∞

ch x

1 + 2 sh2x
dx

=
t = sh x

∫ +∞

−∞

dt

1 + 2t2
=

u = √
2 t

∫ +∞

−∞

1√
2

du

1 + u2

= 1√
2

[Arctan u]+∞
−∞ = 1√

2

(
π

2
−

(
− π

2

))
= π√

2
.

d) 1) Existence :

• L’application  f : x �−→ x2

√
1 − x2

est continue sur [0 ; 1[ ,

et f � 0.

• Étude en 1 :

On a :

f (x) = x2

√
(1 − x)(1 + x)

∼
x−→1

1√
2

1

(1 − x)1/2
.

D’après l’exemple de Riemann en 1 (1/2 < 1) et le théorème
d’équivalence pour des fonctions � 0, f est intégrable sur ]0 ; 1],
donc l’intégrale proposée existe.

2) Calcul :

On a, par le changement de variable 

t = Arcsin x, x = sin t, dx = cos t dt :

∫ 1

0

x2

√
1 − x2

dx =
∫ π/2

0

sin 2t

cos t
cos t dt =

∫ π/2

0
sin 2t dt

=
∫ π/2

0

1 − cos 2t

2
dt =

[
t

2
− sin 2t

4

]π/2

0

= π

4
.

e) 1) Existence :

• L’application 

f : x �−→ ln(1 − 3x + 2x2) = ln
(
(1 − x)(1 − 2x)

)

est continue sur [0 ; 1/2[.

• Par le changement de variable t = 1

2
− x, l’existence et le cal-

cul de  I =
∫ 1/2

0
ln(1 − 3x + 2x2) dx se ramènent à l’exis-

tence et au calcul de   J =
∫ 0

1/2
ln(t + 2t2)︸ ︷︷ ︸
notée g(t)

dt.

On a : g(t) = ln t + ln(1 + 2t) ∼
t−→0+

ln t < 0.

D’après le cours, l’application  t �−→ − ln t est intégrable sur
]0 ; 1]. Par théorème d’équivalence pour des fonctions � 0, −g
est donc intégrable sur ]0 ; 1] , puis g l’est aussi, et enfin, par
changement de variable, f est intégrable sur [0 ; 1/2[.

2) Calcul :

On a, en calculant des primitives sur [0 ; 1/2[ :

∫
ln (1 − 3x + 2x2) dx =

∫ (
ln(1 − x) + ln(1 − 2x)

)
dx

=
∫

ln(1 − x) dx +
∫

ln (1 − 2x) dx

= −(
(1 − x)ln(1 − x) − (1 − x)

)

−1

2

(
(1 − 2x)ln(1 − 2x) − (1 − 2x)

)

= −(1 − x)ln(1 − x) − 1

2
(1 − 2x)ln(1 − 2x) + 3

2
− 2x,
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donc :
∫ 1/2

0
ln(1 − 3x + 2x2) dx

=
[

− (1−x) ln (1−x)− 1

2
(1−2x) ln (1−2x)+ 3

2
−2x

]1/2

0

= 1

2
ln 2 − 1 .

Par le changement de variable 

t = x2, x = √
t, dx = 1

2
√

t
dt,

l’existence et le calcul de In se ramènent à l’existence et au 
calcul de 

Jn =
∫ +∞

0
t

n
2 e−t 1

2
√

t
dt = 1

2

∫ +∞

0
t

n−1
2 e−t dt.

D’après l’étude de la fonction 
 d’Euler, puisque
n − 1

2
� −1

2
> −1 , pour tout n ∈ N , l’application

t �−→ t
n−1

2 e−t est intégrable sur ]0 ;+∞[ et :

Jn = 1

2



(
n + 1

2

)
.

Si n est impair, n = 2p + 1, p ∈ N , alors :

In = 1

2

(p + 1) = 1

2
p! .

Si n est pair, n = 2p, p ∈ N, alors :

In = 1

2



(
p + 1

2

)
.

En utilisant la formule du cours :

∀ x ∈ ]0 ;+∞[, 
(x + 1) = x
(x) ,

on déduit :

In = 1

2

(
p − 1

2

)(
p − 3

2

)
· · ·

(
1

2

)



(
1

2

)

= 1

2

(2p − 1)(2p − 3) · · · 1

2p

√
π

= 1

2

(2p)!

(2p p!)2p

√
π = (2p)!

22p+1 p!

√
π.

1) Puisque f est bornée, on a :

∀ x ∈ I, | f 2(x)| = | f (x)|2 � || f ||∞| f (x)| ,

ou encore : | f 2| � || f ||∞| f | .

Comme f est intégrable sur I, par définition, | f | l’est aussi,
puis || f ||∞| f | l’est aussi.

Il en résulte, par théorème de majoration pour des fonctions � 0,

que | f 2| est intégrable sur I, et enfin, par définition, on conclut

que f 2 est intégrable sur I.

2) Le résultat ne subsiste pas si on ne suppose pas f bornée.

Par exemple, pour I =]0 ; 1] et f : x �−→ x−3/4, d’après
l’exemple de Riemann en 0, f est intégrable sur ]0 ; 1] (car

3/4 < 1), mais f 2 : x �−→ x−3/2 n’est pas intégrable sur ]0 ; 1]
(car 3/2 � 1).

Puisque f � g � h, on a : 0 � g − f � h − f. Comme
f et h sont intégrables sur I, par différence, h − f est intégrable
sur I. Par théorème de majoration pour des fonctions � 0, il
en résulte que g − f est intégrable sur I. Enfin, comme
g = (g − f ) + f et que g − f et f sont intégrables sur I, par
addition, on conclut que g est intégrable sur I.

1) Existence :

Soit (x,y) ∈ R
2.

• L’application  fx,y : t �−→ |x + t y| e−t est continue sur

[0 ;+∞[, et fx,y � 0.

• Étude en +∞ :

On a : t2 fx,y(t) = t2|x + t y| e−t −→
t−→+∞

0,

par prépondérance classique.

D’où, pour t assez grand : t2 fx,y(t) � 1 ,

et donc : 0 � fx,y(t) � 1

t2
.

D’après l’exemple de Riemann en +∞ (2 > 1) et le théorème
de majoration pour des fonctions � 0, l’application fx,y

est intégrable sur [0 ;+∞[ , donc l’intégrale

N (x,y) =
∫ +∞

0
|x + t y| e−t dt existe.

2) Inégalité triangulaire :

On a, pour tous (x1,y1), (x2,y2) ∈ R
2 :

N
(
(x1,y1) + (x2,y2)

)
= N (x1 + x2,y1 + y2)

=
∫ +∞

0

∣∣(x1 + x2) + t (y1 + y2)
∣∣ e−t dt

=
∫ +∞

0

∣∣(x1 + t y1) + (x2 + t y2)
∣∣ e−t dt

�
∫ +∞

0

(|x1 + t y1| + |x2 + t y2|
)

e−t dt

3.4
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=
∫ +∞

0
|x1 + t y1| e−t dt +

∫ +∞

0
|x2 + t y2| e−t dt

= N (x1,y1) + N (x2,y2).

3) Positive homogénéité :

On a, pour tout α ∈ R et tout (x,y) ∈ R
2 :

N
(
α(x,y)

) = N (αx,αy) =
∫ +∞

0
|αx + tαy| e−t dt

= |α|
∫ +∞

0
|x + t y| e−t dt = |α|N (x,y) .

4) Non-dégénérescence :

Soit (x,y) ∈ R
2. On a :

N (x,y) = 0

⇐⇒
∫ +∞

0
|x + t y| e−t︸ ︷︷ ︸

continue et � 0

dt = 0

⇐⇒ ∀ t ∈ [0 ;+∞[, |x + t y| e−t = 0

⇐⇒ ∀ t ∈ [0 ;+∞[, x + t y = 0

⇐⇒ (x,y) = (0,0).

On conclut que N est une norme sur R2.

a) 1) Existence :

• L’application fa : x �−→
( 1

x
− a

x2

)2

, est continue sur

[1 ;+∞[, et fa � 0.

• On a : fa(x) ∼
x−→+∞

1

x2
. D’après l’exemple de Riemann 

en +∞ (2 > 1 ) et le théorème de majoration pour des fonc-
tions � 0, fa est intégrable sur [1 ;+∞[, et donc I (a) existe.

2) Calcul :

On a :

I (a) =
∫ +∞

1

(
1

x
− a

x2

)2

dx =
∫ +∞

1

(
1

x2
− 2a

x3
+ a2

x4

)
dx

=
[

− 1

x
+ a

x2
− a2

3x3

]+∞

1

= 1 − a + a2

3
.

b) D’après a ), I (a) est un trinôme du second degré en a.
Mettons-le sous forme canonique :

I (a) = 1 − a + a2

3
= 1

3
(a2 − 3a + 3)

= 1

3

((
a − 3

2

)2

+ 3

4

)
= 1

3

(
a − 3

2

)2

+ 1

4
.

On déduit :

1) Inf
a∈R

I (a) = I

(
3

2

)
= 1

4
, atteint en a = 3

2
, (et en ce point

seulement)

2) Inf
a∈Z

I (a) = I (1) = I (2) = 1

3
, atteint en a = 1 et en a = 2

(et en ces deux points seulement).

1re méthode :

En remplaçant a par xλ , où λ ∈ ]0 ;+∞[ est à choisir ulté-
rieurement, on a :

∀ x ∈ [1 ;+∞[, 0 � f (x) � 1

x2−λ + 1

x2λ
.

Essayons de trouver λ de façon que : 2 − λ > 1 et 2λ > 1. Pour

λ = 3

4
, par exemple, on a :

∀ x ∈ [1 ;+∞[, 0 � f (x) � 1

x5/4
+ 1

x3/2
.

D’après l’exemple de Riemann en +∞ (5/4 > 1 et 3/2 > 1),
par addition, et d’après le théorème de majoration pour des fonc-
tions � 0, on conclut que f est intégrable sur [1 ;+∞[.

2è méthode :

Soit x ∈ [1 ;+∞[ fixé.

Essayons de choisir le meilleur a ∈ [1 ;+∞[ réalisant l’in-
égalité de l’énoncé.

Considérons l’application 

ϕ : [1 ;+∞[−→ R, a �−→ ϕ(a) = a

x2
+ 1

a2
.

L’application ϕ est dérivable sur [1 ;+∞[ et :

∀ a ∈ [1 ;+∞[, ϕ′(a) = 1

x2
− 2

a3
.

On dresse le tableau de variations de ϕ :

3.8

a 1 (2x2)1/3 +∞
ϕ′(a) − 0 +
ϕ(a) ↘ ↗

Et :

ϕ
(
(2x2)1/3

) = (2x2)1/3

x2
+ 1(

(2x2)1/3
)2

= 21/3

x4/3
+ 1

22/3x4/3
= 3 · 2−2/3 1

x4/3
.

On a donc : ∀ x ∈ [1 ;+∞[, 0 � f (x) � 3 · 2−2/3 1

x4/3
.

D’après l’exemple de Riemann en +∞ (4/3 > 1) et le théo-
rème de majoration pour des fonctions � 0, on conclut que f
est intégrable sur [1 ;+∞[.

3.9
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a) Soit n ∈ N
∗ .

• L’application fn : x �−→ e−x

n + x
est continue sur [0 ;+∞[.

• On a : 0 � fn(x) = e−x

n + x
� e−x .

D’après le cours, l’application x �−→ e−x est intégrable sur
[0 ;+∞[. Par théorème de majoration pour des fonctions � 0,
il en résulte que fn est intégrable sur [0 ;+∞[, donc

In =
∫ +∞

0

e−x

n + x
dx existe.

b) On a :

0 � In =
∫ +∞

0

e−x

n + x
dx �

∫ +∞

0

e−x

n
dx

= 1

n
[−e−x ]+∞

0 = 1

n
−−−→

n ∞
0,

d’où, par théorème d’encadrement : In −−−→
n ∞

0.

c) Comme 
e−x

n + x
ressemble, pour n grand et x fixé, à 

e−x

n
, for-

mons :∣∣∣∣In −
∫ +∞

0

e−x

n
dx

∣∣∣∣ =
∣∣∣∣
∫ +∞

0

(
e−x

n + x
− e−x

n

)
dx

∣∣∣∣

=
∫ +∞

0

x e−x

n(n + x)
dx � 1

n2

∫ +∞

0
x e−x dx

︸ ︷︷ ︸
notée J

.

Ainsi :

∣∣∣∣In − 1

n

∣∣∣∣ � J

n2
, donc : In − 1

n
= O

(
1

n2

)
, puis :

In = 1

n
+ O

(
1

n2

)
, que l’on peut affaiblir en :

In ∼
n∞

1

n
.

a) Soit n ∈ N .

L’application  fn : x �−→ 1

xn(1 + x2)
est continue sur

[1 ;+∞[, � 0, et : fn(x) ∼
x−→+∞

1

xn+2
, donc, d’après l’exemple

de Riemann en +∞ (n + 2 > 1) et le théorème d’équivalence
pour des fonctions � 0, fn est intégrable sur [1 ;+∞[, et on
conclut que In existe.

b) Soit n ∈ N tel que n � 2.

On a, par une intégration par parties pour des applications de
classe C1, pour tout X ∈ [1 ;+∞[ :∫ X

1

1

xn(1 + x2)
dx =

∫ X

1
x−n 1

1 + x2
dx

=
[

x−n+1

−n + 1

1

1 + x2

]X

1

−
∫ X

1

x−n+1

−n + 1

−2x

(1 + x2)2
dx

= X−n+1

−n + 1

1

1 + X2
+ 1

2(n − 1)
− 2

n − 1

∫ X

1

x−n+2

(1 + x2)2
dx .

On déduit, en faisant tendre X vers +∞ :

In = 1

2(n − 1)
− 2

n − 1

∫ +∞

1

x−n+2

(1 + x2)2
dx

︸ ︷︷ ︸
notée Jn

.

On a, pour $\bas n \geq 4$ :

0 � Jn �
∫ +∞

1
x−n+2 dx =

[
x−n+3

−n + 3

]+∞

1

= 1

n − 3
,

donc : Jn = O

(
1

n

)
, puis :

In = 1

2(n − 1)
+ O

(
1

n2

)
∼
n∞

1

2(n − 1)
∼
n∞

1

2n
.

Soit P ∈ R[X].

Si deg (P) � 3, alors 

f (x) =
√

P(x) − (x2 + x + 1) −→
x−→+∞

−∞ ,

donc f n’est pas intégrable sur [0 ;+∞[.

Si deg (P) � 5, alors, pour que f soit définie au voisinage de
+∞ , le coefficient dominant de P doit être > 0 , et on a

f (x) =
√

P(x) − (x2 + x + 1) −→
x−→+∞

+∞ , donc f n’est pas

intégrable sur [0 ;+∞[.

Supposons dorénavant deg (P) = 4 , P =
4∑

k=0

akXk ,

a4 ∈ R
∗, a0,. . . ,a3 ∈ R .

Si a4 < 0, alors f n’est pas définie au voisinage de +∞ . Nous
supposons donc a4 > 0.

Si a4 =/ 1, alors f (x) ∼
x−→+∞

(
√

a4 − 1)x2 −→
x−→+∞

±∞, donc f

n’est pas intégrable sur [0 ;+∞[.

Nous supposons dorénavant a4 = 1.

On a alors, en utilisant une expression conjuguée :

f (x) =
√

P(x) − (x2 + x + 1) = P(x) − (x2 + x + 1)2

√
P(x) + (x2 + x + 1)

.

D’une part,
√

P(x) + (x2 + x + 1) ∼
x−→+∞

2x2.

D’autre part, g : x �−→ P(x) − (x2 + x + 1)2 est un poly-
nôme de degré � 3. Si ce polynôme g est de degré � 1, alors
il existe λ ∈ R

∗ et α ∈ {1,2,3} tels que g(x) ∼
x−→+∞

λxα , d’où

f (x) ∼
x−→+∞

λ

2

1

x2−α et 2 − α � 1, donc, d’après l’exemple

de Riemann en +∞ et le théorème d’équivalence pour des fonc-
tions � 0, | f |n’est pas intégrable sur [0 ;+∞[, et donc f n’est
pas intégrable sur [0 ;+∞[.

3.10
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Nous supposons donc que g est de degré � 0, c’est-à-dire qu’il
existe c ∈ R tel que :

∀ x ∈ [0 ;+∞[, P(x) − (x2 + x + 1)2 = c .

Si  c = 0, alors  f = 0, donc  f est intégrable sur [0 ;+∞[.

Si  c =/ 0, alors  f (x) ∼
x−→+∞

c

2x2
, donc, d’après l’exemple

de Riemann en +∞ et le théorème d’équivalence pour des fonc-
tions � 0, | f | est intégrable sur [0 ;+∞[, et donc  f est in-
tégrable sur [0 ;+∞[.

Enfin :

∀ x ∈ [0 ;+∞[, P(x) � 0

⇐⇒ ∀ x ∈ [0 ;+∞[, (x2 + x + 1)2 + c � 0

⇐⇒ 1 + c � 0.

On conclut que l’ensemble des P convenant est 
{

P = (X2 + X + 1)2 + c ; c ∈ [−1 ;+∞[
}

,

ou encore, en développant :
{

P = X4 + 2X3 + 3X2 + 2X + d ; d ∈ [0 ;+∞[
}

.

a) 1) Existence :

• L’application  f : x �−→ 1

x
√

x2 + x + 1
est continue sur

[1 ;+∞[, et f � 0.

• Étude en +∞ :

On a : f (x) = 1

x
√

x2 + x + 1
∼

x−→+∞
1

x2
.

D’après l’exemple de Riemann en +∞ (2 > 1) et le théorème
d’équivalence pour des fonctions � 0, f est intégrable sur
[1 ;+∞[.

On conclut que l’intégrale  I =
∫ +∞

1

1

x
√

x2 + x + 1
dx

existe.

2) Calcul :

Commençons par éliminer le facteur x du dénominateur, à l’aide

du changement de variable t = 1

x
:

I =
∫ 0

1

1

1

t

√
1

t2
+ 1

t
+ 1

(
− dt

t2

)
=

∫ 1

0

1√
1 + t + t2

dt .

Effectuons une mise sous forme canonique :

t2 + t + 1 =
(

t + 1

2

)2

+ 3

4

= 3

4

(
1 + 4

3

(
t + 1

2

)2)
= 3

4

(
1 +

(
2t + 1√

3

)2)
.

Par le changement de variable u = 2t + 1√
3

:

I =
∫ √

3

1/
√

3

1√
3

4
(1 + u2)

√
3

2
du

=
∫ √

3

1/
√

3

1√
1 + u2

du

= [
Argsh u

]√
3

1/
√

3

= [
ln (u +

√
1 + u2

]√
3

1/
√

3

= ln (
√

3 + 2) − ln

(
1√
3

+ 2√
3

)

= ln (
√

3 + 2) − ln
√

3

= ln

√
3 + 2√

3
= ln

3 + 2
√

3

3
.

b) 1) Existence :

• L’application  f : x �−→ 1

(x2 + x + 1)2
est continue sur

] − ∞;+∞[, et f � 0.

• Étude en ±∞ :

On a : f (x) ∼
x−→±∞

1

x4
. D’après l’exemple de Riemann en ±∞

(4 > 1 ) et le théorème d’équivalence pour des fonctions � 0,

f est intégrable sur ] − ∞;−1] et sur [1 ;+∞[, donc f est in-

tégrable sur ] − ∞;+∞[.

On conclut que l’intégrale  I =
∫ +∞

−∞

1

(x2 + x + 1)2
dx existe.

2) Calcul :

Par mise sous forme canonique :

x2 + x + 1 =
(

x + 1

2

)2

+ 3

4

= 3

4

(
1 + 4

3

(
x + 1

2

)2)
= 3

4

(
1 +

(
2x + 1√

3

)2)
.

Effectuons le changement de variable t = 2x + 1√
3

:

I =
∫ +∞

−∞

dx

(x2 + x + 1)2
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=
∫ +∞

−∞

√
3

2
dt

(
3

4
(t2 + 1)

)2 = 8
√

3

9

∫ +∞

−∞

1

(t2 + 1)2
dt

︸ ︷︷ ︸
notée J

.

Par parité : J = 2
∫ +∞

0

1

(t2 + 1)2
dt.

Par primitivation par parties :
∫

dt

t2 + 1
= t

1

t2 + 1
−

∫
t

−2t

(t2 + 1)2
dt

= t

t2 + 1
+ 2

∫
t2

(t2 + 1)2
dt

= t

t2 + 1
+ 2

(∫
dt

t2 + 1
−

∫
dt

(t2 + 1)2

)
,

d’où :

2
∫

dt

(t2 + 1)2
= t

t2 + 1
+

∫
dt

t2 + 1
= t

t2 + 1
+ Arctan t .

On déduit : J =
[

t

t2 + 1
+ Arctan t

]+∞

0

= π

2
,

et on conclut : I = 8
√

3

9
J = 8

√
3

9

π

2
= 4π

√
3

9
.

c) 1) Existence :

• L’application  f : x �−→ x − Arctan x

x3
est continue sur

]0 ;+∞[, et f � 0.

• Étude en 0 :

On a :

f (x) = x − Arctan x

x3
=

x −
(

x − x3

3
+ o(x3)

)

x3

= 1

3
+ o(1) −→

x−→0

1

3
,

donc f est intégrable sur ]0 ; 1] (faux problème).

• Étude en +∞ :

On a : f (x) = x − Arctan x

x3
∼

x−→+∞
1

x2
.

D’après l’exemple de Riemann en +∞ (2 > 1) et le théorème
d’équivalence pour des fonctions � 0, f est intégrable sur
[1 ;+∞[.

Puisque  f est intégrable sur ]0 ; 1] et sur [1 ;+∞[, f est in-
tégrable sur ]0 ;+∞[.

On conclut que l’intégrale  I =
∫ +∞

0

x − Arctan x

x3
dx existe.

2) Calcul :

Calculons des primitives, en utilisant une primitivation par par-
ties :

∫
x − Arctan x

x3
dx

= − x − Arctan x

2x2
+

∫ (
1 − 1

1 + x2

)
1

2x2
dx

= − x − Arctan x

2x2
+

∫
1

x2(1 + x2)
dx

︸ ︷︷ ︸
notée J (x)

.

On a, par calcul élémentaire ou par décomposition en éléments
simples :

J (x) =
∫ (

1

x2
− 1

1 + x2

)
dx = − 1

x
− Arctan x + Cte .

D’où :
∫

x − Arctan x

x3
dx =− 1

2x
+ Arctan x

2x2
+ 1

2
Arctan x︸ ︷︷ ︸

notée F(x)

+Cte .

On a : F(x) −→
x−→+∞

π

4
.

Pour déterminer la limite de  F(x) lorsque  x −→ 0, grou-
pons les termes de façon à résoudre la forme indéterminée :

F(x) = Arctan x − x

2x2
+ 1

2
Arctan x

= 1

2x2

((
x − x3

3
+ o(x3)

)
− x

)
+ 1

2
o(1) = o(1) −→

x−→0
0 .

On conclut : I = [F(x)]+∞
0 = π

2
− 0 = π

2
.

d) 1) Existence :

• L’application  f : x �−→ 1 + x√
x(1 − x)

est continue sur ]0 ; 1[ ,

et  f � 0.

• Étude en 0 :

On a : f (x) ∼
x−→0

1√
x

= 1

x1/2
.

D’après l’exemple de Riemann en 0 (1/2 < 1) et le théorème
d’équivalence pour des fonctions � 0, f est intégrable sur
]0 ; 1/2].

• Étude en 1 :

On a : f (x) ∼
x−→1

2√
1 − x

= 2

(1 − x)1/2
.

D’après l’exemple de Riemann en 1 (1/2 < 1) et le théorème
d’équivalence pour des fonctions � 0, f est intégrable sur
[1/2 ; 1[.

Puisque  f est intégrable sur ]0 ; 1/2] et sur [1/2 ; 1[, f est
intégrable sur ]0 ; 1[ .

On conclut que l’intégrale  I =
∫ 1

0

1 + x√
x(1 − x)

dx existe.



2) Calcul :

On a, par une mise sous forme canonique :

x(1 − x) = −x2 + x = −(x2 − x)

= −
((

x − 1

2

)2

− 1

4

)
= 1

4
−

(
x − 1

2

)2

= 1

4

(
1 − 4

(
x − 1

2

)2)
= 1

4

(
1 − (2x − 1)2

)
.

Effectuons le changement de variable t = 2x − 1 :

I =
∫ 1

0

1 + x√
x(1 − x)

dx

=
∫ 1

−1

1 + 1 + t

2√
1

4
(1 − t2)

1

2
dt

= 1

2

∫ 1

−1

3 + t√
1 − t2

dt

=
∫ 1

−1

(
3

2

1√
1 − t2

− 1

2

−t√
1 − t2

)
dt

=
[

3

2
Arcsin t − 1

2

√
1 − t2

]1

−1

= 3π

2
.

a) 1) Existence :

• L’application  f : x �−→ 1

(x2 + 1)(x2 + x + 1)
est continue

sur [0 ;+∞[, et  f � 0.

• Étude en +∞ :

On a : f (x) ∼
x−→+∞

1

x4
.

D’après l’exemple de Riemann en +∞ (4 > 1) et le théorème
d’équivalence pour des fonctions � 0, f est intégrable sur
[0 ;+∞[.

On conclut que l’intégrale  I =
∫ +∞

0

dx

(x2 + 1)(x2 + x + 1)

existe.

2) Calcul :

On a, par le changement de variable  t = 1

x
, qui échange les

bornes :

I =
∫ +∞

0

1

(x2 + 1)(x2 + x + 1)
dx

=
∫ 0

+∞

1(
1

t2
+ 1

)(
1

t2
+ 1

t
+ 1

)
(

− dt

t2

)

=
∫ +∞

0

t2

(1 + t2)(1 + t + t2)
dt.

d’où, en additionnant :

2I =
∫ +∞

0

1 + x2

(x2 + 1)(x2 + x + 1)
dx =

∫ +∞

0

dx

x2 + x + 1
.

Par mise sous forme canonique :

x2 + x + 1 =
(

x + 1

2

)2

+ 3

4

= 3

4

(
1 + 4

3

(
x + 1

2

)2)
= 3

4

(
1 +

(
2x + 1√

3

)2)
.

D’où, par le changement de variable  t = 2x + 1√
3

:

2I =
∫ +∞

1/
√

3

√
3

2
dt

3

4
(1 + t2)

= 2√
3

[Arctan t]+∞
1/

√
3

= 2√
3

(
π

2
− π

6

)
= 2√

3

π

3
,

et on conclut : I = π

3
√

3
.

b) 1) Existence :

Soit a ∈ R
∗
+ fixé.

• L’application  fa : x �−→ lnx

x2 + a2
est continue sur ]0 ;+∞[,

et  fa(x) � 0 au voisinage de 0+ , fa(x) � 0 au voisinage 
de +∞ .

• Étude en 0 :

On a : fa(x) ∼
x−→0

lnx

a2
.

Comme x �−→ −ln x est � 0 et intégrable sur ]0 ; 1], par théo-
rème d’équivalence pour des fonctions � 0, − fa est intégrable
sur ]0 ; 1] , donc fa est intégrable sur ]0 ; 1] .

• Étude en +∞ :

On a : x3/2 f (x) = x3/2ln x

x2 + a2
∼

x−→+∞
ln x

x1/2
−→

x−→+∞
0,

d’où, pour x assez grand : x3/2 fa(x) � 1,

puis : 0 � fa(x) � 1

x3/2
.

D’après l’exemple de Riemann en +∞ (3/2 > 1) et le théo-
rème de majoration pour des fonctions � 0, fa est intégrable
sur [1 ;+∞[.

Puisque fa est intégrable sur ]0 ; 1] et sur [1 ;+∞[, fa est in-
tégrable sur ]0 ;+∞[.

On conclut que l’intégrale  I (a) =
∫ +∞

0

ln x

x2 + a2
dx existe.

2) Calcul :

On a, par le changement de variable  t = x

a
:
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On conclut que l’intégrale  I =
∫ +∞

0

√
x ln x

(1 + x)2
dx existe.

2) Calcul :

Éliminons l’intervention de 
√

x , par le changement de variable

t = √
x, x = t2, dx = 2t dt :

I =
∫ +∞

0

√
x ln x

(1 + x)2
dx =

∫ +∞

0

2t ln t

(1 + t2)2
2t dt

= 2
∫ +∞

0
t ln t

2t

(t2 + 1)2
dt.

On a, par primitivation par parties pour des applications de 

classe C1 :∫
t ln t

2t

(t2 + 1)2
dt = t ln t

−1

t2 + 1
−

∫
(1 + ln t)

−1

1 + t2
dt

= − t ln t

1 + t2
+ Arctan t +

∫
ln t

1 + t2
dt.

D’une part : − t ln t

1 + t2
+ Arctan t −→

t−→0
0,

− t ln t

1 + t2
+ Arctan t −→

t−→+∞
π

2
.

D’autre part, l’application  t �−→ ln t

1 + t2
est intégrable sur

]0 ;+∞[, par la même démarche (par exemple) que plus haut.

On déduit, en passant aux limites :

I = π− 2
∫ +∞

0

ln t

1 + t2
dt

︸ ︷︷ ︸
notée J

.

Par le changement de variable  u = 1

t
, qui échange les bornes :

J =
∫ 0

+∞

−ln u

1 + 1

u2

(
− du

u2

)
= −

∫ +∞

0

ln u

1 + u2
du = −J ,

donc  J = 0, et on conclut : I = π.

1) Existence :

L’application  x �−→ 1

i + cos x
est continue sur le segment

[0 ; 2π] , donc l’intégrale  I =
∫ 2π

0

1

i + cos x
dx existe.

2) Calcul :

On a, par 2π-périodicité : I =
∫ π

−π

1

i + cos x
dx,

puis, par le changement de variable  t = tan
x

2
, qui amène une

intégrale de fonction intégrable :
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I (a) =
∫ +∞

0

ln x

x2 + a2
dx

=
∫ +∞

0

ln(at)

t2a2 + a2
a dt = 1

a

∫ +∞

0

ln a + ln t

1 + t2
dt.

Il est clair que  t �−→ ln a

1 + t2
est intégrable sur [0 ;+∞[, donc

sur ]0 ;+∞[.

D’autre part, d’après 1) (pour a = 1), t �−→ ln t

1 + t2
est inté-

grable sur ]0 ;+∞[.

On peut donc séparer en deux intégrales de fonctions intégrables :

I (a) = ln a

a

∫ +∞

0

1

1 + t2
dt + 1

a

∫ +∞

0

ln t

1 + t2
dt

︸ ︷︷ ︸
notée J

.

Par le changement de variable  u = 1

t
, qui échange les bornes :

J =
∫ 0

+∞

−ln u

1 + 1

u2

(
− du

u2

)
= −

∫ +∞

0

ln u

u2 + 1
du = −J ,

d’où : J = 0, puis :

I (a) = ln a

a

∫ +∞

0

dt

t2 + 1
= ln a

a
[Arctan t]+∞

0 = π

2

ln a

a
.

c) 1) Existence :

• L’application  f : x �−→
√

x ln x

(1 + x)2
est continue sur ]0 ;+∞[,

et  f (x) � 0 pour x ∈ ]0 ; 1], f (x) � 0 pour x ∈ [1 ;+∞[.

• Étude en 0 :

On a : f (x) =
√

x ln x

(1 + x)2
−→
x−→0

0,

donc  f est intégrable sur ]0 ; 1] (faux problème).

• Étude en +∞ :

On a : f (x) =
√

x ln x

(1 + x)2
∼

x−→+∞
ln x

x3/2︸︷︷︸
notée g(x)

.

Et : x5/4g(x) = ln x

x1/4
−→

x−→+∞
0,

donc, au voisinage de +∞ : x5/4g(x) � 1,

d’où : 0 � g(x) � 1

x5/4
.

D’après l’exemple de Riemann en +∞ (5/4 > 1) et le théo-
rème de majoration pour des fonctions positives, g est inté-
grable sur [1 ;+∞[, puis, par le théorème d’équivalence pour
des fonctions � 0, f est intégrable sur [1 ;+∞[.

Puisque  f est intégrable sur ]0 ; 1] et sur (1 ;+∞[ , f est in-
tégrable sur ]0 ;+∞[.

3.15
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I =
∫ +∞

−∞

2 dt

1 + t2

i + 1 − t2

1 + t2

= 2
∫ +∞

−∞

dt

(i + 1) + (i − 1)t2

= 2

i + 1

∫ +∞

−∞

dt

1 + i − 1

i + 1
t2

= (1 − i)
∫ +∞

−∞

dt

1 + i t2

= (1 − i)
∫ +∞

−∞

1 − i t2

1 + t4
dt

=
parité

2(1 − i)
∫ +∞

0

1 − i t2

1 + t4
dt.

Puisque les applications 

t �−→ 1

1 + t4
et t �−→ t2

1 + t4

sont intégrables sur [0 ;+∞[, on peut séparer en deux inté-
grales :

I = 2(1 − i)

(∫ +∞

0

1

1 + t4
dt

︸ ︷︷ ︸
notée A

−i
∫ +∞

0

t2

1 + t4
dt

︸ ︷︷ ︸
notée B

)
.

• Par le changement de variable  u = 1

t
, qui échange les bornes,

on a :

A =
∫ 0

+∞

1

1 + 1

u4

(
− du

u2

)
=

∫ +∞

0

u2

u4 + 1
du = B .

• D’autre part :

A + B =
∫ +∞

0

1 + t2

1 + t4
dt =

parité

1

2

∫ +∞

−∞

1 + t2

1 + t4
dt .

Factorisons t4 + 1 dans les réels :

t4 + 1 = (t2 + 1)2 − 2t2 = (t2 −
√

2t + 1)(t2 +
√

2t + 1) .

Comme l’application  t �−→ t
√

2

1 + t4
est intégrable sur

] − ∞;+∞[ et est impaire, on a :

A + B = 1

2

∫ +∞

−∞

t2 − √
2t + 1

t4 + 1
dt

= 1

2

∫ +∞

−∞

1

t2 + √
2t + 1

dt.

Par mise sous forme canonique :

t2 +
√

2t + 1 =
(

t +
√

2

2

)2

+ 1

2

= 1

2

[
1 + 2

(
t +

√
2

2

)2]
= 1

2

[
1 + (t

√
2 + 1)2

]
.

D’où, par le changement de variable u = t
√

2 + 1 :

A + B = 1

2

∫ +∞

−∞

1
1

2
(1 + u2)

1√
2

du

= 1√
2

[Arctan u]+∞
−∞ = π√

2
.

On a donc : A = B et A + B = π√
2
,

d’où : A = B = π

2
√

2
.

Enfin : I = 2(1 − i)(A − i B) = 2(1 − i)2 π

2
√

2
= −iπ

√
2.

a) Soit a ∈ R .

1) Existence :

L’application  fa : x �−→ 1

(1 + x2)(1 + xa)
est continue sur

]0 ;+∞[, et on a :

∀ x ∈ ]0 ;+∞[, 0 � fa(x) � 1

1 + x2
.

Puisque  x �−→ 1

1 + x2
est intégrable sur [0 ;+∞[, donc sur

]0 ;+∞[, par théorème de majoration pour des fonctions � 0,
fa est intégrable sur ]0 ;+∞[.

On conclut que   I (a) =
∫ +∞

0

1

(1 + x2)(1 + xa)
dx existe.

2) Calcul :

Soit a ∈ R fixé.

On a, par le changement de variable  t = 1

x
, qui échange les

bornes :

I (a) =
∫ 0

+∞

1(
1 + 1

t2

)(
1 + 1

ta

)
(

− dt

t2

)

=
∫ +∞

0

ta

(t2 + 1)(ta + 1)
dt,

d’où, par addition :

2I (a) =
∫ +∞

0

1 + xa

(1 + x2)(1 + xa)
dx

=
∫ +∞

0

1

1 + x2
dx = [Arctan x]+∞

0 = π

2
.

On conclut :
∫ +∞

0

1

(1 + x2)(1 + xa)
dx = π

4
.

3.16



85

b) Soit a ∈ R
∗
+.

1) Existence :

• L’application  fa : x �−→ 1

a2 +
(

x − 1

x

)2 est continue sur

]0 ;+∞[, et  fa � 0.

• Étude en 0 :

On a : fa(x) −→
x−→0

0, donc  fa est intégrable sur ]0 ; 1] (faux

problème).

• Étude en +∞ :

On a : fa(x) ∼
x−→+∞

1

x2
. D’après l’exemple de Riemann 

en +∞ (2 > 1 ) et le théorème d’équivalence pour des 
fonctions � 0, fa est intégrable sur [1 ;+∞[.

Puisque  fa est intégrable sur ]0 ; 1] et sur [1 ;+∞[, fa est
intégrable sur ]0 ;+∞[ . On conclut que l’intégrale

I (a) =
∫ +∞

0

1

a2 +
(

x − 1

x

)2 dx existe.

2) Calcul :

On a, par le changement de variable  t = 1

x
, qui échange les

bornes :

I (a) =
∫ 0

+∞

1

a2 +
(

1

t
− t

)2

(
− dt

t2

)

=
∫ +∞

0

1

t2

a2 +
(

t − 1

t

)2 dt,

puis, par addition : 2I (a) =
∫ +∞

0

1 + 1

x2

a2 +
(

x − 1

x

)2 dx .

On remarque : d

(
x − 1

x

)
=

(
1 + 1

x2

)
dx .

L’application  ϕ :]0 ;+∞[−→ R, x �−→ x − 1

x
est de 

classe C1 et : ∀ x ∈ ]0 ;+∞[, ϕ′(x) = 1 + 1

x2
,

donc  ϕ est strictement croissante sur ]0 ;+∞[.

On a alors, en effectuant le changement de variable u = x − 1

x
:

2I (a) =
∫ +∞

−∞

1

a2 + u2
du.

Par le changement de variable  v = u

a
:

2I (a) =
∫ +∞

−∞

a

a2 + a2v2
dv

= 1

a

∫ +∞

−∞

1

1 + v2
dv = 1

a
[Arctan v]+∞

−∞ = π

a
.

On conclut :

∀ a ∈ ]0 ;+∞[,
∫ +∞

0

1

a2 +
(

x − 1

x

)2 dx = π

2a
.

c) Soit (a,b) ∈ ]1 ;+∞[2.

1) Existence :

L’application  fa,b : x �−→ sin 2x

(a − cos x)(b − cos x)
est 

continue sur le segment [0;π] , donc l’intégrale proposée

I (a,b) =
∫ π

0

sin 2x

(a − cos x)(b − cos x)
dx existe.

2) Calcul :

On a : ∀ x ∈ [0 ;π], fa,b(x) = 1 − cos 2x

(a − cos x)(b − cos x)
.

Effectuons la décomposition en éléments simples de
1 − X2

(a − X)(b − X)
dans R[X]. Par division euclidienne du nu-

mérateur par le dénominateur, la partie entière est égale à −1.
Il existe (α,β) ∈ R

2 tel que :

1 − X2

(a − X)(b − X)
= −1 + α

a − X
+ β

b − X
.

Pour calculer α, on multiplie par a − X puis on remplace X

par a, et on obtient : α = 1 − a2

b − a
.

De même : β = 1 − b2

a − b
.

D’où :

I (a,b) =
∫ π

0

(
− 1 + 1 − a2

b − a

1

a − cos x
+ 1 − b2

a − b

1

b − cos x

)
dx

= −π+ 1 − a2

b − a

∫ π

0

1

a − cos x
dx + 1 − b2

a − b

∫ π

0

1

b − cos x
dx .

Considérons, pour c ∈ ]1 ;+∞[ : J (c) =
∫ π

0

dx

c − cos x
.

On a, par le changement de variable  t = tan
x

2
, qui amène des

intégrales de fonctions intégrables :

J (c) =
∫ +∞

0

1

c − 1 − t2

1 + t2

2dt

1 + t2

=
∫ +∞

0

2

(c − 1) + (c + 1)t2
dt

= 2

c − 1

∫ +∞

0

1

1 + c − 1

c + 1
t2

dt

= 2

c − 1

√
c − 1

c + 1

[
Arctan

(√
c + 1

c − 1
t

)]+∞

0

= π√
c2 − 1

.
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d’où :

I (a,b)

= − π+ 1 − a2

b − a

π√
a2 − 1

+ 1 − b2

a − b

π√
b2 − 1

= − π+ π

b − a

(√
b2 − 1 −

√
a2 − 1

)

= − π+ π(b2 − a2)

(b − a)
(√

b2 − 1 + √
a2 − 1

)

= − π+ π(b + a)√
b2 − 1 + √

a2 − 1

= π
a + b − √

a2 − 1 − √
b2 − 1√

a2 − 1 + √
b2 − 1

.

d) Notons, pour a ∈ R , fa la fonction définie par 

fa(x) = 1

x2 − 2x cos a + 1
.

1) Existence :

Soit a ∈ R .

• Le discriminant du trinôme réel x2 − 2x cos a + 1 est

∆ = 4 cos 2a − 4 = −4 sin 2a.

Si a ≡ 0 [2π] , alors  fa(x) = 1

x2 − 2x + 1
= 1

(x − 1)2
,

donc, d’après l’exemple de Riemann en 1 (2 � 1), fa n’est pas
intégrable sur [1 ;+∞[, donc ne l’est pas non plus sur
] − ∞;+∞[.

Si a ≡ π [2π] , alors  fa(x) = 1

x2 + 2x + 1
= 1

(x + 1)2
,

donc, comme plus haut, fa n’est pas intégrable sur
] − ∞;+∞[.

Supposons dorénavant a �≡ 0 [π] , c’est-à-dire ∆ < 0 .
L’application fa est alors continue sur ] − ∞;+∞[.

• Étude en ±∞ :

On a : fa(x) ∼
x−→±∞

1

x2
� 0. D’après l’exemple de Riemann

en ±∞ (2 > 1 ) et le théorème d’équivalence pour des fonc-
tions � 0, fa est intégrable sur ] − ∞;−1] et sur [1 ;+∞[,
puis sur ] − ∞;+∞[.

On conclut : l’intégrale I (a) =
∫ +∞

−∞

1

x2 − 2x cos a + 1
dx

existe si et seulement si a ∈ R − πZ .

2) Calcul :

Il est clair que l’application I : a �−→ I (a) est 2π-périodique
et paire.

On peut donc supposer : a ∈ ]0 ;π[ .

On a, par mise sous forme canonique :

x2 − 2x cos a + 1 = (x − cos a)2 + sin 2a

= sin 2a

[
1 +

(
x − cos a

sin a

)2]
.

Effectuons le changement de variable  t = x − cos a

sin a
:

I (a) =
∫ +∞

−∞

sin a

sin 2a(1 + t2)
dt

= 1

sin a
[Arctan t]+∞

−∞ = π

sin a
.

Finalement : I (a) = π

sin a
, si a ∈ ]0 ;π[ ,

complétée par parité et 2π-périodicité.

e) 1) Existence :

Soit a ∈ R .

Considérons la fonction   fa : x �−→ 1

ch x − cos a
.

• Si cos a = 1, c’est-à-dire si a ∈ 2πZ , alors :

fa(x) = 1

ch x − 1
∼

x−→0

2

x2
� 0 .

D’après l’exemple de Riemann en 0 (2 � 1) et le théorème
d’équivalence pour des fonctions � 0, fa n’est pas intégrable
sur ]0 ; 1] , donc ne l’est pas non plus sur ] − ∞;+∞[.

• Supposons cos a =/ 1, c’est-à-dire a ∈ R − 2πZ. Alors, l’ap-
plication  fa est continue sur R, paire, � 0 et :

fa(x) = 1

ch x − cos a
∼

x−→+∞
1

ch x
∼

x−→+∞
2 e−x .

Comme l’application  x �−→ e−x est intégrable sur [0 ;+∞[,
par théorème d’équivalence pour des fonctions � 0, fa est in-
tégrable sur [0 ;+∞[, puis, par parité, fa est intégrable sur
] − ∞; 0], et enfin  fa est intégrable sur ] − ∞;+∞[.

On conclut que l’intégrale  I (a) =
∫ +∞

−∞

sin a

ch x − cos a
dx

existe si et seulement si a ∈ R − 2πZ.

2) Calcul :

Soit a ∈ R − 2πZ.

Il est clair que l’application  I : a �−→ I (a) est 2π-périodique
et impaire.

On peut donc supposer a ∈ ]0 ;π] .

Si a = π , alors  I (a) = 0.

Supposons a =/ π.
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On a alors :

I (a) =
∫ +∞

−∞

sin a

ch x − cos a
dx

=
∫ +∞

−∞

sin a
ex + e−x

2
− cos a

dx

=
∫ +∞

−∞

2ex sin a

e2x + 1 − 2ex cos a
dx .

Effectuons le changement de variable 

t = ex , x = ln t, dx = dt

t
:

I (a) =
∫ +∞

0

2 sin a

t2 − 2t cos a + 1
dt .

On a, par mise sous forme canonique :

t2 − 2t cos a + 1 = (t − cos a)2 + sin 2a

= sin 2a

[
1 +

(
t − cos a

sin a

)2]
.

D’où, par le changement de variable  u = t − cos a

sin a
:

I (a) =
∫ +∞

−cotan a

2 sin 2a du

sin 2a(1 + u2)

= 2[Arctan u]+∞
−cotan a

= 2

(
π

2
− Arctan (−cotan a)

)

= π+ 2Arctan
1

tan a

= π+ 2

(
π

2
− Arctan (tan a)

)

= π+ 2

(
π

2
− a

)
= 2π− 2a,

et cette dernière expression est aussi valable pour a = π .

On conclut : I (a) = 2π− 2a , complétée par imparité et par
2π-périodicité.

f) 1) Existence :

Soit a ∈ ]0 ; 1[ fixé.

• L’application  fa : x �−→ 1

(1 + ax)
√

x(1 − x)
est continue

sur ]0 ; 1[ , et fa � 0.

• Étude en 0 :

On a : fa(x) ∼
x−→0

1

x1/2
. D’après l’exemple de Riemann en 0

(1/2 < 1) et le théorème d’équivalence pour des fonctions � 0,
fa est intégrable sur ]0 ; 1/2].

• Étude en 1 :

On a : fa(x) ∼
x−→1

1

1 + a

1

(1 − x)1/2
.

D’après l’exemple de Riemann en 1 (1/2 < 1) et le théorème
d’équivalence pour des fonctions � 0, fa est intégrable sur
[1/2 ; 1[.

Puisque fa est intégrable sur ]0 ; 1/2] et sur [1/2 ; 1[, fa est in-
tégrable sur ]0 ; 1[ .

On conclut que l’intégrale   I (a) =
∫ 1

0

1

(1 + ax)
√

x(1 − x)
dx

existe, pour tout a ∈ ]0 ; 1[.

2) Calcul :

On a, par mise sous forme canonique :

x(1 − x) = −x2 + x = −(x2 − x)

= −
[(

x − 1

2

)2

− 1

4

]
= 1

4
−

(
x − 1

2

)2

= 1

4

[
1 −

(
x − 1

2

)2]
.

d’où, par le changement de variable t = 2x − 1 :

I (a) =
∫ 1

−1

1(
1 + a

t + 1

2

)
1

2

√
1 − t2

1

2
dt .

Puis, par le changement de variable 

u = Arccos t, t = cos u, dt = − sin u du :

I (a) =
∫ 0

π

− sin u(
1 + a

cos u + 1

2

)
sin u

du

=
∫ π

0

2

2 + a + a cos u
du.

Par le changement de variable v = tan
u

2
, qui amène une inté-

grale de fonction intégrable :

I (a) =
∫ +∞

0

2

2 + a + a
1 − v2

1 + v2

dv

=
∫ +∞

0

2

(1 + a) + v2
dv

= 2

1 + a

∫ +∞

0

1

1 + 1

1 + a
v2

dv

= 2

1 + a

[√
1 + a Arctan

(
v√

1 + a

)]+∞

0

= 2√
1 + a

π

2
= π√

1 + a
.

On conclut : ∀ a ∈ ]0 ; 1[, I (a) = π√
1 + a

.
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1) Existence :

Soit z ∈ C . Notons z = x + i y, (x,y) ∈ R
2.

L’application  fz : t �−→ ezt e−|t | est continue sur R et :

∀ t ∈ R, | fz(t)| = ext e−|t | =
{

e(x−1)t si t � 0

e(x+1)t si t � 0.

D’après le cours, l’application  t �−→ e(x−1)t est intégrable sur
[0 ;+∞[ si et seulement si x − 1 < 0 , et l’application

t �−→ e(x+1)t est intégrable sur ] − ∞; 0] si et seulement si
x + 1 > 0 .

Il en résulte que fz est intégrable sur R si et seulement si :
x − 1 < 0 et x + 1 > 0 , c’est-à-dire : −1 < x < 1 .

2) Calcul :

Soit z ∈ C, z = x + i y, (x,y) ∈ R
2 tel que −1 < x < 1 .

On a alors :

I (z) =
∫ +∞

−∞
ezt e−|t | dt

=
∫ 0

−∞
ezt et dt +

∫ +∞

0
ezt e−t dt

=
∫ 0

−∞
e(z+1)t dt +

∫ +∞

0
e(z−1)t dt

=
[

e(z+1)t

z + 1

]0

−∞
+

[
e(z−1)t

z − 1

]+∞

0

= 1

z + 1
− 1

z − 1
= 2

1 − z2
.

Pour tout x ∈ ]0 ;+∞[, f (x) =
∫ 3x

2x

sin t

sh2t
dt existe

comme intégrale d’une application continue sur un segment.

Comme  
sin t

sh2t
∼

t−→0

1

t
, considérons  g(x) =

∫ 3x

2x

1

t
dt.

• On a : g(x) = [ ln t]3x
2x = ln

3x

2x
= ln

3

2
.

• D’autre part : f (x) − g(x) =
∫ 3x

2x

(
sin t

sh2t
− 1

t

)
dt.

L’application  ϕ : t �−→ sin t

sh2t
− 1

t
. est continue sur ]0 ; 1]

et, au voisinage de 0 :

ϕ(t) = t + o(t2)(
t + o(t2)

)2 − 1

t
= t + o(t2)

t2 + o(t2)
− 1

t

= 1 + o(t)

t (1 + o(t)
) − 1

t
= 1

t

(
1 + o(t)

) − 1

t
= o(t)

t
= o(1),

donc : ϕ(t) −→
t−→0

0.

Puisque ϕ admet une limite finie en 0,ϕ est intégrable sur ]0 ; 1],
donc :

∫ 3x

2x
ϕ(t) dt =

∫ 3x

0
ϕ(t) dt −

∫ 2x

0
ϕ(t) dt −→

x−→0
0 .

Ainsi : f (x) − g(x) −→
x−→0

0,

ou encore : f (x) − g(x) = o(1).

On obtient :

f (x) = (
f (x) − g(x)

) + g(x) = o(1) + ln
3

2
−→
x−→0

ln
3

2
.

On conclut : lim
x−→0+

∫ 3x

2x

sin t

sh2t
dt = ln

3

2
.

Considérons l’application 

F : [−1 ; 1] × [1 ;+∞[−→ R, (x,t) �−→ (t + 2)x−1

(t + 1)x+1
.

• L’application  F est continue par rapport à x et continue par
morceaux (car continue) par rapport à t.

• On a, pour tout (x,t) ∈ [−1 ; 1] × [1 ;+∞[ :

|F(x,t)| = (t + 2)x−1

(t + 1)x+1

=
(

t + 2

t + 1

)x−1 1

(t + 1)2
� 1

(t + 1)2
� 1

t2

et l’application  t �−→ 1

t2
est continue par morceaux (car conti-

nue), � 0, intégrable sur [1 ;+∞[.

Ainsi, F vérifie HD.

D’après le théorème de continuité sous le signe intégrale, avec
HD, il s’ensuit que, pour tout x ∈ [−1 ; 1], l’application  F(x,·)
est intégrable sur [1 ;+∞[ , et que l’application

f : x �−→
∫ +∞

1
F(x,t) dt est continue sur [−1 ; 1] .

En particulier : f (x) −→
x−→0

f (0). Et :

f (0) =
∫ +∞

1

(t + 2)−1

t + 1
dt =

∫ +∞

1

1

(t + 1)(t + 2)
dt

=
∫ +∞

1

(
1

t + 1
− 1

t + 2

)
dt =

[
ln(t + 1) − ln (t + 2)

]+∞

1

=
[

ln
t + 1

t + 2

]+∞

1

= −ln
2

3
= ln

3

2
.

On conclut : lim
x−→0

∫ +∞

1

(t + 2)x−1

(t + 1)x+1
dt = ln

3

2
.

a) Soit x ∈ ]0 ;+∞[.

• L’application  gx : t �−→ t3

√
1 + t4

e−xt est continue sur

[0 ;+∞[, et gx � 0.

3.17
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• Étude en +∞ :

On a :

t2gx (t) = t5

√
1 + t4

e−xt ∼
t−→+∞

t3e−xt −→
t−→+∞

0 ,

donc, au voisinage de +∞ : t2gx (t) � 1 ,

d’où : 0 � gx (t) � 1

t2
.

D’après l’exemple de Riemann en +∞ (2 > 1) et le théorème
de majoration pour des fonctions � 0, gx est intégrable sur
[0 ;+∞[ , et on conclut que, pour tout x ∈ ]0 ;+∞[ ,

f (x) =
∫ +∞

0

t3

√
1 + t4

e−xt dt existe.

b) 1) Étude en 0 :

Soit x ∈ ]0 ;+∞[. On a :

f (x) =
∫ +∞

0

t3

√
1 + t4

e−xt dt

�
∫ +∞

1

t3

√
1 + t4

e−xt dt �
∫ +∞

1

t3

√
2t4

e−xt dt

= 1√
2

∫ +∞

1
t e−xt dt � 1√

2

∫ +∞

1
e−xt dt

= 1√
2

[
e−xt

−x

]+∞

1

= 1

x
√

2
−→

x−→0+
+∞,

donc : f (x) −→
x−→+∞

+∞.

2) Étude en +∞ :

Soit x ∈ ]0 ;+∞[. On a :

0 � f (x) =
∫ +∞

0

t3

√
1 + t4

e−xt dt

�
∫ +∞

0
t3 e−xt dt =

u=xt

∫ +∞

0

(
u

x

)3

e−u du

x

= 1

x4

∫ +∞

0
u3 e−u du −→

x−→+∞
0,

donc : f (x) −→
x−→+∞

0.

a) Soit λ ∈ ]0 ;+∞[.

L’application 
f

λ+ g
est continue sur [0 ;+∞[.

On a : 0 � f

λ+ g
� 1

λ
f. Puisque f est intégrable sur

[0 ;+∞[, d’après le théorème de majoration pour des 

fonctions � 0,
f

λ+ g
est intégrable sur [0 ;+∞[.

On conclut que, pour tout λ ∈ ]0 ;+∞[ , l’intégrale

φ(λ) =
∫ +∞

0

f

λ+ g
existe.

b) On suppose, de plus, que g est bornée.

On a, pour tout λ ∈ ]0 ;+∞[ :
∣∣∣∣φ(λ) − 1

λ

∫ +∞

0
f

∣∣∣∣ =
∣∣∣∣
∫ +∞

0

(
f

λ+ g
− f

λ

)∣∣∣∣

=
∫ +∞

0

f g

λ(λ+ g)
� ||g||∞

λ

∫ +∞

0

f

λ+ g

= ||g||∞
λ

φ(λ) = o
λ−→+∞

(
φ(λ)

)
.

On conclut : φ(λ) ∼
λ−→+∞

1

λ

∫ +∞

0
f.

Soit x ∈ [1 ;+∞[.

L’intégrale  I (x) =
∫ π/2

0
e−x sin t dt existe comme intégrale de

fonction continue sur un segment.

Considérons  J (x) =
∫ π/2

0
e−x sin t cos t dt , qui ressemble 

à I (x).

• On a :

0 � I (x) − J (x)

=
∫ π/2

0
e−x sin t (1 − cos t) dt =

∫ π/2

0
e−x sin t 2 sin 2 t

2
dt

︸ ︷︷ ︸
notée K (x)

.

On sait : ∀ x ∈ [0 ;π/2],
2

π
u � sin u � u.

D’une part :

K (x) �
∫ π/2

0
e−x 2t

π 2

(
t

2

)2

dt = 1

2

∫ π/2

0
e− 2x

π t t2 dt .

Par le changement de variable  u = 2x

π
t :

K (x) � 1

2

∫ x

0
e−u

(
πu

2x

)2
π

2x
du = π3

16x3

∫ x

0
u2 e−u du .

D’après l’étude de la fonction 
 d’Euler par exemple, l’appli-

cation u �−→ u2 e−u est intégrable sur [0 ;+∞[, et :

0 �
∫ x

0
u2 e−u du �

∫ +∞

0
u2e−u du = 
(3) = 2! = 2 .

Il en résulte : K (x) � π3

8x3
,

donc : I (x) − J (x) = O
x−→+∞

(
1

x3

)
.
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• On calcule J (x), par le changement de variable v = sin t :

J (x) =
∫ π/2

0
e−x sin t cos t dt =

∫ 1

0
e−xv dv

=
[

e−xv

−x

]1

0

= e−x − 1

−x
= 1 − e−x

x
,

d’où : J (x) = 1

x
+ o

x−→+∞

(
1

x

)
.

Enfin :

I (x) = (
I (x) − J (x)

) + J (x)

=
(

1

x
+ o

(
1

x

))
+ O

(
1

x3

)
= 1

x
+ o

(
1

x

)
.

On conclut :
∫ π/2

0
e−x sin t dt ∼

x−→+∞
1

x
.

Pour tout x ∈ [1 ;+∞[, f (x) =
∫ x2

x

dt√
t4 + 1

existe

comme intégrale d’une application continue sur un segment.

On va se ramener au voisinage de 0, par un changement de va-
riable, de façon à pouvoir utiliser les DL(0) usuels.

Soit x ∈ [1 ;+∞[.

On a, par le changement de variable u = 1

t
:

f (x) =
∫ x2

x

dt√
t4 + 1

=
∫ 1

x2

1
x

−du

u2√
1

u4
+ 1

=
∫ 1

x

1
x2

du√
1 + u4

.

Considérons les applications 

ϕ : R −→ R, u �−→ 1√
1 + u4

,

F : R −→ R, y �−→ F(y) =
∫ y

0

du√
1 + u4

.

Puisque ϕ est continue sur R et que F est une primitive de ϕ

sur R, F est de classe C1 sur R et F ′ = ϕ.

Par opérations, ϕ admet un DL11(0) :

ϕ(u) = 1√
1 + u4

= (1 + u4)− 1
2

= 1 +
(

− 1

2

)
u4 + 1

2!

(
− 1

2

)(
− 3

2

)
u8 + o(u11)

= 1 − 1

2
u4 + 3

8
u8 + o(u11).

Par primitivation, F admet donc un DL12(0) :

F(y) = F(0) + y − 1

2

y5

5
+ 3

8

y9

9
+ o(y12)

= y − 1

10
y5 + 1

24
y9 + o(y12).

Enfin :

f (x) = F
( 1

x

)
− F

(
1

x2

)

=
[

1
x

− 1
10

1
x5

+ 1
24

1
x9

+ o

(
1

x12

)]
−

[
1
x2

− 1
10

1
x10

+ o

(
1

x12

)]

= 1

x
− 1

x2
− 1

10x5
+ 1

24x9
+ 1

10x10
+ o

x−→+∞

(
1

x12

)
.

• On a :
{∀ x ∈ [0 ;π/2], x + cos x � x � 0

∀ x ∈ [π/2 ;+∞[, x + cos x � x − 1 > 0,

donc l’application f : x �−→ sin x√
x

(√
x + cos x − √

x
)

,

est continue sur ]0 ;+∞[.

• Étude en 0 :

On a :
sin x√

x
∼

x−→0

x√
x

= √
x −→

x−→0
0

et   
√

x + cos x − √
x −→

x−→0
1 , donc : f (x) −→

x−→0
0 .

Il en résulte que  f est intégrable sur ]0 ; 1] (faux problème).

• Étude en +∞ :

En utilisant une expression conjuguée et des développements
asymptotiques :

f (x) = sin x√
x

(√
x + cos x − √

x
)

= sin x√
x

cos x√
x + cos x + √

x

= sin x cos x

x

1√
1 + cos x

x
+ 1

= sin x cos x

x

1

2 + O

(
1

x

)

= sin x cos x

2x

(
1 + O

(
1

x

))−1

= sin x cos x

2x

(
1 + O

(
1

x

))

= sin x cos x

2x
+ O

(
1

x2

)

= 1

2

sin 2x

2x
+ O

(
1

x2

)
.
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D’après un exemple du cours, l’application  t �−→ sin t

t
est

d’intégrale convergente sur [1 ;+∞[, donc, par le changement

de variable t = 2x , l’application  x �−→ sin 2x

2x
est d’intégrale

convergente sur [1/2 ;+∞[.

D’autre part, il existe a > 0 et C ∈ R+ tels que :

∀ x � a,

∣∣∣∣O
(

1

x2

)∣∣∣∣ � C

x2
.

D’après l’exemple de Riemann en +∞ (2 > 1) et le théorème

de majoration pour des fonctions � 0, x �−→
∣∣∣∣O

(
1

x2

)∣∣∣∣ , est

intégrable sur [a ;+∞[ , donc    x �−→ O

(
1

x2

)
l’est aussi.

Il en résulte que  x �−→ O

(
1

x2

)
est d’intégrale convergente

sur [1 ;+∞[.

Par combinaison linéaire, on conclut que f est d’intégrale conver-
gente sur [1 ;+∞[.

Finalement, l’intégrale  
∫ →+∞

→0

sin x√
x

(√
x + cos x − √

x
)

dx

converge.

• Considérons l’application 

u : [0 ;+∞[−→ R, x �−→ x + √
x sin x .

Si x ∈ ]0 ;π], alors sin x � 0, donc u(x) � x > 0 .

Si x ∈ [π ;+∞[ , alors :

u(x) � x − √
x = √

x(
√

x − 1) > 0 .

Ceci montre : ∀ x ∈ ]0 ;+∞[, u(x) > 0,

donc l’application 

f :]0 ;+∞[−→ R, x �−→ sin x√
x + √

x sin x

est continue sur ]0 ;+∞[.

• Étude en +∞ :

On a, en utilisant des développements asymptotiques :

f (x) = sin x√
x + √

x sin x
= sin x√

x

(
1 + sin x√

x

)− 1
2

= sin x√
x

(
1 − 1

2

sin x√
x

+ O
x−→+∞

(
1

x

))

= sin x√
x

− 1

2

sin 2x

x
+ O

(
1

x3/2

)
.

∗ D’après un exemple du cours (cf. aussi exercice 3.44),∫ →+∞

1

sin x√
x

dx converge.

∗ Comme 
sin 2x

x
= 1 − cos 2x

2x
= 1

2x
− cos 2x

2x
, que

∫ →+∞

1

1

x
dx diverge et que, d’après un exemple classique,

∫ →+∞

1

cos 2x

2x
dx converge, par opération (raisonnement par

l’absurde, par exemple),
∫ →+∞

1

sin 2x

x
dx diverge.

∗ Il existe a ∈ [1 ;+∞[ et C ∈ R+ tels que :

∀ x ∈ [a ;+∞[,

∣∣∣∣O
(

1

x3/2

)∣∣∣∣ � C

x3/2
.

D’après l’exemple de Riemann en +∞ (3/2 > 1) et le théo-

rème de majoration pour des fonctions � 0, x �−→
∣∣∣∣O

(
1

x3/2

)∣∣∣∣
est intégrable sur [a ;+∞[ , donc∫ →+∞

1
O

(
1

x3/2

)
dx converge absolument, donc converge.

Par addition de deux convergentes et d’une divergente, on dé-

duit que l’intégrale  
∫ +∞

1
f (x) dx diverge.

Il n’est pas alors utile d’étudier   
∫ 1

→0
f (x) dx .

On conclut que l’intégrale  
∫ →+∞

→0

sin x√
x + √

x sin x
dx diverge.

1) Existence :

Soit Q ∈ R[X] .

• L’application f : x �−→ e−x2
Q(x) est continue sur R.

• On a : x2 f (x) = (
x2 Q(x)

)
e−x2 −→

x−→±∞ 0,

par prépondérance de l’exponentielle sur les polynômes.

On a donc, pour |x | assez grand : |x2 f (x)| � 1 , d’où :

0 � | f (x)| � 1

x2
. D’après l’exemple de Riemann en ±∞

(2 > 1 ) et le théorème de majoration pour des fonctions � 0,

| f | est intégrable sur ] − ∞;−1] et sur [1 ;+∞[, donc  f est

intégrable sur R.

Ceci montre que, pour tout polynôme Q de R[X], l’intégrale∫ +∞

−∞
e−x2

Q(x) dx existe.

En particulier, l’intégrale  I =
∫ +∞

−∞
e−x2

P(x + a) dx existe.

2) Expression de I :

En utilisant la formule de Taylor pour les polynômes et en no-

tant N = deg (P), on a :
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I =
∫ +∞

−∞
e−x2

( N∑
k=0

P (k)(a)

k!
xk

)
dx

=
N∑

k=0

P (k)(a)

k!

∫ +∞

−∞
e−x2

xk dx

︸ ︷︷ ︸
notée Ik

où les intégrales Ik , existent, d’après 1).

Si k est impair, comme x �−→ e−x2
xk est impaire et intégrable

sur R, on a Ik = 0.

Supposons k pair, k = 2p, p ∈ N .

Alors, comme x �−→ e−x2
xk est paire et intégrable sur R,

on a :

Ik = 2
∫ +∞

0
e−x2

x2p dx .

Cette dernière intégrale a été calculée dans l’exercice 3.4 (par
intégration par parties et relation de récurrence), donc :

Ik = (2p + 1)!

22p p!

√
π.

Finalement : I = √
π

E
(

N
2

)
∑
p=0

2p + 1

22p p!
P (2p)(a),

où N = deg (P).

Nous allons essayer d’appliquer le théorème de conti-
nuité sous le signe intégrale.

Considérons l’application :

F : [0 ;+∞[ × ]0 ; 1[−→ R, (x,t) �−→ 1 − t x

1 − t
.

• F est continue par rapport à x et continue par morceaux (car
continue) par rapport à t

• On a, pour tout (x,t) ∈ [0 ; 1/2]×]0 ; 1[ :

|F(x,t)| = 1 − t x

1 − t
� 1 − t1/2

1 − t
= 1

1 + t1/2
� 1 ,

et l’application constante 1 est continue par morceaux, � 0,
intégrable sur l’intervalle borné ]0 ; 1[ .

Ainsi, F vérifie HD sur [0 ; 1/2]×]0 ; 1[ .

D’après le théorème de continuité sous le signe intégrale, avec
HD, l’application 

f : [0 ; 1/2] −→ R, x �−→ f (x) =
∫ 1

0

1 − t x

1 − t
dt

est continue sur [0 ; 1/2].

En particulier : f (x) −→
x−→0

f (0) = 0.

On conclut : lim
x−→0

∫ 1

0

1 − t x

1 − t
dt = 0.

a) Soit x ∈ ]0 ;+∞[.

• L’application  g : t �−→ ta

et − 1
est continue sur [x ;+∞[,

� 0.

• Étude en +∞ :

On a : t2g(t) = ta+2

et − 1
−→

t−→+∞
0,

donc, pour t assez grand : t2g(t) � 1 ,

puis : 0 � g(t) � 1

t2
.

D’après l’exemple de Riemann en +∞ (2 > 1) et le théorème
de majoration pour des fonctions � 0, g est intégrable sur
[x ;+∞[.

On conclut que, pour tout x ∈ ]0 ;+∞[,

f (x) =
∫ +∞

x

ta

et − 1
dt existe.

b) • Puisque  g : t �−→ ta

et − 1
est continue sur ]0 ;+∞[, l’ap-

plication  G : x �−→
∫ x

1
g(t) dt est de classe C1 sur ]0 ;+∞[,

donc a fortiori G est continue sur ]0 ;+∞[.

Enfin, comme, pour tout x ∈ ]0 ;+∞[ :

f (x) =
∫ 1

x
g(t) dt +

∫ +∞

1
g(t) dt = −G(x) +

∫ +∞

1
g(t) dt ,

f est continue sur ]0 ;+∞[.

• Étude en 0 :

On a : g(t) = ta

et − 1
∼

t−→0

ta

t
= ta−1.

D’après l’exemple de Riemann en 0 (a − 1 > −1) et le théo-
rème d’équivalence pour des fonctions � 0, g est intégrable
sur ]0 ; 1] .

Il en résulte :
∫ 1

x
g(t) dt −→

x−→0

∫ 1

0
g(t) dt,

puis : f (x) =
∫ +∞

x
g(t) dt −→

x−→0

∫ +∞

0
g(t) dt.

Ainsi, f admet une limite finie en 0, donc f est intégrable sur
]0 ; 1] (faux problème).

• Étude en +∞ :

On a : et/2 ta

et − 1
∼

t−→+∞
ta

et/2
−→

t−→+∞
0,

donc, pour t assez grand : et/2 ta

et − 1
� 1,

puis :
ta

et − 1
� e−t/2.

On déduit, pour x assez grand :

3.27
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0 � f (x) =
∫ +∞

x

ta

et − 1
dt �

∫ +∞

x
e−t/2 dt

= [ − 2 e −t/2
]+∞

x
= 2 e −x/2.

Comme  x �−→ e−x/2 est intégrable sur [1 ;+∞[, par théo-
rème de majoration pour des fonctions � 0, f est intégrable
sur [1 ;+∞[.

Puisque  f est intégrable sur ]0 ; 1] et sur [1 ;+∞[, f est in-
tégrable sur ]0 ;+∞[.

a) Soit x ∈ R .

• L’application  gx : t �−→ sin (xt)

sin t
est continue sur ]0 ;π/2].

• On a : gx (t) ∼
t−→0

xt

t
= x, d’où : gx (t) −→

t−→0
x ,

donc  gx est intégrable sur ]0 ;π/2] (faux problème).

On conclut que  f est définie sur R.

b) Nous allons essayer d’appliquer le théorème de dérivation
sous le signe intégrale.

Notons   F : R×]0 ;π/2] −→ R, (x,t) �−→ sin (xt)

sin t
.

• Pour tout x ∈ R , F(x,·) est intégrable sur ]0 ;π/2] d’après a).

• 
∂ F

∂x
: (x,t) �−→ t cos (xt)

sin t
existe sur R×]0 ;π/2] , est conti-

nue par rapport à x , continue par morceaux (car continue) par
rapport à t.

• Rappelons :




∀ u ∈ R, | sin u| � |u|

∀ u ∈ [0 ;π/2], sin u � 2u

π
.

Soit a ∈ R+ fixé.

On a donc, pour tout (x,t) ∈ [−a ; a]×]0 ;π/2] :

∣∣∣∣∂ F

∂x
(x,t)

∣∣∣∣ = | sin (xt)|
sin t

� |xt |
2t

π

= π

2
|x | � π

2
a

et l’application constante  
π

2
a est intégrable sur l’intervalle borné

]0 ;π/2].

Ainsi,
∂ F

∂x
vérifie HDL.

D’après le théorème de dérivation sous le signe intégrale, f

est de classe C1 sur R et :

∀ x ∈ R, f ′(x) =
∫ π/2

0

t cos (xt)

sin t
dt .

c) Comme plus haut, on a :

| f (x)| =
∣∣∣∣
∫ π/2

0

sin (xt)

sin t
dt

∣∣∣∣ �
∫ π/2

0

| sin (xt)|
sin t

dt

�
∫ π/2

0

|xt |
2t

π

dt = π|x |
2

∫ π/2

0
dt = π2|x |

4
−→
x−→0

0,

donc : f (x) −→
x−→0

0.

Pour tout x ∈ [0 ;+∞[, f (x) =
∫ π/2

0
t x cos t dt existe

comme intégrale d’une application continue (continue par
morceaux si x = 0) sur un segment.

1) On a : f (0) =
∫ π/2

0
cos t dt = [ sin t]π/2

0 = 1 >
3

4

et 

f (1) =
∫ π/2

0
t cos t dt =

ipp
[t sin t]π/2

0 −
∫ π/2

0
sin t dt

= π

2
+ [ cos t]π/2

0 = π

2
− 1 <

3

4
.

Ainsi,
3

4
, est compris entre deux valeurs de f.

2) Montrons que  f est continue sur [0 ;+∞[, en essayant d’uti-
liser le théorème de continuité sous le signe intégrale.

Notons    F : [0 ;+∞[×[0 ;π/2] −→ R, (x,t) �−→ t x cos t.

• F est continue par rapport à x et continue par morceaux (car
continue) par rapport à t.

• Soit a ∈ [0 ;+∞[.

On a, pour tout (x,t) ∈ [0 ; a] × [0 ;π/2] :

|F(x,t)| = |t x cos t | = t x cos t � t x �
(
π

2

)a

et l’application constante  

(
π

2

)a

est intégrable sur le segment

[0 ;π/2].

Ainsi, F vérifie HDL.

D’après le théorème de continuité sous le signe intégrale, on
déduit que  f est continue sur [0 ;+∞[.

3) Puisque f est continue sur l’intervalle [0 ;+∞[ et que

f (0) >
3

4
> f (1) , d’après le théorème des valeurs intermé-

diaires, il existe c ∈ ]0 ; 1[ tel que : f (c) = 3

4
.

1) Ensemble de définition :

Soit x ∈ R .

L’application gx : t �−→ Arctan (x tan t) est continue sur
[0 ;π/2[.

• Étude en π/2 :

On a : gx (t) −→
t−→π/2




π/2 si x > 0

0 si x = 0

−π/2 si x < 0,

donc  gx est intégrable sur [0 ;π/2[ (faux problème).

3.30
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On conclut : Déf ( f ) = R .

2) Parité :

On a : ∀ x ∈ R, f (−x) = − f (x), donc  f est impaire.

On peut donc se limiter, dans la suite de l’étude, à x � 0.

3) Continuité :

Notons 

F : [0 ;+∞[×[0 ;π/2[−→ R, (x,t) �−→ Arctan (x tan t) .

• F est continue par rapport à x et continue par morceaux (car
continue) par rapport à t.

• On a, pour tout  (x,t) ∈ [0 ;+∞[×[0 ;π/2[ :

|F(x,t)| = ∣∣Arctan (x tan t)
∣∣ � π

2
,

et l’application constante π/2 est intégrable sur l’intervalle borné
[0 ;π/2[.

Ainsi, F vérifie HD.

D’après le théorème de continuité sous le signe intégrale,
f est continue sur [0 ;+∞[.

4) Classe C1, variations :

Gardons les notations de 3).

• Pour tout x ∈ [0 ;+∞[, F(x,·) est intégrable sur [0 ;π/2[
d’après 1).

• 
∂ F

∂x
: (x,t) �−→ tan t

1 + x2tan2t
existe sur [0 ;+∞[×[0 ;π/2[,

est continue par rapport à x , continue par morceaux (car conti-
nue) par rapport à t.

• Soit (a,b) ∈ R
2 tel que 0 < a < b. 

On a, pour tout (x,t) ∈ [a ; b] × [0 ;π : 2[ :∣∣∣∣∂ F

∂x
(x,t)

∣∣∣∣ = tan t

1 + x2tan2t
� tan t

1 + a2tan2t︸ ︷︷ ︸
notée ϕa(t)

.

L’application ϕa est continue par morceaux (car continue), � 0,

intégrable sur [0 ;π/2[ car 

ϕa(t) ∼
t−→π/2

tan t

a2tan2t
= 1

a2tan t
−→

t−→π/2
0

(faux problème).

Ainsi,
∂ F

∂x
vérifie HDL sur ]0 ;+∞[×[0 ;π/2[.

D’après le théorème de dérivation sous le signe intégrale, avec

HDL, f est de classe C1 sur]0 ;+∞[ et :

∀ x ∈ ]0 ;+∞[, f ′(x) =
∫ π/2

0

tan t

1 + x2tan2t
dt .

Puisque l’application  
tan t

1 + x2tan2t
est continue sur [0 ;π/2[,

� 0, et n’est pas l’application nulle, on a :

∀ x ∈ ]0 ;+∞[, f ′(x) > 0 .

Comme, de plus, f est continue en 0, on conclut que  f est
strictement croissante sur [0 ;+∞[.

5) Classe C2, convexité :

Par la même démarche qu’en 4), on montre que  f est de 

classe C2 sur ]0 ;+∞[ et que :

∀ x ∈ ]0 ;+∞[, f ′′(x) = −
∫ +∞

0

2x tan3t

(1 + x2tan2t)2
dt � 0 ,

donc  f est concave sur ]0 ;+∞[.

6) Étude en 0 :

1re méthode :

On a, pour tout x ∈ ]0 ;+∞[ :

f (x) =
∫ π/2

0

tan t

1 + x2tan2t
dt �

∫ Arctan 1
x

0

tan t

1 + x2tan2t
dt

�
∫ Arctan 1

x

0

tan t

2
dt = −1

2
[ln cos t]

Arctan 1
x

0

= −1

2
ln cos Arctan

1

x
= −1

2
ln

1√
1 + 1

x2

= 1

4
ln

(
1 + 1

x2

)
−→

x−→0+
+∞,

donc : f ′(x) −→
x−→0+

+∞.

• 2è méthode :

Nous allons exprimer  f ′(x) pour x ∈ ]0 ;+∞[, sans symbole
d’intégrale, ce qui permettra d’étudier f ′(x) lorsque x −→ 0+.

Soit x ∈ ]0 ;+∞[.

On a, par le changement de variable u = tan t :

f ′(x) =
∫ π/2

0

tan t

1 + x2tan2t
dt =

∫ +∞

0

u

1 + x2u2

du

1 + u2
,

puis, par le changement de variable v = u2, dv = 2u du :

f ′(x) = 1

2

∫ +∞

0

dv

(1 + x2v)(1 + v)
.

Pour x =/ 1, on effectue une décomposition en éléments
simples :

1

(1 + x2X)(1 + X)
= a

1 + x2X
+ b

1 + X
, (a,b) ∈ R

2 .

En multipliant par 1 + x2X, puis en remplaçant X par − 1

x2
,

on obtient : a = 1

1 − 1

x2

= x2

x2 − 1
.
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En multipliant par 1 + X , puis en remplaçant X par −1, on ob-

tient : b = 1

1 − x2
.

D’où :

f ′(x) = 1

2(x2 − 1)

∫ +∞

0

(
x2

1 + x2v
− 1

1 + v

)
dv

= 1

2(x2 − 1)

[
ln

1 + x2v

1 + v

]+∞

0

= 1

2(x2 − 1)
ln x2 = ln x

x2 − 1
.

Il s’ensuit : f ′(x) −→
x−→0+

+∞.

La courbe représentative de  f admet Oy pour demi-tangente
en O .

7) Valeurs remarquables :

On a :

f (1) =
∫ π/2

0
Arctan (tan t) dt =

∫ π/2

0
t dt =

[
t2

2

]π/2

0

= π2

8

et :

f ′(1) =
∫ π/2

0

tan t

1 + tan2t
dt =

∫ π/2

0
sin t cos t dt

= 1

2

∫ π/2

0
sin 2t dt = 1

2

[
− cos 2t

2

]π/2

0

= 1

2
.

8) Étude en +∞ :

Transformons l’écriture de f (x) , pour x ∈ ]0 ;+∞[ fixé, par
le changement de variable u = π/2 − t :

f (x) =
∫ π/2

0
Arctan (x tan t) dt

=
∫ π/2

0
Arctan

x

tan u
du

=
∫ π/2

0

(
π

2
− Arctan

tan u

x

)
du

= π2

4
−

∫ π/2

0
Arctan

(
1

x
tan u

)
du = π2

4
− f

(
1

x

)
.

Comme f (y) −→
y−→0+

0, on déduit : f (x) −→
x−→+∞

π2

4
.

La courbe représentative de f admet donc une asymptote

d’équation y = π2

4
.

9) Tracé de la courbe représentative de f :

y

x

y = f(x)

π
4

2

π
8

2

1

O
1

a) Soit x ∈ R .

• L’application  gx : t �−→ 1

t x (1 + ln t)
est continue sur

[1 ;+∞[, et gx � 0.

• On a : gx (t) ∼
t−→+∞

1

t x ln t
.

D’après l’exemple de Bertrand en +∞ , l’application

hx : t �−→ 1

t x ln t
est intégrable sur [2 ;+∞[ si et seulement

si x > 1. Redémontrons-le.

∗ Si x > 1, alors, comme 

t
x+1

2 hx (t) = 1

t
x−1

2 ln t
−→

t−→+∞
0 ,

on a, pour t assez grand, t
x+1

2 hx (t) � 1,

donc : 0 � hx (t) � 1

t
x+1

2

.

D’après l’exemple de Riemann en +∞ (x+1
2 > 1) et le théo-

rème de majoration pour des fonctions � 0, hx est intégrable
sur [2 ;+∞[.

∗ Si x < 1, alors, comme t hx (t) = t1−x

ln t
−→

t−→+∞
+∞,

on a, pour t assez grand, t hx (t) � 1, donc hx (t) � 1

t
� 0.

D’après l’exemple de Riemann en +∞ et le théorème de mi-
noration pour des fonctions � 0, hx n’est pas intégrable sur
[2 ;+∞[.

∗ Si x = 1, comme 
∫ X

2

1

t ln t
dt = [ ln ln t]X

2 = ln lnX − ln ln2 −→
X−→+∞

+∞ ,

hx n’est pas intégrable sur [2 ;+∞[.

3.32
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On déduit que hx est intégrable sur [2 ;+∞[ si et seulement
si x > 1. Par théorème d’équivalence pour des fonctions � 0,
gx est intégrable sur [1 ;+∞[ si et seulement si x > 1.

On conclut que  f (x) existe si et seulement si x ∈ ]1 ;+∞[,
ou encore : Déf ( f ) = ]1 ;+∞[.

b) Nous allons essayer d’appliquer le théorème de dérivation
sous le signe intégrale.

Notons 

F : ]1 ;+∞[×[1 ;+∞[−→ R, (x,t) �−→ 1

t x (1 + ln t)
.

• Pour tout x ∈ ]1 ;+∞[, F(x,·) est intégrable sur [1 ;+∞[,
d’après a).

• 
∂ F

∂x
: (x,t) �−→ (−ln t)t−x

1 + ln t
existe sur ]1 ;+∞[×[1 ;+∞[,

est continue par rapport à x , continue par morceaux (car conti-
nue) par rapport à t.

• Soit a ∈ ]1 ;+∞[. On a :

∀ (x,t) ∈ [a ;+∞[×[1 ;+∞[,∣∣∣∣∂ F

∂x
(x,t)

∣∣∣∣ = ln t

1 + ln t
t−x � t−x � t−a

et  t �−→ t−a est continue par morceaux (car continue), � 0,
intégrable sur [1 ;+∞[, car a > 1.

Ainsi,
∂ F

∂x
vérifie HDL.

D’après le théorème de dérivation sous le signe intégrale, pour

tout x ∈ ]1 ;+∞[,
∂ F

∂x
(x,·) est intégrable sur [1 ;+∞[, f

est de classe C1 sur ]1 ;+∞[ et, pour tout x ∈ ]1 ;+∞[ :

f ′(x) = −
∫ +∞

1

ln t

1 + ln t
t−x dt .

Puisque l’application  t �−→ ln t

1 + ln t
t−x est continue sur

[1 ;+∞[, � 0, et n’est pas l’application nulle, on a :

∀ x ∈ ]1 ;+∞[, f ′(x) < 0 ,

donc  f est strictement décroissante sur ]1 ;+∞[.

De même, on montre, par le même raisonnement, que  f est
de classe C2 sur ]1 ;+∞[ et que :

∀ x ∈ ]1 ;+∞[, f ′′(x) =
∫ +∞

1

(ln t)2

1 + ln t
t−x dt .

De plus : ∀ x ∈ ]1 ;+∞[, f ′′(x) � 0,

donc  f est convexe.

c) • Étude en 1 :

On a, pour tout x ∈ ]1 ;+∞[ :

f (x) =
∫ +∞

1

1

t x (1 + ln t)
dt �

∫ +∞

e

1

t x (1 + ln t)
dt

�
∫ +∞

e

1

t x 2 ln t
dt =

u= ln t

∫ +∞

1

1

exu2u
eu du

= 1

2

∫ +∞

1

e−(x−1)u

u
du =

v = (x − 1)u

1

2

∫ +∞

x−1

e−v

v
dv.

L’application  h : v �−→ e−v

v
est continue sur ]0 ;+∞[, � 0,

intégrable sur [1 ;+∞[, car 0 � h(v) � e−v , et non inté-

grable sur ]0 ; 1] , car h(v) ∼
v−→0

1

v
.

Il en résulte :
∫ +∞

x−1

e−v

v
dv −→

x−→1+
+∞,

puis : f (x) −→
x−→1+

+∞.

• Étude en +∞ :

On a :

0 � f (x) =
∫ +∞

1

1

t x (1 + ln t)
dt �

∫ +∞

1

1

t x
dt

=
[

t−x+1

−x + 1

]+∞

1

= 1

x − 1
−→

x−→+∞
0,

d’où : f (x) −→
x−→+∞

0.

d)
y = f(x)

y

xO 1

e) Essayons de nous ramener à la recherche d’une limite.

Soit x ∈ ]1 ;+∞[. On a, par le changement de variable 

u = t x , t = u
1
x , dt = 1

x
u

1
x −1 du :

f (x) =
∫ +∞

1

1

t x (1 + ln t)
dt

=
∫ +∞

1

1

x
u

1
x −1

u

(
1 + 1

x ln u

) du = 1

x

∫ +∞

1

u
1
x −2

1 + 1

x
ln u

du.

Considérons l’application 

H : [0 ; 1[×[1 ;+∞[−→ R, (X,u) �−→ uX−2

1 + X ln u
.
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• H est continue par rapport à X et continue par morceaux (car
continue) par rapport à u.

• Soit a ∈ [0 ; 1[.

On a, pour tout (X,u) ∈ [0 ; a] × (1 ;+∞[ :

|H(X,u)| = uX−2

1 + X ln u
� uX−2 � ua−2 ,

et  u �−→ ua−2 est intégrable sur [1 ;+∞[.

Ainsi, H vérifie HDL.

D’après le théorème de continuité sous le signe intégrale, l’ap-

plication  h : X �−→
∫ +∞

1
H(X,u) du est continue sur [0 ; 1[.

En particulier :
∫ +∞

1

uX−2

1 + X ln u
du = h(X)

−→
X−→0

h(0) =
∫ +∞

1
u−2 du = [−u−1]+∞

1 = 1.

Il en résulte :
∫ +∞

1

u
1
x −2

1 + 1
x ln u

du −→
x−→+∞

1,

et on conclut : f (x) ∼
x−→+∞

1

x
.

a) 1) Nous allons essayer d’appliquer le théorème de dé-
rivation sous le signe intégrale.

Notons 

G : R × [0 ;+∞[−→ R, (p,t) �−→ f (t) e−pt .

• Pour tout p ∈ R, G(p,·) est intégrable sur [0 ;+∞[ par hy-
pothèse.

• Pour tout k ∈ {1,2}, ∂k G

∂pk
: (p,t) �−→ (−t)k f (t) e−pt est dé-

finie sur R × [0 ;+∞[ , continue par rapport à p, continue par
morceaux (car continue) par rapport à t.

• On a, pour tout k ∈ {1,2} et tout a ∈ R :

∀ (p,t) ∈ [a ;+∞[×[0 ;+∞[,

∣∣∣∣∂
k G

∂pk
(p,t)

∣∣∣∣
=

∣∣∣(−t)k f (t) e−pt
∣∣∣ = t k | f (t)| e−pt � t k | f (t)| e−at

= t ke −t
(| f (t)| e −(a−1)t

)
︸ ︷︷ ︸

notée ϕk,a(t)

.

L’application  h : t �−→ t k e−t est continue sur [0 ;+∞[ et
h(t) −→

t−→+∞
0, par prépondérance de l’exponentielle sur les po-

lynômes, donc, classiquement, h est bornée sur [0 ;+∞[.

D’autre part, par hypothèse, t �−→ f (t)e−(a−1)t est intégrable
sur [0 ;+∞[.

Il en résulte que  ϕk,a est intégrable sur [0 ;+∞[.

Ainsi,
∂k G

∂pk
vérifie HDL.

D’après le théorème de dérivation sous le signe intégrale, on
conclut que F est de classe C2 sur R et que, pour tout p ∈ R :

F ′(p) =
∫ +∞

0
−t f (t) e−pt dt ,

F ′′(p) =
∫ +∞

0
t2 f (t) e−pt dt .

2) On a donc, pour tout p ∈ R :

(
F ′(p)

)2 =
( ∫ +∞

0
(−t) f (t) e−pt dt

)2

�
( ∫ +∞

0
t | f (t)| e−pt dt

)2

=
( ∫ +∞

0

(√
f (t) e− pt

2︸ ︷︷ ︸
notée u(t)

)(
t
√

f (t) e− pt
2︸ ︷︷ ︸

notée v(t)

)
dt

)2
.

Les applications  u et  v sont de carrés intégrables sur
[0 ;+∞[, d’où, d’après l’inégalité de Cauchy et Schwarz :

(
F ′(p)

)2 �
( ∫ +∞

0

(
u(t)

)2
dt

)( ∫ +∞

0

(
v(t)

)2
dt

)

=
( ∫ +∞

0
f (t) e−pt dt

)( ∫ +∞

0
t2 f (t) e−pt dt

)
= F(p)F ′′(p) .

b) On suppose, de plus, que f =/ 0. Puisque, pour tout p ∈ R,
l’application  t �−→ f (t)e−pt est continue, � 0 et n’est pas
l’application nulle, on a :

∀ p ∈ R, F(p) > 0 .

Alors, ln ◦ F , est de classe C2 et :

(ln ◦ F)′ = F ′

F
, ( ln ◦ F)′′ = F ′′ F − F ′2

F2
� 0 ,

donc  ln ◦ F est convexe sur R.

a) Étude de I et J :

1) Existence :

• L’application  f : x �−→ ln sin x est continue sur ]0 ;π/2]
et f � 0. On a, au voisinage de 0 :

− f (x) = −ln sin x = −ln
(
x + o(x)

)
= −ln

(
x
(
1 + o(1)

)) = −ln x + ln
(
1 + o(1)

)
= −ln x + o(1) ∼

x−→0
− ln x .

D’après le cours, x �−→ − ln x est intégrable sur ]0 ; 1] . 
Par théorème d’équivalence pour des fonctions � 0,

− f est intégrable sur ]0 ; 1] , donc sur ]0 ;π/2], puis  f l’est
aussi.
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Ceci montre que l’intégrale    I =
∫ π/2

0
ln sin x dx existe.

• Par le changement de variable t = π

2
− x, puisque  I existe,

J existe aussi et :

J =
∫ π/2

0
ln cos x dx =

∫ 0

π/2
ln sin t (−dt) = I .

2) Calcul :

On a :

2I = I + J

=
∫ π/2

0
(ln sin x + ln cos x) dx =

∫ π/2

0
ln (sin x cos x) dx

=
∫ π/2

0
ln

(
1

2
sin 2x

)
dx = −π

2
ln 2 +

∫ π
2

0
ln sin 2x dx

︸ ︷︷ ︸
notée I1

.

On a, par le changement de variable u = 2x, puis par la rela-
tion de Chasles :

I1 = 1

2

∫ π

0
ln sin u du

= 1

2

(∫ π
2

0
ln sin u du +

∫ π

π
2

ln sin u du

)

=
v = π− u

1

2

(
I +

∫ 0

π
2

ln sin v (−dv)

)
= 1

2
(I + I ) = I.

On obtient ainsi   2I = −π

2
ln 2 + I , d’où :

I = J = −π

2
ln 2 .

b) Étude de K :

1) Existence :

• L’application  g : x �−→ x

tan x
est continue sur ]0 ;π/2[, et

g � 0.

• On a  g(x) −→
x−→0

1 et  g(x) −→
x−→π/2

0 , donc  g est intégrable

sur ]0 ;π/2[ (faux problèmes).

Ceci montre que l’intégrale  K =
∫ π/2

0

x

tan x
dx existe.

2) Calcul :

Soit ε ∈ ]0 ;π/2[ fixé. On a, par intégration par parties pour

des applications de classe C1 :∫ π/2

ε

x

tan x
dx =

∫ π/2

ε
x

cos x

sin x
dx

= [
x ln sin x]π/2

ε
−

∫
π/2

ε

ln sin x dx

= −ε ln sin ε−
∫ π/2

ε

ln sin x dx .

On a : ε ln sin ε ∼
ε−→0

sin ε ln sin ε−→
ε−→0

0,

d’où, en passant à la la limite :

K = −
∫ π/2

0
ln sin x dx = −I = π

2
ln 2 .

c) Étude de L :

On a, pour tout x ∈ ]0 ;π[ :

x sin x

1 − cos x
= x

2 sin
x

2
cos

x

2

2 sin 2 x

2

= x

tan
x

2

.

Comme K existe, par le changement de variable  t = x

2
, il en

résulte que L existe et que :

L =
∫ π

0

x sin x

1 − cos x
dx =

∫ π

0

x

tan
x

2

dx

=
∫ π/2

0

2t

tan t
2 dt = 4K = 2π ln 2.

d) Étude de M :

Partant de K, par le changement de variable u = tan x :

K =
∫ π/2

0

x

tan x
dx =

∫ +∞

0

Arctan u

u

du

1 + u2
.

Ceci montre que l’intégrale proposée M existe et que :

M =
∫ +∞

0

Arctan x

x(1 + x2)
dx = K = π

2
ln 2 .

L’application x �−→ e−x Q(x) est de classe C1 sur R et,
pour tout x de R :

d

dx

(
e−x Q(x)

) = e−x
( − Q(x) + Q′(x)

) = −e−x P(x).

Il existe donc C ∈ R tel que :

∀ x ∈ R, e−x Q(x) = −
∫ x

0
e−t P(t) d t + C.

Comme t �−→ e−t P(t) est continue sur [0 ;+∞[ et que

e−t P(t) = o
t→+∞

(
1

t2

)
, l’application  t �−→ e−t P(t) est in-

tégrable sur [0 ;+∞[. On déduit, en faisant tendre x vers +∞
dans le résultat précédent : C =

∫ +∞

0
e−t P(t)dt.

Ainsi : ∀x ∈ R , Q(x) = ex

∫ +∞

x
e−t P(t) dt .

Comme : ∀x ∈ R , P(x) � 0 ,

il est alors clair que : ∀x ∈ R , Q(x) � 0.
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1) Existence :

Soit n ∈ N
∗ .

• L’application  fn : x �−→ xn−1

(1 + x)n+1
est continue sur

[1 ;+∞[, et fn � 0.

• On a : fn(x) ∼
x−→+∞

xn−1

xn+1
= 1

x2
. D’après l’exemple de

Riemann en +∞ (2 > 1 ) et le théorème d’équivalence pour
des fonctions � 0, fn est intégrable sur [1 ;+∞[.

On conclut que l’intégrale  In =
∫ +∞

1

xn−1

(1 + x)n+1
dx existe.

2) Calcul :

• 1re méthode :

Essayons d’obtenir une relation de récurrence, à l’aide d’une
intégration par parties.

Soit n ∈ N
∗ tel que n � 2. Soit X ∈ [1 ;+∞[.

On a, par intégration par parties pour des applications de
classe C1 :
∫ X

1

xn−1

(1 + x)n+1
dx =

∫ X

1
xn−1(1 + x)−n−1 dx

=
[

xn−1 (1 + x)−n

−n

]X

1

−
∫ X

1
(n − 1)xn−2 (1 + x)−n

−n
dx

= − Xn−1

n(1 + X)n
+ 1

n2n
+ n − 1

n

∫ X

1

xn−2

(1 + x)n
dx .

On obtient, en faisant X −→ +∞ :

In = 1

n2n
+ n − 1

n
In−1 ,

ou encore : nIn = 1

2n
+ (n − 1)In−1.

En notant  Jn = nIn pour tout n ∈ N
∗ , on a donc :

∀ n � 2, Jn = 1

2n
+ Jn−1 .

d’où, en réitérant :

Jn = 1

2n
+ 1

2n−1
+ · · · + 1

22
+ J1 .

Et : J1 =
∫ +∞

1

1

(1 + x)2
dx =

[
− 1

1 + x

]+∞

1

= 1

2
.

D’où :

Jn = 1

2n
+ · · · + 1

2

=
n∑

k=1

1

2k
= −1 +

n∑
k=0

(
1

2

)k
= −1 +

1 −
(

1

2

)n+1

1 − 1

2

= −1 + 2 − 1

2n
= 1 − 1

2n
.

On conclut : ∀ n ∈ N
∗, In = 1

n

(
1 − 1

2n

)
.

• 2è méthode :

Par le changement de variable t = x + 1, puis développement
du binôme de Newton, en amenant des intégrales de fonctions
intégrables par l’exemple de Riemann en +∞ , on a :

In =
∫ +∞

1

xn−1

(1 + x)n+1
dx

=
∫ +∞

2

(t − 1)n−1

tn+1
dt

=
∫ +∞

2

1

tn+1

n−1∑
k=0

(
n − 1

k

)
t k(−1)n−1−k dt

=
n−1∑
k=0

(
n − 1

k

)
(−1)n−1−k

∫ +∞

2
t k−n−1 dt

=
n−1∑
k=0

(
n − 1

k

)
(−1)n−1−k

[
t k−n

k − n

]+∞

2

=
n−1∑
k=0

(
n − 1

k

)
(−1)n−1−k 1

(n − k)2n−k

=
n−1∑
k=0

(−1)n−1−k (n − 1)!

k!(n − k)!

(
1

2

)n−k

= − 1

n

n−1∑
k=0

(
n
k

)(
− 1

2

)n−k

= − 1

n

((
1 − 1

2

)n

− 1

)
= 1

n

(
1 − 1

2n

)
.

Pour évaluer  Min

(
x,

1√
t
,

1

t2

)
, il nous faut comparer

x,
1√
t
,

1

t2
, pour x fixé dans [0 ;+∞[ et t variant ensuite dans

]0 ;+∞[.

Soit x ∈ ]0 ;+∞[. Notons    gx : t �−→ Min

(
x,

1√
t
,

1

t2

)
.

• Si x = 0, alors : ∀ t ∈ ]0 ;+∞[, gx (t) = g0(t) = 0,

donc  gx est intégrable sur ]0 ;+∞[, et  f (x) = 0.

• Si 0 < x � 1, alors : gx (t) =




x si t � 1√
x

1

t2
si

1√
x

� t .

L’application  gx est donc continue sur [0 ;+∞[, et, d’après
l’exemple de Riemann en +∞ (2 > 1 ), gx est intégrable sur
[1 ;+∞[, puis sur [0 ;+∞[. On a :
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1

O 1

2

3

y

y = f(x)

x

f (x) =
∫ 1√

x

0
x dt +

∫ +∞

1√
x

1

t2
dt

= x
1√
x

+
[

− 1

t

]+∞

1√
x

= 2
√

x .

• Si 1 � x, alors : gx (t) =




x si t � 1

x2

1√
t

si
1

x2
� t � 1

1

t2
si t � 1.

Comme dans le cas précédent, gx est intégrable sur [0 ;+∞[.
On a :

f (x) =
∫ 1

x2

0
x dt +

∫ 1

1
x2

1√
t

dt +
∫ +∞

1

1

t2
dt

= x
1

x2
+ [2

√
t]1

1
x2

+
[

− 1

t

]+∞

1

= 1

x
+

(
2 − 2

x

)
+ 1 = 3 − 1

x
.

On conclut :

∀ x ∈ [0 ;+∞[, f (x) =



2
√

x si x � 1

3 − 1

x
si x > 1.

2) Supposons  g intégrable sur [0 ;+∞[.

Comme :

∀ x ∈ [0 ;+∞[, 0 � f (x) sin 2x � f (x)| sin x | = g(x) ,

par théorème de majoration pour des fonctions � 0, l’appli-

cation  s : x �−→ f (x) sin 2x est intégrable sur [0 ;+∞[.

D’autre part, puisque  f est décroissante :

∀ x ∈ [π/2 ;+∞[, 0 � f (x) cos 2x = f (x) sin 2

(
x − π

2

)

� f

(
x − π

2

)
sin 2

(
x − π

2

)
= s

(
x − π

2

)
.

Comme  s est intégrable sur [0 ;+∞[, par changement de va-

riable affine, x �−→ s

(
x − π

2

)
est intégrable sur [π/2 ;+∞[ ,

puis, par théorème de majoration pour des fonctions � 0, l’ap-

plication  c : x �−→ f (x) cos 2x est intégrable sur [π/2 ;+∞[ ,
donc sur [0 ;+∞[.

Puisque  s et  c sont intégrables sur [0 ;+∞[, par addition,
on déduit que  f l’est aussi.

Ceci montre que, si g est intégrable sur |[0 ;+∞[, alors  f l’est
aussi.

3) Par la même méthode qu’en 2), on montre que, si  h est in-
tégrable sur [0 ;+∞[, alors  f l’est aussi.

On conclut que les intégrabilités de f,g,h sont deux à deux équi-
valentes.

On a : | f f ′| � 1

2
( f 2 + f ′2).

Puisque  f 2 et  f ′2 sont intégrables sur [0 ;+∞[, par opéra-

tions,
1

2
( f 2 + f ′2) l’est aussi, puis, par théorème de majora-

tion pour des fonctions � 0, | f f ′| l’est aussi, et donc  f f ′

l’est aussi.

Mais, pour tout X ∈ [0 ;+∞[ :
∫ X

0
f f ′ =

[1

2
f 2

]X

0
= 1

2

(
f 2(X) − f 2(0)

)
.

On a donc :
1

2

(
f 2(X) − f 2(0)

) −→
X−→+∞

∫ +∞

0
f f ′

et il en résulte que f 2(X) admet une limite finie en +∞ ,
notée L.

Si L =/ 0, alors  f 2 n’est pas intégrable sur [0 ;+∞[, contra-
diction.

On a donc : L = 0.

On déduit : f 2(X) −→
X−→+∞

0 et on conclut :

f (x) −→
x−→+∞

0 .

Une étude immédiate de f (études en 0 et en 1) montre que f

est de classe C0 sur [0 ;+∞[ et de classe C1 sur ]0 ;+∞[.

1) Si  f est intégrable sur [0 ;+∞[, alors, comme :

∀ x ∈ [0 ;+∞[,

{
g(x) = f (x)| sin x | � f (x)

h(x) = f (x)| cos x | � f (x),

d’après le théorème de majoration pour des fonctions � 0, g
et  h sont intégrables sur [0 ;+∞[.
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a) Puisque  f est décroissante et intégrable sur ]0 ; 1] ,
on a :

∀ n � 2, ∀ k ∈ {1,. . . ,n − 1},
∫ k+1

n

k
n

f � 1

n
f

(
k

n

)
�

∫ k
n

k−1
n

f,

d’où, par sommation et relation de Chasles :

∀ n � 2,

∫ 1

1
n

f � 1

n

n−1∑
k=1

f

(
k

n

)
�

∫ 1− 1
n

0
f .

Comme  
1

n
−−−→

n ∞
0, 1 − 1

n
−−−→

n ∞
1, et que  f est intégrable

sur ]0 ; 1] , on déduit, par théorème d’encadrement :

1

n

n−1∑
k=1

f

(
k

n

)
−−−→

n ∞

∫ 1

0
f .

Enfin, comme  
1

n
f (1) −−−→

n ∞
0 on peut remplacer l’indice su-

périeur, n − 1 par n, et conclure :

1

n

n∑
k=1

f

(
k

n

)
−−−→

n ∞

∫ 1

0
f .

b) Notons, pour tout n ∈ N
∗ :

Sn =
n∑

k=1

n

(k + n)
√

k(k + 2n)
.

On a : Sn = 1

n

n∑
k=1

1(
k

n
+ 1

)√
k

n

(
k

n
+ 2

) .

Considérons l’application 

f : ]0 ; 1] −→ R, x �−→ 1

(x + 1)
√

x(x + 2)
.

Il est clair que  f est continue par morceaux (car continue),

décroissante, � 0. On a : f (x) ∼
x−→0

1√
2x1/2

, donc, d’après

l’exemple de Riemann en 0 (1/2 < 1) et le théorème d’équi-
valence pour des fonctions � 0, f est intégrable sur ]0 ; 1] .

On peut donc appliquer a) à f : Sn −−−→
n ∞

∫ 1

0
f

︸ ︷︷ ︸
notée I

.

Il reste à calculer I. Par le changement de variable 

t = 1

x + 1
, x = 1

t
− 1, dx = dt

t2
:

I =
∫ 1

0

1

(x + 1)
√

x(x + 2)
dx

=
∫ 1/2

1

t√
1

t

(1

t
+ 2

)
(

− dt

t2

)

=
∫ 1

1/2

dt√
1 + 2t

= [
√

1 + 2t]1
1/2 =

√
3 −

√
2.

On conclut : lim
n∞

n∑
k=1

n

(k + n)
√

k(k + 2n)
=

√
3 −

√
2.

1) Existence :

Soit x ∈ ] − ∞; 0[.

L’application  fx : t �−→ x − t

ex − et
est continue sur [0 ;+∞[,

et  fx � 0.

On a : t2 fx (t) = t2(x − t)

ex − et
∼

t−→+∞
t3 e−t −→

t−→+∞
0,

donc, pour t assez grand : t2 fx (t) � 1,

puis : 0 � fx (t) � 1

t2
.

D’après l’exemple de Riemann en +∞ (2 > 1) et le théorème
de majoration pour des fonctions � 0, fx est intégrable sur
[0 ;+∞[.

Ceci montre que, pour tout x ∈ ] − ∞; 0[, l’intégrale propo-

sée  I (x) =
∫ +∞

0

x − t

ex − et
dt existe.

2) Limite :

Soit x ∈ ] − ∞; 0[.

On a, par le changement de variable u = t − x :

I (x) =
∫ +∞

0

x − t

ex − et
dt

=
∫ +∞

−x

−u

ex − ex+u
du = e−x

∫ +∞

−x

u

eu − 1
du.

Comme x < 0, on a [−x ;+∞[⊂ ]0 ;+∞[, donc :
∫ +∞

−x

u

eu − 1
du �

∫ +∞

−x

u

eu
u =

∫ +∞

−x
ue−u du

= [
(−u − 1)e −u

]+∞
−x

= (−x + 1)e x .

d’où :

I (x) � e −x
(
(−x + 1)e x

) = −x + 1 −→
x−→−∞

+∞ .

On conclut :
∫ +∞

0

x − t

ex − et
dt −→

x−→−∞
+∞.

a) Soit x ∈ ]0 ;+∞[.

Soit X ∈ [x ;+∞[ . On a, par intégration par parties pour des
fonctions de classe C1 :
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∫ X

x
e−t2

dt =
∫ X

x

1

2t
2t e−t2

d

=
[

1

2t
(−e−t2

)

]X

x

−
∫ X

x
− 1

2t2
(−e−t2

) dt

= e−x2

2x
− e−X2

2X
− 1

2

∫ X

x

1

t2
e−t2

dt.

Les applications  t �−→ e−t2
et  t �−→ 1

t2
e−t2

sont continues

sur [x ;+∞[ et négligeables devant  t �−→ 1

t2
lorsque

t −→ +∞, donc ces deux applications sont intégrables sur
[x ;+∞[, d’où, en faisant X −→ +∞ :

∫ +∞

x
e−t2

dt = e−x2

2x
− 1

2

∫ +∞

x

1

t2
e−t2

dt .

On a : 0 �
∫ +∞

x

1

t2
e−t2

dt � 1

x2

∫ +∞

x
e−t2

dt

et   
1

x2
−→

x−→+∞
0,

donc :
∫ +∞

x

1

t2
e−t2

dt = o
x−→+∞

(∫ +∞

x
e−t2

dt

)
.

On conclut :
∫ +∞

x
e−t2

dt ∼
x−→+∞

e−x2

2x
.

b) Notons, pour tout n ∈ N
∗ : In =

∫ b

a
e−nt2

dt et  un = I
1
n

n .

On a, par le changement de variable u = √
n t :

In = 1√
n

∫ b
√

n

a
√

n
e−u2

du

= 1√
n

(∫ +∞

a
√

n
e−u2

du −
∫ +∞

b
√

n
e−u2

du

)
.

D’après a) :

∫ +∞

a
√

n
e−u2

du ∼
n∞

e−a2n

2a
√

n
et

∫ +∞

b
√

n
e−u2

du ∼
n∞

e−b2n

2b
√

n
.

Comme 0 < a < b, on a :
e−b2n

2b
√

n
= o

(
e−a2n

2a
√

n

)
,

d’où : In = e−a2n

2an

(
1 + o(1)

)
.

On déduit :

ln un = 1

n
ln In = 1

n

(
− a2n − ln(2an) + ln

(
1 + o(1)

))

= −a2 − ln(2an)

n
+ o

(
1

n

)
−−−→

n ∞
− a2,

et on conclut :

(∫ b

a
e−nt2

dt

) 1
n

−−−→
n ∞

e−a2
.

Soit x ∈ ]0 ; 1] fixé.

On a, par le changement de variable u = t + x :

∫ 1

0

et

x + t
dt =

∫ x+1

x

eu−x

u
du = e−x

∫ x+1

x

eu

u
du

= e−x
( ∫ x+1

x

eu − 1

u
du +

∫ x+1

x

1

u
du

)

= e−x
∫ x+1

x

eu − 1

u
du + e−x

(
ln(x + 1) − ln x

)
.

L’application  f : u �−→ eu − 1

u
est continue sur ]0 ; 2] ,

� 0, et  f (u) −→
u−→0

1 , donc  f est intégrable sur ]0 ; 2] .

On a donc :

∫ x+1

x
f (t) dt =

∫ x+1

0
f (t) dt −

∫ x

0
f (t) dt

−→
x−→0

∫ 1

0
f (t) dt = I.

D’où : ∫ 1

0

et

x + t
dt

= e−x
(
I + o(1)

) + e−x
(
ln(x + 1) − ln x

)

= (
1 + o(1)

)(
I + o(1)

) + (
1 − x + o(x)

)( − ln x + o(1)
)

= −ln x + I + o(1) .

1) Cas α > 1

Puisque : ∀x ∈ [1;+∞[ ,

∣∣∣∣ sin x

xα

∣∣∣∣ � 1

xα
et que  x �−→ 1

xα

est intégrable sur [1;+∞[, l’application  x �−→ sin x

xα
est in-

tégrable sur [1;+∞[, et par conséquent,
∫ →+∞

1

sin x

xα
dx est

absolument convergente, donc convergente.

De même, x �−→ cos x

xα
est intégrable sur [1;+∞[ , et

∫ →+∞

1

cos x

xα
dx est absolument convergente.

2) Cas 0 < α � 1

• On obtient, par une intégration par parties, pour tout X de
[1;+∞[ :

∫ X

1

sin x

xα
dx = −cos X

Xα
+ cos 1 − α

∫ X

1

cos x

xα+1
dx .

Comme α+ 1 > 1, d’après 1), x �−→ cos x

xα+1
est intégrable sur

[1;+∞[, d’où :
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∫ X

1

sin x

xα
dx −−−→

X→+∞
cos 1 − α

∫ +∞

1

cos x

xα+1
dx .

Ceci montre que  
∫ →+∞

1

sin x

xα
dx est convergente, et que :

∫ +∞

1

sin x

xα
dx = cos 1 − α

∫ +∞

1

cos x

xα+1
dx .

De même,
∫ →+∞

1

cos x

xα
dx est convergente.

• Remarquons : ∀x ∈ [1;+∞[ , |sin x | � sin2x , d’où :

∀x ∈ [1;+∞[,

∣∣∣∣ sin x

xα

∣∣∣∣ � sin2x

xα
= 1

2xα
− cos 2x

2xα
.

D’après l’étude précédente (et l’utilisation du changement de

variable défini par y = 2x),
∫ →+∞

1

cos 2x

2xα
dx converge.

D’autre part, comme α � 1 , la fonction positive  x �−→ 1

2xα

n’est pas intégrable sur [1;+∞[.

Il en résulte :
∫ X

1

∣∣∣∣ sin x

xα

∣∣∣∣ dx −−−→
X→+∞

+ ∞ , et donc

x �−→ sin x

xα
n’est pas intégrable sur [1;+∞[.

De même, x �−→ cos x

xα
n’est pas intégrable sur [1;+∞[.

3) Cas α � 0

On a, pour tout n de N∗ :
∫ 2nπ+ 3π

4

2nπ+π4

sin x

xα
d x �

∫ 2nπ+ 3π
4

2nπ+π4

1√
2

dx = π

2
√

2
,

donc :
∫ 2nπ+ 3π

4

2nπ+π4

sin x

xα
dx −→/

n ∞
0 .

Il en résulte que  
∫ →+∞

1

sin x

xα
dx diverge, et donc  x �−→ sin x

xα

n’est pas intégrable sur [1;+∞[. De même,
∫ →+∞

1

cos x

xα
dx

diverge et  x �−→ cos x

xα
n’est pas intégrable sur [1;+∞[.

α) Soient x ∈ R − πZ , n ∈ N . On a :

n∑
k=0

e 2ikx = e 2i(n+1)x − 1

e 2ix − 1
= e i(n+1)x

(
e i(n+1)x − e −i(n+1)x

)
e ix (e ix − e −ix )

= e inx 2i sin (n + 1)x

2i sin x
= e inx sin (n + 1)x

sin x
,

d’où, en prenant la partie réelle :

n∑
k=0

cos 2kx = cos nx
sin(n + 1)x

sin x
= sin(2n + 1)x + sin x

2 sin x
,

et donc :

1

2
+

n∑
k=1

cos 2kx = −1

2
+

n∑
k=0

cos 2kx = sin(2n + 1)x

2 sin x
.

β) Soit n ∈ N . L’application  x �−→ sin(2n + 1)x

sin x
est conti-

nue sur 
]
0; π

2

]
et admet une limite finie (qui est 2n + 1) 

en 0+ , donc est intégrable sur 
]
0; π

2

]
.

On a, d’après α) :

∫ π
2

0

sin(2n + 1)x

sin x
dx =

∫ π
2

0

(
1 + 2

n∑
k=1

cos 2kx

)
dx

= π

2
+ 2

n∑
k=1

∫ π
2

0
cos 2kx dx

= π

2
+ 2

n∑
k=1

[
sin 2kx

2k

]π
2

0

= π

2
.

b) Il s’agit d’un cas particulier du lemme de Riemann-Lebesgue.

Une intégration par parties fournit, pour tout n de N∗ :∫ b

a
ϕ(x) sin nx dx

=
[
−ϕ(x)

cos nx

n

]b

a
+

∫ b

a
ϕ

′(x)
cos nx

n
dx .

D’une part :∣∣∣∣
[

− ϕ(x)
cos nx

n

]b

a

∣∣∣∣
� |ϕ(b)| |cos nb|

n
+ |ϕ(a)| |cos na|

n
� 2||ϕ||∞

n
.

D’autre part :
∣∣∣∣
∫ b

a
ϕ

′(x)
cos nx

x
dx

∣∣∣∣
�

∫ b

a
|ϕ′(x)| |cos nx |

n
dx � 1

n

∫ b

a
|ϕ′(x)| dx .

Il en résulte :
∫ b

a
ϕ(x)sin nx dx −−−→

n∞
0.

c) α) • D’après les théorèmes généraux, f est de classe C1

sur 
]
0; π

2

]
.

• f (x) = sin x − x

x sin x
∼

x→0+
− x

6
−−−→
x→0+

0 = f (0) ,

donc  f est continue en 0.

• f ′(x) = x2cos x − sin2x

x2sin2x

=
x2

(
1 − x2

2
+ o(x2)

)
−

(
x2 − x4

3
+ o(x4)

)

x2sin2x
−−−→
x→0+

− 1

6
,
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donc, d’après le théorème limite de la dérivée, f est de 

classe C1 sur 
[
0; π

2

]
.

β) On a : ∀n ∈ N , ∀x ∈
]
0; π

2

]
,

sin(2n + 1)x

x
= f (x) sin(2n + 1)x + sin(2n + 1)x

sin x
.

Comme f est continue sur 
[
0; π

2

]
et que x �−→ sin(2n + 1)x

sin x

est intégrable sur 
]
0; π

2

]
, il en résulte que  x �−→ sin(2n + 1)x

x

est intégrable sur 
]
0; π

2

]
et que :

∀n ∈ N,

∫ π
2

0

sin(2n + 1)x

x
dx

=
∫ π

2

0
f (x) sin(2n + 1)x dx +

∫ π
2

0

sin(2n + 1)x

sin x
dx .

En utilisant a) β) et b), on déduit :
∫ π

2

0

sin(2n + 1)x

x
dx −−−→

n∞
π

2
.

d) On a, pour tout n de N, à l’aide du changement de variable

défini par x = u

2n + 1
:

∫ (2n+1)π2

0

sin u

u
du =

∫ π
2

0

sin(2n + 1)x

x
dx .

Comme l’intégrale impropre 
∫ →+∞

→0

sin u

u
du converge 

(cf. exercice 3.44) et en utilisant c) β), on conclut :∫ +∞

0

sin x

x
dx = π

2
.

a) α) Étude de 
∫ +∞

0

1 − cos x

x2
dx :

1) Existence :

• L’application  f : x �−→ 1 − cos x

x2
est continue sur

]0 ;+∞[, et f � 0.

• On a : f (x) −→
x−→0

1

2
, donc  f est intégrable sur ]0 ; 1] (faux

problème).

• On a : ∀ x ∈ [1 ;+∞[, | f (x)| � 2

x2
.

D’après l’exemple de Riemann en +∞ (2 > 1) et le théorème
de majoration pour des fonctions � 0, f est intégrable sur
[1 ;+∞[.

Puisque  f est intégrable sur ]0 ; 1] et sur [1 ;+∞[, f est in-
tégrable sur ]0 ;+∞[.

Ceci montre que l’intégrale proposée  
∫ +∞

0

1 − cos x

x2
dx

existe.

2) Calcul :

On a, pour tout (ε,X) ∈ ]0 ;+∞[2 tel que ε � X , par intégra-

tion par parties pour des applications de classe C1 :∫ X

ε

(1 − cos x)
1

x2
dx

=
[
(1 − cos x)

(
− 1

x

)]X

ε

−
∫ X

ε

sin x

(
− 1

x

)
dx

= −1 − cos X

X
+ 1 − cos ε

ε
+

∫ X

ε

sin x

x
dx .

On a :

• 

∣∣∣∣1 − cos X

X

∣∣∣∣ � 2

X
−→

X−→+∞
0,

donc    
1 − cos X

X
−→

X−→+∞
0.

• 
1 − cos ε

ε
∼

ε−→0

ε

2
−→
ε−→0

0.

Il s’ensuit, en faisant ε −→ 0 et X −→ +∞ :
∫ +∞

0

1 − cos x

x2
dx =

∫ +∞

0

sin x

x
dx = π

2
.

β) Étude de 
∫ +∞

0

(
sin x

x

)2

dx :

On a, en utilisant le changement de variable t = x

2
:

∫ +∞

0

1 − cos x

x2
dx =

∫ +∞

0

2 sin 2 x

2
x2

dx

=
∫ +∞

0

2 sin 2t

4t2
2dt =

∫ +∞

0

sin 2t

t2
dt.

Ceci montre que l’intégrale proposée  
∫ +∞

0

(
sin x

x

)2

dx

existe (ce que l’on pouvait aussi montrer comme en α) ) et que :∫ +∞

0

(
sin x

x

)2

dt =
∫ +∞

0

1 − cos x

x2
dx = π

2
.

b) Soit λ ∈ R .

α) Si λ > 0, à partir de 
∫ +∞

0

sin t

t
dt, on a, par le changement

de variable x = t

λ
:

∫ +∞

0

sin t

t
dt =

∫ +∞

0

sinλx

λx
λ dx =

∫ +∞

0

sinλx

x
dx .

Le cas λ < 0, se ramène au cas λ > 0 par imparité.

Le cas λ = 0 est d’étude immédiate.
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On conclut : ∀λ ∈ R,

∫ +∞

0

sinλx

x
dx = π

2
sgn (x),

où sgn est la fonction signe, définie par :

sgn (λ) =




−1 si λ < 0

0 si λ = 0

1 si λ > 0.

β) Si λ > 0, on a, par le changement de variable x = t

λ
:

∫ +∞

0

1 − cos t

t2
dt =

∫ +∞

0

1 − cosλx

λ
2x2

λ dx

= 1

λ

∫ +∞

0

1 − cosλx

x2
dx,

donc :
∫ +∞

0

1 − cosλx

x2
dx = λ

π

2
.

Le cas λ < 0 se ramène au cas λ > 0 par parité.

Le cas λ = 0 est d’étude immédiate.

On conclut : ∀λ ∈ R,

∫ +∞

0

1 − cosλx

x2
dx = π

2
|λ|.

c) Les intégrales proposées existent, par exemple par des rai-
sonnements analogues aux précédents.

Soit (a,b) ∈ R
2.

∫ +∞

0

sin ax sin bx

x2
dx

=
∫ +∞

0

cos (a − b)x − cos (a + b)x

2x2
dx

= 1

2

∫ +∞

0

(1 − cos (a + b)x

x2
dx

− 1 − cos (a − b)x

x2

)
dx

= 1

2

( ∫ +∞

0

1 − cos (a + b)x

x2
dx

−
∫ +∞

0

1 − cos (a − b)x

x2
dx

)

= 1

2

(
π

2
|a + b| − π

2
|a − b|

)
= π

4

(|a + b| − |a − b|).
∫ +∞

0

1 − cos ax cos bx

x2
dx

=
∫ +∞

0

2 − (
cos (a + b)x + cos (a − b)x

)
2x2

dx

= 1

2

( ∫ +∞

0

1 − cos (a + b)x

x2
dx

+
∫ +∞

0

1 − cos (a − b)x

x2
dx

)

= 1

2

(
π

2
|a + b| + π

2
|a − b|

)
= π

4

(|a + b| + |a − b|).

d) 1) Existence :

• L’application  f : x �−→ sin x

x(π− x)
est continue sur R sauf

en 0 et en π .

• Étude en 0 :

On a : f (x) = sin x

x

1

π− x
−→
x−→0

1

π
,

donc  f est prolongeable par continuité en 0.

• Étude en π :

On a : f (x) = sin (π− x)

π− x

1

x
−→
x−→π

1

π
,

donc  f est prolongeable par continuité en π .

En posant f (0) = f (π) = 1

π
, f est donc continue sur R.

• Étude en ±∞ :

On a : | f (x)| =
∣∣∣∣ sin x

x(π− x)

∣∣∣∣ � 1

|x(π− x)| ∼
x−→±∞

1

x2
.

D’après l’exemple de Riemann en ±∞ (2 > 1 ), le théorème
d’équivalence et le théorème de majoration pour des fonctions
positives, f est intégrable sur ] − ∞;−1] et sur [4 ;+∞[, donc
sur ] − ∞; 0] et sur [0 ;+∞[.

Puisque f est intégrable sur ] − ∞; 0] et sur [0 ;+∞[, f est
intégrable sur R.

On conclut que l’intégrale  I =
∫ +∞

−∞

sin x

x(π− x)
dx existe.

2) Calcul :

On a, par une décomposition en éléments simples immédiate :

I =
∫ +∞

−∞

sin x

x(π− x)
dx = 1

π

∫ +∞

−∞
sin x

(
1

x
+ 1

π− x

)
dx .

On sait (cf. aussi l’exercice 3.44) que l’intégrale impropre

J =
∫ +∞

−∞

sin x

x
dx converge.

Par différence, comme  I et  J convergent, l’intégrale impropre

K =
∫ +∞

−∞

sin x

π− x
dx converge, et on a :

I = 1

π
(J + K ).

D’après l’exercice 3.45 et par parité : J = π .

Par le changement de variable t = π− x :

K =
∫ +∞

−∞

sin x

π− x
dx =

∫ +∞

−∞

sin t

t
dt = J .

On obtient : I = 2

π
π = 2.

1) Existence :

Soit x ∈ R .

1er cas : x > 0 :
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• L’application  gx : t �−→ ln(x + t2)

1 + t2
est continue sur

[0 ;+∞[.

• On a :

gx (t) = ln(x + t2)

1 + t2
=

2 ln t + ln

(
1 + x

t2

)

1 + t2
∼

t−→+∞
2 ln t

t2
,

donc : t3/2gx (t) ∼
t−→+∞

2 ln t

t1/2
−→

t−→+∞
0.

On a donc, pour t assez grand : 0 � t3/2gx (t) � 1,

d’où : 0 � gx (t) � 1

t3/2
.

D’après l’exemple de Riemann en +∞ (3/2 > 1) et les théo-
rèmes de majoration et d’équivalence pour des fonctions � 0,
gx est intégrable sur [0 ;+∞[.

2è cas x = 0 :

• L’application  g0 : t �−→ ln(t2)

1 + t2
est continue sur ]0 ;+∞[.

• Comme dans le premier cas, g0 est intégrable sur [1 ;+∞[.

• On a : g0(t) ∼
t−→0

2 ln t. D’après le cours, t �−→ − ln t est

intégrable sur ]0 ; 1] , donc, par théorème d’équivalence pour
des fonctions � 0, −g0 l’est aussi, puis  g0 l’est aussi.

Ainsi, g0 est intégrable sur ]0 ; 1] et sur ]1 ;+∞[, donc sur
]0 ;+∞[.

3è cas : x < 0 :

L’application  gx : t �−→ ln(x + t2)

1 + t2
n’est pas définie sur

[0 ;√−x [, donc  f (x) n’existe pas.

On conclut que  f (x) existe si et seulement si x � 0.

On suppose dorénavant x � 0.

2) Calcul :

Nous allons essayer d’utiliser le théorème de dérivation sous
le signe intégrale.

Considérons l’application 

F : [0 ;+∞[× ]0 ;+∞[−→ R, (x,t) �−→ ln(x + t2)

1 + t2
.

α) Expression de f ′(x) pour x ∈ ]0 ;+∞[

• Pour tout x ∈ [0 ;+∞[ , F(x,·) est intégrable sur ]0 ;+∞[,
d’après 1).

• 
∂ F

∂x
: (x,t) �−→ 1

(x + t2)(1 + t2)
existe

sur [0 ;+∞[×]0 ;+∞[, est continue par rapport à x et conti-
nue par morceaux (car continue) par rapport à t.

Soit a ∈]0 ;+∞[. On a :

∀ (x,t) ∈ [a ;+∞[×]0 ;+∞[,∣∣∣∣∂ F

∂x
(x,t)

∣∣∣∣ = 1

(x + t2)(1 + t2)
� 1

a(1 + t2)︸ ︷︷ ︸
notée ψa(t)

et ψa est continue par morceaux (car continue), � 0, intégrable

sur [0 ;+∞[ car ψa(t) ∼
t−→+∞

1

at2
.

Ainsi,
∂ F

∂x
vérifie HDL sur ]0 ;+∞[×]0 ;+∞[.

D’après le théorème de dérivation sous le signe intégrale, f est

de classe C1 sur ]0 ;+∞[ et :

∀ x ∈ ]0 ;+∞[, f ′(x) =
∫ +∞

0

1

(x + t2)(1 + t2)
dt .

β) Continuité de f sur [0 ;+∞[

• F est continue par rapport à x et continue par morceaux (car
continue) par rapport à t.

• Soit b ∈ [0 ;+∞[ . On a :

∀ (x,t) ∈ [0 ; b]×]0 ;+∞[, |F(x,t)| = |ln(x + t2)|
1 + t2

�
Max

(|ln(t2)|, |ln(b + t2)|)
1 + t2

= |g0(t)| + |gb(t)|︸ ︷︷ ︸
notée ϕb(t)

et  ϕb est continue par morceaux (car continue), � 0. D’après

1), g0 et gb sont intégrables sur ]0 ;+∞[, donc ϕb l’est aussi.

Ainsi, F vérifie HDL sur [0 ;+∞[×]0 ;+∞[.

D’après le théorème de continuité sous le signe intégrale,
f est continue sur [0 ;+∞[.

En particulier, f est continue en 0.

γ) Calcul de f ′(x) pour x ∈ ]0 ;+∞[

On a, par une décomposition en éléments simples, si x =/ 1 :

f ′(x)

=
∫ +∞

0

dt

(x + t2)(1 + t2)

= 1

1 − x

∫ +∞

0

(
1

x + t2
− 1

1 + t2

)
dt

= 1

1 − x

[
1√
x

Arctan
t√
x

− Arctan t

]+∞

0

= 1

1 − x

(
1√
x

π

2
− π

2

)

= π

2
√

x

1 − √
x

1 − x
= π

2
√

x(1 + √
x)

.

Comme les applications  f ′ et  x �−→ π

2
√

x(1 + √
x)

sont

continues sur ]0 ;+∞[ et coïncident sur ]0 ;+∞[−{1} , elles
coïncident sur ]0 ;+∞[, d’où :

∀ x ∈ ]0 ;+∞[, f ′(x) = π

2
√

x(1 + √
x)

.
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δ) Calcul de f (x)

Par le changement de variable u = √
x , on a :∫

1√
x(1 + √

x)
dx =

∫
1

u(1 + u)
2u du =

∫
2

1 + u
du

= 2 ln (1 + u) + Cte = 2 ln (1 + √
x) + Cte.

Il existe donc C ∈ R tel que :

∀ x ∈ ]0 ;+∞[, f (x) = π
(
ln(1 + √

x) + C
)

.

Puisque  f et le second membre ci-dessus sont continus en 0,
l’égalité est aussi vraie pour x = 0, d’où :

∀ x ∈ [0 ;+∞[, f (x) = π
(
ln(1 + √

x) + C
)

.

En particulier, C = f (0)

π
, et :

f (0) =
∫ +∞

0

ln(t2)

1 + t2
dt =

u = 1
t

∫ 0

+∞

ln
1

u2

1 + 1

u2

(
− 1

u2

)
du

= −
∫ +∞

0

ln(u2)

1 + u2
du = − f (0),

d’où : f (0) = 0 .

On conclut : ∀ x ∈ [0 ;+∞[, f (x) = π ln(1 + √
x).

a) Soit x ∈ ]0 ;+∞[.

L’application  g : t �−→ e−t

t
est continue sur [x ;+∞[, et

g � 0.

On a : t2g(t) = te−t −→
t−→+∞

0, donc, pour t assez grand :

t2g(t) � 1 , d’où : 0 � g(t) � 1

t2
.

D’après l’exemple de Riemann en +∞ (2 > 1) et le théorème
de majoration pour des fonctions � 0, g est intégrable sur
[x ;+∞[.

Ceci montre que, pour tout x ∈ ]0 ;+∞[ , l’intégrale

f (x) =
∫ +∞

x

e−t

t
dt existe.

b) 1) On a :

∀ x ∈ ]0 ;+∞[, f (x) =
∫ 1

x

e−t

t
dt +

∫ +∞

1

e−t

t
dt .

Puisque l’application  t �−→ e−t

t
est continue sur ]0 ;+∞[,

d’après le cours sur les primitives, f est de classe C1 sur
]0 ;+∞[, donc a fortiori  f est continue sur ]0 ;+∞[.

2) On a, pour tout x ∈ [1 ;+∞[ :

0 � f (x) =
∫ +∞

x

e−t

t
dt �

∫ +∞

x
e−t dt

= [−e−t ]+∞
x = e−x ,

et x �−→ e−x est intégrable sur ]0 ;+∞[, donc, par théorème
de majoration pour des fonctions � 0, f est intégrable sur
]0 ;+∞[.

3) D’après le théorème de Fubini, on a alors, pour tout
x ∈ ]0 ;+∞[ :
∫ +∞

0
f (x) dx =

∫ +∞

0

(∫ +∞

x

e−t

t
dt

)
dx

=
∫ +∞

0

(∫ t

0
dx

)
e−t

t
dt =

∫ +∞

0
t

e−t

t
dt

=
∫ +∞

0
e−t dt = [−e−t ]+∞

0 = 1.

Soit a ∈]0;+∞[ fixé.

Notons  F : R × [0 ;+∞[−→ C, (x,t) �−→ e −at2
e ixt.

• Pour tout x ∈ R , F(x,·) est intégrable sur [0 ;+∞[, car  :
∣∣t2 F(x,t)

∣∣ = t2e −at2 −→
t→+∞

0.

• 
∂ F

∂x
: (x,t) �−→ ite−at2

eixt existe sur R × [0 ;+∞[ , est

continue par rapport à x , continue par morceaux (car continue)
par rapport à t et vérifie HD sur R × [0 ;+∞[ car, en 
notant ψ : [0 ;+∞[−→ R

t �−→ te−at2
,ψ est continue, � 0, intégrable sur

[0;+∞[, et :

∀(x,t) ∈ R × [0;+∞[,

∣∣∣∣∂ F

∂x
(x,t)

∣∣∣∣ � (=)ψ(t).

D’après le théorème de dérivation sous le signe 
∫ +∞

0
, l’ap-

plication  f : R −→ C définie par :

∀x ∈ R, f (x) =
∫ +∞

0
e−at2

eixt dt,

est de classe C1 sur R et :

∀x ∈ R, f ′(x) =
∫ +∞

0
ite−at2

eixt dt.

Une intégration par parties donne, pour tout T de [0 ;+∞[ :
∫ T

0
ite−at2

eixt dt

=
[
− i

2a
e−at2

eixt

]T

0

+
∫ T

0

i

2a
e−at2

ixeixt d t,

d’où, en faisant tendre T vers +∞ : f ′(x) = i

2a
− x

2a
f (x).

Considérons l’équation différentielle linéaire :

(E)      y′ + x

2a
y = i

2a
,

d’inconnue  y : R −→ C.
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L’équation sans second membre associée :

(E0) y′ + x

2a
y = 0

admet pour solution générale x �−→ λ e− x2

4a , λ ∈ C .

D’après la méthode de variation de la constante, on cherche
une solution y de (E) sous la forme :

x �−→ y(x) = λ(x) e− x2

4a .

Cette application y est solution de (E) si et seulement si :

∀x ∈ R, λ
′(x) = i

2a
e

x2

4a ,

d’où la solution générale de (E) :

y : x �−→ y(x) = i

2a
e− x2

4a

∫ x

0
e

t2

4a dt + λ e− x2

4a , λ ∈ C.

Comme

λ = f (0) =
∫ +∞

0
e−ax2

dx =
u = x

√
a

1√
a

∫ +∞

0
e−u2

du =
√
π

2
√

a
,

on conclut : ∀(a,x) ∈]0;+∞[×R,∫ +∞

0
e−at2

eixt dt = i

2a
e− x2

4a

∫ x

0
e

t2

4a dt +
√
π

2
√

a
e− x2

4a .

En prenant la partie réelle et la partie imaginaire, on obtient,
pour tout (a,x) de ]0;+∞[×R :
∫ +∞

0
e−at2

cos xt dt =
√
π

2
√

a
e− x2

4a et

∫ +∞

0
e−at2

sin xt dt = 1

2a
e− x2

4a

∫ x

0
e

t2

4a dt.

1) Existence :

Soient x ∈ ]0 ;+∞[, z ∈ C tel que Ré (z) < 0.

• L’application f : t �−→ t x−1ezt est continue sur ]0 ;+∞[.

• Étude en 0 :

On a : | f (t)| = t x−1eRé (z)t ∼
t−→0

t x−1,

donc, d’après l’exemple de Riemann en 0 (x − 1 > −1 ) et le
théorème d’équivalence pour des fonctions � 0, f est intégrable
sur ]0 ; 1] .

• Étude en +∞ :

On a : t2| f (t)| = t x+1eRé (z)t −→
t−→+∞

0,

donc  f est intégrable sur [1 ;+∞[.

On déduit que  f est intégrable sur ]0 ;+∞[, et on conclut que
l’intégrale proposée existe.

2) Calcul :

Fixons x ∈ ]0 ;+∞[ et notons u = −Ré (z) > 0.

En notant v = Im (z) ∈ R , on a donc :

∫ +∞

0
t x−1ezt dt =

∫ +∞

0
t x−1e−ut ei vt dt .

Notons 

F : R×]0 ;+∞[−→ C, (v,t) �−→ t x−1e−ut ei vt .

• Pour tout v ∈ R, F(v,·) est intégrable sur ]0 ;+∞[,
d’après 1).

• 
∂ F

∂v
: (v,t) �−→ t x−1e−ut i t ei vt existe sur R×]0 ;+∞[, est

continue par rapport à v , continue par morceaux (car continue)
par rapport à t.

• On a : ∀ (v,t) ∈ R×]0 ;+∞[,

∣∣∣∣∂ F

∂v
(v,t)

∣∣∣∣ = t x e−ut

et  t �−→ t x e−ut est indépendant de v , continue par morceaux
(car continue), � 0, intégrable sur ]0 ;+∞[.

Ainsi,
∂ F

∂v
vérifie HD.

D’après le théorème de dérivation sous le signe intégrale,

l’application  g : v �−→
∫ +∞

0
t x−1e−ut ei vt dt est de classe C1

sur R et, pour tout v ∈ R :

g′(v) =
∫ +∞

0
t x−1e−ut i tei vt dt = i

∫ +∞

0
t x e−ut ei vt dt .

Nous allons montrer que  g satisfait une EDL1, en utilisant
une intégration par parties.

On a, par intégration par parties, pour tout (ε,T ) ∈ R
2 tel que

0 < ε � T :

∫ T

ε

t x e−ut ei vt dt =
∫ T

ε

t x e(−u+i v)t dt

=
[

t x e(−u+i v)t

−u + i v

]T

0

−
∫ T

ε

xt x−1 e(−u+i v)t

−u + i v
dt

= T x e(−u+i v)T

−u + i v
− ε

x e(−u+i v)ε

−u + i v
+ x

u − i v

∫ T

ε

t x−1e(−u+i v)t dt.

En faisant ε −→ 0 et T −→ +∞ , on déduit :

g′(v) = i
x

u − i v

∫ +∞

0
t x−1e−ut ei vt dt = i x

u − i v
g(v) .

Pour résoudre cette EDL1 sans second membre, on calcule une
primitive :

∫
i x

u − i v
dv = i x

∫
u + i v

u2 + v2
dv

= i x
∫

u

u2 + v2
dv − x

∫
v

u2 + v2
dv

= i Arctan
v

u
− x

2
ln(u2 + v2) + Cte.
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Et :

g(0) =
∫ +∞

0
t x−1e−ut dt =

s = ut

∫ +∞

0

(
s

u

)x−1

e−s ds

u

= 1

ux

∫ +∞

0
sx−1e−s ds = 1

ux

(x).

On obtient :

g(v) = g(0) exp

(
−

∫ v

0

i x

u − i w
dw

)

= 
(x)

ux
exp

(
− i xArctan

v

u
+ x

2
ln(u2 + v2)

)

= 
(x)

ux
e−i xArctan v

u (u2 + v2)
x
2 .

En notant Arg (z) = Arctan
v

u
∈ ] − π/2 ;π/2[ , on conclut :

∫ +∞

0
t x−1ezt dt = 
(x)

ux
e−i xArg (z)|z|x .

I. a) Soit ε ∈ ]0 ;+∞[.

Soit X ∈ [0 ;+∞[ tel que ε � X .

On a, par linéarité de l’intégration, par des changements de va-
riable, et par la relation de Chasles :

∫ X

ε

f (ax) − f (bx)

x
dx =

∫ X

ε

f (ax)

x
−

∫ X

ε

f (bx)

x
dx

=
∫ aX

aε

f (u)

u
du −

∫ bX

bε

f (v)

v
dv

=
∫ b

a

f (εt)

t
dt −

∫ bX

aX

f (u)

u
du.

Puisque l’intégrale impropre 
∫ →+∞

1

f (x)

x
dx converge, on a :

∫ bX

aX

f (u)

u
du =

∫ bX

1

f (x)

x
dx −

∫ bX

1

f (x)

x
dx

−→
X−→+∞

∫ +∞

1

f (u)

u
du −

∫ +∞

1

f (u)

u
du = 0.

Il en résulte que l’intégrale 
∫ →+∞

ε

f (ax) − f (bx)

x
dx

converge et que :

∫ +∞

ε

f (ax) − f (bx)

x
dx =

∫ b

a

f (εt)

t
dt .

b) Pour obtenir la limite de cette dernière intégrale lorsque
ε −→ 0 , nous allons utiliser le théorème de continuité sous le
signe intégrale.

Notons    F : [0 ; 1] × [a ; b] −→ R, (ε,t) �−→ f (εt)

t
.

• F est continue par rapport à ε , continue par morceaux (car
continue) par rapport à t.

• On a :

∀ (ε,t) ∈ [0 ; 1] × [a ; b], |F(εt)| =
∣∣∣∣ f (εt)

t

∣∣∣∣ � || f ||[0 ;b]
∞

a
,

et l’application constante  
|| f ||[0 ;b]

∞
a

est intégrable sur le seg-

ment [a ; b].

Ainsi, F vérifie HD.

D’après le théorème de continuité sous le signe intégrale, l’ap-

plication  ε �−→
∫ b

a

f (εt)

t
t est continue sur [0 ; 1] . 

En particulier :

∫ b

a

f (εt)

t
dt −→

ε−→0

∫ b

a

f (0)

t
dt = f (0) ln

b

a
.

Il en résulte que l’intégrale  
∫ →+∞

→0

f (ax) − f (bx)

x
dx

converge et que :
∫ +∞

0

f (ax) − f (bx)

x
dx = f (0) ln

b

a
.

II. a)1) Puisque  f : x �−→ cos x est continue sur [0 ;+∞[ et

que l’intégrale  
∫ →+∞

1

cos x

x
dx converge (cf. exercice 3.44),

d’après I. b), pour tout (a,b) ∈ (R∗
+)2 , l’intégrale  ∫ →+∞

→0

cos ax − cos bx

x
dx converge et :

∫ +∞

0

cos ax − cos bx

x
dx = f (0) ln

b

a
= ln

b

a
.

2) De même, l’intégrale 
∫ →+∞

→0

e−ax − e−bx

x
dx converge et :

∫ +∞

0

e−ax − e−bx

x
dx = ln

b

a
.

3) Puisque  f : x �−→ 1 − th x est continue sur [0 ;+∞[ et que

l’intégrale impropre  
∫ →+∞

1

1 − th x

x
dx converge, l’intégrale

impropre proposée converge et :

∫ +∞

0

th ax − th bx

x
dx

=
∫ +∞

0

(1 − th bx) − (1 − th ax)

x
dx = ln

a

b
.

4) L’application  f : x �−→ π2

4
− (Arctan x)2 est continue sur

[0 ;+∞[ et, pour tout x ∈ ]0 ;+∞[ :

109
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f (x) =
(
π

2
− Arctan x

)(
π

2
+ Arctan x

)

=
(

Arctan
1

x

)(
π

2
+ Arctan x

)
∼

x−→+∞
π

x
,

donc  
∫ →+∞

1

π2

4
− (Arctan x)2

x
dx converge.

D’après I. b), pour tout (a,b) ∈ (R∗
+)2, l’intégrale impropre pro-

posée converge et :

∫ +∞

0

(
Arctan (ax)

)2 − (
Arctan (bx)

)2

x
dx

=
∫ +∞

0

1

x

((
π2

4
− (Arctan ax)2

)

−
(
π2

4
− (Arctan bx)2

))
dx

=
∫ +∞

0

f (bx) − f (ax)

x
dx = f (0) ln

a

b
= π2

4
ln

a

b
.

b) On a, pour tout x ∈ R et tout t ∈ ]0 ;+∞[ :

sh xt

t
e−t = ext − e−xt

2t
e−t = e−(1−x)t − e−(1+x)t

2t
.

Il s’agit donc de a) 2), en prenant a = 1 − x et b = 1 + x , où

(a,b) ∈ (R∗
+)2 car x ∈ ] − 1 ; 1[. Il en résulte que l’intégrale

proposée converge et que :∫ +∞

0

sh (xt)

t
e−t dt = 1

2
ln

1 + x

1 − x
.

c) Par le changement de variable t = e−x, dans le résultat de
a) 2), on a :

ln
b

a
=

∫ +∞

0

e−ax − e−bx

x
dx =

∫ 0

1

ta − tb

−ln t

(
− dt

t

)

= −
∫ 1

0

ta−1 − tb−1

ln t
dt .

Il en résulte que l’intégrale proposée converge et que :
∫ 1

0

xa − xb

ln x
dx = − ln

b + 1

a + 1
.

d) Soit (a,b) ∈ ]0 ;+∞[2.

L’application  g : x �−→ 1 − e−ax

x

1 − e−bx

x
est continue sur

]0 ;+∞[, g � 0, g(x) −→
x−→0

ab, g(x) ∼
x−→+∞

1

x2
, donc  g est

intégrable sur ]0 ;+∞[, l’intégrale proposée existe.

On a, pour tout (ε,X) ∈ R
2 tel que 0 < ε � X, par intégration

par parties :

∫ X

ε

(1 − e−ax )(1 − e−bx )
1

x2
dx

=
[
(1 − e−ax )(1 − e−bx )

(
− 1

x

)]X

ε

+
∫ X

ε

(
a e−ax + b e−bx − (a + b) e−(a+b)x

) 1

x
dx .

On a : (1 − e−aX )(1 − e−bX )

(
− 1

X

)
−→

X−→+∞
0

et  

(1 − e−aε)(1 − e−bε)

(
− 1

ε

)

∼
ε−→0

aεbε

(
− 1

ε

)
= −abε−→

ε−→0
0.

Enfin, comme plus haut, la fonction 

x �−→ (
a e−ax + b e−bx − (a + b) e−(a+b)x

) 1

x

est intégrable sur ]0 ;+∞[.

On déduit, en faisant ε −→ 0 et X −→ +∞ :
∫ +∞

0
(1 − e −ax )(1 − e −bx )

1

x2
dx

=
∫ +∞

0

(
a e −ax + b e −bx − (a + b)e −(a+b)x

) 1

x
dx

= a
∫ +∞

0

e −ax − e −(a+b)x

x
dx

+ b
∫ +∞

0

e −bx − e −(a+b)x

x
dx

= a ln
a + b

a
+ b ln

a + b

b

= (a + b) ln (a + b) − a ln a − b ln b.

D’abord, pour tout x ∈ [0 ; 1[,
∫ π/2

0

dt√
1 − x cos 2t

existe comme intégrale d’une application continue sur un seg-
ment.

a) On a, par le changement de variable u = tan t :

f (x) =
∫ +∞

0

du

1 + u2√
1 − x

1

1 + u2

=
∫ +∞

0

du√
1 + u2

√
1 + u2 − x

.

Notons, pour tout x ∈ [0 ; 1[ :
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g(x) =
∫ 1

0

du√
1 + u2

√
1 − x + u2

h(x) =
∫ 1

0

du√
1 − x + u2

.

On a : f (x) � g(x) � 1√
2

h(x)

et :

h(x) = 1√
1 − x

∫ 1

0

du√
1 +

(
u√

1 − x

)2

=
[

Argsh
u√

1 − x

]1

0

= Argsh
1√

1 − x
−→

x−→1−
+∞.

On conclut, par minoration : f (x) −→
x−→1−

+∞.

b) • On a, pour tout x ∈ [0 ; 1[ :

0 � f (x) − g(x) =
∫ +∞

1

du√
1 + u2

√
1 − x + u2

�
∫ +∞

1

du

u2
=

[
− 1

u

]+∞

1

= 1.

Comme f (x) −→
x−→1−

+∞ , il en résulte :

f (x) ∼
x−→1−

g(x) .

• On a, pour tout x ∈ [0 ; 1[ :

0 � h(x) − g(x) =
∫ 1

0

(
1 − 1√

1 + u2

)
1√

1 − x + u2
du

=
∫ 1

0

u2

√
1 + u2

(√
1 + u2 + 1

)√
1 − x + u2

du

�
∫ 1

0

u2

1 · 2 · u
du =

[
u2

4

]1

0

= 1

4
.

Comme g(x) ∼
x−→1−

+∞ , il en résulte :

g(x) ∼
x−→1−

h(x) .

Ainsi :

f (x) ∼
x−→1−

g(x) ∼
x−→1−

h(x) = Argsh
1√

1 − x

= ln

(
1√

1 − x
+

√
1 + 1

1 − x

)
= ln

1 + √
2 − x√

1 − x

= ln (1 + √
2 − x) − 1

2
ln (1 − x) ∼

x−→1−
−1

2
ln(1 − x) .
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4CHAPITRE 4Séries

Thèmes abordés dans les exercices
• Détermination de la nature d’une série à termes � 0

• Détermination de la nature d’une série à termes réels de signes quelconques ou
complexes

• Nature d’une suite par intervention d’une série

• Calcul de la somme d’une série convergente 

• Étude d’un produit infini

• Étude d’intégrabilité d’une fonction, quand celle-ci peut se ramener à une
étude de convergence pour une série

• Recherche d’un équivalent ou d’un développement asymptotique, pour une
somme partielle de série divergente, pour un reste de série convergente 

• Recherche d’un équivalent ou d’un développement asymptotique, pour le
terme général d’une suite définie par une relation de récurrence

Points essentiels du cours 
pour la résolution des exercices
• Définition, propriétés générales, propriétés relatives aux opérations et à

l’ordre, pour la convergence et la divergence des séries 

• Le lien suite/série

• Le lemme fondamental pour les séries à termes � 0

• Pour les séries à termes � 0, l’exemple de Riemann, le théorème de majora-
tion, de minoration, le théorème d’équivalence, la règle nαun par sa méthode,
la règle de d’Alembert

• La comparaison somme/intégrale, ou série/intégrale

• La définition de l’absolue convergence et son lien avec la convergence

• Le théorème spécial à certaines séries alternées (TSCSA)
• La constante d’Euler (à la limite extérieure du programme) :

n∑
k=1

1

k
= ln n + γ+ o

n∞(1)

• La formule de Stirling : n! ∼
n∞

(n

e

)n √
2πn

Les méthodes à retenir 114

Énoncés des exercices 117

Du mal à démarrer ? 125

Corrigés 129

Plan
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Les méthodes à retenir
Essayer de :
• majorer un par le terme général d’une série convergente, lorsqu’on

conjecture que la série de terme général un converge

➥ Exercices 4.1 a), c), 4.2 a), 4.10, 4.16

• minorer un par le terme général d’une série divergente, lorsqu’on
conjecture que la série de terme général un diverge

➥ Exercices 4.1 b), 4.2 b), 4.10

• trouver un équivalent simple de un , puis appliquer le théorème
d’équivalence

➥ Exercices 4.1 d), h), i), 4.11, 4.30, 4.31 b), 4.45 d)

Pour obtenir un équivalent simple de un , il pourra être nécessaire d’ef-
fectuer, de façon intermédiaire, des développements asymptotiques

➥ Exercices 4.9 a), d), e), f), j), 4.13

• appliquer la règle nαun, lorsque un n’admet apparemment pas
d’équivalent simple

➥ Exercices 4.2 c), d), 4.9 b), c)

• mélanger l’utilisation d’équivalents et de majorants (ou d’équiva-
lents et de minorants)

➥ Exercices 4.1 e), f)

• appliquer la règle de d’Alembert, lorsque l’écriture de un fait inter-
venir des factorielles ou des exponentielles

➥ Exercices 4.1 g), 4.9 g), k), 4.27

• utiliser une comparaison série/intégrale

➥ Exercices 4.2 e), f).

Pour étudier la nature 

d’une série
∑
n�0

un

à termes dans R+,
sur un exemple

Pour déduire la convergence d’une

série
∑

n

un, à termes réels � 0

à partir de la convergence d’une

série 
∑

n

vn, à termes réels � 0

Dans un cadre théorique, essayer de :
• comparer, par inégalité, par équivalence, un à vn

➥ Exercices 4.3, 4.4, 4.14, 4.36

• sinon, comparer, par inégalité, les sommes partielles de la série∑
n

un, aux sommes partielles de la série 
∑

n

vn,

➥ Exercice 4.15.
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Pour étudier la nature d’une série∑
n�0

un, à termes � 0,

dans un cadre théorique 

Essayer d’appliquer le lemme fondamental, ou sa contraposée

➥ Exercices 4.21, 4.49.

Pour montrer 
qu’une série

∑
n

un

diverge

En plus des méthodes déjà évoquées plus haut, essayer de :
• montrer que la suite (un)n ne converge pas vers 0, c’est-à-dire que la

série 
∑

n

un diverge grossièrement

➥ Exercice 4.18

• montrer qu’un paquet de termes ne tend pas vers 0

➥ Exercice 4.52.

Pour étudier la nature 
d’une suite (an)n

On peut, surtout si an apparaît comme une sommation, étudier la na-

ture de la série 
∑

n

(an+1 − an) , puis appliquer le lien suite/série

➥ Exercices 4.6, 4.25, 4.27.

Pour étudier la nature 

d’une série
∑
n�0

un

à termes de signes quelconques 
ou complexes,
sur un exemple

Essayer de :

• voir si la série 
∑
n�0

un, est absolument convergente

➥ Exercices 4.5 a), 4.18

• appliquer le TSCSA, si un contient (−1)n en facteur et si l’autre fac-
teur ne contient pas de (−1)n dans son écriture

➥ Exercices 4.5 b), 4.17, 4.31 b), 4.45 e)

• utiliser un développement asymptotique, en particulier si un contient
(−1)n en facteur et si l’autre facteur contient encore (−1)n dans son
écriture

➥ Exercices 4.5 c), d), 4.28, 4.37.

Pour étudier une série 
dont le terme général un

a une expression différente 
selon la parité de n, ou 
selon une périodicité plus générale

Essayer d’étudier les sommes partielles S2p, S2p+1 , d’indice pair,
d’indice impair

➥ Exercices 4.22, 4.38, 4.42.

Attention : la somme partielle S2p =
2p∑

k=0

uk , est une sommation se ter-

minant par un terme d’indice pair (le terme u2p), mais cette somma-
tion fait intervenir tous les termes, d’indices pairs ou impairs, situés
avant u2p .
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Pour évaluer Hn =
n∑

k=1

1

k
, n ∈ N

∗

Se rappeler, suivant le contexte :
• Hn ∼

n∞ ln n , obtenu par comparaison série/intégrale

➥ Exercice 4.31 a)

• Hn = ln n + γ+ o
n∞(1), où γ est la constante d’Euler, obtenu par

étude de la suite de terme général Hn − ln n et intervention du lien
suite/série

➥ Exercice 4.50.

Pour évaluer n! ou ln (n!)

Essayer d’utiliser :

• la formule de Stirling : n! ∼
n∞

(n

e

)n √
2πn,

• le développement asymptotique obtenu en passant au logarithme :

ln (n!) = n ln n − n + 1

2
ln n + 1

2
ln(2π) + o

n∞(1).

➥ Exercices 4.12, 4.24

En particulier : ln (n!) ∼
n∞ n ln n , ce que l’on peut montrer plus sim-

plement par comparaison somme/intégrale

➥ Exercice 4.41.

Pour étudier finement la série

harmonique alternée 
∑
n�1

(−1)n

n
,

ou des séries s’y ramenant

Pour montrer la convergence 
et calculer la somme 
d’une série 

∑
n�0

un

Essayer d’exploiter :
1

n
=

∫ 1

0
xn−1 dx

➥ Exercices 4.37, 4.44, 4.51.

Pour étudier l’intégrabilité d’une
application f : [0 ;+∞[−→ R , telle
que f(x) présente une oscillation
lorsque x −→ +∞

Essayer, en plus des méthodes vues dans le chapitre 3, de relier la

question à la convergence d’une série du genre 
∑
n�0

∫ (n+1)π

nπ
f , si f

s’annule en chaque nπ , par exemple

➥ Exercice 4.43.

Essayer de :
• montrer d’abord la convergence par des arguments qualitatifs (utili-

sation de majoration, équivalent, règle nαun,... , en travaillant éven-

tuellement sur |un|), puis calculer les sommes partielles 
n∑

k=0

uk , et enfin

chercher la limite de celles-ci lorsque l’entier n tend vers l’infini

➥ Exercices 4.7, 4.19, 4.20, 4.33, 4.46, 4.47

• ou bien former directement les sommes partielles et déterminer leur
limite

➥ Exercices 4.29, 4.32, 4.34.
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Pour calculer les sommes partielles, il faudra souvent amener un téles-
copage, et, à cet effet :
• si un est une fraction rationnelle en n, utiliser une décomposition en

éléments simples
• si un est une fonction Arctan, sin , cos , tan,. . . essayer de mettre un

par exemple sous la forme an+1 − an , où an est assez simple et res-
semble un peu à un , en utilisant des formules de trigonométrie.

D’autre part, on connaît directement certaines sommes de séries, par
exemple, celle de l’exponentielle

➥ Exercice 4.8.

Pour obtenir 
des comparaisons (o, O,∼) 
sur des sommes partielles 
de séries divergentes
ou sur des restes 
de séries convergentes

©
 D

un
od

. L
a 

ph
ot

oc
op

ie
 n

on
 a

ut
or

is
ée

 e
st

 u
n 

dé
lit

.

Essayer de faire intervenir :
• une comparaison série/intégrale

➥ Exercices 4.23, 4.26

• un télescopage.

Énoncés des exercices

Exemples de détermination de la nature d’une série numérique

Déterminer la nature de la série de terme général un dans les exemples suivants :

a)
| sin n|

n2
b)

√
n − √

n − 1 c)

(
1

2
+ 1

n

)n

d) ln
n2 + 2n + 3

n2 + 2n + 2

e) 1 − cos

(
sin n

n

)
f) n

1
n2 − 1 g)

2n

n!
h)

(n + 1)a − na

nb
, (a,b) ∈ R

2.

Exemples de séries de Bertrand

Déterminer la nature de la série de terme général un dans les exemples suivants :

a)
1

n2 ln n
b)

ln n

n
c) 

ln n

n2
d)

1√
n ln n

e)
1

n ln n
f)

1

n( ln n)2
.

Convergence d’une série par encadrement du terme général

Soient 
∑
n�0

un,
∑
n�0

vn deux séries réelles convergentes et 
∑
n�0

wn une série réelle telle que :

∀ n ∈ N, un � wn � vn . Montrer que la série 
∑
n�0

wn converge. 

Natures de séries déduites d’autres séries

Soit 
∑
n�0

an une série à termes dans R∗
+ , convergente. Déterminer la nature des séries de termes

généraux : un = an

1 + an
, vn = ch an − 1

an
, wn = a2

n .

4.1

4.2

4.3

4.4
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Exemples de détermination de la nature d’une série alternée

Déterminer la nature de la série de terme général un dans les exemples suivants :

a)
(−1)nn

n3 + n + 1
, b)

(−1)n

√
n

, c)
(−1)n

n + (−1)n
, d)

(−1)n

√
n + (−1)n

.

Nature d’une suite par étude d’une série

Soit a ∈ ] − 1 ;+∞[ fixé. On note, pour tout n ∈ N
∗ : un =

( n∑
k=1

1

a + k

)
− ln n.

Montrer que la suite (un)n∈N∗ converge. 

Exemple de calcul de la somme d’une série convergente, utilisation d’une décomposition
en éléments simples

Existence et calcul de 
+∞∑
n=1

un où un = 2(2n2 + n − 3)

n(n + 1)(n + 2)(n + 3)
.

Exemple de calcul de la somme d’une série convergente, utilisation de la série de l’expo-
nentielle

On note, pour tout n ∈ N : un = n3 + 6n2 − 5n − 2

n!
.

a) Montrer que la série 
∑
n�0

un converge.

b) Montrer que B = (
1, X, X(X − 1), X(X − 1)(X − 2)

)
est une base de R3[X] et décompo-

ser linéairement P = X3 + 6X2 − 5X − 2 sur B.

c) En déduire 
+∞∑
n=0

un . On rappelle que :
+∞∑
n=0

1

n!
= e.

Exemples de détermination de la nature d’une série numérique

Déterminer la nature de la série de terme général un dans les exemples suivants :

a)

(
n sin

1

n

)na

, a ∈ R, b) e−(lnn)λ , λ ∈ R , c) −
∫ 1

n

1
n+2

ex ln x dx

d) sin
1

n
+ a tan

1

n
+ b ln

n + 1

n − 1
, (a,b) ∈ R

2 e)

(
1 + a

n

)n

− n

n + 1
ea, a ∈ R,

f)
√

n2 + n + 3 + a
√

n2 + n + 1 + b
√

n2 + n + 2, (a,b) ∈ R
2

g)
(n!)a

nn
, a ∈ R h)

∫ a

0

xn

3
√

1 + x2
dx, a ∈ R+, i)

2
√

n + an

3
√

n + bn
, (a,b) ∈ (R+)2

j) n
√

a − 2 n
√

b + n
√

c, (a,b,c) ∈ (R∗
+)3, k)

(ln n)n

n!
.

Exemples de détermination de la nature d’une série

Déterminer la nature des séries de termes généraux :

un =
∫ 1

0
tan (xn) dx, vn =

∫ 1

0
tan (xn2

) dx .

4.5

4.6

4.7

4.8

4.9

4.10
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Exemples de détermination de natures de séries

Déterminer la nature des séries de termes généraux :

un = 1

(n + 1)!

n∑
k=0

k! , vn = 1

(n + 2)!

n∑
k=0

k! .

Nature d’une série faisant intervenir des factorielles, utilisation de la formule de Stirling

Déterminer la nature de la série de terme général un =
(

n!

(2n)!

) 1
n

.

Recherche de paramètres pour la convergence d’une série

Déterminer les polynômes P ∈ R[X] tels que la série de terme général 

un = (n4 + 3n2)1/4 − (
P(n)

)1/3
, est convergente. 

Exemple de détermination de la nature d’une série définie à partir d’une autre série

Soit (un)n une suite réelle. On suppose que les séries 
∑

n

un et 
∑

n

u2
n convergent.

a) Montrer que, à partir d’un certain rang, un �= −1.

b) Établir que la série 
∑

n

un

1 + un
converge. 

Nature d’une série déduite d’une autre série

Soit 
∑
n�1

un une série à termes dans R+, convergente.

Montrer que la série 
∑
n�1

√
un

n
converge. 

Nature d’une série faisant intervenir une suite récurrente

On considère la suite réelle (un)n�1 définie par u1 > 0 et :

∀ n � 1, un+1 = ln

(
1 + un

n

)
.

Déterminer, pour α ∈ R
∗
+ fixé, la nature de la série 

∑
n�1

uαn .

Exemple de détermination de la nature d’une série alternée, avec paramètre

Déterminer, pour (a,b) ∈ R
2 fixé, la nature de la série de terme général un = (−1)n na

(n + 1)b
.

Exemples de détermination de natures de séries à termes complexes

Déterminer la nature des séries de termes généraux :

un =
(

(2 + 3i)n + 2 − i

(3 + 4i)n + 3 + i

)n

, vn =
(

(2 + 3i)n + 2 − i

(3 + 2i)n + 3 + i

)n

.

4.11

4.12

4.13

4.14

4.15

4.16

4.17

4.18
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Existence et calcul de la somme d’une série convergente

Existence et calcul de 
+∞∑
n=1

un où : un = 1

n
√

n + 2 + (n + 2)
√

n
.

Exemple de calcul de la somme d’une série convergente

Existence et calcul de 
+∞∑
n=2

ln

(
1 − 2

n(n + 1)

)
.

Calcul de la somme d’une série convergente déduite d’une autre série

Soit (un)n�1 une suite à termes dans R+ .

On note, pour tout n � 1 : vn = un

(1 + u1) · · · (1 + un)
.

a) Montrer : ∀ n � 1,

n∑
k=1

vk = 1 − 1

(1 + u1) · · · (1 + un)
.

b) En déduire la nature de la série 
∑
n�1

vn .

Calcul de la somme d’une série convergente déduite de la série harmonique

On note, pour tout n ∈ N
∗ :

un =




1

n
si n �≡ 0 [3]

−2

n
si n ≡ 0 [3].

Montrer que la série 
∑
n�1

un converge et calculer sa somme. 

Exemple de détermination d’un équivalent de la somme d’une série convergente à para-
mètre

Montrer :
+∞∑
n=1

1

n(n + x)
∼

x−→+∞
ln x

x
.

Recherche d’un équivalent d’une expression faisant intervenir un reste de série conver-
gente

Trouver un équivalent simple de un =
( +∞∑

k=n

1

k!

) 1
n

, lorsque l’entier n tend vers l’infini. 

Étude d’une série construite à partir d’une suite

Soit (an)n∈N une suite dans R∗
+ . On considère la suite réelle (un)n∈N définie par u0 ∈

]
0 ; π

2

[
, et :

∀ n ∈ N, un+1 = Arctan (an + tan un).

a) Montrer que la suite (un)n∈N converge et que, en notant � = lim
n∞

un, on a : � ∈
]

0 ; π
2

]
.

4.19

4.20

4.21

4.22

4.23

4.24

4.25
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b) Montrer que la série 
∑
n∈N

an converge si et seulement si : � =/ π

2
.

Exemple de recherche d’un équivalent simple d’une somme double

On note, pour tout n ∈ N − {0,1} : Sn =
∑

1�p<q�n

1√
pq

.

a) Montrer : ∀ n ∈ N − {0,1}, Sn = 1

2
(A2

n − Bn),

où on a noté : An =
n∑

p=1

1√
p
, Bn =

n∑
p=1

1

p
.

b) En déduire un équivalent simple de Sn lorsque l’entier n tend vers l’infini. 

Utilisation d’une série pour étudier une suite

Soit (λn)n∈N une suite à termes dans R∗
+ , telle que λn −−−→

n ∞
+ ∞, et (un)n∈N la suite réelle défi-

nie par (u0,u1) ∈ R
2 et : ∀ n ∈ N, un+2 = un + λnun+1

1 + λn
.

Démontrer que la suite (un)n∈N converge. 

Étude d’une série dont le terme général fait intervenir une fonction

Soit f : [−1 ; 1] −→ C de classe C3. On note, pour tout n ∈ N
∗ :

un = n

(
f

(
1

n

)
− f

(
− 1

n

))
− 2 f ′(0) .

Montrer que la série 
∑
n∈N∗

un, converge. 

Convergence et somme d’une série définie à partir d’une suite récurrente du type
un+1 = f(un)

Soit (un)n∈N la suite réelle définie par u0 = 5 et : ∀ n ∈ N, un+1 = u2
n − 5un + 8.

a) Montrer que (un)n∈N est croissante et que un −−−→
n ∞

+ ∞.

b) Montrer : ∀ n ∈ N,
(−1)n

un − 3
= (−1)n

un − 2
− (−1)n+1

un+1 − 2
.

c) Déterminer la nature et la somme de la série 
∑
n�0

(−1)n

un − 3
.

Exemple de nature d’une série, le terme général étant défini par récurrence 

On considère la suite réelle (un)n∈N définie par u0 ∈ R et :

∀ n ∈ N, (n + 2)2un+1 = (n + 1)un + n .

Quelle est, pour a ∈ R fixé, la nature de la série 
∑

n

ua
n ? 
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4.27

4.28

4.29

4.30
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Étude de séries définies à partir de suites récurrentes

On considère la suite réelle (un)n�1 définie par u1 = 1 et :

∀ n � 1, un+1 =
√

u2
n + 1

n
.

a) Déterminer la limite de un et un équivalent simple de un lorsque l’entier n tend vers l’infini.

b) Déterminer la nature des séries de termes généraux 
1

un
et 

(−1)n

un
.

Convergence et somme d’une série définie à partir d’une suite récurrente du type
un+1 = f(un)

On considère la suite réelle (un)n∈N définie par u0 ∈ ]1 ;+∞[ et :

∀ n ∈ N, un+1 = u2
n − un + 1 .

a) Montrer : un −−−→
n ∞

+ ∞ . b) Existence et calcul de 
+∞∑
n=0

1

un
.

Exemple de calcul de la somme d’une série convergente, utilisation d’une décomposition
en éléments simples

Existence et calcul de 
+∞∑
n=1

3n − 2

n3 + 3n2 + 2n
.

Exemple de calcul de la somme d’une série convergente faisant intervenir la suite de
Fibonacci

On considère la suite de Fibonacci (φn)n�0 définie par φ0 = 0, φ1 = 1 et :

∀ n ∈ N, φn+2 = φn+1 + φn .

a) Montrer : ∀ n ∈ N, φ2
n+1 − φnφn+2 = (−1)n .

b) En déduire : ∀ n ∈ N
∗,

(−1)n

φnφn+1

= φn+1

φn

− φn+2

φn+1

.

c) Existence et calcul de 
+∞∑
n=1

(−1)n

φnφn+1

.

Exemples de détermination de la nature d’une série numérique

Déterminer la nature de la série de terme général un dans les exemples suivants :

a) tan

(
π

2
(7 + 4

√
3)n

)
b)

∫ 1

0

xn

1 + x + · · · + xn
dx c)

2n∑
k=n

1

(k + n)2 − k2
.

Nature d’une série déduite de deux autres séries

Soient (a,b) ∈ (R∗
+)2,

∑
n�0

un,
∑
n�0

vn deux séries à termes dans R
∗
+ , convergentes. 

Quelle est la nature de la série de terme général wn = u2
nv

2
n

au3
n + bv3

n

? 
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Exemple de détermination de la nature d’une série dont le terme général fait intervenir
les sommes partielles d’une série

Déterminer la nature de la série de terme général un = ln

(
exp

( n∑
k=0

(−1)k

k + 1

)
− 1

)
.

Exemple de détermination de la nature d’une série dont le terme général un est donné
selon la parité de n

Déterminer la nature de la série de terme général :

un =




sin
1

n
si n est impair, n � 1

− sh
1

n
si n est pair, n � 2.

Étude des séries convergentes dont le terme général décroît

Soit (un)n�1 une suite à termes dans R∗
+ , décroissante, telle que la série 

∑
n�1

un converge.

a) Montrer : nun −−−→
n ∞

0.

b) En déduire la nature des séries de termes généraux : vn = nu2
n, wn = un

1 − nun
.

Étude de la nature d’une série par comparaison

a) Soit (un)n∈N∗ une suite à termes dans R∗
+ , telle qu’il existe a ∈ ]1 ;+∞[ tel que :

∀ n ∈ N
∗,

un+1

un
�

(
n

n + 1

)a

.

Montrer que la série 
∑
n�1

un converge.

b) Application : déterminer la nature de la série de terme général un = 1 · 3 · · · (2n − 1)

2 · 4 · · · (2n)
· 1

2n + 1
.

Exemple de recherche d’une limite de suite à l’aide d’une série

Trouver lim
n∞

( +∞∑
k=n

1

k!

) 1
n ln n

. 

Utilisation de groupements de termes pour étudier la nature d’une série

Déterminer, pour α ∈ R fixé, la nature de la série de terme général un = (−1)
n(n+1)

2

nα
. 

Étude d’intégrabilité se ramenant à la nature d’une série

Est-ce que l’application f : x �−→ (1 + x4 sin 2x)−3 est intégrable sur [0 ;+∞[ ? 

Exemple de recherche d’un équivalent du reste d’une série alternée convergente

Trouver un équivalent simple de Rn =
+∞∑

k=n+1

(−1)k

k
lorsque l’entier n tend vers l’infini. 
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Nature de séries définies à partir d’une suite

On considère la suite réelle (un)n�0 définie par u0 � 0 et : ∀ n ∈ N, un+1 = √
n + un .

a) Montrer : un −−−→
n ∞

+ ∞.

b) Établir que (un)n�0 est croissante à partir d’un certain rang.

c) Trouver un équivalent simple de un lorsque l’entier n tend vers l’infini.

d) Quelle est la nature, pour α ∈ ]0 ;+∞[ fixé, de la série de terme général 
1

uαn
?

e)} Quelle est la nature, pour β ∈ ]0 ;+∞[ fixé, de la série de terme général 
(−1)n

uβn
? 

Convergence et somme d’une série, intervention de la formule de Stirling

Existence et calcul de 
+∞∑
n=1

un, où un = n ln

(
1 + 1

n

)
−

(
1 − 1

2n

)
.

Calcul de la somme d’une série convergente, utilisation d’une décomposition en
éléments simples

Existence et calcul de 
+∞∑
n=1

un, où un = 1

n(2n + 1)
.

Nature de la série des inverses des nombres premiers

On note pn le n-ème nombre premier (p1 = 2) . Montrer que la série 
∑
n�1

1

pn
diverge. 

Nature des séries 
∑

n

un

Sαn
,
∑

n

un

rαn

a) Soit 
∑
n�1

un une série divergente, à termes réels > 0 . On note, pour tout n � 1 : Sn =
n∑

k=1

uk .

Étudier, pour tout α ∈ R
∗
+ fixé, la nature de la série 

∑
n�1

un

Sαn
.

b) Soit 
∑
n�1

un une série convergente, à termes réels > 0 . On note, pour tout n � 1 :

rn =
+∞∑
k=n

uk . Étudier, pour tout α ∈ R
∗
+ fixé, la nature de la série 

∑
n�1

un

rαn
.

Exemple d’étude de produit infini

On note, pour tout n ∈ N
∗ : un =

n∏
k=1

(
1 + 1

k
+ 1

k2

)
.

Montrer qu’il existe C ∈ R
∗
+ tel que un ∼

n∞
Cn, et montrer : 1 � C � 3.

On pourra utiliser la constante d’Euler γ, définie par :
n∑

k=1

1

k
= ln n + γ+ o

n∞
(1).
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Étude de séries dont le terme général est défini à partir d’un reste de série convergente

a) Montrer que la série 
∑
n�1

(−1)n−1

n
converge et que, pour tout n ∈ N , son reste

Rn =
+∞∑

k=n+1

(−1)k−1

k
vérifie : Rn = (−1)n

∫ 1

0

xn

1 + x
dx .

b) Montrer que la série 
∑
n�0

Rn converge et que, pour tout n ∈ N , son reste ρn vérifie :

ρn = (−1)n+1

∫ 1

0

xn+1

(1 + x)2
dx .

c) Quelles sont les natures des séries 
∑
n�0

ρn,
∑
n�0

(−1)n
ρn ? En cas de convergence, quelle est la

somme ? 

Nature de la série 
∑
n�1

ϕ(n)

n2

Soit ϕ : N
∗ −→ N

∗ injective. Montrer que la série 
∑
n�1

ϕ(n)

n2
diverge. 

4.51

4.52

Du mal à démarrer ?

Il s’agit de séries à termes réels � 0 .

Essayer d’appliquer (dans l’ordre) le théorème de majoration ou

de minoration, le théorème d’équivalence, la règle nαun, la règle

de d’Alembert, une comparaison série/intégrale.

a) Majoration.

b) Expression conjuguée, puis minoration.

c) Majoration.

d) Équivalent.

e) Équivalent, puis majoration.

f) Équivalent, puis règle nαun.

g) Règle de d’Alembert.

h) Équivalent, si a �= 0 .

Il s’agit d’exemples de séries de Bertrand 

∑
n�2

1

nα(ln n)β
, (α,β) ∈ R

2fixé .

Mais le résultat général sur les séries de Bertrand n’est pas au
programme.

Essayer d’appliquer : le théorème de majoration ou le théorème

de minoration, la règle nαun, une comparaison série/intégrale.

a), b) Majoration, minoration.

c), d) Règle nαun.

e), f) Comparaison série/intégrale.

Faire apparaître des réels � 0 et utiliser le théorème de

majoration pour des séries à termes � 0 .

Il s’agit de séries à termes � 0 . Remarquer d’abord :

an −−−→
n∞

0 . Utiliser ensuite une majoration ou un équivalent.

Il s’agit de séries alternées.

a) Convergence absolue.

b) TSCSA.

c), d) Utiliser un développement asymptotique.

Utiliser le lien suite/série : la suite (un)n∈N∗ converge si et

seulement si la série 
∑

n∈N∗
(un+1 − un) converge.

1) Existence : Équivalent.

2) Calcul :Décomposition en éléments simples,puis télescopage.
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a) Équivalent et règle de d’Alembert.

b) • Degrés successifs.

• Faire apparaître X(X − 1)(X − 2) dans P, puis faire apparaître

X(X − 1),… 

c) Décomposer en somme de séries convergentes.

Il s’agit de séries à termes réels � 0 .

Essayer d’appliquer (dans l’ordre) le théorème de majoration ou

de minoration, le théorème d’équivalence, la règle nαun, la règle

de d’Alembert, une comparaison série/intégrale.

Si le terme général un fait intervenir un ou des paramètres, on

pourra être amené à former un développement asymptotique

de un , qui permettra, selon les valeurs des paramètres, d’obtenir

un équivalent de un , ou une estimation de un .

a) Effectuer un développement asymptotique de n sin
1

n
, puis

de un .

b) Traiter d’abord les cas λ < 0, λ = 0 .

Pour λ > 0 , utiliser la règle nαun.

c) Majoration et règle nαun.

d), e), f), j) Former un développement asymptotique de un à la

précision O

(
1

n2

)
.

g), k) Règle de d’Alembert.

h) Séparer en cas selon la position de a par rapport à 1, à cause

de la présence de xn dans l’intégrale. Utiliser ensuite une majo-

ration ou une minoration.

i) Séparer en cas selon la position de a et b par rapport à 1, et uti-

liser des équivalents.

Il s’agit de séries à termes � 0 .

Pour obtenir des inégalités sur un, vn , utiliser un encadrement

de tan t , en montrant :

∀ t ∈ [0 ; 1], t � tan t � 2t .

Commencer par chercher un équivalent simple de 
n∑

k=0

k! .

Puisque k! croît très vite, on peut conjecturer que 
n∑

k=1

k!, est

équivalent à n! lorsque l’entier n tend vers l’infini.

Utiliser la formule de Stirling : n! ∼
n∞

(
n

e

)n√
2πn pour

déduire un développement asymptotique de ln un , puis un
équivalent simple de un lorsque l’entier n tend vers l’infini.

• Montrer d’abord que, si la série 
∑

n

un converge, alors

nécessairement P est de degré 3 et de coefficient dominant
égal 1.

• Pour P = X3 + aX2 + bX + c, (a,b,c) ∈ R
3 , calculer un déve-

loppement asymptotique de un .

b) Étudier 
un

1 + un
− un .

La présence de racines carrées dans une sommation (ou

dans une intégrale) fait penser à l’inégalité de Cauchy et

Schwarz. Appliquer celle-ci, dans RN usuel, pour N fixé, afin

d’obtenir une majoration des sommes partielles.

Obtenir une majoration convenable de un .

Traiter les cas immédiats a > b, a = b .

Pour a < b , montrer que le TSCSA s’applique.

• Majorer |un | par le terme général d’une série géométrique

convergente.

• Évaluer ln|vn | et montrer que ln|vn | ne tend pas vers 1 lorsque

l’entier n tend vers l’infini.

1) Existence : Équivalent.

2) Calcul : En utilisant une expression conjuguée, amener un

télescopage dans le calcul des sommes partielles.

1) Existence : Équivalent.

2) Calcul : Amener un télescopage dans le calcul des sommes

partielles.

a) Récurrence sur n, ou télescopage.

b) D’après a), la suite des sommes partielles de la série de terme

général vn est majorée (par 1).

Calculer 
3p∑

n=1

un, puis déterminer sa limite lorsque l’entier p

tend vers l’infini, par exemple en utilisant le théorème sur les
sommes de Riemann.

Relier avec 
3p+1∑
n=1

un et avec 
3p+2∑
n=1

un .

Effectuer une comparaison série/intégrale, à l’aide, pour
x ∈ ]0 ;+∞[ fixé, de l’application 

[1 ;+∞[−→ R, t �−→ 1

t (t + x)
.

• Montrer :
+∞∑
k=n

1

k!
∼

n∞
1

n!
.

• En utilisant la formule de Stirling n! ∼
n∞

(
n

e

)n√
2πn, en dédui-

re un équivalent simple de un lorsque l’entier n tend vers l’infini.
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Du mal à démarrer ?

a) Étudier, pour la suite (un)n∈N : existence, situation,

monotonie éventuelle, majoration/minoration.

b) Utiliser le lien suite/série.

a) Remarquer que p et q jouent des rôles symétriques

dans 
1√
pq

, d’où 2Sn =
∑

1�p �=q�n

1√
pq

, puis rajouter et retran-

cher les termes correspondant à p = q.

b) Par comparaison somme/intégrale, obtenir des équivalents

pour An et pour Bn .

Utiliser le lien suite/série et la règle de d’Alembert.

Utiliser la formule de Taylor-Young pour obtenir un déve-

loppement asymptotique de un lorsque l’entier n tend vers l’in-

fini.

a) Montrer, par récurrence : ∀ n ∈ N, un � 5.

Ayant montré que (un)n∈N est croissante, pour obtenir

un −−−→
n∞

+ ∞, raisonner par l’absurde, en supposant

un −−−→
n∞

� ∈ R.

c) Faire apparaître un télescopage dans le calcul des sommes

partielles de la série, en utilisant b).

Il s’agit d’abord d’obtenir un équivalent simple de un

lorsque l’entier n tend vers l’infini. À cet effet, obtenir des ren-

seignements de plus en plus précis sur un :

un = O
n∞

(n), puis (en réinjectant) un = O
n∞

(1) ,

puis un −−−→
n∞

0, puis un ∼
n∞

1

n
.

a) Exprimer u2
n à l’aide de u2

n−1 , puis sommer pour faire

apparaître un télescopage.

Rappeler : Hn =
n∑

k=1

1

k
∼

n∞ ln n.

Obtenir : un ∼
n∞

√
ln n.

b) 1) La première série est à termes � 0 : utiliser un équivalent.

2) La deuxième série relève du TSCSA.

a) Montrer que (un)n�0 est croissante et ne peut pas avoir
de limite finie.

b) Amener un télescopage dans le calcul des sommes partielles,

en calculant 
1

un+1 − 1
− 1

un − 1
.

1) Existence : Équivalent.

2) Calcul : Amener un télescopage dans le calcul des sommes

partielles, en utilisant une décomposition en éléments simples.

a) Récurrence sur n (d’autres méthodes sont possibles).

c) Faire apparaître un télescopage dans le calcul des sommes

partielles, en utilisant b).

a) Noter an = (7 + 4
√

3)n et considérer bn = (7 − 4
√

3)n.

Évaluer an + bn en utilisant la formule du binôme de Newton, et

en déduire : un = − tan bn .

b) Il s’agit d’évaluer 1 + x + · · · + xn . Le remplacement par

1 − xn+1

1 − x
ne semble pas simplifier la question. Utiliser la com-

paraison entre la moyenne arithmétique et la moyenne géomé-
trique, pour obtenir :

1 + x + · · · + xn � (n + 1)x
n+1

2 .

c) Écrire un sous une autre forme, avec changement d’indice,

pour faire apparaître une somme de Riemann.

Il s’agit de comparer wn avec une expression simple formée

à partir de un et vn. Obtenir : w2
n � un + vn

ab
.

Exprimer 
n∑

k=0

(−1)k

k + 1
à l’aide d’intégrales, en utilisant :

1

k + 1
=

∫ 1

0
tk dt.

En déduire : un = 2an + o(a2
n) ,

où an = (−1)n
∫ 1

0

tn+1

1 + t
dt.

Remarquer d’abord : un −−−→
n∞

0.

Grouper les termes deux par deux.

a) En notant Rn =
+∞∑
k=1

uk , et en utilisant la décroissance de

la suite (un)n�1 , évaluer 2nu2n et (2n + 1)u2n+1 .

b) Remarquer vn = (nun)un et wn ∼
n∞ un .

a) Réitérer l’inégalité de l’énoncé et utiliser le théorème de

majoration pour des séries à termes � 0 .

b) Former un développement asymptotique de 
un+1

un
et un

développement asymptotique de 

(
n

n + 1

)a

. Choisir convena-

blement a pour pouvoir appliquer le résultat de la question a).

Chercher un équivalent simple de Rn =
+∞∑
k=n

1

k!
lorsque

l’entier n tend vers l’infini.

En utilisant la formule de Stirling n! ∼
n∞

(
n

e

)n√
2πn, en

déduire un développement asymptotique de ln un , puis un
équivalent de un .
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Traiter d’abord le cas α � 0 , d’étude immédiate.

Pour α > 0 , grouper les termes quatre par quatre, puisque la

suite 
(
(−1)

n(n+1)
2

)
n�0

est périodique de période 4.

En notant, pour tout n ∈ N , un =
∫ (n+1)π

nπ

f, montrer

d’abord que l’intégrabilité de f est équivalente à la convergence

de la série 
∑
n�0

un .

Évaluer un par changements de variables et inégalités.

Exprimer Rn à l’aide d’une intégrale, en utilisant

1

k
=

∫ 1

0
tk−1 dt, et en commençant par travailler sur

p∑
k=n+1

(−1)k

k
puis en faisant tendre p vers l’infini.

Pour déterminer un équivalent simple de 

∫ 1

0

tn

1 + t
dt, utiliser

une intégration par parties.

b) Remarquer d’abord que (un)n�0 ne peut pas être

décroissante. Sachant un0+1 � un0 pour n0 fixé, déduire que

(un)n�n0 est croissante.

c) Considérer, pour tout n ∈ N, Pn = X2 − X − n et situer un+1

par rapport aux deux zéros de Pn .

En déduire : un = o(n), puis : un ∼
n∞

√
n .

d) Équivalent.

e) TSCSA.

1) Existence : Équivalent, par l’intermédiaire d’un développe-

ment limité.

2) Écrire une somme partielle, amener un télescopage, et utiliser

la formule de Stirling : n! ∼
n∞

(
n

e

)n√
2πn.

1) Existence : Équivalent.

2) Calcul : Utiliser une décomposition en éléments simples et la

constante d’Euler :

N∑
n=1

1

n
= ln N + γ + o

N∞
(1) .

Remarquer :
1

pn
∼

n∞ ln
1

1 − 1

pn

,

et étudier les sommes partielles de la série de terme général

ln
1

1 − 1

pn

, en développant 
1

1 − 1

pn

en série géométrique et en

utilisant la décomposition de tout entier (� 2 ) en produit de
nombres premiers.

a) Séparer en cas selon la position de α par rapport à 1.

Si α = 1 , supposer que la série 
∑

n

un

Sn
converge et déduire une

contradiction, en utilisant 

un

Sn
∼

n∞ −ln

(
1 − un

Sn

)
.

Si α ∈ ]0 ; 1[ , utiliser une minoration et le résultat du cas précé-

dent.

Si α ∈ ]1 ;+∞[, remarquer :
un

Sα
n

�
∫ Sn

Sn−1

1

xα
dx .

1) Existence de C :

Noter vn =
n∑

k=1

ln

(
1 + 1

k
+ 1

k2

)
et wn =

n∑
k=1

1

k
.

En utilisant des développements limités, montrer que la série∑
k�1

(
ln

(
1 + 1

k
+ 1

k2

)
− 1

k

)
converge.

2) Évaluation de C :

Utiliser : 1 + 1

k
+ 1

k2
� 1 + 1

k
,

et, pour k � 2 : 1 + 1

k
+ 1

k2
� 1 + 1

k − 1
.

a) Remplacer, dans Rn,
1

k
par 

∫ 1

0
xk−1 dx .

b) Se déduit de a).

c) 1) Pour calculer 
n∑

k=0

ρk , raisonner comme en b).

2) Ne pas oublier que (−1)nρn est, en fait, de signe fixe.

Minorer convenablement 
2n∑

k=n+1

ϕ(k)

k
pour déduire que cette

somme ne tend pas vers 0 lorsque l’entier n tend vers l’infini.
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a) On a : 0 � | sin n|
n2

� 1

n2
.

D’après l’exemple de Riemann (2 > 1 ) et le théorème de ma-
joration pour des séries à termes � 0, on conclut que la série∑

n

un converge.

b) On a, en utilisant une expression conjuguée :

un = √
n − √

n − 1 = 1√
n + √

n − 1
� 1

2
√

n
= 1

2n
1
2

.

D’après l’exemple de Riemann (1/2 � 1) et le théorème de mi-
noration pour des séries à termes � 0, on conclut que la série∑

n

un diverge.

c) On a, pour n � 3 : 0 �
(

1

2
+ 1

n

)n

�
(

5

6

)n

.

Puisque 0 � 5

6
< 1, la série géométrique 

∑
n

(
5

6

)n

converge.

Par théorème de majoration pour des séries à termes � 0, on

conclut que la série 
∑

n

un converge.

d) On a :

ln
n2 + 2n + 3

n2 + 2n + 2
= ln

(
1 + 1

n2 + 2n + 2

)

∼
n∞

1

n2 + 2n + 2
∼
n∞

1

n2
.

D’après l’exemple de Riemann (2 > 1 ) et le théorème d’équi-
valence pour des séries à termes � 0, on conclut que la série∑

n

un converge.

e) Comme 
sin n

n
−−−→

n ∞
0 et que 1 − cos x ∼

x−→0

x2

2
,

on a : 1 − cos

(
sin n

n

)
∼
n∞

1

2

(
sin n

n

)2

.

Et : 0 �
(

sin n

n

)2

� 1

n2
.

D’après l’exemple de Riemann (2 > 1 ), la série 
∑

n

1

n2

converge. Par théorème de majoration pour des séries à termes

� 0, la série 
∑

n

(
sin n

n

)2

converge. Par théorème d’équiva-

lence pour des séries à termes � 0, on conclut que la série 
∑

n

un

converge.

f) On a : n
1

n2 − 1 = e
ln n
n2 − 1 ∼

n∞
ln n

n2
.

Pour étudier la nature de la série 
∑

n

ln n

n2
, nous allons essayer

d’utiliser la règle nαun.

On a : n3/2 ln n

n2
= ln n

n1/2
−−−→

n ∞
0,

par prépondérance classique.

D’où, à partir d’un certain rang : n3/2 ln n

n2
� 1,

donc : 0 � ln n

n2
� 1

n3/2
.

D’après l’exemple de Riemann (3/2 > 1), la série 
∑

n

1

n3/2

converge. Par théorème de majoration pour des séries à termes

� 0, la série 
∑

n

ln n

n2
converge.

On conclut, par théorème d’équivalence pour des séries à

termes � 0, que la série 
∑

n

un converge.

g) On a : ∀ n ∈ N, un > 0 et :

un+1

un
= 2n+1

(n + 1)!

n!

2n
= 2

n + 1
−−−→

n ∞
0 < 1 .

D’après la règle de d’Alembert, on conclut que la série 
∑

n

un

converge.

h) On a :

un = (n + 1)a − na

nb
= na−b

((
1 + 1

n

)a

− 1

)

= na−b

(
a

n
+ o

(
1

n

))
.

• Si a =/ 0, alors : un ∼
n∞

na−b a

n
= ana−b−1.

Il en résulte, d’après l’exemple de Riemann et le théorème

d’équivalence pour des séries à termes � 0, que la série 
∑

n

un

converge si et seulement si a − b − 1 < −1, c’est-à-dire
a < b .

• Si a = 0, alors un = 0 pour tout n ∈ N
∗ , donc la série 

∑
n

un

converge.

Finalement, la série 
∑

n

un converge si et seulement si :

a < b ou a = 0.

Il s’agit de cas particuliers de la série de Bertrand∑
n�2

1

nα(ln n)β
, (α,β) ∈ R

2 fixé. Comme le résultat

Corrigés des exercices

4.1

4.2
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Ainsi, f n’est pas intégrable sur [2 ;+∞[ et on conclut que la

série 
∑

n

1

n ln n
diverge.

f) Considérons l’application 

g : [2 ;+∞[−→ R, x �−→ 1

x(ln x)2
.

Il est clair que g est continue, décroissante, � 0.

D’après le cours sur la comparaison série/intégrale, la série∑
n

un converge si et seulement si l’application g est intégrable

sur [2 ;+∞[.

On a, pour tout X ∈ [2 ;+∞[ :∫ X

2
g(x) dx =

∫ X

2

1

x(ln x)2
dx =

y= ln x

∫ ln X

ln 2

1

y2
dy

=
[

− 1

y

]ln X

ln 2

= − 1

ln X
+ 1

ln 2
−→

X−→+∞
1

ln 2
.

Ainsi, g est intégrable sur [2 ;+∞[, et on conclut que la série∑
n

1

n(ln n)2
converge.

On a : ∀ n ∈ N, 0 � wn − un � vn − un .

Comme les séries de termes généraux un et vn convergent, par
opération, la série de terme général vn − un converge, puis, par
théorème de majoration pour des séries à termes � 0, la série
de terme général wn − un converge.

Enfin, comme : ∀ n ∈ N, wn = (wn − un) + un

et que les séries de termes généraux wn − un et un convergent,
par addition, la série de terme général wn converge.

• On a, pour tout n : 0 � un = an

1 + an
� an .

Comme la série 
∑

n

an converge, par théorème de majoration

pour des séries à termes � 0, on conclut que la série 
∑

n

un

converge.

• Puisque la série 
∑

n

an converge, on a : an −−−→
n ∞

0, donc :

vn = ch an − 1

an
∼
n∞

1

2
a2

n

an
= 1

2
an � 0.

Comme la série 
∑

n

an converge, par théorème d’équivalence

pour des séries à termes � 0, on conclut que la série 
∑

n

vn

converge.

• Puisque la série 
∑

n

an converge, on a : an −−−→
n ∞

0 ,

donc, à partir d’un certain rang : 0 � an � 1, d’où :

0 � wn = a2
n � an .

∑
n�2

1

nα(ln n)β
converge⇐⇒(

α > 1 ou
(
α = 1 et β > 1

))

est hors-programme, il nous faut ici étudier chaque cas pro-
posé.

a) On a, pour n � 3 : 0 � 1

n2 ln n
� 1

n2
.

D’après l’exemple de Riemann (2 > 1 ) et le théorème de ma-

joration pour des séries � 0, on conclut que la série 
∑

n

1

n2 ln n

converge.

b) On a, pour n � 3 :
ln n

n
� 1

n
� 0.

D’après l’exemple de Riemann et le théorème de minoration

pour des séries à termes � 0, on conclut que la série 
∑

n

ln n

n

diverge.

c) On a : n3/2un = n3/2 ln n

n2
= ln n

n1/2
−−−→

n ∞
0,

par prépondérance classique, d’où, à partir d’un certain rang :

n3/2un � 1, et donc : 0 � un � 1

n3/2
.

D’après l’exemple de Riemann (3/2 > 1) et le théorème de ma-
joration pour des séries à termes � 0, on conclut que la série∑

n

ln n

n2
converge.

d) On a : nun = n
1√

n ln n
=

√
n

ln n
−−−→

n ∞
+ ∞,

par prépondérance classique, d’où, à partir d’un certain rang :

nun � 1, et donc : un � 1

n
� 0.

D’après l’exemple de Riemann et le théorème de minoration
pour des séries à termes � 0, on conclut que la série∑

n

1√
n ln n

diverge.

e) Considérons l’application 

f : [2 ;+∞[−→ R, x �−→ 1

x ln x
.

Il est clair que f est continue, décroissante, � 0. D’après le cours

sur la comparaison série/intégrale, la série 
∑

n

un converge si

et seulement si l’application f est intégrable sur [2 ;+∞[.

On a, pour tout X ∈ [2 ;+∞[ :

∫ X

2
f (x) dx =

∫ X

2

1

x ln x
dx =

y = ln x

∫ ln X

ln 2

1

y
dy

= [ ln y]ln X
ln 2 = ln ln X − ln ln 2 −→

X−→+∞
+∞.

4.3
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Comme la série 
∑

n

an converge, par théorème de majoration

pour des séries à termes � 0, on conclut que la série 
∑

n

wn

converge.

a) On a : ∀ n ∈ N, |un| = n

n3 + n + 1
� n

n3
= 1

n2
.

D’après l’exemple de Riemann (2 > 1 ) et le théorème de ma-

joration pour des séries à termes � 0, la série 
∑

n

|un| converge.

Ainsi, la série 
∑

n

un converge absolument, donc converge.

b) La série 
∑
n�1

un est alternée, un −−−→
n ∞

0 et la suite (|un|)n�1

est décroissante, donc, d’après le TSCSA, la série 
∑
n�1

un

converge.

c) Effectuons un développement asymptotique :

un = (−1)n

n + (−1)n
= (−1)n

n

(
1 + (−1)n

n

)−1

= (−1)n

n

(
1 + O

(
1

n

))
= (−1)n

n
+ O

(
1

n2

)
.

D’après le TSCSA, la série 
∑
n�1

(−1)n

n
converge.

Par théorème de comparaison, puisque la série 
∑

n

1

n2
converge

et est à termes � 0, la série 
∑

n

O

(
1

n2

)
converge absolument,

donc converge.

Par addition de deux séries convergentes, on conclut que la série∑
n

un converge.

d) Effectuons un développement asymptotique :

un = (−1)n

√
n + (−1)n

= (−1)n

√
n

(
1 + (−1)n

√
n

)−1

= (−1)n

√
n

(
1 − (−1)n

√
n

+ O

(
1

n

))

= (−1)n

√
n

− 1

n
+ O

(
1

n3/2

)
.

D’après le TSCSA, la série 
∑
n�1

(−1)n

√
n

converge.

La série 
∑
n�1

1

n
diverge.

Par théorème de comparaison, puisque la série 
∑
n�1

1

n3/2

converge et est à termes � 0, la série 
∑

n

O

(
1

n3/2

)
est abso-

lument convergente, donc convergente.

Par addition d’une série divergente et de deux séries conver-

gentes, on conclut que la série 
∑

n

un diverge.

Nous allons utiliser le lien suite/série.

On a, pour n � 1 :

un+1 − un = 1

a + n + 1
− ln(n + 1) + ln n

= 1

n

1

1 + a + 1

n

− ln

(
1 + 1

n

)

= 1

n

(
1 + O

(
1

n

))
−

(
1

n
+ O

(
1

n2

))

= O

(
1

n2

)
.

D’après l’exemple de Riemann (2 > 1 ), la série 
∑

n

1

n2

converge. Par théorème de comparaison, il en résulte que la série∑
n

O

(
1

n2

)
converge absolument, donc converge.

Ceci montre que la série 
∑

n

(un+1 − un) converge.

D’après le lien suite/série, on conclut que la suite (un)n∈N∗

converge.

1) Existence :

On a :

un = 2(2n2 + n − 3)

n(n + 1)(n + 2)(n + 3)
∼
n∞

4n2

n4
= 4

n2
� 0 .

D’après l’exemple de Riemann (2 > 1 ) et le théorème d’équi-
valence pour des séries à termes � 0, on conclut que la série
∑

n

un converge, donc S =
+∞∑
n=1

un existe.

2) Calcul :

• Effectuons une décomposition en éléments simples. 
Il existe (a,b,c,d) ∈ R

4 tel que :

F = 2(2X2 + X − 3)

X(X + 1)(X + 2)(X + 3)

= a

X
+ b

X + 1
+ c

X + 2
+ d

X + 3
.

Par multiplication par X, puis remplacement de X par 0,

on obtient : a = −6

6
= −1.

Par multiplication par X + 1 , puis remplacement de X par −1,

on obtient : b = −4

−2
= 2.

4.5 4.6
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Par multiplication par X + 2 , puis remplacement de X par −2,

on obtient : c = 6

2
= 3.

Par multiplication par X + 3 , puis remplacement de X par −3,

on obtient : d = 24

−6
= −4.

On obtient : F = − 1

X
+ 2

X + 1
+ 3

X + 2
− 4

X + 3
.

• D’où, pour tout N ∈ N
∗ (tel que N � 4), par télescopage :

N∑
n=1

un

=−
N∑

n=1

1

n
+ 2

N∑
n=1

1

n + 1
+ 3

N∑
n=1

1

n + 2
− 4

N∑
n=1

1

n + 3

= −
N∑

n=1

1

n
+ 2

N+1∑
n=2

1

n
+ 3

N+2∑
n=3

1

n
− 4

N+3∑
n=4

1

n

= −
(

1 + 1

2
+ 1

3
+

N∑
n=4

1

n

)

+ 2

(
1

2
+ 1

3
+

N∑
n=4

1

n
+ 1

N + 1

)

+ 3

(
1

3
+

N∑
n=4

1

n
+ 1

N + 1
+ 1

N + 2

)

− 4

( N∑
n=4

1

n
+ 1

N + 1
+ 1

N + 2
+ 1

N + 3

)

= 5

6
+ 2

N + 1
+ 3

(
1

N + 1
+ 1

N + 2

)

− 4

(
1

N + 1
+ 1

N + 2
+ 1

N + 3

)
−→
N∞

5

6
.

On conclut que la série 
∑
n�1

un converge et que sa somme est :

+∞∑
n=1

un = 5

6
.

a) On a : un = n3 + 6n2 − 5n − 2

n!
∼
n∞

n3

n!
, noté vn .

On a : ∀ n ∈ N
∗, vn > 0 et :

vn+1

vn
= (n + 1)3

(n + 1)!

n!

n3
= (n + 1)2

n3
∼
n∞

1

n
−−−→

n ∞
0 < 1 .

D’après la règle de d’Alembert, la série 
∑

n

vn converge.

Par théorème d’équivalence pour des séries à termes � 0, on

conclut que la série 
∑

n

un converge.

b) • En notant 

P0 = 1, P1 = X, P2 = X(X − 1), P3 = X(X − 1)(X − 2) ,

on a : ∀ i ∈ {0,. . . ,3}, deg (Pi ) = i, donc, d’après le cours,
B = (P0, P1, P2, P3) est une base de R3[X].

• Exprimons P sur la base B.

On a, en développant :

P0 = 1, P1 = X, P2 = X2 − X, P3 = X3 − 3X2 + 2X .

D’où, en faisant apparaître successivement P3, P2, P1, P0

dans P :

P = X3 + 6X2 − 5X − 2

= (X3 − 3X2 + 2X) + 9X2 − 7X − 2

= P3 + 9(X2 − X) + 2X − 2 = P3 + 9P2 + 2P1 − 2P0 .

c) On a, en manipulant des sommes de séries toutes conver-
gentes (d’après la règle de d’Alembert, par exemple) :

S =
+∞∑
n=0

un =
+∞∑
n=0

1

n!

(
P3(n) + 9P2(n) + 2P1(n) − 2P0(n)

)

=
+∞∑
n=0

P3(n)

n!
+ 9

+∞∑
n=0

P2(n)

n!
+ 2

+∞∑
n=0

P1(n)

n!
− 2

+∞∑
n=0

P0(n)

n!
.

Calculons ces différentes sommes de séries convergentes. 

• 
+∞∑
n=0

P0(n)

n!
=

+∞∑
n=0

1

n!
= e.

• 
+∞∑
n=0

P1(n)

n!
=

+∞∑
n=0

n

n!
=

+∞∑
n=1

1

(n − 1)!
=

+∞∑
p=0

1

p!
= e

• 
+∞∑
n=0

P2(n)

n!
=

+∞∑
n=0

n(n − 1)

n!
=

+∞∑
n=2

1

(n − 2)!
=

+∞∑
p=0

1

p!
= e

• 
+∞∑
n=0

P3(n)

n!
=

+∞∑
n=0

n(n − 1)(n − 2)

n!

=
+∞∑
n=3

1

(n − 3)!
=

+∞∑
p=0

1

p!
= e.

d’où :
+∞∑
n=0

un = e + 9 e + 2 e − 2 e = 10 e.

a) Effectuons un développement asymptotique :

n sin
1

n
= n

(
1

n
− 1

6n3
+ o

(
1

n3

))
= 1 − 1

6n2
+ o

(
1

n2

)
,

puis :

ln un = na ln

(
n sin

1

n

)
= na ln

(
1 − 1

6n2
+ o

(
1

n2

))

= na
(

− 1

6n2
+ o

(
1

n2

))
= −1

6
na−2 + o(na−2) .

• Si a < 2 , alors ln un −−−→
n ∞

0, un −−−→
n ∞

1, un −−−→
n ∞
/ 0 ,

donc la série 
∑

n

un diverge grossièrement.

4.8
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• Si a = 2, alors ln un −−−→
n ∞

− 1

6
,un −−−→

n ∞
e− 1

6 ,un −−−→
n ∞
/ 0,

donc la série 
∑

n

un diverge grossièrement.

• Supposons a > 2. On a alors :

n2un = e2 ln n− 1
6 na−2+o(na−2) −−−→

n ∞
0 ,

par prépondérance classique.

On a donc, à partir d’un certain rang : n2un � 1, d’où :

0 � un � 1

n2
. D’après l’exemple de Riemann (2 > 1 ) et le

théorème d’équivalence pour des séries à termes � 0, on

conclut que la série 
∑

n

un converge.

Finalement, la série 
∑

n

un converge si et seulement si : a > 2.

b) • Si λ < 0, alors (ln n)λ −−−→
n ∞

0, un −−−→
n ∞

1, un −−−→
n ∞
/ 0 ,

donc la série 
∑

n

un diverge grossièrement.

• Si λ = 0, alors (ln n)λ = 1, un −−−→
n ∞

e−1, un −−−→
n ∞
/ 0 ,

donc la série 
∑

n

un diverge grossièrement.

• Supposons λ > 0. Essayons d’utiliser la règle nαun . 
Soit α ∈ R fixé, à choisir ultérieurement. On a :

nαun = nαe−(ln n)λ = eα ln n−(ln n)λ .

Pour comparer α ln n et (ln n)λ , il nous faut connaître la po-
sition de λ par rapport à 1.

∗ Si λ < 1, alors, en prenant α = 1, on a :

nun = e ln n−(ln n)λ −−−→
n ∞

+ ∞ ,

donc, à partir d’un certain rang : nun � 1, donc : un � 1

n
� 0,

D’après l’exemple de Riemann et le théorème de minoration

pour des séries à termes � 0, on conclut que la série 
∑

n

un

diverge.

∗ Si λ = 1, alors un = e−ln n = 1

n
, donc la série 

∑
n

un diverge.

∗ Si λ > 1, alors, en prenant α = 1 + λ

2
> 1, on a :

nαun = eα ln n−(ln n)λ −−−→
n ∞

0 ,

donc, à partir d’un certain rang, : nαun � 1, d’où :

0 � un � 1

nα
. D’après l’exemple de Riemann (α > 1) et le

théorème de majoration pour des séries à termes � 0, on

conclut que la série 
∑

n

un converge.

Finalement, la série 
∑

n

un converge si et seulement si : λ > 1.

c) On a :

0 � un =
∫ 1

n

1
n+2

ex (−ln x) dx

�
(

1

n
− 1

n + 2

)
e

1
n

(
− ln

1

n + 2

)

= 2

n(n + 2)
e

1
n ln (n + 2) ∼

n∞
2

ln n

n2
.

Pour déterminer la nature de la série de terme général vn = ln n

n2
,

utilisons la règle nαvn (cf. aussi l’exercice 4.2).

On a : n3/2vn = ln n

n1/2
−−−→

n ∞
0,

donc, à partir d’un certain rang : n3/2vn � 1,

d’où : 0 � vn � 1

n3/2
. D’après l’exemple de Riemann

(3/2 > 1) et le théorème de majoration pour des séries à

termes � 0, la série 
∑

n

vn converge. D’après le théorème

d’équivalence et le théorème de majoration pour des séries à

termes � 0, on conclut que la série 
∑

n

un converge.

d) On a, en utilisant des développements limités :

ln
n + 1

n − 1
= ln

(
1 + 1

n

)
− ln

(
1 − 1

n

)

=
(

1

n
+ O

(
1

n2

))
−

(
− 1

n
+ O

(
1

n2

))
= 2

n
+ O

(
1

n2

)
,

d’où :

un = sin
1

n
+ a tan

1

n
+ b ln

n + 1

n − 1

=
( 1

n
+O

(
1

n2

))
+a

(
1

n
+O

(
1

n2

))
+b

(
2

n
+O

(
1

n2

))

=(1 + a + 2b)
1

n
+ O

(
1

n2

)
.

• Si 1 + a + 2b =/ 0 , alors un ∼
n∞

(1 + a + 2b)
1

n
, donc

1

1 + a + 2b
un ∼

n∞
1

n
� 0. D’après l’exemple de Riemann, par

multiplication par un coefficient fixé non nul, et d’après le théo-

rème d’équivalence pour des séries à termes � 0, la série 
∑

n

un

diverge.

• Si 1 + a + 2b = 0 , alors un = O

(
1

n2

)
.

Il existe C ∈ R+ tel que, à partir d’un certain rang : |un| � C

n2
.

D’après l’exemple de Riemann (2 > 1 ) et le théorème de ma-
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joration pour des séries à termes � 0, la série 
∑

n

∣∣∣∣O
(

1

n2

)∣∣∣∣
est convergente. Ainsi, la série 

∑
n

O

(
1

n2

)
est absolument

convergente, donc convergente.

Finalement, la série 
∑

n

un converge si et seulement si :

1 + a + 2b = 0 .

e) On a, par développements limités :
(

1 + a

n

)n

= exp

(
n ln

(
1 + a

n

))

= exp

(
n

(
a

n
− a2

2n2
+ O

(
1

n3

)))

= exp

(
a − a2

2n
+ O

(
1

n2

))

= ea exp

(
− a2

2n
+ O

(
1

n2

))

= ea

(
1 − a2

2n
+ O

(
1

n2

))

et :
n

n + 1
ea = ea

(
1 + 1

n

)−1

= ea

(
1 − 1

n
+ O

(
1

n2

))
.

D’où :

un =
(

1 + a

n

)a

− n

n + 1
ea

= ea

(
1 − a2

2n
+ O

(
1

n2

))
− ea

(
1 − 1

n
+ O

(
1

n2

))

= ea(2 − a2)

2n
+ O

(
1

n2

)
.

• Si a2 =/ 2, alors un ∼
n∞

ea(2 − a2)

2n
.

D’après l’exemple de Riemann, le produit par un coefficient
fixé non nul, et le théorème d’équivalence pour des séries à

termes � 0, on conclut que la série 
∑

n

un est divergente.

• Si a2 = 2, alors un = O

(
1

n2

)
.

D’après l’exemple de Riemann (2 > 1 ) et le théorème de ma-

joration pour des séries à termes � 0, la série 
∑

n

∣∣∣∣O
(

1

n2

)∣∣∣∣est

convergente. La série 
∑

n

O

(
1

n2

)
est absolument convergente,

donc convergente.

Finalement, la série 
∑

n

un est convergente si et seulement si :

a2 = 2.

f) Effectuons un développement asymptotique :

un = √
n2 + n + 3 + a

√
n2 + n + 1 + b

√
n2 + n + 2

= n

[(
1 + 1

n
+ 3

n2

)1/2

+ a

(
1 + 1

n
+ 1

n2

)1/2

+ b

(
1 + 1

n
+ 2

n2

)1/2]

= n

[(
1 + 1

2

(
1

n
+ 3

n2

)
− 1

8n2
+ O

(
1

n3

))

+ a

(
1 + 1

2

(
1

n
+ 1

n2

)
− 1

8n2
+ O

(
1

n3

))

+ b

(
1 + 1

2

(
1

n
+ 2

n2

)
− 1

8n2
+ O

(
1

n3

))]

= n

[
(1 + a + b) + 1

2
(1 + a + b)

1

n

+
(

11

8
+ 3a

8
+ 7b

8

)
1

n2
+ O

(
1

n3

)]

= (1 + a + b)n + 1

2
(1 + a + b) + 11 + 3a + 7b

8

1

n

+O

(
1

n2

)
.

• Si 1 + a + b =/ 0 , alors un ∼
n∞

(1 + a + b)n , donc

|un| −−−→
n ∞

+ ∞, un −−−→
n ∞
/ 0, la série 

∑
n

un diverge grossiè-

rement.

• Si 1 + a + b = 0 et 11 + 3a + 7b =/ 0, alors

un ∼
n∞

11 + 3a + 7b

8

1

n
, donc, par l’exemple de Riemann, par

la multiplication par un coefficient fixé non nul, et par le théo-
rème d’équivalence pour des séries à termes � 0, on conclut

que la série 
∑

n

un diverge.

• Si 1 + a + b = 0 et 11 + 3a + 7b = 0 , alors un = O

(
1

n2

)
.

D’après l’exemple de Riemann (2 > 1 ) et le théorème de ma-

joration pour des séries à termes � 0, la série 
∑

n

∣∣∣∣O
(

1

n2

)∣∣∣∣
est convergente. La série 

∑
n

O

(
1

n2

)
est absolument conver-

gente, donc convergente.

On résout le système linéaire :{
1 + a + b = 0

11 + 3a + 7b = 0
⇐⇒

{
a = 1

b = −2.

Finalement, la série 
∑

n

un converge si et seulement si :

a = 1 et b = −2.

g) On a : ∀ n ∈ N
∗, un = (n!)a

nn
> 0.

Essayons d’utiliser la règle de d’Alembert :
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un+1

un
=

(
(n + 1)!

)a

(n + 1)n+1

nn

(n!)a

= (n + 1)ann

(n + 1)n+1
= (n + 1)a−1

(
1 + 1

n

)−n

.

Et : (
1 + 1

n

)−n

= exp

(
− n ln

(
1 + 1

n

))

= exp

(
− n

(
1

n
+ o

(
1

n

)))

= exp
( − 1 + o(1)

) −−−→
n ∞

e −1.

On a donc :
un+1

un
∼
n∞

e−1(n + 1)a−1.

• Si a > 1, alors 
un+1

un
−−−→

n ∞
+ ∞ > 1, donc, d’après la

règle de d’Alembert, la série 
∑

n

un diverge.

• Si a = 1, alors 
un+1

un
−−−→

n ∞
e−1 < 1, donc, d’après la règle

de d’Alembert, la série 
∑

n

un converge.

• Si a < 1, alors 
un+1

un
−−−→

n ∞
0 < 1 , donc, d’après la règle de

d’Alembert, la série 
∑

n

un converge.

Finalement, la série 
∑

n

un converge si et seulement si :

a � 1.

h) Comme le comportement de xn dépend de la position de x
par rapport à 1, et que x varie entre 0 et a, séparons l’étude en
cas selon la position de a par rapport à 1.

• Cas 0 � a < 1 :

On a alors, pour tout n ∈ N :

0 � un =
∫ a

0

xn

3
√

1 + x2
dx �

∫ a

0
xn dx

=
[

xn+1

n + 1

]a

0

= an+1

n + 1
� an+1.

Comme 0 � a < 1, la série géométrique 
∑

n

an+1 converge.

Par théorème de majoration pour des séries à termes � 0, on

conclut que la série 
∑

n

un converge.

• Cas a � 1 :

On a alors, pour tout n ∈ N :

un =
∫ a

0

xn

3
√

1 + x2
dx �

∫ 1

0

xn

3
√

1 + x2
dx

�
∫ 1

0

xn

3
√

2
dx = 1

3
√

2

1

n + 1
∼
n∞

1
3
√

2

1

n
� 0.

D’après l’exemple de Riemann, le théorème d’équivalence pour
des séries à termes � 0, et le théorème de minoration pour des

séries à termes � 0, on conclut que la série 
∑

n

un diverge.

On conclut que la série 
∑

n

un converge si et seulement si :

a < 1.

i) On veut comparer 2
√

n et an, et comparer 3
√

n et bn. Cette com-
paraison dépend de la position de a et de b par rapport à 1.

• Cas a > 1 et b > 1 :

Alors : un ∼
n∞

an

bn
=

(
a

b

)n

. La série géométrique 
∑

n

(
a

b

)n

converge si et seulement si :
a

b
< 1. Par théorème d’équiva-

lence pour des séries à termes � 0, on conclut que la série ∑
n

un converge si et seulement si :
a

b
< 1.

• Cas a � 1 et b > 1 :

Alors : un ∼
n∞

2
√

n

bn
= e

√
n ln 2−n ln b,

donc : n2un ∼
n∞

e2 ln n+√
n ln 2−n ln b −−−→

n ∞
0.

Il en résulte, à partir d’un certain rang : n2un � 1, donc :

0 � un � 1

n2
. D’après l’exemple de Riemann (2 > 1 ) et le

théorème de majoration pour des séries à termes � 0, on

conclut que la série 
∑

n

un converge.

• Cas a > 1 et b � 1 :

Alors : un ∼
n∞

an

3
√

n
= en ln a−√

n ln 3 −−−→
n ∞

+ ∞,

donc un −−−→
n ∞
/ 0, la série 

∑
n

un diverge grossièrement.

• Cas a � 1 et b � 1 :

Alors : un ∼
n∞

2
√

n

3
√

n
=

(
2

3

)√
n

.

On a : n2un ∼
n∞

e2ln n+√
n ln 2/3 −−−→

n ∞
0,

par prépondérance classique. On a donc, à partir d’un certain

rang : n2un � 1, d’où : 0 � un � 1

n2
.

D’après l’exemple de Riemann (2 > 1 ) et le théorème de ma-
joration pour des séries à termes � 0, on conclut que la série∑

n

un converge.

Finalement, la série 
∑

n

un converge si et seulement si :

(
a > 1, b > 1,

a

b
< 1

)

ou
(
a � 1, b > 1

)
ou

(
a � 1, b � 1

)
,

ce qui revient à : a � 1 ou 1 < a < b.
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On peut représenter graphiquement l’ensemble des couples

(a,b) ∈ (R+)2 tels que la série 
∑

n

un converge :

On a :

ln(n + 1)

ln n
=

ln n + ln

(
1 + 1

n

)

ln n

=
ln n + 1

n
+ o

(
1

n

)

ln n
= 1 + 1

n ln n
+ o

(
1

n ln n

)
,

puis :

(
ln(n + 1)

ln n

)n

= exp

(
n ln

ln (n + 1)

ln n

)

= exp

(
n ln

[
1 + 1

n ln n
+ o

(
1

n ln n

)])

= exp

(
n

[
1

n ln n
+ o

(
1

n ln n

)])

= exp

(
1

ln n
+ o

(
1

ln n

))
−−−→

n ∞
1.

D’autre part, par prépondérance classique :

ln (n + 1)

n + 1
−−−→

n ∞
0 .

On déduit :
un+1

un
−−−→

n ∞
0 < 1.

D’après la règle de d’Alembert, on conclut que la série 
∑

n

un

converge.

1) • On sait (par exemple, par l’étude des variations de
t �−→ tan t − t ), que :

∀ t ∈
[

0 ; π
2

[
, tan t � t .

• D’où, pour tout n ∈ N :

un =
∫ 1

0
tan (xn) dx �

∫ 1

0
xn dx =

[
xn+1

n + 1

]1

0

= 1

n + 1
.

Comme la série 
∑

n

1

n + 1
diverge (série décalée de la série har-

monique), par théorème de minoration pour des séries à termes

� 0, on conclut que la série 
∑

n

un diverge.

2) • Montrons : ∀ t ∈ [0 ; 1], tan t � 2t.

L’application f : t �−→ tan t − 2t est dérivable sur [0 ; 1] et :

∀ t ∈ [0 ; 1], f ′(t) = tan2t − 1,

d’où le tableau de variations de f :

1

1O

b

a

j) Effectuons un développement asymptotique :

un = n
√

a − 2 n
√

b + n
√

c = e
1
n ln a − 2 e

1
n ln b + e

1
n ln c

=
(

1 + 1

n
ln a + O

(
1

n2

))
− 2

(
1 + 1

n
ln b + O

(
1

n2

))

+
(

1 + 1

n
ln c + O

(
1

n2

))

= 1

n
ln

ac

b2
+ O

(
1

n2

)
.

• Si 
ac

b2
=/ 1, alors ln

ac

b2
=/ 0, un ∼

n∞
ln

ac

b2

1

n
.

Comme la série 
∑

n

1

n
diverge, par multiplication par un coef-

ficient fixé non nul, puis par théorème d’équivalence pour des

séries à termes � 0, la série 
∑

n

un diverge.

• Si 
ac

b2
= 1, alors un = O

(
1

n2

)
.

D’après l’exemple de Riemann (2 > 1 ) et le théorème de ma-

joration pour des séries à termes � 0, la série 
∑

n

∣∣∣∣O
(

1

n2

)∣∣∣∣
converge. Ainsi, la série 

∑
n

O

(
1

n2

)
est absolument conver-

gente, donc convergente.

On conclut que la série 
∑

n

un converge si et seulement si :

ac = b2.

k) Essayons d’utiliser la règle de d’Alembert.

On a : ∀ n � 2, un > 0 et :

un+1

un
=

(
ln (n + 1)

)n+1

(n + 1)!

n!

( ln n)n

=
(

ln (n + 1)

ln n

)n ln (n + 1)

n + 1
.

4.10
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Et : f (1) = tan 1 − 2 � −0,443 . . . < 0.

On conclut : ∀ t ∈ [0 ; 1], tan t � 2t.

• D’où, pour tout n ∈ N :

vn =
∫ 1

0
tan (xn2

) dx �
∫ 1

0
2xn2

dx

= 2

[
xn2+1

n2 + 1

]1

0

= 2

n2 + 1
� 2

n2
.

D’après l’exemple de Riemann (2 > 1 ) et le théorème de ma-
joration pour des séries à termes � 0, on conclut que la série∑

n

vn converge.

1) Commençons par chercher un équivalent de 
n∑

k=0

k! ,

lorsque l’entier n tend vers l’infini.

On a, pour tout n ∈ N (tel que n � 2) :

0 �
( n∑

k=0

k!

)
− n! =

n−1∑
k=0

k! =
( n−2∑

k=0

k!

)
+ (n − 1)!

� (n − 1)(n − 2)! + (n − 1)! = 2 (n − 1)! .

Comme 
2(n − 1)!

n!
= 2

n
−−−→

n ∞
0, on a : 2(n − 1)! = o(n!),

et on obtient :
n∑

k=0

k! ∼
n∞

n! .

2) • On a :

un = 1

(n + 1)!

n∑
k=0

k! ∼
n∞

n!

(n + 1)!
= 1

n + 1
� 0 .

Comme la série 
∑

n

1

n + 1
diverge (série décalée de la série har-

monique), par théorème d’équivalence pour des séries à termes

� 0, on conclut que la série 
∑

n

un diverge.

• On a :

vn = 1

(n + 2)!

n∑
k=0

k! ∼
n∞

n!

(n + 2)!
= 1

(n + 1)(n + 2)
∼
n∞

1

n2
.

D’après l’exemple de Riemann (2 > 1 ) et le théorème d’équi-
valence pour des séries à termes � 0, on conclut que la série∑

n

vn converge.

Essayons d’utiliser la formule de Stirling :

n! ∼
n∞

(
n

e

)n√
2πn .

On a donc : ln (n!) = n ln n − n + 1

2
ln (2πn) + o(1),

d’où :
ln un

= 1

n

(
ln (n!) − ln

(
(2n)!

))

= 1

n

([
n ln n − n + 1

2
ln (2πn) + o(1)

]

−
[

2n ln (2n) − 2n + 1

2
ln (2π2n) + o(1)

])

= 1

n

(
− n ln n + (1 − 2 ln 2)n − 1

2
ln 2 + o(1)

)

= − ln n + (1 − 2 ln 2) + o(1).

Puis :

un = exp
( − ln n + (1 − 2 ln 2) + o(1)

)
= 1

n
e 1−2 ln 2e o(1) ∼

n∞
e 1−2 ln 2 1

n
= e

4n
� 0.

D’après l’exemple de Riemann et le théorème d’équivalence

pour des séries à termes � 0, on conclut que la série 
∑

n

un

diverge.

Si la série 
∑

n

un converge, alors nécessairement

un −−−→
n ∞

0 , donc : (n4 + 3n2)1/4 − (
P(n)

)1/3 = o(1), d’où :

(
P(n)

)1/3 = (n4 + 3n2)1/4 + o(1) ∼
n∞

(n4 + 3n2)1/4 ∼
n∞

n ,

et donc P(n) ∼
n∞

n3, ce qui montre que P est de degré 3 et de

coefficient dominant égal à 1.

Notons donc P = X3 + aX2 + bX + c, (a,b,c) ∈ R
3 .

Effectuons un développement asymptotique :

un = (n4 + 3n2)1/4 − (n3 + an2 + bn + c)1/3

= n

[(
1 + 3

n2

)1/4

−
(

1 + a

n
+ b

n2
+ c

n3

)1/3]

= n

[(
1 + 3

4n2
+ O

(
1

n4

))

−
(

1 + 1

3

(
a

n
+ b

n2
+ c

n3

)
+

1
3

(
− 2

3

)
2!

a2

n2
+ O

(
1

n3

))]

= −a

3
+

(
3

4
− b

3
+ a2

9

)
1

n
+ O

(
1

n2

)
.

4.11

4.13

4.12
t 0 π/4 1

f ′(t) − 0 +
f (t) 0 ↘ ↗
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• Si a =/ 0, alors un −−−→
n ∞

− a

3
=/ 0, donc la série 

∑
n

un

diverge grossièrement.

• Si a = 0 et 
3

4
− b

3
+ a2

9︸ ︷︷ ︸
noté C

=/ 0 , alors un ∼
n∞

C

n
.

D’après l’exemple de Riemann, par multiplication par une
constante non nulle, et par le théorème d’équivalence pour des

séries à termes réels � 0, on conclut que la série 
∑

n

un

diverge.

• Si a = 0 et C = 0, alors un = O

(
1

n2

)
.

D’après l’exemple de Riemann (2 > 1 ) et le théorème de ma-

joration pour des séries à termes � 0, la série 
∑

n

∣∣∣∣O
(

1

n2

)∣∣∣∣
converge. Ainsi, la série 

∑
n

O

(
1

n2

)
est absolument conver-

gente, donc convergente.

Finalement, la série 
∑

n

un converge si et seulement si a = 0

et C = 0, ce qui revient à : a = 0 et b = 9

4
.

On conclut :

l’ensemble des polynômes P ∈ R[X] tels que la série de terme

général un = (n4 + 3n2)1/4 − (
P(n)

)1/3
converge est{

X3 + 9

4
X + c ; c ∈ R

}
.

On remarque que, pour c ∈ R , un n’est défini qu’à partir d’un
certain rang, mais que la série de terme général un est conver-
gente, puisque l’énoncé n’impose pas l’indice de départ.

a) Puisque la série 
∑

n

un, converge, on a :

un −−−→
n ∞

0 , donc, à partir d’un certain rang : un =/ − 1 .

b) D’après a), la série de terme général vn = un

1 + un
est bien

définie à partir d’un certain rang.

On a, pour tout n :

|vn − un| =
∣∣∣∣ un

1 + un
− un

∣∣∣∣ = u2
n

|1 + un| ∼
n∞

u2
n .

Comme la série de terme général u2
n converge, d’après le théo-

rème d’équivalence pour des séries à termes � 0, la série de
terme général |vn − un| converge. Ainsi, la série de terme gé-
néral vn − un est absolument convergente, donc convergente.

Enfin, comme, pour tout n : vn = (vn − un) + un,

par addition de deux séries convergentes, on conclut que la série
de terme général vn est convergente.

Rappelons l’inégalité de Cauchy-Schwarz, dans RN

usuel, pour N ∈ N
∗ fixé :

∀ (x1,. . . ,xN ), (y1, . . . ,yN ) ∈ R
N ,

∣∣∣∣
N∑

n=1

xn yn

∣∣∣∣ �
( N∑

n=1

x2
n

) 1
2
( N∑

n=1

y2
n

) 1
2

.

En appliquant ceci à 
√

un et 
1

n
, à la place respectivement de xn

et yn, on obtient :

∀ N ∈ N
∗, 0 �

N∑
n=1

√
un

n
�

( N∑
n=1

un

) 1
2
( N∑

n=1

1

n2

) 1
2

.

Puisque les séries 
∑

n

un et 
∑

n

1

n2
sont convergentes et à termes

� 0, on a, pour tout N ∈ N
∗ :

N∑
n=1

un �
+∞∑
n=1

un et
N∑

n=1

1

n2
�

+∞∑
n=1

1

n2
.

D’où :

∀ N ∈ N
∗, 0 �

N∑
n=1

√
un

n
�

( +∞∑
n=1

un

) 1
2
( +∞∑

n=1

1

n2

) 1
2

.

Ceci montre que les sommes partielles de la série à termes � 0,∑
n�1

√
un

n
, sont majorées.

D’après un lemme du cours, on conclut que la série 
∑
n�1

√
un

n

converge.

• Une récurrence immédiate montre que, pour tout
n ∈ N

∗ , un existe et un > 0.

• On a : ∀ n � 1, un+1 = ln

(
1 + un

n

)
� un

n
,

car on sait : ∀ x ∈ ] − 1 ;+∞[, ln(1 + x) � x .

Il en résulte, par une récurrence immédiate :

∀ n � 1, 0 < un � u1

(n − 1)!
,

puis : ∀ n � 1, 0 < uαn � uα1(
(n − 1)!

)α , noté vn .

On a : ∀ n � 1, vn > 0, et :

vn+1

vn
=

(
(n − 1)!

)α
(n!)α

= 1

nα
−−→

n ∞
0 < 1.

D’après la règle de d’Alembert, la série 
∑
n�1

vn converge.
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=


13

25

n2 + 2

13
n + 5

13

n2 + 26

25
n + 10

25




n
2

�
(

13

25

) n
2

=
(√

13

25

)n

.

Comme 0 �
√

13

25
< 1 , la série géométrique 

∑
n

(√
13

25

)n

converge.

Par théorème de majoration pour des séries à termes � 0, on

déduit que la série 
∑

n

|un| converge.

Ainsi, la série 
∑

n

un est absolument convergente, donc conver-

gente.

2) On a de même, pour tout n ∈ N :

|vn| =
∣∣∣∣ (2 + 3i)n + 2 − i

(3 + 2i)n + 3 + i

∣∣∣∣
n

=
∣∣∣∣ (2n + 2) + i (3n − 1)

(3n + 3) + i (2n + 1)

∣∣∣∣
n

=
(

(2n + 2)2 + (3n − 1)2

(3n + 3)2 + (2n + 1)2

) n
2

=
(

13n2 + 2n + 5

13n2 + 22n + 10

) n
2

.

D’où :

ln |vn| = n

2
ln

13n2 + 2n + 5

13n2 + 22n + 10

= n

2
ln

(
1 − 20n + 5

13n2 + 22n + 10

)

∼
n∞

n

2

−(20n + 5)

13n2 + 22n + 10

∼
n∞

−20n2

26n2
= −20

26
−−−→

n ∞
− 20

26
= −10

13
.

Ainsi, ln |vn| −−−→
n ∞
/ − ∞, vn −−−→

n ∞
/ 0, donc la série 

∑
n

vn

diverge grossièrement.

1) Existence :

On a : un = 1

n
√

n + 2 + (n + 2)
√

n
∼
n∞

1

2n3/2
� 0.

D’après l’exemple de Riemann (3/2 > 1) et le théorème

d’équivalence pour des séries à termes � 0, la série 
∑

n

un

converge, donc 
+∞∑
n=1

un existe.

2) Calcul :

Essayons d’amener un télescopage.

On a, pour tout n ∈ N
∗ , par utilisation d’une expression conju-

guée :

un = 1

n
√

n + 2 + (n + 2)
√

n
= n

√
n + 2 − (n + 2)

√
n

n2(n + 2) − (n + 2)2n
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Par théorème de majoration pour des séries à termes � 0, on

conclut que la série 
∑
n�1

uαn converge, pour tout α ∈ R
∗
+ fixé.

Commençons par étudier le comportement de |un|
lorsque l’entier n tend vers l’infini.

On a : |un| = na

(n + 1)b
∼
n∞

na

nb
= na−b.

• Si a > b , alors |un| −−−→
n ∞

+ ∞, un −−−→
n ∞
/ 0 , donc la série∑

n

un diverge grossièrement.

• Si a = b , alors |un| −−−→
n ∞

1, un −−−→
n ∞
/ 0 , donc la série ∑

n

un diverge grossièrement.

• Supposons a < b. La série 
∑

n

un est alternée et un −−−→
n ∞

0 .

Nous allons montrer que la suite 
(|un|

)
n�1 est décroissante.

Considérons l’application 

f : [1 ;+∞[−→ R, x �−→ xa

(x + 1)b
= xa(x + 1)−b .

L’application f est dérivable sur [1 ;+∞[ et, pour tout
x ∈ [1 ;+∞[ :

f ′(x) = axa−1(x + 1)−b − xab(x + 1)−b−1

= xa−1(x + 1)−b−1
(
(a − b)x + a

)
.

Le signe de f ′(x) dépend de la position de x par rapport à 
a

b − a
.

On a :

∀ x ∈
[

a

b − a
;+∞

[
, f ′(x) � 0 .

Il en résulte que la suite 
(|un|

)
n est décroissante à partir d’un

certain rang.

D’après le TSCSA, on déduit que la série 
∑

n

un converge.

On conclut que la série 
∑

n

un converge si et seulement si :

a < b .

1) On a, pour tout n ∈ N :

|un| =
∣∣∣∣ (2 + 3i)n + 2 − i

(3 + 4i)n + 3 + i

∣∣∣∣
n

=
∣∣∣∣ (2n + 2) + i (3n − 1)

(3n + 3) + i (4n + 1)

∣∣∣∣
n

=
(

(2n + 2)2 + (3n − 1)2

(3n + 3)2 + (4n + 1)2

) n
2

=
(

13n2 + 2n + 5

25n2 + 26n + 10

) n
2
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−
(

ln 2 + ln 3 +
N−1∑
n=4

ln n + ln N

)

−
(

ln 3 +
N−1∑
n=4

ln n + ln N + ln (N + 1)

)

= − ln 3 + ln (N + 2) − ln N = − ln 3 + ln

(
1 + 2

N

)

−→
N∞

− ln 3 .

On conclut :
+∞∑
n=2

ln

(
1 − 2

n(n + 1)

)
= − ln 3.

Remarque : la partie 2) (calcul) montre que la série converge,
et rend donc alors inutile la partie 1) (existence).

a) Récurrence sur n.

• Pour n = 1 :
n∑

k=1

vk = v1 = u1

1 + u1
= 1 − 1

1 + u1
,

donc la propriété est vraie pour n = 1.

• Supposons la propriété vraie pour un n ∈ N
∗ :

n∑
k=1

vk = 1 − 1

(1 + u1) · · · (1 + un)
.

On a alors :

n+1∑
k=1

vk =
( n∑

k=1

vk

)
+ vn+1

=
(

1 − 1

(1 + u1) · · · (1 + un)

)

+ un+1

(1 + u1) · · · (1 + un+1)

= 1 + −(1 + un+1) + un+1

(1 + u1) · · · (1 + un+1)

= 1 − 1

(1 + u1) · · · (1 + un+1)
,

ce qui établit la formule pour n + 1.

On conclut, par récurrence sur n :

∀ n � 1,

n∑
k=1

vk = 1 − 1

(1 + u1) · · · (1 + un)
.

Remarque : On peut aussi obtenir le résultat en écrivant, pour
tout n � 2 :

vn = 1 + un − 1

(1 + u1) · · · (1 + un)

= 1

(1 + u1) · · · (1 + un−1)
− 1

(1 + u1) · · · (1 + un)
,

et en réalisant un télescopage.
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= n
√

n + 2 − (n + 2)
√

n

−2n2 − 4n
= n

√
n + 2 − (n + 2)

√
n

−2n(n + 2)

= 1

2
√

n
− 1

2
√

n + 2
.

On en déduit, pour tout N � 3, par télescopage :

N∑
n=1

un = 1

2

N∑
n=1

(
1√
n

− 1√
n + 2

)

= 1

2

( N∑
n=1

1√
n

−
N∑

n=1

1√
n + 2

)

= 1

2

( N∑
n=1

1√
n

−
N+2∑
n=3

1√
n

)

= 1

2

(
1 + 1√

2
− 1√

N + 1
− 1√

N + 2

)
−→
N∞

1

2

(
1 + 1√

2

)
.

On conclut :
+∞∑
n=1

un = 1

2

(
1 + 1√

2

)
= 2 + √

2

4
.

Remarque : la partie 2) (calcul) montre que la série converge,
et rend donc alors inutile la partie 1) (existence).

1) Existence :

On a :

un = ln

(
1 − 2

n(n + 1)

)
∼
n∞

− 2

n(n + 1)
∼
n∞

− 2

n2
.

D’après l’exemple de Riemann (2 > 1), par multiplication par
un coefficient fixé (2), et d’après le théorème d’équivalence

pour des séries à termes � 0, on conclut que la série 
∑

n

un

converge.

2) Calcul :

Essayons d’amener un télescopage.

On a, pour tout N ∈ N
∗ (tel que N � 5) :

N∑
n=2

ln

(
1 − 2

n(n + 1)

)

=
N∑

n=2

ln
n2 + n − 2

n(n + 1)
=

N∑
n=2

ln
(n − 1)(n + 2)

n(n + 1)

=
N∑

n=2

ln (n − 1)+
N∑

n=2

ln(n + 2)−
N∑

n=2

ln n −
N∑

n=2

ln(n + 1)

=
N−1∑
n=1

ln n +
N+2∑
n=4

ln n −
N∑

n=2

ln n −
N+1∑
n=3

ln n

=
(

ln 1 + ln 2 + ln 3 +
N−1∑
n=4

ln n

)

+
( N−1∑

n=4

ln n + ln N + ln (N + 1) + ln (N + 2)

)
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On conclut que la série 
∑
n�1

un converge et que sa somme est

égale à ln 3.

• Soit x ∈ ]0 ;+∞[ fixé.

Pour évaluer la somme de série proposée, nous allons utiliser
une comparaison à une intégrale.

L’application f : [1 ;+∞[−→ R, t �−→ 1

t (t + x)

est continue, décroissante, intégrable sur [1 ;+∞[, car

f (t) ∼
t−→+∞

1

t2
� 0.

On déduit, par comparaison série/intégrale, que la série∑
n�1

1

n(n + x)
converge (ce qui était aussi visible en prenant un

équivalent) et que :

∫ +∞

1
f (t) dt �

+∞∑
n=1

1

n(n + x)
� f (1) +

∫ +∞

1
f (t) dt .

On calcule l’intégrale :
∫ +∞

1
f (t) dt =

∫ +∞

1

1

t (t + x)
dt

=
∫ +∞

1

1

x

(
1

t
− 1

t + x

)
dt = 1

x

[
ln t − ln (t + x)

]+∞
1

= 1

x

[
ln

t

t + x

]+∞

1

= − 1

x
ln

1

1 + x
= ln (x + 1)

x
.

On a donc, pour tout x ∈ ]0 ;+∞[ :

ln(x + 1)

x
�

+∞∑
n=1

1

n(n + x)
� 1

1 + x
+ ln(x + 1)

x
.

• Comme :

1

1 + x
= o

(
ln (x + 1)

)
x + 1

=o

(
ln (x + 1)

x + 1

)
=o

(
ln (x + 1)

x

)
,

On a :
1

1 + x
+ ln(x + 1)

x
∼

x−→+∞
ln(x + 1)

x
.

On conclut, par encadrement :

+∞∑
n=1

1

n(n + x)
∼

x−→+∞
ln (x + 1)

x

= 1

x

(
ln x + ln

(
1 + 1

x

))
∼

x−→+∞
ln x

x
.

• Commençons par chercher un équivalent simple de
+∞∑
k=n

1

k!
lorsque l’entier n tend vers l’infini.

4.22
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b) D’après a), on a : ∀ n � 1,

n∑
k=1

vk � 1.

Ainsi, la série 
∑

n

vn est à termes � 0 et ses sommes partielles

sont majorées. D’après un lemme du cours, on conclut que la

série 
∑
n�1

vn converge.

• Groupons les termes trois par trois.

On a, pour tout p ∈ N
∗ :

3p∑
n=1

un =
(

1

1
+ 1

2
− 2

3

)
+

(
1

4
+ 1

5
− 2

6

)
+ · · ·

+
(

1

3p − 2
+ 1

3p − 1
− 2

3p

)

=
3p∑

n=1

1

n
− 3

p∑
k=1

1

3k
=

3p∑
n=1

1

n
−

p∑
n=1

1

n

=
3p∑

n=p+1

1

n
=

2p∑
i=1

1

p + i
= 1

p

2p∑
i=1

1

1 + i

p

.

En notant q = 2p , on a donc :
3p∑

n=1

un = 2
1

q

q∑
i=1

1

1 + 2i

q

.

On reconnaît une somme de Riemann, pour la fonction

f : x �−→ 1

1 + 2

x

, qui est continue sur le segment [0 ; 1] . 

On a donc :

1

q

q∑
i=1

1

1 + 2i

q

−→
q∞

∫ 1

0

1

1 + 2x
dx

=
[

1

2
ln (1 + 2x)

]1

0

= 1

2
ln 3.

On a donc, par suite extraite :
3p∑

n=1

un −→
p∞

ln 3.

• Comme un −−−→
n ∞

0 , on a alors aussi :

3p+1∑
n=1

un =
( 3p∑

n=1

un

)
+ u3p+1 −→

p∞
ln 3 ,

3p+2∑
n=1

un =
( 3p∑

n=1

un

)
+ u3p+1 + u3p+2 −→

p∞
ln 3 .

Comme les 3p, 3p + 1, 3p + 2, p décrivant N∗, recouvrent
tous les entiers (� 3), on déduit :

n∑
k=1

uk −−−→
n ∞

ln 3 .
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Comme : ∀ n ∈ N, un � u0,

on déduit, par passage à la limite : � � u0,

et donc � > 0 d’où � ∈ ]0 ;π/2].

b) On a, pour tout n ∈ N : tan un+1 = an + tan un,

donc  an = tan un+1 − tan un .

D’après le lien suite/série, il en résulte que la série∑
n∈N

anconverge si et seulement si la suite (tan un)n∈N converge.

D’après a), si � =/ π/2, alors la suite (tan un)n∈N converge vers
tan �, et, si � = π/2 , alors la suite (tan un)n∈N diverge.

On déduit que la suite (tan un)n∈N converge si et seulement si

� =/ π/2 et on conclut que la série 
∑
n∈N

an converge si et seu-

lement si � =/ π/2.

a) Soit n ∈ N − {0,1} fixé. 
On a, en échangeant les rôles de p et q :

Sn =
∑

1�p<q�n

1√
pq

=
∑

1�q<p�n

1√
qp

,

d’où, en additionnant :

2Sn =
∑

1�p=/ �n

1√
pq

=
∑

1�p,q�n

1√
pq

−
∑

1�p=q�n

1√
pq

=
( n∑

p=1

1√
p

)( n∑
q=1

1√
q

)
−

n∑
p=1

1

p
= A2

n − Bn .

On conclut : ∀ n ∈ N − {0,1}, Sn = 1

2
(A2

n − Bn).

b) Essayons de trouver d’abord des équivalents simples de An

et de Bn .

• Par comparaison somme/intégrale, puisque l’application

x ∈ [1 ;+∞[�−→ 1√
x

∈ R est continue et décroissante, on a,

pour tout n ∈ N
∗ :∫ n

1

1√
x

dx � An � 1 +
∫ n

1

1√
x

dx .

On calcule l’intégrale :∫ n

1

1√
x

dx = [2
√

x]n
1 = 2(

√
n − 1) .

On a donc, pour tout n ∈ N − {0,1} :

2
√

n − 2 � An � 2
√

n − 1 .

Comme 2
√

n − 2 ∼
n∞

2
√

n , et 2
√

n − 1 ∼
n∞

2
√

n,

on déduit, par encadrement : An ∼
n∞

2
√

n.

• De même, on obtient : Bn ∼
n∞

ln n.

• On a donc A2
n ∼

n∞
4n et Bn ∼

n∞
ln n.

D’abord, d’après la règle de d’Alembert ou le cours sur la série

de l’exponentielle, la série 
∑
k�0

1

k!
converge, donc, pour tout

n ∈ N ,
+∞∑
k=n

1

k!
existe.

On a, pour tout n ∈ N :

0 �
( +∞∑

k=n

1

k!

)
− 1

n!
=

+∞∑
k=n+1

1

k!

= 1

(n + 1)!

(
1 + 1

n + 2
+ 1

(n + 2)(n + 3)
+ · · ·

)

� 1

(n + 1)!

(
1 + 1

n + 2
+ 1

(n + 2)2
+ · · ·

)

= 1

(n + 1)!

1

1 − 1

n + 2

= 1

(n + 1)!

n + 2

n + 1

= 1

n!

n + 2

(n + 1)2
= o

(
1

n!

)
.

On a donc :
+∞∑
k=n

1

k!
= 1

n!
+ o

(
1

n!

)
.

• D’où :

ln un = 1

n
ln

( +∞∑
k=n

1

k!

)
= 1

n
ln

(
1

n!
+ o

(
1

n!

))

= 1

n

(
ln

1

n!
+ ln

(
1 + o(1)

)) = 1

n

( − ln n! + o(1)
)
.

• De la formule de Stirling : n! ∼
n∞

(
n

e

)n√
2πn,

on déduit : ln (n!) = n ln n − n + 1

2
ln (2πn) + o(1),

d’où :

ln un = 1

n

(
− n ln n + n − 1

2
ln (2πn) + o(1)

)

= − ln n + 1 + o(1),

puis : un = e− ln n+1+o(1) = 1

n
e eo(1) ∼

n∞
e

n
.

On conclut : un ∼
n∞

e

n
.

a) • D’abord, une récurrence immédiate montre que, pour
tout n ∈ N , un existe et un ∈ [0 ;π/2[.

• On a, pour tout n ∈ N :

un+1 = Arctan ( an︸︷︷︸
�0

+tan un) � Arctan (tan un) = un ,

donc la suite (un)n∈N est croissante.

• Puisque (un)n∈N est croissante et majorée par π/2, on conclut
que (un)n∈N converge et que sa limite � vérifie � ∈ [0 ;π/2].
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Comme ln n = o(n) , on conclut :

Sn = 1

2
(A2

n − Bn) ∼
n∞

2n .

On a, pour tout n ∈ N :

un+2 − un+1 = un + λnun+1

1 + λn
− un+1 = un − un+1

1 + λn
,

d’où : |un+2 − un+1| = 1

1 + λn
|un+1 − un|.

Ainsi, en décalant l’indice, on a :

∀ n � 1, |un+1 − un| = 1

1 + λn−1
|un − un−1| .

• Si u1 = u0, alors : ∀ n ∈ N, un+1 = un, donc la suite (un)n�1

est constante, donc convergente.

• Supposons u1 − u0 =/ 0 .

Alors : ∀ n � 1, |un+1 − un| > 0.

On a :
|un+1 − un|
|un − un−1| = 1

1 + λn−1
−−−→

n ∞
0 < 1.

D’après la règle de d’Alembert, la série 
∑

n

|un+1 − un|
converge.

Ainsi, la série 
∑

n

(un+1 − un) est absolument convergente, donc

convergente. D’après le lien suite/série, on conclut que la suite
(un)n converge.

Remarque : on peut montrer de la même façon que la même
conclusion est valable si on suppose que la suite (λn)n converge
vers un réel > 0 .

Rappelons la formule de Taylor-Young pour f de 
classe C3 sur [−1 ; 1] :

f (x) = f (0) + f ′(0)x + f ′′(0)

2!
x2 + f ′′′(0)

3!
x3 + o

x−→0
(x3) .

En remplaçant x par 
1

n
, par − 1

n
, on obtient, après simplifica-

tions :

un = n

(
f

(
1

n

)
− f

(
− 1

n

))
− 2 f ′(0)

= f ′′′(0)

3n2
+ o

(
1

n2

)
= O

(
1

n2

)
.

D’après l’exemple de Riemann (2 > 1 ) et le théorème de ma-

joration pour des séries à termes � 0, la série 
∑

n

∣∣∣∣O
(

1

n2

)∣∣∣∣
converge. Ainsi, la série 

∑
n∈N∗

un est absolument convergente,

donc convergente.

a) • Montrons, par récurrence sur n :

∀ n ∈ N, un � 5 .

C’est vrai pour n = 0, puisque u0 = 5.

Si c’est vrai pour un n ∈ N , alors :

un+1 = u2
n − 5un + 8 = un(un − 5) + 8 � 8 � 5 ,

donc c’est vrai pour n + 1.

On conclut : ∀ n ∈ N, un � 5.

• On a, pour tout n ∈ N :

un+1 − un = u2
n − 6un + 8 = (un − 3)2 − 1 � 3 � 0 ,

donc (un)n∈N est croissante.

• Supposons un −−−→
n ∞

� ∈ R. Alors, par passage à la limite dans

la définition de la suite un : � = �2 − 5� + 8 , d’où facilement
� ∈ {2,4} . Mais : ∀ n ∈ N, un � 5, donc, par passage à la li-
mite, � � 5, contradiction.

Ceci montre que la suite (un)n∈N diverge.

Puisque (un)n∈N est croissante et divergente, on conclut :

un −−−→
n ∞

+ ∞ .

b) On a, pour tout n ∈ N :

(−1)n+1

un+1 − 2
= (−1)n+1

u2
n − 5un + 6

= (−1)n+1

(un − 2)(un − 3)

= (−1)n+1

(
1

un − 3
− 1

un − 2

)
= (−1)n+1

un − 3
+ (−1)n

un − 2
,

d’où :
(−1)n

un − 3
= (−1)n

un − 2
− (−1)n+1

un+1 − 2
.

c) D’après b), on a, par télescopage, pour tout N � 0 :

N∑
n=0

(−1)n

un − 3
=

N∑
n=0

(
(−1)n

un − 2
− (−1)n+1

un+1 − 2

)

=
N∑

n=0

(−1)n

un − 2
−

N∑
n=0

(−1)n+1

un+1 − 2

=
N∑

n=0

(−1)n

un − 2
−

N+1∑
n=1

(−1)n

un − 2

= 1

u0 − 2
− (−1)N+1

uN+1 − 2

−→
N∞

1

u0 − 2
= 1

3
.

Ceci montre que la série 
∑
n�0

(−1)n

un − 3
converge et que

+∞∑
n=0

(−1)n

un − 2
= 1

3
.
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• Commençons par chercher un équivalent de un lorsque
l’entier n tend vers l’infini. À cet effet, étudions le comporte-
ment de un.

1) On a, pour tout n ∈ N :

|un+1| = 1

(n + 2)2

∣∣(n + 1)un + n
∣∣

� n + 1

(n + 2)2
|un| + n

(n + 2)2
� |un| + 1.

On déduit, en réitérant et par addition :

∀ n ∈ N, |un| � |u0| + n ,

d’où : un = O
n∞

(n).

2) On a alors, en reportant :

(n + 2)2un+1 = (n + 1)un + n = O(n2) ,

donc : un+1 = O(n2)

(n + 2)2
= O(1),

puis, en décalant l’indice : un = O(1).

3) En reportant encore :

(n + 2)2un+1 = (n + 1)un + n = O(n) ,

donc : un+1 = O(n)

(n + 2)2
= O

(
1

n

)
.

En particulier : un+1 −−−→
n ∞

0, donc : un −−−→
n ∞

0.

4) En reportant encore :

(n + 2)2un+1 = (n + 1)un + n

= n

((
1 + 1

n

)
un + 1

)
∼
n∞

n,

d’où : un+1 ∼
n∞

n

(n + 2)2
∼
n∞

1

n
,

donc, en décalant : un ∼
n∞

1

n − 1
∼
n∞

1

n
.

• On a alors : ua
n ∼

n∞
1

na
� 0.

D’après l’exemple de Riemann et le théorème d’équivalence

pour des séries à termes � 0, on conclut que la série 
∑

n

ua
n

converge si et seulement si a > 1.

a) • Une récurrence immédiate montre que, pour tout
n � 1, un existe et un � 1 .

• On a, pour tout n � 2 : u2
n = u2

n−1 + 1

n − 1
,

d’où, en réitérant et en additionnant :

u2
n = u2

1 +
(

1

1
+ 1

2
+ · · · + 1

n − 1︸ ︷︷ ︸
noté Hn−1

)
,

d’où, puisque un > 0 : un =
√

1 + Hn−1.

Comme Hn −−−→
n ∞

+ ∞ , on déduit : un −−−→
n ∞

+ ∞.

De plus, on sait :

Hn−1 ∼
n∞

ln(n − 1) = ln n + ln

(
1 − 1

n

)
∼
n∞

ln n ,

donc : un ∼
n∞

√
ln n.

b) 1) On a :
1

un
∼
n∞

1√
ln n

� 0.

Comme n
1√
ln n

−−−→
n ∞

+ ∞, à partir d’un certain rang :

n
1√
ln n

� 1, donc :
1√
ln n

� 1

n
. D’après l’exemple de

Riemann et le théorème de minoration pour des séries à termes

� 0, on déduit que la série 
∑

n

1√
ln n

diverge.

D’après le théorème d’équivalence pour des séries à termes � 0,

on conclut que la série de terme général 
1

un
diverge.

2) La série 
∑
n�1

(−1)n

un
, est alternée, son terme général tend 

vers 0 (car un −−−→
n ∞

+ ∞) et la suite 

(
1

un

)
n�1

est décrois-

sante, car :

∀ n � 1, un+1 =
√

u2
n + 1

n
� un .

D’après le TSCSA, on conclut que la série de terme général
(−1)n

un
converge.

a) • Montrons, par récurrence sur n :

∀ n ∈ N, un > 1 .

La propriété est vraie pour n = 0, car u0 ∈ ]1 ;+∞[ .

Si la propriété est vraie pour un n ∈ N , alors :

un+1 = u2
n − un + 1 = (un − 1)2︸ ︷︷ ︸

�0

+ un︸︷︷︸
>1

> 1 ,

donc la propriété est vraie pour n + 1.

On conclut, par récurrence sur n : ∀ n ∈ N, un > 1.

• On a alors :

∀ n ∈ N, un+1 − un = u2
n − 2un + 1 = (un − 1)2 � 0 ,

donc la suite (un)n∈N est croissante.

• Supposons qu’il existe � ∈ R tel que un −−−→
n ∞

�. Alors, par

passage à la limite dans la définition de la suite, on a :
� = �2 − � + 1 , d’où � = 1 . Mais, d’autre part :
∀ n ∈ N, un � u0 , d’où, par passage à la limite : � � u0 > 1,
contradiction.
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Ceci montre que la suite (un)n∈N diverge.

Puisque (un)n∈N est croissante et divergente, on conclut :

un −−−→
n ∞

+ ∞.

b) On remarque que, pour tout n ∈ N :

1

un+1 − 1
− 1

un − 1
= 1

u2
n − un

− 1

un − 1

= 1 − un

un(un − 1)
= − 1

un
.

On a donc, pour tout N ∈ N, par télescopage :

N∑
n=0

1

un
=

N∑
n=0

( 1

un − 1
− 1

un+1 − 1

)

= 1

u0 − 1
− 1

uN+1 − 1
−→
N∞

1

u0 − 1
.

On conclut que la série 
∑
n�0

1

un
converge et que :

+∞∑
n=0

1

un
= 1

u0 − 1
.

Notons, pour tout n � 1 : un = 3n − 2

n3 + 3n2 + 2n
.

1) Existence :

On a : un ∼
n∞

3

n2
� 0. D’après l’exemple de Riemann (2 > 1 )

et le théorème d’équivalence pour des séries à termes � 0, on

conclut que la série 
∑
n�1

un converge.

2) On va faire apparaître un télescopage, à l’aide d’une dé-
composition en éléments simples d’une fraction rationnelle.

• On a :

F = 3X − 2

X3 + 3X2 + 2X
= 3X − 2

X(X + 1)(X + 2)

= a

X
+ b

X + 1
+ c

X + 2
,

où (a,b,c) ∈ R
3 est à calculer.

On multiplie par X, puis on remplace X par 0, et on obtient :

a = −2

2
= −1.

On multiplie par X + 1 , puis on remplace X par −1, et on ob-

tient : b = −5

−1
= 5.

On multiplie par X + 2 , puis on remplace X par −2, et on ob-

tient : c = −8

2
= −4.

D’où la décomposition en éléments simples de F :

F = − 1

X
+ 5

X + 1
− 4

X + 2
,

et donc : ∀ n � 1, un = − 1

n
+ 5

n + 1
− 4

n + 2
.

• Formons les sommes partielles. 
On a, pour tout N ∈ N

∗ (tel que N � 5), par télescopage :

N∑
n=1

un =
N∑

n=1

(
− 1

n
+ 5

n + 1
− 4

n + 2

)

= −
N∑

n=1

1

n
+ 5

N∑
n=1

1

n + 1
− 4

N∑
n=1

1

n + 2

= −
N∑

n=1

1

n
+ 5

N+1∑
n=2

1

n
− 4

N+2∑
n=3

1

n

= −
(

1 + 1

2
+

N∑
n=3

1

n

)

+ 5

(
1

2
+

N∑
n=3

1

n
+ 1

N + 1

)

− 4

( N∑
n=3

1

n
+ 1

N + 1
+ 1

N + 2

)

= 1 + 1

N + 1
− 4

N + 2
−→
N∞

1.

Ceci montre que la série proposée converge (ce que l’on avait
déjà obtenu par une autre méthode, plus directe, en 1)) et que
sa somme est :

+∞∑
n=1

3n − 2

n3 + 3n2 + 2
= 1 .

a) Récurrence sur n (d’autres méthodes sont possibles).

La propriété est vraie pour n = 0, car :

φ
2
1 − φ0φ2 = 1 = (−1)0 .

Si la propriété est vraie pour un n ∈ N , alors :

φ
2
n+2 − φn+1φn+3

= φn+2(φn+1 + φn) − φn+1(φn+2 + φn+1)

= φn+2φn − φ
2
n+1 = −(−1)n = (−1)n+1,

donc la propriété est vraie pour n + 1.

On conclut, par récurrence sur n :

∀ n ∈ N, φ2
n+1 − φnφn+2 = (−1)n .

b) On a, pour tout n ∈ N
∗ :

φn+1

φn

− φn+2

φn+1

= φ
2
n+1 − φnφn+2

φnφn+1

= (−1)n

φnφn+1
.

4.33

4.34



146

c) On en déduit, pour tout N ∈ N
∗, par télescopage :

N∑
n=1

(−1)n

φnφn+1

=
N∑

n=1

(
φn+1

φn

− φn+2

φn+1

)

=
N∑

n=1

φn+1

φn

−
N∑

n=1

φn+2

φn+1

=
N∑

n=1

φn+1

φn

−
N+1∑
n=2

φn+1

φn

= φ2

φ1

− φN+2

φN+1

.

Et : φ1 = 1, φ2 = φ1 + φ0 = 1 .

Pour obtenir la limite de 
φN+2

φN+1
, lorsque l’entier N tend vers l’in-

fini, calculons φn en fonction de n, pour tout n ∈ N .

La suite (φn)n�0 est une suite récurrente linéaire du second ordre,
à coefficients constants et sans second membre. D’après le cours,
nous disposons d’une méthode de calcul du terme général.

L’équation caractéristique r2 − r − 1 = 0 admet deux solu-
tions réelles distinctes :

r1 = 1 − √
5

2
, r2 = 1 + √

5

2
.

D’après le cours, il existe donc (λ1,λ2) ∈ R
2 tel que :

∀ n ∈ N, un = λ1rn
1 + λ2rn

2 .

On calcule λ1,λ2 à l’aide des données initiales φ0 et φ1:
{
λ1 + λ2 = φ0 = 0

λ1r1 + λ2r2 = φ1 = 1.

On obtient, par résolution de ce système linéaire :

λ1 = −1

r2 − r1
= − 1√

5
, λ2 = −1

r1 − r2
= 1√

5
.

D’où :

∀ n ∈ N, φn = 1√
5

((
1 + √

5

2

)n

−
(

1 − √
5

2

)n)
.

Comme 
1 + √

5

2
> 1 et 

∣∣∣∣1 − √
5

2

∣∣∣∣ < 1, on déduit :

φn ∼
n∞

1√
5

(
1 + √

5

2

)n

.

D’où :
φN+2

φN+1

−→
N∞

1 + √
5

2
.

On conclut :
+∞∑
n=1

(−1)n

φnφn+1

= 1 − 1 + √
5

2
= 1 − √

5

2
.

a) Notons, sous réserve d’existence, pour tout n ∈ N :

un = tan

(
π

2
(7 + 4

√
3)n

)
,

et considérons, sous réserve d’existence, pour tout n ∈ N :

vn = tan

(
π

2
(7 − 4

√
3)n

)
.

Notons aussi : an = (7 + 4
√

3)n, bn = (7 − 4
√

3)n .

• On a, par la formule du binôme de Newton :

an =
n∑

k=0

(
n
k

)
7n−k(4

√
3)k,

bn =
n∑

k=0

(
n
k

)
7n−k(−1)k(4

√
3)k .

En additionnant, les termes d’indices impairs se simplifient, les
termes d’indices pairs se doublent, et on obtient :

an + bn = 2
E(n/2)∑

p=0

(
n

2p

)
7n−2p42p3p

︸ ︷︷ ︸
entier

∈ 2Z .

On a donc :
π

2
an + π

2
bn ∈ πZ.

D’autre part, comme 0 � 7 − 4
√

3 < 1, on a :

∀ n ∈ N,
π

2
(7 − 4

√
3)n ∈

[
0 ; π

2

[
,

donc vn existe pour tout n ∈ N .

Il en résulte que, pour tout n ∈ N , un existe aussi et un = −vn .

• Puisque 0 � 7 − 4
√

3 < 1, on a : (7 − 4
√

3)n −−−→
n ∞

0,

donc : vn ∼
n∞

π

2
(7 − 4

√
3)n � 0.

La série géométrique 
∑

n

(7 − 4
√

3)n converge, donc, par

théorème d’équivalence pour des séries à termes � 0, la série∑
n

vn converge.

En passant aux opposés, on conclut que la série 
∑

n

un

converge.

b) Il est clair que, pour tout n ∈ N , un existe et un � 0 .

Pour obtenir une inégalité portant sur un, essayons d’en former
une portant sur 1 + x + · · · xn, pour tout x ∈ [0 ; 1].

Rappelons la comparaison entre la moyenne arithmétique et la
moyenne géométrique de n réels � 0 :

∀ n ∈ N
∗, ∀ a1,. . . ,an ∈ R+,

1

n

n∑
k=1

ak

︸ ︷︷ ︸
moyenne arithmétique

�
( n∏

k=1

ak

) 1
n

︸ ︷︷ ︸
moyenne géométrique

.
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Appliquons ceci à 1,. . . ,xn (et n + 1 à la place de n) :

∀ n ∈ N, ∀ x ∈ [0 ; 1],

1

n + 1
(1 + x + · · · + xn) � (1 · x · · · xn)

1
n+1

= (
x1+···+n

) 1
n+1 = (

x
n(n+1)

2
) 1

n+1 = x
n
2 ,

d’où, pour tout n ∈ N :

0 � un �
∫ 1

0

xn

(n + 1)x
n
2

dx = 1

n + 1

∫ 1

0
x

n
2 dx

= 1

n + 1

[
x

n
2 +1

n

2
+ 1

]1

0

= 2

(n + 1)(n + 2)
� 2

n2
.

On a donc : ∀ n ∈ N
∗, 0 � un � 2

n2
.

D’après l’exemple de Riemann (2 > 1 ) et le théorème d’équi-
valence pour des séries à termes � 0, on conclut que la série∑

n

un converge.

c) On a, pour tout n � 2 :

un =
2n∑

k=n

1

(k + n)2 − k2
=

2n∑
k=n

1

2kn + n2

= 1

n

2n∑
k=n

1

2k + n
=

p=k−n

1

n

n∑
p=0

1

2(p + n) + n

= 1

n

n∑
p=0

1

3n + 2p
= 1

n

1

n

n∑
p=0

1

3 + 2
p

n︸ ︷︷ ︸
noté vn

.

On reconnaît en vn une somme de Riemann.

L’application x ∈ [0 ; 1] �−→ 1

3 + 2x
est continue sur le seg-

ment [0 ; 1] .

D’après le cours sur les sommes de Riemann :

vn −−−→
n ∞

∫ 1

0

1

3 + 2x
dx =

[
1

2
ln(3 + 2x)

]1

0

= 1

2
ln

5

3︸ ︷︷ ︸
noté C

.

On a donc : un ∼
n∞

C

n
, où C > 0 est fixé.

D’après l’exemple de Riemann et puisque C =/ 0, la série 
∑

n

C

n
diverge. Par théorème d’équivalence pour des séries à termes

� 0, on conclut que la série 
∑

n

un diverge.

Essayons de comparer wn avec un terme simple formé
à partir de un et vn .

On a, pour tout n � 0 :

wn = u2
nv

2
n

au3
n + bv3

n




� u2
nv

2
n

au3
n

= v2
n

aun

� u2
nv

2
n

bv3
n

= u2
n

bvn
,

d’où, par produit : w2
n � u2

nv
2
n

abunvn
= unvn

ab
.

Il est clair, par développement, que :

∀ (α,β) ∈ R
2, αβ � 1

2
(α+ β)2 .

d’où : ∀ n ∈ N, w2
n � (un + vn)

2

2ab
,

puis : ∀ n ∈ N, 0 � wn � un + vn√
2ab

.

Par addition de deux séries convergentes, la série de terme gé-
néral un + vn converge.

Par théorème de majoration pour des séries à termes � 0, on
conclut que la série de terme général wn converge.

• Essayons d’exprimer 
n∑

k=0

(−1)k

k + 1
à l’aide d’une inté-

grale.

On a, pour tout n ∈ N :

n∑
k=0

(−1)k

k + 1
=

n∑
k=0

(−1)k

∫ 1

0
t k dt

=
∫ 1

0

( n∑
k=0

(−t)k

)
dt =

∫ 1

0

1 − (−t)n+1

1 − (−t)
dt

=
∫ 1

0

1

1 + t
dt + (−1)n

∫ 1

0

tn+1

1 + t
dt

︸ ︷︷ ︸
notée an

= ln 2 + an .

• D’où, pour tout n ∈ N :

exp

( n∑
k=0

(−1)k

k + 1

)
− 1 = e ln 2+an − 1 = 2 ean − 1 .

On a :

|an| =
∫ 1

0

tn+1

1 + t
dt �

∫ 1

0
tn+1 dt

=
[

tn+2

n + 2

]1

0

= 1

n + 2
−−−→

n ∞
0,

d’où : an −−−→
n ∞

0 .

On en déduit un développement asymptotique de un :

un = ln (2 ean − 1) = ln
(

2
(
1 + an + O(a2

n)
) − 1

)

= ln
(
1 + 2an + O(a2

n)
) = 2an + O(a2

n) .
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Étudions maintenant les séries de termes généraux an

et O(a2
n).

• La série 
∑
n�0

an , est alternée, son terme général an tend 

vers 0 lorsque l’entier n tend vers l’infini, et la suite 
(|an|

)
n�0

décroît, car, pour tout n ∈ N :

|an+1| =
∫ 1

0

tn+2

1 + t
dt �

∫ 1

0

tn+1

1 + t
dt = |an| .

D’après le TSCSA, la série de terme général an converge.

• On a vu plus haut : ∀ n ∈ N
∗, |an| � 1

n + 2
� 1

n
,

donc : O(a2
n) = O

(
1

n2

)
.

D’après l’exemple de Riemann (2 > 1 ) et le théorème de ma-

joration pour des séries à termes � 0, la série 
∑

n

∣∣∣∣O
(

1

n2

)∣∣∣∣
converge. Ainsi, la série 

∑
n

O

(
1

n2

)
est absolument conver-

gente, donc convergente.

Les séries de termes généraux an et O(a2
n) convergent. 

On conclut, par addition de deux séries convergentes, que la
série de terme général un converge.

1) On a :

∀ n ∈ N
∗, |un| � Max

(
sin

1

n
, sh

1

n

)
= sh

1

n
,

donc : un −−−→
n ∞

0.

2) Essayons de grouper les termes deux par deux.

Notons, pour tout p ∈ N
∗ : vp = u2p−1 + u2p .

On a :

vp = sin
1

2p − 1
− sh

1

2p

=
(

1

2p − 1
+ O

(
1

p2

))
−

(
1

2p
+ O

(
1

p2

))

=
(

1

2p − 1
− 1

2p

)
+ O

(
1

p2

)

= 1

(2p − 1)(2p)
+ O

(
1

p2

)
= O

(
1

p2

)
.

D’après l’exemple de Riemann (2 > 1 ) et le théorème de ma-

joration pour des séries à termes � 0, la série 
∑

n

∣∣∣∣O
(

1

p2

)∣∣∣∣
converge. Ainsi, la série 

∑
n

O

(
1

p2

)
est absolument conver-

gente, donc convergente.

Ceci montre que la série 
∑

p

vp converge.

3) Étudions les sommes partielles de la série 
∑
n�1

un en liaison

avec les sommes partielles de la série 
∑
p�1

vp.

On a, pour tout N ∈ N
∗ :

2N−1∑
n=1

un =
N−1∑
p=1

vp + u2N−1,

2N∑
n=1

un =
N∑

p=1

vp .

Comme u2N−1 −→
N∞

0 et que la série 
∑
p�1

vp converge, il s’en-

suit, en notant S =
+∞∑
p=1

vp :

2N−1∑
n=1

un −→
N∞

S et
2N∑
n=1

un −→
N∞

S ,

donc :
N∑

n=1

un −→
N∞

S.

Ceci montre que la série de terme général un converge.

a) Notons, pour tout n � 1, Rn =
+∞∑

k=n+1

uk , qui existe,

puisque la série 
∑
n�1

un converge.

Puisque la suite (un)n�1 décroît, on a, pour tout n � 1 :



0 � 2nu2n � 2
2n∑

k=n+1

uk � 2Rn

0 � (2n + 1)u2n+1 � 2(n + 1)u2n+1 � 2
2n+1∑

k=n+1

uk � 2Rn .

Comme Rn −−−→
n ∞

0, on déduit, par encadrement :

2nu2n −−−→
n ∞

0 et (2n + 1)u2n+1 −−−→
n ∞

0 .

Il en résulte : nun −−−→
n ∞

0.

b) 1) On remarque : ∀ n � 1, vn = nu2
n = (nun)un .

Puisque nun −−−→
n ∞

0, on a, à partir d’un certain rang,

0 � nun � 1 , d’où : 0 � vn � un. Comme la série 
∑

n

un

converge, par théorème de majoration pour des séries à termes

� 0, on conclut que la série 
∑

n

vn converge.

2) • Puisque nun −−−→
n ∞

0, on a, à partir d’un certain rang,

0 � nun < 1, donc wn = un

1 − nun
est défini à partir d’un cer-

tain rang.
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• On a : wn = un

1 − nun
∼
n∞

un � 0.

Puisque la série 
∑

n

un converge, par théorème d’équivalence

pour des séries à termes � 0, on conclut que la série 
∑

n

wn

converge.

a) On a, en réitérant l’hypothèse, pour tout n :

un

un−1
�

(
n − 1

n

)a

, . . . ,
u2

u1
�

(
1

2

)a

,

d’où, par produit et télescopage multiplicatif :

un

u1
�

(
n − 1

n

)a

· · ·
(

1

2

)a

= 1

na
.

On a donc : ∀ n � 1, 0 � un � u1
1

na
.

D’après l’exemple de Riemann (a > 1) et le théorème de ma-
joration pour des séries à termes � 0, on conclut que la série∑

n

un converge.

b) Dans l’exemple, les un sont tous > 0, et on a, pour tout n � 1 :

un+1

un
= 1 · 3 · · · (2n + 1)

2 · 4 · · · (2n + 2)

1

2n + 3

2 · 4 · · · (2n)

1 · 3 · · · (2n − 1)
(2n + 1)

= (2n + 1)2

(2n + 2)(2n + 3)
=

(
1 + 1

2n

)2

(
1 + 1

n

)(
1 + 3

2n

)

=
(

1 + 2

2n
+ o

(
1

n

))(
1 − 1

n
+ o

(
1

n

))
(

1 − 3

2n
+ o

(
1

n

))

= 1 − 3

2n
+ o

(
1

n

)
.

D’autre part, pour tout a ∈ ]1 ;+∞[ fixé, on a :
(

n

n + 1

)a

=
(

1 + 1

n

)−a

= 1 − a

n
+ o

(
1

n

)
,

d’où :
un+1

un
−

(
n

n + 1

)a

=
(

a − 3

2

)
1

n
+ o

(
1

n

)
.

En choisissant, par exemple, a = 5

4
, on a a ∈ ]1 ;+∞[

et :
un+1

un
−

(
n

n + 1

)a

∼
n∞

− 1

4n
< 0,

donc, à partir d’un certain rang :

un+1

un
−

(
n

n + 1

)a

� 0 ,

d’où :
un+1

un
�

(
n

n + 1

)a

.

D’après a), on conclut que la série de terme général un converge.

Pour tout n ∈ N , Rn =
+∞∑
k=n

1

k!
existe, puisque la série

∑
k�0

1

k!
converge.

• Essayons d’obtenir un équivalent simple de Rn lorsque l’en-

tier n tend vers l’infini. Puisque 
1

k!
−→

k∞
0 très vite, on peut

espérer que Rn soit équivalent à son premier terme, qui est 
1

n!
.

On a :

0 � Rn − 1

n!
=

+∞∑
k=n+1

1

k!

= 1

(n + 1)!

(
1 + 1

n + 2
+ 1

(n + 2)(n + 3)
+ · · ·

)

� 1

(n + 1)!

(
1 + 1

n + 2
+ 1

(n + 2)2
+ · · ·

)

= 1

(n + 1)!

1

1 − 1

n + 2

= 1

(n + 1)!

n + 2

n + 1

∼
n∞

1

(n + 1)!
= 1

n + 1

1

n!
= o

(
1

n!

)
.

On a donc : Rn ∼
n∞

1

n!
, ou encore : Rn = 1

n!
+ o

(
1

n!

)
.

• Notons, pour tout n � 2 : un = R
1

n ln n
n .

On a, pour tout n � 2 :

ln un = 1

n ln n
ln Rn = 1

n ln n
ln

(
1

n!
+ o

(
1

n!

))

= 1

n ln n

(
− ln (n!) + ln

(
1 + o(1)

))

= 1

n ln n

( − ln (n!) + o(1)
)

= − ln (n!)

n ln n
+ o

(
1

n ln n

)
.

Pour évaluer ln (n!), on peut faire une comparaison somme/in-
tégrale, à l’aide de l’application x �−→ ln x, qui est croissante
sur [1 ;+∞[. On obtient classiquement : ln (n!) ∼

n∞
n ln n.

D’où : ln un −−−→
n ∞

− 1et donc : un −−−→
n ∞

e−1.
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Il en résulte que f est intégrable sur [0 ;+∞[ si et seulement

la série 
∑
n�0

un converge.

On a, pour tout n ∈ N :

un =
∫ (n+1)π

nπ
(1 + x4 sin 2x)−3 dx

=
t = x − nπ

∫
π

0

(
1 + (nπ+ t)4 sin 2t

)−3
dt.

Afin d’utiliser l’encadrement connu 

∀ t ∈
[
0 ; π

2

]
,

2t

π
� sin t � t ,

scindons l’intégrale précédente, à l’aide de la relation de
Chasles : un = vn + wn , où :

vn =
∫ π

2

0

(
1 + (nπ+ t)4 sin 2t

)−3
dt,

wn =
∫

π

π
2

(
1 + (nπ+ t)4 sin 2t

)−3
dt

=
s=π−t

∫ π
2

0

(
1 + (nπ+ π− s)4 sin 2s

)−3
ds.

On en déduit, pour tout n ∈ N : αn � un � βn,

où on a noté :

αn = 2
∫ π

2

0

(
1 + (nπ+ π)4t2

)−3
dt

βn = 2
∫ π

2

0

(
1 + (nπ)4

(
2t

π

)2)−3

dt .

Par les changements de variable y = (nπ+ π)2t pour αn, et

y = (nπ)2 2t

π
pour βn , on obtient :

αn = 2

(nπ+ π)2

∫ (nπ+π)2π/2

0
(1 + y2)−3 dy ,

βn = π

(nπ)2

∫ (nπ)2

0
(1 + y2)−3 dy .

L’application g : y ∈ [0 ;+∞[�−→ (1 + y2)−3 est continue,

� 0, et g(y) ∼
y−→+∞

1

y6
, donc, d’après l’exemple de Riemann

en +∞ (6 > 1 ) et le théorème d’équivalence pour des fonc-
tions � 0, g est intégrable sur [0 ;+∞[. 

Il en résulte, en notant L =
∫ +∞

0
(1 + y2)−3 dy > 0 :

∫ (nπ+π)2 π
2

0
(1 + y2)−3 dy −−−→

n ∞
L ,

∫ (nπ)2

0
(1 + y2)−3 dy −−−→

n ∞
L .

4.42 Si  α � 0 , alors un −→/
n∞

0, donc 
∑
n�1

un diverge. 

Supposons α > 0 ; alors un −−−→
n∞

0 . 

Groupons  par paquets  de quatre termes consécutifs, en  no-

tant, pour p ∈ N :

vp = u4p+1 + u4p+2 + u4p+3 + u4p+4 .

On a :

vp = − 1

(4p + 1)α
− 1

(4p + 2)α
+ 1

(4p + 3)α

+ 1

(4p + 4)α

= 1

(4p)α

(
−

(
1 + 1

4p

)−α
−

(
1 + 2

4p

)−α

+
(

1 + 3

4p

)−α
+

(
1 + 1

p

)−α)

= 1

(4p)α

(
−

(
1 − α

4p

)
−

(
1 − 2α

4p

)

+
(

1 − 3α

4p

)
+

(
1 − α

p

)
+ O

( 1

p

))

= 1

(4p)α

(
− α

p
+ O

( 1

p

))
∼
p∞

−α
4α pα+1

< 0.

Comme α+ 1 > 1,
∑
p�1

1

pα+1
converge, et  donc 

∑
p

vp

converge. 

Les sommes partielles de la série 
∑

n

un ne diffèrent de celles

de 
∑

p

vp que par la somme d'au plus trois des un. Comme 
∑

p

vp

converge et que un −−−→
n∞

0 , il en résulte que 
∑

n

un converge. 

Puisque f est continue et � 0, l’intégrabilité de f sur

[0 ;+∞[ est équivalente à l’existence d’une limite finie en +∞

pour l’application X �−→
∫ X

0
f.

Notons, pour tout n ∈ N : un =
∫ (n+1)π

nπ
f.

On a alors, puisque f � 0 :




∀ X ∈ [0 ;+∞[,
∫ X

0
f �

E(X/π)+1∑
n=0

un

∀ N ∈ N,

N∑
n=0

un � (=)

∫ (N+1)π

0
f .
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Comme 

0 �
∫ 1

0

tn+1

(1 + t)2
dt �

∫ 1

0
tn+1 dt = 1

n + 2
−−−→

n ∞
0 ,

on déduit :

In = 1

2(n + 1)
+ 1

n + 1
o(1)

=
(

1

2n
+ o

(
1

n

))
+ o

(
1

n

)
= 1

2n
+ o

(
1

n

)
∼
n∞

1

2n
.

On conclut : Rn ∼
n∞

(−1)n−1

2n
.

a) • Une récurrence immédiate montre que, pour tout
n ∈ N , un existe et un � 0 .

• On a donc :

∀ n ∈ N, un+1 = √
n + un � √

n −−−→
n ∞

+ ∞ ,

d’où : un+1 −−−→
n ∞

+ ∞,

puis, par décalage d’indice : un −−−→
n ∞

+ ∞.

b) Puisque un −−−→
n ∞

+ ∞, la suite (un)n∈N n’est pas décrois-

sante.

Il existe donc n0 ∈ N tel que : un0+1 � un0.

Montrons, par récurrence : ∀ n � n0, un+1 � un .

• La propriété est vraie pour n0.

• Si la propriété est vraie pour un n ∈ N tel que n � n0, alors :

un+2 =
√

(n + 1) + un+1 � √
n + un = un+1 ,

donc la propriété est vraie pour n + 1.

Ceci montre, par récurrence sur n :

∀ n � n0, un+1 � un ,

donc la suite (un)n�n0 est croissante.

c) Considérons, pour tout n ∈ N , le polynôme 

Pn = X2 − X − n ∈ R[X] .

On a, pour tout n � n0 :

Pn(un+1) = u2
n+1 − un+1 − n

= (n + un) − un+1 − n = −(un+1 − un) � 0.

Il en résulte que un+1 est compris entre les deux zéros de Pn :

1 − √
1 + 4n

2︸ ︷︷ ︸
�0

� un+1 � 1 + √
1 + 4n

2
.

Ainsi : ∀ n � n0, 0 � un+1 � 1 + √
1 + 4n

2
,
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On déduit : αn ∼
n∞

2L

π2

1

n2
et βn ∼

n∞
L

π

1

n2
.

D’après l’exemple de Riemann (2 > 1 ) et le théorème d’équi-

valence pour des séries à termes � 0, la série 
∑

n

βn converge,

puis, par théorème de majoration pour des séries à termes � 0,

la série 
∑

n

un converge.

L’intervention de αn est alors inutile, mais on ne pouvait guère
le prévoir.

Finalement, f est intégrable sur [0 ;+∞[.

D’abord, pour tout n ∈ N , Rn =
+∞∑

k=n+1

(−1)k

k
existe, car

la série 
∑
k�1

(−1)k

k
converge.

1) Essayons d’obtenir une expression simple de Rn , faisant in-
tervenir une intégrale au lieu d’une série.

• Soient n,p ∈ N
∗ fixés tels que p > n . On a :

p∑
k=n+1

(−1)k

k
=

p∑
k=n+1

(−1)k

∫ 1

0
t k−1 dt

= −
∫ 1

0

p∑
k=n+1

(−t)k−1 dt = −
∫ 1

0
(−t)n

p−n−1∑
q=0

(−t)q dt

= −
∫ 1

0
(−t)n 1 − (−t)p−n

1 − (−t)
dt = −

∫ 1

0

(−t)n − (−t)p

1 + t
dt

= (−1)n−1

∫ 1

0

tn

1 + t
dt + (−1)p

∫ 1

0

t p

1 + t
dt .

• Soit n ∈ N
∗ fixé. Comme :

0 �
∫ 1

0

t p

1 + t
dt �

∫ 1

0
t p dt

=
[

t p+1

p + 1

]1

0

= 1

p + 1
−→

p∞
0,

on déduit du résultat précédent, en faisant tendre l’entier p vers

l’infini : ∀ n ∈ N, Rn = (−1)n−1

∫ 1

0

tn

1 + t
dt.

Il nous reste à trouver un équivalent simple de cette dernière
intégrale, lorsque l’entier n tend vers l’infini.

2) Notons, pour tout n ∈ N : In =
∫ 1

0

tn

1 + t
dt.

Effectuons une intégration par parties, pour des applications
de classe C1 sur le segment [0 ; 1] :

In =
[

tn+1

n + 1

1

1 + t

]1

0

−
∫ 1

0

tn+1

n + 1

−1

(1 + t)2
dt

= 1

2(n + 1)
+ 1

n + 1

∫ 1

0

tn+1

(1 + t)2
dt.
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donc : un+1 = O
n∞

(
√

n) = o(n),

puis, par décalage d’indice : un = o(n − 1) = o(n).

En reportant dans la formule définissant la suite, on a donc :

un+1 = √
n + un ∼

n∞
√

n,

puis, par décalage d’indice : un ∼
n∞

√
n − 1 ∼

n∞
√

n.

d) Pour α ∈ ]0 ;+∞[ fixé, on a : un ∼
n∞

1

n
α
2

.

D’après l’exemple de Riemann et le théorème d’équivalence
pour des séries à termes réels � 0, on conclut :

la série de terme général 
1

uαn
converge si et seulement si

α

2
> 1, c’est-à-dire si et seulement si : α > 2.

e) La série de terme général 
(−1)n

uβn
est alternée, puisque

uβn > 0.

Son terme général tend vers 0, puisque un −−−→
n ∞

+ ∞ et

β > 0.

La suite 

(
1

uβn

)
n�0

est décroissante à partir d’un certain rang,

puisque la suite (un)n�0 est croissante à partir d’un certain rang.

D’après le TSCSA, on conclut que la série de terme général
(−1)n

uβn
converge, pour tout β ∈ ]0 ;+∞[ fixé.

1) Existence :

On a, par développements limités :

un = n ln

(
1 + 1

n

)
−

(
1 − 1

2n

)

= n

(
1

n
− 1

2n2
+ O

(
1

n3

))
−

(
1 − 1

2n

)
= O

(
1

n2

)
.

D’après l’exemple de Riemann 2 > 1 ) et le théorème de ma-

joration pour des séries à termes � 0, la série 
∑

n

∣∣∣∣O
(

1

n2

)∣∣∣∣
converge.

Ainsi, la série 
∑

n

O

(
1

n2

)
est absolument convergente, donc

convergente.

On conclut que la série 
∑

n

un converge.

2) Calcul :

Essayons de calculer les sommes partielles , en amenant un té-
lescopage. On a, pour tout N ∈ N

∗ :

N∑
n=1

un =
N∑

n=1

n ln
(

1 + 1

n

)
−

(
1 − 1

2n

)

=
N∑

n=1

n
(
ln(n + 1) − ln n

) − N + 1

2

N∑
n=1

1

n

et :
N∑

n=1

n

(
ln (n + 1) − ln n

)

=
N∑

n=1

n ln (n + 1) −
N∑

n=1

n ln n

=
N+1∑
n=2

(n − 1) ln n −
N∑

n=1

n ln n

= −
N+1∑
n=2

ln n +
N+1∑
n=2

n ln n −
N∑

n=1

n ln n

= − ln
(
(N + 1)!

) + (N + 1) ln (N + 1).

D’où :
N∑

n=1

un = − ln
(
(N + 1)!

) + (N + 1) ln (N + 1)

− N + 1

2

N∑
n=1

1

n
.

D’après la formule de Stirling n! ∼
n∞

(
n

e

)n√
2πn,

on a :
(N + 1)N+1e−N

(N + 1)!
∼

N∞
e√

2πN
.

D’où :

ln
(N + 1)N+1e−N

(N + 1)!
= ln

(
e√

2πN

(
1 + o

N∞
(1)

))

= 1 − 1

2
ln (2π) − 1

2
ln N + o(1).

D’autre part, en utilisant la constante d’Euler, on a :

N∑
n=1

1

n
= ln N + γ+ o(1) .

On obtient :

N∑
n=1

un =
(

1 − 1

2
ln(2π) − 1

2
ln N

)
+ 1

2
(ln N + γ) + o(1)

= 1 − 1

2
ln(2π) + 1

2
γ+ o(1) .

On conclut que la série 
∑
n�1

un, converge (ce qui a déjà été éta-

bli en 1) plus directement) et que :

+∞∑
n=1

un = 1 − 1

2
ln(2π) + 1

2
γ � 0,366 365 . . .
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De plus, pour tout  n de {1,. . . ,N } : pN � v � prn
n � 2rn ,

donc : rn � ln pN

ln 2
.

En  notant ρN = E

(
ln pN

ln2

)
+ 1, on a donc :

∀ n ∈ {1,. . . ,N }, 1

1 − 1

pn

�
ρN∑

kn=0

1

pkn
n

,

puis :
N∏

n=1

1

1 − 1

pn

�
N∏

n=1


 ρN∑

kn=0

1

pkn
n


.

Comme, tout entier v tel que 2 � v � pN admet une décom-
position primaire dont les facteurs premiers sont tous � pN ,
on a :

N∏
n=1


 ρN∑

kn=0

1

pkn
n


 �

pN∑
v=1

1

v
.

Puisque la série harmonique  
∑
v�1

1

v
est divergente  et à termes

> 0 , et que pN −−−→
N∞

+ ∞ , on a  :

pN∑
v=1

1

v
−−−→

N∞
+ ∞.

Il en résulte 
N∏

n=1

1

1 − 1

pn

−−−→
N∞

+ ∞ ,

N∑
n=1

ln
1

1 − 1

pn

−−−→
N∞

+ ∞ , et enfin  
N∑

n=1

1

pn
−−−→

N∞
+ ∞.

Finalement, la série   
∑
n�1

1

pn
diverge. 

Remarque : Le résultat  est immédiat si on sait  que pn ∼
n∞

n ln n

(résultat très difficile  à obtenir). 

a) 1er cas : α = 1 :

Raisonnons par l’absurde : supposons que la série 
∑

n

un

Sn

converge.

Alors, nécessairement 
un

Sn
−−−→

n ∞
0, donc :

0 <
un

Sn
∼
n∞

− ln

(
1 − un

Sn

)
= ln

Sn

Sn−1
.

On a, par télescopage, pour tout N � 2 :
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1) Existence :

On a : un = 1

n(2n + 1)
∼
n∞

1

2n2
� 0.

D’après l’exemple de Riemann (2 > 1 ) et le théorème d’équi-
valence pour des séries à termes � 0, on conclut que la série∑
n�1

un converge.

2) Calcul :

Essayons de faire apparaître un télescopage dans l’expression
des sommes partielles, en utilisant une décomposition en élé-
ments simples d’une fraction rationnelle.

On a facilement la décomposition en éléments simples :

1

X(2X + 1)
= 1

X
− 2

2X + 1
.

D’où, pour tout N � 1 :

N∑
n=1

un =
N∑

n=1

(
1

n
− 2

2n + 1

)
=

N∑
n=1

1

n
− 2

N∑
n=1

1

2n + 1

=
N∑

n=1

1

n
− 2

( 2N+1∑
p=2

1

p
−

N∑
n=1

1

2n

)
= 2

N∑
n=1

1

n
− 2

2N+1∑
n=2

1

n

= 2
(

ln N + γ + o
N∞

(1)
) − 2

(
ln (2N + 1) + γ + o(1)

) + 2

= 2 ln
N

2N + 1
+ 2 + o(1) −→

N∞
2 ln

1

2
+ 2 = 2 − 2 ln 2 .

On conclut que la série 
∑
n�1

un converge (ce qui était déjà ac-

quis d’après 1)), et que :
+∞∑
n=1

un = 2 − 2 ln 2.

Les séries  
∑
n�1

1

pn
et   

∑
n�1

ln
1

1 − 1

pn

sont  de même

nature, puisque :

ln


 1

1 − 1

pn


 = −ln

(
1 − 1

pn

)
∼
∞

1

pn
> 0.

Soit N ∈ N
∗. On a :

N∑
n=1

ln
1

1 − 1

pn

= ln


 N∏

n=1

1

1 − 1

pn


.

Pour chaque n de {1,. . . ,N }, on a, en utilisant une série géo-

métrique :
1

1 − 1

pn

=
+∞∑
kn=0

1

pkn
n

.

Tout entier v de {2,. . . ,pN } admet une décomposition primaire
v = pr1

1 . . . prN
N , où  r1,. . . ,rN sont des entiers naturels. 
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Considérons, pour tout n ∈ N
∗ : wn =

n∑
k=1

1

k
.

On a, d’après l’étude de la constante d’Euler :

wn = ln n + γ+ o
n∞

(1) .

D’autre part :

vn − wn =
n∑

k=1

(
ln

(
1 + 1

k
+ 1

k2

)
− 1

k︸ ︷︷ ︸
noté ak

)
.

Et, en utilisant des développements limités :

ak =
(

1

k
+ 1

k2

)
− 1

2k2
+ o

(
1

k2

)
− 1

k

= 1

2k2
+ o

(
1

k2

)
∼
k∞

1

2k2
� 0.

D’après l’exemple de Riemann et le théorème d’équivalence

pour des séries à termes � 0, la série 
∑

k

ak converge. Notons

S =
+∞∑
k=1

ak .

On a donc : vn − wn =
n∑

k=1

ak = S + o(1),

d’où : vn = wn + S + o(1) = ln n + γ+ S + o(1),

puis :

un = evn = e ln n+γ+S+o(1) = n eγ+Seo(1) ∼
n∞

eγ+Sn .

En notant C = eγ+S > 0, on conclut : un ∼
n∞

Cn.

2) Évaluation de C :

• On a, pour tout n ∈ N
∗ :

un =
n∏

k=1

(
1 + 1

k
+ 1

k2

)
�

n∏
k=1

(
1 + 1

k

)

=
n∏

k=1

k + 1

k
= 2 · 3 · · · (n + 1)

1 · 2 · · · n
= n + 1 � n.

Ainsi : ∀ n ∈ N
∗,

un

n
� 1.

Comme 
un

n
−−−→

n ∞
C , on déduit : C � 1 .

• On a, pour tout n ∈ N
∗ − {1} :

un =
n∏

k=1

(
1 + 1

k
+ 1

k2

)
= 3

n∏
k=2

(
1 + 1

k
+ 1

k2

)
.

Et, pour tout k � 2 : (1) 1 + 1

k
+ 1

k2
� 1 + 1

k − 1
.

En effet :

(1) ⇐⇒ 1

k2
� 1

k − 1
− 1

k
⇐⇒ 1

k2
� 1

(k − 1)k
,
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N∑
n=2

ln
Sn

Sn−1
=

N∑
n=2

(
ln Sn − ln Sn−1

) = ln SN − ln S1 .

Comme la série 
∑

n

un diverge et est à termes � 0, on a :

SN −→
N∞

+∞ , d’où :
N∑

n=2

ln
Sn

Sn−1
−→
N∞

+∞.

Ceci montre que la série 
∑
n�2

ln
Sn

Sn−1
diverge.

Par théorème d’équivalence pour des séries à termes � 0, on

conclut que la série 
∑

n

un

Sn
diverge, contradiction.

On conclut que la série 
∑

n

un

Sn
diverge.

2e cas : α ∈ ]0 ; 1[ :

Comme Sn −−−→
n ∞

+ ∞ , on a, pour n assez grand :

Sαn � Sn, donc   
un

Sαn
� un

Sn
� 0. Puisque la série   

∑
n

un

Sn

diverge (cf. 1er cas), on conclut, par théorème de minoration

pour des séries à termes � 0, que la série 
∑

n

un

Sαn
diverge.

3e cas : α ∈ ]1 ;+∞[ :

On remarque que, pour tout n ∈ N
∗ :

un

Sαn
= Sn − Sn−1

Sαn
=

∫ Sn

Sn−1

1

Sαn
dx �

∫ Sn

Sn−1

1

xα
dx .

D’où, par addition et relation de Chasles, pour tout N � 2 :
N∑

n=2

un

Sαn
�

N∑
n=2

∫ Sn

Sn−1

1

xα
dx =

∫ SN

S1

1

xα
dx �

∫ +∞

S1

1

xα
dx .

Ceci montre que les sommes partielles de la série 
∑

n

un

Sαn
sont

majorées et donc, puisqu’il s’agit d’une série à termes � 0, on

conclut que la série 
∑

n

un

Sαn
converge.

Finalement : la série 
∑

n

un

Sαn
converge si et seulement si :α > 1.

b) Même méthode qu’en a). On obtient :

la série 
∑
n�1

un

rαn
converge si et seulement si : α > 1.

1) Existence de C :

D’abord, il est clair que, pour tout n ∈ N
∗ , un existe et un > 0.

Notons, pour tout n ∈ N
∗ :

vn = ln un =
n∑

k=1

ln

(
1 + 1

k
+ 1

k2

)
.

On a : ln

(
1 + 1

k
+ 1

k2

)
∼
k∞

1

k
.
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et cette dernière inégalité est vraie.

On déduit :

un � 3
n∏

k=2

(
1 + 1

k − 1

)
= 3

n∏
k=2

k

k − 1

= 3
2 · · · n

1 · · · (n − 1)
= 3n.

Ainsi : ∀ n � 2,
un

n
� 3.

Comme 
un

n
−−−→

n ∞
C , on déduit : C � 3 .

Finalement : 1 � C � 3.

a) Calculons les sommes partielles de la série∑
n�1

(−1)n−1

n
en faisant intervenir des intégrales.

On a, pour tout n ∈ N
∗ :

n∑
k=1

(−1)k−1

k

=
n∑

k=1

(−1)k−1

∫ 1

0
xk−1 dx

=
∫ 1

0

( n∑
k=1

(−x)k−1

)
dx

=
∫ 1

0

( n−1∑
k=0

(−x)k

)
dx

=
∫ 1

0

1 − (−x)n

1 − (−x)
dx

=
∫ 1

0

1

1 + x
dx + (−1)n−1

∫ 1

0

xn

1 + x
dx .

On a : 0 �
∫ 1

0

xn

1 + x
dx �

∫ 1

0
xn dx = 1

n + 1
−−−→

n ∞
0.

Donc :
n∑

k=1

(−1)k−1

k
−−−→

n ∞

∫ 1

0

1

1 + x
dx = [ln(1 + x)]1

0 = ln 2 .

Ceci montre que la série 
∑
n�1

(−1)n−1

n
converge (ce que l’on

pouvait montrer plus directement par le TSCSA) et que, pour

tout n ∈ N , son reste Rn =
+∞∑

k=n+1

(−1)k−1

k
est donné par :

Rn =
+∞∑
k=1

(−1)k−1

k
−

n∑
k=1

(−1)k−1

k

=
∫ 1

0

1

1 + x
dx −

(∫ 1

0

1

1 + x
dx + (−1)n−1

∫ 1

0

xn

1 + x
dx

)

= (−1)n

∫ 1

0

xn

1 + x
dx .

b) De même qu’en a), on a, pour tout n ∈ N
∗ :

n∑
k=0

Rk =
n∑

k=0

(−1)k

∫ 1

0

xk

1 + x
dx

=
∫ 1

0

1

1 + x

( n∑
k=0

(−x)k

)
dx

=
∫ 1

0

1

1 + x

1 − (−x)n+1

1 − (−x)
dx

=
∫ 1

0

1

(1 + x)2
dx + (−1)n

∫ 1

0

xn+1

(1 + x)2
dx .

De la même façon qu’en a), on déduit que la série 
∑
n�0

Rn

converge et que, pour tout n ∈ N , son reste ρn =
+∞∑

k=n+1

Rk

vérifie : ρn = (−1)n+1

∫ 1

0

xn+1

(1 + x)2
dx .

c) 1) On effectue une troisième fois le même type de calcul.

On obtient, pour tout n ∈ N :

n∑
k=0

ρk = −
∫ 1

0

x

(1 + x)3
dx + (−1)n+1

∫ 1

0

xn+2

(1 + x)3
dx ,

la série 
∑

n

ρn converge, et :

+∞∑
n=0

ρn = −
∫ 1

0

x

(1 + x)3
dx =

y = 1 + x
−

∫ 2

1

y − 1

y3
dy

= −
∫ 2

1

(
1

y2
− 1

y3

)
dy =

[
1

y
− 1

2y2

]2

1

= −1

8
.

2) On a, pour tout n ∈ N :

−(−1)n
ρn =

∫ 1

0

xn+1

(1 + x)2
dx

�
∫ 1

0

xn+1

22
dx = 1

4(n + 2)
∼
n∞

1

4n
� 0.

D’après l’exemple de Riemann, le théorème d’équivalence pour

des séries à termes � 0, et le théorème de majoration pour des

séries à termes � 0, on déduit que la série 
∑

n

−(−1)n
ρn

diverge. Par passage à l’opposée, on conclut que la série∑
n

(−1)n
ρn diverge.

Attention : Malgré les notations, la suite (ρn)n est alternée, et

la suite 
(
(−1)nρn

)
n est à termes de signe fixe (tous négatifs).
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Notons, pour tout n ∈ N
∗ : un = ϕ(n)

n2
.

On a, pour tout n ∈ N
∗ :

2n∑
k=n+1

uk �
2n∑

k=n+1

ϕ(k)

4n2
= 1

4n2

2n∑
k=n+1

ϕ(k) .

Puisque les entiers ϕ(n + 1),. . . ,ϕ(2n), sont deux à deux dis-
tincts et � 1, on a :

2n∑
k=n+1

ϕ(k) �
n∑

i=1

i = n(n + 1)

2
.

d’où :
2n∑

k=n+1

uk � n + 1

8n
� 1

8
.

Si la série 
∑
k�1

uk convergeait, on aurait alors, en notant

S =
+∞∑
k=1

ϕ(k)

k
:

2n∑
k=n+1

uk =
( 2n∑

k=1

uk

)
−

( n∑
k=1

uk

)
−−−→

n ∞
S − S = 0 ,

contradiction.

On conclut que la série 
∑
n�1

ϕ(n)

n2
diverge.
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5CHAPITRE 5Suites et séries
d’applications

Thèmes abordés dans les exercices

• Étude de la convergence simple d’une suite d’applications

• Recherche de limites d’intégrales, d’équivalents d’intégrales, de développe-
ments asymptotiques d’intégrales

• Approximation uniforme de fonctions par des fonctions d’un type donné

• Étude des convergences (simple, absolue, normale) d’une série d’applications

• Étude de la somme d’une série d’applications : ensemble de définition, conti-
nuité, limites, classe, variations, tracé de la courbe représentative

• Obtention d’égalités du type intégrale = série.

Points essentiels du cours 
pour la résolution des exercices
• Pour une suite d’applications : définition de la convergence simple

• Théorèmes du cours pour les suites d’applications : C.N . et limite, C.N . et
continuité en un point, C.N . et continuité sur un intervalle, C.N . et intégra-
tion sur un segment, C.N . et dérivation

• Théorème de convergence dominée

• Les deux théorèmes de Weierstrass

• Pour une série d’applications : définition des convergences (simple, absolue,
normale), liens logiques C.N . �⇒ C.A. �⇒ C.S.

• Théorèmes du cours sur les séries d’applications : C.N . et limite, C.N . et
continuité en un point, C.N . et continuité sur un intervalle, C.N . et intégra-
tion sur un segment, C.N . et dérivation

• Théorème du cours sur l’intégration sur un intervalle quelconque pour une
série d’applications.

Les méthodes à retenir 159

Énoncés des exercices 165

Du mal à démarrer ? 174

Corrigés 179

Plan
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Ce chapitre 5 ne concerne pas les étudiant(e)s de PT.
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Chapitre 5 • Suites et séries d’applications

158

Thèmes abordés dans les exercices

• Étude des convergences (simple, uniforme) d’une suite d’applications

• Recherche de limites d’intégrales, d’équivalents d’intégrales, de développe-
ments asymptotiques d’intégrales

• Approximation uniforme de fonctions par des fonctions d’un type donné

• Étude des convergences (simple, absolue, normale, uniforme) d’une série
d’applications

• Étude de la somme d’une série d’applications : ensemble de définition, conti-
nuité, limites, classe, variations, tracé de la courbe représentative

• Obtention d’égalités du type intégrale = série.

Points essentiels du cours 
pour la résolution des exercices
• Pour une suite d’applications : définition des convergences (simple, unifor-

me), lien logique C.U. �⇒ C.S. , caractérisation de la C.U. de ( fn)n vers f
par : || fn − f ||∞ −→

n∞ 0

• Théorèmes du cours pour les suites d’applications : C.U. et limite, C.U. et
continuité en un point, C.U. et continuité sur un intervalle, C.U. et intégra-
tion sur un segment, C.U. et dérivation

• Théorème de convergence dominée

• Les deux théorèmes de Weierstrass

• Pour une série d’applications : définition des convergences (simple, absolue,
normale, uniforme), liens logiques C.N . �⇒ C.U. �⇒ C.S. ,
C.N . �⇒ C.A. �⇒ C.S. , lien logique   C.U. �⇒ (|| fn||∞ −→

n∞ 0) , carac-

térisation de la C.U. par : ||Rn||∞ −→
n∞ 0

• Théorèmes du cours sur les séries d’applications : C.U. et limite, C.U. et
continuité en un point, C.U. et continuité sur un intervalle, C.U. et intégra-
tion sur un segment, C.U. et dérivation

• Théorème du cours sur l’intégration sur un intervalle quelconque pour une
série d’applications.

Ce chapitre 5 ne concerne pas les étudiant(e)s de PT.

PSI



Les méthodes à retenir

159

Les méthodes à retenir

Fixer x ∈ X quelconque, étudier la convergence de la suite(
fn(x)

)
n∈N

dans E, et, si celle-ci converge, déterminer sa limite f (x) .

➥ Exercices 5.1, 5.8, 5.13, 5.27 

Dans des exemples faciles, on peut quelquefois montrer directement
la convergence uniforme, ce qui entraîne la convergence simple.

➥ Exercice 5.1 a).

Sachant déjà que ( fn)n converge simplement sur X vers une certaine
application f : X −→ E, voir si, à partir d’un certain rang, fn − f est
bornée, et, si c’est le cas, on a :

fn
C.U.−→
n∞ f ⇐⇒ || fn − f ||∞ −−→

n ∞
0 .

On essaiera de calculer || fn − f ||∞, souvent en étudiant les variations
de fn − f.

➥ Exercices 5.1 c), d)

Si le calcul de || fn − f ||∞ ne paraît pas facile, étudier || fn − f ||∞.
À cet effet :
∗ pour montrer la convergence uniforme, majorer || fn − f ||∞ par un
terme tendant vers 0 lorsque l’entier n tend vers l’infini.

➥ Exercices 5.1 a), b), 5.8 c), 5.13, 5.27 b), c)

∗ pour montrer la non-convergence uniforme, minorer || fn − f ||∞
par un terme ne tendant pas vers 0 lorsque l’entier n tend vers l’infini,
par exemple, en évaluant | fn − f | en un point convenable dépendant
de n.

➥ Exercices 5.1 e) à h), 5.8 a), b), d), 5.27 a), d)

Pour montrer la non-convergence uniforme, on pourra parfois mettre
en défaut une propriété qu’aurait transmise à f la convergence unifor-
me de la suite ( fn)n. Par exemple, si les fn sont toutes continues, si

fn
C.S−→
n∞ f et si f est discontinue, alors la convergence n’est pas unifor-

me.

➥ Exercices 5.1 g), 5.27 b)

Si fn
C.S.−→
n∞ f et fn

C.U.−→
n∞/ f, on cherche alors éventuellement des parties

convenables Y de X telles que fn |Y C.U.−→
n∞ f |Y.

➥ Exercices 5.1 e) à h). 

Pour étudier la convergence simple
d’une suite d’applications
(fn : X −→ E)n∈N , dans un exemple

Pour étudier 
la convergence uniforme
d’une suite d’applications
(fn : X −→ E)n∈N ,
dans un exemple

PSI
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• Évaluer || fn − f ||∞ et établir || fn − f ||∞ −−→
n ∞

0, souvent par une
majoration convenable.

➥ Exercices 5.9 à 5.12.

• Ne revenir à la définition en ε et N qu’en dernier recours. 

Essayer d’appliquer le théorème du cours sur continuité et convergen-
ce uniforme sur tout segment de l’intervalle d’étude, ou le théorème
du cours sur la dérivation pour une suite d’applications.

➥ Exercice 5.46 c). 

Essayer de :
• appliquer une méthode élémentaire : si , pour x ∈ I fixé, la suite(

fn(x)
)

n admet une limite, notée f (x) , voir si f est intégrable sur I ,

former 
∣∣∣
∫

I
fn −

∫
I

f
∣∣∣ , et, par majorations élémentaires (utilisant sou-

vent : linéarité de l’intégration, relation de Chasles, changement de
variable, intégration par parties, expression conjuguée, majorations

classiques), obtenir 
∣∣∣
∫

I
fn −

∫
I

f
∣∣∣ −−→

n ∞
0, d’où 

∫
I

fn −−→
n ∞

∫
I

f.

➥ Exercice 5.18 a)

• appliquer le théorème du cours sur convergence uniforme (PSI) ou
normale (PC) et intégration sur un segment, dans le cas où :

∗ I = [a ; b] est un segment
∗ pour tout n, fn est continue sur [a ; b]
∗ ( fn)n converge uniformément sur [a ; b] vers une certaine f

• appliquer le théorème de convergence dominée dont on rappelle les
hypothèses :

∗ pour tout n, fn est continue par morceaux sur I

∗ fn
C.S.−→
n∞ f sur I

∗ f est continue par morceaux sur I
∗ il existe ϕ : I −→ R continue par morceaux, � 0, intégrable sur
I , telle que : ∀ n ∈ N, ∀ x ∈ I, | fn(x)| � ϕ(x).

➥ Exercices 5.3, 5.4, 5.16, 5.17, 5.42, 5.43.

Essayer de :
• se ramener à une question de continuité, et appliquer le théorème de
continuité sous le signe intégrale

➥ Exercice 5.30

• combiner le théorème de convergence dominée et la caractérisation
séquentielle des limites.

➥ Exercice 5.30. 

Dans un cadre abstrait,

pour montrer fn
C.U.−→
n∞ f sur X

Pour montrer qu’une application,
obtenue comme limite d’une suite
d’applications, est continue, est de
classe C1, Ck, C∞

Pour permuter intégrale et limite
en vue d’obtenir une formule du
genre

lim
n∞

∫
I
fn(x) dx =

∫
I

(
lim
n∞ fn(x)

)
dx

Pour permuter intégrale et limite
pour un réel, en vue d’obtenir une
formule du genre :

lim
x−→a

∫
I
f(x,t) dt =

∫
I

(
lim

x−→a
f(x,t)

)
dt

PSI

PSI
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Essayer de se ramener à une recherche de limite d’intégrale, sur un
intervalle fixe, par transformation de l’écriture de l’énoncé, utilisant
les méthodes usuelles : linéarité de l’intégration, relation de Chasles,
intégration par parties.

➥ Exercices 5.18, 5.19, 5.30 à 5.32. 

Appliquer le premier théorème de Weierstrass, puis modifier les poly-
nômes obtenus, de façon à en construire d’autres, vérifiant la condi-
tion supplémentaire, et convergeant uniformément encore vers f.

➥ Exercice 5.15.

Essayer d’utiliser le fait que, pour N ∈ N fixé, RN [X] est de dimen-
sion finie. En particulier, RN [X] est complet (PSI), donc fermé, et
toutes les normes sur RN [X] sont équivalentes entre elles.

➥ Exercice 5.28.

Se rappeler d’abord, avec des abréviations évidentes :

C.N . �⇒ C.A. �⇒ C.S .

Suivre, sauf exception, le plan de travail proposé dans le cours :

• Est-ce que 
∑

n

fn converge simplement sur X ?

Si non, remplacer X par la partie de X formée des x ∈ X tels que la

série numérique 
∑

n

fn(x) onverge, puis passer à l’étape suivante.

Si oui, passer à l’étape suivante.

• Est-ce que 
∑

n

fn converge normalement sur X ?

Si oui, alors, d’après le cours,
∑

n

fn converge absolument et simple-

ment sur X, et l’étude est finie.

Si non, voir si 
∑

n

fn converge normalement sur des parties conve-

nables de X (en option).

➥ Exercices 5.5, 5.6 a), 5.7 a), 5.20, 5.21 a), 5.22 a), 5.24 a),
5.33, 5.34 a), 5.35 a), 5.38 a), 5.44 a), 5.45.

Se rappeler d’abord, avec des abréviations évidentes :

C.N . �⇒ C.U. �⇒ C.S. ,

C.N . �⇒ C.A. �⇒ C.S .

Suivre, sauf exception, le plan de travail proposé dans le cours :

• Est-ce que 
∑

n

fn converge simplement sur X ?

Si non, remplacer X par la partie de X formée des x ∈ X tels que la

série numérique 
∑

n

fn(x) onverge, puis passer à l’étape suivante.

Pour trouver un équivalent simple

d’une intégrale 
∫

In

fn, lorsque l’en-

tier n tend vers l’infini, dans
laquelle, a priori, l’intervalle et la
fonction dépendent de n

Pour obtenir 
une approximation uniforme 
par des polynômes satisfaisant 
une condition supplémentaire

Pour faire intervenir une condition
de majoration des degrés des 
polynômes d’une suite convergeant,
en un certain sens, vers une fonction

Pour étudier les convergences
d’une série d’applications∑

n

(fn : X −→ K)

PC

Pour étudier les convergences
d’une série d’applications∑

n

(fn : X −→ K)

PSI
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Si oui, passer à l’étape suivante.

• Est-ce que 
∑

n

fn converge normalement sur X ?

Si oui, alors, d’après le cours,
∑

n

fn converge uniformément, absolu-

ment, simplement sur X, et l’étude est finie.

Si non, voir si 
∑

n

fn converge normalement sur des parties conve-

nables de X (en option), et, d’autre part, passer à l’étape suivante.

• Est-ce que || fn||∞ −−→
n ∞

0 ?

Si non, alors, d’après le cours,
∑

n

fn ne converge pas uniformément

sur X.
Si oui, passer à l’étape suivante.

• Est-ce que ||Rn||∞ −−→
n ∞

0 ?

Si oui, alors 
∑

n

fn converge uniformément sur X.

Si non, alors 
∑

n

fn ne converge pas uniformément sur X.

➥ Exercices 5.5, 5.6 a), 5.7 a), 5.20, 5.21 a), 5.22 a), 5.24 a),
5.33, 5.34 a), 5.35 a), 5.38 a), 5.44 a), 5.45.

Étudier, pour x ∈ X fixé, la nature de la série numérique 
∑

n

fn(x).

➥ Exercices 5.5, 5.6 a), 5.7 a), 5.20, 5.33, 5.35 a), 5.38 a),
5.44 a), 5.45 a). 

Étudier, pour x ∈ X fixé, la nature de la série numérique 
∑

n

| fn(x)|.

➥ Exercices 5.5, 5.6 a), 5.33 c). 

Étudier la nature de la série 
∑

n

|| fn||∞.

S’il n’existe pas N ∈ N tel que, pour tout n � N , fn soit bornée, alors∑
n

fn ne converge pas normalement sur X.

➥ Exercices 5.20 a), 5.33 a)

S’il existe N ∈ N tel que, pour tout n � N , fn soit bornée, alors,

d’après le cours :
∑

n

fn C.N . ⇐⇒
∑

n

|| fn||∞ converge.

➥ Exercices 5.5, 5.6 a), 5.20 b), 5.33 a), b), d), e), 5.34 a),
5.35 a), 5.38 a), 5.44 a), 5.45 b).

Pour étudier la convergence simple
d’une série d’applications∑

n

(fn : X −→ K)

Pour étudier la convergence 
absolue d’une série d’applications∑

n

(fn : X −→ K)

Pour étudier 
la convergence normale 
d’une série d’applications∑

n

(fn : X −→ K)

PSI



Les méthodes à retenir

163

Se rappeler d’abord : C.N . �⇒ C.U .

En pratique, on aura déjà montré que 
∑

n

fn converge simplement et

ne converge pas normalement.

Si || fn||∞ −−→
n ∞
/ 0, alors, d’après le cours,

∑
n

fn ne converge pas uni-

formément sur X.

➥ Exercices 5.5 c), 5.20, 5.33 a), d), 5.44 a)

Si || fn||∞ −−→
n ∞

0, former le reste d’ordre n :

Rn : X −→ K, x �−→ Rn(x) =
+∞∑

k=n+1

fk(x) ,

et résoudre la question : ||Rn||∞ −−→
n ∞

0 ?

À cet effet, évaluer Rn(x) , puis ||Rn||∞.

Pour cela, essayer d’utiliser :

∗ une comparaison série/intégrale, lorsque les fn(x) sont tous � 0 et
que, pour x fixé, la suite n �−→ fn(x) s’extrapole simplement en une
fonction ϕx : t �−→ ϕx(t), qui soit décroissante, continue, intégrable,

et pour laquelle l’intégrale 
∫ +∞

1
ϕx(t) dt soit calculable ou évaluable.

➥ Exercice 5.33 b)

∗ une majoration géométrique, si 
∑

n

fn(x) ressemble à une série

géométrique.

∗ le TSCSA si, pour chaque x ∈ X , la série 
∑

n

fn(x) relève du

TSCSA.
On aura alors : ∀ x ∈ X, ∀ n ∈ N, |Rn(x)| � | fn+1(x)|,
puis : ∀ n ∈ N, ||Rn||∞ � || fn+1||∞.

➥ Exercices 5.5 g), 5.6 a), 5.33 c)

* une minoration du reste, si tous ses termes sont � 0, par une somme
de n termes (par exemple), que l’on minorera encore, si possible.

➥ Exercices 5.33 a), d), e).

Essayer d’appliquer les théorèmes du cours :
• théorème sur convergence uniforme (PSI) ou normale (PC) et limite
• théorème sur convergence uniforme (PSI) ou normale (PC) et conti-
nuité en un point
• théorème sur convergence uniforme sur tout segment (PSI) ou nor-
male sur tout segment (PC) et continuité sur l’intervalle de départ.

➥ Exercices 5.21 b), 5.22 b), 5.24 b), 5.34 b), 5.35 b),
5.38 b), 5.46 c).

Pour montrer que la somme d’une
série d’applications admet une
limite en un point, ou est continue
en un point, ou est continue sur
son ensemble de définition

Pour étudier 
la convergence uniforme 
d’une série d’applications∑

n

(fn : X −→ K)

PSI
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Essayer de :
• minorer convenablement S(x) .

➥ Exercice 5.44 c)

• revenir à la définition d’une limite infinie.
Si, pour tout n ∈ N, 0 � fn(x) −→

x−→a
�n et si la série 

∑
n

�n, diverge,

alors, pour tout A > 0, il existe N ∈ N tel que 
N∑

n=0

�n � A + 1, puis,

au voisinage de a :

S(x) =
+∞∑
n=1

fn(x) �
N∑

n=1

fn(x) � A .

Essayer de :
• appliquer le théorème sur convergence uniforme (PSI) ou normale
(PC) et intégration sur un segment, dans le cas où :

∗ I = [a ; b] est un segment

∗ pour tout n ∈ N, fn est continue sur [a ; b]

∗
∑

n

fn converge uniformément sur [a ; b] .

• appliquer le théorème du cours sur l’intégration sur un intervalle
quelconque pour une série d’applications, dont on rappelle les hypo-
thèses :

∗ pour tout n ∈ N, fn est intégrable sur I

∗
∑

n

fn converge simplement sur I

∗
+∞∑
n=0

fn est continue par morceaux sur I

∗ la série numérique 
∑
n�0

∫
I
| fn(x)| dx converge.

➥ Exercices 5.25, 5.26, 5.37, 5.38 c), 5.39

• montrer que l’intégrale du reste tend vers 0.

En notant, pour tout n ∈ N, Sn =
n∑

k=0

fk la n-ème somme partielle,

S =
+∞∑
k=0

fk la somme totale (la convergence simple doit être déjà

acquise), Rn = S − Sn =
+∞∑

k=n+1

fk le n-ème reste, les applications

Sn, S, Rn sont intégrables sur I (déjà acquis pour fn, puis pour Sn par
somme d’un nombre fini d’applications intégrables sur I , pour S par
un raisonnement approprié à l’exemple, pour Rn par différence), et :∫

I
S =

∫
I

Sn +
∫

I
Rn =

n∑
k=0

∫
I

fk +
∫

I
Rn .

Pour montrer S(x) −→
x−→a

+∞ ,

où S(x) =
+∞∑
n=1

fn(x)

Pour permuter intégrale et série,
en vue d’obtenir une formule du
genre :
+∞∑
n=0

∫
I
fn(x) dx=

∫
I

( +∞∑
n=0

fn(x)
)

dx
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Énoncés des exercices

Exemples d’étude de suites de fonctions, convergence simple, convergence uniforme

PC : Étudier la convergence simple pour les suites d’applications suivantes :

PSI : Étudier (convergence simple, convergence uniforme, convergence uniforme sur des parties
de l’ensemble de départ) les suites d’applications suivantes :

a) fn : R −→ R, x �−→ n + 1

n2 + x2
, n ∈ N

∗

b) fn : [0 ; 1] −→ R, x �−→ nx2

1 + nx
, n ∈ N

∗

c) fn : R −→ R, x �−→ x

x2 + n2
, n ∈ N

∗

d) fn : [0 ; 1] −→ R, x �−→ xn(1 − x), n ∈ N
∗

e) fn : [0 ;+∞[−→ R, x �−→ nx3

1 + n2x
, n ∈ N

f) fn : [0 ; 1[−→ R, x �−→ Min

(
n,

1√
1 − x

)
, n ∈ N

5.1

Si 
∫

I
Rn −−→

n ∞
0, on déduit que la série 

∑
k�0

∫
I

fk converge et que

∫
I

S =
+∞∑
k=0

∫
I

fk, d’où le résultat voulu.

Pour montrer que l’intégrale du reste tend vers 0, essayer d’utiliser
les méthodes classiques d’évaluation des restes des séries conver-
gentes : comparaison série/intégrale, majoration géométrique,
TSCSA.

➥ Exercices 5.40, 5.41. 

Développer la fonction sous l’intégrale en somme d’une série de
fonctions (souvent par utilisation d’une série géométrique, ou d’une
série entière voir ch. 6, ou d’une série de Fourier voir ch. 7), justifier
la permutation intégrale/série, et calculer le terme général de la série
apparaissant.

➥ Exercices 5.25, 5.26. 

Essayer d’appliquer le théorème du cours sur la dérivation pour une
série d’applications, éventuellement de façon répétée.

➥ Exercices 5.7 b), 5.23 b), 5.34 d), 5.44 b).

Pour établir une égalité du type
intégrale = somme de série

Pour montrer que la somme 
d’une série d’applications 
est de classe C1, Ck, C∞
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g) fn : [−1 ; 1] −→ R, x �−→




n|x | − n + 1 si |x | > 1 − 1

n

0 si |x | � 1 − 1

n

n ∈ N, n � 2

h) fn : R −→ R, x �−→



x2 sin
1

nx
si x =/ 0

0 si x = 0

n ∈ N
∗.

Convergence simple et : croissance, convexité, lipschitzianité

Soient I un intervalle de R, ( fn : I −→ R)n∈N une suite d’applications, f : I −→ R une appli-
cation, k ∈ R+. Montrer que, si ( fn)n∈N converge simplement vers f sur I et si, pour tout n ∈ N ,
fn est croissante (resp. convexe, resp. k-lipschitzienne), alors f est croissante (resp. convexe, resp.
k-lipschitzienne). 

Exemples de recherche de limites d’intégrales

Déterminer les limites suivantes, lorsque l’entier n tend vers l’infini :

a) lim
n∞

∫ +∞

0

e− x
n

1 + x2
dx b) lim

n∞

∫ +∞

1

n

nx2 + ex
dx c) lim

n∞

∫ +∞

0

xn

x2n + xn + 1
dx . 

Exemple d’utilisation du théorème de convergence dominée

Soit f : [0 ; 1] −→ C continue par morceaux. Montrer :

∫ 1

0
f (x)

(
1 − x

n

)n

dx −−−→
n ∞

∫ 1

0
f (x) e−x dx .

Exemples d’étude de convergence pour une série d’applications

PC : Étudier (convergences simple, absolue, normale) les séries d’applications 
∑

n

fn suivantes :

PSI : Étudier (convergences simple, absolue, normale, uniforme) les séries d’applications 
∑

n

fn

suivantes :

a) fn : R −→ R, x �−→ sin (nx)

n2 + x2
, n ∈ N

∗

b) fn : [0 ; 1] −→ R, x �−→ n2xn(1 − x)n, n ∈ N

c) fn : [0 ;+∞[−→ R, x �−→ nx2

n3 + x2
, n ∈ N

∗

d) fn : [0 ;+∞[−→ R, x �−→ x

n
e−n2x2

, n ∈ N
∗

e) fn : [0 ;+∞[−→ R, x �−→ n + x

x2 + n2
, n ∈ N

∗

f) fn : [0 ;+∞[−→ R, x �−→ (−1)n

x2 + n2
, n ∈ N

∗

g) fn : [0 ;+∞[−→ R, x �−→ (−1)n

x2 + n
, n ∈ N

∗ . 

5.3

5.4

5.5

5.2
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Étude de la somme d’une série de fonctions, continuité

On note, pour tout n ∈ N
∗ : fn : [0 ;+∞[−→ R, x �−→ (−1)n e−nx

n + x
.

a) Étudier les convergences de la série d’applications 
∑
n�1

fn.

b) Montrer que la somme S =
+∞∑
n=1

fn est continue sur [0 ;+∞[. 

Étude de la somme d’une série de fonctions, classe C2

On note, pour tout n ∈ N
∗ : fn : [0 ;+∞[−→ R, x �−→ ln(n + x)

n2
.

a) Étudier la convergence simple de la série d’applications 
∑
n�1

fn.

On note S la somme.

b) Montrer que S est de classe C2 sur [0 ;+∞[ et exprimer, pour tout x ∈ [0 ;+∞[, S′(x) et
S′′(x) sous forme de sommes de séries.

c) En déduire que S est strictement croissante sur [0 ;+∞[ et que S est concave sur [0 ;+∞[. 

Exemples d’étude de suites de fonctions, convergence simple, convergence uniforme

PC : Étudier la convergence simple pour les suites d’applications suivantes :

PSI : Étudier (convergence simple, convergence uniforme, convergence uniforme sur des parties
de l’ensemble de départ) les suites d’applications suivantes :

a) fn : [0 ; 1] −→ R, x �−→ n(1 − x)

(
sin

πx

2

)n

, n ∈ N

b) fn : R −→ R, x �−→ sin

(
n + 1

n
x

)
, n ∈ N

∗

c) fn : [0 ;+∞[−→ R, x �−→ ln

(
1 + nx2

1 + nx

)
, n ∈ N

d) fn : ]0 ;+∞[−→ R, x �−→ (nx)
x
n , n ∈ N

∗.

Exemple de convergence uniforme et composition

Soient X un ensemble non vide, ( fn : X −→ R+)n∈N une suite d’applications, f : X −→ R+ une

application. On suppose : fn
C.U.−→
n∞

f.

Montrer : ln(1 + fn)
C.U.−→
n∞

ln(1 + f ).

Convergence uniforme pour une suite de fonctions définies à partir d’une fonction donnée

Soit f : R −→ R de classe C3, telle que f (3) est bornée.

On note, pour tout n ∈ N
∗ : gn : R −→ R, x �−→ n2

[
f

(
x + 1

n

)
− 2 f (x) + f

(
x − 1

n

)]
.

Montrer : gn
C.U.−→
n∞

f ′′ sur R. 

5.9

5.10

5.6

5.7

5.8

PSI

PSI
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Convergence d’une suite de fonctions définies par récurrence

Soit f0 : R −→ R , bornée, � 0. Étudier la convergence simple et la convergence uniforme de la
suite d’applications ( fn : R −→ R)n∈N définie par :

∀ n ∈ N, ∀ x ∈ R, fn+1(x) =
√

1 + fn(x) .

Convergence d’une suite de fonctions définies par récurrence

Soit f0 : R −→ R , bornée, � 0. Étudier la convergence simple et la convergence uniforme de la
suite d’applications ( fn : R −→ R)n∈N définie par :

∀ n ∈ N, ∀ x ∈ R, fn+1(x) = ln
(
1 + fn(x)

)
.

Limites d’intégrales issues de la fonction 	 d’Euler

Étudier la convergence simple et la convergence uniforme des suites d’applications
( fn, gn : [0 ;+∞[−→ R)n∈N définies, pour tout n ∈ N et tout x ∈ [0 ;+∞[, par :

fn(x) = 1

n!

∫ x

0
tn e−t dt, gn(x) = 1

n!

∫ +∞

x
tn e−t dt .

Une application classique du premier théorème de Weierstrass

Soient (a,b) ∈ R
2 tel que a < b, f : [a ; b] −→ C continue.

On suppose : ∀ n ∈ N,

∫ b

a
xn f (x) dx = 0. Démontrer : f = 0. 

Recherche d’une suite de polynômes convergeant uniformément vers une fonction 
donnée et vérifiant une condition supplémentaire

Soient (a,b) ∈ R
2 tel que a < b,f : [a ; b] −→ C continue, c ∈ [a ; b]. 

Montrer qu’il existe une suite (Pn)n∈N de polynômes telle que :




Pn
C.U.−→
n∞

f sur [a ; b]

∀ n ∈ N, Pn(c) = f (c).

Exemples de recherche de limites d’intégrales

Déterminer les limites suivantes, lorsque l’entier n tend vers l’infini :

a) lim
n∞

∫ 1

0
n
(

e
x

n+x − 1
)

dx b) lim
n∞

∫ +∞

0
(x2 + 1)

n + x

n + x2
e−x dx c) lim

n∞

∫ +∞

−∞

n sin nx

n2 + x4
dx

d) lim
n∞

∫ π

0

√
π− x sin n x dx e) lim

n∞

∫ +∞

0

e−(x+a)n

√
x

dx, a ∈ [0 ; 1[ f) lim
n∞

∫ n√n

0

√
1 + xn dx .

Exemple d’utilisation du théorème de convergence dominée

Montrer, pour tout a ∈ [0 ;+∞[ fixé :
∫ a

0

1

x

((
1 + x

n

)n

− 1

)
dx −−−→

n ∞

∫ a

0

ex − 1

x
dx .

Exemple de recherche d’un équivalent d’une intégrale

Soit f : R −→ R continue par morceaux, bornée sur R, continue en 0, telle que f (0) =/ 0.

Trouver un équivalent simple de In =
∫ +∞

−∞
f (x) e−n2x2

dx lorsque l’entier n tend vers l’infini. 
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Comportement asymptotique d’une intégrale

On note, pour tout n ∈ N
∗ : In =

∫ 1

0

√
1 − xn dx .

a) Montrer : In −−−→
n ∞

1.

b) Trouver un équivalent simple de In − 1 lorsque l’entier n tend vers l’infini. 

Exemples d’étude de convergence pour une série d’applications

PC : Étudier (convergences simple, absolue, normale) les séries d’applications 
∑

n

fn suivantes :

PSI : Étudier (convergences simple, absolue, normale, uniforme) les séries d’applications 
∑

n

fn

suivantes :

a) fn : [0 ;+∞[−→ R, x �−→ ln

(
1 + x

n

)
− x

n
, n ∈ N

∗

b) fn : [0 ;+∞[−→ R, x �−→ e−x

(
x

n
− ln

(
1 + x

n

))
, n ∈ N

∗.

Étude de la somme d’une série d’applications, limite

On note, pour tout n ∈ N
∗ : fn : [0 ;+∞[−→ R, x �−→ Arctan

n + x

1 + n3x
.

a) Montrer que 
∑
n�1

fn converge simplement sur ]0 ;+∞[ et converge normalement sur

[1 ;+∞[. On note S la somme.

b) Montrer : S(x) −→
x−→+∞

L =
+∞∑
n=1

Arctan
1

n3
, et calculer une valeur approchée décimale de L à

10−3 près. 

Étude de la somme d’une série d’applications, développement asymptotique

On note, pour tout n ∈ N : fn : [0 ;+∞[−→ R, x �−→ (−1)n

√
1 + nx

.

a) Montrer que 
∑
n�1

fn converge simplement sur ]0 ;+∞[ et converge uniformément sur [1 ;+∞[.

On note S la somme.

b) Montrer : S(x) −→
x−→+∞

0.

c) On note a =
+∞∑
n=1

(−1)n

√
n

. Établir : S(x) = a√
x

+ O
x−→+∞

(
1

x
√

x

)
.

Fonction ζ de Riemann

On note, sous réserve d’existence, pour x ∈ R : ζ(x) =
+∞∑
n=1

1

nx
.

a) Montrer : Déf (ζ) = ]1 ;+∞[ .

b) Établir que ζ est de classe C∞ sur ]1 ;+∞[ et exprimer, pour tout  k ∈ N et tout x ∈ ]1 ;+∞[,

ζ
(k)(x) sous forme de somme d’une série.
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c) Étudier les variations et la convexité de ζ.

d) Montrer : ∀ x ∈ ]1 ;+∞[,
1

x − 1
� ζ(x) � 1 + 1

x − 1
,

et en déduire : ζ(x) ∼
x−→1+

1

x − 1
, puis : ζ(x) −→

x−→1+
+∞ .

e) Montrer : ζ(x) −→
x−→+∞

1, et ζ(x) − 1 ∼
x−→+∞

1

2x
.

f) Dresser le tableau de variations de ζ et tracer la courbe représentative de ζ. 

Étude de la somme d’une série d’applications, continuité

On note, pour tout n ∈ N
∗ : fn : ]0 ;+∞[−→ R, x �−→ (−1)n

nx
.

a) Étudier les convergences simple, absolue, normale, normale sur certaines parties, uniforme, uni-

forme sur certaines parties, de la série d’applications 
∑
n�1

fn .

On note : T : ]0 ;+∞[−→ R, x �−→
+∞∑
n=1

(−1)n

nx
.

b) Montrer que T est continue sur ]0 ;+∞[.

c) Exprimer, pour tout x ∈ ]0 ;+∞[, T (x) à l’aide de ζ(x), où ζ est la fonction de Riemann (cf.
exercice 5.23). 

Calcul d’une intégrale à l’aide de ζ et 	

Montrer : ∀α ∈ ]0 ;+∞[,
∫ +∞

0
xα−1

(
x − ln(ex − 1)

)
dx = ζ(α+ 1)	(α),

où ζ est la fonction de Riemann : ζ : ]1 ;+∞[−→ R, α �−→
+∞∑
n=1

1

nα

et 	 la fonction d’Euler : 	 : ]0 ;+∞[−→ R, s �−→ 	(s) =
∫ +∞

0
t s−1 e−t dt.

Calcul d’une intégrale par utilisation d’une série

Existence et calcul de I =
∫ +∞

0

x

sh x
dx . On admettra :

+∞∑
n=1

1

n2
= π2

6
.

Exemples d’étude de suites de fonctions, convergence simple, convergence uniforme

PC : Étudier la convergence simple pour les suites d’applications suivantes :

PSI : Étudier (convergence simple, convergence uniforme, convergence uniforme sur des parties
de l’ensemble de départ) les suites d’applications suivantes :

a) fn : [0 ;+∞[−→ R, x �−→



ln(1 + nx2)

nx
si x =/ 0

0 si x = 0

b) fn : ]0 ;+∞[−→ R, x �−→ ln
2 + (lnx)2n

1 + (lnx)2n
, n ∈ N

5.24
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c) fn : R −→ R, x �−→ (2n + |x |n) 1
n , n ∈ N

∗

d) fn : ]0 ;+∞[2−→ R, (x,y) �−→ ln

(
x + y

n

)
, n ∈ N

∗.

Convergence simple d’une suite de polynômes de degrés majorés

Soient N ∈ N, (Pn)n∈N une suite de polynômes de C[X] de degrés � N, qui converge simplement
sur un intervalle I (de longueur > 0) vers une application f. Montrer que f est un polynôme, de
degré � N. 

Limite uniforme, sur un segment, d’une suite de polynômes à degrés majorés

Soient (a,b) ∈ R
2 tel que a < b, N ∈ N

∗, (Pn : [a ; b] −→ R)n∈N une suite de polynômes
convergeant uniformément vers une application f, et telle que : ∀ n ∈ N, deg (Pn) � N .

Montrer que f est un polynôme et que deg ( f ) � N. 

Exemple de recherche d’un équivalent d’une intégrale à paramètre réel

Trouver un équivalent simple de I (x) =
∫ +∞

0

sin (xt)

1 + t4
dt, lorsque x −→ 0+. 

Recherche d’équivalents d’intégrales à paramètre entier naturel

Trouver un équivalent simple, lorsque l’entier n tend vers l’infini, de :

a)
∫ 1

0
ln(1 + xn) dx, on admettra :

∫ 1

0

ln(1 + t)

t
dt = π2

12

b)
∫ 1

0
xn ln(1 + xn) dx c)

∫ +∞

0

ln

(
1 + x

n

)

x(1 + x2)
dx. 

Recherche d’un développement asymptotique d’une intégrale 
dépendant d’un paramètre entier

Former un développement asymptotique à la précision o

(
1

n

)
de In =

∫ 1

0

nxn

1 + x2n
dx, lorsque

l’entier n tend vers l’infini.

On laissera un des coefficients sous forme d’une intégrale. 

Exemples d’étude de convergence pour une série d’applications

PC : Étudier (convergences simple, absolue, normale) les séries d’applications 
∑

n

fn suivantes :

PSI : Étudier (convergences simple, absolue, normale, uniforme) les séries d’applications 
∑

n

fn

suivantes :

a) fn : ]0 ;+∞[−→ R, x �−→ xa

(n + x)b
, (a,b) ∈ (R∗

+)2 fixé, n ∈ N
∗

b) fn : [0 ;+∞[−→ R, x �−→ x e−nx

ln n
, n ∈ N, n � 2

c) fn : [0 ;+∞[−→ R, x �−→ (−1)n x

x2 + n
, n ∈ N

∗

d) fn : R −→ R, x �−→ Arctan (x + n) − Arctan n, n ∈ N

e) fn : [0 ;+∞[−→ R, x �−→ nx

1 + n3x2
, n ∈ N.
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Étude de la somme d’une série d’applications, classe C1

On note, pour tout n ∈ N
∗ : fn : [0 ;+∞[−→ R, x �−→ Arctan (xn+1)

n(n + 1)
.

a) Étudier les convergences de la série d’applications 
∑
n�1

fn . On note S la somme.

b) Montrer que S est continue sur [0 ;+∞[.

c) Établir : ∀ x ∈ ]0 ;+∞[, S(x) = π

2
− S

(
1

x

)
.

d) Montrer que S est de classe C1 sur [0 ; 1[, que S est strictement croissante sur [0 ; 1], calculer
S(1), et déterminer lim

x−→1−
S′(x).

e) Déterminer lim
x−→+∞

S(x) .

f) Dresser le tableau de variation de S et tracer la courbe représentative de S. 

Étude de la somme d’une série d’applications, intégrabilité

On note, pour tout n ∈ N
∗ : fn : ]0 ;+∞[−→ R, x �−→ 1

x2(n4 + x2)
.

a) Montrer que la série d’applications 
∑
n�1

fn converge simplement sur ]0 ;+∞[, et converge nor-

malement sur [a ;+∞[, pour tout a ∈ ]0 ;+∞[ fixé.

b) Établir que S est continue sur ]0 ;+∞[.

c) Est-ce que S est intégrable sur ]0 ; 1] ? sur [1 ;+∞[ ? 

Équivalent d’une somme d’une série d’applications

Montrer :
+∞∑
n=0

xn

1 + xn
∼

x−→1−
ln 2

1 − x
.

Série d’intégrales

On note, pour tout n ∈ N
∗ : un =

∫ +∞

0
xne−nx dx .

Convergence et somme de la série 
∑
n�1

un .

On exprimera le résultat sous forme d’une intégrale. 

Étude de la somme d’une série d’applications, intégrabilité

On note, pour tout n ∈ N
∗ : fn : ]0 ;+∞[−→ R, x �−→ 1

(1 + nx)(n + x)
.

a) Montrer que la série d’applications 
∑
n�1

fn converge simplement sur ]0 ;+∞[, et converge nor-

malement sur [a ;+∞[ pour tout a ∈ ]0 ;+∞[ fixé.

On note S la somme.

b) Montrer que S est continue sur ]0 ;+∞[.

c) Montrer que S est intégrable sur ]0 ;+∞[ et que :
∫ +∞

0
S(x) dx = 1 + 2

+∞∑
n=2

lnn

n2 − 1
.
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Égalité entre une intégrale et une somme de série

Soit (a,b) ∈ R
2 tel que 0 < a < b. Montrer :

∫ +∞

−∞

sh ax

sh bx
dx = 4a

+∞∑
n=0

1

(2n + 1)2b2 − a2
.

Calcul d’une intégrale à l’aide de T et 	

Établir : ∀ x ∈ ]0 ;+∞[,
∫ +∞

0

t x−1

et + 1
dt = 	(x)T (x),

où 	 est la fonction d’Euler : 	 : ]0 ;+∞[−→ R, x �−→
∫ +∞

0
t x−1 e−t dt

et T est définie par : T : ]0 ;+∞[−→ R, x �−→ T (x) =
+∞∑
n=1

(−1)n−1

nx
.

Égalité entre une intégrale et une somme de série

Soit (an)n∈N une suite à termes dans R∗
+ , croissante, de limite +∞ . Montrer :

∫ 1

0

( +∞∑
n=0

(−1)n xan

)
dx =

+∞∑
n=0

(−1)n

1 + an
.

Comportement d’une transformée de Laplace, en +∞ , en 0

Soit f : [0 ;+∞[−→ C continue par morceaux.

a) On suppose ici que f est bornée sur [0 ;+∞[.

Montrer : x
∫ +∞

0
e−xt f (t) dt −→

x−→+∞
f (0+).

b) On suppose ici que f admet une limite finie � en +∞ .

Montrer : x
∫ +∞

0
e−xt f (t) dt −→

x−→0+
�.

Théorème de Scheffé

Soient I un intervalle de R, ( fn : I −→ R)n∈N une suite d’applications intégrables sur I, à
valeurs � 0, f : I −→ R une application intégrable sur I.

On suppose : fn
C.S.−→
n∞

f sur I et
∫

I
fn −−−→

n ∞

∫
I

f.

Démontrer :
∫

I
| fn − f | −−−→

n ∞
0.

Étude de la somme d’une série d’applications, classe C1 , équivalent

On note, pour tout n ∈ N : fn : [0 ; 1] −→ R, x �−→ ln(1 + xn).

a) Étudier les convergences de la série d’applications 
∑
n�0

fn . On note S la somme.

b) Montrer que S est de classe C1 sur [0 ; 1[ et que S est strictement croissante sur [0 ; 1[ .

c) 1) Montrer : ∀ n ∈ N, ∀ x ∈ [0 ; 1[,
n∑

k=0

fk(x) � ln

( n∑
k=0

xk

)
.

2) En déduire : S(x) −→
x−→1−

+∞.
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Du mal à démarrer ?
• Pour étudier la convergence simple d’une suite d’appli-

cations ( fn)n , on fixe x et on étudie la suite 
(

fn(x)
)

n
.

• PSI : Pour étudier la convergence uniforme d’une suite d’ap-

plications ( fn)n , après avoir montré que ( fn)n converge sim-

plement vers une certaine f, on étudie la convergence vers 0

de la suite 
(|| fn − f ||∞)n . Si || fn − f ||∞ n’est pas facilement

calculable, soit on essaie de majorer || fn − f ||∞ par un terme

tendant vers 0, soit on essaie de minorer || fn − f ||∞ par un

terme ne tendant pas vers 0.

• Si ( fn)n ne converge pas uniformément vers f sur tout l’en-

semble d’étude X , déterminer des parties de X sur lesquelles

( fn)n converge uniformément.

f) Pour x ∈ [0 ; 1[ fixé, la suite 
(

fn(x)
)

n�0 est stationnaire.

h) Pour la convergence uniforme sur tout[−a ; a], a ∈ [0 ;+∞[

fixé, utiliser l’inégalité connue : ∀ t ∈ R, | sin t | � |t | .

Pour des éléments fixés dans l’ensemble de départ des fn ,

passer à la limite lorsque l’entier n tend vers l’infini, dans la

condition d’hypothèse des fn .

Appliquer le théorème de convergence dominée.

Appliquer le théorème de convergence dominée.

Utiliser, de manière générale, le plan d’étude d’une série

d’applications : C.S., C.A., C.N., C.U. Cependant, dans des cas très

5.1

5.2

5.3

5.4

5.5

d) En utilisant une comparaison série/intégrale, montrer :

S(x) ∼
I−→1−

I

1 − x
, où I =

∫ +∞

0
ln(1 + e−u) du.

Convergences d"une série d’applications dépendant d’une suite numérique

Soit (an)n∈N∗ une suite à termes dans [0 ;+∞[, décroissante.

On note, pour tout n ∈ N
∗ : fn : [0 ; 1] −→ R, x �−→ an xn(1 − x).

a) Montrer que 
∑
n�1

fn converge simplement sur [0 ; 1].

b) Montrer que 
∑
n�1

fn converge normalement sur [0 ; 1] si et seulement si la série 
∑
n�1

an

n

converge.

c) PSI : Montrer que 
∑
n�1

fn converge uniformément sur [0 ; 1] si et seulement si : an −−−→
n ∞

0. 

Étude d’une suite de fonctions définies à l’aide d’intégrales, intervention de séries

a) Montrer qu’il existe une suite d’applications ( fn : [0 ; 1] −→ R)n∈N et une seule telle que

f0 = 1 et : ∀ n ∈ N, ∀ x ∈ [0 ; 1], fn+1(x) = 1 +
∫ x

0
fn(t − t2) dt, et montrer que, pour tout

n ∈ N , fn est un polynôme.

b) 1) Montrer : ∀ n ∈ N, ∀ x ∈ [0 ; 1], 0 � fn(x) � fn+1(x) � ex .

2) En déduire que ( fn)n∈N converge simplement sur [0 ; 1] vers une application notée f.

c) Établir que la suite ( fn)n∈N converge uniformément vers f sur [0 ; 1], que f est continue sur

[0 ; 1], et que : ∀ x ∈ [0 ; 1], f (x) = 1 +
∫ x

0
f (t − t2) dt.

d) 1) Montrer que f est de classe C1 sur [0 ; 1] et que : ∀ x ∈ [0 ; 1], f ′(x) = f (x − x2).

2) Montrer que f est de classe C∞ sur [0 ; 1].
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simples, il se peut que l’étude de la convergence normale soit

facile et qu’il y ait convergence normale, auquel cas l’étude des

autres convergences est inutile.

• Pour étudier la convergence simple d’une série d’applications∑
n

fn,on fixe x et on étudie la série 
∑

n

fn(x).

• Pour étudier la convergence absolue d’une série d’applications∑
n

fn,on fixe x et on étudie la série 
∑

n

| fn(x)|. Lorsque les

fn(x) sont tous � 0 (pour tout n et pour tout x), la convergence
absolue revient à la convergence simple.

• Pour étudier la convergence normale d’une série d’applica-

tions 
∑

n

fn, on étudie la série numérique 
∑

n

|| fn ||∞.

• PSI : Pour étudier la convergence uniforme d’une série d’appli-

cations 
∑

n

fn, si || fn ||∞ −→
n∞ 0 , on étudie le reste Rn, et on

résout la question : est-ce que ||Rn ||∞ −→
n∞ 0 ?

g) Pour l’étude du reste dans la convergence uniforme, utiliser le

TSCSA.

a) • Pour l’étude de la convergence normale sur ]0 ;+∞[ ,

remarquer : ∀ n ∈ N
∗, || fn ||∞ = 1

n
.

• Pour l’étude de la convergence uniforme sur [0 ;+∞[ (PSI),

utiliser le TSCSA.

a) Pour la convergence simple, avec x fixé, utiliser un équi-

valent lorsque l’entier n tend vers l’infini.

b) Appliquer deux fois le théorème de dérivation pour une série

d’applications.

a) (PSI) Pour montrer la non-convergence uniforme sur

[0 ; 1], évaluer, par exemple, fn

(
1 − 1

n

)
.

b) (PSI) • Pour montrer la non-convergence uniforme sur R, éva-

luer, par exemple,
∣∣ f2n − f )(nπ)

∣∣, où f : x �−→ sin x .

• Pour montrer la convergence uniforme sur [−a ; a],

a ∈ [0 ;+∞[ fixé, transformer la différence de deux sinus, puis

utiliser l’inégalité connue : ∀ t ∈ R, | sin t | � |t |.
c) (PSI) Pour étudier la convergence uniforme, utiliser l’inégalité
des accroissements finis, appliquée à t �−→ ln(1 + t) entre x et

nx2

1 + nx
.

d) (PSI) Pour étudier la convergence uniforme, étudier les varia-

tions de gn = fn − f .

Appliquer l’inégalité des accroissements finis à

t �−→ ln(1 + t) entre f (x) et fn(x) .

Utiliser l’inégalité de Taylor-Lagrange appliquée à f entre x

et x + 1

n
, entre x et x − 1

n
, puis combiner par l’inégalité trian-

gulaire. Obtenir : ∀ n ∈ N
∗, ||gn − f ||∞ � M3

3n
,

où M3 = Sup
t∈R

| f (3)(t)|.

Montrer que l’application 

ϕ : [0 ;+∞[−→ R, t �−→ √
1 + t

admet un point fixe et un seul, noté α, et calculer α.

Majorer ensuite | fn+1(x) − α| , puis || fn − α||∞ . Faire appa-

raître une suite géométrique.

La méthode utilisée pour la résolution de l’exercice 5.11

(majoration géométrique) ne s’applique pas ici. Montrer que la

suite 
(|| fn ||∞

)
n

est décroissante et minorée, et montrer qu’elle

converge vers 0.

Commencer par l’étude de ( fn)n�0 . Remarquer ensuite :

∀ n ∈ N, ∀ x ∈ [0 ;+∞[, gn(x) = 1 − fn(x) ,

après un calcul faisant éventuellement intervenir la fonction 	

d’Euler.

Montrer d’abord :

∀ P ∈ C[X],
∫ b

a
P(x) f (x) dx = 0 ,

en utilisant la décomposition additive de P, ou encore une

linéarité.

Utiliser le premier théorème de Weierstrass.

Utiliser le premier théorème de Weierstrass pour avoir une

suite (Qn)n de polynômes convergeant uniformément vers f

sur [a ; b] , puis modifier Qn pour obtenir Pn .

Appliquer le théorème de convergence dominée.

a) Pour la domination, après avoir obtenu :

∀ n ∈ N
∗, ∀ x ∈ [0 ; 1], | fn(x)| � n

(
e

1
n − 1

)
,

remarquer que la suite de terme général n
(

e
1
n − 1

)
est conver-

gente, donc bornée.

b) Une fois appliqué le théorème de convergence dominée,

pour calculer I =
∫ +∞

0
(x2 + 1) e−x dx , on peut utiliser la

fonction 	 d’Euler.

c) Pour la domination, utiliser l’inégalité classique :

∀ (a,b) ∈ (R+)2, a2 + b2 � 2ab .
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f ) Remarquer que la borne n
√

n dépend de n et que
n
√

n = e
1
n ln n −→

n∞ 1+ . Décomposer, par la relation de Chasles, l’in-

tégrale de l’énoncé en somme d’une intégrale de 0 à 1 (à laquel-

le on pourra appliquer le théorème de convergence dominée)

et d’une intégrale de 1 à n
√

n (dont on montrera qu’elle tend

vers 0).

Appliquer le théorème de convergence dominée. Pour la

domination, utiliser l’inégalité classique :

∀ t ∈ ] − 1 ;+∞[, ln(1 + t) � t .

Montrer d’abord l’existence de In , en utilisant par

exemple la règle x2 f (x) en +∞ .

Pour obtenir un équivalent, effectuer le changement de variable
t = nx, puis appliquer le théorème de convergence dominée à

l’intégrale obtenue après mise en facteur de 
1

n
.

a) Majorer convenablement |In − 1| .

b) Obtenir : In − 1 = −
∫ 1

0

xn

1 + √
1 − xn

dx,

effectuer le changement de variable t = xn , et appliquer le
théorème de convergence dominée à l’intégrale obtenue après

mise en facteur de 
1

n
.

a) Pour l’étude de la convergence normale sur [0 ; a] ,

a ∈ [0 ;+∞[ fixé, utiliser l’encadrement classique :

∀ t ∈ [0 ;+∞[, − t2

2
� ln(1 + t) − t � 0 .

b) Pour l’étude de la convergence normale, utiliser le même

encadrement que ci-dessus.

a) Montrer que 
∑
n�1

fn converge normalement sur

[1 ;+∞[ .

b) Pour obtenir une valeur approchée décimale de L, étudier le

reste Rn , en utilisant une majoration et une comparaison

série/intégrale.

a) Pour la convergence uniforme, utiliser la majoration de

la valeur absolue du reste venant du TSCSA.

b) Montrer d’abord que a existe.

Considérer, pour tout n ∈ N
∗ :

gn : [1 ;+∞[−→ R, x �−→ (−1)n

√
nx

et majorer | fn(x) − gn(x)| , puis 

∣∣∣∣S(x) − a√
x

∣∣∣∣.
b) Appliquer, de façon réitérée, le théorème de dérivation

pour une série d’applications. Pour obtenir des convergences

simples ou des convergences uniformes (PSI) ou normales (PC),
on sera amené à montrer que, pour tout k ∈ N

∗ et tout

x ∈ ]1 ;+∞[ , la série 
∑
n�1

(ln n)k

nx converge. À cet effet, utiliser la

règle nαun, avec un α bien choisi, α = x + 1

2
.

d) Utiliser une comparaison série/intégrale, en considérant, pour

x ∈ ]1 ;+∞[ fixé : ϕx : [1 ;+∞[−→ R, t �−→ 1

t x
.

e) Pour le deuxième point, considérer ζ(x) − 1 − 1

2x et majorer

+∞∑
n=3

1

nx grâce à une comparaison série/intégrale.

a) Pour la convergence uniforme sur tout [b ;+∞[ ,
b ∈ ]0 ;+∞[ , utiliser la majoration de la valeur absolue du reste
venant du TSCSA.

b) Former ζ(x) + T (x) et remarquer qu’alors les termes d’in-

dices impairs sont nuls.

Développer la fonction sous l’intégrale en une somme de

série de fonctions, puis permuter intégrale et série en montrant

qu’on peut appliquer le théorème du cours sur l’intégration sur

un intervalle quelconque pour une série de fonctions.

1) S’assurer d’abord que l’intégrale proposée existe.

2) Développer la fonction sous l’intégrale en une somme de

série de fonctions (en faisant apparaître une série géométrique)

puis permuter intégrale et série en montrant qu’on peut appli-

quer le théorème du cours sur l’intégration sur un intervalle

quelconque pour une série de fonctions.

Pour calculer 
+∞∑
n=0

1

(2n + 1)2 sachant que 
+∞∑
n=1

1

n2
= π2

6
, décom-

poser, pour N ∈ N
∗ fixé,

2N+1∑
k=1

1

k2 en termes d’indices pairs,

termes d’indices impairs, puis faire tendre l’entier N vers l’infini.

a) PSI : Pour l’étude de la convergence uniforme, comme le
signe de f ′

n(x) ne paraît pas facile à déterminer, et puisque

1 + nx2 intervient, séparer en deux cas selon la position de x par

rapport à 
1√
n

, obtenir une bonne majoration dans chaque cas,

puis regrouper en une seule majoration.

b) 1) Pour l’étude de la convergence simple, on sera amené à

séparer en cas selon la position de x par rapport à e−1 et à e.

2) PSI : Pour l’étude de la convergence uniforme, remarquer que

les fn sont continues sur ]0 ;+∞[ et que la limite simple f est

discontinue en e−1 et en e.
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D’autre part, montrer qu’il y a convergence uniforme sur des

intervalles de ]0 ;+∞[ décollés de e−1 et de e.

c) 1) Pour obtenir la limite de 
(

fn(x)
)

n�1 , où x est fixé, séparer en

cas selon la position de |x | par rapport à 2.

2) PSI : Pour étudier la convergence uniforme, utiliser l’inégalité
des accroissements finis, appliquée à ϕ : [0 ;+∞[−→ R,

t �−→ t
1
n ,

entre 2n et 2n + |x |n , entre |x |n et 2n + |x |n .

d) 2) PSI : Montrer qu’il y a convergence uniforme sur

]0 ; a] × [b ;+∞[ , pour tout (a,b) ∈ ]0 ;+∞[2 fixé.

Utiliser les polynômes d’interpolation de Lagrange

(Li )0�i�N sur des points x0,. . . ,xN, deux à deux distincts, et

l’égalité du cours :

∀ P ∈ CN [X], P =
N∑

i=0

P(xi )Li .

Montrer que le sev F de C([a ; b] ; R), formé des poly-

nômes de degré � N , est de dimension finie, donc complet,

donc fermé.

• Commencer par montrer que l’intégrale proposée existe.

• Comme, pour tout t ∈ [0 ;+∞[ fixé, sin (xt) ∼
x−→0+ xt, on peut

conjecturer que I (x) ressemble, lorsque x −→ 0+ , à∫ +∞

0

xt

1 + t4
dt.

1re méthode : transformer l’écriture de I (x), en utilisant 

φ : u �−→



sin u

u
si u �= 0

1 si u = 0,

mettre x en facteur dans I (x), puis appliquer le théorème de
continuité sous le signe intégrale.

2e méthode : utiliser le théorème de convergence dominée et la

caractérisation séquentielle des limites.

a) Utiliser le changement de variable t = xn , mettre 
1

n
en

facteur dans l’intégrale, puis utiliser le théorème de convergen-

ce dominée.

b) 1re méthode : comme pour a).

2e méthode : considérer Kn =
∫ 1

0
xn−1ln(1 + xn) dx .

Utiliser une intégration par parties, puis le changement de

variable t = xn , et le théorème de convergence dominée.

a) • Étudier d’abord la convergence simple.

• Pour la convergence normale, étudier les variations de

fn,n ∈ N
∗ fixé, calculer|| fn ||∞ , et déterminer la nature de la

série 
∑
n�1

|| fn ||∞.

• PSI : Pour la convergence uniforme, dans le cas a � b − 1,

minorer convenablement le reste.

Former finalement une réponse claire à la question posée, don-

nant les CNS sur (a,b) pour les différentes convergences.

b) • Pour la convergence normale, étudier les variations de

fn,n � 2 fixé. Montrer que la série 
∑
n�2

1

n ln n
diverge, par com-

paraison, série/intégrale.

• PSI : Pour la convergence uniforme, étudier le reste, en faisant

une comparaison série/intégrale, pour x ∈ ]0 ;+∞[ fixé, à l’aide

de :

ϕx : [2 ;+∞[−→ R, t �−→ e−t x

ln t
.

c) • PSI : Pour la convergence uniforme, utiliser la majoration de

la valeur absolue du reste venant du TSCSA.

d) • Montrer que, si x + n � 0 , on peut transformer l’écriture de

l’énoncé en : fn(x) = Arctan
x

1 + n(x + n)
.

Utiliser l’inégalité connue : ∀ t ∈ R, |Arctan t | � |t |.

• Pour la convergence normale, étudier les variations de

fn, n ∈ N fixé.

• PSI : Pour montrer la non-convergence uniforme sur R, minorer

convenablement le reste.

e) • Pour la convergence normale, étudier les variations de

fn, n ∈ N
∗ fixé.

• PSI : Pour la non-convergence uniforme sur [0 ;+∞[ , minorer

convenablement le reste.

a) Par une majoration convenable, montrer qu’il y a

convergence normale.

c) Former S(x) + S

(
1

x

)
et utiliser la formule connue, pour tout

t ∈ R
∗+ : Arctan t + Arctan

1

t
= π

2
.

Pour calculer 
+∞∑
n=1

1

n(n + 1)
, faire apparaître un télescopage.

d) • Appliquer le théorème de dérivation pour une série d’appli-
cations.

• Le calcul de S(1) se ramène à la série vue plus haut.

• Pour montrer S′(x) −→
x−→1+ +∞ , minorer convenablement

S′(x) , pour x ∈ [0 ; 1[.

c) • Pour l’étude en 0+, considérer la série d’applications∑
n�1

(
x �−→ 1

n4 + x2

)
et montrer S(x) ∼

x−→0+
C

x2 , où C est une

constante > 0 . • Pour l’étude en +∞ , montrer 0 � S(x) � C

x2
.
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Pour x ∈ [0 ; 1[, pour évaluer 
+∞∑
n=0

xn

1 + xn , utiliser une com-

paraison série/intégrale, à l’aide de :

ϕx : [0 ;+∞[−→ R, t �−→ xt

1 + xt .

Appliquer le théorème du cours sur l’intégration sur un

intervalle quelconque pour une série d’applications.

c) Appliquer le théorème du cours sur l’intégration sur un

intervalle quelconque pour une série d’applications.

Développer la fonction sous l’intégrale en une somme de

série de fonctions (à l’aide d’une série géométrique), puis per-

muter intégrale et série en montrant qu’on peut appliquer le

théorème du cours sur l’intégration sur un intervalle quel-

conque pour une série de fonctions.

Développer la fonction sous l’intégrale en une somme de

série de fonctions (à l’aide d’une série géométrique), puis per-

muter intégrale et série en montrant que l’intégrale du reste

tend vers 0. Le théorème du cours sur l’intégration sur un inter-

valle quelconque pour une série d’applications ne 

s’applique pas ici, car la série 
∑
n�1

∫ +∞

0
| fn(x)| dx diverge.

Développer la fonction sous l’intégrale en une somme de

série de fonctions (à l’aide d’une série géométrique), puis per-

muter intégrale et série en montrant que l’intégrale du reste

tend vers 0. Le théorème du cours sur l’intégration sur un inter-

valle quelconque pour une série d’applications ne 

s’applique pas ici, car la série 
∑
n�0

∫ 1

0
| fn(x)| dx peut diverger.

a) Utiliser le théorème de convergence dominée et la

caractérisation séquentielle des limites.

b) Même méthode qu’en a).

1) Considérer, pour n ∈ N, gn = ( fn − f )− . Montrer que le

théorème de convergence dominée s’applique à (gn)n. En

déduire :

∫
I

gn −→
n∞ 0.

2) Utiliser : ( fn − f )+ = ( fn − f ) + gn

puis : | fn − f | = ( fn − f )+ + ( fn − f )−.

c) 2) Utiliser :
n∑

k=0

xk = 1 − xn+1

1 − x
.

a) Utiliser le théorème de majoration pour des séries à
termes � 0 .

b) Étudier les variations de fn , pour n ∈ N
∗ fixé, et calculer

|| fn ||∞ , puis un équivalent simple de || fn ||∞ lorsque l’entier n

tend vers l’infini.

c) 1) En supposant an −→
n∞ 0 , majorer convenablement Rn(x),

puis ||Rn ||∞.

2) Réciproquement, si 
∑
n�0

fn , converge uniformément sur

[0 ; 1], raisonner par l’absurde : supposer an −→
n∞/ 0. Ne pas

oublier que (an)n�0 est décroissante. Minorer convenablement

Rn(x), puis ||Rn ||∞ et conclure.

a) Récurrence sur n.

b) 1) Récurrence sur n.

c) Remarquer : ∀ t ∈ [0 ; 1], t − t2 ∈ [0 ; 1/4].

Noter, pour tout n ∈ N :

Mn = || fn+1 − fn ||[0 ;1]
∞ , mn = || fn+1 − fn ||[0 ;1/4]

∞ .

Majorer convenablement | fn+1(x) − fn(x)|,
puis || fn+1 − fn ||∞,et obtenir une majoration géométrique

pour mn , pour Mn .

Utiliser le lien suite/série pour la convergence uniforme.
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a) 1) Convergence simple :

On a, pour tout x ∈ R fixé : fn(x) = n + 1

n2 + x2
−−−→

n ∞
0,

donc : fn
C.S.−→
n∞

0 .

2) Convergence uniforme (PSI) :

On a : ∀ n ∈ N
∗, ∀ x ∈ R, | fn(x)| = n + 1

n2 + x2
� n + 1

n2
,

donc : || fn||∞ � n + 1

n2
−−−→

n ∞
0.

On conclut : fn
C.U.−→
n∞

0, et donc fn
C.S.−→
n∞

0, ce qui rend l’étude 

de 1) inutile, à condition de prévoir que la limite sera 0.

b) 1) Convergence simple :

Soit x ∈ [0 ; 1].

Si x =/ 0, alors : fn(x) = nx2

1 + nx
∼
n∞

nx2

nx
= x,

donc : fn(x) −−−→
n ∞

x.

Si x = 0, alors : fn(x) = 0 −−−→
n ∞

0 .

On conclut : fn
C.S.−→
n∞

f , où : f : [0 ; 1] −→ R, x 
−→ x .

2) Convergence uniforme (PSI) :

On a : ∀ n ∈ N
∗, ∀ x ∈ [0 ; 1] ,

| fn(x) − f (x)| =
∣∣∣∣ nx2

1 + nx
− x

∣∣∣∣ = x

1 + nx
� 1

n
,

donc : || fn − f ||∞ � 1

n
−−−→

n ∞
0.

On conclut : fn
C.U.−→
n∞

f, ce qui semble rendre l’étude de 1) in-

utile. Cependant, pour former || fn − f ||∞ , il faut d’abord
connaître f, ce qui nécessite l’étude de la convergence simple.

c) 1) Convergence simple  :

On a, pour tout x ∈ R fixé : fn(x) = x

x2 + n2
−−−→

n ∞
0,

donc : fn
C.S.−→
n∞

0 .

2) Convergence uniforme (PSI) :

1re méthode :

Soit n ∈ N
∗ .

L’application fn est impaire, de classe C1 sur R, et, pour tout
x ∈ [0 ;+∞[ :

f ′
n(x) = x2 + n2 − x(2x)

(x2 + n2)2
= n2 − x2

(x2 + n2)2
,

d’où le tableau des variations de fn (sur [0 ;+∞[) :

x 0  n +∞
f ′
n(x) + 0 −

fn(x) 0  ↗ ↘ 0

On a donc : || fn||∞ = fn(n) = n

2n2
= 1

2n
−−−→

n ∞
0,

et on conclut : fn
C.U.−→
n∞

0,

donc  fn
C.S.−→
n∞

0 , ce qui rend l’étude de 1) inutile.

2e méthode :

Soit n ∈ N
∗ .

Rappelons : ∀ (a,b) ∈ (R+)2, a2 + b2 � 2ab.

On a donc :

∀ x ∈ R
∗
+, 0 � fn(x) = x

x2 + n2
� x

2nx
= 1

2n
,

d’où, puisque fn(0) = 0 et que fn est impaire :

|| fn||∞ � 1

2n
,

et on termine comme dans la 1re méthode.

d) 1) Convergence simple :

Soit x ∈ [0 ; 1] fixé.

Si x =/ 1, alors : fn(x) = xn(1 − x) −−−→
n ∞

0.

Si x = 1, alors : fn(x) = 0 −−−→
n ∞

0 .

On conclut : fn
C.S.−→
n∞

0 .

2) Convergence uniforme (PSI) :

Soit n ∈ N
∗ .

L’application fn est de classe C1 sur [0 ; 1] et, pour tout
x ∈ [0 ; 1] :

f ′
n(x) = nxn−1 − (n + 1)xn = xn−1

(
n − (n + 1)x

)
,

d’où le tableau des variations de fn :

x 0  
n

n + 1
1

f ′
n(x) + 0   −

fn(x) 0   ↗ ↘ 0

Corrigés des exercices
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On a donc :

|| fn||∞ = fn

(
n

n + 1

)

=
(

n

n + 1

)n 1

n + 1
� 1

n + 1
−−−→

n ∞
0,

et on conclut : fn
C.U.−→
n∞

0 , ce qui rend l’étude de 1) inutile.

e) 1) Convergence simple :

Soit x ∈ [0 ;+∞[ fixé.

Si x =/ 0, alors : fn(x) = nx3

1 + n2x
∼
n∞

x2

n
−−−→

n ∞
0.

Si x = 0, alors : fn(x) = 0 −−−→
n ∞

0 .

On conclut : fn
C.S.−→
n∞

0 .

2) Convergence uniforme (PSI) :

• On remarque que, pour tout n ∈ N , fn − 0 n’est pas bornée

sur [0 ;+∞[, car fn(x) −→
x−→+∞

+∞ , donc : fn
C.U.−→
n∞
/ 0 sur

[0 ;+∞[.

• Soit b ∈ [0 ;+∞[ fixé.

On a :

∀ n ∈ N
∗, ∀ x ∈ [0 ; b], | fn(x)| = nx3

1 + n2x
� x2

n
� b2

n
,

donc : || fn||[0 ;b]
∞ � b2

n
−−−→

n ∞
0.

On conclut :

fn
C.U.−→
n∞

0 sur tout [a ; b], b ∈ [0 ;+∞[ fixé.

f) 1) Convergence simple :

Soit x ∈ [0 ; 1[ fixé.

En notant Nx = E

(
1√

1 − x

)
+ 1, on a :

∀ n � Nx , fn(x) = Min

(
n,

1√
1 − x

)
= 1√

1 − x
,

donc la suite 
(

fn(x)
)

n∈N
stationne sur 

1√
1 − x

, d’où :

fn(x) −−−→
n ∞

1√
1 − x

.

Notons : f : [0 ; 1[−→ R, x 
−→ 1√
1 − x

.

On conclut : fn
C.S.−→
n∞

f sur [0 ; 1[ .

2) Convergence uniforme (PSI) :

• Pour tout n ∈ N fixé, l’application | fn − f | n’est pas bor-
née sur [0 ; 1[ , car, pour x assez près de 1 :

| fn(x) − f (x)| = 1√
1 − x

− n −→
x−→1−

+∞ .

Il en résulte, d’après le cours : fn
C.U.−→
n∞
/ f sur [0 ; 1[ .

Soit a ∈ [0 ; 1[ fixé.

En notant N = E

(
1√

1 − a

)
+ 1, on a :

∀ n � N , ∀ x ∈ [0 ; a], fn(x) = 1√
1 − x

,

d’où : ∀ n � N , ∀ x ∈ [0 ; a], fn(x) − f (x) = 0.

Ceci montre que 
(
( fn − f ) |[0 ;a]

)
n∈N

est stationnaire nulle,

donc : fn
C.U.−→
n∞

f sur [0 ; a].

g)

1) Convergence simple :

Soit x ∈ [−1 ; 1] fixé.

Si |x | < 1, alors, pour tout n assez grand (précisément, pour

n � 1

1 − |x | ), fn(x) = 0, donc la suite 
(

fn(x)
)

n�2 stationne 

sur 0, donc : fn(x) −−−→
n ∞

0.

Si |x | = 1, alors : fn(x) = 1 −−−→
n ∞

1 .

On conclut : fn
C.S.−→
n∞

f, où :

f : [−1 ; 1] −→ R, x 
−→
{

0 si |x | < 1

1 si |x | = 1.

2) Convergence uniforme (PSI) :

• Étude sur [−1 ; 1] :

1re méthode :

y

x

fn

1

11 1 + 1
n 1  1

n
O

y

x

fn

1

11 1 + 1
n 1  1

n
O

f
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On a : ∀ n � 2, || fn − f ||∞ = 1,

donc : || fn − f ||∞ −−−→
n ∞

/ 0 ,

et on conclut : fn
C.U.−→
n∞
/ 0 sur [−1 ; 1] .

2e méthode :

Puisque les fn sont continues sur [−1 ; 1] , et que f n’est pas

continue sur [−1 ; 1] , d’après le cours, on conclut : fn
C.U.−→
n∞
/ 0

sur [−1 ; 1] .

• Étude sur [−a ; a] , a ∈ [0 ; 1[ fixé :

On a, pour n assez grand (précisément : n � 1

1 − a
) :

∀ x ∈ [−a ; a], fn(x) = 0 = f (x) ,

d’où : || fn − f ||[−a ;a]
∞ = 0 −−−→

n ∞
0.

On conclut :

fn
C.U.−→
n∞

f sur tout [−a ; a], a ∈ [0 ; 1[ fixé.

h) 1) Convergence simple :

Soit x ∈ R .

Si x =/ 0, alors : fn(x) = x2 sin
1

nx
−−−→

n ∞
0.

Si x = 0, alors : fn(x) = 0 −−−→
n ∞

0 .

On conclut : fn
C.S.−→
n∞

0 sur R.

2) Convergence uniforme (PSI) :

• Étude sur R :

On remarque : || fn||∞ � fn(n) = n2 sin
1

n2
−−−→

n ∞
1,

donc : || fn||∞ −−−→
n ∞
/ 0, fn

C.U.−→
n∞
/ 0 sur R.

• Étude sur [−a ; a], a ∈ [0 ;+∞[ fixé :

Soit a ∈ [0 ;+∞[ fixé.

On a : ∀ n ∈ N
∗, ∀ x ∈ [−a ; a],

| fn(x)| = x2

∣∣∣∣ sin
1

nx

∣∣∣∣ � x2

∣∣∣∣ 1

nx

∣∣∣∣ = |x |
n

� a

n
,

donc : ∀ n ∈ N
∗, || fn||[−a ;a]

∞ � a

n
,

d’où : || fn||[−a ;a]
∞ −−−→

n ∞
0.

On conclut :

fn
C.U.−→
n∞

0 sur tout [−a ; a], a ∈ [0 ;+∞[ fixé.

1) Supposons que, pour tout n ∈ N , fn soit croissante.

Soit (x,y) ∈ I 2 tel que x < y.

On a : ∀ n ∈ N, fn(x) � fn(y).

Comme fn
C.S.−→
n∞

f, on déduit, par passage à la limite lorsque l’en-

tier n tend vers l’infini : f (x) � f (y) .

On conclut que f est croissante.

2) Supposons que, pour tout n ∈ N , fn soit convexe.

Soient λ ∈ [0 ; 1], (x,y) ∈ I 2. On a :

∀ n ∈ N, fn
(
λx + (1 − λ)y

)
� λ fn(x) + (1 − λ) fn(y) .

Comme fn
C.S.−→
n∞

f, on déduit, par passage à la limite lorsque l’en-

tier n tend vers l’infini :

f
(
λx + (1 − λ)y

)
� λ f (x) + (1 − λ) f (y) .

On conclut que f est convexe.

3) Supposons que, pour tout n ∈ N , fn est k-lipschitzienne, où
k ∈ R+ est fixé, indépendamment de n.

Soit (x,y) ∈ I 2 . On a :

∀ n ∈ N, | fn(x) − fn(y)| � k|x − y| .

Comme fn
C.S.−→
n∞

f, on déduit, par passage à la limite lorsque l’en-

tier n tend vers l’infini :

| f (x) − f (y)| � k|x − y| .

On conclut que f est k-lipschitzienne.

Nous allons essayer, dans ces exemples, d’appliquer le
théorème de convergence dominée.

a) Notons, pour tout n ∈ N
∗ :

fn : [0 ;+∞[−→ R, x 
−→ e− x
n

1 + x2
.

• Pour tout n ∈ N
∗ , fn est continue par morceaux (car conti-

nue) sur [0 ;+∞[.

• Pour tout x ∈ [0 ;+∞[ fixé :

fn(x) = e− x
n

1 + x2
−−−→

n ∞
1

1 + x2
.

En notant   f : [0 ;+∞[−→ R, x 
−→ 1

1 + x2
,

on a donc : fn
C.S.−→
n∞

f .

• f est continue par morceaux (car continue) sur [0 ;+∞[.

• On a :

∀ n ∈ N
∗, ∀ x ∈ [0 ;+∞[, | fn(x)| = e− x

n

1 + x2
� 1

1 + x2

et l’application x 
−→ 1

1 + x2
est continue par morceaux (car

continue), � 0, intégrable sur [0 ;+∞[

car 
1

1 + x2
∼

x−→+∞
1

x2
, exemple de Riemann en +∞ (2 > 1 )

et théorème d’équivalence pour des fonctions � 0.

5.2

5.3
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Ainsi, ( fn)n∈N∗ vérifie l’hypothèse de domination.

D’après le théorème de convergence dominée, f est intégrable
sur [0 ;+∞[ et :∫ +∞

0
fn −−−→

n ∞

∫ +∞

0
f =

∫ +∞

0

1

1 + x2
dx

= [Arctan x]+∞
0 = π

2
.

On conclut : lim
n∞

∫ +∞

0

e− x
n

1 + x2
] dx = π

2
.

b) Notons, pour tout n ∈ N :

fn : [1 ;+∞[−→ R, x 
−→ n

nx2 + ex
.

• Pour tout n ∈ N , fn est continue par morceaux (car continue)
sur [1 ;+∞[.

• On a, pour tout x ∈ [1 ;+∞[ fixé :

fn(x) = n

nx2 + ex
= 1

x2 + ex

n

−−−→
n ∞

1

x2
.

Ainsi : fn
C.S.−→
n∞

f, où : f : [1 ;+∞[−→ R, x 
−→ 1

x2
.

• f est continue par morceaux (car continue) sur [1 ;+∞[.

• On a :

∀ n ∈ N, ∀ x ∈ [1 ;+∞[, | fn(x)| = n

nx2 + ex
� 1

x2
,

et x 
−→ 1

x2
est continue par morceaux (car continue), � 0,

intégrable sur [1 ;+∞[ (exemple de Riemann en +∞ , 2 > 1).

Ceci montre que ( fn)n∈N vérifie l’hypothèse de domination.

D’après le théorème de convergence dominée, on déduit :∫ +∞

1
fn −−−→

n ∞

∫ +∞

1
f =

∫ +∞

1

1

x2
dx =

[
− 1

x

]+∞

1

= 1 .

On conclut : lim
n∞

∫ +∞

1

n

nx2 + ex
dx = 1.

c) Notons, pour tout n ∈ N
∗ :

fn : [0 ;+∞[−→ R, x 
−→ xn

x2n + xn + 1
.

• Pour tout n ∈ N , fn est continue par morceaux (car continue)
sur [0 ;+∞[.

• Soit x ∈ [0 ;+∞[.

Si 0 � x < 1, alors : fn(x) = xn

x2n + xn + 1
−−−→

n ∞
0.

Si x = 1, alors : fn(x) = 1

3
−−−→

n ∞
1

3
.

Si x > 1, alors :

fn(x) = xn

x2n + xn + 1
∼
n∞

xn

x2n
= x−n −−−→

n ∞
0 .

Ainsi : fn
C.S.−→
n∞

f sur [0 ;+∞[, où :

f : [0 ;+∞[−→ R, x 
−→
{

0 si x =/ 1

1/3 si x = 1.

• f est continue par morceaux sur [0 ;+∞[.

• Soient n ∈ N
∗, x ∈ [0 ;+∞[.

Si 0 � x � 1, alors :

0 � fn(x) = xn

x2n + xn + 1
� xn � 1 .

Si x > 1, alors :

0 � fn(x) � xn

x2n
= 1

xn
� 1

x2
si n � 2 .

Ainsi : ∀ n ∈ N
∗ − {1}, ∀ x ∈ [0 ;+∞[, | fn(x)| � ϕ(x),

où :

ϕ : [0 ;+∞[−→ R, x 
−→



1 si 0 � x � 1

1

x2
si 1 < x .

L’application ϕ est continue par morceaux, � 0, intégrable sur
[0 ;+∞[ (exemple de Riemann en +∞, 2 > 1).

Ceci montre que ( fn)n�2 vérifie l’hypothèse de domination.

D’après le théorème de convergence dominée, on déduit :
∫ +∞

0
fn −−−→

n ∞

∫ +∞

0
f = 0 .

On conclut : lim
n∞

∫ +∞

0

xn

x2n + xn + 1
dx = 0.

Essayons d’appliquer le théorème de convergence do-
minée.

Notons, pour tout n ∈ N
∗ :

fn : [0 ; 1] −→ C, x 
−→ fn(x) = f (x)

(
1 − x

n

)n

.

• Pour tout n ∈ N
∗ , fn est continue par morceaux, comme pro-

duit de deux applications continues par morceaux.

• Pour tout x ∈ [0 ; 1], et pour n � 2 :

fn(x) = f (x) exp
(

n ln
(

1 − x

n

))

= f (x) exp
(

n
[

− x

n
+ o

n∞

(1

n

)])

= f (x) exp
( − x + o(1)

) −−→
n ∞

f (x) e−x .

En notant g : [0 ; 1] −→ C, x 
−→ f (x) e−x ,

on a donc : fn
C.S.−→
n∞

g sur [0 ; 1] .

5.4
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• L’application g est continue par morceaux, comme produit
de deux applications continues par morceaux.

• On a, pour tout n ∈ N
∗ et tout x ∈ [0 ; 1] :

| fn(x)| = | f (x)|
(

1 − x

n

)n

� | f (x)| ,

et | f | est continue par morceaux, � 0, intégrable sur [0 ; 1]
car continue par morceaux sur ce segment.

Du théorème de convergence dominée, on déduit :∫ 1

0
fn −−−→

n ∞

∫ 1

0
f ,

c’est-à-dire :∫ 1

0
f (x)

(
1 − x

n

)n

dx −−−→
n ∞

∫ 1

0
f (x) e−x dx .

a) On a, pour tout n ∈ N
∗ et tout x ∈ R :

| fn(x)| = | sin nx |
n2 + x2

� 1

n2 + x2
� 1

n2
,

d’où : ∀ n ∈ N
∗, || fn||∞ � 1

n2
.

D’après l’exemple de Riemann (2 > 1 ), la série 
∑
n�1

1

n2

converge. Il en résulte, d’après le théorème de majoration pour

des séries à termes � 0, que la série 
∑
n�1

|| fn||∞ converge.

On conclut que 
∑
n�1

fn converge normalement sur R, donc uni-

formément (PSI), absolument, simplement.

b) L’étude des variations de x 
−→ x(1 − x) sur [0 ; 1]

montre : ∀ x ∈ [0 ; 1], |x(1 − x)| � 1

4
.

On a donc : ∀ n ∈ N, ∀ x ∈ [0 ; 1], | fn(x)| � n2

4n
,

d’où : ∀ n ∈ N, || fn||∞ � n2

4n
.

Notons, pour tout n ∈ N : un = n2

4n
.

On a : ∀ n ∈ N
∗, un > 0

et :
un+1

un
= (n + 1)2

4n+1

4n

n2
= (n + 1)2

n2

1

4
−−−→

n ∞
1

4
< 1.

D’après la règle de d’Alembert, la série 
∑
n�1

un converge.

D’après le théorème de majoration pour des séries à termes � 0,

la série 
∑
n�1

|| fn||∞ converge.

Ceci montre que la série 
∑
n�0

fn converge normalement sur

[0 ; 1] , donc uniformément (PSI), absolument, simplement.

c) 1) Convergence simple, convergence absolue :

La convergence absolue revient à la convergence simple,
puisque les fn sont toutes � 0.

Soit x ∈ [0 ;+∞[. On a :

∀ n ∈ N
∗, fn(x) = nx2

n3 + x2
� nx2

n3
= x2

n2
.

D’après l’exemple de Riemann (2 > 1 ) et le théorème de ma-

joration pour des séries à termes � 0, la série 
∑
n�1

fn(x)

converge.

Ceci montre que 
∑
n�1

fn converge simplement et absolument sur

[0 ;+∞[.

2) Convergence normale, convergence uniforme (PSI) :

• On a : || fn||∞ � | fn(n)| = n3

n3 + n2
= n

n + 1
−−−→

n ∞
1,

donc : || fn||∞ −−−→
n ∞

/ 0 .

D’après le cours, il en résulte que 
∑
n�1

fn ne converge pas uni-

formément sur [0 ;+∞[ (PSI), et ne converge pas normalement
sur [0 ;+∞[.

• Soit a ∈ [0 ;+∞[ fixé.

On a :

∀ n ∈ N
∗, ∀ x ∈ [0 ; a], | fn(x)| = nx2

n3 + x2
� na2

n3
= a2

n2
,

donc : ∀ n ∈ N
∗, || fn||[0 ;a]

∞ � a2

n2
.

Il en résulte, d’après l’exemple de Riemann (2 > 1 ) et le théo-
rème de majoration pour des séries à termes � 0, que la série∑
n�1

|| fn||[0 ;a]
∞ converge.

Ceci montre que 
∑
n�1

fn converge normalement, donc unifor-

mément (PSI), sur tout [0 ; a], a ∈ [0 ;+∞[ fixé.

d) 1) Convergence simple, convergence absolue :

La convergence absolue revient à la convergence simple,
puisque les fn sont toutes � 0.

Soit x ∈ [0 ;+∞[.

Si x > 0, alors, pour tout n ∈ N
∗ :

0 � fn(x) = x

n
e−n2x2 � x e−nx2 = x(e−x2

)n .

Puisque |e−x2 | < 1, la série géométrique 
∑
n�1

(e−x2
)n converge,

donc, par théorème de majoration pour des séries à termes � 0,

la série 
∑
n�1

fn(x) converge.

5.5



184

Si x = 0, alors : ∀ n ∈ N
∗, fn(x) = 0 ,

donc la série 
∑
n�1

fn(x) converge.

Ceci montre que 
∑
n�1

fn converge simplement et absolument

sur [0 ;+∞[.

2) Convergence normale, convergence uniforme (PSI) :

Soit n ∈ N
∗ .

L’application fn est de classe C1 sur [0 ;+∞[ et, pour tout

x ∈ [0 ;+∞[ : f ′
n(x) = 1

n
(1 − 2n2x2)e−n2x2

,

d’où le tableau des variations de fn :

x 0   
1

n
√

2
+∞

f ′
n(x) + 0 −

fn(x) 0  ↗ ↘ 0

On a donc :

∀ n ∈ N
∗, || fn||∞ = fn

(
1

n
√

2

)
= 1

n2
√

2
e− 1

2 = 1

n2
√

2 e
.

D’après l’exemple de Riemann (2 > 1), la série 
∑
n�1

|| fn||∞
converge.

Ceci montre que 
∑
n�1

fn converge normalement, donc unifor-

mément (PSI), sur [0 ;+∞[, et rend l’étude de 1) inutile.

e) 1) Convergence simple, convergence absolue :

La convergence absolue revient à la convergence simple,
puisque les fn sont toutes � 0.

Soit x ∈ [0 ;+∞[ fixé.

On a : fn(x) = n + x

n3 + x2
∼
n∞

1

n2
� 0.

D’après l’exemple de Riemann (2 > 1 ) et le théorème d’équi-

valence pour des séries à termes � 0, la série 
∑
n�1

fn(x)

converge.

Ceci montre que 
∑
n�1

fn converge absolument et simplement

sur [0 ;+∞[.

2) Convergence normale, convergence uniforme :

1re méthode :

Soit n ∈ N
∗ . L’application fn est de classe C1 sur [0 ;+∞[ et,

pour tout x ∈ [0 ;+∞[ :

f ′
n(x) = (n3 + x2) − (n + x)2x

(n3 + x2)2
= − x2 + 2nx − n3

(n3 + x2)2
.

Par résolution d’une équation du second degré, on déduit le 

tableau de variations de fn, en notant xn = −n + √
n3 + n2 :

x 0   xn +∞

f ′
n(x) + 0  −

fn(x)
1

n2
↗ ↘ 0 

On a donc :

|| fn||∞ = fn(xn)

=
√

n3 + n2

2n3 + 2n2 − 2n
√

n3 + n2
= 1

2
(√

n3 + n2 − n
)

= 1

2n3/2

(√
1 + 1

n
− 1√

n

) ∼
n∞

1

2n3/2
� 0.

D’après l’exemple de Riemann (3/2 > 1) et le théorème

d’équivalence pour des séries à termes � 0, la série 
∑
n�1

|| fn||∞
converge.

Ceci montre que 
∑
n�1

fn converge normalement sur [0 ;+∞[,

donc uniformément (PSI), absolument, simplement, et rend in-
utile l’étude de 1).

2e méthode :

Soit n ∈ N
∗ .

Vu le dénominateur n3 + x2, séparons en cas selon la position

relative de n3 et de x2 , c’est-à-dire selon la position de x par

rapport à n3/2 :

• si x � n3/2, alors :

| fn(x)| = n + x

n3 + x2
� n + x

x2
� n3/2 + x

x2
� 2x

x2
� 2

n3/2

• si x � n3/2, alors :

| fn(x)| = n + x

n3 + x2
� n + x

n3
� n + n3/2

n3
� 2n3/2

n3
= 2

n3/2
.

On a donc : ∀ n ∈ N
∗, ∀ x ∈ [0 ;+∞[, | fn(x)| � 2

n3/2
,

d’où : ∀ n ∈ N
∗, || fn||∞ � 2

n3/2
.

D’après l’exemple de Riemann (3/2 > 1) et le théorème de ma-

joration pour des séries à termes � 0, la série 
∑
n�1

|| fn||∞
converge.

Ceci montre que 
∑
n�1

fn converge normalement sur [0 ;+∞[,

donc uniformémen (PSI), absolument, simplement.



f) On a :

∀ n ∈ N
∗, ∀ x ∈ [0 ;+∞[, | fn(x)| = 1

x2 + n2
� 1

n2
,

donc : ∀ n ∈ N
∗, || fn||∞ � 1

n2
.

D’après l’exemple de Riemann (2 > 1 ) et le théorème de ma-

joration pour des séries à termes � 0, la série 
∑
n�1

|| fn||∞
converge.

Ceci montre que 
∑
n�1

fn converge normalement sur [0 ;+∞[,

donc uniformément (PSI), absolument, simplement.

g) 1) Convergence simple :

Soit x ∈ [0 ;+∞[ fixé.

La série 
∑
n�1

(−1)n

x2 + n
est alternée,

∣∣∣∣ (−1)n

x2 + n

∣∣∣∣ −−−→
n ∞

0, et la suite

(
1

x2 + n

)
n�1

est décroissante.

D’après le TSCSA, la série 
∑
n�1

fn(x) converge.

Ceci montre que 
∑
n�1

fn converge simplement sur [0 ;+∞[.

2) Convergence absolue, convergence normale :

Soit x ∈ [0 ;+∞[ fixé.

On a : | fn(x)| = 1

x2 + n
∼
n∞

1

n
� 0.

D’après l’exemple de Riemann et le théorème d’équivalence

pour des séries à termes � 0, la série 
∑
n�1

| fn(x)| diverge.

Ceci montre que 
∑
n�1

fn ne converge absolument sur aucune par-

tie non vide de [0 ;+∞[.

Il en résulte que 
∑
n�1

fn ne converge normalement sur aucune

partie non vide de [0 ;+∞[.

3) Convergence uniforme (PSI) :

Soit n ∈ N
∗ fixé. Puisque, pour tout x ∈ [0 ;+∞[, la série∑

n�1

fn(x) relève du TSCSA, en notant Rn(x) le reste 

d’ordre n, on a, pour tout x ∈ [0 ;+∞[ :

|Rn(x)| � | fn+1(x)| = 1

x2 + (n + 1)
� 1

n + 1
,

donc : ||Rn||∞ � 1

n + 1
.

Il en résulte : ||Rn||∞ −−−→
n ∞

0, et on conclut, d’après le cours,

que 
∑
n�1

fn converge uniformément sur [0 ;+∞[.

a) 1) Convergence simple :

Soit x ∈ [0 ;+∞[ fixé.

La série 
∑
n�1

fn(x) est alternée, | fn(x)| = e−nx

n + x
−−−→

n ∞
0, et

la suite 
(| fn(x)|)

n�1 est décroissante. D’après le TSCSA, il en

résulte que la série 
∑
n�1

fn(x) converge.

On conclut :
∑
n�1

fn converge simplement sur [0 ;+∞[.

2) Convergence absolue :

Soit x ∈ [0 ;+∞[ fixé.

• Cas x =/ 0. On a :

∀ n ∈ N
∗, | fn(x)| = e−nx

n + x
� e−nx = (e−x )n .

Comme |e−x | < 1, la série géométrique 
∑
n�1

(e−x )n converge.

Par théorème de majoration pour des séries à termes � 0, la

série 
∑
n�1

| fn(x)| converge.

• Cas x = 0. On a : ∀ n ∈ N
∗, | fn(x)| = 1

n
,

donc la série 
∑
n�1

| fn(x)| diverge.

On conclut :
∑
n�1

fn converge absolument sur ]0 ;+∞[, mais

non sur [0 ;+∞[.

3) Convergence normale :

• Étude sur ]0 ;+∞[ :

Soit n ∈ N
∗ . Comme  | fn(x)| = e−nx

n + x
−→

x−→0+
1

n
,

on a : || fn||∞ � 1

n
, et donc, d’après l’exemple de Riemann et

le théorème de minoration pour des séries à termes � 0, la série∑
n�1

|| fn||]0 ;+∞[
∞ diverge.

Ceci montre que 
∑
n�1

fn ne converge pas normalement sur

]0 ;+∞[.

• Étude sur [a ;+∞[, a ∈ ]0 ;+∞[ fixé :

Soit a ∈ ]0 ;+∞[ fixé. On a :

∀ n ∈ N
∗, ∀ x ∈ [a ;+∞[,

| fn(x)| = e−nx

n + x
� e−nx

n
� e−nx � e−na,

d’où : ∀ n ∈ N
∗, || fn||[a ;+∞[

∞ � (e−a)n .

Puisque |e−a| < 1 , la série géométrique 
∑
n�1

(e−a)n converge.
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Par théorème de majoration pour des séries à termes � 0, on

conclut que 
∑
n�1

fn converge normalement sur [a ;+∞[ , pour

tout a ∈ ]0 ;+∞[ fixé.

4) Convergence uniforme (PSI) :

Puisque, pour tout x ∈ [0 ;+∞[, la série 
∑
n�1

fn(x) relève du

TSCSA, on a, en notant Rn le reste d’ordre n :

∀ n ∈ N
∗, ∀ x ∈ [0 ;+∞[,

|Rn(x)| � | fn+1(x)| = e−(n+1)x

(n + 1) + x
� 1

n + 1
,

d’où : ∀ n ∈ N
∗, ||Rn||∞ � 1

n + 1
,

puis : ||Rn||∞ −−−→
n ∞

0.

Ceci montre que 
∑
n�1

fn converge uniformément sur [0 ;+∞[.

b) Puisque, pour tout n ∈ N
∗ , fn est continue sur [0 ;+∞[ et

que 
∑
n�1

fn converge uniformément sur [0 ;+∞[, d’après un

théorème du cours, on conclut que la somme S est continue
sur [0 ;+∞[.

a) Soit x ∈ [0 ;+∞[ fixé. On a :

fn(x) = ln(n + x)

n2
=

ln n + ln

(
1 + x

n

)

n2
∼
n∞

ln n

n2
� 0 .

Puisque la série 
∑
n�1

ln n

n2
converge (cf. Exercice 4.2, utilisation

de la règle n3/2un ), par théorème d’équivalence pour des sé-

ries à termes � 0, la série 
∑
n�1

fn(x) converge.

On conclut :
∑
n�1

fn converge simplement sur [0 ;+∞[.

b) • Pour tout n ∈ N
∗ , fn est de classe C2 sur [0 ;+∞[ et, pour

tout x ∈ [0 ;+∞[ :

f ′
n(x) = 1

(n + x)n2
, f ′′

n (x) = − 1

(n + x)2n2
.

• Puisque : ∀ n ∈ N
∗, || f ′′

n ||∞ = 1

n4
,

d’après l’exemple de Riemann (4 > 1), la série 
∑
n�1

f ′′
n converge

normalement, donc uniformément (PSI), sur [0 ;+∞[.

• Puisque : ∀ n ∈ N
∗, || fn||∞ = 1

n3
,

d’après l’exemple de Riemann (3 > 1), la série 
∑
n�1

f ′
n converge

normalement, donc uniformément (PSI), sur [0 ;+∞[.

• On a vu en a) que 
∑
n�1

fn converge simplement sur [0 ;+∞[.

D’après le théorème de dérivation pour les séries d’applications,

on conclut que S est de classe C2 sur [0 ;+∞[ et que, pour
tout x ∈ [0 ;+∞[ :

S′(x) =
+∞∑
n=1

1

(n + x)n2
, S′′(x) =

+∞∑
n=1

− 1

(n + x)2n2
.

c) 1) D’après b), S est de classe C1 sur [0 ;+∞[ et, pour tout
x ∈ [0 ;+∞[, S′(x) est la somme d’une série à termes tous
> 0 , donc S′(x) > 0. On conclut que S est strictement crois-
sante sur [0 ;+∞[.

2) D’après b), S est de classe C2 sur [0 ;+∞[, et, pour tout
x ∈ [0 ;+∞[, S′′(x) est la somme d’une série à termes tous
� 0, donc S′′(x) � 0 . On conclut que S est concave sur
[0 ;+∞[.

a) 1) Convergence simple :

Soit x ∈ [0 ; 1] fixé.

• Si x =/ 1, alors : 0 � sin
πx

2
< 1,

donc, par prépondérance de la suite géométrique sur les puis-

sances : fn(x) = n(1 − x)

(
sin

πx

2

)n

−−−→
n ∞

0.

• Si x = 1, alors : fn(x) = 0 −−−→
n ∞

0 .

Ceci montre : fn
C.S.−→
n∞

0.

2) Convergence uniforme (PSI) :

L’étude des variations de fn paraît malcommode, car le signe
de f ′

n(x) ne paraît pas facile à déterminer.

• Étude sur [0 ; 1] :

Soit n ∈ N
∗ . Remarquons :

fn

(
1 − 1

n

)
=

(
sin

(
π

2
− π

2n

))n

=
(

cos
π

2n

)n

= exp

(
n ln cos

π

2n

)
= exp

(
n ln

[
1 − π2

8n2
+ o

(
1

n2

)])

= exp

(
n

[
− π2

8n2
+ o

( 1

n2

)])

= exp

(
− π2

8n
+ o

(
1

n

))
−−−→

n ∞
1.

Il en résulte : || fn − 0||∞ �
∣∣∣∣ fn

(
1 − 1

n

)∣∣∣∣ −−−→
n ∞

/ 0.

Ceci montre que ( fn)n�0 ne converge pas uniformément 

vers 0 sur [0 ; 1] .

• Étude sur [0 ; a], a ∈ [0 ; 1[ fixé :

Soit a ∈ [0 ; 1[ fixé. On a : ∀ n ∈ N
∗, ∀ x ∈ [0 ; a] ,

5.7
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| fn(x)| = n(1 − x)

(
sin

πx

2

)n

� n

(
sin

πa

2

)n

,

donc : || fn||[0 ;a]
∞ � n

(
sin

πa

2

)n

−−−→
n ∞

0,

d’où : || fn||[0 ;a]
∞ −−−→

n ∞
0.

Ceci montre que la suite ( fn)n�0 converge uniformément 

vers 0 sur [0 ; a], pour tout a ∈ [0 ; 1[ fixé.

b) 1) Convergence simple :

Pour tout x ∈ R : fn(x) = sin

(
n + 1

n
x

)
−−−→

n ∞
sin x .

Ceci montre : fn
C.S.−→
n∞

f , où f : R −→ R, x 
−→ sin x .

2) Convergence uniforme (PSI) :

• Étude sur R :

Soit n ∈ N
∗ . Remarquons que, par exemple :

∣∣( f2n − f )(nπ)
∣∣ =

∣∣∣ sin
(2n + 1

2n
nπ

)
− sin (nπ)

∣∣∣
= |(−1)n − 0| = 1.

On a donc : || f2n − f ||∞ � 1,

d’où : || f2n − f ||∞ −−−→
n ∞

/ 0, puis || fn − f ||∞ −−−→
n ∞

/ 0.

Ceci montre que ( fn)n�1 ne converge pas uniformément vers

f sur R.

• Étude sur [−a ; a], a ∈ [0 ;+∞[ fixé :

Soit a ∈ [0 ;+∞[ fixé. 
On a, en utilisant une formule de trigonométrie :

∀ n ∈ N
∗, ∀ x ∈ [−a ; a],

| fn(x) − f (x)| =
∣∣∣∣ sin

(
n + 1

n
x

)
− sin x

∣∣∣∣
=

∣∣∣∣2 sin

(
1

2

(
n + 1

n
x − x

))
cos

(
1

2

(
n + 1

n
x + x

))∣∣∣∣
=

∣∣∣∣2 sin
x

2n
cos

(2n + 1)x

2n

∣∣∣∣
� 2

∣∣∣∣ sin
x

2n

∣∣∣∣ � 2

∣∣∣∣ x

2n

∣∣∣∣ = |x |
n

� a

n
,

d’où : || fn − f ||[−a ;a]
∞ � a

n
−−−→

n ∞
0.

Ceci montre que la suite ( fn)n�1 converge uniformément vers

f sur [−a ; a] , pour tout a ∈ (0 ;+∞[ fixé.

c) 1) Convergence simple :

Soit x ∈ [0 ;+∞[ fixé.

Si x =/ 0, alors :

fn(x) = ln

(
1 + nx2

1 + nx

)
−−−→

n ∞
ln(1 + x) .

Si x = 0, alors : fn(x) = 0 −−−→
n ∞

0 .

Ceci montre : fn
C.S.−→
n∞

f , où :

f : [0 ;+∞[−→ R, x 
−→ ln(1 + x) .

2) Convergence uniforme (PSI) :

Soit n ∈ N
∗ .

Le calcul de ( fn − f )′ paraissant compliqué, nous allons es-
sayer, pour x ∈ [0 ;+∞[, de majorer | fn(x) − f (x)| en utili-
sant l’inégalité des accroissements finis.

L’application ϕ : t 
−→ ln(1 + t) est de classe C1 sur [0 ;+∞[

et : ∀ t ∈ [0 ;+∞[, ϕ′(t) = 1

1 + t
.

D’où, d’après l’inégalité des accroissements finis, appliquée 

à ϕ entre x et 
nx2

1 + nx
:

| fn(x) − f (x)| =
∣∣∣∣ϕ

(
nx2

1 + nx

)
− ϕ(x)

∣∣∣∣
�

(
Sup

t∈[0 ;+∞[
|ϕ′(t)|

)∣∣∣∣ nx2

1 + nx
− x

∣∣∣∣ = x

1 + nx
� 1

n
.

On a donc : || fn − f ||∞ � 1

n
−−−→

n ∞
0,

et on conclut : fn
C.U.−→
n∞

f sur [0 ;+∞[.

Remarque : Ce résultat entraîne la convergence simple.
Cependant, on ne pouvait pas se passer de l’étude de la conver-
gence simple, car, pour étudier la convergence uniforme, on a
besoin de former fn − f , donc de connaître f, issue de l’étude
de la convergence simple.

d) 1) Convergence simple (PSI) :

Soit x ∈ ]0 ;+∞[ fixé. On a :

fn(x) = (nx)
x
n = exp

(
x

n
ln (nx)

)
−−−→

n ∞
1 .

On conclut : fn
C.S.−→
n∞

f , où f = 1 (application constante).

2) Convergence uniforme (PSI) :

Soit n ∈ N
∗ . L’application gn = fn − f est de classe C1 sur

]0 ;+∞[ et, pour tout x ∈ ]0 ;+∞[ :

g′
n(x) = f ′

n(x) = fn(x)

(
1

n
ln (nx) + x

n

1

x

)

= 1

n
fn(x)

(
ln (nx) + 1

)
.

On en déduit le tableau de variations de gn :

x 0  
1

en
+∞

g′
n(x) − 0   +

gn(x) 0   ↘ ↗ +∞
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Et :

gn(x) = fn(x) − 1 = exp

(
x

n
ln (nx)

)
− 1 −→

x−→0+
0 ,

gn(x) −→
x−→+∞

+∞ ,

gn

(
1

en

)
=

(
1

e

) 1
en2

− 1 = e− 1
en2 − 1 .

• Pour tout n ∈ N
∗ , gn = fn − f n’est pas bornée sur ]0 ;+∞[,

donc ( fn)n�1 ne converge pas uniformément sur ]0 ;+∞[.

• Soit b ∈ ]0 ;+∞[ fixé. On a, d’après le tableau de variations
de gn = fn − f :

|| fn − f ||]0 ;b]
∞ � Max

(
− gn

( 1

en

)
, gn(b)

)

= Max
(
e− 1

en2 − 1, gn(b)
) −−→

n ∞
0,

car e
− 1

en2 −−−→
n ∞

1 et, par convergence simple,

gn(b) = fn(b) − f (b) −−−→
n ∞

0.

Ceci montre que la suite ( fn)n�1 converge uniformément sur

tout ]0 ; b], b ∈ ]0 ;+∞[ fixé.

L’application ϕ : [0 ;+∞[−→ R, t 
−→ ln(1 + t) est
dérivable sur [0 ;+∞[ et :

∀ t ∈ [0 ;+∞[, ϕ′(t) = 1

1 + t
,

donc ϕ′ est bornée et Sup
t∈[0 ;+∞[

|ϕ′(t)| = 1.

D’après l’inégalité des accroissements finis, on a alors :

∀ (u,v) ∈ [0 ;+∞[2, |ϕ(u) − ϕ(v)|
�

(
Sup

t∈[0 ;+∞[
|ϕ′(t)|

)
|u − v| = |u − v|,

donc :

∀ (u,v) ∈ [0 ;+∞[2,
∣∣ln(1 + u) − ln(1 + v)

∣∣ � |u − v| .

D’où, ici : ∀ n ∈ N, ∀ x ∈ X,

∣∣ ln
(
1 + fn(x)

) − ln
(
1 + f (x)

)∣∣
� | fn(x) − f (x)| � || fn − f ||∞.

Il en résulte :

∀ n ∈ N, ||ln(1 + fn) − ln(1 + f )||∞ � || fn − f ||∞ .

Comme fn
C.U.−→
n∞

f , on a || fn − f ||∞ −−−→
n ∞

0 , donc,

par encadrement, ||ln(1 + fn) − ln(1 + f )||∞ −−−→
n ∞

0,

et on conclut : ln(1 + fn)
C.U.−→
n∞

ln(1 + f ) .

Puisque f est de classe C3 sur R, d’après l’inégalité de
Taylor-Lagrange, en notant M3 = Sup

t∈R

| f (3)(t)| , on a, pour

tout x ∈ R et tout n ∈ N
∗ :




∣∣∣∣ f

(
x + 1

n

)
−

(
f (x) + 1

n
f ′(x) + 1

2n2
f ′′(x)

)∣∣∣∣ � 1

6n3
M3

∣∣∣∣ f

(
x − 1

n

)
−

(
f (x) − 1

n
f ′(x) + 1

2n2
f ′′(x)

)∣∣∣∣ � 1

6n3
M3,

d’où, en utilisant l’inégalité triangulaire :∣∣∣∣
(

f

(
x + 1

n

)
− 2 f (x) + f

(
x − 1

n

)
− 1

n2
f ′′(x)

∣∣∣∣
=

∣∣∣∣
[

f

(
x + 1

n

)
−

(
f (x) + 1

n
f ′(x) + 1

2n2
f ′′(x)

)]

+
[

f

(
x − 1

n

)
−

(
f (x) − 1

n
f ′(x) + 1

2n2
f ′′(x)

)]∣∣∣∣
� 2

1

6n3
M3 = M3

3n3
,

puis :

|gn(x) − f ′′(x)|
= n2

∣∣∣∣
[

f

(
x + 1

n

)
− 2 f (x) + f

(
x − 1

n

)]
− 1

n2
f ′′(x)

∣∣∣∣
� M3

3n
.

Ceci montre que gn − f ′′ est bornée et que :

∀ n ∈ N
∗, ||gn − f ′′||∞ � M3

3n
.

Comme 
M3

3n
−−−→

n ∞
0, il en résulte, par encadrement :

||gn − f ′′||∞ −−−→
n ∞

0, et on conclut : gn
C.U.−→
n∞

f ′′ sur R.

Une récurrence immédiate montre que, pour tout n ∈ N

et tout x ∈ R , fn(x) existe et fn(x) � 0.

Considérons l’application 

ϕ : [0 ;+∞[−→ R, t 
−→ √
1 + t

et cherchons les éventuels points fixes de ϕ.

On a, pour tout t ∈ [0 ;+∞[, ϕ(t) � 0 et :

ϕ(t) = t ⇐⇒ 1 + t = t2 ⇐⇒ t2 − t − 1 = 0

⇐⇒ t = 1 + √
5

2
, noté α.

Essayons de montrer que la suite ( fn)n∈N converge uniformé-
ment sur R vers la fonction constante α.

Soient n ∈ N, x ∈ R. On a, par utilisation d’une expression
conjuguée :

| fn+1(x) − α| = ∣∣√1 + fn(x) − √
1 + α

∣∣
= | fn(x) − α|√

1 + fn(x) + √
1 + α

� 1

2
| fn(x) − α|.

5.9
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Une récurrence immédiate montre :

∀ x ∈ R, ∀ n ∈ N, | fn(x) − α| � 1

2n
| f0(x) − α| ,

d’où :

∀ x ∈ R, ∀ n ∈ N,

| fn(x) − α| � 1

2n

(
f0(x) + α

)
� 1

2n
(|| f0||∞ + α).

Il en résulte que, pour tout n ∈ N , fn est bornée et que :

|| fn − α||∞ � 1

2n
(|| f0||∞ + α) −−−→

n ∞
0.

On conclut : fn
C.U.−→
n∞

α sur R, où α est la fonction constante égale

à α.

• Montrons, par récurrence sur n, que, pour tout n ∈ N ,
fn existe, est � 0 et est bornée sur R.

La propriété est vraie pour n = 0 par hypothèse.

Si la propriété est vraie pour un n ∈ N , alors fn+1 existe, et,
comme : ∀ x ∈ R, 0 � fn(x) � || fn||∞,

on a : ∀ x ∈ R, 0 � ln
(
1 + fn(x)

) � ln (1 + || fn||∞),

donc fn+1 est � 0 et bornée.

On a ainsi montré, par récurrence sur n, que, pour tout n ∈ N ,
fn existe, est � 0 et est bornée.

• On a : ∀ n ∈ N, ∀ x ∈ R,

0 � fn+1(x) = ln
(
1 + fn(x)

)
� ln(1 + || fn||∞),

donc : ∀ n ∈ N, || fn+1||∞ � ln(1 + || fn||∞).

Notons, pour tout n ∈ N, un = || fn||∞ , et étudions la suite
(un)n∈N.

On a : ∀ n ∈ N, un+1 � ln(1 + un) � un,

donc (un)n∈N est décroissante.

De plus, comme : ∀ n ∈ N, un � 0,

la suite (un)n∈N est minorée par 0.

Il en résulte que (un)n∈N converge et que sa limite 
 vérifie

 � 0.

De plus, comme : ∀ n ∈ N, un+1 � ln(1 + un) ,

on a, par passage à la limite : 
 � ln(1 + 
).

L’étude des variations de la fonction t 
−→ ln(1 + t) − t

sur [0 ;+∞[ montre que : 
 � ln(1 + 
) ⇐⇒ 
 = 0.

Ceci montre : un −−−→
n ∞

0 , c’est-à-dire || fn||∞ −−−→
n ∞

0,

et on conclut : fn
C.U.−→
n∞

0.

a) Étude de ( fn)n∈N :

1) Convergence simple :

Soit x ∈ [0 ;+∞[ fixé.

On a :

| fn(x)| = 1

n!

∫ x

0
tn e−t dt � 1

n!
xxn = xn+1

n!
−−−→

n ∞
0 ,

par prépondérance classique.

On conclut : fn
C.S.−→
n∞

0 sur [0 ;+∞[.

2) Convergence uniforme :

• Étude sur [0 ;+∞[ :

On a, pour tout n ∈ N , d’après l’étude de la fonction �
d’Euler :

fn(x) = 1

n!

∫ x

0
tn e−t dt −→

x−→+∞
1

n!

∫ +∞

0
tn e−t dt

= 1

n!
�(n + 1) = 1

n!
n! = 1.

Il en résulte : ∀ n ∈ N, || fn||∞ � 1,

et donc : fn
C.U−→
n∞
/ 0 sur [0 ;+∞[.

• Étude sur [0 ; a], a ∈ [0 ;+∞[ fixé :

Soit a ∈ [0 ;+∞[ fixé.

On a : ∀ n ∈ N, ∀ x ∈ [0 ; a],

| fn(x)| = 1

n!

∫ x

0
tn e−t dt � 1

n!

∫ a

0
tn e−t dt = fn(a),

d’où : ∀ n ∈ N, || fn||[0 ;a]
∞ � fn(a).

Comme fn(a) −−−→
n ∞

0, on déduit || fn||[0 ;a]
∞ −−−→

n ∞
0

et on conclut : fn
C.U.−→
n∞

0 sur tout [0 ; a], a ∈ [0 ;+∞[ fixé.

b) Étude de (gn)n∈N :

On a : ∀ n ∈ N, ∀ x ∈ [0 ;+∞[,

gn(x) = 1

n!

∫ +∞

x
tn e−t dt

= 1

n!

( ∫ +∞

0
tn e[−t dt −

∫ x

0
tn e−t dt

)

= 1

n!
�(n + 1) − fn(x) = 1 − fn(x).

On déduit de a) les résultats suivants :

• gn
C.S.−→
n∞

1 sur [0 ;+∞[

• gn
C.U.−→
n∞

1 sur tout [0 ; a], a ∈ [0 ;+∞[ fixé

• gn
C.U−→
n∞
/ 1 sur [0 ;+∞[.

• Soit P =
N∑

k=0

akXk ∈ C[X]. On a :

∫ b

a
P(x) f (x) dx =

∫ b

a

( N∑
k=0

ak xk

)
f (x) dx

=
N∑

k=0

ak

∫ b

a
xk f (x) dx

︸ ︷︷ ︸
= 0

= 0.

5.12
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• D’après le premier théorème de Weierstrass, il existe une suite
(Pn)n∈N de polynômes de C[X] convergeant uniformément
c’est-à-dire (PC) telle que :|| f − Pn||∞−−−→

n ∞
0 vers f sur [a ; b]

(PSI). On a, pour tout n ∈ N , en utilisant le résultat précédent :

0 �
∫ b

a
| f (x)|2 dx =

∫ b

a
f (x) f (x) dx

=
∫ b

a
f (x) f (x) dx −

∫ b

a
Pn(x) f (x) dx

︸ ︷︷ ︸
=0

=
∫ b

a

(
f (x) − Pn(x)

)
f (x) dx � (b − a)|| f − Pn||∞|| f ||∞.

Comme || f − Pn||∞−−−→
n ∞

0, on déduit :
∫ b

a
| f (x)|2 dx = 0.

Puisque f est continue sur [a ; b], il en résulte f = 0.

D’après le premier théorème de Weierstrass, il existe une

suite (Qn)n∈N de polynômes de C[X] telle que : Qn
C.U.−→
n∞

f sur

[a ; b].

Notons, pour tout n ∈ N : Pn = Qn − Qn(c) + f (c).

Il est clair que (Pn)n∈N est une suite de polynômes de C[X] et
que : ∀ n ∈ N, Pn(c) = f (c).

On a, pour tout n ∈ N :

∀ x ∈ [a ; b], |Pn(x) − f (x)|
� |Pn(x) − Qn(x)| + |Qn(x) − f (x)|

= |Qn(c) − f (c)| + |Qn(x) − f (x)| � 2||Qn − f ||∞,

d’où : ||Pn − f ||∞ � 2||Qn − f ||∞.

Comme Qn
C.U.−→
n∞

f , on a : ||Qn − f ||∞ −−−→
n ∞

0,

puis, par encadrement : ||Pn − f ||∞ −−−→
n ∞

0 ,

d’où : Pn
C.U.−→
n∞

f . Ainsi, la suite (Pn)n∈N convient.

a) Notons, pour tout n ∈ N
∗ :

fn : [0 ; 1] −→ R, x 
−→ n
(
e

x
n+x − 1

)
.

• Pour tout n ∈ N
∗ , fn est continue par morceaux (car conti-

nue) sur [0 ; 1] .

• Soit x ∈ [0 ; 1] fixé.

Si x =/ 0, alors :

fn(x) = n
(
e

x
n+x − 1

) ∼
n∞ n

x

n + x
∼
n∞ x,

donc : fn(x) −−−→
n ∞

x .

Si x = 0, alors : fn(x) = 0 −−−→
n ∞

0 .

Ainsi : fn
C.S.−→
n∞

f , où : f : [0 ; 1] −→ R, x 
−→ x .

• f est continue par morceaux (car continue) sur [0 ; 1] .

• On a : ∀ n ∈ N
∗, ∀ x ∈ [0 ; 1],

| fn(x)| = n
(
e

x
n+x − 1

)
� n

(
e

1
n − 1

)
.

Notons, pour tout n ∈ N
∗ : an = n

(
e

1
n − 1

)
.

On a : an −−−→
n ∞

1.

Puisque (an)n∈N∗ est convergente, (an)n∈N∗ est bornée. 

Il existe donc C ∈ R+ tel que : ∀ n ∈ N
∗, |an| � C.

On a alors : ∀ n ∈ N
∗, ∀ x ∈ [0 ; 1], | fn(x)| � C,

et l’application constante C est intégrable sur le segment
[0 ; 1] .

Ceci montre que ( fn)n∈N∗ vérifie l’hypothèse de domination.

D’après le théorème de convergence dominée, on déduit :

∫ 1

0
fn −−−→

n ∞

∫ 1

0
f =

∫ 1

0
x dx =

[
x2

2

]1

0

= 1

2
.

On conclut : lim
n∞

∫ 1

0
n
(
e

x
n+x − 1

)
dx = 1

2
.

b) Notons, pour tout n ∈ N
∗ :

fn : [0 ;+∞[−→ R, x 
−→ (x2 + 1)
n + x

n + x2
e−x .

• Pour tout n ∈ N
∗ , fn est continue par morceaux (car conti-

nue) sur [0 ;+∞[.

• Pour tout x ∈ [0 ;+∞[ : fn(x) −−−→
n ∞

(x2 + 1) e−x ,

donc fn
C.S.−→
n∞

f , où :

f : [0 ;+∞[−→ R, x 
−→ (x2 + 1) e−x .

• f est continue par morceaux (car continue) sur [0 ;+∞[.

• On a, pour tout n ∈ N
∗ et tout x ∈ [0 ;+∞[ :

| fn(x)| = (x2 + 1)
n + x

n + x2
e−x = (x2 + 1)

1 + x

n

1 + x2

n

e−x

� (x2 + 1)(1 + x) e−x ,

car  
x

n
� x et  

x2

n
� 0.

L’application 

ϕ : [0 ;+∞[−→ R, x 
−→ (x2 + 1)(1 + x) e−x

est continue par morceaux (car continue), � 0, intégrable sur
[0 ;+∞[ car : x2

ϕ(x) ∼
x−→+∞

x5 e−x −→
x−→+∞

0,

donc, pour x assez grand : x2ϕ(x) � 1, 0 � ϕ(x) � 1

x2
,

exemple de Riemann en +∞ (2 > 1 ) et théorème de majora-
tion pour des fonctions � 0.

Ceci montre que ( fn)n∈N∗ vérifie l’hypothèse de domination.

5.16
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D’après le théorème de convergence dominée, f est intégrable
sur [0 ;+∞[ et : ∫ +∞

0
fn 
−→

∫ +∞

0
f

︸ ︷︷ ︸
notée I

.

Il reste à calculer I. 
On a, en utilisant des intégrales de fonctions intégrables :

I =
∫ +∞

0
(x2 + 1) e−x dx =

∫ +∞

0
x2 e−x dx +

∫ +∞

0
e−x dx

= �(3) + �(1) = 2! + 0! = 3 .

On conclut : lim
n∞

∫ +∞

0
(x2 + 1)

n + x

n + x2
e−x dx = 3.

c) Notons, pour tout n ∈ N
∗ :

fn : R −→ R, x 
−→ n sin nx

n2 + x4
.

• Pour tout n ∈ N
∗ , fn est continue par morceaux (car conti-

nue) sur R.

• Soit x ∈ R fixé. On a, pour tout n ∈ N
∗ :

| fn(x)| = n| sin nx |
n2 + x4

� n

n2 + x4
� n

n2
= 1

n
,

donc : fn(x) −−−→
n ∞

0.

Ceci montre : fn
C.S.−→
n∞

0 sur R.

• 0 est continue par morceaux sur R.

• Soient n ∈ N
∗, x ∈ R . On a :

| fn(x)| = n| sin nx |
n2 + x4

� n

n2 + x4
.

Rappelons : ∀ (a,b) ∈ (R+)2, a2 + b2 � 2ab,

d’où ici : n2 + x4 � 2nx2,

et donc, si x =/ 0 : | fn(x)| � n

2nx2
= 1

2x2
.

D’autre part, si |x | � 1 :

| fn(x)| � n

n2 + x4
� n

n2
= 1

n
� 1 .

Ainsi : ∀ n ∈ N
∗, ∀ x ∈ R, | fn(x)| � ϕ(x),

où : ϕ : R −→ R, x 
−→



1 si |x | � 1

1

2x2
si |x | > 1.

L’application ϕ est continue par morceaux, � 0, intégrable 
sur R (exemple de Riemann en ±∞, 2 > 1).

Ceci montre que ( fn)n∈N∗ vérifie l’hypothèse de domination.

D’après le théorème de convergence dominée, on déduit :∫ +∞

−∞
fn −−−→

n ∞

∫ +∞

−∞
0 = 0 .

On conclut : lim
n∞

∫ +∞

−∞

n sin nx

n2 + x4
dx = 0.

d) Notons, pour tout n ∈ N
∗ :

fn : [0 ;π] −→ R, x 
−→ √
π− x sin n x .

• Pour tout n ∈ N
∗ , fn est continue par morceaux (car conti-

nue) sur [0 ;π].

• Soit x ∈ [0 ;π].

Si x =/ π

2
, alors sin x ∈ [0 ; 1[, donc sin n x −−−→

n ∞
0 puis :

fn(x) −−−→
n ∞

0.

Si x = π

2
, alors : fn(x) =

√
π

2
−−−→

n ∞

√
π

2
.

Ceci montre : fn
C.S.−→
n∞

f , où :

f : [0 ;π] −→ R, x 
−→
{

0 si x =/ π/2
√
π/2 si x = π/2.

• f est continue par morceaux sur [0 ;π].

• On a : ∀ n ∈ N
∗, ∀ x ∈ [0 ;π],

| fn(x)| = √
π− x sin n x � √

π− x � √
π

et l’application constante x 
−→ √
π est continue par morceaux,

� 0, intégrable sur le segment [0 ;π].

Ainsi, la suite ( fn)n∈N∗ vérifie l’hypothèse de domination.

D’après le théorème de convergence dominée, on déduit :∫ π

0
fn −−−→

n ∞

∫ π

0
f = 0 .

On conclut : lim
n∞

∫ π

0

√
π− x sin n x dx = 0.

e) Notons, pour tout n ∈ N
∗ :

fn : ]0 ;+∞[−→ R, x 
−→ e−(x+a)n

√
x

.

• Pour tout n ∈ N
∗ , fn est continue par morceaux (car conti-

nue) sur ]0 ;+∞[

• Soit x ∈ ]0 ;+∞[.

Si x < 1 − a , alors 0 < x + a < 1, (x + a)n −−−→
n ∞

0 , donc 

fn(x) −−−→
n ∞

1√
x
.

Si x = 1 − a , alors : fn(x) = e−1

√
1 − a

−−−→
n ∞

e−1

√
1 − a

.

Si x > 1 − a , alors  x + a > 1, (x + a)n −−−→
n ∞

+ ∞,

donc fn(x) −−−→
n ∞

0.

Ceci montre : fn
C.S.−→
n∞

f sur ]0 ;+∞[ , où l’application

f : ]0 ;+∞[−→ R est définie, pour tout x ∈ ]0 ;+∞[, par :

f (x) =




1√
x

si 0 < x < 1 − a

e−1

√
1 − a

si x = 1 − a

0 si x > 1 − a.
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Ceci montre que la suite ( fn)n�1 vérifie l’hypothèse de domi-
nation.

D’après le théorème de convergence dominée :

vn =
∫ 1

0
fn −−−→

n ∞

∫ 1

0
f =

∫ 1

0
1 dx = 1 .

2) Étude de wn :

On a, pour tout n ∈ N
∗ :

0 � wn =
∫ n√n

1

√
1 + xn dx � ( n

√
n − 1)

√
1 + n

= (
e

1
n ln n − 1

)√
1 + n ∼

n∞
ln n

n

√
n = ln n√

n
−→
n∞ 0,

donc : wn −−−→
n ∞

0 .

Ainsi :
∫ n√n

0

√
1 + xn dx = vn + wn −−−→

n ∞
1 + 0 = 1.

On conclut : lim
n∞

∫ n√n

0

√
1 + xn dx = 1.

Essayons d’appliquer le théorème de convergence do-
minée.

Notons, pour tout n ∈ N
∗ :

fn : ]0 ; a] −→ R, x 
−→ 1

x

((
1 + x

n

)n

− 1

)
.

• Pour tout n ∈ N
∗ , fn est continue par morceaux (car conti-

nue) sur ]0 ; a].

• Soit x ∈ ]0 ; a] . On sait :

(
1 + x

n

)n

−−−→
n ∞

ex , donc :

fn(x) −−−→
n ∞

ex − 1

x
. Ainsi, fn

C.S.−→
n∞

f sur ]0 ; a], où :

f : ]0 ; a] −→ R, x 
−→ ex − 1

x
.

• f est continue par morceaux (car continue) sur ]0 ; a].

• Soit n ∈ N
∗ .

Puisque : ∀ t ∈ ] − 1 ;+∞[, ln(1 + t) � t,

on a : ∀ t ∈ [0 ;+∞[, 1 + t � et ,

d’où, pour tout x ∈ ]0 ; a] :

(
1 + x

n

)n

� (e
x
n )n = ex ,

puis : 0 �
(

1 + x

n

)n

− 1 � ex − 1,

et enfin : 0 � fn(x) � f (x).

L’application f est continue par morceaux sur ]0 ; a], � 0, et

intégrable sur ]0 ; a] car f (x) = ex − 1

x
−→
x−→0

1.

Ainsi, la suite ( fn)n�1 vérifie l’hypothèse de domination.

• f est continue par morceaux sur ]0 ;+∞[.

• Soient n ∈ N
∗, x ∈ ]0 ;+∞[.

Si x ∈ ]0 ; 1], alors : 0 � fn(x) = e−(x+a)n

√
x

� 1√
x
.

Si x ∈ ]1 ;+∞[, alors :

0 � fn(x) = e−(x+a)n

√
x

� e−(x+a)n � e−xn � e−x .

Ainsi : ∀ n ∈ N
∗, ∀ x ∈ ]0 ;+∞[, | fn(x)| � ϕ(x),

en notant :

ϕ : ]0 ;+∞[−→ R, x 
−→



1√
x

si 0 < x � 1

e−x si 1 < x .

L’application ϕ est continue par morceaux, � 0, intégrable sur
]0 ;+∞[ (exemple de Riemann en 0, 1/2 < 1 ; exemple du
cours en +∞). Ceci montre que la suite ( fn)n�1 vérifie l’hy-
pothèse de domination.

D’après le théorème de convergence dominée, f est intégrable
sur ]0 ;+∞[ et :∫ +∞

0
fn −−−→

n ∞

∫ +∞

0
f =

∫ 1−a

0

1√
x

dx

= [2
√

x]1−a
0 = 2

√
1 − a.

On conclut : lim
n∞

∫ +∞

0

e−(x+a)n

√
x

dx = 2
√

1 − a.

f) Remarquons que la borne n
√

n dépend de n et que
n
√

n = e
1
n ln −−−→

n ∞
1 par valeurs supérieures à 1.

On a, pour tout n ∈ N
∗ :∫ n√n

0

√
1 + xn dx =

∫ 1

0

√
1 + xn dx

︸ ︷︷ ︸
notée vn

+
∫ n√n

1

√
1 + xn dx

︸ ︷︷ ︸
notée wn

.

1) Étude de vn :

Notons, pour tout n ∈ N
∗ :

fn : [0 ; 1] −→ R, x 
−→ √
1 + xn .

• Pour tout n ∈ N
∗ , fn est continue par morceaux (car conti-

nue) sur [0 ; 1] .

• On a : fn
C.S−→
n∞

f sur [0 ; 1] , où :

f : [0 ; 1] −→ R, x 
−→
{

1 si 0 � x < 1
√

2 si x = 1.

• f est continue par morceaux sur [0 ; 1] .

• On a :

∀ n ∈ N
∗, ∀ x ∈ [0 ; 1], | fn(x)| = √

1 + xn �
√

2 ,

et l’application constante 
√

2 est intégrable sur le segment
[0 ; 1] .
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D’après le théorème de convergence dominée, on déduit :∫ +∞

−∞
fn −−−→

n ∞

∫ +∞

−∞
g ,

c’est-à-dire :∫ +∞

−∞
f

(
t

n

)
e−t2

dt −−−→
n ∞

∫ +∞

−∞
f (0) e−t2

dt = f (0)
√
π ,

en utilisant l’intégrale de Gauss :
∫ +∞

−∞
e−t2

dt = √
π.

On obtient :∫ +∞

−∞
f (x) e−n2x2

dx = f (0)

√
π

n
+ o

n∞

(
1

n

)

et on conclut, si on suppose f (0) =/ 0 :∫ +∞

−∞
f (x) e−n2x2

dx ∼
n∞

f (0)

√
π

n
.

Remarque : La même méthode permet de montrer :

• si f : [0 ;+∞[−→ R est continue par morceaux et bornée,
alors : ∫ +∞

0
f (x) e−n2x2

dx = f (0+)

√
π

2n
+ o

n∞

(
1

n

)
,

où f (0+) désigne la limite de f en 0 à droite

• si f : ] − ∞; 0] −→ R est continue par morceaux et bornée,
alors :

∫ 0

−∞
f (x) e−n2x2

dx = f (0−)

√
π

2n
+ o

n∞

(
1

n

)
,

où f (0−) désigne la limite de f en 0 à gauche

• si f : R −→ R est continue par morceaux et bornée, alors :
∫ +∞

−∞
f (x) e−n2x2

dx = f (0+) + f (0−)

2

√
π

n
+ o

n∞

(
1

n

)
.

D’abord, pour tout n ∈ N
∗ , In existe comme intégrale

d’une application continue sur un segment.

a) Comme, pour tout x ∈ ]0 ; 1],
√

1 − xn −−−→
n ∞

1,

on peut conjecturer : In −−−→
n ∞

1.

Le théorème de convergence dominée s’applique, mais un simple
calcul de majoration est possible. En effet, on a, pour tout
n ∈ N

∗ , en utilisant une expression conjuguée :

|In − 1| =
∣∣∣∣
∫ 1

0

√
1 − xn dx −

∫ 1

0
1 dx

∣∣∣∣
=

∫ 1

0

(
1 − √

1 − xn
)

dx =
∫ 1

0

xn

1 + √
1 − xn

dx

�
∫ 1

0
xn dx =

[
xn+1

n + 1

]1

0

= 1

n + 1
,

donc |In − 1| −−−→
n ∞

0, puis : In −−−→
n ∞

1.

D’après le théorème de convergence dominée, on déduit :∫ a

0
fn −−−→

n ∞

∫ a

0
f ,

c’est-à-dire :∫ a

0

1

x

((
1 + x

n

)n

− 1

)
dx −−−→

n ∞

∫ a

0

ex − 1

x
dx .

1) Existence de In :

Soit n ∈ N
∗ . L’application un : x 
−→ f (x) e−n2x2

est continue
par morceaux sur R (car f l’est), et :

∀ x ∈ R, |un(x)| � || f ||∞ e−n2x2
.

L’application εn : x 
−→ e−n2x2
est intégrable sur R , car

x2εn(x) = x2 e−n2x2 −→
x−→±∞

0 , donc, pour |x | assez grand,

0 � εn(x) � 1

x2
, et x 
−→ 1

x2
est intégrable sur ] − ∞;−1]

et sur [1 ;+∞[, exemple de Riemann. Par théorème de majo-
ration pour des fonctions � 0, un est intégrable sur R, donc In

existe.

2) Équivalent de In lorsque n tend vers l’infini :

On a, pour tout n ∈ N
∗ fixé, par le changement de variable

t = nx :

In =
∫ +∞

−∞
f (x) e−n2x2

dx = 1

n

∫ +∞

−∞
f

(
t

n

)
e−t2

dt .

Essayons d’appliquer le théorème de convergence dominée, pour
obtenir l’éventuelle limite de cette dernière intégrale.

Notons, pour tout n ∈ N
∗ :

fn : R −→ R, t 
−→ f

(
t

n

)
e−t2

.

• Pour tout n ∈ N
∗ , fn est continue par morceaux sur R, car f

l’est.

• Soit t ∈ R. On a :
t

n
−−−→

n ∞
0 , donc, par continuité de f

en 0 : f

(
t

n

)
−−−→

n ∞
f (0) , puis : fn(t) −−−→

n ∞
f (0) e−t2

.

Ceci montre : fn
C.S.−→
n∞

g, où :

g : R −→ R, t 
−→ f (0) e−t2
.

• g est continue par morceaux (car continue) sur R.

• On a :

∀ n ∈ N
∗, ∀ t ∈ R, | fn(t)| =

∣∣∣∣ f

(
t

n

)
e−t2

∣∣∣∣ � || f ||∞ e−t2
,

et l’application t 
−→ || f ||∞ e−t2
est continue par morceaux (car

continue), � 0, intégrable sur R.

Ainsi, la suite ( fn)n�1 vérifie l’hypothèse de domination.

5.18
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b) Reprenons le calcul de In − 1 effectué ci-dessus (sans la va-
leur absolue) :

In − 1 = −
∫ 1

0

xn

1 + √
1 − xn

dx

︸ ︷︷ ︸
notée Jn

.

Pour étudier Jn , effectuons le changement de variable

t = xn, x = t
1
n , dx = 1

n
t

1
n −1 dt :

Jn =
∫ 1

0

t

1 + √
1 − t

1

n
t

1
n −1 dt = 1

n

∫ 1

0

t
1
n

1 + √
1 − t

dt

︸ ︷︷ ︸
notée Kn

.

Pour trouver la limite de Kn (si elle existe) lorsque l’entier n
tend vers l’infini, nous allons essayer d’utiliser le théorème de
convergence dominée.

Notons, pour tout n ∈ N
∗ :

fn : ]0 ; 1] −→ R, t 
−→ t
1
n

1 + √
1 − t

.

• Pour tout n ∈ N
∗ , fn est continue par morceaux (car conti-

nue) sur ]0 ; 1] .

• Pour tout t ∈ ]0 ; 1] , on a : t
1
n −−−→

n ∞
1 , donc fn

C.S.−→
n∞

f sur

]0 ; 1] , où : f : ]0 ; 1] −→ R, t 
−→ 1

1 + √
1 − t

.

• f est continue par morceaux (car continue) sur ]0 ; 1] .

• On a :

∀ n ∈ N
∗, ∀ t ∈ ]0 ; 1], | fn(t)| = t

1
n

1 + √
1 − t

� 1 ,

et l’application constante 1 est continue par morceaux, � 0,
intégrable sur l’intervalle borné ]0 ; 1] .

Ainsi, la suite ( fn)n�1 vérifie l’hypothèse de domination.

D’après le théorème de convergence dominée, on déduit :

Kn =
∫ 1

0
fn −−−→

n ∞

∫ 1

0
f =

∫ 1

0

1

1 + √
1 − t

dt

︸ ︷︷ ︸
notée L

.

Pour calculer L , on effectue le changement de variable

u = √
1 − t, t = 1 − u2, dt = −2u du :

L =
∫ 0

1

1

1 + u
(−2u) du = 2

∫ 1

0

u

1 + u
du

= 2
∫ 1

0

(
1 − 1

1 + u

)
du = 2

[
u − ln(1 + u)

]1
0 = 2(1 − ln 2).

Ainsi : Kn −−−→
n ∞

2(1 − ln 2),

et on conclut :

In − 1 = −Jn = − 1

n
Kn ∼

n∞
−2(1 − ln 2)

n
.

a) 1) Convergence simple, convergence absolue :

Soit x ∈ [0 ;+∞[ fixé.

On a, par développement limité :

fn(x) = ln

(
1 + x

n

)
− x

n
=

(
x

n
+ O

(
1

n2

))
− x

n

= O

(
1

n2

)
.

D’après l’exemple de Riemann (2 > 1 ) et le théorème de ma-

joration pour des séries à termes � 0, la série 
∑

n

O

(
1

n2

)
est

absolument convergente. Ainsi, la série 
∑

n

fn(x) est absolu-

ment convergente, donc convergente.

Ceci montre que 
∑
n�1

fn converge absolument, donc simplement,

sur [0 ;+∞[.

2) Convergence normale, convergence uniforme (PSI) :

• Pour tout n ∈ N
∗ , comme 

fn(x) = ln

(
1 + x

n

)
− x

n
−→

x−→+∞
−∞

(prépondérance classique), fn n’est pas bornée, et donc, d’après

le cours,
∑
n�1

fn ne converge pas uniformément (PSI), ni nor-

malement (PC), sur [0 ;+∞[.

• Soit a ∈ [0 ;+∞[ fixé.

L’étude des variations des deux fonctions 

t 
−→ ln(1 + t) − t, t 
−→ ln(1 + t) − t + t2

2

montre : ∀ t ∈ [0 ;+∞[, − t2

2
� ln(1 + t) − t � 0,

d’où : ∀ t ∈ [0 ;+∞[,
∣∣ln(1 + t) − t

∣∣ � t2

2
.

On a donc : ∀ n ∈ N
∗, ∀ x ∈ [0 ; a],

| fn(x)| =
∣∣∣ ln

(
1 + x

n

)
− x

n

∣∣∣∣ � 1

2

(
x

n

)2

= x2

2n2
� a2

2n2
.

Ainsi : ∀ n ∈ N
∗, || fn||[0 ;a]

∞ � a2

2n2
.

D’après l’exemple de Riemann (2 > 1 ) et le théorème de ma-
joration pour des séries à termes � 0, on déduit que la série∑
n�1

|| fn||[0 ;a]
∞ converge, et on conclut :

∑
n�1

fn converge nor-

malement, donc uniformément (PSI), sur tout
[0 ; a], a ∈ [0 ;+∞[ fixé.

b) L’étude des variations des deux fonctions 

t 
−→ ln(1 + t) − t, t 
−→ ln(1 + t) − t + t2

2

montre : ∀ t ∈ [0 ;+∞[, t − t2

2
� ln(1 + t) � t.
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On a donc : ∀ n ∈ N
∗, ∀ x ∈ [0 ;+∞[,

0 � fn(x) � e−x

(
x

n

)2

2
= x2 e−x

2

1

n2
.

L’application ϕ : [0 ;+∞[−→ R, x 
−→ x2 e−x

est de classe C1 sur [0 ;+∞[, et, pour tout x ∈ [0 ;+∞[ :

ϕ
′(x) = (2x − x2) e−x ,

d’où le tableau de variations de ϕ :

x 0   2   +∞
ϕ′(x) + 0   −
ϕ(x) 0  ↗ ↘ 0 

Ceci montre que ϕ est bornée et que :

||ϕ||∞ = ϕ(2) = 4 e−2 .

On a donc : ∀ n ∈ N
∗, || fn||∞ � 4 e−2 1

n2
.

D’après l’exemple de Riemann (2 > 1 ) et le théorème de ma-
joration pour des séries à termes � 0, on déduit que la série∑
n�1

|| fn||∞, converge et on conclut que 
∑
n�1

fn converge nor-

malement (donc uniformément (PSI), absolument, simple-
ment) sur [0 ;+∞[.

a) 1) Convergence simple sur ]0 ;+∞[ :

Soit x ∈ [0 ;+∞[.

Si x =/ 0, alors 

fn(x) = Arctan
n + x

1 + n3x
∼
n∞

n + x

1 + n3x
∼
n∞

1

n2x
� 0 .

D’après l’exemple de Riemann (2 > 1 ) et le théorème d’équi-

valence pour des séries à termes � 0, la série 
∑
n�1

fn(x)

converge.

Si x = 0, alors fn(x) = Arctan n −−−→
n ∞

π/2 =/ 0 ,

donc la série 
∑
n�1

fn(x) diverge (grossièrement).

On conclut que 
∑
n,�1

fn converge simplement sur ]0 ;+∞[

(et non sur [0 ;+∞[).

2) Convergence normale sur [1 ;+∞[ :

Soit n ∈ N
∗ . L’application fn est de classe C1 sur [0 ;+∞[ et,

pour tout x ∈ [0 ;+∞[ :

f ′
n(x) = 1

1 +
(

n + x

1 + n3x

)2 · (1 + n3x) − (n + x)n3

(1 + n3x)2

= 1 − n4

(1 + n3x)2 + (n + x)2
� 0,

donc fn est décroissante sur [0 ;+∞[, d’où :

∀ x ∈ [1 ;+∞[, 0 � fn(x) � fn(1) ,

et donc : || fn||[1 ;+∞[
∞ � fn(1).

Comme la série 
∑
n�1

fn(1) converge (cf. 1)), par théorème 

de majoration pour des séries à termes � 0, la série∑
n�1

|| fn||[1 ;+∞[
∞ converge, et on conclut que 

∑
n�1

fn converge

normalement, donc uniformément (PSI), sur [1 ;+∞[.

b) 1) Puisque, pour tout n ∈ N
∗ :

fn(x) = Arctan
n + x

1 + n3x
−→

x−→+∞
Arctan

1

n3

et que 
∑
n�1

fn converge uniformément sur [1 ;+∞[ (PSI), nor-

malement sur [1 ;+∞[ (PC), d’après le théorème du cours sur
convergence uniforme (PSI) ou normale (PC) et limite,

on a : S(x) −→
x−→+∞

L =
+∞∑
n=1

Arctan
1

n3
.

2) En notant Rn le reste d’ordre n de la série définissant L
ci-dessus, et en utilisant une comparaison série/intégrale, l’ap-

plication t 
−→ 1

t3
étant décroissante et intégrable sur [1 ;+∞[,

on a :

0 � Rn =
+∞∑

k=n+1

Arctan
1

k3
�

+∞∑
k=n+1

1

k3

�
∫ +∞

n

1

t3
dt =

[
t−2

−2

]+∞

n

= 1

2n2
.

On a donc :

|Rn| � 0,9 · 10−3 ⇐� 1

2n2
� 0,9 · 10−3

⇐⇒ n2 � 103

0,9
� 555,. . . ⇐⇒ n � 24.

D’autre part, à 0,1 · 10−3 près, en utilisant la calculatrice :
24∑

k=1

Arctan
1

k3
� 0,9866.

On conclut : L � 0,986 à 10−3 près.

a) 1) Convergence simple sur ]0 ;+∞[:

Soit x ∈ ]0 ;+∞[ fixé. La série 
∑
n�0

fn(x) est alternée,

| fn(x)| = 1√
1 + nx

−−−→
n ∞

0, et la suite 
(| fn(x)|)

n∈N
est dé-

croissante, donc, d’après le TSCSA, la série 
∑
n�0

fn(x) converge.

Ceci montre que 
∑
n�0

fn converge simplement sur ]0 ;+∞[.
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2) Convergence uniforme sur [1 ;+∞[ :

On a, pour tout x ∈ [1 ;+∞[, puisque la série 
∑
n�0

fn(x) re-

lève du TSCSA, en notant Rn(x) le reste d’ordre n :

|Rn(x)| � | fn+1(x)| = 1√
1 + (n + 1)x

� 1√
n + 2

,

d’où : ||Rn||∞ � 1√
n + 2

−−−→
n ∞

0,

donc ||Rn||∞ −−−→
n ∞

0 . Il en résulte que 
∑
n�0

fn converge uni-

formément sur [1 ;+∞[.

b) Puisque, pour n ∈ N
∗ , fn(x) = (−1)n

√
1 + nx

−→
x−→+∞

0 et que

∑
n�0

fn converge uniformément sur [1 ;+∞[, d’après le théo-

rème du cours sur convergence uniforme et limite, on déduit :

S(x) −→
x−→+∞

0 .

c) D’abord, a existe car la série 
∑
n�1

(−1)n

√
n

converge, d’après

le TSCSA.

Notons, pour tout n ∈ N
∗ :

gn : [1 ;+∞[−→ R, x 
−→ (−1)n

√
nx

.

On a, pour tout n ∈ N
∗ et tout x ∈ [1 ;+∞[, en utilisant une

expression conjuguée :

| fn(x) − gn(x)| =
∣∣∣∣ (−1)n

√
1 + nx

− (−1)n

√
nx

∣∣∣∣
=

√
1 + nx − √

nx√
nx

√
1 + nx

= 1√
nx

√
1 + nx(

√
nx + √

1 + nx)

� 1√
nx

√
nx(

√
nx + √

nx)
= 1

2(nx)3/2
= 1

2x3/2

1

n3/2
.

Puisque la série 
∑
n�1

1

n3/2
converge (exemple de Riemann,

3/2 > 1), il en résulte, pour tout x ∈ [1 ;+∞[ :
∣∣∣∣S(x) − a√

x

∣∣∣∣ =
∣∣∣∣

+∞∑
n=1

(
fn(x) − gn(x)

)∣∣∣∣

�
+∞∑
n=1

| fn(x) − gn(x)| �
+∞∑
n=1

1

2x3/2

1

n3/2

=
(

1

2

+∞∑
n=1

1

n3/2

)
1

x
√

x
,

et donc : S(x) − a√
x

= O
x−→+∞

(
1

x
√

x

)
,

d’où, en conclusion : S(x) = a√
x

+ O
x−→+∞

(
1

x
√

x

)
.

a) D’après le cours, pour x ∈ R fixé, la série de Riemann∑
n�1

1

nx
converge si et seulement si x > 1, d’où :

Déf ( f ) = ]1 ;+∞[.

b) Notons, pour tout n ∈ N
∗ :

fn : ]1 ;+∞[−→ R, x 
−→ 1

nx
= e−x ln n .

• Pour tout n ∈ N
∗ , fn est de classe C∞ sur ]1 ;+∞[ et :

∀ k ∈ N, ∀ x ∈ ]1 ;+∞[, f (k)
n (x) = (−ln n)k

nx
.

• Pour tout k ∈ N,
∑
n�1

f (k)
n converge simplement sur ]1 ;+∞[.

En effet, pour tout k ∈ N et tout x ∈ ]1 ;+∞[ fixés :

n
1+x

2 f (k)
n (x) = (−ln n)k

n
x−1

2

−−−→
n ∞

0,

donc, pour n assez grand : n
1+x

2 | f (k)
n (x)| � 1,

puis : | f (k)
n (x)| � 1

n
x+1

2

.

D’après l’exemple de Riemann (
x + 1

2
> 1) et le théorème de

majoration pour des séries à termes � 0, la série 
∑
n�1

| f (k)
n (x)|

converge.

Ainsi, la série 
∑
n�1

f (k)
n (x) converge absolument, donc converge.

Ceci montre que 
∑
n�1

f (k)
n converge simplement sur ]1 ;+∞[.

• Pour tout k ∈ N
∗ et tout segment [a ; b] inclus dans ]1 ;+∞[,∑

n�1

f (k)
n converge normalement, donc uniformément (PSI), sur

[a ; b]. En effet, on a :

∀ n ∈ N
∗, ∀ x ∈ [a ; b],

| f (k)
n (x)| = (ln n)k

nx
� (ln n)k

na
= | f (k)

n (a)|,

d’où : ∀ n ∈ N
∗, || f (k)

n ||[a ;b]
∞ � | f (k)

n (a)|.
D’après le point précédent, la série 

∑
n�1

| f (k)
n (a)| converge, donc,

par théorème de majoration pour des séries à termes � 0, la

série 
∑
n�1

|| fn||[a ;b]
∞ converge.

Ceci montre que 
∑
n�1

f (k)
n converge normalement, donc uni-

formément (PSI), sur [a ; b].

D’après un théorème du cours, il en résulte que ζ est de 
classe C∞ sur ]1 ;+∞[ et que l’on peut dériver terme à terme,
c’est-à-dire :

∀ k ∈ N, ∀ x ∈ ]1 ;+∞[, ζ(k)(x) =
+∞∑
n=1

(−ln n)k

nx
.
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c) 1) D’après b), on a :

∀ x ∈ ]1 ;+∞[, ζ′(x) =
+∞∑
n=1

−ln n

nx
= −

+∞∑
n=1

ln n

nx
.

Les termes de cette dernière série sont tous � 0 et non tous nuls,
donc leur somme est > 0 , d’où :

∀ x ∈ ]1 ;+∞[, ζ′(x) < 0 .

Il en résulte que ζ est strictement décroissante sur ]1 ;+∞[.

2) D’après b) : ∀ x ∈ ]1 ;+∞[, ζ′′(x) =
+∞∑
n=1

(ln n)2

nx
� 0,

donc ζ est convexe.

d) 1) Pour obtenir un encadrement de ζ(x), nous allons utili-
ser une comparaison série/intégrale.

Soit x ∈ ]1 ;+∞[ fixé.

Puisque l’application 

ϕ : [1 ;+∞[−→ R, t 
−→ 1

t x
= t−x

est continue par morceaux (car continue), décroissante, inté-
grable sur [1 ;+∞[ (exemple de Riemann en +∞ , x > 1), par
comparaison série/intégrale, on a :

∫ +∞

1
ϕ(t) dt �

+∞∑
n=1

ϕ(n)

︸ ︷︷ ︸
= ζ(x)

� ϕ(1) +
∫ +∞

1
ϕ(t) dt .

Et :
∫ +∞

1
ϕ(t) dt =

∫ +∞

1
t−x dt =

[
t−x+1

−x + 1

]+∞

1

= 1

x − 1
.

D’où :
1

x − 1
� ζ(x) � 1 + 1

x − 1
.

2) Comme 1 + 1

x − 1
∼

x−→1+
1

x − 1
, on déduit, par encadre-

ment : ζ(x) ∼
x−→1+

1

x − 1
.

3) Puisque 
1

x − 1
−→

x−→1+
+∞, on obtient :

ζ(x) −→
x−→1+

+∞ .

e) 1) • Pour tout n ∈ N
∗ fixé, on a :

fn(x) = 1

nx
−→

x−→+∞

{
1 si n = 1

0 si n � 2.

• 
∑
n�1

fn converge uniformément (PSI) et normalement (PC) sur

[2 ;+∞[.

D’après le théorème du cours sur convergence uniforme (PSI)
ou normale (PC) et limite, on déduit :

ζ(x) =
+∞∑
n=1

fn(x) −→
x−→+∞

1 +
+∞∑
n=2

0 = 1 .

2) On a, pour tout x ∈ [2 ;+∞[ :

ζ(x) − 1 − 1

2x
=

+∞∑
n=3

1

nx
.

Par comparaison série/intégrale, puisque, pour tout

x ∈ [2 ;+∞[ fixé, l’application t 
−→ 1

t x
est continue par

morceaux (car continue), décroissante et intégrable sur [1 ;+∞[,
on a :

0 �
+∞∑
n=3

1

nx
�

∫ +∞

2

1

t x
dt

=
[

t−x+1

−x + 1

]+∞

2

= 2−x+1

x − 1
= 2

x − 1
2−x .

On a donc :
+∞∑
n=3

1

nx
= o

x−→+∞
(2−x ),

d’où : ζ(x) − 1 − 1

2x
= o

x−→+∞

(
1

2x

)
,

et on conclut : ζ(x) − 1 ∼
x−→+∞

1

2x
.

f) x 1   +∞
ζ
′(x) −
ζ(x) +∞ ↘ 1

a) 1) Convergence simple :

Soit x ∈ ]0 ;+∞[ fixé. La série 
∑
n�1

(−1)n

nx
est alternée,

∣∣∣∣ (−1)n

nx

∣∣∣∣ = 1

nx
−−−→

n ∞
0 et la suite 

(
1

nx

)
n�1

décroît. D’après

le TSCSA, la série 
∑
n�1

(−1)n

nx
converge.

Ceci montre que 
∑
n�1

fn converge simplement sur ]0 ;+∞[.

2) Convergence absolue :

Puisque, pour tout n ∈ N
∗ et tout x ∈ ]0 ;+∞[, | fn(x)| = 1

nx
,

la série 
∑
n�1

| fn(x)| converge si et seulement si x > 1.

y

xO

1

1

y = ζ(x)

5.24



198

Ceci montre que 
∑
n�1

fn converge absolument sur ]1 ; ,+∞[ et

ne converge pas absolument ailleurs.

3) Convergence normale :

• Pour tout a > 1,
∑
n�1

fn converge normalement sur [a ;+∞[,

car || fn|||[a ;+∞[
∞ = 1

na
.

• La série d’applications 
∑
n�1

fn ne converge pas normalement

sur ]1 ;+∞[, puisque || fn||]1 ;+∞[
∞ = 1

n
et que la série 

∑
n�1

1

n

diverge.

4) Convergence uniforme :

• Puisque || fn||]0 ;+∞[
∞ = 1 −−−→

n ∞
/ 0,

∑
n�1

fn ne converge pas uni-

formément sur ]0 ;+∞[.

• Soit b ∈ ]0 ;+∞[ fixé. Puisque, pour tout x ∈ ]0 ;+∞[, la

série 
∑
n�1

fn(x) relève du TSCSA, on a, en notant Rn le reste

d’ordre n :

∀ n ∈ N
∗, ∀ x ∈ [b ;+∞[,

|Rn(x)| � | fn+1(x)| = 1

(n + 1)x
� 1

(n + 1)b
,

d’où : ∀ n ∈ N
∗, ||Rn||[b ;+∞[

∞ � 1

(n + 1)b
,

et donc : ||Rn||[b ;+∞[
∞ −−−→

n ∞
0.

On conclut que 
∑
n�1

fn converge uniformément sur tout

[b ;+∞[, b ∈ ]0 ;+∞[ fixé.

b) Puisque, pour tout n ∈ N
∗ , fn est continue sur ]0 ;+∞[, et

que la série d’applications 
∑
n�1

fn converge uniformément sur

tout segment de ]0 ;+∞[, d’après un théorème du cours, on
conclut que la somme T est continue sur ]0 ;+∞[.

c) Soit x ∈ ]1 ;+∞[. On a :

ζ(x) + T (x) =
+∞∑
n=1

1

nx
+

+∞∑
n=1

(−1)n

nx

=
+∞∑
n=1

1 + (−1)n

nx
=

+∞∑
p=1

2

(2p)x
,

car les termes d’indices impairs sont tous nuls. Puis :

ζ(x) + T (x) = 21−x
+∞∑
p=1

1

px
= 21−x

ζ(x) .

On conclut : ∀ x ∈ ]1 ;+∞[, T (x) = (21−x − 1)ζ(x).

Nous allons développer la fonction sous l’intégrale en
une somme de série de fonctions, puis permuter intégrale et
série.

On a, pour tout x ∈ ]0 ;+∞[ :

xα−1
(
x − ln(ex − 1)

) = −xα−1ln(1 − e−x )

= xα−1
+∞∑
n=1

(e−x )n

n
=

+∞∑
n=1

xα−1e−nx

n
.

Notons, pour tout n ∈ N
∗ :

fn : ]0 ;+∞[−→ R, x 
−→ xα−1e−nx

n
.

• Pour tout n ∈ N
∗ , fn est continue par morceaux (car conti-

nue) sur ]0 ;+∞[.

• 
∑
n�1

fn converge simplement sur ]0 ;+∞[ et la somme S

est : S =
+∞∑
n=1

fn : x 
−→ xα−1
(
x − ln(ex − 1)

)
.

• S est continue par morceaux (car continue) sur ]0 ;+∞[.

• Montrons que la série 
∑
n�1

∫ +∞

0
| fn(x)| dx converge.

On remarque d’abord :

∀ n ∈ N
∗, ∀ x ∈ ]0 ;+∞[, fn(x) = xα−1e−nx

n
� 0 .

On a, pour tout n ∈ N
∗ :

∫ +∞

0
| fn(x)| dx =

∫ +∞

0

xα−1e−nx

n
dx

=
u = nx

∫ +∞

0

(
u

n

)α−1

e−u

n

1

n
du

= 1

nα+1

∫ +∞

0
uα−1 e−u du = 1

nα+1
�(α).

Comme α+ 1 > 1, d’après l’exemple de Riemann, la série∑
n�1

∫ +∞

0
| fn(x)| dx converge.

D’après le théorème sur l’intégration sur un intervalle quelconque
pour une série d’applications, on déduit que S est intégrable
sur ]0 ;+∞[ et que :
∫ +∞

0
xα−1

(
x − ln(ex − 1)

)
dx

=
+∞∑
n=1

∫ +∞

0
fn(x) dx =

+∞∑
n=1

1

nα+1
�(α) = ζ(α+ 1)�(α).

1) Existence :

• L’application f : ]0 ;+∞[−→ R, x 
−→ x

sh x
est continue

sur ]0 ;+∞[.

• En 0 : f (x) = x

sh x
−→
x−→0

1, donc f est intégrable sur ]0 ; 1] .
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• En +∞ : x2 f (x) = x3

sh x
−→

x−→+∞
0 , donc, pour x assez 

grand : x2 f (x) � 1 , puis : 0 � f (x) � 1

x2
. D’après

l’exemple de Riemann (2 > 1 ) et le théorème de majoration
pour des fonctions � 0, f est intégrable sur [1 ;+∞[.

Ainsi, f est intégrable sur ]0 ;+∞[ et on conclut que

I =
∫ +∞

0

x

sh x
dx existe.

2) Calcul :

Nous allons essayer de développer la fonction sous l’intégrale
en somme d’une série de fonctions, puis permuter intégrale et
série.

On a, pour tout x ∈ ]0 ;+∞[ :

x

sh x
= 2x

ex − e−x
= 2x e−x

1 − e−2x

= 2x e−x
+∞∑
n=0

(e−2x )n =
+∞∑
n=0

2x e−(2n+1)x ,

car |e−2x | < 1.

Notons, pour tout n ∈ N :

fn : ]0 ;+∞[−→ R, x 
−→ 2x e−(2n+1)x .

• Pour tout n ∈ N , fn est continue par morceaux (car continue)
sur ]0 ;+∞[.

• 
∑
n�0

fn converge simplement sur ]0 ;+∞[ et a pour 

somme f.

• f est continue par morceaux (car continue) sur ]0 ;+∞[.

• Montrons que la série 
∑
n�0

∫ +∞

0
| fn(x)| dx converge.

Remarquons d’abord :

∀ n ∈ N, ∀ x ∈ ]0 ;+∞[, fn(x) = 2x e−(2n+1)x � 0 .

On a, pour tout n ∈ N :
∫ +∞

0
| fn(x)| dx =

∫ +∞

0
fn(x) dx

=
∫ +∞

0
2x e−(2n+1)x dx

=
t = (2n + 1)x

∫ +∞

0
2

t

2n + 1
e−t 1

2n + 1
dt

= 2

(2n + 1)2

∫ +∞

0
t e−t dt

= 2

(2n + 1)2
�(2) = 2

(2n + 1)2
1! = 2

(2n + 1)2
,

donc la série 
∑
n�0

∫ +∞

0
| fn(x)| dx converge.

D’après le théorème sur l’intégration sur un intervalle quelconque
pour une série d’applications, on déduit :

∫ +∞

0
f (x) dx =

+∞∑
n=0

∫ +∞

0
fn(x) dx =

+∞∑
n=0

1

(2n + 1)2
.

Il reste à calculer cette somme de série.

Pour tout N ∈ N, en séparant les termes d’indices pairs, d’in-
dices impairs, on a :

2N+1∑
k=1

1

k2
=

N∑
n=1

1

(2n)2
+

N∑
n=0

1

(2n + 1)2

= 1

4

N∑
n=1

1

n2
+

N∑
n=0

1

(2n + 1)2
,

d’où, en passant à la limite lorsque l’entier N tend vers l’infini
et puisque les séries considérées convergent :

+∞∑
k=1

1

k2
= 1

4

+∞∑
n=1

1

n2
+

+∞∑
n=0

1

(2n + 1)2
,

et donc :

+∞∑
n=0

1

(2n + 1)2
=

(
1 − 1

4

) +∞∑
k=1

1

k2
= 3

4

π2

6
= π2

8
.

On conclut :
∫ +∞

0

x

sh x
dx = π2

8
.

a) 1) Convergence simple :

Soit x ∈ [0 ;+∞[.

Si x =/ 0, alors :

fn(x) = ln(1 + nx2)

nx

=
ln n + ln x2 + ln

(
1 + 1

nx2

)

nx
∼
n∞

ln n

nx
−−−→

n ∞
0.

Si x = 0, alors : fn(x) = 0 −−−→
n ∞

0 .

Ceci montre : fn
C.S.−→
n∞

0 sur [0 ;+∞[.

2) Convergence uniforme (PSI) :

Soit n ∈ N
∗ fixé. L’étude des variations de fn paraît malcom-

mode, car le signe de f ′
n(x) semble difficile à étudier.

Vu l’expression 1 + nx2, il peut être intéressant de séparer en
cas selon les positions relatives de 1 et nx2.

Soit x ∈ [0 ;+∞[.

• Si x � 1√
n

, alors, en utilisant l’inégalité classique 

∀ t ∈ ] − 1 ;+∞[, ln(1 + t) � t ,

on a : 0 � fn(x) � nx2

nx
= x � 1√

n
.

• Si x � 1√
n

, alors 1 � nx2 , d’où :
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0 � fn(x) = ln(1 + nx2)

nx
� ln(2nx2)

nx

= ln(2n)

n

1

x
+ 2

n

lnx

x

� ln(2n)

n

√
n + 2

n
1 = ln(2n)√

n
+ 2

n
.

On déduit, en regroupant les deux cas précédents :

∀ x ∈ [0 ;+∞[, 0 � fn(x) � ln(2n)√
n

+ 2

n
,

et donc : || fn||∞ � ln(2n)√
n

+ 2

n
−−−→

n ∞
0.

Ceci montre : fn
C.U.−→
n∞

0 sur [0 ;+∞[.

b) 1) Convergence simple :

Soit x ∈ ]0 ;+∞[ fixé.

Vu la présence de (ln x)2n , nous allons séparer en cas selon la

position de (ln x)2 par rapport à 1, c’est-à-dire selon la posi-
tion de ln x par rapport à −1 et à 1.

• Si x ∈ ]0 ; e−1[ ∪ ]e ;+∞[ , alors (lnx)2 > 1,

donc (ln x)2n −−−→
n ∞

+ ∞, puis :
2 + (ln x)2n

1 + (ln x)2n
−−−→

n ∞
1,

et enfin : fn(x) = ln
2 + (ln x)2n

1 + (ln x)2n
−−−→

n ∞
0.

• Si x = e−1 ou x = e , alors (ln x)2 = 1, donc :

fn(x) = ln
3

2
−−−→

n ∞
ln

3

2
.

• Si e−1 < x < e , alors (ln x)2 < 1, donc (ln x)2n −−−→
n ∞

0,

puis : fn(x) −−−→
n ∞

ln 2 .

On conclut : fn
C.S.−→
n∞

f, où : f : ]0 ;+∞[−→ R est définie, pour

tout x ∈ ]0 ;+∞[, par :

f (x) =




0 si 0 < x < e−1 ou e < x

ln
3

2
si x = e−1 ou x = e

ln 2 si e−1 < x < e.
On pouvait aussi remarquer :

∀ x ∈ ]0 ;+∞[, f

(
1

x

)
= f (x) ,

ce qui permet de se ramener à une étude sur [1 ;+∞[ au lieu
de ]0 ;+∞[.

2) Convergence uniforme (PSI) :

• Puisque chaque fn est continue sur ]0 ;+∞[ et que f est dis-

continue en e−1 et en e, d’après un théorème du cours par contra-
position, on déduit que la convergence de la suite ( fn)n�1 vers

f n’est uniforme sur aucun des intervalles suivants : ]0 ; e−1[,

]e−1 ; 1], [1 ; e[, ]e ;+∞[.

• Soit a ∈ ]e ;+∞[ fixé. On a :

∀ n ∈ N
∗, ∀ x ∈ [a ;+∞[,

| fn(x) − f (x)| = ln
2 + (ln x)2n

1 + (ln x)2n
= ln

(
1 + 1

1 + (ln x)2n

)

� 1

1 + (ln x)2n
� 1

1 + (ln a)2n
,

donc : || fn − f ||[a ;+∞[
∞ � 1

1 + (ln a)2n
−−−→

n ∞
0.

Ceci montre : fn
C.U.−→
n∞

f sur [a ;+∞[, pour tout a ∈ ]e ;+∞[

fixé.

De même (ou en remplaçant x par 
1

x
) : fn

C.U.−→
n∞

f sur tout

]0 ; b], b ∈ ]0 ; e−1[ fixé.

• Soit b ∈ [1 ; e[ fixé. On a :

∀ n ∈ N
∗, ∀ x ∈ [1 ; b],

| fn(x) − f (x)| =
∣∣∣∣ ln

2 + (ln x)2n

1 + (ln x)2n
− ln 2

∣∣∣∣
= ln

2 + 2(ln x)2n

2 + (ln x)2n
= ln

(
1 + (ln x)2n

2 + (ln x)2n

)

� (ln x)2n

2 + (ln x)2n
� (ln x)2n

2
� (ln b)2n

2
,

donc : || fn − f ||[1 ;b]
∞ � (ln b)2n

2
−−−→

n ∞
0.

Ceci montre : fn
C.U.−→
n∞

f sur tout [1 ; b], b ∈ [1 ; e[ fixé.

De même (ou en changeant x en 
1

x
) : fn

C.U.−→
n∞

f sur tout

[a ; 1], a ∈ ]e−1 ; 1] fixé.

Il en résulte que fn
C.U.−→
n∞

f sur tout [a ; b], (a,b) ∈ ]e−1 ; e[2 fixé.

c) 1) Convergence simple :

Soit x ∈ R fixé. Vu la présence de 2n + |x |n , séparons en cas
selon la position de |x | par rapport à 2.

• Si |x | < 2, alors :

fn(x) = (2n + |x |n) 1
n = 2

[
1 +

( |x |
2

)n] 1
n

= 2 exp

(
1

n
ln

[
1 +

( |x |
2

)n])

= 2 exp

[
1

n

( |x |
2

)n

+ o

(( |x |
2

)n)]
−−−→

n ∞
2.

• Si |x | = 2, alors :

fn(x) = (2n + |x |n) 1
n = (2 · 2n)

1
n = 2

1
n · 2 −−−→

n ∞
2 .

• Si |x | > 2, alors :

fn(x) = (2n + |x |n) 1
n = |x |

(
1 +

(
2

|x |
)n) 1

n

−−−→
n ∞

|x | ,

comme plus haut.
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Ceci montre : fn
C.S.−→
n∞

f , où :

f : R −→ R, x 
−→
{

2 si |x | � 2

|x | si |x | > 2.

Autrement dit : ∀ x ∈ R, f (x) = Max (2, |x |).
2) Convergence uniforme (PSI) :

Soit n ∈ N tel que n � 2. On a, pour tout x ∈ R :

| fn(x) − f (x)| =
{

(2n + |x |n) 1
n − (2n)

1
n si |x | � 2

(2n + |x |n) 1
n − (|x |n) 1

n si |x | > 2.

L’application ϕ : [0 ;+∞[−→ R, t 
−→ t
1
n

est continue sur [0 ;+∞[, de classe C1 sur ]0 ;+∞[, et :

∀ t ∈ ]0 ;+∞[, ϕ′(t) = 1

n
t

1
n −1 = 1

nt1− 1
n

.

D’où, par l’inégalité des accroissements finis, pour tout

(a,h) ∈ [0 ;+∞[2 :

0 � ϕ(a + h) − ϕ(a) � h Sup
t∈]a ;a+h[

ϕ
′(t) � h

na1− 1
n

.

On a donc :

∗ si |x | � 2, alors :

| fn(x) − f (x)| = ∣∣ϕ(2n + |x |n) − ϕ(2n)
∣∣

� |x |n
n(2n)1− 1

n

� 2n

n2n−1
= 2

n

∗ si |x | > 2, alors :

| fn(x) − f (x)| = ∣∣ϕ(2n + |x |n) − ϕ(|x |n)∣∣
� 2n

n(|x |n)1− 1
n

� 2n

n(2n)1− 1
n

= 2

n
.

Ainsi : ∀ x ∈ R, | fn(x) − f (x)| � 2

n
,

donc : || fn − f ||∞ � 2

n
−−−→

n ∞
0.

On conclut : fn
C.U.−→
n∞

f sur R.

d) 1) Convergence simple :

Soit (x,y) ∈ ]0 ;+∞[2 . On a :

fn(x,y) = ln

(
x + y

n

)
−−−→

n ∞
ln x .

On conclut : fn
C.S.−→
n∞

f , où :

f : ]0 ;+∞[2−→ R, (x,y) 
−→ ln x .

2) Convergence uniforme (PSI) :

Soit n ∈ N
∗ . On a, pour tout (x,y) ∈ ]0 ;+∞[2 :

∣∣ fn(x,y) − f (x,y)
∣∣ =

∣∣∣ ln
(

x + y

n

)
− ln x

∣∣∣
=

∣∣∣∣ ln

(
1 + y

xn

)∣∣∣∣ = ln

(
1 + y

xn

)
.

• Par exemple, pour tout x ∈ ]0 ;+∞[ fixé,
|( fn − f )(x,y)| −→

y−→+∞
+∞ , donc fn − f n’est pas bornée

sur ]0 ;+∞[2. Il en résulte, d’après le cours, que la suite ( fn)n�1

ne converge pas uniformément sur ]0 ;+∞[2.

• Soit (a,b) ∈ ]0 ;+∞[2.

On a, pour tout (x,y) ∈ D = ]0 ; a] × [b ;+∞[ :

| fn(x,y) − f (x,y)| =
∣∣∣∣ ln

(
1 + y

xn

)∣∣∣∣ � ln

(
1 + b

an

)
,

donc : || fn − f ||D
∞ � ln

(
1 + b

an

)
−−−→

n ∞
0.

Ceci montre que la suite ( fn)n�1 converge uniformément vers

f sur tout D = ]0 ; a] × [b ;+∞[ , pour (a,b) ∈ ]0 ;+∞[2

fixé.

Puisque I est un intervalle de longueur > 0 , I est un en-
semble infini, donc il existe x0,. . . ,xN ∈ I , deux à deux dis-
tincts.

Considérons les polynômes d’interpolation de Lagrange sur les
abscisses x0,. . . xN , c’est-à-dire les polynômes L0,. . . ,L N dé-
finis par :

∀ i ∈ {0,. . . ,N }, ∀ x ∈ I, Li (x) =

∏
j=/ i

(x − xj )

∏
j=/ i

(xi − xj )
.

D’après le cours sur l’interpolation de Lagrange, on a, pour tout

P ∈ RN [X] : P =
N∑

i=0

P(xi )Li .

En particulier, on a donc :

∀ x ∈ I, ∀ n ∈ N, Pn(x) =
N∑

i=0

Pn(xi )Li (x) .

Comme Pn
C.S.−→
n∞

f sur I, on déduit, en faisant tendre l’entier n

vers l’infini :

∀ x ∈ I, f (x) =
N∑

i=0

f (xi )Li (x) .

Ceci montre que f est un polynôme, c’est le polynôme
N∑

i=0

f (xi )Li, de degré � N.

Munissons E = C([a ; b], R) de ||.||∞. Considérons le
sev F de E , formé des polynômes de degré � N. Ce sev F est
de dimension finie (égale à N + 1), donc, d’après le cours,
F est complet. Puisque F est complet, F est fermé dans E .

Comme : ∀ n ∈ N, Pn ∈ E, et que (Pn)n∈N converge vers f
dans E (la convergence uniforme est la convergence pour la
norme ||.||∞), il s’ensuit : f ∈ F .

5.28
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On conclut que f est un polynôme, de degré � N.

Comparer l’énoncé et la méthode de résolution de l’exercice
5.28.

• D’abord, montrons que, pour tout x ∈ [0 ;+∞[, l’in-
tégrale proposée existe.

Soit x ∈ [0 ;+∞[ fixé. L’application fx : t 
−→ sin (xt)

1 + t4
, est

continue sur [0 ;+∞[ et, pour t � 1 :

|Fx (t)| � 1

1 + t4
� 1

t4
.

D’après l’exemple de Riemann en +∞ (4 > 1) et le théorème
de majoration pour des fonctions � 0, Fx est intégrable sur

[0 ;+∞[, donc I (x) =
∫ +∞

0
Fx (t) dt existe.

• Comme, pour tout t ∈ [0 ;+∞[, sin (xt) ∼
x−→0+

xt , on peut

conjecturer que I (x) ressemble, pour x −→ 0+ , à∫ +∞

0

xt

1 + t4
dt , donc que I (x) admette un équivalent du

genre λx, λ ∈ R
∗
+.

1re méthode : utilisation du théorème de continuité sous le signe
intégrale :

On a, pour tout x ∈ ]0 ;+∞[ :

I (x) =
∫ +∞

0

sin (xt)

1 + t4
dt =

∫ +∞

0
xt

sin (xt)

xt

1

1 + t4
dt

= x
∫ +∞

0
φ(xt)

t

1 + t4
dt,

en notant :

φ : [0 ;+∞[−→ R, u 
−→



sin u

u
si u =/ 0

1 si u = 0.

Notons :

F : [0 ;+∞[×[0 ;+∞[−→ R, (x,t) 
−→ φ(xt)
t

1 + t4
.

• F est continue par rapport à x (car φ est continue), continue
par morceaux par rapport à t (car continue par rapport à t, φ
étant continue).

• On a : ∀ (x,t) ∈ [0 ;+∞[×[0 ;+∞[,

| f (x,t)| = |φ(xt)| t

1 + t4
� t

1 + t4
,

car : ∀ u ∈ [0 ;+∞[, | sin u| � u.

L’application ϕ : t 
−→ t

1 + t4
est continue par morceaux (car

continue), � 0, intégrable sur [0 ; ,+∞[ (exemple de Riemann,
3 > 1 et théorème d’équivalence pour des fonctions � 0).

Ainsi, F vérifie HD sur[0 ;+∞[×[0 ;+∞[.

D’après le théorème de continuité sous le signe intégrale, l’ap-
plication 

g : [0 ;+∞[−→ R, x 
−→
∫ +∞

0
f (x,t) dt

est continue sur [0 ;+∞[. En particulier :

g(x) −→
x−→0

g(0) =
∫ +∞

0

t

1 + t4
dt

=
u = t2

1

2

∫ +∞

0

du

1 + u2
= 1

2
[Arctan u]+∞

0 = π

4
.

Puis, comme : ∀ x ∈ [0 ;+∞[, I (x) = xg(x),

on conclut : I (x) ∼
x−→0+

π

4
x .

2e méthode : utilisation du théorème de convergence dominée
et de la caractérisation séquentielle des limites :

Soit (xn)n∈N une suite dans ]0 ;+∞[, convergeant vers 0.

Notons, pour tout n ∈ N :

fn : [0 ;+∞[−→ R, t 
−→ sin (xnt)

xn(1 + t4)
.

• Pour tout n ∈ N , fn est continue par morceaux (car continue)
sur [0 ;+∞[.

• Soit t ∈ [0 ;+∞[. Si t =/ 0, alors :

fn(t) = sin (xnt)

xnt

t

1 + t4
−−−→

n ∞
t

1 + t4
.

Si t = 0, alors : fn(t) = 0 −−−→
n ∞

0.

Ceci montre : fn
C.S.−→
n∞

f sur [0 ;+∞[, où :

f : [0 ;+∞[−→ R, t 
−→ t

1 + t4
.

• L’application f est continue par morceaux sur [0 ;+∞[ (car
continue).

• On a : ∀ n ∈ N, ∀ t ∈ [0 ;+∞[,

| fn(t)| = | sin (xnt)|
xn(1 + t4)

� |xnt |
xn(1 + t4)

= t

1 + t4

et l’application t 
−→ t

1 + t4
est continue par morceaux (car

continue), � 0, intégrable sur [0 ;+∞[.

Ainsi, la suite ( fn)n∈N vérifie l’hypothèse de domination.

D’après le théorème de convergence dominée :
∫ +∞

0
fn −−−→

n ∞

∫ +∞

0
f =

∫ +∞

0

t

1 + t4
dt = π

4

(calcul fait plus haut, dans la première méthode).

Ceci montre que, pour toute suite (xn)n∈N dans ]0 ;+∞[,

convergeant vers 0, la suite 

(∫ +∞

0

sin (xnt)

xn(1 + t4)
dt

)
n∈N

converge vers 
π

4
.
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Il en résulte, par caractérisation séquentielle des limites :
∫ +∞

0

sin xt)

x(1 + t4)
dt −→

x−→0+
π

4
,

et donc : I (x) ∼
x−→0+

π

4
x .

a) D’abord, pour tout n ∈ N
∗ , l’intégrale

In =
∫ 1

0
ln(1 + xn) dx , existe comme intégrale d’une appli-

cation continue sur un segment.

On a, pour tout n ∈ N
∗ , par le changement de variable

t = xn, x = t
1
n , dx = 1

n
t

1
n −1 dt :

In =
∫ 1

0
ln(1 + t)

1

n
t

1
n −1 dt = 1

n

∫ 1

0
t

1
n

ln(1 + t)

t
dt

︸ ︷︷ ︸
notée Jn

,

où Jn est d’ailleurs une intégrale de fonction intégrable sur
]0 ; 1] .

Pour obtenir la limite de Jn (si elle existe), nous allons utiliser
le théorème de convergence dominée.

Notons, pour tout n ∈ N
∗ :

fn : ]0 ; 1] −→ R, t 
−→ t
1
n

ln(1 + t)

t
.

• Pour tout n ∈ N
∗ , fn est continue par morceaux (car conti-

nue) sur ]0 ; 1] .

• fn
C.S.−→
n∞

f , où f : ]0 ; 1] −→ R, t 
−→ ln(1 + t)

t
, car, pour

t ∈ ]0 ; 1] fixé, on a t
1
n −−−→

n ∞
1 .

• f est continue par morceaux (car continue) sur ]0 ; 1] .

• On a, pour tout n ∈ N
∗ et tout t ∈ ]0 ; 1] :

| fn(t)| = t
1
n

ln(1 + t)

t
� ln(1 + t)

t
,

et l’application t 
−→ ln(1 + t)

t
est continue par morceaux (car

continue), � 0, intégrable sur ]0 ; 1], puisque 
ln(1 + t)

t
−→
t−→0

1.

Ceci montre que la suite ( fn)n�1 vérifie l’hypothèse de domi-
nation.

D’après le théorème de convergence dominée :
∫ +∞

0
fn −−−→

n ∞

∫ +∞

0
f .

Ainsi : Jn −−−→
n ∞

∫ +∞

0

ln(1 + t)

t
dt = π2

12
.

On conclut :
∫ +∞

0
ln(1 + xn) dx ∼

n∞
π2

12

1

n
.

b) 1re méthode : utilisation du théorème de convergence do-
minée :

D’abord, pour tout n ∈ N
∗ , In =

∫ 1

0
xn ln(1 + xn) dx existe

comme intégrale d’une application continue sur un segment.

On a, pour tout n ∈ N
∗ , par le changement de variable

t = xn, x = t
1
n , dx = 1

n
t

1
n −1 dt :

In =
∫ 1

0
t ln (1 + t)

1

n
t

1
n −1 dt = 1

n

∫ 1

0
t

1
n ln(1 + t) dt

︸ ︷︷ ︸
notée Jn

.

Notons, pour tout n ∈ N
∗ :

fn : ]0 ; 1] −→ R, t 
−→ t
1
n ln (1 + t) .

• Pour tout n ∈ N
∗ , fn est continue par morceaux (car conti-

nue) sur ]0 ; 1] .

• fn
C.S.−→
n∞

f , où f : ]0 ; 1] −→ R, t 
−→ ln(1 + t) , car, pour

t ∈ ]0 ; 1] fixé, t
1
n −−−→

n ∞
1 .

• f est continue par morceaux (car continue) sur ]0 ; 1] .

• On a :

∀ n ∈ N
∗, ∀ t ∈ ]0 ; 1], | fn(t)| = t

1
n ln(1 + t) � ln(1 + t) ,

et l’application t 
−→ ln(1 + t) est continue par morceaux (car
continue), � 0, intégrable sur ]0 ; 1] car intégrable sur [0 ; 1]
puisque continue sur ce segment.

Ceci montre que la suite ( fn)n�1 vérifie l’hypothèse de domi-
nation.

D’après le théorème de convergence dominée :
∫ 1

0
fn −−−→

n ∞

∫ 1

0
f ,

c’est-à-dire :

Jn −−−→
n ∞

∫ 1

0
ln(1 + t) dt

= [
(1 + t) ln (1 + t) − (1 + t)

]1
0 = 2 ln 2 − 1.

On conclut : In ∼
n∞

2 ln 2 − 1

n
.

2e méthode : intervention d’une autre intégrale, calculable :

Pour tout n ∈ N
∗ , notons In =

∫ 1

0
xn ln (1 + xn) dx, qui existe

comme intégrale d’une application continue sur un segment,

et notons Kn =
∫ 1

0
xn−1ln(1 + xn) dx .

• On a, pour tout n ∈ N
∗ :

|In − Kn| =
∫ 1

0
(xn−1 − xn) ln(1 + xn) dx
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�
∫ 1

0
(xn−1 − xn) ln 2 dx = ln 2

[
xn

n
− xn+1

n + 1

]1

0

= ln 2

(
1

n
− 1

n + 1

)
= ln 2

n(n + 1)
= o

n∞

(
1

n

)
.

• D’autre part, on peut calculer Kn par le changement de va-
riable t = xn, dt = xn−1 dx :

Kn =
∫ 1

0

1

n
ln(1 + t) dt = 1

n
(2 ln 2 − 1) ,

calcul déjà fait dans la 1re méthode.

Ainsi : In = Kn + (In − Kn),

où : Kn = 2 ln 2 − 1

n
, et In − Kn = o

(
1

n

)
= o(Kn).

On obtient : In ∼
n∞

Kn,

et on conclut : In ∼
n∞

2 ln 2 − 1

n
.

c) Comme, pour x ∈ [0 ;+∞[ fixé : ln

(
1 + x

n

)
∼
n∞

x

n
,

on conjecture que In =
∫ +∞

0

ln

(
1 + x

n

)

x(1 + x2)
dx est équivalente

à 
∫ +∞

0

x

n
x(1 + x2)

dx , c’est-à-dire à λn, où λ > 0 est une

constante.

On va donc essayer de faire apparaître 
1

n
en facteur.

À cet effet, considérons, pour tout n ∈ N
∗ :

fn : ]0 ;+∞[−→ R, x 
−→
n ln

(
1 + x

n

)

x(1 + x2)
,

et essayons de montrer que le théorème de convergence dominée
s’applique.

• Pour tout n ∈ N
∗ , fn est continue par morceaux (car conti-

nue) sur ]0 ;+∞[.

• Pour tout x ∈ ]0 ;+∞[ fixé :

fn(x) =
ln

(
1 + x

n

)

x

n

1

1 + x2
−−−→

n ∞
1

1 + x2
,

donc fn
C.S.−→
n∞

f , où f : ]0 ;+∞[−→ R, x 
−→ 1

1 + x2
.

• f est continue par morceaux (car continue) sur ]0 ;+∞[.

• On a : ∀ n ∈ N
∗, ∀ x ∈ ]0 ;+∞[,

| fn(x)| =
n ln

(
1 + x

n

)

x(1 + x2)
�

n
x

n
x(1 + x2)

= 1

1 + x2
,

car on sait : ∀ t ∈ ] − 1;+∞[, ln(1 + t) � t.

L’application x 
−→ 1

1 + x2
, est continue par morceaux (car

continue), � 0, intégrable sur ]0 ;+∞[.

Ceci montre que la suite ( fn)n�1 vérifie l’hypothèse de domi-
nation.

D’après le théorème de convergence dominée :
∫ +∞

0
fn −−−→

n ∞

∫ +∞

0
f =

∫ +∞

0

1

1 + x2
dx

= [Arctan x]+∞
0 = π

2
.

On conclut :
∫ +∞

0

ln

(
1 + x

n

)

x(1 + x2)
dx ∼

n∞
π

2n
.

1) Soit n ∈ N
∗ fixé.

On a, par intégration par parties :

In =
∫ 1

0

nxn

1 + x2n
dx =

∫ 1

0
x

nxn−1

1 + x2n
dx

=
[
x Arctan (xn)

]1

0
−

∫ 1

0
Arctan (xn) dx

︸ ︷︷ ︸
notée Jn

= π

4
− Jn .

Par le changement de variable 

t = xn, x = t
1
n , dx = 1

n
t

1
n −1 dt ,

Jn =
∫ 1

0
Arctan t · 1

n
t

1
n −1 dt = 1

n

∫ 1

0
t

1
n

Arctan t

t
dt

︸ ︷︷ ︸
notée Kn

.

Pour déterminer la limite de Kn (si elle existe) lorsque l’entier
n tend vers l’infini, nous allons essayer d’utiliser le théorème
de convergence dominée.

Notons, pour tout n ∈ N
∗ :

fn : ]0 ; 1] −→ R, t 
−→ t
1
n

Arctan t

t
.

• Pour tout n ∈ N
∗ , fn est continue par morceaux (car conti-

nue) sur ]0 ; 1] .

• fn
C.S.−→
n∞

f , où f : ]0 ; 1] −→ R, t 
−→ Arctan t

t
.

• f est continue par morceaux (car continue) sur ]0 ; 1] .

• On a : ∀ n ∈ N
∗, ∀ t ∈ ]0 ; 1],

| fn(t)| = t
1
n

Arctan t

t
� Arctan t

t
� 1,

et l’application constante 1 est intégrable sur l’intervalle borné
]0 ; 1] .

Ceci montre que la suite ( fn)n�1 vérifie l’hypothèse de domi-
nation.

D’après le théorème de convergence dominée :
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Kn =
∫ 1

0
fn −−−→

n ∞

∫ 1

0
f =

∫ 1

0

Arctan t

t
dt

︸ ︷︷ ︸
notée C

.

Puisque l’application t 
−→ Arctan t

t
est continue, � 0 et n’est

pas l’application nulle, on a : C > 0.

On obtient : Kn = C + o
n∞

(1)

d’où :

In = π

4
− Jn = π

4
− 1

n
Kn = π

4
− C

n
+ o

n∞

(
1

n

)
.

Remarque : Le calcul de C, en se ramenant à une série, peut
être l’objet d’un exercice.

a) 1) Convergence simple, convergence absolue :

Puisque toutes les fn sont � 0, la convergence absolue revient
à la convergence simple.

Soit x ∈ ]0 ;+∞[ fixé.

On a  :

fn(x) = xa

(n + x)b
∼
n∞

xa

nb
� 0 .

D’après l’exemple de Riemann et le théorème d’équivalence
pour des séries à termes � 0, on conclut :

∗ si b > 1, alors 
∑
n�1

fn converge simplement sur ]0 ;+∞[

∗ si b � 1, alors 
∑
n�1

fn ne converge simplement sur aucune

partie non vide de ]0 ;+∞[.

Dans la suite de l’étude, on peut donc se limiter au cas : b > 1.

2) Convergence normale :

• Étude sur ]0 ;+∞[ :

Soit n ∈ N
∗ fixé.

L’application fn est de classe C1 sur ]0 ;+∞[ et, pour tout
x ∈ ]0 ;+∞[ :

f ′
n(x) = axa−1(n + x)−b + xa(−b)(n + x)−b−1

= xa−1(n + x)−b−1
(
a(n + x) − bx

)
= xa−1(n + x)−b−1

(
(a − b)x + an

)
.

∗ Si a > b , alors :

fn(x) = xa

(n + x)b
∼

x−→+∞
xa−b −→

x−→+∞
+∞ ,

fn n’est pas bornée, donc 
∑
n�1

fn ne converge pas normalement

sur ]0 ;+∞[.

∗ Si a = b , alors : fn(x) = xa

(n + x)b
∼

x−→+∞
xa−b = 1,

donc || fn||∞ � 1,
∑
n�1

|| fn||∞ diverge grossièrement,
∑
n�1

fn

ne converge pas normalement sur ]0 ;+∞[.

∗ Supposons maintenant a < b et dressons le tableau de va-
riations de fn :

x 0   
an

b − a
+∞

f ′
n(x) + 0   −

fn(x) 0  ↗ ↘ 0

On a donc :

|| fn||∞ = fn

(
an

b − a

)
=

(
an

b − a

)a

(
n + an

b − a

)b

=
(

an

b − a

)a(b − a

bn

)b

= aa(b − a)b−ab−b 1

nb−a
.

D’après l’exemple de Riemann, la série 
∑
n�1

|| fn||∞ converge

si et seulement si : b − a > 1 .

On conclut :

◦ si b − a � 1, alors 
∑
n�1

fn ne converge pas normalement sur

]0 ;+∞[

◦ si b − a > 1 , alors 
∑
n�1

fn converge normalement sur

]0 ;+∞[.

• Étude sur ]0 ; A], A ∈ ]0 ;+∞[ fixé :

Soit A ∈ ]0 ;+∞[ fixé.

On a : ∀ n ∈ N
∗, ∀ x ∈ ]0 ; A],

0 � fn(x) = xa

(n + x)b
� xa

nb
� Aa

nb
,

d’où : ∀ n ∈ N
∗, || fn||]0 ;A]

∞ � Aa

nb
.

D’après l’exemple de Riemann (b > 1) et le théorème de ma-
joration pour des séries à termes � 0, on déduit que la série∑
n�1

|| fn,||]0 ;A]
∞ converge, et on conclut que 

∑
n�1

fn converge

normalement (donc uniformément) sur ]0 ; A] , pour tout
A ∈ ]0 ;+∞[ fixé (on rappelle que l’on a supposé b > 1).

3) Convergence uniforme (PSI) :

Si a � b , on a vu || fn||∞ −−−→
n ∞

/ 0, donc, d’après le cours,∑
n�1

fn ne converge pas uniformément sur ]0 ;+∞[.

Supposons dorénavant a < b .

Si a < b − 1 , on a vu que 
∑
n�1

fn converge normalement, donc

uniformément, sur ]0 ;+∞[.
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Supposons dorénavant a � b − 1.

On a, pour tout n ∈ N
∗ et tout x ∈ ]0 ;+∞[, en notant Rn le

reste d’ordre n :

Rn(x) =
+∞∑

k=n+1

fk(x)︸ ︷︷ ︸
�0

�
2n∑

k=n+1

fk(x)

=
2n∑

k=n+1

xa

(k + x)b
� n

xa

(2n + x)b
,

d’où, en particulier :

Rn(n) � n
na

(3n)b
= 1

3b
n

�0︷ ︸︸ ︷
a + 1 − b � 1

3b
,

puis : ||Rn||∞ � Rn(n) � 1

3b
.

Il en résulte : ||Rn||∞ −−−→
n ∞
/ 0, et on conclut que 

∑
n�1

fn ne

converge pas uniformément sur ]0 ;+∞[.

On peut résumer les résultats dans un tableau :

Si x =/ 0, alors |e−x | < 1, la série géométrique 
∑

n

(e−x )n

converge, donc, par théorème de majoration pour des séries à

termes � 0, la série 
∑

n

fn(x) converge.

Si x = 0, alors : ∀ n � 2, fn(x) = 0, donc la série 
∑

n

fn(x) ,

converge.

On conclut :
∑

n

fn converge simplement sur [0 ;+∞[.

2) Convergence normale :

• Étude sur [0 ;+∞[:

Soit n ∈ N tel que n � 2, fixé. 

L’application fn est de classe C1 sur [0 ;+∞[ et :

∀ x ∈ [0 ;+∞[, f ′
n(x) = 1

ln n
(1 − nx) e−nx .

On en déduit le tableau de variations de fn :

x 0   
1

n
+∞

f ′
n(x) + 0   −

fn(x) 0   ↗ ↘ 0

D’où : || fn||∞ = fn

(
1

n

)
= 1

e n ln n
.

Comme la série 
∑
n�2

1

en ln n
diverge (cf. exercice 4.2, par uti-

lisation d’une comparaison série/intégrale), la série 
∑

n

|| fn||∞,

diverge, donc 
∑

n

fn ne converge pas normalement sur

[0 ;+∞[.

• Étude sur [a ;+∞[, a ∈ ]0 ;+∞[ fixé :

Soit a ∈ ]0 ;+∞[ fixé.

Puisque 
1

n
−−−→

n ∞
0 , il existe N � 2 tel que :

∀ n � N ,
1

n
� a .

On a alors, d’après le tableau de variations de fn :

∀ n � N , || fn||[a ;+∞[
∞ = | fn(a)| = fn(a) .

Comme la série 
∑

n

fn(a) converge (cf. 1)), il s’ensuit que la

série 
∑

n

|| fn||[a ;+∞[
∞ converge, et on conclut :

∑
n

fn converge

normalement sur tout [a ;+∞[ , a ∈ ]0 ;+∞[ fixé.

3) Convergence uniforme (PSI) :

• Étude sur [a ;+∞[ :

D’après 2),
∑

n

fn converge normalement, donc uniformément,

sur tout [a ;+∞[, a ∈ ]0 ;+∞[ fixé.

ou encore dans le plan des (a,b) :

Nature de la convergence

normale uniforme simple

a + 1 < b oui oui oui

1 < b � a + 1 non non oui

b � 1 non non non

b

aO

1

CN, CU, CS

CN, CU, CS

CN, CU, CS

b) 1) Convergence simple :

Puisque les fn sont toutes � 0, la convergence absolue revient
à la convergence simple.

Soit x ∈ [0 ;+∞[.

On a :

∀ n � 3, 0 � fn(x) = x e−nx

ln n
� x e−nx = x(e−x )n .
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• Étude sur [0 ;+∞[ :

Comme || fn||∞ = 1

e n ln n
−−−→

n ∞
0 , il nous faut étudier le reste

d’ordre n, noté Rn .

Soit x ∈ [0 ;+∞[ fixé.

Nous allons utiliser une comparaison série/intégrale.

L’application ϕx : t ∈ [2 ;+∞[
−→ x e−t x

ln t
= x

ext ln t

est continue par morceaux (car continue), décroissante, inté-

grable sur [2 ;+∞[, car t2ϕx (t) −→
t−→+∞

0.

On a donc, par comparaison série/intégrale, pour tout n � 2 :

Rn(x) =
+∞∑

k=n+1

ϕx (k) �
∫ +∞

n
ϕx (t) dt.

Et :∫ +∞

n
ϕx (t) dt =

∫ +∞

n

x e−t x

ln t
dt �

∫ +∞

n

x e−t x

ln n
dt

= 1

ln n
[−e−t x ]+∞

n = 1

ln n
e−nx � 1

ln n
.

Ainsi : ∀ n � 2, ∀ x ∈ [0 ;+∞[, 0 � Rn(x) � 1

ln n
,

puis : ∀ n � 2, ||Rn||∞ � 1

ln n
.

Comme 
1

ln n
−−−→

n ∞
0, il en résulte ||Rn||∞ −−−→

n ∞
0 , et on

conclut :
∑

n

fn converge uniformément sur [0 ;+∞[.

c) 1) Convergence simple :

Pour tout x ∈ [0 ;+∞[ fixé, la série 
∑
n�1

(−1)n x

x2 + n
relève

du TSCSA, car elle est alternée, le terme général tend vers 0,
et la valeur absolue du terme général décroît. Il en résulte que
cette série converge.

Ainsi,
∑
n�1

fn converge simplement sur [0 ;+∞[.

2) Convergence absolue :

Soit x ∈ [0 ;+∞[ fixé.

Si x =/ 0, alors : | fn(x)| = |x |
x2 + n

∼
n∞

|x |
n

� 0,

donc, par l’exemple de Riemann et le théorème d’équivalence

pour des séries à termes � 0, la série 
∑
n�1

| fn(x)| diverge.

Pour x = 0, tous les termes sont nuls, donc la série converge.

Ainsi,
∑
n�1

fn converge absolument seulement sur {0} .

3) Convergence normale :

D’après 2) (et le cas trivial x = 0),
∑
n�1

fn ne converge norma-

lement sur aucune partie non vide ni égale à {0} , de [0 ;+∞[.

4) Convergence uniforme (PSI) :

Puisque, pour tout x ∈ [0 ;+∞[, la série 
∑
n�1

fn(x) relève du

TSCSA, on a, en notant Rn le reste d’ordre n :

∀ n ∈ N
∗, ∀ x ∈ [0 ;+∞[,

|Rn(x)| � | fn+1(x)| = x

x2 + (n + 1)
.

Pour n ∈ N
∗ fixé, l’étude des variations de 

ϕn : [0 ;+∞[−→ R, x 
−→ x

x2 + (n + 1)

montre : Sup
x∈[0 ;+∞[

|ϕn(x)| = ϕn(
√

n + 1) = 1

2
√

n + 1
.

On a donc : 0 � ||Rn||∞ � 1

2
√

n + 1
−−−→

n ∞
0,

d’où, par encadrement : ||Rn||∞ −−−→
n ∞

0 . 

On conclut que 
∑
n�1

fn converge uniformément sur [0 ;+∞[.

d) 1) Convergence simple, convergence absolue :

Soit x ∈ R fixé.

Pour tout n ∈ N tel que n � −x, on a :

Arctan (x + n) ∈
[

0 ; π
2

[
et Arctan n ∈

[
0 ; π

2

[
,

d’où : fn(x) ∈
]

− π

2
; π

2

[
.

Et, par une formule de trigonométrie :

tan
(

fn(x)
) = (x + n) − n

1 + (x + n)n
= x

1 + n(x + n)
.

On a donc, pour tout n � −x :

fn(x) = Arctan
x

1 + n(x + n)
.

On sait : ∀ t ∈ R, |Arctan t | � |t |.

D’où : ∀ n � −x, | fn(x)| � |x |
1 + n(x + n)

.

Si x = 0, alors : ∀ n ∈ N, fn(x) = 0,

donc la série 
∑
n�0

fn(x) converge.

Si x =/ 0, alors 
|x |

1 + n(x + n)
∼
n∞

|x |
n2

.

D’après l’exemple de Riemann (2 > 1 ), le théorème d’équi-
valence et le théorème de majoration pour des séries à termes

� 0, la série 
∑

n

| fn(x)| converge.

Ceci montre que 
∑
n�0

fn converge absolument, donc simplement,

sur R.

2) Convergence normale, convergence uniforme (PSI) :

Soit n ∈ N
∗ .
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L’application fn est de classe C1 sur R et :

∀ x ∈ R, f ′
n(x) = 1

1 + (x + n)2
> 0 ,

d’où le tableau de variations de fn :

x −∞ +∞
f ′
n(x) +

fn(x) ↗
Et :

lim
x−→−∞

fn(x) = −π

2
− Arctan n = −π+ Arctan

1

n
,

lim
x−→+∞

fn(x) = π

2
− Arctan n = Arctan

1

n
.

• Étude sur ] − ∞; 0] :

Puisque || fn||]−∞;0]
∞ −−−→

n ∞
π =/ 0, d’après le cours,

∑
n

fn ne

converge pas uniformément (donc ne converge pas normale-
ment non plus) sur ] − ∞; 0].

• Étude sur [0 ;+∞[ :

∗ Puisque || fn||∞ = Arctan
1

n
∼
n∞

1

n
� 0 , d’après l’exemple de

Riemann et le théorème d’équivalence pour des séries à termes

� 0, la série 
∑
n�0

|| fn||[0 ;+∞[ diverge, donc 
∑
n�0

fn ne converge

pas normalement sur [0 ;+∞[.

∗ Pour étudier la convergence uniforme, puisque

|| fn||[0 ;+∞[
∞ −−−→

n ∞
0 et que la série 

∑
n�0

|| fn||[0 ;+∞[
∞ diverge,

il nous faut étudier le reste d’ordre n, noté Rn .

On a, pour tout n ∈ N et tout x ∈ [0 ;+∞[ :

Rn(x) =
+∞∑

k=n+1

fk(x) =
+∞∑

k=n+1

Arctan
x

1 + k(x + k)

�
2n∑

k=n+1

Arctan
x

1 + k(x + k)
� n Arctan

x

1 + 2n(x + 2n)
,

puis : Rn(n) � n Arctan
n

1 + 6n2
, donc :

||Rn||∞ � n Arctan
n

1 + 6n2
∼
n∞

n2

1 + 6n2
−−−→

n ∞
1

6
.

Il en résulte : ||Rn||∞ −−−→
n ∞
/ 0.

Ceci montre que 
∑

n

fn ne converge pas uniformément sur

[0 ;+∞[.

∗ Soit (a,b) ∈ R
2 tel que, par exemple, a � 0 � b .

Notons c = Max (−a,b).

On a, pour tout n ∈ N tel que n � −a :

∀ x ∈ [a ; b], | fn(x)| =
∣∣∣∣Arctan

x

1 + n(x + n)

∣∣∣∣
� |x |

1 + n(x + n)
� c

1 + na + n2
,

d’où : || fn||[a ;b]
∞ � c

1 + an + n2
∼
n∞

c

n2
� 0.

D’après l’exemple de Riemann (2 > 1 ), le théorème d’équi-
valence et le théorème de majoration pour des séries à termes

� 0, la série 
∑

n

|| fn||[a ;b]
∞ converge.

On conclut que 
∑
n�0

fn converge normalement, donc unifor-

mément, sur [a ; b] , pour tout (a,b) ∈ R
2 fixé tel que

a � 0 � b , puis sur tout segment de R.

e) 1) Convergence simple, convergence absolue :

Comme les fn sont toutes � 0, la convergence absolue revient
à la convergence simple.

Soit x ∈ [0 ;+∞[ fixé. Si x =/ 0, alors :

fn(x) = nx

1 + n3x2
∼
n∞

nx

n3x2
= 1

x

1

n2
� 0 .

D’après l’exemple de Riemann (2 > 1 ) et le théorème d’équi-

valence pour des séries à termes � 0, la série 
∑

n

fn(x)

converge.

Si x = 0, alors : ∀ n ∈ N, fn(x) = 0,

donc la série 
∑

n

fn(x) converge.

On conclut :

la série 
∑

n

fn converge simplement sur [0 ;+∞[.

2) Convergence normale :

Soit n ∈ N
∗ . L’application fn est de classe C1 sur [0 ;+∞[ et,

pour tout x ∈ [0 ;+∞[ :

f ′
n(x) = n(1 + n3x2) − nx2n3x

(1 + n3x2)2

= n − n4x2

(1 + n3x2)2
= n(1 − n3x2)

(1 + n3x2)2
,

d’où le tableau de variations de fn :

x 0   n−3/2 +∞
f ′
n(x) + 0   −

fn(x) 0   ↗ ↘ 0

• Étude sur [0 ;+∞[ :

L’application fn est bornée et :

|| fn||∞ = fn(n
−3/2) = n−1/2

1 + 1
= 1

2n1/2
.
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D’après l’exemple de Riemann (1/2 � 1), la série 
∑

n

|| fn||∞

diverge, donc :
∑

n

fn ne converge pas normalement sur

[0 ;+∞[.

• Étude sur [a ;+∞[, a ∈ ]0 ;+∞[ fixé :

Soit a ∈ ]0 ;+∞[ fixé.

1re méthode :

Puisque n−3/2 −−−→
n ∞

0 , il existe N ∈ N
∗ tel que :

∀ n � N , n−3/2 � a .

On a alors : ∀ n � N , || fn||[a ;+∞[
∞ = | fn(a)| = fn(a).

Puisque 
∑

n

fn(a) converge (cf. 1)), la série 
∑

n

|| fn||[a ;+∞[
∞

converge. Ceci montre que 
∑

n

fn converge normalement sur

[a ;+∞[ .

2e méthode :

On a : ∀ n ∈ N
∗, ∀ x ∈ [a ;+∞[,

0 � fn(x) = nx

1 + n3x2
� nx

n3x2
= 1

n2x
� 1

n2a
,

donc : ∀ n ∈ N
∗, || fn||[a ;+∞[

∞ � 1

an2
.

D’après l’exemple de Riemann (2 > 1 ) et le théorème de ma-
joration pour des séries à termes � 0, on déduit que la série∑

n

|| fn||[a ;+∞[
∞ converge, et on conclut que 

∑
n

fn converge

normalement sur [a ;+∞[ .

3) Convergence uniforme (PSI) :

• Étude sur [a ;+∞[, a ∈ ]0 ;+∞[ fixé :

D’après 2),
∑

n

fn converge normalement, donc uniformément,

sur [a ;+∞[ .

• Étude sur ]0 ;+∞[ :

Puisque || fn||∞ −−−→
n ∞

0 et que la série 
∑

n

|| fn||∞ diverge,

il nous faut étudier le reste.

On a, pour tout n ∈ N
∗ et tout x ∈ [0 ;+∞[, en notant Rn le

reste d’ordre n :

Rn(x) =
+∞∑

k=n+1

kx

1 + k3x2
�

2n∑
k=n+1

kx

1 + k3x2

� n
(n + 1)x

1 + (2n)3x2
= n(n + 1)x

1 + 8n3x2
.

D’où, en particulier, pour tout n ∈ N
∗ :

Rn(n
−3/2) � n(n + 1)n−3/2

1 + 8
= n + 1

9
√

n
�

√
n

9
,

et donc : ||Rn||∞ � Rn(n
−3/2) �

√
n

9
−−−→

n ∞
+ ∞,

d’où : ||Rn||∞ −−−→
n ∞
/ 0.

On conclut :
∑

n

fn , ne converge pas uniformément sur

]0 ;+∞[.

a) On a : ∀ n ∈ N
∗, ∀ x ∈ [0 ;+∞[,

| fn(x)| = Arctan (xn+1)

n(n + 1)
� π

2n(n + 1)
� π

2n2
,

donc : ∀ n ∈ N
∗, || fn||∞ � π

2n2
.

D’après l’exemple de Riemann (2 > 1 ) et le théorème de ma-

joration pour des séries à termes � 0, la série 
∑
n�1

|| fn||∞
converge.

On conclut que 
∑
n�1

fn converge normalement, donc unifor-

mément (PSI), absolument, simplement, sur [0 ;+∞[.

b) Puisque, pour tout n ∈ N
∗ , fn est continue sur [0 ;+∞[ et

que la série d’applications 
∑
n�1

fn converge normalement (PC),

uniformément (PSI) sur [0 ;+∞[, d’après un théorème du cours,
la somme S est continue sur [0 ;+∞[.

c) On a, pour tout x ∈ ]0 ;+∞[ :

S(x) + S
( 1

x

)

=
+∞∑
n=1

Arctan (xn+1)

n(n + 1)
+

+∞∑
n=1

Arctan

((
1

x

)n+1)

n(n + 1)

=
+∞∑
n=1

(
Arctan (xn+1) + Arctan

(
1

xn+1

))
1

n(n + 1)

=
+∞∑
n=1

π

2

1

n(n + 1)
.

Comme, pour N � 1, par télescopage :

N∑
n=1

1

n(n + 1)
=

N∑
n=1

(
1

n
− 1

n + 1

)
= 1 − 1

N + 1
−→

N−→+∞
1 ,

on a :
+∞∑
n=1

1

n(n + 1)
= 1,

et donc : ∀ x ∈ ]0 ;+∞[, S(x) + S

(
1

x

)
= π

2
,

d’où l’égalité demandée.

d) 1) • Pour tout n ∈ N
∗ , fn est de classe C1 sur [0 ; 1[ et, pour

tout x ∈ [0 ; 1[ :

f ′
n(x) = 1

n(n + 1)

(n + 1)xn

1 + x2(n+1)
= xn

n(1 + x2(n+1))
.

5.34
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• Soit a ∈ [0 ; 1[ fixé. On a : ∀ n ∈ N
∗, ∀ x ∈ [0 ; a],

| f ′
n(x)| = xn

n(1 + x2(n+1))
� xn

n
� xn � an,

donc : ∀ n ∈ N
∗, || f ′

n||[0 ;a]
∞ � an .

Comme |a| < 1, la série géométrique 
∑
n�1

an converge. Par théo-

rème de majoration pour des séries à termes � 0, la série∑
n�1

|| f ′
n||[0 ;a]

∞ converge. Ceci montre que 
∑
n�1

f ′
n converge nor-

malement, donc uniformément (PSI), sur tout [0 ; a], a ∈ [0 ; 1[
fixé.

• On a vu en a) que 
∑
n�1

fn, converge simplement sur [0 ;+∞[,

donc sur [0 ; 1[ .

D’après le théorème de dérivation pour une série de fonctions,
on conclut que S est de classe C1 sur [0 ; 1[ et que :

∀ x ∈ [0 ; 1[, S′(x) =
+∞∑
n=1

xn

n(1 + x2(n+1))
.

2) Comme S′(0) = 0 et ∀ x ∈ ]0 ; 1[, S′(x) > 0,

il s’ensuit que S est strictement croissante sur [0 ; 1[ .

De plus, comme S est continue sur [0 ; 1] (cf. b)), on conclut
que S est strictement croissante sur [0 ; 1] .

3) On a : S(1) =
+∞∑
n=1

Arctan 1

n(n + 1)
= π

2

+∞∑
n=1

1

n(n + 1)
= π

4
.

4) On a, pour tout x ∈ [0 ; 1[ :

S′(x) =
+∞∑
n=1

xn

n(1 + x2(n+1))
�

+∞∑
n=1

xn

n · 2

= −1

2
ln(1 − x) −→

x−→1−
+∞,

donc : S′(x) −→
x−→1−

+∞.

e) D’après c) et la continuité de S en 0 (cf. a)), on a :

S(x) = π

2
− S

(
1

x

)
−→

x−→+∞
π

2
− S(0)) = π

2
.

f) L’étude des variations de S sur [1 ;+∞[ se déduit de celle
des variations de S sur [0 ; 1[ par la formule obtenue en c).

x 0   1   +∞
S′(x) 0   + +∞ +∞ +

S(x) 0   ↗ π

4
↗ π

2

a) 1) Soit x ∈ ]0 ;+∞[.

On a : fn(x) = 1

x2(n4 + x2)
∼
n∞

1

x2n4
� 0.

D’après l’exemple de Riemann (4 > 1 ) et le théorème d’équi-
valence pour des séries à termes � 0, on déduit que la série∑
n�1

fn(x) converge.

Ceci montre que 
∑
n�1

fn converge simplement sur ]0 ;+∞[.

2) Soit a ∈ ]0 ;+∞[ fixé.

On a : ∀ n ∈ N
∗, ∀ x ∈ [a ;+∞[,

| fn(x)| = 1

x2(n4 + x2)
� 1

a2(n4 + a2)
= fn(a),

donc : ∀ n ∈ N
∗, || fn||[a ;+∞[

∞ � fn(a).

D’après 1) et le théorème de majoration pour des séries à termes

� 0, on déduit que la série 
∑
n�1

|| fn||[a ;+∞[
∞ converge.

On conclut que 
∑
n�1

fn converge normalement, donc unifor-

mément (PSI), sur tout [a ;+∞[, a ∈ ]0 ;+∞[ fixé.

b) Puisque, pour tout n ∈ N
∗ , fn est continue sur ]0 ;+∞[ et

que 
∑
n�1

fn converge normalement (PC), uniformément (PSI)

sur tout segment de ]0 ;+∞[, d’après un théorème du cours,
la somme S est continue sur ]0 ;+∞[.

c) 1) Notons, pour tout n ∈ N
∗ :

gn : [0 ;+∞[−→ R, x 
−→ 1

n4 + x2
.

• Pour tout n ∈ N
∗ , gn est continue sur [0 ;+∞[.

• On a : ∀ n ∈ N
∗, ||gn||∞ = 1

n4
,

donc la série 
∑
n�1

||gn||∞ converge,
∑
n�1

gn converge normale-

ment, donc uniformément (PSI), sur [0 ;+∞[.

D’après un théorème du cours,
+∞∑
n=1

gn est continue sur [0 ;+∞[,

en particulier en 0.

y

x

y = S(x)

1

2
π

4
π

O
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En notant C =
+∞∑
n=1

1

n4
> 0,

on a donc :
+∞∑
n=1

gn(x) −→
x−→0+

C,

d’où : x2 S(x) −→
x−→0+

C, puis : S(x) ∼
x−→0+

C

x2
.

D’après l’exemple de Riemann en 0 (2 > 1) et le théorème
d’équivalence pour des fonctions � 0, on conclut que S n’est
pas intégrable sur ]0 ; 1] .

2) On a, pour tout x ∈ [0 ;+∞[ :

0 � S(x) =
+∞∑
n=1

1

x2(n4 + x2)
�

+∞∑
n=1

1

x2n4
= C

1

x2
.

D’après l’exemple de Riemann en +∞ (2 > 1) et le théorème
de majoration pour des fonctions � 0, on conclut que S est in-
tégrable sur [1 ;+∞[.

Soit x ∈ ]0 ; 1[ fixé.

L’application ϕx : [0 ;+∞[−→ R, t 
−→ xt

1 + xt

est de classe C1 sur [0 ;+∞[ et, pour tout t ∈ [0 ;+∞[ :

ϕ
′
x (t) = (ln x)xt (1 + xt ) − xt (ln x)xt

(1 + xt )2
= (ln x)xt

(1 + xt )2
� 0 ,

donc ϕx est décroissante sur [0 ;+∞[.

D’autre part : xt −→
t−→+∞

0,

donc : ϕx (t) ∼
t−→+∞

xt = e(ln x)t � 0.

Comme ln x < 0, l’application t 
−→ e(ln x)t est intégrable sur
[0 ;+∞[. Par théorème d’équivalence pour des fonctions � 0,
on déduit que ϕx est intégrable sur [0 ;+∞[.

Par comparaison série/intégrale, il en résulte que la série∑
n�0

ϕx (n) converge, et on a :

∫ +∞

0
ϕx (t) dt �

+∞∑
n=0

ϕx (n) � ϕx (0) +
∫ +∞

0
ϕx (t) dt .

Calculons cette intégrale :
∫ ∞

0
ϕx (t) dt =

∫ +∞

0

xt

1 + xt
dt

=
u = t ln x

∫ −∞

0

eu

1 + eu

1

ln x
du

= 1

−ln x

[
ln(1 + eu)

]0

−∞
= ln 2

−ln x
.

On obtient :
ln 2

−ln x
�

+∞∑
n=0

xn

1 + xn
� 1

2
+ ln 2

−ln x
.

Comme 
ln 2

−ln x
−→

x−→1−
+∞, on déduit :

+∞∑
n=0

xn

1 + xn
∼

x−→1−
ln 2

−ln x
.

Enfin, comme − ln x ∼
x−→1−

1 − x , on conclut :

+∞∑
n=0

xn

1 + xn
∼

x−→1−
ln 2

1 − x
.

Nous allons essayer d’appliquer le théorème sur l’inté-
gration sur un intervalle quelconque pour une série d’applica-
tions.

Notons, pour tout n ∈ N
∗ :

fn : [0 ;+∞[−→ R, x 
−→ xne−nx .

• Soit n ∈ N
∗ . Il est clair que fn est continue par morceaux (car

continue) sur [0 ;+∞[.

• On a, puisque n > 0 : x2 fn(x) = xn+2e−nx −→
x−→+∞

0

donc, pour x assez grand : x2 fn(x) � 1 ,

puis : 0 � fn(x) � 1

x2
.

D’après l’exemple de Riemann en +∞ (2 > 1) et le théorème
de majoration pour des fonctions � 0, fn est intégrable sur
[1 ;+∞[, puis sur [0 ;+∞[.

• Étudions x e−x , pour x décrivant [0 ;+∞[.

L’application ϕ : [0 ;+∞[−→ R, x 
−→ x e−x

est dérivable sur [0 ;+∞[ et :

∀ x ∈ [0 ;+∞[, ϕ′(x) = (1 − x) e−x ,

d’où le tableau de variations de ϕ :

x 0   1   +∞
ϕ′(x) + 0   −
ϕ(x) 0   ↗ e−1 ↘ 0

On a donc : ||ϕ||∞ = ϕ(1) = e−1.

Ainsi, pour tout x ∈ [0 ;+∞[ :

∀ n ∈ N
∗, 0 � fn(x) = (x e−x )n � (e−1)n .

Comme |e−1| < 1, la série géométrique 
∑
n�1

(e−1)n converge,

donc, par théorème de majoration pour des séries à termes � 0,

la série 
∑
n�1

fn(x) converge.

Ceci montre que 
∑
n�1

fn converge simplement sur [0 ;+∞[.

5.36
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• On a, en notant S =
+∞∑
n=1

fn, pour tout x ∈ [0 ;+∞[ :

S(x) =
+∞∑
n=1

fn(x) =
+∞∑
n=1

(x e−x )n = x e−x 1

1 − x e−x
,

donc S est continue par morceaux (car continue) sur [0 ;+∞[.

• Montrons que la série 
∑
n�1

∫ +∞

0
| fn(x)| dx converge.

On a, pour tout n ∈ N
∗ :

∫ +∞

0
| fn(x)| dx =

∫ +∞

0
xne−nx dx

=
t=nx

∫ +∞

0

(
t

n

)n

e−t 1

n
dt = 1

nn+1

∫ +∞

0
tn e−t dt

= 1

nn+1
�(n + 1) = n!

nn+1
= 1

n

1 · · · 2 · · · n

n · n · · · n
� 1

n2
,

donc, d’après l’exemple de Riemann (2 > 1 ) et le théorème
de majoration pour des séries à termes � 0, la série∑
n�1

∫ +∞

0
| fn(x)| dx converge.

D’après le théorème du cours sur l’intégration sur un intervalle
quelconque pour une série d’applications, on déduit que la série∑
n�1

∫ +∞

0
fn(x) dx converge, que S est intégrable sur [0 ;+∞[

et que : ∫ +∞

0
S(x) dx =

+∞∑
n=1

fn(x) dx =
+∞∑
n=1

un .

On conclut :
+∞∑
n=1

un =
∫ +∞

0

x e−x

1 − x e−x
dx .

a) 1) Convergence simple :

Soit x ∈ ]0 ;+∞[.

On a : fn(x) = 1

(1 + nx)(n + x)
∼
n∞

1

xn2
� 0.

D’après l’exemple de Riemann (2 > 1 ) et le théorème d’équi-

valence pour des séries à termes � 0, la série 
∑
n�1

fn(x)

converge.

Ceci montre que 
∑
n�1

fn converge simplement sur ]0 ;+∞[.

2) Convergence normale sur [a ;+∞[, a ∈ ]0 ;+∞[ fixé :

Soit a ∈ ]0 ;+∞[ fixé.

On a : ∀ n ∈ N
∗, ∀ x ∈ [a ;+∞[,

| fn(x)| = 1

(1 + nx)(n + x)

� 1

(1 + na)(n + a)
= | fn(a)| = fn(a),

donc : ∀ n ∈ N
∗, || fn||[a ;+∞[

∞ � fn(a).

Comme la série 
∑
n�1

fn(a) converge (cf. 1)), par théorème de

majoration pour des séries à termes � 0, la série 
∑
n�1

|| fn||[a ;+∞[
∞

converge.

On conclut que 
∑
n�1

fn converge normalement, donc unifor-

mément (PSI), sur [a ;+∞[ , pour tout a ∈ ]0 ;+∞[ fixé.

b) Puisque, pour tout n ∈ N
∗ , fn est continue sur ]0 ;+∞[ et

que 
∑
n�1

fn converge normalement (PC), uniformément (PSI)

sur tout segment de ]0 ;+∞[, d’après un théorème du cours,
on conclut que la somme S est continue sur ]0 ;+∞[.

c) Nous allons essayer d’appliquer le théorème du cours sur
l’intégration sur un intervalle quelconque pour une série d’ap-
plications.

• Pour tout n ∈ N
∗ , fn est continue par morceaux (car conti-

nue) sur ]0 ;+∞[.

• 
∑
n�1

fn converge simplement sur]0 ;+∞[

• 
+∞∑
n=1

fn est continue par morceaux (car continue) sur ]0 ;+∞[

(cf. b)).

• Montrons que la série 
∑
n�1

∫ +∞

0
| fn(x)| dx converge.

Remarquons d’abord :

∀ n ∈ N
∗, ∀ x ∈ ]0 ;+∞[, fn(x) � 0 .

Pour n = 1 :∫ +∞

0
f1(x) dx =

∫ +∞

0

1

(1 + x)2
dx =

[
− 1

1 + x

]+∞

0

= 1 .

Pour calculer, pour tout n ∈ N − {0,1},
∫ +∞

0
fn(x) dx, com-

mençons par effectuer une décomposition en éléments sim-
ples :

1

(1 + nX)(n + X)
= a

1 + nX
+ b

n + X
, (a,b) ∈ R

2 .

Par multiplication puis remplacement, on obtient facilement :

a = 1

n − 1

n

= n

n2 − 1
, b = 1

1 − n2
.

D’où :
1

(1 + nX)(n + X)
= 1

n2 − 1

(
n

1 + nX
− 1

n + X

)
,

puis :∫ +∞

0
| fn(x)| dx =

∫ +∞

0
fn(x) dx

=
∫ +∞

0

1

n2 − 1

(
n

1 + nx
− 1

n + x

)
dx
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= 1

n2 − 1

[
ln(1 + nx) − ln (n + x)

]+∞

0

= 1

n2 − 1

[
ln

1 + nx

n + x

]+∞

0

= 1

n2 − 1

(
ln n − ln

1

n

)

= 2 ln n

n2 − 1
∼
n∞

2 ln n

n2
.

La série 
∑
n�1

2 ln n

n2
converge (par la règle n3/2un , par exemple,

cf. exercice 4.2), donc, par théorème d’équivalence pour des

séries à termes � 0, la série 
∑
n�1

∫ +∞

0
| fn(x)| dx converge.

D’après le théorème du cours sur l’intégration sur un intervalle
quelconque pour une série d’applications, on déduit que S est
intégrable sur ]0 ;+∞[ et que, le calcul ayant déjà été fait ci-
dessus :∫ +∞

0
S(x) dx =

+∞∑
n=1

∫ +∞

0
fn(x) dx = 1 + 2

+∞∑
n=2

ln n

n2 − 1
.

Nous allons essayer de développer la fonction sous l’in-
tégrale en une somme de série de fonctions, puis permuter in-
tégrale et série.

Remarquons d’abord que l’application f : x 
−→ sh ax

sh bx
est

continue sur R∗ et que : f (x) ∼
x−→0

ax

bx
= a

b
, donc f (x) −→

x−→0

a

b
.

On peut donc compléter f par continuité en 0 en posant

f (0) = a

b
.

D’autre part, il est clair que f est paire.

On a, pour tout x ∈ ]0 ;+∞[, en utilisant une série géométri-
que :

f (x) = sh ax

sh bx
= 2 sh ax

ebx − e−bx
= 2 e−bx sh ax

1

1 − e−2bx

= 2 e−bx sh ax
+∞∑
n=0

(e−2bx )n =
+∞∑
n=0

2 e−(2n+1)bx sh ax,

car |e−2bx | < 1.

Notons, pour tout n ∈ N :

fn : ]0 ;+∞[−→ R, x 
−→ 2 e−(2n+1)bx sh ax .

• Pour tout n ∈ N , fn est continue par morceaux (car continue)
sur ]0 ;+∞[.

• 
∑
n�0

fn converge simplement sur ]0 ;+∞[ et a pour 

somme f.

• f est continue par morceaux (car continue) sur ]0 ;+∞[.

• Montrons que la série 
∑
n�0

∫ +∞

0
| fn(x)| dx converge.

Remarquons d’abord :

∀ n ∈ N, ∀ x ∈ ]0 ;+∞[, fn(x) � 0 .

On a, pour tout n ∈ N :

∫ +∞

0
| fn(x)| dx

=
∫ +∞

0
fn(x) dx

=
∫ +∞

0
2 e−(2n+1)bx sh ax dx

=
∫ +∞

0
e−(2n+1)bx (eax − e−ax ) dx

=
∫ +∞

0

(
e(−(2n+1)b+a)x − e(−(2n+1)b−a)x

)
dx

=
[

e(−(2n+1)b+a)x

−(2n + 1)b + a
− e(−(2n+1)b−a)x

−(2n + 1)b − a

]+∞

0

= 1

(2n + 1)b − a
− 1

(2n + 1)b + a

= 2a

(2n + 1)2b2 − a2
.

Comme 
2a

(2n + 1)2b2 − a2
∼
n∞

2a

4n2b2
= a

2b2

1

n2
� 0,

d’après l’exemple de Riemann (2 > 1 ) et le théorème d’équi-
valence pour des séries à termes � 0 , la série∑
n�0

∫ +∞

0
| fn(x)| dx converge.

D’après le théorème du cours sur l’intégration sur un intervalle
quelconque pour une série d’applications, on déduit que f est
intégrable sur ]0 ;+∞[ (ce que l’on pouvait aussi montrer di-
rectement) et que :

∫ +∞

0
f (x) dx =

+∞∑
n=0

∫ +∞

0
fn(x) dx

=
+∞∑
n=0

2a

(2n + 1)2b2 − a2
.

Enfin, on conclut, par parité :

∫ +∞

−∞
f (x) dx = 2

∫ +∞

0
f (x) dx =

+∞∑
n=0

4a

(2n + 1)2b2 − a2
.

Nous allons essayer de développer la fonction sous l’in-
tégrale en une somme de série de fonctions, puis permuter in-
tégrale et série.

Soit x ∈ ]0 ;+∞[ fixé.

On a, pour tout t ∈ ]0 ;+∞[, en utilisant une série géométri-
que :
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t x−1

et + 1
= t x−1 e−t 1

1 + e−t

= t x−1 e−t
+∞∑
n=0

(−e−t )n =
+∞∑
n=0

(−1)nt x−1e−(n+1)t ,

car | − e−t | < 1 .

Notons, pour tout n ∈ N :

fn : ]0 ;+∞[−→ R, t 
−→ (−1)nt x−1e−(n+1)t .

Le théorème du cours sur l’intégration sur un intervalle quel-
conque pour une série d’applications ne s’applique pas ici, car

la série 
∑
n�0

∫ +∞

0
| fn(t)| dt diverge, comme on peut s’en rendre

compte en calculant l’intégrale (de toute façon, nous allons cal-
culer cette intégrale, sans la valeur absolue).

Pour pouvoir permuter intégrale et série, nous allons montrer
que l’intégrale du reste tend vers 0.

Soient n ∈ N, t ∈ ]0 ;+∞[ .

On a, en notant Rn(t) le reste d’ordre n :

Rn(t) =
+∞∑

k=n+1

fk(t) =
+∞∑

k=n+1

(−1)k t x−1e−(k+1)t

= t x−1e−t
+∞∑

k=n+1

(−e−t )k = t x−1e−t (−e−t )n+1

1 − (−e−t )

= (−1)n+1 t x−1e−(n+1)t

1 + e−t
.

Il est clair, par l’exemple de Riemann en 0 et la règle tα f (t)
en +∞ , que, pour tout n ∈ N , f0,. . . , fn et S sont intégrables
sur ]0 ;+∞[. Il en résulte, par combinaison linéaire, que, pour
tout n ∈ N , Rn est intégrable sur ]0 ;+∞[. On a :

0 �
∫ +∞

0
|Rn(t)| dt =

∫ +∞

0

t x−1e−(n+1)t

1 + e−t
dt

�
∫ +∞

0
t x−1e−(n+1)t dt

=
u = (n + 1)t

∫ +∞

0

(
u

n + 1

)x−1

e−u 1

n + 1
du

= 1

(n + 1)x

∫ +∞

0
ux−1e−u du = �(x)

(n + 1)x
.

Puisque x ∈ ]0 ;+∞[ est fixé, on a :
�(x)

(n + 1)x
−−−→

n ∞
0 , donc 

∫ +∞

0
Rn(t) dt −−−→

n ∞
0.

On a alors, pour tout n ∈ N , en notant Sn =
n∑

k=0

fk la somme

partielle d’indice n et S =
+∞∑
k=0

fk, la somme totale :

∫ +∞

0
S(t) dt =

∫ +∞

0

(
Sn(t) + Rn(t)

)
dt

=
∫ +∞

0

( n∑
k=0

fk(t)

)
dt +

∫ +∞

0
Rn(t) dt,

d’où :

n∑
k=0

∫ +∞

0
fk(t) dt =

∫ +∞

0
S(t) dt −

∫ +∞

0
Rn(t) dt .

Comme 
∫ +∞

0
Rn(t) dt −−−→

n ∞
0, on déduit :

n∑
k=0

∫ +∞

0
fk(t) dt −−−→

n ∞

∫ +∞

0
S(t) dt .

Ceci montre que la série 
∑
k�0

∫ +∞

0
fk(t) dt converge et que :

+∞∑
k=0

∫ +∞

0
fk(t) dt =

∫ +∞

0
S(t) dt.

Enfin, pour tout n ∈ N :
∫ +∞

0
fn(t) dt =

∫ +∞

0
(−1)nt x−1e−(n+1)t dt

=
u = (n + 1)t

(−1)n

∫ +∞

0

(
u

n + 1

)x−1

e−u 1

n + 1
du

= (−1)n

(n + 1)x

∫ +∞

0
ux−1e−u du = (−1)n

(n + 1)x
�(x),

calcul presque déjà fait plus haut.

On conclut :

∫ +∞

0

t x−1

et + 1
dt =

+∞∑
n=0

(−1)n

(n + 1)x
�(x)

=
+∞∑
n=1

(−1)n−1

nx
�(x) = T (x)�(x).

Nous allons essayer de permuter intégrale et série.

Pour tout n ∈ N , comme an > 0, l’application 

fn : [0 ; 1] −→ R, x 
−→ (−1)n xan

est continue sur le segment [0 ; 1] .

Comme, pour tout n ∈ N :

∫ 1

0
| fn(x)| dx =

∫ 1

0
xan dx =

[
x1+an

1 + an

]1

0

= 1

1 + an

et que la série 
∑
n�0

1

1 + an
peut diverger, pour (an)n∈N = (n)n∈N

par exemple, nous ne pouvons pas appliquer le théorème du
cours sur l’intégration sur un intervalle quelconque pour une
série d’applications.

Nous allons essayer de montrer que l’intégrale du reste tend
vers 0.

Notons, pour tout n ∈ N , Sn la n-ème somme partielle :

Sn : [0 ; 1] −→ R, x 
−→ Sn(x) =
n∑

k=0

(−1)k xak .
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donc :

n∑
k=0

∫ 1

0
fk(x) dx =

∫ 1

0

( n∑
k=0

fk(x)

)
dx

=
∫ 1

0
Sn(x) dx =

∫ 1

0
S(x) dx −

∫ 1

0
Rn(x) dx .

Comme 
∫ 1

0
Rn(x) dx −−−→

n ∞
0 , il s’ensuit que la série

∑
k�0

∫ 1

0
fk(x) dx converge et que :

+∞∑
k=0

∫ 1

0
fk(x) dx =

∫ +∞

0
S(x) dx .

On conclut :

∫ 1

0

( +∞∑
n=0

(−1)n xan

)
dx

=
+∞∑
n=0

∫ 1

0
(−1)n xan dx =

+∞∑
n=0

(−1)n

1 + an
.

a) Remarquons d’abord que, puisque f est continue par

morceaux sur [0 ;+∞[, f admet en 0+ une limite finie, notée
f (0+), et qu’il se peut que f (0+) soit différent de f (0), lorsque
f n’est pas continue en 0.

Nous allons utiliser le théorème de convergence dominée et la
caractérisation séquentielle des limites.

On a, pour tout x ∈ ]0 ;+∞[ fixé, par le changement de va-
riable u = xt :

x
∫ +∞

0
e−xt f (t) dt =

∫ +∞

0
e−u f

(
u

x

)
du .

Soit (xn)n∈N une suite dans ]0 ;+∞[, de limite +∞ .

Notons, pour tout n ∈ N :

fn : [0 ;+∞[−→ R, u 
−→ e−u f

(
u

xn

)
.

• Pour tout n ∈ N , fn est continue par morceaux (car f l’est)
sur [0 ;+∞[.

• Pour tout u ∈ ]0 ;+∞[ fixé, puisque f −→
0+

f (0+) , on a, par

composition de limites :

fn(u) = e−u f

(
u

xn

)
−−−→

n ∞
e−u f (0+) .

D’autre part : fn(0) = f (0) −−−→
n ∞

f (0).

Ceci montre : fn
C.S.−→
n∞

g, où :

g : [0 ;+∞[−→ R, u 
−→
{

e−u f (0+) si u =/ 0

0 si u = 0.
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Pour tout x ∈ [0 ; 1[ fixé, la série  
∑
n�0

fn(x) relève du TSCSA,

car elle est alternée, | fn(x)| = xan −−−→
n ∞

0 puisque

an −−−→
n ∞

+ ∞ , et la suite 
(| fn(x)|)

n∈N
est décroissante,

puisque x ∈ [0 ; 1] et que (an)n∈N est croissante et à termes 
dans R∗

+ .

Il en résulte que, pour tout x ∈ [0 ; 1[, la série 
∑
n�0

fn(x)

converge.

Ainsi,
∑
n�0

fn converge simplement sur [0 ; 1[ .

Notons S la somme :

S : [0 ; 1[−→ R, x 
−→ S(x) =
+∞∑
n=0

fn(x) .

Notons, pour tout n ∈ N , Rn le reste d’ordre n :

Rn : [0 ; 1[−→ R, x 
−→ Rn(x) =
+∞∑

k=n+1

fk(x) .

On a, pour tout b ∈ [0 ; 1[ :

||Rn||[0 ;b]
∞ � || fn+1||[0 ;b]

∞ = ban+1 −−−→
n ∞

0 ,

donc 
∑

n

fn converge uniformément sur tout segment de [0 ; 1[.

Comme chaque fn est continue sur [0 ; 1[, il en résulte que, pour
tout n ∈ N , Rn est continue sur [0 ; 1[ .

D’après ce qui précède, les applications S et Rn, pour tout n ∈ N ,
sont continues sur [0 ; 1[ .

Puisque, pour tout x ∈ [0 ; 1[, la série 
∑
n�0

fn(x) relève du

TSCSA, on a, pour tout n ∈ N et tout x ∈ [0 ; 1[ :

|Rn(x)| � | fn+1(x)| = ∣∣(−1)n+1xan+1
∣∣ = xan+1 .

Il en résulte, par théorème de majoration pour des fonctions � 0,
que, pour tout n ∈ N , Rn est intégrable sur [0 ; 1[ , et on a :
∣∣∣∣
∫ 1

0
Rn(x) dx

∣∣∣∣ �
∫ 1

0
|Rn(x)| dx �

∫ 1

0
xan+1 dx = 1

1 + an+1
.

Comme an −−−→
n ∞

+ ∞ , on a :
1

1 + an+1
−−−→

n ∞
0,

donc, par encadrement :
∫ +∞

0
Rn(x) dx −−−→

n ∞
0.

Mais, pour tout n ∈ N :
∫ 1

0
S(x) dx =

∫ 1

0

(
Sn(x) + S(x)

)
dx

=
∫ 1

0
Sn(x) dx +

∫ 1

0
Rn(x) dx,
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• L’application g est continue par morceaux (car f l’est) sur
[0 ;+∞[.

• On a : ∀ n ∈ N, ∀ u ∈ [0 ;+∞[,

| fn(u)| = e−u

∣∣∣∣ f

(
u

xn

)∣∣∣∣ � e−u || f ||∞,

et l’application u 
−→ e−u || f ||∞ est continue par morceaux (car
continue), � 0, intégrable sur [0 ;+∞[.

Ceci montre que ( fn)n�0 vérifie l’hypothèse de domination.

D’après le théorème de convergence dominée :
∫ +∞

0
fn −−−→

n ∞

∫ +∞

0
f ,

c’est-à-dire :
∫ +∞

0
e−u f

(
u

xn

)
du −−−→

n ∞

∫ +∞

0
e−u f (0+) du

= [−e−u f (0+)]+∞
0 = f (0+).

Ainsi, pour toute suite (xn)n�0 dans ]0 ;+∞[, de limite +∞ ,

la suite 

(∫ +∞

0
e−u f

(
u

xn

)
du

)
n∈N

converge vers f (0+).

Par caractérisation séquentielle des limites, on déduit :
∫ +∞

0
e−u f

(
u

x

)
du −→

x−→+∞
f (0+) ,

et on conclut : x
∫ +∞

0
e−xt f (t) dt −→

x−→+∞
f (0+).

b) Même méthode qu’en a), avec utilisation des suites (xn)n∈N

dans ]0 ;+∞[ telles que xn −−−→
n ∞

0.

On remarquera que f est bornée sur [0 ;+∞[, car, puisque f
admet une limite finie en +∞ , il existe a ∈ [0 ;+∞[ telle que
f |[a ;+∞] soit bornée, et f |[0 ;a] est bornée car continue par mor-
ceaux sur un segment.

Rappelons que, pour toute application u : I −→ R , on
note u+, u− les applications de I dans R définies, pour tout
x ∈ I , par :

u+(x) =
{

u(x) si u(x) � 0

0 si u(x) < 0

u−(x) =
{

0 si u(x) � 0

−u(x) si u(x) < 0,

et que l’on a :

u+ − u− = u, u+ + u− = |u| ,

0 � u+ � |u|, 0 � u− � |u| .

1) Notons, pour tout n ∈ N : gn = ( fn − f )− .

Nous allons essayer d’appliquer le théorème de convergence
dominée à (gn)n∈N.

• Pour tout n ∈ N , gn = ( fn − f )− est continue par morceaux,
car fn − f l’est et l’application y 
−→ y− est continue sur R.

• Soit x ∈ I . On a :

∀ n ∈ N, 0 � gn(x) = ( fn − f )−(x) � | fn − f |(x) .

Comme  fn
C.S.−→
n∞

f , on a : fn(x) −−−→
n ∞

f (x),

donc : | fn − f |(x) −−−→
n ∞

0,

puis, par encadrement : gn(x) −−−→
n ∞

0.

Ceci montre : gn
C.S.−→
n∞

0 sur I.

• L’application nulle est continue par morceaux (car continue)
sur I.

• Par hypothèse : ∀ x ∈ I, ∀ n ∈ N, fn(x) � 0,

d’où, puisque fn
C.S.−→
n∞

f , par passage à la limite lorsque l’entier

n tend vers l’infini : ∀ x ∈ I, f (x) � 0.

Soient n ∈ N, x ∈ I.

∗ Si fn(x) � f (x) , alors fn(x) − f (x) � 0,
donc gn(x) = 0 � f (x) .

∗ Si fn(x) � f (x) , alors :

gn(x) = −(
fn(x) − f (x)

) = f (x) − fn(x) � f (x) .

Ceci montre : ∀ n ∈ N, ∀ x ∈ I, |gn(x)| = gn(x) � f (x).

Et l’application f est continue par morceaux, � 0, intégrable
sur I (par hypothèse).

Ainsi, la suite (gn)n∈N vérifie l’hypothèse de domination.

D’après le théorème de convergence dominée, on déduit que,
pour tout n ∈ N , gn est intégrable sur I, et que :∫

I
gn −−−→

n ∞

∫
I

0 = 0 .

2) On a :

∀n ∈ N, ( fn − f )+ = ( fn − f ) + ( fn − f )− = ( fn − f ) + gn .

Comme, pour tout n ∈ N , fn − f et gn sont intégrables sur I,
par opérations, ( fn − f )+ est intégrable sur I. Et :∫

I
( fn − f )+ =

∫
I
( fn − f ) +

∫
I

gn

=
∫

I
fn −

∫
I

f +
∫

I
gn −−−→

n ∞

∫
I

f −
∫

I
f + 0 = 0.

3) Enfin :∫
I
| fn − f | =

∫
I

(
( fn − f )+ + ( fn − f )−

)

=
∫

I
( fn − f )+ +

∫
I
( fn − f )− −−−→

n ∞
0 + 0 = 0.

a) 1) Convergence simple, convergence absolue :

Puisque : ∀ n ∈ N, ∀ x ∈ [0 ; 1], fn(x) � 0,

la convergence absolue revient à la convergence simple.
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Soit x ∈ [0 ; 1] fixé.

Si x =/ 1, alors xn −−−→
n ∞

0 , donc :

fn(x) = ln(1 + xn) ∼
n∞

xn � 0 .

Puisque |x | < 1, la série géométrique 
∑
n�0

xn converge. Par théo-

rème d’équivalence pour des séries à termes � 0, on déduit que

la série 
∑
n�0

fn(x) converge.

Si x = 1, alors fn(x) −−−→
n ∞

ln 2 =/ 0 , donc la série 
∑
n�0

fn(x)

diverge (grossièrement).

On conclut que 
∑
n�0

fn converge simplement sur [0 ; 1[ et non

en 1.

2) Convergence normale, convergence uniforme (PSI) :

• Étude sur [0 ; 1[ :

On a, pour tout n ∈ N : || fn||[0 ;1[
∞ = ln 2 −−−→

n ∞
/ 0,

donc 
∑
n�0

fn ne converge pas uniformément (PSI), ni norma-

lement (PC), sur [0 ; 1[ .

• Étude sur [0 ; a], a ∈ [0 ; 1[ fixé :

Soit a ∈ [0 ; 1[ fixé.

On a : ∀ n ∈ N, || fn||[0 ;a]
∞ = ln(1 + an) = fn(a).

Comme la série 
∑
n�0

fn(a) converge (cf. 1)), la série

∑
n�0

|| fn||[0 ;a]
∞ converge, et on conclut que 

∑
n�0

fn converge nor-

malement, donc uniformément (PSI), sur [0 ; a].

b) 1) • Pour tout n ∈ N , fn est de classe C1 sur [0 ; 1[ et, pour

tout x ∈ [0 ; 1[ : f ′
n(x) = nxn−1

1 + xn
.

• Soit a ∈ [0 ; 1[ fixé. On a : ∀ n ∈ N
∗, ∀ x ∈ [0 ; a],

| f ′
n(x)| = nxn−1

1 + xn
� nxn−1 � nan−1,

d’où : ∀ n ∈ N
∗, || f ′

n||[0 ;a]
∞ � nan−1.

Comme la série 
∑
n�1

nan−1 converge (règle n2un par exemple),

par théorème de majoration pour des séries à termes � 0, la

série 
∑
n�1

|| f ′
n||[0 ;a]

∞ converge.

Ceci montre que 
∑
n�0

f ′
n converge normalement, donc unifor-

mément (PSI), sur tout [0 ; a], a ∈ [0 ; 1[ fixé, donc sur tout
segment de [0 ; 1[ .

• On a vu en a) 1) que 
∑
n�0

fn converge simplement sur [0 ; 1[ .

D’après le théorème de dérivation pour une série d’applications,

on déduit que S est de classe C1 sur [0 ; 1[ et que :

∀ x ∈ [0 ; 1[, S′(x) =
+∞∑
n=1

nxn−1

1 + xn
.

2) Pour tout x ∈ [0 ; 1[, S′(x) est donc la somme d’une série
à termes � 0 et dont le terme d’indice 1 est > 0 , d’où :
S′(x) > 0. Il en résulte que S est strictement croissante sur
[0 ; 1[ .

c) 1) Soient n ∈ N, x ∈ [0 ; 1[. On a :

n∑
k=0

fk(x) =
n∑

k=0

ln(1 + xk) = ln

( n∏
k=0

(1 + xk)

)

= ln
(
(1 + x)(1 + x2)(1 + x3) · · · (1 + xn)

)
.

En développant ce produit de n parenthèses, les termes sont tous

� 0 et il y a, parmi eux : 1, x, x2, . . . ,xn . On a donc :

n∑
k=0

fk(x) � ln (1 + x + · · · + xn) = ln

( n∑
k=0

xk

)
.

2) D’après 1), on a :

∀ x ∈ [0 ; 1[, ∀ n ∈ N,

n∑
k=0

fk(x) � ln
1 − xn+1

1 − x
,

d’où, en faisant tendre l’entier n vers l’infini, pour x fixé :

∀ x ∈ [0 ; 1[, S(x) � ln
1

1 − x
= −ln(1 − x) .

Comme −ln(1 − x) −→
x−→1−

+∞ , on conclut :

S(x) −→
x−→1−

+∞ .

d) Soit x ∈ ]0 ; 1[ fixé.

Pour évaluer S(x) , nous allons utiliser une comparaison
série/intégrale. Notons 

ϕx : [1 ;+∞[−→ R, t 
−→ ln(1 + xt ) = ln(1 + et ln x ) .

Il est clair que ϕx est continue par morceaux (car continue), dé-

croissante, intégrable sur [1 ;+∞[, car ϕx (t) ∼
t−→+∞

et ln x � 0

et ln x < 0 .

On a donc, par comparaison série/intégrale :

∫ +∞

1
ϕx (t) dt �

+∞∑
n=1

ϕx (n) � ϕx (1) +
∫ +∞

1
ϕx (t) dt .

Pour calculer l’intégrale, utilisons le changement de variable
u = −t ln x (rappelons que x ∈ ]0 ; 1[ est fixé) :
∫ +∞

1
ϕx (t) dt =

∫ +∞

1
ln(1 + et ln x ) dt

=
∫ +∞

−ln x
ln(1 + e−u)

( −1

ln x

)
du

= − 1

ln x

∫ +∞

−ln x
ln(1 + e−u) du.



L’application ψ : ]0 ;+∞[−→ R, u 
−→ ln(1 + e−u) , est
continue par morceaux (car continue) et intégrable sur ]0 ;+∞[,
car ψ(u) −→

u−→0+
ln 2, et ψ(u) ∼

u−→+∞
e−u .

En notant I =
∫ +∞

0
ln(1 + e−u) du ,

on a donc :
∫ +∞

−ln x
ln(1 + e−u) du −→

x−→1−
I.

De plus, comme ψ est continue, � 0 et n’est pas l’application
nulle, on a : I > 0.

Il en résulte :
∫ +∞

1
ln(1 + et ln x ) dt ∼

x−→1−
− I

ln x
∼

x−→1−
I

1 − x
.

De plus :

ϕx (1) = ln(1 + x) −→
x−→1−

ln 2 = o
x−→1−

(
1

1 − x

)
,

d’où :

ϕx (1) +
∫ +∞

1
ln(1 + et ln x ) dt ∼

x−→1−
I

1 − x
.

On conclut, par encadrement : S(x) ∼
x−→1−

I

1 − x
.

a) Soit x ∈ [0 ; 1].

Si x =/ 1, alors :

0 � fn(x) = an xn(1 − x) � an xn � a1xn ,

donc, puisque la série géométrique 
∑
n�1

xn converge, par théo-

rème de majoration pour des séries à termes � 0, la série∑
n�1

fn(x) converge.

Si x = 1, alors : ∀ n ∈ N
∗, fn(x) = 0 ,

donc la série 
∑
n�1

fn(x) converge.

Ceci montre que 
∑
n�1

fn converge simplement sur [0 ; 1] .

b) Soit n ∈ N
∗ . L’application fn est dérivable sur [0 ; 1] et, pour

tout x ∈ [0 ; 1] :

f ′
n(x) = an

(
nxn−1 − (n + 1)xn

) = an xn−1
(
n − (n + 1)x

)
,

d’où le tableau de variations de fn :

x 0   
n

n + 1
1

f ′
n(x) + 0   −

fn(x) 0   ↗ ↘ 0

On a donc :

|| fn||∞ = fn

(
n

n + 1

)
= an

(
n

n + 1

)n 1

n + 1
.

et :
(

n

n + 1

)n

=
(

1 + 1

n

)−n

= exp

[
− n ln

(
1 + 1

n

)]

= exp

[
− n

(
1

n
+ o

n∞

(
1

n

))]

= exp
( − 1 + o(1)

) −−→
n ∞

e−1 .

D’où : || fn||∞ ∼
n∞

an

e n
.

On conclut que 
∑
n�1

fn converge normalement sur [0 ; 1] si et

seulement si la série 
∑
n�1

an

n
converge.

c) (PSI) 1) Supposons an −−−→
n ∞

0. Puisque la suite (an)n�1 est

décroissante, on a, en notant Rn le reste d’ordre n, pour tout
n ∈ N

∗ et tout x ∈ [0 ; 1[ :

0 � Rn(x) =
+∞∑

k=n+1

ak xk(1 − x) �
+∞∑

k=n+1

an+1xk(1 − x)

= an+1

( +∞∑
k=n+1

xk

)
(1 − x) = an+1xn+1,

et l’inégalité est aussi vraie pour x = 1.

On a donc : ∀ n ∈ N
∗, ||Rn||∞ � an+1 ,

d’où : ||Rn||∞ −−−→
n ∞

0, ce qui montre que 
∑
n�1

fn converge uni-

formément sur [0 ; 1] .

2) Réciproquement, supposons an −−−→
n ∞
/ 0.

Comme (an)n�1 est décroissante et minorée par 0, (an)n�1

converge vers un réel 
 � 0, et par hypothèse, 
 =/ 0, donc

 > 0.

On a, pour tout n ∈ N
∗ et tout x ∈ [0 ; 1[ :

Rn(x) =
+∞∑

k=n+1

ak xk(1 − x) �
+∞∑

k=n+1


xk(1 − x)

= 


( +∞∑
k=n+1

xk

)
(1 − x) = 
xn+1,

d’où : ||Rn||∞ = Sup
x∈[0 ;1]

Rn(x) � Sup
x∈[0 ;1[

(
xn+1) = 
,

et donc : ||Rn||∞ −−−→
n ∞
/ 0,

∑
n�1

fn ne converge pas uniformé-

ment sur [0 ; 1] .

On conclut que 
∑
n�1

fn converge uniformément sur [0 ; 1] si et

seulement si : an −−−→
n ∞

0 .
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a) Récurrence sur n.

• Pour n = 0, f0 = 1 existe, est unique et est un polynôme.

• Si, pour un n ∈ N fixé, fn existe, est unique et est un poly-
nôme, il est clair que 

fn+1 : [0 ; 1] −→ R, x 
−→ 1 +
∫ x

0
fn(t − t2) dt

existe, est unique et est un polynôme (fonction polynomiale).

b) 1) Récurrence sur n.

• Pour n = 0, on a, pour tout x ∈ [0 ; 1], f0(x) = 1 et :

f1(x) = 1 +
∫ x

0
f0(t − t2) t = 1 +

∫ x

0
1 dt = 1 + x ,

d’où : 0 � f0(x) � f1(x) � ex ,

par l’inégalité classique : ex � 1 + x .

• Supposons la propriété vraie pour un n ∈ N .

On a alors, pour tout x ∈ [0 ; 1] :

fn+2(x) − fn+1(x)

=
(

1 +
∫ x

0
fn+1(t − t2) dt

)
−

(
1 +

∫ x

0
fn(t − t2) dt

)

=
∫ x

0

(
fn+1(t − t2) − fn(t − t2)︸ ︷︷ ︸

� 0

)
dt � 0

et 

fn+2(x) = 1 +
∫ x

0
fn+1(t − t2) dt

� 1 +
∫ x

0
et−t2

dt � 1 +
∫ x

0
et dt = 1 + [et ]x

0 = ex .

On obtient : ∀ x ∈ [0 ; 1], 0 � fn+1(x) � fn+2(x) � ex ,

ce qui établit la propriété pour n + 1.

On conclut, par récurrence sur n :

∀ n ∈ N, ∀ x ∈ [0 ; 1], 0 � fn(x) � fn+1(x) � ex .

2) Pour tout x ∈ [0 ; 1] fixé, la suite 
(

fn(x)
)

n�0 est croissante

et majorée (par ex), donc converge vers un réel, noté f (x) , et
on a : 0 � f (x) � ex .

Ceci montre que la suite ( fn)n�0 converge simplement sur [0 ; 1]

vers une application f.

c) Remarquons d’abord : ∀ t ∈ [0 ; 1], t − t2 ∈ [0 ; 1/4],

car : t − t2 = −(t2 − t) = −
(

t − 1

2

)2

+ 1

4
,

ou encore par étude des variations de t 
−→ t − t2 sur [0 ; 1] .

Notons, pour tout n ∈ N :

Mn = || fn+1 − fn||[0 ;1]
∞ , mn = || fn+1 − fn||[0 ;1/4]

∞ .

On a, pour tout n ∈ N et tout x ∈ [0 ; 1] :

| fn+1(x) − fn(x)|
=

∣∣∣∣
(

1 +
∫ x

0
fn(t − t2) dt

)
−

(
1 +

∫ x

0
fn−1(t − t2) dt

)∣∣∣∣
=

∣∣∣
∫ x

0

(
fn(t − t2) − fn−1(t − t2)

)
dt

∣∣∣
�

∫ x

0

∣∣ fn(t − t2) − fn−1(t − t2)
∣∣ dt

�
∫ x

0
mn−1 dt = x mn−1 � mn−1.

Il en résulte : Mn = Sup
x∈[0 ;1]

| fn+1(t) − fn(t)| � mn−1.

Mais aussi, en particulier :

∀ x ∈ [0 ; 1/4], | fn+1(x) − fn(x)| � x mn−1 � 1

4
mn−1 ,

d’où : mn � 1

4
mn−1.

Par une récurrence immédiate : ∀ n ∈ N, mn � 1

4n
m0.

Comme 

∣∣∣∣1

4

∣∣∣∣ < 1, la série géométrique 
∑
n�0

1

4n
converge. Par

théorème de majoration pour des séries à termes � 0, il s’en-

suit que la série 
∑
n�0

mn converge, puis, comme Mn � mn−1,

la série 
∑
n�1

Mn converge.

Ainsi, la série 
∑
n�0

|| fn+1 − fn||[0 ;1]
∞ converge, donc

∑
n�0

( fn+1 − fn) converge normalement sur [0 ; 1] , donc uni-

formément. D’après le lien suite/série pour la convergence uni-
forme, on déduit que la suite ( fn)n�0 converge uniformément

sur [0 ; 1] .

Enfin, comme ( fn)n�0 converge déjà simplement vers f, on

conclut que ( fn)n�0 converge uniformément vers f sur [0 ; 1] .

• Puisque les fn sont toutes continues sur [0 ; 1] et que ( fn)n�0

converge uniformément vers f sur [0 ; 1] , d’après un théorème
du cours, f est continue sur [0 ; 1] .

• Notons, pour tout n ∈ N :

gn : [0 ; 1] −→ R, t 
−→ fn(t − t2) .

Puisque fn
C.U.−→
n∞

f sur [0 ; 1] , a fortiori, fn
C.U.−→
n∞

f sur [0 ; 1/4],

donc gn
C.U.−→
n∞

g sur [0 ; 1] , où :

g : [0 ; 1] −→ R, t 
−→ f (t − t2) .

Alors, d’après le théorème du cours sur l’intégration sur un seg-
ment et la convergence uniforme, on déduit, pour tout x ∈ [0 ; 1]
fixé :
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∫ x

0
fn(t − t2) dt −−−→

n ∞

∫ x

0
f (t − t2) dt .

Comme : ∀ n ∈ N, fn+1(x) = 1 +
∫ x

0
fn(t − t2) dt,

on déduit donc, en faisant tendre l’entier n vers l’infini :

f (x) = 1 +
∫ x

0
f (t − t2) dt .

d) 1) Puisque f est continue sur [0 ; 1] et que 

∀ t ∈ [0 ; 1], t − t2 ∈ [0 ; 1/4] ⊂ [0 ; 1] ,

l’application t 
−→ f (t − t2) est continue sur [0 ; 1], donc, par

primitivation, x 
−→
∫ x

0
f (t − t2) dt est de classe C1 sur

[0 ; 1] . D’après le résultat de c), on déduit que f est de 

classe C1 sur [0 ; 1] et que :

∀ x ∈ [0 ; 1], f ′(x) = f (x − x2) .

2) • Montrons que f est de classe C∞ sur [0 ; 1] par récurrence.

∗ On sait déjà que f est de classe C1 sur [0 ; 1] .

∗ Si f est Cn pour un n ∈ N
∗ fixé, alors l’application

x 
−→ f (x − x2) est Cn donc f ′ est Cn, f est Cn+1.

Ceci montre, par récurrence sur n, que, pour tout n ∈ N
∗ , f

est Cn.

On conclut que f est de classe C∞ sur [0 ; 1] .
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On abrège « développable en série entière en 0 » en dSE(0), et « développe-
ment en série entière en 0 » en DSE(0).

Thèmes abordés dans les exercices 
• Détermination du rayon de convergence d’une série entière

• Calcul du rayon de convergence et de la somme d’une série entière

• Détermination du DSE(0) d’une fonction

• Calculs d’intégrales et de sommes de séries numériques (convergentes) par
l’intermédiaire de séries entières

• Obtention de la classe C∞ pour une fonction d’une ou de plusieurs variables
réelles, par intervention de la notion de dSE(0)

• Dénombrements par utilisation de séries entières génératrices.

Points essentiels du cours 
pour la résolution des exercices
• Définition et caractérisations du rayon de convergence d’une série entière

• Théorèmes de comparaison, pour obtenir inégalité ou égalité, sur des rayons
de convergence de séries entières

• Règle de d’Alembert pour les séries numériques et son emploi dans le cadre
des séries entières

• Théorèmes sur rayon et somme de séries entières obtenues par opération sur
une ou deux séries entières : addition, loi externe, dérivation, primitivation,
produit de Cauchy (PC, PSI)

• Théorèmes sur la convergence (absolue, simple, normale PC, PSI, uniforme
PSI) pour les séries entières, théorème de la limite radiale (PC, PT)

• Relation entre coefficients d’une série entière et dérivées successives 
en 0 de la somme de cette série entière, lorsque le rayon est > 0

• Définition de la notion de fonction dSE(0), unicité du DSE(0) en 0

• Théorèmes sur les opérations sur les fonctions dSE(0) : addition, loi externe,
dérivation, primitivation, produit (PC, PSI)

• Liste des DSE(0) usuels, avec leur rayon de convergence et leur ensemble de
validité 

• Définition et propriétés de l’exponentielle complexe.
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Les méthodes à retenir

Essayer de :
• Chercher un équivalent simple de |an| lorsque l’entier n tend vers

l’infini.

Si |an| ∼
n∞ |bn| , alors les séries entières 

∑
n

anzn et 
∑

n

bnzn ont le

même rayon de convergence.

➥ Exercices 6.3 b), 6.9 a), 6.18 b), 6.20 b)

Pour trouver un équivalent simple de |an| lorsque l’entier n tend vers
l’infini, on pourra être amené à utiliser des développements asympto-
tiques intermédiaires.

➥ Exercices 6.8 a), d)

• Majorer ou minorer |an| par un terme général plus simple.
Si, pour tout n, |an| � |bn| , alors les rayons de convergence Ra et Rb

des séries entières 
∑

n

anzn et 
∑

n

bnzn vérifient : Ra � Rb .

➥ Exercices 6.36, 6.45 b)

Une combinaison de majoration et de minoration de |an| permet quel-
quefois d’obtenir le rayon de convergence.

➥ Exercices 6.1 f), 6.2 g), 6.8 e), m), o), 6.30 e), h), 6.44

• Appliquer la règle de d’Alembert, en particulier lorsque an contient
des factorielles ou des exponentielles.

➥ Exercices 6.1 e), 6.2 a), d), f), 6.8 i),
6.9 b), 6.12 a), f) 6.32 b), c), d), 6.47 a)

• Combiner prise d’équivalent et règle de d’Alembert.

➥ Exercices 6.1 a) à d), 6.2 b), c), e), 6.3 e), 6.8 b),
6.12 a) à d), 6.13 d), 6.30 c), d), 6.32 e)

• Si |an| n’admet pas d’équivalent simple lorsque l’entier n tend vers
l’infini, et si la règle de d’Alembert ne paraît pas applicable ou paraît
peu commode à appliquer, se ramener à étudier, pour z ∈ C

∗ fixé, la
nature de la suite 

(|anzn|)n en fonction de z .
Si on trouve un R ∈ [0 ;+∞] tel que :
– pour tout z ∈ C tel que |z| < R, (anzn)n converge vers 0
– pour tout z ∈ C tel que |z| > R, (anzn)n n’est pas bornée,

alors le rayon de convergence de la série entière 
∑

n

anzn est égal
à R.

Pour déterminer 
le rayon de convergence R

d’une série entière
∑

n

anzn
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Pour étudier la nature de la suite 
(|anzn|)n, on pourra commencer par

étudier la nature de la suite 
(

ln |an| + n ln |z|)n, puis composer par

l’exponentielle.

➥ Exercices 6.8 c), f), g), h), j), l), n),
6.9 c), d), e), 6.30 b), 6.32 f)

• Séparer la recherche de R en la recherche de deux inégalités com-
plémentaires sur R, obtenues par les méthodes précédentes.
En particulier :
– s’il existe z1 ∈ C tel que anzn

1 −−→
n ∞

0, alors : R � |z1|
– s’il existe z2 ∈ C tel que anzn

2 −−→
n ∞
/ 0, alors : R � |z2|.

➥ Exercices 6.3 a), d), k), 6.30 a), 6.32 a), 6.33 a)

• Utiliser le théorème du cours sur le rayon de convergence d’une
série entière dérivée, en vue de faire disparaître un n en facteur, ou
sur le rayon de convergence d’une série entière primitive, en vue de
faire disparaître un n ou un n + 1 du dénominateur.

➥ Exercices 6.30 a), 6.33 b).

• Commencer par déterminer le rayon R, par les méthodes précé-
dentes.
Dans la plupart des exemples où l’énoncé demande le rayon et la
somme d’une série entière, la détermination du rayon est aisée. En
effet, le coefficient an est souvent une fraction rationnelle en n autre
que la fraction nulle, et alors le rayon est 1, ou an fait intervenir sim-
plement des factorielles ou des exponentielles, et alors le rayon peut
être souvent calculé par application de la règle de d’Alembert.

➥ Exercice 6.2

Ayant déterminé le rayon R, pour calculer la somme S, c’est-à-dire
S(x) pour x ∈ ] − R ; R[ si la variable est réelle, S(z) pour |z| < R,
si la variable est complexe, essayer de se ramener aux séries entières
connues, en utilisant notamment les techniques suivantes :

• dérivation ou primitivation, éventuellement répétée, d’une série
entière

➥ Exercices 6.2 a) à d), g), 6.32 b), 6.33 b)

• décomposition de an en éléments simples, lorsque an est une frac-
tion rationnelle en n

➥ Exercices 6.12 a), b)

• combinaison linéaire de séries entières connues

➥ Exercices 6.2 b) à g), 6.12 c) à h), 6.13 d)

Pour calculer 
le rayon R et la somme S

d’une série entière 
∑
n�0

anzn
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En particulier, si an est un polynôme en cos n θ et sin n θ, essayer de
faire intervenir l’exponentielle complexe

➥ Exercice 6.33 a)

• changement de variable du genre t = √
x ou t = √−x lorsque

l’énoncé comporte xn et que l’on préfèrerait y voir un élément du
genre t2n

➥ Exercices 6.32 c), d), e)

Si on est amené à calculer « à part » S(0), ne pas oublier que, tout
simplement, S(0) est le terme constant de la série entière définissant

S(x) , c’est-à-dire S(0) = a0 lorsque S(x) =
+∞∑
n=0

an xn .

➥ Exercices 6.12 a), b), c), 6.32 c), d), e)

Si, pour le rayon R, on a obtenu seulement une minoration
R � ρ > 0, et si on a calculé la somme S(x) pour tout x ∈ ] − ρ ; ρ[,
souvent, on pourra montrer R = ρ en faisant apparaître un comporte-
ment irrégulier de S(x) (ou de S′(x),…) lorsque x tend vers ρ− ou
lorsque x tend vers −ρ+.

➥ Exercice 6.36.

Essayer de se ramener aux DSE(0) connus, par les opérations sui-
vantes :
• combinaison linéaire de fonctions dSE(0)

➥ Exercices 6.3 a), b), e), f), 6.14 a), b), c), f)

• produit d’un polynôme par une fonction dSE(0)

➥ Exercices 6.3 c), d)

• produit de deux fonctions dSE(0)
Si f se présente comme produit de deux fonctions dSE(0), alors,
d’après le cours, f est dSE(0). Mais, pour le calcul de DSE(0) de f, on
envisagera souvent un autre point de vue, car la valeur des coefficients
du DSE(0) de f, obtenue par produit de deux séries entières, est sou-
vent inutilisable ou inapproprié.

➥ Exercices 6.14 f), 6.39

• dérivation, primitivation d’une fonction dSE(0).
Si la dérivée f ′ de f est plus simple que f, former le DSE(0) de f ′, puis
en déduire celui de f. Essayer en particulier lorsque f est une intégrale
dépendant d’une de ses bornes ou lorsque f est un logarithme ou une
fonction circulaire réciproque ou une fonction hyperbolique réciproque.

➥ Exercices 6.14 d), e), h), i), 6.23

• utilisation d’une équation différentielle

➥ Exercices 6.39, 6.40

Pour montrer 
qu’une fonction f est dSE(0)
et calculer le DSE(0) de f

PC-PSI
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• montrer que f est de classe C∞, appliquer la formule de Taylor avec
reste intégral à l’ordre n pour tout n ∈ N, et montrer que le reste tend
vers 0 lorsque l’entier n tend vers l’infini.

➥ Exercices 6.38, 6.48, 6.50. 

Développer la fonction sous l’intégrale en la somme d’une série de
fonctions, souvent par l’intermédiaire d’une série entière, puis mon-
trer que l’on peut permuter intégrale et série, par l’une des trois
méthodes suivantes :
• continuité et convergence uniforme (PSI) (normale (PC)) sur un seg-
ment

➥ Exercices 6.21, 6.28, 6.29, 6.36

• théorème sur l’intégration sur un intervalle quelconque pour une
série de fonctions

➥ Exercices 6.24, 6.26, 6.43

• montrer que l’intégrale du reste tend vers 0. 

En plus des méthodes vues dans le chapitre 4, on peut essayer de faire
intervenir une ou des séries entières.

Pour calculer 
+∞∑
n=0

un, (après avoir montré la convergence de cette

série), introduire par exemple la série entière 
∑
n�0

unzn , déterminer son

rayon R et sa somme S.

– Si R > 1, alors, on peut remplacer directement x par 1, et on a :
+∞∑
n=0

un = S(1).

➥ Exercices 6.4, 6.27

– Si R = 1, essayer de montrer que la série entière 
∑
n�0

unzn converge

uniformément (PSI) (normalement (PC)) sur [0 ; 1], ce qui permettra

de déduire :
+∞∑
n=0

un = lim
x−→1−

S(x).

Avant d’introduire une série entière dans ce contexte, il peut être
commode de commencer par transformer l’écriture du terme général
de la série numérique de l’énoncé, ou de considérer d’autres séries
numériques analogues.

➥ 6.28, 6.49.

Essayer d’abord les théorèmes généraux : somme, produit, quotient,
composée… de fonctions de classe C∞.
Sinon, il suffit de montrer que f est dSE(0).
Y penser en particulier lorsque f (x) est donné par deux expressions
selon la position de x.

➥ Exercices 6.22, 6.34 a), 6.41 b).

Pour obtenir 
le DSE(0) d’une intégrale 
dépendant d’un paramètre

Pour calculer la somme 
d’une série numérique
(convergente)

PC, PSI

PC, PSI

PC, PSI

Pour montrer 
qu’une fonction f
d’une variable réelle
est de classe C∞
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Essayer d’abord les théorèmes généraux : somme, produit, quotient,
composée… de fonctions de classe C∞.
Sinon, essayer de se ramener à des fonctions d’une variable réelle et
essayer d’appliquer la méthode précédente à ces fonctions d’une
variable réelle.

➥ Exercice 6.22.

Essayer d’écrire la fonction située dans l’intégrale comme somme
d’une série de fonctions, souvent par l’intermédiaire d’une série 
entière, puis justifier la permutation entre intégrale et série.

➥ Exercice 6.19.

Essayer de montrer que la série d’applications 
∑
n�0

(
x �−→ an xn

)
converge uniformément (PSI) (normalement (PC)) sur [0 ; R], puis
appliquer le théorème sur convergence uniforme et continuité (PSI),
ou convergences normale et continuité (PC).

➥ Exercice 6.28.

Essayer d’appliquer le théorème de la limite radiale

➥ Exercices 6.7, 6.16, 6.17, 6.37.

Utiliser éventuellement un changement de variable.

➥ Exercice 6.6.

Pour montrer 
qu’une fonction f
de deux variables réelles 
est de classe C∞

Pour établir une égalité 
du type intégrale = série

Pour montrer qu’un DSE(0),

f(x) =
+∞∑
n=0

anxn , valable pour tout

x ∈ ] − R ; R[, est encore valable
pour x = R , ou pour x = −R

Pour résoudre une équation 
d’inconnue z ∈ C, faisant 
intervenir ez

Pour obtenir la continuité en −R
ou en R, de la somme d’une série
entière de R

PC-PSI

Énoncés des exercices
Exemples de détermination du rayon de convergence d’une série entière

Déterminer le rayon de convergence R des séries entières suivantes :

a)
∑
n�0

n2 + 1

n3 + 2
zn b)

∑
n�0

(
√

n + 2 − √
n)zn c)

∑
n�0

2n + n2

3n − n2
zn

d)
∑
n�1

ln(n2 + 1)

ln(n3 + 1)
zn e)

∑
n�0

(
2n
n

)
zn f)

∑
n�0

e sin nzn. 

Calcul du rayon de convergence et de la somme d’une série entière

Calculer le rayon de convergence et la somme des séries entières suivantes

(z : variable complexe, x : variable réelle) :

a)
∑
n�0

n2xn b)
∑
n�1

(n + 1)2

n
xn c)

∑
n�0

n3 + n2 − 1

n + 1
xn

d)
∑
n�0

(n2 + 1)(−1)n x2n e)
∑
n�0

sh n zn f)
∑
n�1

n + 1

n!
zn g)

∑
n�1

n(−1)n
xn .

6.1

6.2
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Exemples de DSE(0)

Pour les fonctions f des exemples suivants, où l’on donne f (x) (x : variable réelle), montrer que
f est dSE(0) et calculer son DSE(0) ; préciser le rayon de convergence R .

a)
x3 + 2

x2 − 1
b)

1

x4 − 3x2 + 2
c) (1 − x) ln (1 − x)

d)

√
1 − x

1 + x
e) ln (x2 − 8x + 15) f)

sin 4x

sin x
g)

sin x

x
. 

Exemple de calcul d’une somme de série numérique par utilisation d’une série entière

Existence et calcul de S =
+∞∑
n=2

2n + n3n

(n − 1)n5n
.

Exemple de calcul d’un produit infini par utilisation d’une série entière

Trouver lim
n∞

n∏
k=0

3
2k
k! .

Exemple de résolution d’une équation portant sur l’exponentielle complexe

Résoudre l’équation, d’inconnue z ∈ C : ez = −2. 

Étude de continuité et de limite au bord pour la somme d’une série entière

On note, pour tout n � 1 : an = ln

(
1 + 1

n

)

et, pour x ∈ R , sous réserve d’existence : S(x) =
+∞∑
n=1

an xn .

a) Déterminer le rayon de convergence de la série entière 
∑
n�1

an xn .

b) Étudier la convergence des séries numériques 
∑
n�1

an et 
∑
n�1

an(−1)n .

c) Montrer Déf (S) = [−1 ; 1[ et montrer que S est continue sur [−1 ; 1[.

d) 1) Montrer : ∀ n � 1, ln

(
1 + 1

n

)
� 1

2n
. 2) Établir : S(x) −→

x−→1−
+∞.

Exemples de détermination du rayon de convergence d’une série entière

Déterminer le rayon de convergence R des séries entières suivantes :

a)
∑
n�0

(
√

n2 + n + 1 − 3
√

n3 + n2)zn b)
∑
n�0

n
√

n ch n zn c)
∑
n�1

(
√

n)−nzn

d)
∑
n�0

tan (π
√

n2 + 1)zn e)
∑
n�0

ln (n!)zn f)
∑
n�2

(ln n)−ln nzn g)
∑
n�1

(
n + 1

2n + 1

)n

zn

h)
∑
n�0

e−ch nzn i)
∑
n�0

n3n

(3n)!
z3n j)

∑
n�0

nzn2
k)

∑
n�1

anzn, an = n−è décimale de
√

2

l)
∑
n�1

n−E(
√

n)zn m)
∑
n�1

S2(n)zn, S2(n) = somme des carrés des diviseurs � 1 de n

n)
∑
n�1

(
1 + 1

n2

)n3

zn o)
∑
n�0

(∫ 1

0

tn

1 + t + tn
dt

)
zn p)

∑
n�0

(
e−n

n∑
k=0

e
√

k

)
zn. 

6.3

6.4

6.5

6.6

6.7

6.8
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Exemples de détermination du rayon de convergence d’une série entière,
avec paramètres

Déterminer le rayon de convergence R des séries entières suivantes, les paramètres a,b étant fixés :

a)
∑
n�1

an

n + bn
zn, (a,b) ∈ ]0 ;+∞[2 b)

∑
n�0

an2

(2n)!
zn, a ∈ ]0 ;+∞[

c)
∑
n�0

an!zn, a ∈ C
∗ d)

∑
n�1

anzn!, a ∈ C
∗ e)

∑
n�2

e(ln n)a
zn, a ∈ R. 

Rayons de séries entières définies à partir d’une série entière donnée

Soient 
∑

n

anzn , une série entière, R son rayon de convergence.

Déterminer les rayons de convergence des séries entières 
∑

n

a2
n zn,

∑
n

anz2n .

Caractérisation des séries entières de rayon > 0

Soient 
∑

n

anzn , une série entière, R son rayon de convergence.

Montrer que R > 0 si et seulement si la suite 
(|an| 1

n
)

n�1 est majorée. 

Calcul du rayon de convergence et de la somme d’une série entière

Calculer le rayon de convergence et la somme des séries entières suivantes

(z : variable complexe, x : variable réelle) :

a)
∑
n�1

xn

n(n + 2)
b)

∑
n�2

xn

n3 − n
c)

∑
n�2

n + (−1)n+1

n + (−1)n
xn

d)
∑
n�0

n4 + n2 + 1

n!
zn e)

∑
p�0

x4p+1

(4p + 1)!
f)

∑
n�0

n + 1

(n + 2)n!
zn

g)
∑
n�0

(
2 + (−1)n

3 + (−1)n

)n

zn h)
∑
n�0

anzn, an =




1 si n = 3p, p ∈ N

2p si n = 3p + 1, p ∈ N

3p si n = 3p + 2, p ∈ N.

Séries entières issues du développement de (1 + √
2)n

a) Montrer qu’il existe un couple unique ((an)n∈N, (bn)n∈N) de suites réelles tel que :

∀ n ∈ N,

{
(an,bn) ∈ N

2

an + bn

√
2 = (1 + √

2)n .

b) Établir : ∀ n ∈ N, an − bn

√
2 = (1 −

√
2)n .

c) En déduire une expression de an et de bn, en fonction de n, pour tout n ∈ N .

d) Déterminer le rayon de convergence et la somme des deux séries entières 
∑
n�0

anzn,
∑
n�0

bnzn .

Exemples de DSE(0)

Pour les fonctions f des exemples suivants, où l’on donne f (x) (x : variable réelle), montrer que
f est dSE(0) et calculer son DSE(0) ; préciser le rayon de convergence R .

6.9

6.10

6.11

6.12

6.13

6.14
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a)
1

x2 − x + 2
b)

16

x3 − 5x2 + 3x + 9
c) ln (1 + x + x2)

d) ln (x2 + 2x + 5) e) Arctan (2 + x) f) sin x ch x

g)

(
ch x − 1

x2

)2

h)
∫ x

0

ln(1 + t)

t
dt i)

∫ 3x

2x

et − 1 − t

t2
dt.

Exemple d’inégalité sur la somme d’une série entière

Montrer : ∀ x ∈ ]0 ; 1[,
+∞∑
n=1

xn

n2
�

(1 − x)
(

ln (1 − x)
)2

x
.

Étude de continuité pour la somme d’une série entière dont les coefficients sont définis
par une relation de récurrence

On considère la suite réelle (an)n�0 définie par a0 = 1 et : ∀ n ∈ N, an+1 = ln(1 + an).

On note, pour x ∈ [0 ; 1], sous réserve d’existence : f (x) =
+∞∑
n=0

(−1)nan xn .

a) Montrer que (an)n�0 est décroissante et converge vers 0.

b) Montrer que f est définie sur [0 ; 1].

c) Établir que f est continue sur [0 ; 1].

Étude de continuité au bord pour la somme d’une série entière

On note, pour x ∈ R , sous réserve d’existence : S(x) =
+∞∑
n=0

nn

n! en
xn .

a) Déterminer l’ensemble de définition de S.

b) Établir que S est continue en −1.

Étude d’une série entière dont les coefficients sont des sommes de séries

On note, pour tout n ∈ N
∗ : an =

+∞∑
k=n

1

k(k + n)
.

a) 1) Montrer que, pour tout n ∈ N
∗ , an existe.

2) Établir : ∀ n ∈ N
∗, an = 1

n
(H2n−1 − Hn−1),

où on a noté H0 = 0 et, pour tout n ∈ N
∗ , Hn =

n∑
k=1

1

k
.

On pourra utiliser : Hn = ln n + γ+ o
n∞

(1), où γ est la constante d’Euler.

3) En déduire un équivalent simple de an lorsque l’entier n tend vers l’infini.

b) On considère la série entière 
∑
n�1

an xn , où la variable x est réelle, et on note R son rayon de

convergence.

1) Déterminer R .

2) Quelles sont les natures des séries numériques 
∑
n�1

an Rn,
∑
n�1

an(−R)n ? 
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Calcul d’une intégrale double par utilisation d’une série entière

Montrer :
∫∫

[0 ;1]2
xy exy dx dy = e − 1 −

+∞∑
n=1

1

n · n!
.

Étude d’une série entière dont les coefficients sont des intégrales

a) Montrer que, pour tout n ∈ N
∗ , In =

∫ +∞

1
e−tn

dt existe.

On considère la série entière 
∑
n�1

In xn (où x est une variable réelle), et on note R son rayon, S sa

somme.

b) Déterminer R .

c) Étudier la nature des séries numériques 
∑
n�1

In Rn,
∑
n�1

In(−R)n . 

d) Montrer que S ets continue en −R .

Exemple de DSE(0) pour une fonction définie par une intégrale

Montrer que la fonction f : x �−→
∫ π

0
ch (x cos t) dt est dSE(0) et calculer son DSE(0) ; préciser

le rayon de convergence R . 

Classe C∞ pour une fonction de deux variables réelles

Montrer que l’application f : ] − 1 ;+∞[×R −→ R définie par :

f (x,y) =



(1 + x)y − 1

ln(1 + x)
si x =/ 0

y si x = 0

est de classe C∞ sur ] − 1 ;+∞[×R. 

DSE(0) d’une fonction définie par une intégrale

On note, pour tout x ∈ R
∗ : f (x) = 1

x

∫ x

0

Arctan t

t
dt.

a) Montrer que f est définie sur R∗ et que f admet une limite finie 	 en 0.

On note encore f l’application R −→ R obtenue en prolongeant f par continuité en 0.

b) Montrer que f est dSE(0) et calculer le rayon de ce DSE(0). 

DSE(0) d’une fonction définie par une intégrale

On note, pour x ∈ R et sous réserve d’existence : f (x) =
∫ +∞

0
ln (1 + x e−t ) dt.

a) Déterminer l’ensemble de définition de f.

b) Montrer que f est dSE(0) et déterminer le rayon et le DSE(0). 
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6.20

6.21
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Détermination d’une fonction dSE(0) dont on connaît les dérivées successives en 0

Trouver un intervalle ouvert I contenant 0 et une application f : I −→ R de classe C∞ sur I, tels
que : ∀ n ∈ N, f (n)(0) = n2 · n! .

Transformée de Fourier d’une fonction à support borné

Soit f : R −→ C continue par morceaux et nulle en dehors d’un segment.

On considère la transformée de Fourier g de f :

g : R −→ C, x �−→ g(x) = 1√
2π

∫ +∞

−∞
f (t) e−i xt dt .

Démontrer que g est dSE(0), de rayon infini. 

Calcul d’une somme de série numérique par utilisation de séries entières

Existence et calcul de A =
+∞∑
n=0

1

(3n)!
.

Calcul d’une somme de série numérique par utilisation d’une série entière

Existence et calcul de S =
+∞∑
n=0

(−1)n

(n + 1)(2n + 1)
.

Calculs d’intégrales à l’aide de DSE(0)

Calculer, pour tout n ∈ N :

In =
∫ 2π

0
e cos t cos (nt − sin t) dt et Jn =

∫ 2π

0
e cos t sin (nt − sin t) dt .

Exemples de détermination du rayon de convergence d’une série entière

Déterminer le rayon de convergence R des séries entières suivantes :

a)
∑
n�0

sin n zn,
∑
n�1

sin n

n
zn,

∑
n�0

n sin n zn b)
∑
n�2

3n

(
ln (n + 2)

)n−1 zn

c)
∑
n�0

(
Arcsin

n + 1

2n + 3
− π

6

)
zn d)

∑
n�1

Arccos

(
1 − 1

n

)
zn

e)
∑
n�1

(
1

n!

∫ 1

0
t (t − 1) · · · (t − n) dt

)
zn f)

∑
n�0

(∫ +∞

n
tn e−t dt

)
zn

g)
∑
n�0

(∫ √
(n+1)π

√
nπ

sin (t2) dt

)
zn h)

∑
n�1

1

n
√

2 − E(n
√

2)
zn . 

Effet de la multiplication du coefficient d’une série entière 
par une fraction rationnelle de l’indice

Soient  (an)n∈N ∈ C
N, F ∈ C(X) − {0} . Montrer que les séries entières  

∑
n

anzn et 

∑
n

F(n)anzn ont le même rayon de convergence. 
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Calcul du rayon de convergence et de la somme d’une série entière

Calculer le rayon de convergence et la somme des séries entières suivantes

(z : variable complexe, x : variable réelle) :

a)
∑
n�0

cos n xn b)
∑
n�0

x3n+2

3n + 2
c)

∑
n�0

xn

2n + 1

d)
∑
n�0

xn

(2n + 1)!
e)

∑
n�0

3n

2n2 + n − 1
xn f)

∑
n�0

zE(
√

n) . 

Séries entières de coefficients cos nθ, sin nθ,
cos nθ

n
,

sin nθ
n

a) Calculer, pour tout θ ∈ R, les rayons de convergence et les sommes des deux séries entières∑
n�0

cos nθ xn,
∑
n�0

sin nθ xn .

b) En déduire, pour tout θ ∈ R, les rayons de convergence et les sommes des deux séries entières∑
n�1

cos nθ

n
xn,

∑
n�1

sin nθ

n
xn .

Fonction de classe C∞ par DSE(0)

Soit n ∈ N fixé. On note fn : R −→ R l’application définie, pour tout x ∈ R , par :

fn(x) =




1

xn+1

(
ex −

n∑
k=0

xk

k!

)
si x =/ 0

1

(n + 1)!
si x = 0.

a) Montrer que fn est de classe C∞ sur R.

b) Montrer qu’il existe Pn ∈ R(X] tel que :

∀ x ∈ R
∗, f (n)

n (x) = ex/2

x2n+1

(
ex/2 Pn(x) − e−x/2 Pn(−x)

)
et calculer Pn. 

Exemple d’égalité de sommes de séries entières, par produits de Cauchy

Montrer, pour tout z ∈ C : ez
+∞∑
n=1

(−1)n−1

n

zn

n!
=

+∞∑
n=1

( n∑
k=1

1

k

)
zn

n!

Étude d’une série entière dont les coefficients sont des intégrales

On note a0 = 1 et, pour tout n ∈ N
∗ : an = 1

n!

∫ 1

0

( n−1∏
k=0

(t − k)

)
dt.

Déterminer le rayon de convergence R et la somme S de la série entière 
∑
n�0

an xn , où la variable

x est réelle. 

6.32
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Étude de continuité et de limite au bord pour des séries entières

On note, pour x ∈ R, sous réserve d’existence : S(x) =
+∞∑
n=1

xn

n3/2
.

a) Établir : Déf (S) = [−1 ; 1].

b) Montrer que S est continue sur [−1 ; 1] et de classe C1 sur ] − 1 ; 1[.

c) Démontrer que S est de classe C1 sur [−1 ; 1[ .

d) Montrer : S′(x) −→
x−→1−

+∞. Est-ce que S est de classe C1 sur [−1 ; 1] ?

Résolution d’une équation fonctionnelle par utilisation d’une série entière

Pour (α,λ) ∈ R
∗×] − 1 ; 1[ fixé, trouver toutes les applications f : R −→ R dérivables telles

que : ∀ x ∈ R, f (x) = α f (x) + f (λx).On exprimera le résultat sous forme d’une série. 

Exemple de DSE(0), méthode de l’équation différentielle

Montrer que f : x �−→ Argsh x√
1 + x2

est dSE(0) et calculer son DSE(0) ; préciser le rayon de conver-

gence R . 

Exemple de DSE(0), méthode de l’équation différentielle

Pour α ∈ R
∗ fixé, former le DSE(0) de f : x �−→ sin (αArcsin x) . 

Fonction d’une variable réelle de classe C∞ par utilisation de DSE(0)

On note f : R
∗ −→ R, x �−→ 1

ex − 1
− 1

x
.

a) Montrer que f admet une limite finie 	 en 0 et calculer 	 .

On note encore f l’application R −→ R obtenue en prolongeant f par continuité en 0.

b) Montrer que f est de classe C∞ sur R. 

Principe des zéros isolés et une application

a) Soit 
∑
n�0

an xn une série entière réelle, de rayon de convergence R > 0, f sa somme. On suppo-

se qu’il existe une suite (tn)n∈N telle que :




∀ n ∈ N, −R < tn < R et tn =/ 0 et f (tn) = 0

tn −−−→
n ∞

0.

Démontrer : f = 0.

b) Existe-t-il une application f : ] − 1 ; 1[−→ R , dSE(0) de rayon � 1, telle que :

∀ n ∈ N − {0,1}, f

(
1

n

)
= f

(
− 1

n

)
= 1

n3
?

DSE(0) de x �−→ Γ(1 + x) , où Γ est la fonction d’Euler

Montrer que l’application x �−→ 
(1 + x) est dSE(0), de rayon 1, et exprimer les coefficients de
ce DSE(0) à l’aide d’intégrales. 
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Étude d’une série entière dont les coefficients vérifient une relation de récurrence 
linéaire du second ordre, à coefficients constants et avec second membre

On considère la suite réelle (un)n∈N définie par u0 = 0, u1 = 1 et :

∀ n ∈ N, un+2 = un+1 + un + 1

n + 1
.

Déterminer le rayon de convergence R et la somme S de la série entière 
∑
n�0

un xn, où la variable

x est réelle. 

Série entière génératrice pour le nombre de dérangements

On note, pour tout (n,k) ∈ N
2 tel que k � n, Fn,k le nombre de permutations de {1,. . . ,n} ayant

exactement k points fixes, et on note, pour tout n ∈ N , αn = Fn,0. On convient : α0 = 1.

a) 1) Montrer, pour tout (n,k) ∈ N
2 tel que k � n : Fn,k =

(
n
k

)
αn−k .

2) En déduire, pour tout n ∈ N :
n∑

k=0

(
n
k

)
αk = n! .

b) On considère la série entière 
∑
n�0

αn

n!
zn, où la variable z est complexe, et on note R son rayon

de convergence, S sa somme.

1) Montrer R � 1 et établir, pour tout z ∈ C tel que |z| < 1 : S(z) = e−z

1 − z
.

2) En déduire : ∀ n ∈ N, αn = n!
n∑

p=0

(−1)p

p!
.

3) Conclure, pour tout n ∈ N − {0,1} : αn = E

(
n!

e
+ 1

2

)
, puis : αn = n!

e
+ O

n∞
(1).

Comparaison des comportements de deux séries entières au bord

Soient 
∑
n�0

an xn,
∑
n�0

bn xn deux séries entières, Ra,Rb les rayons, Sa,Sb les sommes.

On suppose : (1) ∀ n ∈ N, bn > 0, (2)
∑
n�0

bn diverge, (3) Rb = 1, (4)
an

bn
−−−→

n ∞
	 ∈ R.

a) Montrer : Sb(x) −→
x−→1−

+∞. b) Établir :
Sa(x)

Sb(x)
−→

x−→1−
	.

Étude d’une série entière, comportement au bord 

On note, pour tout n ∈ N
∗ : an = nn

enn!
, et on considère la série entière 

∑
n�1

an xn (où la variable

x est réelle), R son rayon de convergence, S sa somme.

a) Déterminer R .

b) Déterminer un équivalent simple de S(x) lorsque x −→ 1−.

À cet effet, on admettra 
∫ +∞

0
e−x2

dx =
√
π

2
, et on utilisera l’exercice 6.46 

6.44

6.45
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Fonction dSE(0) par inégalités sur des intégrales

Soit f : [−1 ; 1] −→ R de classe C∞ telle que : ∀ n ∈ N,

∫ 1

−1

(
f (n)(x)

)2
dx � (n!)2.

Montrer que f est dSE(0), de rayon � 1. 

Formule de Simon Plouffe

Montrer : π =
+∞∑
n=0

1

16n

(
4

8n + 1
− 2

8n + 4
− 1

8n + 5
− 1

8n + 6

)
.

Toute fonction C∞ absolument monotone est dSE(0)

Soient a ∈ R
∗
+, f : ] − a ; a[−→ R de classe C∞ telle que :

∀ n ∈ N, ∀ x ∈ ] − a ; a[, f (n)(x) � 0 .

On note, pour tout n ∈ N et tout x ∈ ] − a ; a[ :

Sn(x) =
n∑

k=0

xk

k!
f (k)(0), Rn(x) =

∫ x

0

(x − t)n

n!
f (n+1)(t) dt .

a) 1) Montrer que, pour tout x ∈ [0 ; a[, la suite 
(
Sn(x)

)
n�0 converge et la suite 

(
Rn(x)

)
n�0

converge.

2) Établir, pour tout (x,y) ∈ ]0 ; a[2 tel que x < y : 0 � Rn(x)

xn+1
� Rn(y)

yn+1
.

3) Montrer, pour tout x ∈ [0 ; a[ : Rn(x) −−−→
n ∞

0.

4) En déduire que, pour tout x ∈ [0 ; a[, la série de Taylor de f en 0, prise en x converge et a pour
somme f (x) .

b) Établir : ∀ x ∈ ] − a ; 0], Rn(x) −−−→
n ∞

0.

c) Conclure que f est dSE(0), de rayon � a. 

Du mal à démarrer ?
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6.49

6.50

a) à d) Équivalent, puis règle de d’Alembert.

e) Règle de d’Alembert.

f) Encadrer la valeur absolue du coefficient.

a) À partir de la série géométrique, dériver, multiplier par x.

b) Décomposer en combinaison linéaire de trois séries entières.

c) Décomposer en combinaison linéaire de deux séries entières

et utiliser le résultat de a).

d) Décomposer en combinaison linéaire de deux séries entières

et utiliser le résultat de a), en remplaçant x par −x2.

e) Remplacer sh x par 
ex − e−x

2
.

f) Décomposer en combinaison linéaire de séries entières et uti-

liser le DSE(0) de l’exponentielle.

g) Séparer les termes d’indices pairs, d’indices impairs, d’abord

sur des sommes partielles.

a), b) Décomposer en éléments simples.

6.1

6.2

6.3
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c) Calcul direct.

d) Remarquer : f (x) = (1 − x)(1 − x2)−1/2 .

e) Factoriser et décomposer en somme de logarithmes (de

nombres strictement positifs !).

f) Simplifier f (x) et linéariser.

g) Diviser le DSE(0) de sin x par x, puis récupérer la valeur pour

x = 0 .

Calculer les rayons et les sommes des deux séries entières∑
n�2

xn

(n − 1)n
et 

∑
n�2

xn

n − 1
, puis remplacer x par 

2

5
, par 

3

5
.

Se ramener à une étude de somme en passant par le loga-
rithme.

Poser z = x + iy, (x,y) ∈ R
2 .

a) Utiliser un équivalent.

b) • Étude en 1 : Équivalent.

• Étude en −1 : TSCSA.

c) Utiliser le théorème de la limite radiale.

d) 1) Étudier les variations de :

ϕ : t ∈ [0 ; 1] �−→ ln(1 + t) − t

2
.

a), d) Obtenir un équivalent simple de an, par développe-

ment asymptotique, puis appliquer la règle de d’Alembert.

b) Équivalent, puis règle de d’Alembert.

c), f), g), h), j), l), n) Pour z ∈ C
∗ fixé, déterminer la limite de |an zn |

lorsque l’entier n tend vers l’infini.

e), m), o), p) Encadrer |an | .

i) Règle de d’Alembert pour les séries numériques.

k) Majorer |an | . D’autre part, étudier le cas z = 1 .

a) Chercher un équivalent simple de an, en séparant les

cas b � 1, b > 1 .

b) Règle de d’Alembert.

c) à e) Pour z ∈ C
∗ fixé, déterminer la limite de |an zn | lorsque

l’entier n tend vers l’infini.

Étudier la nature des suites (a2
n zn)n�0 , (an z2n)n�0 .

1) Si R > 0 , intercaler ρ tel que 0 < ρ < R, et déduire une

majoration de |an |1/n .

2) Réciproquement, comparer |an | avec le terme général d’une

série géométrique.

a) Décomposer en éléments simples, multiplier par x2 .

b) Décomposer en éléments simples et diviser par x.

c) Séparer les termes d’indices pairs, d’indices impairs, d’abord

sur les sommes partielles, puis sur les sommes totales.

d) Décomposer le polynôme n4 + n2 + 1 (variable n) sur les

polynômes n(n − 1)(n − 2)(n − 3) , n(n − 1)(n − 2) , n(n − 1) ,

n, 1, puis utiliser le DSE(0) de l’exponentielle.

e) Combiner les DSE(0) de sh et sin.

f) Multiplier le dénominateur par n + 1 , pour faire apparaître

(n + 2)!, puis utiliser le DES(0) de l’exponentielle.

g) Séparer les termes d’indices pairs, d’indices impairs, d’abord

sur les sommes partielles.

h) Calculer d’abord une somme partielle, par exemple
3N+2∑
n=0

an zn .

a) 1) Existence : Récurrence sur n.

2) Unicité : Utiliser 
√

2 /∈ Q .

b) Utiliser la formule du binôme de Newton.

d) Pour les rayons, chercher un équivalent simple de an, de bn,

lorsque l’entier n tend vers l’infini.

Pour les sommes, utiliser c) pour se ramener à une combinaison

linéaire de séries entières géométriques.

a) Décomposer en éléments simples dans C(X) , utiliser des

séries entières géométriques, puis regrouper les termes conju-

gués deux par deux.

b) Décomposer en éléments simples et utiliser la série entière

géométrique et sa dérivée.

c) Remarquer : 1 + x + x2 = 1 − x3

1 − x
, pour x ∈ ] − 1 ; 1[.

d) Former le DES(0) de f ′ par la même méthode qu’en a), puis

primitiver.

e) Former le DES(0) de f ′ par la même méthode qu’en a), puis

primitiver.

f) 1re méthode : Remplacer sin x par −i sh (ix), puis linéariser.

2è méthode : Exprimer sin x et ch x à l’aide d’exponentielles

complexes.

g) Linéariser (ch x − 1)2 , diviser par x4 , former le DSE(0), puis

récupérer le cas x = 0 .

h) Former le DSE(0) de g : t �−→ ln(1 + t)

t
, compléter convena-

blement en 0, puis primitiver.

6.4
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i) Former le DSE(0) de g : t �−→ et − 1 − t

t2
, compléter conve-

nablement en 0, exprimer f ′(x) à l’aide de g , puis primitiver.

Utiliser l’inégalité de Cauchy et Schwarz sur des séries

entières.

a) Pour la décroissance, utiliser une inégalité classique sur

le logarithme.

b) TSCSA, pour x ∈ [0 ; 1] fixé.

c) Utiliser le théorème de la limite radiale.

a) Déterminer le rayon R de la série entière envisagée, par

la règle de d’Alembert.

• Étude en −1 : TSCSA.

• Étude en 1 : Utiliser la formule de Stirling.

b) Utiliser le théorème de la limite radiale.

a) On obtient : an ∼
n∞

ln 2

n
.

b) 1) R = 1 . 2) Pour 
∑

n

an(−R)n, utiliser le TSCSA.

Calculer l’intégrale double, par emboîtement d’intégrales
simples, en utilisant une intégration par parties, puis calculer∫ 1

0

ex − 1

x
dx par intégration d’un DSE(0) de rayon infini.

a) Remarquer ici : e−tn � e−t .

b) Obtenir un équivalent simple de In , par le changement de

variable u = tn , suivi du théorème de convergence dominée.

c) Pour 
∑
n�1

In(−R)n , utiliser le TSCSA.

d) Appliquer le théorème de la limite radiale.

Développer la fonction sous l’intégrale en une somme de
série de fonctions, puis permuter intégrale et série, par le théo-
rème du cours sur continuité et convergence uniforme (PSI) ou
normale (PC) sur un segment.

Calculer les intégrales de Wallis d’indices pairs.

Décomposer f, par produit et composition, à l’aide de

fonctions d’une variable réelle, en considérant 

ϕ : R −→ R, t �−→



et − 1

t
si t �= 0

1 si t = 0.

Se rappeler que toute application dSE(0) est de classe C∞ .

b) Montrer que l’application t �−→ Arctan t

t
, convenable-

ment prolongée en 0, est dSE(0), puis primitiver et refaire le
même raisonnement pour obtenir f (x) .

a) Séparer les cas : x < −1, x = −1, x > −1 .

b) Pour x ∈ ] − 1 ; 1[ , développer t �−→ ln (1 + x e−t ) en

somme d’une série de fonctions, puis permuter intégrale et

série, par le théorème du cours sur l’intégration sur un interval-

le quelconque pour une série de fonctions.

Considérer la somme de la série entière 
∑
n�0

n2xn .

En notant [−a ; a] un segment en dehors duquel f est

nulle, exprimer g(x) pour x ∈ R fixé, puis permuter intégrale et

série, par le théorème du cours sur l’intégration sur un interval-

le quelconque pour une série de fonctions.

Noter 

A =
+∞∑
n=0

1

(3n)!
, B =

+∞∑
n=0

1

(3n + 1)!
, C =

+∞∑
n=0

1

(3n + 2)!
,

et calculer A + B + C, A + jB + j2C, A + j2 B + jC , puis

déduire A.

Considérer la série entière 
∑
n�0

(−1)n xn

(n + 1)(2n + 1)
, de rayon 1.

Calculer sa somme pour x ∈ [0 ; 1[, puis montrer qu’on peut
remplacer x par 1, par continuité et convergence uniforme (PSI)
ou normale (PC).

Former In + iJn , développer la fonction sous l’intégrale en

une somme de série de fonctions, puis permuter intégrale et

série, par continuité et convergence uniforme (PSI) ou normale

(PC) sur un segment.

a) 1) Utiliser la majoration usuelle de | sin n|, et, d’autre part,

montrer que la suite ( sin n)n∈N ne converge pas vers 0.

2) Une série entière a le même rayon que sa série entière déri-

vée, ou qu’une série entière primitive.

b) Pour z ∈ C
∗ , déterminer la limite de |an zn | lorsque l’entier n

tend vers l’infini.
c) Pour obtenir un équivalent simple du coefficient, utiliser le

théorème des accroissements finis, appliqué à Arcsin , entre 
1

2

et  
n + 1

2n + 3
.

d) Remarquer an −→
n ∞ 0 , donc : an ∼

n∞ sin an .

e) Encadrer |an | .

f) Montrer : ∀ n ∈ N, an � nn e−n,

puis règle de d’Alembert pour   
∑
n�1

nn e−n zn .

g) Par le changement de variable t = x2 , se ramener à

an =
∫ (n+1)π

nπ

sin t√
t

dt.

On sait que l’intégrale 

∫ −→+∞

π

sin t√
t

dt est semi-convergente,

c’est-à-dire convergente mais non absolument convergente.
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h) • Montrer : an � 1 .

• Par utilisation d’une expression conjuguée, montrer :

an � n
√

2 .

Utiliser la même méthode que celle employée dans le

cours pour montrer qu’une série entière a le même rayon que sa

série entière dérivée.

a) • Rayon : Comme pour l’exercice 6.30 a).

• Somme : Remplacer cos n par son expression à l’aide d’expo-

nentielles complexes et utiliser des séries géométriques.

b) Dériver, décomposer en éléments simples, primitiver.

c) Changements de variable :

t = √
x si x ∈ ]0 ; 1[, t = √−x si x ∈ ] − 1 ; 0[.

d) Changements de variable :

t = √
x si x ∈ ]0 ;+∞[ , t = √−x si x ∈ ] − ∞; 0[.

e) Décomposer en éléments simples.

Pour calculer  
+∞∑
n=0

xn

2n + 1
, utiliser des changements de

variable, comme dans c).

f) Pour z ∈ C tel que |z| < 1 et N ∈ N
∗ , découper 

(N+1)2−1∑
n=0

zE(
√

n) en paquets.

a) 1) Rayons : Une inégalité est immédiate.

Montrer que, pour tout θ ∈ R , la suite ( cos nθ)n�0 ne converge

pas vers 0, en raisonnant par l’absurde. Montrer que, pour tout

θ ∈ R − πZ , la suite ( sin nθ)n�0 ne converge pas vers 0, en rai-

sonnant par l’absurde.

2) Sommes : Considérer Sc(x) + iSs(x) et utiliser une série géo-

métrique.

b) 1) Rayons : Série entière dérivée.

2) Sommes : Se ramener à a) par dérivation et multiplication 

par x.

a) En utilisant le DSE(0) de l’exponentielle, montrer que f

est dSE(0) de rayon infini, donc f est de classe C∞ sur R.

Effectuer le produit de Cauchy des séries entières
∑
n�0

1

n!
zn et 

∑
n�1

(−1)n−1

n · n!
zn , puis exprimer le coefficient de zn,

en remplaçant 
1

n − k
par 

∫ 1

0
tn−k−1 dt.

1) Par majoration de |an | , montrer : R � 1 .

2) Soit x ∈ ] − 1 ; 1[. Pour calculer S(x) , montrer qu’on peut per-

muter série et intégrale, par continuité et convergence uniforme

(PSI) ou normale (PC) sur un segment.

3) Ayant obtenu   S(x) =



x

ln(1 + x)
si x �= 0

1 si x = 0,

montrer R = 1 en considérant le comportement de S′(x)

lorsque x −→ −1+ .

a) Montrer que, pour x ∈ R fixé, si |x | � 1 alors la série
converge, et si |x | > 1 alors la série diverge grossièrement.

b) 1) • 1re méthode, PC : Convergence normale sur [−1 ; 1].

• 2è méthode, PC, PT : Utiliser le théorème de la limite radiale.

2) Utiliser le théorème du cours sur la dérivation pour les séries

entières.

c) Utiliser le théorème de la limite radiale et le théorème limite

de la dérivée.

d) • Minorer S′(x) en remarquant :

∀ n � 1,
1

n1/2
� 1

n
.

• Raisonner par l’absurde pour montrer que S n’est pas de clas-

se C1 sur [−1 ; 1].

1) Soit f convenant.

• Montrer que f est de classe C∞ sur R.

• Montrer que le reste de Taylor de f en 0 tend vers 0 lorsque

l’entier n tend vers l’infini.

2) Reporter f (x) =
+∞∑
n=0

an xn dans l’équation, et raisonner par

équivalences logiques successives.

1) Montrer que f est dSE(0), par des arguments qualitatifs.

2) Pour calculer le DSE(0) de f, utiliser la méthode de l’équation

différentielle.

Montrer que f satisfait une EDL2 (E) à coefficients variables

polynomiaux.

• Supposer que f est dSE(0), f (x) =
+∞∑
n=0

an xn , reporter dans (E),

et déduire les an.

• Réciproquement, montrer que la série entière obtenue est de

rayon > 0 et satisfait (E) et les mêmes conditions initiales que f.

Conclure à l’aide du théorème de Cauchy linéaire.

a) Utiliser des DL(0) pour obtenir :

f (x) −→
x−→0

− 1

2
.
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b) Montrer, pour x �= 0 : f (x) = − x

ex − 1

ex − 1 − x

x2
.

Montrer que x �−→ ex − 1 − x

x2 complétée convenablement 

en 0, est dSE(0), puis utiliser le lien entre dSE(0) et classe C∞ .

a) Montrer : f (0) = 0 . Se ramener au cas où tn −→
n ∞ 0 en

décroissant strictement, et utiliser le théorème de Rolle pour

construire une suite (un)n�0 jouant, pour f ′ , le même rôle que

celui joué par (tn)n�0 pour f.

En déduire f ′(0) = 0 , réitérer, puis f = 0 .

b) Raisonner par l’absurde et appliquer le résultat de a) à 

g : x �−→ f (x) − x3, h : x �−→ f (x) + x3 .

Montrer qu’on peut permuter intégrale et série, par appli-

cation du théorème du cours sur l’intégration sur un intervalle

quelconque pour une série de fonctions.

1) Rayon : Encadrer un par deux suites plus simples,
0 � vn � un � wn , calculer vn et wn et en déduire

R =
√

5 − 1

2
.

2) Somme : Décomposer un+2xn+2 d’après l’énoncé, puis som-

mer.

b) 1) • Encadrer 

∣∣∣∣αn

n!

∣∣∣∣ , et déduire R � 1 .

• Faire le produit de Cauchy de 
∑
n�0

αn

n!
zn et 

∑
n�0

1

n!
zn .

2) Effectuer (1 − z)S(z) et utiliser un télescopage.

3) La série 
∑
p�0

(−1)p

p!
relève du TSCSA et sa somme est égale 

à e−1 .

a) Revenir à la définition d’une limite infinie et utiliser des

sommes partielles.

b) Revenir à la définition d’une limite finie, pour  
an

bn
−→
n ∞ 	 , et uti-

liser des sommes partielles.

a) Règle de d’Alembert.

b) Par la formule de Stirling et l’exercice 6.46, montrer :

S(x) ∼
x−→1−

1√
2π

+∞∑
n=1

xn

√
n

.

Pour obtenir un équivalent simple de cette dernière somme de

série entière lorsque x −→ 1− , utiliser une comparaison

série/intégrale.

Appliquer la formule de Taylor avec reste intégral à f sur le

segment joignant 0 et x, et majorer la valeur absolue du reste à

l’aide de l’inégalité de Cauchy et Schwarz.

Remarquer :

∀ p ∈ N
∗,

1

16n(8n + p)
=

√
2 p

∫ 1/
√

2

0
x8n+p−1 dx .

Montrer que l’on peut permuter intégrale et série, par continui-

té et convergence uniforme (PSI) ou converge normale (PC) sur

un segment.

En déduire, après changement de variable u = x
√

2 :

S = 16
∫ 1

0

4 − 2u3 − u4 − u5

16 − u8
du .

Simplifier la fraction rationnelle et calculer l’intégrale.

a) 1) Montrer que, pour tout x ∈ [0 ; a[ , la suite 
(
Sn(x)

)
n�0 est

croissante et majorée.

2) Pour n ∈ N, (x,y) ∈ ]0 ; a[2 tel que x < y , exprimer 
Rn(x)

xn+1 à

l’aide du changement de variable u = t

x
, et comparer à 

Rn(y)

yn+1 .

3) Pour x ∈ ]0 ; a[ fixé, intercaler strictement un y entre x et a et

utiliser 2).

b) Montrer, pour tout x ∈ ] − a ; 0] : |Rn(x)| � Rn(|x |),
et utiliser a).
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Notons, dans chaque exemple, an le coefficient de la série
entière envisagée.

a) On a : an = n2 + 1

n3 + 2
∼
n∞

1

n
,

puis, pour tout z ∈ C
∗ :

∣∣∣∣an+1zn+1

anzn

∣∣∣∣ ∼
n∞

n

n + 1
|z| −−−→

n ∞
|z| ,

donc, d’après la règle de d’Alembert : R = 1.

b) On a : an = √
n + 2 − √

n = 2√
n + 2 + √

n
∼
n∞

1√
n

,

puis, pour tout z ∈ C
∗ :

∣∣∣∣an+1zn+1

anzn

∣∣∣∣ ∼
n∞

√
n√

n + 1
|z| −−−→

n ∞
|z| ,

donc, d’après la règle de d’Alembert : R = 1.

c) On a : an = 2n + n2

3n − n2
∼
n∞

2n

3n
,

puis, pour tout z ∈ C
∗ :

∣∣∣∣an+1zn+1

anzn

∣∣∣∣ ∼
n∞

2n+1

3n+1

3n

2n
|z| = 2

3
|z| −−−→

n ∞
2

3
|z| ,

donc, d’après la règle de d’Alembert : R = 3

2
.

d) On a :

an = ln(n2 + 1)

ln(n3 + 1)
=

2 ln n + ln

(
1 + 1

n2

)

3 ln n + ln

(
1 + 1

n3

) −→
n∞

2

3
,

puis, pour tout z ∈ C
∗ :

∣∣∣∣an+1zn+1

anzn

∣∣∣∣ =
∣∣∣∣an+1

an

∣∣∣∣|z| −−−→
n ∞

|z| ,

donc, d’après la règle de d’Alembert : R = 1.

e) On a, pour tout z ∈ C
∗ :

∣∣∣∣an+1zn+1

anzn

∣∣∣∣ =
(

2n + 2
n + 1

)(
2n
n

)−1

|z|

= (2n + 2)!(
(n + 1)!

)2

(n!)2

(2n)!
|z| = (2n + 2)(2n + 1)

(n + 1)2
|z| −−−→

n ∞
4|z| ,

donc, d’après la règle de d’Alembert : R = 1

4
.

f) On a : ∀ n ∈ N, 0 � e−1 � e sin n � e1.

Les séries entières  
∑
n�0

e−1zn et  
∑
n�0

e zn sont de rayon 1 (sé-

ries géométriques, ou règle de d’Alembert), donc, par théorème
d’encadrement pour les rayons : R = 1.

a) La règle de d’Alembert montre : R = 1.

On a : ∀ x ∈ ] − 1 ; 1[,
+∞∑
n=0

xn = 1

1 − x
,

d’où, en dérivant :

∀ x ∈ ] − 1 ; 1[,
+∞∑
n=1

nxn−1 = 1

(1 − x)2
,

puis, en multipliant par x :

∀ x ∈ ] − 1 ; 1[,
+∞∑
n=1

nxn = x

(1 − x)2
= x(1 − x)−2 ,

puis, en dérivant : ∀ x ∈ ] − 1 ; 1[,

+∞∑
n=1

n2xn−1 = (1 − x)−2 + 2x(1 − x)−3 = 1 + x

(1 − x)3
,

puis, en multipliant par x et en remarquant que le terme d’in-
dice 0 est nul :

∀ x ∈ ] − 1 ; 1[, S(x) =
+∞∑
n=0

n2xn = x(1 + x)

(1 − x)3
.

Réponse : R = 1 et :

∀ x ∈ ] − 1 ; 1[, S(x) = x(1 + x)

(1 − x)3
.

b) L’utilisation d’un équivalent et la règle de d’Alembert mon-
trent : R = 1.

On a, pour tout x ∈ ] − 1 ; 1[ :

S(x) =
+∞∑
n=1

(n + 1)2

n
xn =

+∞∑
n=1

(
n + 2 + 1

n

)
xn

=
+∞∑
n=1

nxn + 2
+∞∑
n=1

xn +
+∞∑
n=1

xn

n
,

car ces trois séries entières sont de rayon 1.

On sait : ∀ x ∈ ] − 1 ; 1[,
+∞∑
n=0

xn = 1

1 − x
,

donc : ∀ x ∈ ] − 1 ; 1[,
+∞∑
n=1

xn = 1

1 − x
− 1 = x

1 − x
.

Corrigés des exercices

6.1

6.2



• On a, pour tout x ∈ ] − 1 ; 1[ :

S(x) =
+∞∑
n=0

(n2 + 1)(−1)n x2n =
+∞∑
n=0

(n2 + 1)(−x2)n

=
+∞∑
n=0

n2(−x2)n +
+∞∑
n=0

(−x2)n ,

car ces deux séries entières sont de rayon 1.

D’une part, par série géométrique :

+∞∑
n=0

(−x2)n = 1

1 − (−x2)
= 1

1 + x2
.

D’autre part, d’après l’exercice a) :

∀ t ∈ ] − 1 ; 1[,
+∞∑
n=0

n2tn = t (1 + t)

(1 − t)3
,

puis en remplaçant t par −x2 ∈ ] − 1 ; 1[ :

+∞∑
n=0

n2(−x2)n = −x2(1 − x2)

(1 + x2)3
.

Réponse : R = 1 et :

∀ x ∈ ] − 1 ; 1[, S(x) = −x2(1 − x2)

(1 + x2)3
+ 1

1 + x2
.

e) • On a : an = sh n = en − e−n

2
∼
n∞

en

2
.

Comme la série entière  
∑
n�0

enzn est de rayon 
1

e
(série géo-

métrique), par théorème d’équivalence : R = 1

e
.

• On a, pour tout z ∈ C tel que |z| <
1

e
:

S(z) =
+∞∑
n=0

sh n zn =
+∞∑
n=0

en − e−n

2
zn

= 1

2

+∞∑
n=0

enzn − 1

2

+∞∑
n=0

e−nzn

car les rayons respectifs sont 
1

e
, et 

e = 1

2

1

1 − ez
− 1

2

1

1 − e−1z
= 1

2

(1 − e−1z) − (1 − ez)

(1 − ez)(1 − e−1z)

= 1

2

(e − e−1)z

1 − (e + e−1)z + z2
= (sh 1)z

1 − 2(ch 1)z + z2
.

Réponse : R = 1

e
et, pour tout z ∈ C tel que  |z| <

1

e
:

S(z) = z sh 1

1 − 2z ch 1 + z2
.
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D’autre part, en dérivant, on obtient :

∀ x ∈ ] − 1 ; 1[,
+∞∑
n=1

nxn−1 = 1

(1 − x)2
,

puis, en multipliant par x :

∀ x ∈ ] − 1 ; 1[,
+∞∑
n=1

nxn = x

(1 − x)2
.

Enfin, on sait : ∀ x ∈ ] − 1 ; 1[,
+∞∑
n=1

xn

n
= − ln (1 − x).

En combinant linéairement, on en déduit S(x) .

Réponse : R = 1 et :

∀ x ∈ ] − 1 ; 1[, S(x) = 3x − 2x2

(1 − x)2
− ln (1 − x) .

c) L’utilisation d’un équivalent et la règle de d’Alembert mon-
trent : R = 1.

On a, pour tout x ∈ ] − 1 ; 1[ :

S(x) =
+∞∑
n=0

n3 + n2 − 1

n + 1
xn =

+∞∑
n=0

(
n2 − 1

n + 1

)
xn

=
+∞∑
n=0

n2xn

︸ ︷︷ ︸
notée A(x)

−
+∞∑
n=0

1

n + 1
xn

︸ ︷︷ ︸
notée B(x)

,

car ces deux séries entières sont de rayon 1.

On a calculé A(x) dans a) : A(x) = x(1 + x)

(1 − x)3
.

D’autre part, si x =/ 0 :

B(x) = 1

x

+∞∑
n=0

xn+1

n + 1
= 1

x

+∞∑
n=1

xn

n
= − 1

x
ln (1 − x) ,

et on a B(0) = 1, terme constant de la série entière définissant
B(x) .

Réponse : R = 1 et pour tout x ∈ ] − 1 ; 1[ :

S(x) =



x(1 + x)

(1 − x)3
+ 1

x
ln (1 − x) si x =/ 0

1 si x = 0.

d) • Soit x ∈ R
∗ . Notons, pour tout n ∈ N :

un =
∣∣∣(n2 + 1)(−1)n x2n

∣∣∣ = (n2 + 1)x2n .

On a :
un+1

un
= (n + 1)2 + 1

n2 + 1
|x |2 −−−→

n ∞
|x |2,

donc, d’après la règle de d’Alembert : R = 1.
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f) • On a, pour tout z ∈ C
∗ :∣∣∣∣an+1zn+1

anzn

∣∣∣∣ = n + 2

(n + 1)!

n!

n + 1
|z|

= n + 2

(n + 1)2
|z| ∼

n∞
1

n
|z| −−−→

n ∞
0,

donc, d’après la règle de d’Alembert : R = +∞.

• On a, pour tout z ∈ C :

S(z) =
+∞∑
n=0

n + 1

n!
zn = 1 +

+∞∑
n=1

n + 1

n!
zn

= 1 +
+∞∑
n=1

(
1

(n − 1)!
+ 1

n!

)
zn

= 1 +
+∞∑
n=1

zn

(n − 1)!
+

+∞∑
n=1

zn

n!

car ces deux séries entières sont de rayon infini 

=
+∞∑
n=0

zn+1

n!
+

+∞∑
n=0

zn

n!
= (1 + z)

+∞∑
n=0

zn

n!
= (1 + z) ez .

Réponse : R = +∞ et : ∀ z ∈ C, S(z) = (1 + z) ez .

g) • On a : ∀ n ∈ N
∗,

1

n
� |an| � n.

Comme les deux séries entières  
∑
n�1

1

n
zn et  

∑
n�1

zn sont de

rayon 1, par théorème d’encadrement : R = 1.

• Soit x ∈ ] − 1 ; 1[. Pour séparer les termes d’indices pairs, d’in-
dices impairs, nous allons travailler sur des sommes partielles.

On a, pour tout N ∈ N :

2N+1∑
n=1

n(−1)n
xn =

N∑
p=1

2px2p +
N∑

p=0

1

2p + 1
x2p+1 .

Comme les trois séries entières qui interviennent sont de rayon
1, on déduit, en faisant tendre l’entier N vers l’infini :

S(x) =
+∞∑
p=1

2px2p

︸ ︷︷ ︸
notée A(x)

+
+∞∑
p=0

x2p+1

2p + 1︸ ︷︷ ︸
notée B(x)

.

On a, d’après la série géométrique :

∀ t ∈ ] − 1 ; 1[,
+∞∑
n=0

tn = 1

1 − t
,

d’où, en dérivant :

∀ t ∈ ] − 1 ; 1[,
+∞∑
n=1

ntn−1 = 1

(1 − t)2
,

puis, en multipliant par t :

∀ t ∈ ] − 1 ; 1[,
+∞∑
n=1

ntn = t

(1 − t)2
.

Il s’ensuit :

∀ x ∈ ] − 1 ; 1[, A(x) = 2
+∞∑
p=1

p(x2)p = 2
x2

(1 − x2)2
.

D’autre part :

∀ x ∈ ] − 1 ; 1[, B(x) =
+∞∑
p=0

x2p+1

2p + 1
= 1

2
ln

1 + x

1 − x
.

Réponse : R = 1 et :

∀ x ∈ ] − 1 ; 1[, S(x) = 2x2

(1 − x2)2
+ 1

2
ln

1 + x

1 − x
.

a) La fonction  f : x �−→ x3 + 2

x2 − 1
est définie sur

R − {−1,1} , donc au moins sur ] − 1 ; 1[ , et on a, par une dé-
composition en éléments simples immédiate, pour tout
x ∈ ] − 1 ; 1[ :

f (x) = x + x + 2

x2 − 1
= x + x + 2

(x − 1)(x + 1)

= x + 3

2

1

x − 1
− 1

2

1

x + 1
= x − 3

2

1

1 − x
− 1

2

1

1 + x

= x − 3

2

+∞∑
n=0

xn − 1

2

+∞∑
n=0

(−1)n xn

= x +
+∞∑
n=0

(
− 3

2
− 1

2
(−1)n

)
xn =

+∞∑
n=0

an xn,

en notant : an =



−3

2
− 1

2
(−1)n si n =/ 1

0 si n = 1,

ou encore : an =




−1 si n = 2p + 1, p ∈ N
∗

−2 si n = 2p, p ∈ N

0 si n = 1.

Déterminons le rayon  R de cette série entière.

D’une part, puisque la suite  (an)n ne converge pas vers 0,
on a : R � 1.

D’autre part, puisque  (an)n est bornée, on a : R � 1.

On conclut : R = 1.

b) La fonction 

f : x �−→ 1

x4 − 3x2 + 2
= 1

(x2 − 1)(x2 − 2)

est définie sur R − {−√
2,−1, 1,

√
2}, donc (au moins) sur

] − 1 ; 1[ et on a, par une décomposition en éléments simples
immédiate, pour tout x ∈ ] − 1 ; 1[ :

6.3
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f (x) = 1

(x2 − 1)(x2 − 2)

= − 1

x2 − 1
+ 1

x2 − 2
= 1

1 − x2
− 1

2

1

1 − x2

2

=
+∞∑
n=0

(x2)n − 1

2

+∞∑
n=0

(
x2

2

)n

=
+∞∑
n=0

(
1 − 1

2n+1

)
x2n .

Puisque  1 − 1

2n+1
∼
n∞

1 et que la série entière  
∑
n�0

x2n est de

rayon 1, par théorème d’équivalence, on a : R = 1.

c) La fonction  f : x �−→ (1 − x) ln (1 − x)

est définie que ] − ∞; 1[, donc (au moins) sur ] − 1 ; 1[ .

On a, pour tout x ∈ ] − 1 ; 1[ :

f (x) = (1 − x) ln (1 − x) = −(1 − x)

+∞∑
n=1

xn

n

= −
+∞∑
n=1

xn

n
+

+∞∑
n=1

xn+1

n
= −

+∞∑
n=1

xn

n
+

+∞∑
n=2

xn

n − 1

= −x +
+∞∑
n=2

(
− 1

n
+ 1

n − 1

)
xn = −x +

+∞∑
n=2

1

(n − 1)n
xn .

On peut considérer que ce dernier résultat constitue la réponse
à la question posée. On peut aussi se ramener précisément à
une série entière :

∀ x ∈ ] − 1 ; 1[, f (x) =
+∞∑
n=0

an xn ,

où, pour tout n ∈ N : an =




0 si n = 0

−1 si n = 1

1

(n − 1)n
si n � 2.

Par la règle de d’Alembert : R = 1.

d) La fonction  x �−→
√

1 − x

1 + x

est définie sur ] − 1 ; 1] , donc (au moins) sur ] − 1 ; 1[ .

On a, pour tout x ∈ ] − 1 ; 1[ :

f (x) = 1 − x√
1 − x2

= (1 − x)(1 − x2)−1/2

= (1 − x)

[
1 +

+∞∑
n=1

(
− 1

2

)
· · ·

(
− 1

2 − n + 1
)

n!
(−x2)n

]

= (1 − x)

[
1 +

+∞∑
n=1

(−1)n1 · 3 · · · (2n − 1)

2nn!
(−1)n x2n

]

= (1 − x)

(
1 +

+∞∑
n=1

(2n)!

22n(n!)2
x2n

)

= (1 − x)

+∞∑
n=0

(2n)!

22n(n!)2
x2n

=
+∞∑
n=0

(2n)!

22n(n!)2
x2n −

+∞∑
n=0

(2n)!

22n(n!)2
x2n+1 .

On peut considérer que ce dernier résultat constitue la réponse
à la question posée. On peut aussi se ramener précisément à
une série entière :

∀ x ∈ ] − 1 ; 1[, f (x) =
+∞∑
k=0

ak xk ,

où, pour tout k ∈ N :

ak =




(2n)!

22n(n!)2
si k est pair, k = 2n, n ∈ N

(2n)!

22n(n!)2
si k est impair, k = 2n + 1, n ∈ N,

ou encore, pour tout k ∈ N, ak = (−1)k (2n)!

22n(n!)2
, en notant

n = E

(
k

2

)
.

Déterminons le rayon  R . On sait déjà : R � 1.

Comme  f (x) −→
x−→−1+

+∞ , on a : R � 1.

On conclut : R = 1.

e) On a : X2 − 8X + 15 = (X − 3)(X − 5).

La fonction  f : x �−→ ln (x2 − 8x + 15) est définie sur
] − ∞; 3[ ∪ ]5 ;+∞[, donc (au moins) sur ] − 3 ; 3[ .

On a, pour tout x ∈ ] − 3 ; 3[ (en faisant attention à ne mettre
des logarithmes que sur des nombres > 0) :

f (x) = ln
(
(x − 3)(x − 5)

)
= ln (3 − x) + ln (5 − x)

= ln 3 + ln
(

1 − x

3

)
+ ln 5 + ln

(
1 − x

5

)

= ln 15 −
+∞∑
n=1

1

n

( x

3

)n
−

+∞∑
n=1

1

n

( x

5

)n

= ln 15 −
+∞∑
n=1

1

n

( 1

3n
+ 1

5n

)
xn .

On peut considérer que ce dernier résultat constitue la réponse
à la question posée.

On peut aussi se ramener précisément à une série entière :

∀ x ∈ ] − 3 ; 3[, f (x) =
+∞∑
n=0

an xn ,

où a0 = ln 15 et an = − 1

n

(
1

3n
+ 1

5n

)
pour tout n � 1.
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On a  |an| ∼
n∞

1

n3n
noté bn, et, pour tout x ∈ R

∗ fixé :

∣∣∣∣bn+1xn+1

bn xn

∣∣∣∣ = n3n

(n + 1)3n+1
|x | = n

n + 1

|x |
3

−−−→
n ∞

|x |
3

.

On en déduit, d’après la règle de d’Alembert et le théorème
d’équivalence : R = 3.

f) L’application  f : x �−→ sin 4x

sin x
est définie sur R − πZ.

On a, pour tout x ∈ R :

sin 4x = 2 sin 2x cos 2x = 4 sin x cos x cos 2x ,

donc, pour tout x ∈ R − πZ : f (x) = 4 cos x cos 2x .

Ainsi, f peut être prolongée par continuité à R tout entier, en
notant : f : R −→ R, x �−→ 4 cos x cos 2x .

Linéarisons : ∀ x ∈ R, f (x) = 2( cos x + cos 3x).

D’après le cours, comme  x �−→ cos x et x �−→ cos 3x sont
dSE(0) de rayon infini, par combinaison linéaire, f est dSE(0)
de rayon infini, et on a, pour tout x ∈ R :

f (x) = 2

( +∞∑
p=0

(−1)p

(2p)!
(3x)2p +

+∞∑
p=0

(−1)p

(2p)!
x2p

)

= 2
+∞∑
p=0

(−1)p

(2p)!
(32p + 1)x2p.

On peut considérer que ce dernier résultat constitue la réponse
à la question posée. On peut aussi se ramener précisément à
une série entière :

∀ x ∈ R, f (x) =
+∞∑
n=0

an xn ,

où, pour tout n ∈ N :

an =



(−1)p

(2p)!
(32p + 1) si n est pair n = 2p, p ∈ N

0 si n est impair .

On a vu plus haut que le rayon est infini.

g) L’application  f : x �−→ sin x

x
est définie sur R∗ et

f (x) = sin x

x
−→
x−→0

1. On peut donc prolonger  f par continuité

à R tout entier, en notant :

f : R −→ R, x �−→



sin x

x
si x =/ 0

1 si x = 0.

On a, pour tout x ∈ R , d’après le cours :

sin x =
+∞∑
p=0

(−1)p

(2p + 1)!
x2p+1 ,

d’où, pour tout x ∈ R
∗ : f (x) =

+∞∑
p=0

(−1)p

(2p + 1)!
x2p.

De plus, cette dernière égalité est vraie pour  x = 0, car
f (0) = 1 et la valeur en 0 de la série entière du second membre
est égale à son terme constant, donc égale à 1.

Ainsi : ∀ x ∈ R, f (x) =
+∞∑
p=0

(−1)p

(2p + 1)!
x2p.

Il est clair que : R = +∞.

On a, pour tout n � 2 :

un = 2n + n3n

(n − 1)n5n
= 1

(n − 1)n

(
2

5

)n

+ 1

n − 1

(
3

5

)n

.

Nous allons calculer les sommes respectives A,B des séries en-

tières  
∑
n�2

xn

(n − 1)n
,
∑
n�2

xn

n − 1
, puis remplacer x par  

2

5
,

par  
3

5
. Il est clair, par la règle de d’Alembert par exemple, que

ces deux séries entières sont de rayon égal à 1.

On a, pour tout x ∈ ] − 1 ; 1[ :

B(x) =
+∞∑
n=2

xn

n − 1
= x

+∞∑
n=2

xn−1

n − 1
= x

+∞∑
n=1

xn

n

= x
( − ln (1 − x)

) = −x ln (1 − x).

D’autre part, pour tout x ∈ ] − 1 ; 1[, en utilisant une décom-

position en éléments simples de  
1

(n − 1)n
:

A(x) =
+∞∑
n=2

xn

(n − 1)n
=

+∞∑
n=2

(
1

n − 1
− 1

n

)
xn

=
+∞∑
n=2

1

n − 1
xn −

+∞∑
n=2

1

n
xn

car ces séries entières sont de rayon 1 

= B(x) − ( − ln (1 − x) − x
)

= −x ln (1 − x) + ln (1 − x) + x = (1 − x) ln (1 − x) + x .

On a donc :

S =
+∞∑
n=2

un =
+∞∑
n=2

1

(n − 1)n

(
2

5

)n

+
+∞∑
n=2

1

n − 1

(
3

5

)n

= A

(
2

5

)
+ B

(
3

5

)
= 3

5
ln

3

5
+ 2

5
− 3

5
ln

2

5
= 3

5
ln

3

2
+ 2

5
.

En notant, pour tout n ∈ N , Pn =
n∏

k=0

3
2k
k! , on a Pn > 0

et : ln Pn =
n∑

k=0

2k

k!
ln 3 =

( n∑
k=0

2k

k!

)
ln 3,

6.4
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donc : ln Pn −−−→
n ∞

( +∞∑
k=0

2k

k!

)
ln 3 = e2 ln 3,

puis, par continuité de l’exponentielle :

Pn −−−→
n ∞

ee2 ln 3 = 3e2
.

On conclut : lim
n∞

n∏
k=0

3
2k
k! = 3e2

.

Soit  z ∈ C, z = x + i y, (x,y) ∈ R
2 . On a :

ez = −2 ⇐⇒ ex+i y = −2

⇐⇒
{

ex = 2

y = Arg (−1) [2π]
⇐⇒

{
x = ln 2

y ≡ π [2π]
.

On conclut que l’ensemble des solutions de l’équation propo-

sée est : S = {
ln 2 + (π+ 2kπ)i ; k ∈ Z

}
.

a) Comme : an = ln

(
1 + 1

n

)
∼
n∞

1

n
,

et que la série entière 
∑
n�1

1

n
xn est de rayon 1, par théorème

d’équivalence, le rayon de la série entière 
∑
n�1

an xn est1.

b) • Étude en 1 :

On a : an ∼
n∞

1

n
� 0, donc, d’après l’exemple de Riemann et

le théorème d’équivalence pour des séries à termes � 0, la série∑
n�1

an diverge.

• Étude en −1 :

La série 
∑
n�1

an(−1)n est alternée.

On a : |an(−1)n| = ln

(
1 + 1

n

)
−→
n∞

0,

et la suite (|an(−1)n|)n�1 est décroissante.

D’après le TSCSA, on conclut que la série 
∑
n�1

an(−1)n

converge.

c) • D’après a), on a : ] − 1 ; 1[⊂ Déf (S) ⊂ [−1 ; 1].

D’après b), on a : −1 ∈ Déf (S) et 1 /∈ Déf (S).

On conclut : Déf (S) = [−1 ; 1[.

• D’après le cours sur les séries entières, S est continue 
sur ] − 1 ; 1[.

D’après le théorème de la limite radiale, puisque la série en-
tière converge en −1, la somme S est continue en −1.

On conclut : S est continue sur [−1 ; 1[.

d) 1) Il suffit de prouver : ∀ t ∈ [0 ; 1], ln (1 + t) � t

2
.

L’application ϕ : t ∈ [0 ; 1] �−→ ln (1 + t) − t

2

est dérivable et, pour tout t ∈ [0 ; 1] :

ϕ
′(t) = 1

1 + t
− 1

2
= 1 − t

2(1 + t)
� 0,

donc ϕ est croissante.

Comme de plus ϕ(0) = 0, on déduit ϕ � 0, d’où l’inégalité
voulue.

2) On a donc, pour tout x ∈ [0 ; 1[ :

S(x) =
+∞∑
n=1

ln

(
1 + 1

n

)
xn �

+∞∑
n=1

1

2n
xn

= −1

2
ln (1 − x) −→

x−→1−
+∞,

et on conclut : S(x) −→
x−→1−

+∞.

a) On a, par développement asymptotique lorsque l’en-
tier n tend vers l’infini :

an =
√

n2 + n + 1 − 3
√

n3 + n2

= n

(
1 + 1

n
+ 1

n2

) 1
2

− n

(
1 + 1

n

) 1
3

= n

[
1 + 1

2n
+ o

(
1

n

)]
− n

[
1 + 1

3n
+ o

(
1

n

)]

= 1

6
+ o(1) .

d’où, pour tout z ∈ C
∗ :

∣∣∣∣an+1zn+1

anzn

∣∣∣∣ −−−→
n ∞

|z|,

et donc, par la règle de d’Alembert : R = 1.

b) On a : an = n
√

n ch n = e
1
n ln n en + e−n

2
∼
n∞

en

2
,

puis, pour tout z ∈ C
∗ :∣∣∣∣an+1zn+1

anzn

∣∣∣∣ ∼
n∞

en+1

2

2

en
|z| = e|z|

donc, par la règle de d’Alembert : R = 1

e
.

c) Soit z ∈ C
∗ . On a :

ln (|anzn|) = −n ln
√

n + n ln |z|

= n

(
− 1

2
ln n + ln |z|

)
−−−→

n ∞
− ∞,

donc : anzn −−−→
n ∞

0. On conclut : R = ∞ .

d) On a, par développement asymptotique lorsque l’entier n tend
vers l’infini :

6.6
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an = tan (π
√

n2 + 1) = tan

[
πn

(
1 + 1

n2

) 1
2
]

= tan

[
πn

(
1 + 1

2n2
+ o

(
1

n2

))]

= tan

[
πn + π

2n
+ o

(
1

n

)]
= tan

[
π

2n
+ o

(
1

n

)]
∼
n∞

π

2n
,

d’où, pour tout z ∈ C
∗ :

∣∣∣∣an+1zn+1

anzn

∣∣∣∣ ∼
n∞

π

2(n + 1)

2n

π
|z| −−−→

n ∞
|z| ,

donc, d’après la règle de d’Alembert : R = 1.

e) On a, pour tout n � 2 :

∀ k ∈ {1,. . . ,n}, ln 2 � ln k � ln n ,

d’où, en sommant :

(n − 1) ln 2 �
n∑

k=2

ln k � (n − 1) ln n .

Comme, pour tout n � 2 :

an = ln (n!) = ln

( n∏
k=2

k

)
=

n∑
k=2

ln k ,

on a : 0 � (n − 1) ln 2 � an � (n − 1) ln n.

D’après la règle de d’Alembert, les deux séries entières∑
n�2

(n − 1) ln 2 zn et  
∑
n�2

(n − 1) ln n zn sont de rayon 1, donc,

par encadrement : R = 1.

f) On a, pour tout z ∈ C
∗ :

ln (|anzn|)

= −ln n ln ln n + n ln |z| −−−→
n ∞

{−∞ si |z| < 1

+∞ si |z| > 1,

donc : |anzn| −−−→
n ∞

{
0 si |z| < 1

+∞ si |z| > 1.

On conclut : R = 1.

g) On a, pour tout z ∈ C
∗ :

ln (|anzn|) = n ln
n + 1

2n + 1
+ n ln |z|

= n

[
ln

1 + 1
n

2 + 1
n

+ ln |z|
]

−−−→
n ∞

{−∞ si |z| < 2

+∞ si |z| > 2

(il n’est pas utile d’examiner le cas |z| = 2).

D’où : |anzn| −−−→
n ∞

{
0 si |z| < 2

+∞ si |z| > 2,

et on conclut : R = 2.

h) On a, pour tout z ∈ C
∗ :

ln (|anzn|) = −ch n + n ln |z|

= −en + e−n

2
+ n ln |z| −−−→

n ∞
− ∞,

donc : anzn −−−→
n ∞

0. On conclut : R = ∞ .

i) Soit z ∈ C
∗ . On a :

∣∣∣∣a3(n+1)z3(n+1)

a3nz3n

∣∣∣∣ = (n + 1)3n+3

(3n + 3)!

(3n)!

n3n
|z|3

= (n + 1)3n+3

(3n + 3)(3n + 2)(3n + 1)n3n
|z|3

= (n + 1)2

3(3n + 2)(3n + 1)

(
1 + 1

n

)3n

|z|3.

Et :

(
1 + 1

n

)3n

= exp

[
3n ln

(
1 + 1

n

)]

= exp

[
3n

(
1

n
+ o

(
1

n

))]
= exp

(
3 + o(1)

)
−−−→

n ∞
e3 ,

donc :

∣∣∣∣a3n+1z3(n+1)

a3nz3n

∣∣∣∣ −−−→
n ∞

e3

27
|z|3.

Comme :
e3

27
|z|3 = 1 ⇐⇒ |z|3 = 27

e3
⇐⇒ |z| = 3

e
,

on conclut : R = 3

e
.

j) Soit z ∈ C
∗ .

Si |z| < 1, alors   ln (|nzn2 |) = ln n + n2 ln |z| −−−→
n ∞

− ∞ ,

donc : nzn2 −−−→
n ∞

0 .

Si |z| = 1, alors   |nzn2 | = n −−−→
n ∞

+ ∞.

On conclut : R = 1.

k) Par définition de an, on a : ∀ n � 1, 0 � an � 9.

Comme la série entière  
∑
n�1

9zn est de rayon 1, on déduit :

R � 1.

D’autre part, on sait que 
√

2 est irrationnel (ou, au moins ici,

que 
√

2 n’est pas décimal), donc la suite (an)n�1 ne stationne
pas sur 0. Comme les an sont des entiers, il en résulte que la
suite (an)n�1 ne converge pas vers 0. Ceci montre que la série

entière  
∑
n�1

anzn diverge pour z = 1, donc : R � 1.

On conclut : R = 1.



p) Soit n ∈ N . On a : ∀ k ∈ {0,. . . ,n}, 1 � e
√

k � e
√

n,

d’où, en sommant : (n + 1) �
n∑

k=0

e
√

k � (n + 1)e
√

n,

puis : 0 � (n + 1)e−n︸ ︷︷ ︸
noté bn

� an � (n + 1)e
√

ne−n︸ ︷︷ ︸
noté cn

.

Pour tout z ∈ C
∗ :∣∣∣∣bn+1zn+1

bnzn

∣∣∣∣ = (n + 2)e−(n+1)

(n + 1)e−n
|z| −−−→

n ∞
e−1|z| ,

donc, d’après la règle de d’Alembert : Rb = e.

Pour tout z ∈ C
∗ fixé :∣∣∣∣cn+1zn+1

cnzn

∣∣∣∣ = (n + 2)e−√
n+1e−(n+1)

(n + 1)e
√

ne−n
|z|

= n + 2

n + 1
e
√

n+1−√
ne−1|z|

= n + 2

n + 1
e

1√
n+1+√

n e−1|z| −−−→
n ∞

e−1|z|,
donc, d’après la règle de d’Alembert : Rc = e.

Par encadrement, on conclut : R = e.

a) Notons, pour tout n ∈ N
∗ : an = an

n + bn
.

On a : an ∼
n∞

an

n
si b � 1, an ∼

n∞
an

bn
si b > 1. La série

entière  
∑
n�1

an

n
zn a le même rayon que sa série entière déri-

vée  
∑
n�1

anzn−1 qui, par produit par la variable z, a le même

rayon que la série entière 
∑
n�1

anzn , qui est de rayon 
1

a
(série

géométrique).

La série entière  
∑
n�1

an

bn
zn est de rayon 

b

a
(il s’agit de la série

géométrique).

On conclut, par théorème d’équivalence :

R = 1

a
si b � 1, R = b

a
si b > 1,

ou encore : R = 1

a
Max (1,b).

b) Notons, pour tout n ∈ N : an = an2

(2n)!
.

On a, pour tout z ∈ C
∗ :∣∣∣∣an+1zn+1

anzn

∣∣∣∣ = a(n+1)2

(2n + 2)!

(2n)!

an2 |z|

= a2n+1

(2n + 1)(2n + 2)
|z| −−−→

n ∞

{
0 si a � 1

+∞ si a > 1.
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l) On a, pour tout z ∈ C
∗ :

ln (|anzn|) = ln
∣∣∣n−E(

√
n)zn

∣∣∣ = −E(
√

n) ln n + n ln |z|

−−−→
n ∞

{−∞ si |z| < 1

+∞ si |z| > 1,

car  
√

n − 1 � E(
√

n) � √
n , donc  E(

√
n) ∼

n∞
√

n .

D’où : |anzn| −−−→
n ∞

{
0 si |z| < 1

+∞ si |z| > 1

(il n’est pas utile d’examiner le cas |z| = 1)

et on conclut : R = 1.

m) Il est clair que, pour tout n ∈ N
∗ , l’ensemble  Div (n) des

diviseurs � 1 de n vérifie :

{1} ⊂ Div (n) ⊂ {1,2,. . . ,n} ,

donc : 1 � S2(n) �
n∑

k=1

k2 � n · n2 = n3.

Comme les séries entières  
∑
n�1

zn et  
∑
n�1

n3zn sont de 

rayon 1 (par la règle de d’Alembert, par exemple), on conclut,
par encadrement : R = 1.

n) On a, par développement asymptotique lorsque l’entier n tend
vers l’infini :

an =
(

1 + 1

n2

)n3

= exp

[
n3 ln

(
1 + 1

n2

)]

= exp

[
n3

(
1

n2
+ O

(
1

n4

))]
= exp

[
n + O

(
1

n

)]
,

puis :

|anzn| = exp

[
n + O

(
1

n

)
+ n ln |z|

]

= exp

[
n
(

1 + ln |z|
)

+ O

(
1

n

)]

−−−→
n ∞

{−∞ si |z| < e−1

+∞ si |z| > e−1

(il n’est pas utile d’examiner le cas |z| = e−1)

et on conclut : R = e−1 .

o) On a, pour tout n ∈ N :
∫ 1

0

tn

3
dt �

∫ 1

0

tn

1 + t + tn
dt �

∫ 1

0
tn dt ,

d’où : 0 � 1

3(n + 1)
� |an| � 1

n + 1
.

Comme les séries entières  
∑
n�0

1

3(n + 1)
zn et  

∑
n�0

1

n + 1
zn

sont de rayon 1, par encadrement, on conclut : R = 1.

6.9
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On conclut, d’après la règle de d’Alembert :

R =
{+∞ si a � 1

0 si a > 1.

c) Notons, pour tout n ∈ N : an = an! .

On a, pour tout z ∈ C
∗ :

|anzn| = exp
(
n! ln |a| + n ln |z|)

−−−→
n ∞




0 si |a| < 1

0 si |a| = 1 et |z| < 1

1 si |a| = 1 et |z| = 1

+∞ si |a| > 1.

On en déduit : R =




+∞ si |a| < 1

1 si |a| = 1

0 si |a| > 1.

d) Notons, pour tous n ∈ N
∗ et z ∈ C

∗ : un = anzn! .

On a, pour tout z ∈ C
∗ :

|un| = exp
(
n ln |a| + n! ln |z|) −−→

n ∞

{ 0 si |z| < 1

+∞ si |z| > 1

(l’examen du cas |z| = 1 est inutile).

On déduit : R = 1.

e) Notons, pour tout n � 2 : an = e( ln n)a
.

On a, pour tout z ∈ C
∗ :

|anzn| = exp
(
(ln n)a + n ln |z|)−−→

n ∞

{ 0 si |z| < 1

+∞ si |z| > 1

(l’examen du cas |z| = 1 est inutile).

On conclut : R = 1.

1) Notons R′ le rayon de la série entière  
∑

n

a2
n zn .

On a, pour tout entier n et tout z ∈ C :

|a2
n zn| = (∣∣an(|z| 1

2 )n
∣∣)2

.

• Si |z| 1
2 < R, alors   

∣∣an(|z| 1
2
)n∣∣ −−→

n ∞
0,

donc  |a2
n zn| −−−→

n ∞
0, d’où : |z| � R′.

• Si |z| 1
2 > R, alors la suite  

(∣∣an(|z| 1
2 )n

∣∣)
n n’est pas bornée,

donc la suite  
(|a2

n zn|)
n n’est pas bornée, d’où |z| � R′ .

On a montré : ∀ z ∈ C,

{ |z| < R2 �⇒ |z| � R′

|z| > R2 �⇒ |z| � R′,

d’où : R2 � R′ et R2 � R′,

et on conclut : R′ = R2.

2) Notons R′′ le rayon de la série entière  
∑

n

anz2n .

On a, pour tout entier n et tout z ∈ C :

anz2n = an(z
2)n .

• Si |z2| < R, alors  an|z2|n −−−→
n ∞

0 , donc : |z| � R′′.

• Si |z2| > R, alors la suite  
(

an(z2)n
)

n
n’est pas bornée, donc

la suite  (anz2n)n n’est pas bornée, d’où : |z| � R′′.

On a montré : ∀ z ∈ C,

{
|z| < R

1
2 �⇒ |z| � R′′

|z| > R
1
2 �⇒ |z| � R′′,

d’où : R
1
2 � R′′ et R

1
2 � R′′,

et on conclut : R′′ = R
1
2.

1) Supposons  R > 0.

Il existe ρ ∈ R tel que 0 < ρ < R , par exemple : ρ = R

2
.

Puisque |ρ| < R , la suite  (anρ
n)n�1 est bornée. Il existe 

donc C ∈ R
∗
+ tel que : ∀ n � 1, |anρ

n| � C , d’où :

∀ n � 1, |an| 1
n � 1

ρ
C

1
n .

Comme  C
1
n −−−→

n ∞
1 , la suite  (C

1
n )n�1 est bornée.

Il existe donc D ∈ R+ tel que : ∀ n � 1, C
1
n � D .

On a alors : ∀ n � 1, |an| 1
n � D

ρ
,

ce qui montre que la suite 
(|an| 1

n
)

n�1 est majorée.

2) Réciproquement, supposons que la suite  
(|an| 1

n
)

n�1 est ma-

jorée.

Il existe donc M ∈ R
∗
+ tel que : ∀ n � 1, |an| 1

n � M.

On a alors : ∀ n � 1, |an| � Mn .

Comme la série entière  
∑
n�1

Mnzn est de rayon  
1

M
(série géo-

métrique), il en résulte que la série entière 
∑
n�1

anzn est de rayon

� 1

M
, donc de rayon 0.

a) • On a :
1

n(n + 2)
∼
n∞

1

n2
, donc, par la règle de

d’Alembert et le théorème d’équivalence : R = 1.

• Utilisons une décomposition en éléments simples du coeffi-

cient :
1

n(n + 2)
= 1

2

(
1

n
− 1

n + 2

)
.

On a, pour tout x ∈ ] − 1 ; 1[ :

6.10

6.11

6.12
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S(x) =
+∞∑
n=1

xn

n(n + 2)
=

+∞∑
n=1

1

2

(
1

n
− 1

n + 2

)
xn

= 1

2

+∞∑
n=1

1

n
xn

︸ ︷︷ ︸
notée A(x)

−1

2

+∞∑
n=1

1

n + 2
xn

︸ ︷︷ ︸
notée B(x)

car ces deux séries entières sont de rayon 1.

D’après le cours : A(x) = −ln (1 − x).

On a, pour tout x ∈ ] − 1 ; 1[ :

x2 B(x) =
+∞∑
n=1

xn+2

n + 2
=

+∞∑
n=3

xn

n

= −ln (1 − x) −
(

x + x2

2

)
,

d’où, pour tout x ∈ ] − 1 ; 1[−{0} :

B(x) = 1

x2

(
− ln (1 − x) − x − x2

2

)
.

Puis :

S(x) = −1

2
ln (1 − x) + 1

2x2

(
ln (1 − x) + x + x2

2

)

=
(

1

2x2
− 1

2

)
ln (1 − x) + 2 + x

4x

= 1 − x2

2x2
ln (1 − x) + 2 + x

4x
.

Enfin : S(0) = 0 , car  S(0) est le terme constant de la série
entière définissant S.

Réponse : R = 1 et, pour tout x ∈ ] − 1 ; 1[ :

S(x) =



1 − x2

2x2
ln (1 − x) + 2 + x

4x
si x =/ 0

0 si x = 0.

b) • On a :
1

n3 − n
∼
n∞

1

n3
, donc, par la règle de d’Alembert

et le théorème d’équivalence : R = 1.

• Utilisons une décomposition en éléments simples du coeffi-

cient  
1

n3 − n
. Il existe  (a,b,c) ∈ R

3 tel que :

1

X3 − X
= 1

(X − 1)X(X + 1)
= a

X − 1
+ b

X
+ c

X + 1
.

Par multiplication par X − 1 puis remplacement de X par 1,

on obtient : a = 1

2
.

Par multiplication par X puis remplacement de X par 0, on ob-
tient : b = −1.

Par multiplication par X + 1 puis remplacement de X par−1,

on obtient : c = 1

2
.

On a donc :
1

X3 − X
= 1

2

(
1

X − 1
− 2

X
+ 1

X + 1

)
.

D’où, pour tout x ∈ ] − 1 ; 1[−{0} :

S(x) =
+∞∑
n=2

xn

n3 − n
=

+∞∑
n=2

1

2

(
1

n − 1
− 2

n
+ 1

n + 1

)
xn

= 1

2

+∞∑
n=2

xn

n − 1
−

+∞∑
n=2

xn

n
+ 1

2

+∞∑
n=2

xn

n + 1

car ces trois séries entières sont de rayon 1 

= x

2

+∞∑
n=1

xn

n
−

+∞∑
n=2

xn

n
+ 1

2x

+∞∑
n=3

xn

n

= x

2

( − ln (1 − x)
) − ( − ln (1 − x) − x

)

+ 1

2x

(
− ln (1 − x) − x − x2

2

)

= −
(

x

2
− 1 + 1

2x

)
ln (1 − x) − 1

2
+ 3x

4
.

Enfin, S(0) = 0 , car  S(0) est le terme constant de la série

entière définissant S.

Réponse : R = 1, S(0) = 0 et : ∀ x ∈ ] − 1 ; ,1[−{0} ,

S(x) = −
(

x

2
− 1 + 1

2x

)
ln (1 − x) − 1

2
+ 3x

4
.

c) • On a :
n + (−1)n+1

n + (−1)n
∼
n∞

1, donc, d’après la règle de

d’Alembert et le théorème d’équivalence : R = 1.

• Soit  x ∈ ] − 1 ; 1[−{0} .

On a, pour tout N ∈ N
∗, en séparant les termes d’indices pairs,

d’indices impairs :

2N+1∑
n=2

n + (−1)n+1

n + (−1)n
xn =

N∑
p=1

2p − 1

2p + 1
x2p +

N∑
p=1

2p + 2

2p
x2p+1 .

Comme les trois séries entières qui interviennent sont de 

rayon 1, on déduit, en faisant tendre l’entier N vers l’infini :

S(x)

=
+∞∑
p=1

2p − 1

2p + 1
x2p +

+∞∑
p=1

2p + 2

2p
x2p+1

=
+∞∑
p=1

(
1 − 2

2p + 1

)
x2p +

+∞∑
p=1

(
1 + 1

p

)
x2p+1

=
+∞∑
p=1

x2p − 2
+∞∑
p=1

x2p

2p + 1
+

+∞∑
p=1

x2p+1 +
+∞∑
p=1

x2p+1

p

car ces quatre séries entières sont de rayon 1
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= − 1 − x +
+∞∑
n=0

xn − 2

x

+∞∑
p=1

x2p+1

2p + 1
+ x

+∞∑
p=1

(x2)p

p

= − 1 − x + 1

1 − x
− 2

x

(1

2
ln

1 + x

1 − x
− x

)

+ x
( − ln (1 − x2)

)

= 2 − 2x + x2

1 − x
− 1

x
ln

1 + x

1 − x
− x ln (1 − x2).

Et : S(0) = 0 , car  S(0) est le terme constant de la série en-
tière définissant S.

Réponse : R = 1, S(0) = 0 et : ∀ x ∈ ] − 1 ; 1[−{0} ,

S(x) = 2 − 2x + x2

1 − x
− 1

x
ln

1 + x

1 − x
− x ln (1 − x2) .

d) • Notons, pour tout  n ∈ N : an = n4 + n2 + 1

n!
.

On a : an ∼
n∞

n4

n!
.

D’où, pour tout z ∈ C
∗ :

∣∣∣∣an+1zn+1

anzn

∣∣∣∣ ∼
n∞

(n + 1)4

(n + 1)!

n!

n4
|z| = (n + 1)3

n4
|z| −−−→

n ∞
0 .

D’après la règle de d’Alembert et le théorème d’équivalence,
on conclut : R = ∞.

• La série entière proposée ressemble à celle de l’exponentielle :

∀ z ∈ C,

+∞∑
n=0

zn

n!
= ez .

Dans le numérateur n4 + n2 + 1 , faisons apparaître
n(n − 1)(n − 2)(n − 3) :

n4 + n2 + 1

= n(n − 1)(n − 2)(n − 3)︸ ︷︷ ︸
noté αn

+(6n3 − 11n2 + 6n) + n2 + 1

= αn + 6n3 − 10n2 + 6n + 1

= αn + 6
[

n(n − 1)(n − 2)︸ ︷︷ ︸
noté βn

+3n2 − 2n
] − 10n2 + 6n + 1

= αn + 6βn + 8n2 − 6n + 1

= αn + 6βn + 8
[

n(n − 1)︸ ︷︷ ︸
noté γn

+n
] − 6n + 1

= αn + 6βn + 8γn + 2n + 1 .

On a donc, pour tout z ∈ C :

S(z) =
+∞∑
n=0

n4 + n2 + 1

n!
zn

=
+∞∑
n=0

(αn + 6βn + 8γn + 2n + 1)
zn

n!

=
+∞∑
n=0

αn
zn

n!
+ 6

+∞∑
n=0

βn

zn

n!
+ 8

+∞∑
n=0

γn

zn

n!

+2
+∞∑
n=0

n
zn

n!
+

+∞∑
n=0

zn

n!

car toutes ces séries entières sont de rayon infini. Mais :

+∞∑
n=0

zn

n!
= ez ,

+∞∑
n=0

n
zn

n!
= z

+∞∑
n=1

zn−1

(n − 1)!
= z

+∞∑
n=0

zn

n!
= z ez ,

et, de même :

+∞∑
n=0

n(n − 1)
zn

n!
= z2ez,

+∞∑
n=0

n(n − 1)(n − 2)
zn

n!
= z3ez,

+∞∑
n=0

n(n − 1)(n − 2)(n − 3)
zn

n!
= z4ez .

On obtient :

S(z) = z4ez + 6z3ez + 8z2ez + 2zez + ez

= (z4 + 6z3 + 8z2 + 2z + 1) ez .

Réponse : R = ∞ et, pour tout z ∈ C :

S(z) = (z4 + 6z3 + 8z2 + 2z + 1) ez .

e) • Notons, pour tout p ∈ N et tout x ∈ R
∗ :

up =
∣∣∣∣ x4p+1

(4p + 1)!

∣∣∣∣ > 0 .

On a :

up+1

up
= |x |4p+5

(4p + 5)!

(4p + 1)!

|x |4p+1

= |x |4
(4p + 2) · · · (4p + 5)

−−−→
n ∞

0 ,

donc, d’après la règle de d’Alembert, la série de terme géné-
ral  up converge.

On conclut : R = ∞.

• Soit x ∈ R .

On a, pour tout N ∈ N :
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N∑
k=0

x2k+1

(2k + 1)!
+

N∑
k=0

(−1)k x2k+1

(2k + 1)!
= 2

2N∑
p=0

x4p+1

(4p + 1)!
,

car les termes d’indice  k pair se doublent, et les termes d’in-

dice  k impair s’éliminent.

Puisque les séries entières envisagées sont de rayon infini, on

déduit, en faisant tendre l’entier N vers l’infini :

S(x) = 1

2

( +∞∑
k=0

x2k+1

(2k + 1)!
+

+∞∑
k=0

(−1)k x2k+1

(2k + 1)!

)

= 1

2
(sh x + sin x) .

Réponse : R = ∞ et, pour tout x ∈ R :

S(x) = 1

2
(sh x + sin x) .

f) • Notons, pour tout n ∈ N :

an = n + 1

(n + 2)n!
= (n + 1)2

(n + 2)!
.

On a, pour tout z ∈ C
∗ :

∣∣∣∣an+1zn+1

anzn

∣∣∣∣ = (n + 2)2

(n + 3)!

(n + 2)!

(n + 1)2
|z|

= (n + 2)2

(n + 1)2(n + 3)
|z| −−−→

n ∞
0,

donc, d’après la règle de d’Alembert : R = ∞.

• On a, pour tout z ∈ C :

S(z) =
+∞∑
n=0

n + 1

(n + 2)n!
zn =

+∞∑
n=0

(n + 1)2

(n + 2)!
zn ,

donc, en multipliant par z2 :

z2 S(z)

=
+∞∑
n=0

(n + 1)2

(n + 2)!
zn+2 =

+∞∑
n=2

(n − 1)2

n!
zn

=
+∞∑
n=2

n2 − 2n + 1

n!
zn =

+∞∑
n=2

n(n − 1) − n + 1

n!
zn

=
+∞∑
n=2

n(n − 1)

n!
zn −

+∞∑
n=2

n

n!
zn +

+∞∑
n=2

1

n!
zn

=
+∞∑
n=2

zn

(n − 2)!
−

+∞∑
n=2

zn

(n − 1)!
+

+∞∑
n=2

zn

n!

= z2
+∞∑
n=0

zn

n!
− z

+∞∑
n=1

zn

n!
+

+∞∑
n=2

zn

n!

= z2ez − z(ez − 1) + (ez − 1 − z)

= (z2 − z + 1) ez − 1.

On conclut : R = ∞ et, pour tout z ∈ C :

S(z) = (z2 − z + 1) ez − 1 .

g) • Notons, pour tout n ∈ N : an =
(

2 + (−1)n

3 + (−1)n

)n

.

Ainsi, pour tout p ∈ N :

a2p =
(

3

4

)2p

, a2p+1 =
(

1

2

)2p+1

.

On a :

∀ z ∈ C, ∀ p ∈ N, a2pz2p =
(

3

4

)2p

z2p =
((

3

4

)2

z2

)p

,

donc la série entière  
∑
p�0

a2pz2p est de rayon 
4

3
.

De même :

∀ z ∈ C, ∀ p ∈ N, a2p+1z2p+1 =
(

1

2

)2p+1

z2p+1

=
(

z

2

)2p+1

,

donc la série entière  
∑
p�0

a2p+1z2p+1 est de rayon 2.

Il en résulte, par addition de deux séries entières de rayons dif-

férents : R = Min

(
4

3
, 2

)
= 4

3
.

• Soit z ∈ C tel que  |z| <
4

3
.

On a, pour tout N ∈ N, en séparant les termes d’indices pairs,
d’indices impairs :

2N+1∑
n=0

(
2 + (−1)n

3 + (−1)n

)n
zn =

N∑
p=0

(
3

4

)2p

z2p +
N∑

p=0

(
1

2

)2p+1

z2p+1

d’où, en faisant tendre l’entier N vers l’infini :

S(z) =
+∞∑
p=0

(
3

4

)2p

z2p +
+∞∑
p=0

(
1

2

)2p+1

z2p+1

=
+∞∑
p=0

[(
3

4
z

)2]p

+ z

2

+∞∑
p=0

[(
1

2
z

)2]p

= 1

1 −
(

3

4
z

)2 + z

2

1

1 −
(

1

2
z

)2

= 16

16 − 9z2
+ 2z

4 − z2
.



252

Réponse : R = 4

3
, et, pour tout z ∈ C tel que  |z| <

4

3
:

S(z) = 16

16 − 9z2
+ 2z

4 − z2
.

h) • La série entière envisagée est la somme des trois séries en-
tières : ∑

p�0

z3p,
∑
p�0

2pz3p+1,
∑
p�0

3pz3p+2 .

La série entière  
∑
p�0

z3p est de rayon 1, car c’est une série géo-

métrique en z3 .

La série entière  
∑
p�0

2pz3p+1 est de rayon  

(
1

2

)1/3

, car c’est

une série géométrique en 2z3.

La série entière  
∑
p�0

3pz3p+2 est de rayon 

(
1

3

)1/3

, car c’est

une série géométrique en 3z3.

Comme ces trois rayons sont deux à deux différents, on a, d’après
le cours :

R = Min

(
1,

(
1

2

)1/3

,

(
1

3

)1/3)
=

(
1

3

)1/3

.

• Soit z ∈ C tel que |z| <

(
1

3

)1/3

.

On a, pour tout N ∈ N :

3N+2∑
n=0

anzn

=
N∑

p=0

a3pz3p +
N∑

p=0

a3p+1z3p+1 +
N∑

p=0

a3p+2z3p+2

=
N∑

p=0

z3p +
N∑

p=0

2pz3p+1 +
N∑

p=0

3pz3p+2 .

D’où, en faisant tendre l’entier N vers l’infini :

S(z) =
+∞∑
p=0

z3p +
+∞∑
p=0

2pz3p+1 +
+∞∑
p=0

3pz3p+2

=
+∞∑
p=0

(z3)p + z
+∞∑
p=0

(2z3)p + z2
+∞∑
p=0

(3z3)p

= 1

1 − z3
+ z

1

1 − 2z3
+ z2 1

1 − 3z3
.

Réponse : R =
(

1

3

) 1
3

, et, pour tout z ∈ C tel que

|z| <

(
1

3

)1/3

: S(z) = 1

1 − z3
+ z

1 − 2z3
+ z2

1 − 3z3
.

a) 1) Existence :

Récurrence sur n.

• Pour n = 0, on a : (1 +
√

2)0 = 1 = a0 + b0

√
2,

avec a0 = 1 ∈ N, b0 = 0 ∈ N.

• Supposons qu’il existe (an,bn) ∈ N
2 tel que :

an + bn

√
2 = (1 +

√
2)n .

On a alors :

(1 +
√

2)n+1 = (1 +
√

2)(1 +
√

2)n

= (an + bn

√
2)(1 +

√
2)

= (an + 2bn) + (an + bn)
√

2.

En notant an+1 = an + 2bn ∈ N et  bn+1 = an + bn ∈ N, on

a bien : an+1 + bn+1

√
2 = (1 +

√
2)n+1,

ce qui établit la propriété pour n + 1.

On a montré, par récurrence sur n, qu’il existe un couple de

suites  
(
(an)n∈N, (bn)n∈N

)
à termes dans N, tel que :

∀ n ∈ N, an + bn

√
2 = (1 +

√
2)n .

2) Unicité :

Supposons que  
(
(an)n∈N, (bn)n∈N

)
,
(
(αn)n∈N, (βn)n∈N

)
conviennent.

On a alors :

∀ n ∈ N, an + bn

√
2 = (1 +

√
2)n = αn + βn

√
2 ,

donc : ∀ n ∈ N, (an − αn)︸ ︷︷ ︸
∈ Z

= (βn − bn)︸ ︷︷ ︸
∈ Z

√
2.

Soit n ∈ N fixé.

Si βn − bn =/ 0, alors :
√

2 = an − αn

βn − bn
∈ Q , contradiction,

car on sait que 
√

2 est irrationnel.

On a donc : ∀ n ∈ N, βn = bn,

puis : ∀ n ∈ N, αn = an,

donc  
(
(αn)n∈N, (βn)n∈N

) = (
(an)n∈N, (bn)n∈N

)
,

ce qui montre l’unicité.

b) Soit n ∈ N. On a, en utilisant la formule du binôme de
Newton :

an + bn

√
2 = (1 +

√
2)n =

n∑
k=0

(
n
k

)√
2 k

=
∑

0�2p�n

(
n

2p

)
2p +

√
2

∑
0�2p+1�n

(
n

2p + 1

)
2p,

donc, d’après l’unicité dans la question a) :

an =
∑

0�2p�n

(
n

2p

)
2p, bn =

∑
0�2p+1�n

(
n

2p + 1

)
2p .
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On déduit, en utilisant à nouveau la formule du binôme de
Newton en sens inverse :

an − bn

√
2 =

∑
0�2p�n

(
n

2p

)
2p −

√
2

∑
0�2p+1�n

(
n

2p + 1

)
2p

=
n∑

k=0

(
n
k

)
(−1)k

√
2 k = (1 −

√
2)n .

c) D’après a) et b), on a, par addition et soustraction, pour tout
n ∈ N :

an = 1

2

(
(1 +

√
2)n + (1 −

√
2)n

)
,

bn = 1

2
√

2

(
(1 +

√
2)n − (1 −

√
2)n

)
.

d) 1) Rayon :

D’après c), comme |1 − √
2| < 1, et |1 + √

2| > 1,

on a : an ∼
n∞

1

2
(1 +

√
2)n, bn ∼

n∞
1

2
√

2
(1 +

√
2)n,

donc, par théorème d’équivalence, les deux séries entières en-
visagées ont le même rayon que la série entière
∑
n�0

(1 +
√

2)nzn , donc : R = 1

1 + √
2

=
√

2 − 1.

2) Somme :

Notons  Sa et  Sb les sommes des deux séries entières propo-
sées.

On a, pour tout z ∈ C tel que  |z| < R :

Sa(z)

=
+∞∑
n=0

1

2

(
(1 +

√
2)n + (1 −

√
2)n

)
zn

= 1

2

[ +∞∑
n=0

(
(1 +

√
2)z

)n
+

+∞∑
n=0

(
(1 −

√
2)z

)n
]

car ces deux séries entières sont de rayons � R

= 1

2

(
1

1 − (1 + √
2)z

+ 1

1 − (1 − √
2)z

)

= 1

2

(
1

1 − z − z
√

2
+ 1

1 − z + z
√

2

)

= 1

2

2(1 − z)

(1 − z)2 − 2z2
= 1 − z

1 − 2z − z2
.

De même :

Sb(z) =
+∞∑
n=0

1

2
√

2

(
(1 +

√
2)n − (1 −

√
2)n

)
zn

= 1

2
√

2

(
1

1 − (1 + √
2)z

− 1

1 − (1 − √
2)z

)

= 1

2
√

2

2z
√

2

(1 − z)2 − 2z2
= z

1 − 2z − z2
.

a) Le trinôme T = X2 − X + 2 a pour discriminant
∆ = −7 < 0, T ne s’annule en aucun point, donc l’applica-

tion  f : x �−→ 1

x2 − x + 2
est définie sur R.

Passons par les nombres complexes. Le trinôme  T admet deux
zéros simples, complexes non réels :

x1 = 1 − i
√

7

2
, x2 = 1 + i

√
7

2
.

Par décomposition en éléments simples dans C(X), il existe

(α1,α2) ∈ C
2 tel que :

1

X2 − X + 2
= 1

(X − x1)(X − x2)
= α1

X − x1
+ α2

X − x2
.

En multipliant par X − x1 , puis en remplaçant X par x1, on ob-

tient : α1 = 1

x1 − x2
.

En multipliant par X − x2 , puis en remplaçant X par x2, on ob-

tient : α2 = 1

x2 − x1
.

D’où :
1

X2 − X + 2
= 1

x2 − x1

(
− 1

X − x1
+ 1

X − x2

)
.

Puis, pour tout x ∈ R :

f (x) = 1

x2 − x1

(
1

x1 − x
− 1

x2 − x

)

= 1

x2 − x1

(
1

x1

1

1 − x

x1

− 1

x2

1

1 − x

x2

)
.

De plus : |x1| = |x2| =
√

2.

On a donc, en utilisant la série géométrique, pour tout

x ∈ ] − √
2 ;√

2[ :

f (x) = 1

x2 − x1

(
1

x1

+∞∑
n=0

(
x

x1

)n

− 1

x2

+∞∑
n=0

(
x

x2

)n)

= 1

x2 − x1

+∞∑
n=0

(
1

xn+1
1

− 1

xn+1
2

)
xn .

Notons  α = Arg (x1) ∈ ] − π ;π]. On a donc :

x1 =
√

2eiα, x2 = x1 =
√

2e−iα ,

x2 − x1 =
√

2(e−iα − eiα) = −2i
√

2 sinα .

D’où, pour tout x ∈ ] − √
2 ;√

2[ :

f (x)= 1

−2i
√

2 sin α

+∞∑
n=0

(
1

(
√

2 eiα)n+1
− 1

(
√

2 e−iα)n+1

)
xn

= − 1

2i
√

2 sin α

+∞∑
n=0

1
√

2
n+1

(
e−i (n+1)α − ei (n+1)α

)
xn

6.14
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= 1√
2 sinα

+∞∑
n=0

1
√

2
n+1

(
sin (n + 1)α

)
xn

=
+∞∑
n=0

2− n
2 −1 sin (n + 1)α

sinα
xn .

Déterminons le rayon R de cette série entière.

On a :

∀ x ∈ ] −
√

2 ;
√

2[,

f (x) = 1

2 sinα

+∞∑
n=0

sin (n + 1)α

(
x√
2

)n

,

ce qui montre : R �
√

2.

D’autre part, dans C :

| f (z)| =
∣∣∣∣ 1

(z − x1)(z − x2)

∣∣∣∣ −→
z−→x1

+∞ ,

donc : R �
√

2 .

On conclut : R = √
2.

On peut aussi utiliser le résultat de l’exercice 6.30 a), d’après

lequel la série entière  
∑
n�0

sin (n + 1)αzn est de rayon 1. Par

le changement de variable  z = x√
2

, la série entière étudiée

est de rayon : R = √
2.

b) En notant P = X3 − 5X2 + 3X + 9 , on remarque :
P(−1) = 0. On en déduit la factorisation de P :

P = (X + 1)(X2 − 6X + 9) = (X + 1)(X − 3)2 .

L’application 

f : x �−→ 16

x3 − 5x2 + 3x + 9
= 16

(x + 1)(x − 3)2

est définie sur R − {−1,3} , donc (au moins) sur ] − 1 ; 1[ .

Par décomposition en éléments simples de la fraction ration-

nelle, il existe (a, b, c) ∈ R
3 tel que :

16

(X + 1)(X − 3)2
= a

(X − 3)2
+ b

X − 3
+ c

X + 1
.

En multipliant par (X − 3)2, puis en remplaçant X par 3, on
obtient : a = 4.

En multipliant par X + 1 , puis en remplaçant X par −1, on
obtient : c = 1.

En multipliant par X puis en faisant tendre X vers l’infini, on
obtient : 0 = b + c , d’où b = −1.

D’où la décomposition en éléments simples suivante :

16

(X + 1)(X − 3)2
= 4

(X − 3)2
− 1

X − 3
+ 1

X + 1
.

Puis, pour tout x ∈ ] − 1 ; 1[ :

f (x) = 4

(x − 3)2
− 1

x − 3
+ 1

x + 1

= 4

9

1(
1 − x

3

)2 + 1

3

1

1 − x

3

+ 1

1 + x
.

Rappelons la série entière géométrique :

∀ t ∈ ] − 1 ; 1[,
1

1 − t
=

+∞∑
n=0

tn ,

d’où, en dérivant :

∀ t ∈ ] − 1 ; 1[,
1

(1 − t)2
=

+∞∑
n=1

ntn−1 =
+∞∑
n=0

(n + 1)tn .

On a donc, pour tout x ∈ ] − 1 ; 1[ :

f (x) = 4

9

+∞∑
n=0

(n + 1)

(
x

3

)n

+ 1

3

+∞∑
n=0

(
x

3

)n

+
+∞∑
n=0

(−1)n xn

=
+∞∑
n=0

(
4

9

n + 1

3n
+ 1

3

1

3n
+ (−1)n

)
xn

=
+∞∑
n=0

(
4n + 7

9 · 3n
+ (−1)n

)
xn .

On a : |an| ∼
n∞

1, donc, par théorème d’équivalence, le rayon R

de cette série entière est : R = 1.

c) L’application f : x �−→ ln (1 + x + x2) est définie sur R,

puisque le discriminant du trinôme 1 + x + x2 est
∆ = −3 < 0.

On remarque que, pour tout x ∈ ] − 1 ; 1[ :

f (x) = ln (1 + x + x2) = ln
1 − x3

1 − x

= ln (1 − x3) − ln (1 − x) = −
+∞∑
n=1

(x3)n

n
+

+∞∑
n=1

xn

n

= −
+∞∑
n=1

1

n
x3n +

+∞∑
n=1

1

n
xn =

+∞∑
n=1

an xn,

en notant, pour tout n ∈ N
∗ : an = 1

n
, si 3 /\ n , et, si

n = 3p, p ∈ N
∗, an = − 1

p
+ 1

3p
= − 2

3p
.

Puisque la suite (an)n�1 est bornée, on a : R � 1.

Puisque la série  
∑
n�1

|an| diverge, on a : R � 1.

On conclut : R = 1.



255

d) Le trinôme X2 + 2X + 5 a pour discriminant ∆ = −16 < 0 ,
donc : ∀ x ∈ R, x2 + 2x + 5 > 0.

Il en résulte que l’application  f : x �−→ ln (x2 + 2x + 5) est
définie sur R.

Nous allons former le DSE(0) de f ′, puis primitiver pour ob-
tenir le DSE(0) de f.

L’application f est dérivable sur R et, pour tout x ∈ R :

f ′(x) = 2x + 2

x2 + 2x + 5
.

Passons par les nombres complexes.

Le trinôme X2 + 2X + 5 admet deux zéros simples, com-
plexes non réels :

x1 = −1 + 2i, x2 = −1 − 2i .

Par décomposition en éléments simples dans C(X), il existe
(α1,α2) ∈ C

2 tel que :

2X + 2

X2 + 2X + 5
= 2X + 2

(X − x1)(X − x2)
= α1

X − x1
+ α2

X − x2
.

En multipliant par X − x1 , puis en remplaçant X par x1, on ob-
tient :

α1 = 2x1 + 2

x1 − x2
= 2(−1 + 2i) + 2

4i
= 1 ,

puis : α2 = α1 = 1 .

On a donc :
2X + 2

X2 + 2X + 5
= 1

X − x1
+ 1

X − x2
,

d’où, pour tout x ∈ R :

f ′(x) = 1

x − x1
+ 1

x − x2
= − 1

x1

1

1 − x

x1

− 1

x2

1

1 − x

x2

.

Comme |x1| = |x2| = √
5, on a, pour tout x ∈ ] − √

5
√

5[, par
utilisation de la série géométrique :

f ′(x) = − 1

x1

+∞∑
n=0

(
x

x1

)n

− 1

x2

+∞∑
n=0

(
x

x2

)n

=
+∞∑
n=0

(
− 1

xn+1
1

− 1

xn+1
2

)
xn .

Notons α = Arg x1 ∈ ] − π ;π] .

On a donc : x1 =
√

5 eiα, x2 =
√

5 e−iα,

d’où, pour tout x ∈ ] − √
5 ;√

5[ :

f ′(x) = −
+∞∑
n=0

1
√

5
n+1

(
ei (n+1)α + e−i (n+1)α

)
xn

= −
+∞∑
n=0

2 cos (n + 1)α
√

5
n+1 xn .

Comme dans l’exercice a), le rayon de cette série entière 
est 

√
5.

Par primitivation, on en déduit que  f est dSE(0), de rayon 
√

5,

et que, pour tout x ∈ ] − √
5 ;√

5[ :

f (x) = f (0) −
+∞∑
n=0

2 cos (n + 1)α

(n + 1)
√

5
n+1 xn+1

= ln 5 −
+∞∑
n=1

2 cos nα

n
√

5
n xn .

On peut considérer que ce dernier résultat est la réponse à la
question posée. On peut aussi se ramener précisément à une
série entière :

∀ x ∈ ] −
√

5 ;
√

5[, f (x) =
+∞∑
n=0

an xn ,

où  a0 = ln 5 et  an = −2 cos nα

n
√

5
n , pour tout n � 1.

e) L’application  f : x �−→ Arctan (2 + x) est de classe C1

sur R et, pour tout x ∈ R :

f ′(x) = 1

1 + (2 + x)2
= 1

x2 + 4x + 5
.

Nous allons former le DSE(0) de f ′, puis primitiver pour ob-
tenir le DSE(0) de f.

Le trinôme X2 + 4X + 5 a pour discriminant ∆ = −4 < 0,
donc ce trinôme admet deux zéros simples, complexes non réels :
x1 = −2 + i, x2 = −2 − i.

Par décomposition en éléments simples dans C(X), il existe

(α1,α2) ∈ C
2 tel que :

1

X2 + 4X + 5
= 1

(X − x1)(X − x2)
= α1

X − x1
+ α2

X − x2
.

En multipliant par X − x1 , puis en remplaçant X par x1, on ob-

tient : α1 = 1

x1 − x2
.

En multipliant par X − x2 , puis en remplaçant X par x2, on ob-

tient : α2 = 1

x2 − x1
.

On a donc :

1

X2 + 4X + 5
= 1

x1 − x2

( 1

X − x1
− 1

X − x2

)

= 1

x1 − x2

(
− 1

x1

1

1 − X

x1

+ 1

x2

1

1 − X

x2

)
.

On a : |x1| = |x2| = √
5.

D’où, pour tout x ∈ ] − √
5 ;√

5[ , par utilisation de la série
géométrique :

f ′(x) = 1

x1 − x2

(
− 1

x1

+∞∑
n=0

(
x

x1

)n

+ 1

x2

+∞∑
n=0

(
x

x2

)n)
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= 1

x1 − x2

+∞∑
n=0

(
− 1

xn+1
1

+ 1

xn+1
2

)
xn .

Notons  α = Arg x1 ∈ ] − π ;π] . On a donc :

x1 =
√

5 eiα, x2 =
√

5 e−iα, x1 − x2 = 2i
√

5 sinα ,

et, pour tout x ∈ ] − √
5 ;√

5[ :

f ′(x) = 1

2i
√

5 sinα

+∞∑
n=0

ei (n+1)α − e−i (n+1)α

√
5

n+1 xn

= 1

2i
√

5 sinα

+∞∑
n=0

2i sin (n + 1)α√
5 n+1

xn

= 1

sinα

+∞∑
n=0

sin (n + 1)α√
5 n+2

xn .

D’après un théorème du cours, par primitivation, f est dSE(0),

de rayon 
√

5, et, pour tout x ∈ ] − √
5 ;√

5[ :

f (x) = f (0) + 1

sinα

+∞∑
n=0

sin (n + 1)α√
5 n+2

xn+1

n + 1

= Arctan 2 + 1

sinα

+∞∑
n=1

sin nα

n
√

5 n+1
xn .

Comme dans l’exercice a), le rayon de cette série entière est :

R = √
5.

f) L’application  f : x �−→ sin x ch x est définie sur R. Puisque
les applications x �−→ sin x et x �−→ ch x sont dSE(0) de
rayons infinis, par produit de Cauchy, f est dSE(0) de rayon
infini.

1re méthode : Utilisation de fonctions circulaires ou hyperbo-
liques de variable complexe :

On a :

∀ x ∈ R, sin x = ei x − e−i x

2i
= −i sh (i x) ,

d’où, pour tout x ∈ R :

f (x)

= − i sh (i x) ch x

= − i
1

2

(
sh (i x + x) + sh (i x − x)

)

= − i

2

(
sh (i + 1)x + sh (i − 1)x

)

= − i

2

( +∞∑
p=0

(
(i + 1)x

)2p+1

(2p + 1)!
+

+∞∑
p=0

(
(i − 1)x

)2p+1

(2p + 1)!

)

= − i

2

+∞∑
p=0

(i + 1)2p+1 + (i − 1)2p+1

(2p + 1)!
x2p+1

= − i

2

+∞∑
p=0

(
√

2 ei π4 )2p+1 + (−√
2 e−i π4 )2p+1

(2p + 1)!
x2p+1

= − i

2

+∞∑
p=0

√
2 2p+1

(2p + 1)!

(
ei (2p+1) π4 − e−i(2p+1) π4

)
x2p+1

= − i

2

+∞∑
p=0

2p
√

2

(2p + 1)!

(
2i sin

(
(2p + 1)

π

4

))
x2p+1

=
+∞∑
p=0

2p
√

2

(2p + 1)!
sin

(
(2p + 1)

π

4

)
x2p+1.

2è méthode : Utilisation de l’exponentielle complexe :

On a, pour tout x ∈ R :

f (x) = sin x ch x = ei x − e−i x

2i

ex + e−x

2

= 1

4i

(
e(i+1)x + e(i−1)x − e(1−i)x − e−(1+i)x

)

= 1

4i

( +∞∑
n=0

(
(i + 1)x

)n

n!
+

+∞∑
n=0

(
(i − 1)x

)n

n!

−
+∞∑
n=0

(
(1 − i)x

)n

n!
−

+∞∑
n=0

(
(−1 − i)x

)n

n!

)

= 1

4i

+∞∑
n=0

1

n!

(
(1 + i)n +(−1 + i)n − (1 − i)n − (−1 − i)n

)
xn

= 1

4i

+∞∑
n=0

1

n!

((√
2ei π4

)n + ( −
√

2e−i π4
)n

−(√
2e−i π4

)n − ( −
√

2ei π4
)n

)
xn

= 1

4i

+∞∑
n=0

√
2 n

n!

(
ei n π4 − (−1)nei n π4 +(−1)ne−i n π4 − e−i n π4

)
xn

= 1

4i

+∞∑
p=0

√
2 2p+1

(2p + 1)!

(
2ei (2p+1) π4 − 2e−i (2p+1) π4

)
x2p+1

car les termes d’indices pairs sont tous nuls 

= 1

4i

+∞∑
p=0

2p
√

2

(2p + 1)!
4i sin

(
(2p + 1)

π

4

)
x2p+1

=
+∞∑
p=0

2p
√

2

(2p + 1)!
sin

(
(2p + 1)

π

4

)
x2p+1 .

On a vu, au début de la solution, que le rayon de la série en-
tière obtenue est R = +∞.

g) L’application f : x �−→
(

ch x − 1

x2

)2

est définie sur R∗. 

De plus : f (x) ∼
x−→0

(
x2/2

x2

)2

= 1

4
.
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On peut donc compléter  f par continuité en 0, en posant

f (0) = 1

4
.

D’autre part, pour tout x ∈ R
∗ :

f (x) =
(

ch x − 1

x2

)2

= ch2x − 2ch x + 1

x4

= 1

x4

(
1

2
(ch 2x + 1) − 2 ch x + 1

)

= 1

2x4
(ch 2x − 4 ch x + 3),

puis, en utilisant le DSE(0) de ch, qui est de rayon infini :

f (x) = 1

2x4

( +∞∑
p=0

(2x)2p

(2p)!
− 4

+∞∑
p=0

x2p

(2p)!
+ 3

)

= 1

2x4

[
1 + 2x2 +

+∞∑
p=2

22px2p

(2p)!

−4

(
1 + x2

2
+

+∞∑
p=2

x2p

(2p)!

)
+ 3

]

= 1

2x4

+∞∑
p=2

22p − 4

(2p)!
x2p =

+∞∑
p=2

22p−1 − 2

(2p)!
x2p−4

=
q=p−2

+∞∑
q=0

22(q+2)−1 − 2(
2(q + 2)!

) x2q =
+∞∑
q=0

22q+3 − 2

(2q + 4)!
x2q .

On peut considérer que ce dernier résultat constitue la réponse
à la question posée. On peut aussi se ramener précisément à
une série entière :

∀ x ∈ R, f (x) =
+∞∑
n=0

an xn ,

où, pour tout n ∈ N :

an =




22q+3 − 2

(2q + 4)!
si n est pair, n = 2q, q ∈ N

0 si n est impair.

On a vu plus haut que le rayon de cette série entière est infini.

h) L’application 

g : t �−→



ln (1 + t)

t
si t ∈ ] − 1 ; 0[ ∪ ]0 ;+∞[

1 si t = 0

est continue sur ] − 1 ;+∞[−{0} , et :

g(t) = ln(1 + t)

t
−→
t−→0

1 = g(0) ,

donc g est continue en 0.

Ainsi, g est continue sur ] − 1 ;+∞[.

L’application  f : x �−→
∫ x

0

ln(1 + t)

t
dt =

∫ x

0
g(t) dt est

donc définie (au moins) sur ] − 1 ;+∞[.

On a, en utilisant le DES(0) de  t �−→ ln (1 + t) , qui est de
rayon 1, pour tout t ∈ ] − 1 ; 0[ ∪ ]0 ; 1[ :

g(t) = 1

t

+∞∑
n=1

(−1)n−1tn

n

=
+∞∑
n=1

(−1)n−1

n
tn−1 =

+∞∑
n=0

(−1)n

n + 1
tn .

De plus, g(0) = 1, et la valeur de la dernière série entière en
0 est égale à 1, car c’est le terme constant de cette série entière.

On a donc : ∀ t ∈ ] − 1 ; 1[, g(t) =
+∞∑
n=0

(−1)n

n + 1
tn .

D’après le cours, il en résulte que f, qui est la primitive de g
telle que  f (0) = 0 est dSE(0), de rayon, � 1, et on a, pour
tout x ∈ ] − 1 ; 1[ :

f (x) =
+∞∑
n=0

(−1)n

(n + 1)2
xn+1 =

+∞∑
n=1

(−1)n−1

n2
xn .

Il est clair, par la règle de d’Alembert par exemple, que cette
dernière série entière est de rayon 1.

i) Considérons l’application 

g : R
∗ −→ R, t �−→ et − 1 − t

t2
.

On a, pour t tendant vers 0, par développement limité :

g(t) = 1

t2

[(
1 + t + t2

2
+ o

t−→0
(t2)

)
− 1 − t

]

= 1

2
+ o(1) −→

t−→0

1

2
.

On peut donc compléter g par continuité en 0, en posant

g(0) = 1

2
.

Ainsi, l’application, encore notée g :

g : R −→ R, t �−→




et − 1 − t

t2
si t =/ 0

1

2
si t = 0

est continue sur R.

Il en résulte que l’application 

f : R −→ R, x �−→
∫ 3x

2x
g(t) dt

est de classe C1 sur R et que :

∀ x ∈ R, f ′(x) = 3g(3x) − 2g(2x) .

On a, pour tout x ∈ R
∗ :

f ′(x) = 3
e3x − 1 − 3x

(3x)2
− 2

e2x − 1 − 2x

(2x)2
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= 1

3x2

( +∞∑
n=0

(3x)n

n!
− 1 − 3x

)
− 1

2x2

( +∞∑
n=0

(2x)n

n!
− 1 − 2x

)

= 1

3x2

+∞∑
n=2

3n

n!
xn − 1

2x2

+∞∑
n=2

2n

n!
xn

=
+∞∑
n=2

3n−1

n!
xn−2 −

+∞∑
n=2

2n−1

n!
xn−2

=
+∞∑
n=0

3n+1

(n + 2)!
xn −

+∞∑
n=0

2n+1

(n + 2)!
xn =

+∞∑
n=0

3n+1 − 2n+1

(n + 2)!
xn .

De plus, comme  f ′(0) = g(0) = 1

2
et que le terme constant

de la dernière série entière est aussi égal à 
1

2
, l’égalité est aussi

valable pour x = 0, donc :

∀ x ∈ R, f ′(x) =
+∞∑
n=0

3n+1 − 2n+1

(n + 2)!
xn .

Ceci montre que f ′ est dSE(0), de rayon infini.

D’après le cours, il en résulte que f est dSE(0), de rayon in-
fini, et que l’on peut primitiver terme à terme, d’où, pour tout
x ∈ R :

f (x) = f (0) +
+∞∑
n=0

3n+1 − 2n+1

(n + 2)!

xn+1

n + 1
=

+∞∑
n=1

3n − 2n

(n + 1)!n
xn .

Soit x ∈ ]0 ; 1[. On a, par l’inégalité de Cauchy et
Schwarz, les séries manipulées étant (absolument) convergentes :
( +∞∑

n=1

xn

n

)2

=
+∞∑
n=1

[
xn/2

(
1

n
xn/2

)]2

�
[ +∞∑

n=1

(
xn/2

)2
][ +∞∑

n=1

(
1

n
xn/2

)2]

=
( +∞∑

n=1

xn

)( +∞∑
n=1

xn

n2

)
,

d’où en utilisant des DSE(0) du cours :

( − ln (1 − x)
)2 � x

1 − x

+∞∑
n=1

xn

n2

et finalement :
+∞∑
n=1

xn

n2
�

(1 − x)
(

ln (1 − x)
)2

x
.

a) Il est clair, par une récurrence immédiate, que, pour
tout n ∈ N, an existe et an � 0.

• On a, par une inégalité classique sur le logarithme :

∀ n ∈ N, an+1 = ln(1 + an) � an,

donc (an)n�0 est décroissante.

• Ainsi, la suite (an)n�0 est décroissante et minorée par 0, donc

converge vers un réel noté 	 et tel que 	 � 0.

Comme : ∀ n ∈ N, an+1 = ln(1 + an),

par passage à la limite, on déduit : 	 = ln(1 + 	).

L’application ϕ : [0 ;+∞[−→ R, t �−→ ln(1 + t) − t

est dérivable et :

∀ t ∈ [0 ;+∞[, ϕ′(t) = 1

1 + t
− 1 = − t

1 + t
,

donc ϕ est strictement décroissante sur [0 ;+∞[.

Comme de plus ϕ(0) = 0, il en résulte :

∀ t ∈ ]0 ;+∞[, ln(1 + t) < t.

On a donc : 	 = 0.

On conclut : an −→
n∞

0.

b) Soit x ∈ [0 ; 1] fixé.

La série 
∑
n�0

(−1)nan xn est alternée.

On a, pour tout n � 0 :
∣∣(−1)n+1an+1xn+1

∣∣ = an+1xn+1 � an xn = ∣∣(−1)nan xn
∣∣,

donc la suite 
(∣∣(−1)nan xn

∣∣)
n�0 est décroissante. 

On a :
∣∣(−1)nan xn

∣∣ = an xn � an −→
n∞ 0,

donc :
∣∣(−1)nan xn

∣∣−→
n∞ 0.

D’après le TSCSA, on déduit que la série 
∑
n�0

(−1)nan xn

converge, donc f (x) est défini. Ceci montre que f est définie
sur [0 ; 1].

c) • Puisque, pour tout x ∈ [0 ; 1], la série numérique∑
n�0

(−1)nan xn converge, le rayon R de la série entière

∑
n�0

(−1)nan xn vérifie : R � 1.

D’après le cours sur les séries entières, il résulte de b) que f
est continue, au moins, sur [0 ; 1[.

• Puisque la série 
∑
n�0

(−1)an xn converge pour x = 1, d’après

le théorème de la limite radiale, f est continue sur [0 ; 1].

a) • Déterminons le rayon R de la série entière∑
n�0

nn

n! en
xn . Soit x ∈ R

∗. On a :

∣∣∣∣ (n + 1)n+1xn+1

(n + 1)! en+1

∣∣∣∣
∣∣∣∣ n! en

nn xn

∣∣∣∣ =
∣∣∣∣ (n + 1)n+1x

(n + 1) enn

∣∣∣∣

=
(

1 + 1

n

)n |x |
e

−→
n∞

e
|x |
e

= |x |.

6.15
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Il en résulte, d’après la règle de d’Alembert : R = 1.

Ceci montre : ] − 1 ; 1[⊂ Déf (S) ⊂ [−1 ; 1].

• Étude en −1 :

La série 
∑
n�0

nn

n! en
(−1)n est alternée.

Notons, pour tout n � 0 : un = nn

n! en
(−1)n .

On a, pour tout n � 0 :

|un+1|
|un| = (n + 1)n+1

(n + 1)! en+1

n! en

nn

=
(

1 + 1

n

)n 1

e
= exp

[
n ln

(
1 + 1

n

)
− 1

]

= exp

(
n

[
ln

(
1 + 1

n

)
− 1

n

])
� 1,

car on sait : ∀ t ∈ ] − 1 ;+∞[, ln (1 + t) � t.

Ainsi, la suite (|un|)n�0 est décroissante. De plus, d’après la for-
mule de Stirling :

|un| = nn

n! en
∼
n∞

nn(
n

e

)n√
2πn en

= 1√
2πn

−→
n∞

0.

D’après le TSCSA, on déduit que la série 
∑
n�0

un converge, et

on conclut que S est définie en −1.

• Étude en 1 :

On a, d’après la formule de Stirling, comme ci-dessus :

nn

n! en
∼
n∞

1√
2π

1

n1/2
.

D’après l’exemple de Riemann (1/2 � 1) et le théorème
d’équivalence pour des séries à termes � 0, on conclut que la

série 
∑
n�0

nn

n! en
diverge, donc : 1 /∈ Déf (S).

Finalement : Déf (S) = [−1 ; 1[.

b) On a vu ci-dessus que la série entière 
∑
n�0

nn

n! en
xn est de

rayon 1 et converge pour x = −1. D’après le théorème de la
limite radiale, il en résulte que S est continue en −1.

a) 1) Pour n ∈ N
∗ fixé,

1

k(k + n)
∼
k∞

1

k2
� 0, donc,

par l’exemple de Riemann (2 > 1) et le théorème d’équivalence

pour des séries à termes � 0, la série  
∑

k

1

k(k + n)
converge,

an =
+∞∑
k=n

1

k(k + n)
existe.

2) Soit n ∈ N
∗ . On a, pour tout N � n :

N∑
k=n

1

k(k + n)
= 1

n

N∑
k=n

(
1

k
− 1

k + n

)

= 1

n

( N∑
k=n

1

k
−

N∑
k=n

1

k + n

)
= 1

n

( N∑
k=n

1

k
−

N+n∑
k=2n

1

k

)

= 1

n

(
(HN − Hn−1) − (HN+n − H2n−1)

)

= 1

n

[((
ln N + γ+ o

N∞
(1)

) − Hn−1

)

−
((

ln (N + n) + γ+ o(1)
) − H2n−1

)

= 1

n
ln

N

N + n
+ 1

n
(H2n−1 − Hn−1) + 1

n
o(1) .

Pour n ∈ N
∗ fixé, en faisant tendre l’entier N vers l’infini, on

obtient :

an =
+∞∑
k=n

1

k(k + n)
= 1

n
(H2n−1 − Hn−1) .

3) On a donc : an = 1

n
(H2n−1 − Hn−1)

= 1

n

((
ln (2n − 1) + γ+ o

n∞(1)
)−(

ln (n − 1) + γ+ o(1)
))

= 1

n
ln

2n − 1

n − 1
+ o

(
1

n

)
= 1

n
ln

(
2 + o(1)

)
+ o

(
1

n

)

= ln 2

n
+ o

(
1

n

)
∼
n∞

ln 2

n
.

b) 1) Puisque  an ∼
n∞

ln 2

n
, et que la série entière  

∑
n�1

xn

n
est de

rayon 1, par théorème d’équivalence, le rayon R de la série en-

tière  
∑
n�1

an xn est : R = 1.

2) • Nature de la série de terme général an Rn :

On a : an Rn = an ∼
n∞

ln 2

n
, donc, d’après l’exemple de

Riemann et le théorème d’équivalence pour des séries à termes

� 0, la série  
∑
n�1

an Rn diverge.

• Nature de la série de terme général an(−R)n :

Il s’agit de la série 
∑
n�1

(−1)nan, puisque R = 1.

Cette série est alternée, et  an −−−→
n ∞

0, car  an ∼
n∞

ln 2

n
.

On a, pour tout n � 1 :

an+1 =
+∞∑

k=n+1

1

k(k + n + 1)

6.18
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+∞∑

k=n+1

1

k(k + n)
�

+∞∑
k=n

1

k(k + n)
= an,

donc (an)n�1 est décroissante.

D’après le TSCSA, on conclut que la série  
∑
n�1

(−1)nan

converge.

Finalement, la série  
∑
n�1

an(−R)n converge.

On a, en utilisant le théorème de Fubini et une intégra-
tion par parties :

I =
∫∫

[0;1]2
xy exy dx dy =

∫ 1

0

(∫ 1

0
y(x exy) dy

)
dx

=
∫ 1

0

(
[y exy]1

y=0 −
∫ 1

0
exy dy

)
dx ,

puis, en faisant apparaître des intégrales de fonctions intégrables :

I =
∫ 1

0

[
y exy − exy

x

]1

y=0

dx =
∫ 1

0

(
ex − ex

x
+ 1

x

)
dx

=
∫ 1

0
ex dx −

∫ 1

0

ex − 1

x
dx

︸ ︷︷ ︸
notée J

= [ex ]1
0 − J = e − 1 − J .

On a, en utilisant le DSE(0) de l’exponentielle :

J =
∫ 1

0

1

x
(ex − 1) dx =

∫ 1

0

(
1

x

+∞∑
n=1

xn

n!

)
dx

=
∫ 1

0

( +∞∑
n=1

xn−1

n!

)
dx =

∫ 1

0

( +∞∑
n=0

xn

(n + 1)!

)
dx .

La série entière  
∑
n�0

xn

(n + 1)!
est de rayon infini, (par la règle

de d’Alembert, par exemple), donc on peut intégrer terme à terme
sur [0 ; 1] , c’est-à-dire permuter intégrale et série :

J =
+∞∑
n=0

(∫ 1

0

xn

(n + 1)!
dx

)

=
+∞∑
n=0

1

(n + 1)(n + 1)!
=

+∞∑
n=1

1

n · n!
.

Finalement : I = e − 1 −
+∞∑
n=1

1

n · n!
.

a) Soit n ∈ N
∗ . L’application  fn : t �−→ e−tn

est conti-
nue sur [1 ;+∞[ et :

∀ t ∈ [1 ;+∞[, 0 � fn(t) = e−tn � e−t .
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Comme l’application  t �−→ e−t est intégrable sur [1 ;+∞[,
par théorème de majoration pour des fonctions � 0, fn est in-
tégrable sur [1 ;+∞[.

On conclut que, pour tout n ∈ N
∗ , In =

∫ +∞

1
e−tn

dt existe.

b) Étudions le comportement de In lorsque l’entier n tend vers
l’infini.

On a, par le changement de variable 

u = tn, t = u
1
n , dt = 1

n
u

1
n −1 du

In =
∫ +∞

1
e−u 1

n
u

1
n −1 du = 1

n

∫ +∞

1

e−u

u
u

1
n du

︸ ︷︷ ︸
notée Jn

.

Déterminons la limite de Jn lorsque l’entier n tend vers l’in-
fini, en utilisant le théorème de convergence dominée.

Notons, pour tout n ∈ N
∗ :

gn : [1 ;+∞[−→ R, u �−→ e−u

u
u

1
n .

• Pour tout n ∈ N
∗ , gn est continue par morceaux (car conti-

nue) sur [1 ;+∞[

• gn
C.S.−→
n∞

g, où g : [1 ;+∞[−→ R, u �−→ e−u

u

• g est continue par morceaux (car continue) sur [1 ;+∞[

• On a, pour tout n ∈ N et tout u ∈ [1 ;+∞[ :

|gn(u)| = e−u

u
u

1
n = e−uu

1
n −1 � e−u ,

et u �−→ e−u est continue par morceaux (car continue), � 0,
intégrable sur [1 ;+∞[.

Ainsi, (gn)n�1 vérifie l’hypothèse de domination.

D’après le théorème de convergence dominée, on a donc :

Jn −−−→
n ∞

∫ +∞

1
g(u) du =

∫ +∞

1

e−u

u
du

︸ ︷︷ ︸
notée α

> 0.

Il en résulte : In ∼
n∞

α

n
,

et donc, par théorème d’équivalence : R = 1.

c) 1) Étude de la série  
∑
n�1

In Rn :

Comme In Rn = In ∼
n∞

α

n
> 0 , d’après l’exemple de Riemann

et le théorème d’équivalence pour des séries à termes � 0, la

série  
∑
n�1

In Rn diverge.

2) Étude de la série 
∑
n�1

In(−R)n :

Il s’agit de la série  
∑
n�1

(−1)n In .

Cette série est alternée et   In ∼
n∞

α

n
−−−→

n ∞
0.

6.19
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De plus, la suite  (In)n�1 décroît, car, pour tout n ∈ N
∗ :

In+1 =
∫ +∞

1
e−tn+1

dt �
∫ +∞

1
e−tn

dt = In,

puisqu’ici  t � 1 et  n � 0.

D’après le TSCSA, on conclut que la série  
∑
n�1

In(−R)n

converge.

d) Puisque la série numérique 
∑
n�1

In converge, d’après le

théorème de la limite radiale, la somme S de cette série entière
est continue en −R

Remarquons d’abord que, pour tout x ∈ R , f (x) existe,
car l’application  t �−→ ch (x cos t) est continue sur le segment
[0 ;π].

Nous allons développer la fonction sous l’intégrale en somme
d’une série de fonctions, puis permuter intégrale et série.

Soit x ∈ R fixé.

On a, par DSE(0) du cours :

∀ t ∈ [0 ;π], ch (x cos t) =
+∞∑
p=0

(x cos t)2p

(2p)!
.

Notons, pour tout p ∈ N :

fp : [0 ;π] −→ R, t �−→ (x cos t)2p

(2p)!
.

Pour tout p ∈ N, fp est continue sur [0 ;π].

La série d’applications  
∑
p�0

fp converge normalement, donc

uniformément (PSI), sur [0 ;π] , car, pour tout p ∈ N,

|| fp||∞ = x2p

(2p)!
et la série numérique  

∑
p�0

x2p

(2p)!
converge.

D’après un théorème du cours, on peut donc permuter intégrale
et série, d’où :

f (x) =
∫ π

0

( +∞∑
p=0

(x cos t)2p

(2p)!

)
dt

=
+∞∑
p=0

∫ π

0

(x cos t)2p

(2p)!
dt =

+∞∑
p=0

(∫ π

0
cos 2pt dt

︸ ︷︷ ︸
notée I2p

)
x2p

(2p)!
.

Il reste à calculer I2p , pour tout p ∈ N, ce qui est classique (in-
tégrale de Wallis d’indice pair, sur [0 ;π]).

On a, pour tout p ∈ N :∫ π

0
cos 2pt dt =

∫ π/2

0
cos 2pt dt +

∫ π

π/2
cos 2pt dt

=
u=π−t

∫ π/2

0
cos 2pt dt +

∫ π/2

0
cos 2pu du

= 2
∫ π/2

0
cos 2pt dt

︸ ︷︷ ︸
notée J2p

.

Par intégration par parties, pour tout p � 2 :

J2p =
∫ π/2

0
cos 2pt dt =

∫ π/2

0
cos 2p−1t cos t dt

= [
cos 2p−1t sin t

]π/2
0 +

∫
π/2

0
(2p − 1) cos 2p−2t sin 2t dt

= (2p − 1)

∫ π/2

0
cos 2p−2t (1 − cos 2t) dt

= (2p − 1)(J2p−2 − J2p) ,

d’où : 2pJ2p = (2p − 1)J2p−2.

On a donc, de proche en proche :

J2p = 2p − 1

2p
J2p−2 = 2p − 1

2p
· · · 1

2
J0

= (2p − 1)(2p − 3) · · · 1

(2p)(2p − 2) · · · 2

π

2
= (2p)!

(2p p!)2

π

2
.

On obtient :

∀ x ∈ R, f (x) =
+∞∑
p=0

2
(2p)!

(2p p!)2

π

2

x2p

(2p)!
=

+∞∑
p=0

π

(2p p!)2
x2p .

Finalement, f est dSE(0), de rayon infini.

Nous allons essayer de nous ramener à des fonctions d’une
variable réelle, dSE(0) donc de classe C∞.

Considérons l’application 

ϕ : R −→ R, t �−→



et − 1

t
si t =/ 0

1 si t = 0.

On a, pour tout (x,y) ∈ ] − 1 ;+∞[×R :

• si x =/ 0 et y =/ 0, alors :

f (x,y) = ey ln (x+1) − 1

ln(1 + x)
= y ϕ

(
y ln (1 + x)

)

• si x =/ 0 et y = 0 : f (x,y) = 0 = y ϕ
(
y ln (1 + x)

)
• si x = 0 : f (x,y) = y = y ϕ

(
y ln (1 + x)

)
.

Ainsi :

∀ (x,y) ∈ ] − 1 ;+∞[×R, f (x,y) = y ϕ
(
y ln (1 + x)

)
.

Par composition, il suffit donc de montrer que ϕ est de 
classe C∞ sur R. À cet effet, nous allons montrer que ϕ est
dSE(0) de rayon infini.

On a, pour tout t ∈ R
∗ :

ϕ(t) = 1

t
(et − 1) = 1

t

+∞∑
n=1

tn

n!
=

+∞∑
n=1

tn−1

n!
=

+∞∑
n=0

tn

(n + 1)!
.

De plus, comme ϕ(0) = 1 et que le terme constant de la der-
nière série entière est égal à 1, l’égalité est aussi vraie en 0, d’où :

∀ t ∈ R, ϕ(t) =
+∞∑
n=0

tn

(n + 1)!
.
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Ceci montre que ϕ est dSE(0), de rayon infini.

D’après le cours, il en résulte que  ϕ est de classe C∞ sur R.

Par composition, on conclut que f est de classe C∞ sur
] − 1 ;+∞[×R .

a) Considérons l’application 

ϕ : R −→ R, t �−→



Arctan t

t
si t =/ 0

1 si t = 0.

Alors, ϕ est continue sur R∗, et  ϕ(t) −→
t−→0

1 = ϕ(0) , donc  ϕ

est continue en 0.

Ainsi, ϕ est continue sur R, donc  ϕ admet des primitives 
sur R, l’une d’elles étant :

φ : R −→ R, x �−→
∫ x

0
ϕ(t) dt ,

et φ est continue sur R (et même de classe C1 sur R).

On a : f (x) = φ(x) − φ(0)

x − 0
−→
x−→0

φ
′(0) = ϕ(0) = 1,

donc f admet une limite finie 	 en 0, et 	 = 1.

On peut donc prolonger  f par continuité en 0, en posant
f (0) = 	 = 1.

b) D’après le cours :

∀ t ∈ ] − 1 ; 1[, Arctan t =
+∞∑
n=0

(−1)nt2n+1

2n + 1
,

d’où :

∀ t ∈ ] − 1 ; 1[−{0}, ϕ(t) = Arctan t

t
=

+∞∑
n=0

(−1)nt2n

2n + 1
.

De plus, comme  ϕ(0) = 1 et que le terme constant de la der-
nière série entière est égal à 1, l’égalité est aussi vraie pour t = 0,
d’où :

∀ t ∈ ] − 1 ; 1[, ϕ(t) =
+∞∑
n=0

(−1)nt2n

2n + 1
.

Par primitivation, φ est dSE(0) et :

∀ x ∈ ] − 1 ; 1[, φ(x) = φ(0)︸︷︷︸
= 0

+
+∞∑
n=0

(−1)n x2n+1

(2n + 1)2
,

d’où :

∀ x ∈ ] − 1 ; 1[−{0}, f (x) = φ(x)

x
=

+∞∑
n=0

(−1)n x2n

(2n + 1)2
.

Comme  f (0) = 1 et que le terme constant de la dernière série
entière est égal à 1, l’égalité est aussi vraie pour x = 0, d’où :

∀ x ∈ ] − 1 ; 1[, f (x) =
+∞∑
n=0

(−1)n x2n

(2n + 1)2
.

262

Ceci montre que  f est dSE(0).

Par la règle de d’Alembert, le rayon est égal à 1.

a) Soit x ∈ R .

• Cas x ∈ ] − 1 ;+∞[ :

L’application  t �−→ ln (1 + x e−t ) est continue sur [0 ;+∞[
et  ln (1 + x e−t ) ∼

t−→+∞
x e−t . D’après le cours, t �−→ e−t est

intégrable sur [0 ;+∞[, donc, par théorème d’équivalence pour
des fonctions de signe fixe, t �−→ ln (1 + x e−t ) est intégrable
sur [0 ;+∞[, et donc f (x) existe.

• Cas x = −1 :

L’application  t �−→ ln (1 − e−t ) est continue sur ]0 ;+∞[,
intégrable sur [1 ;+∞[ (comme dans le cas précédent), et, au
voisinage de 0 :

ln (1 − e−t ) = ln
(

1 − (
1 − t + o(t)

)) = ln
(
t + o(t)

)
= ln t + ln

(
1 + o(1)

) = ln t + o(1) ∼
t−→0

ln t < 0.

D’après le cours, t �−→ ln t est intégrable sur ]0 ; 1]. Par théo-
rème d’équivalence pour des fonctions de signe fixe,
t �−→ ln (1 − e−t ) est intégrable sur ]0 ; 1] .

Ainsi, t �−→ ln (1 − e−t ) est intégrable sur ]0 ; 1] et sur
[1 ;+∞[, donc sur ]0 ;+∞[, et on conclut que  f (x) existe.

• Cas x ∈ ] − ∞;−1[ :

L’application  t �−→ ln (1 + x e−t ) n’est pas définie sur
]0 ;+∞[, donc  f (x) n’existe pas.

On conclut : Def ( f ) = [−1 ;+∞[.

b) On a, par DSE(0) de  u �−→ ln (1 + u) , pour tout
(x,t) ∈ ] − 1 ;+∞[×]0 ;+∞[ tel que |x e−t | < 1 :

ln (1 + x e−t ) =
+∞∑
n=1

(−1)n−1(x e−t )n

n
.

Soit   x ∈ ] − 1 ; 1[.

Notons, pour tout n ∈ N
∗ :

fn : ]0 ;+∞[−→ R, t �−→ (−1)n−1(x e−t )n

n
.

• Pour tout n ∈ N
∗ , fn est intégrable sur ]0 ;+∞[

• 
∑
n�1

fn converge simplement sur ]0 ;+∞[, et a pour somme

S : t �−→ ln (1 + x e−t )

• S est continue par morceaux (car continue) sur ]0 ;+∞[

• On a, pour tout n � 1 :
∫ +∞

0
| fn| =

∫ +∞

0

(|x | e−t )n

n
dt = |x |n

n

∫ +∞

0
e−nt dt

= |x |n
n

[
e−nt

−n

]+∞

0

= |x |n
n2

� 1

n2
,

6.23

6.24



263

Notons, pour tout n ∈ N :

fn : [−a ; a] −→ R, t �−→ f (t)
(−i xt)n

n!
.

• Pour tout n ∈ N , fn est intégrable sur [−a ; a] , car  fn est
continue par morceaux sur ce segment.

• 
∑
n�0

fn converge simplement sur [−a ; a] .

• 
+∞∑
n=0

fn : t �−→ f (t) e−i xt est continue par morceaux sur

[−a ; a] .

• On a, pour tout n ∈ N :

∫ a

−a
| fn(t)| dt =

∫ a

−a

∣∣∣∣ f (t)
(−i xt)n

n!

∣∣∣∣ dt

= |x |n
n!

∫ a

−a
| f (t)| |t |n dt � |a|n|x |n

n!

∫ a

−a
| f (t)| dt,

et cette dernière expression est le terme général d’une série
convergente, d’après la série de l’exponentielle.

Ainsi, la série  
∑
n�1

∫ a

−a
| fn| converge.

D’après le théorème sur l’intégration sur un intervalle quelconque
pour une série d’applications, on peut permuter intégrale et série,
donc :

g(x) = 1√
2π

+∞∑
n=0

∫ a

−a
f (t)

(−i xt)n

n!
dt

=
+∞∑
n=0

(
1√
2π

∫ a

−a
f (t)

(−i t)n

n!
dt

)
xn .

Ceci montre que  g est dSE(0), de rayon infini.

Notons 

A =
+∞∑
n=0

1

(3n)!
, B =

+∞∑
n=0

1

(3n + 1)!
, C =

+∞∑
n=0

1

(3n + 2)!
,

les trois séries étant convergentes d’après la règle de d’Alembert
par exemple.

Soit N ∈ N. On a, par groupement de termes dans des sommes
d’un nombre fini de termes :

N∑
n=0

1

(3n)!
+

N∑
n=0

1

(3n + 1)!
+

N∑
n=0

1

(3n + 2)!
=

3N+2∑
p=0

1

p!
.

D’où, en faisant tendre l’entier N vers l’infini :

A + B + C =
+∞∑
p=0

1

p!
= e1 = e .

donc la série  
∑
n�1

∫ +∞

0
| fn| converge.

D’après le théorème du cours sur l’intégration sur un intervalle
quelconque pour une série d’applications, on peut permuter in-
tégrale et série, d’où :

f (x) =
∫ +∞

0

( +∞∑
n=1

fn(t)

)
dt

=
+∞∑
n=1

∫ +∞

0
fn(t) dt =

+∞∑
n=1

(−1)n−1xn

n2
,

le calcul de la dernière intégrale étant analogue au calcul ci-
dessus.

On conclut que f est dSE(0) et que :

∀ x ∈ ] − 1 ; 1[, f (x) =
+∞∑
n=1

(−1)n−1xn

n2
.

La règle de d’Alembert montre que le rayon est 1.

La condition demandée revient à :

∀ n ∈ N,
f (n)(0)

n!
= n2 .

Considérons la série entière  
∑
n�0

n2xn . Son rayon est 1. Le cal-

cul de sa somme a été fait dans l’exercice 6.2 a) :

∀ x ∈ ] − 1 ; 1[,
+∞∑
n=1

n2xn = x(1 + x)

(1 − x)3
.

Notons, I =] − 1 ; 1[, qui est un intervalle ouvert contenant 0,

et : f : I −→ R, x �−→ x(1 + x)

(1 − x)3
.

Alors, f est dSE(0) de rayon 1, donc  f est de classe C∞ sur
] − 1 ; 1[ et, d’après le cours :

∀ n ∈ N, f (n)(0) = n2 · n! ,

donc  f convient.

Par hypothèse, il existe  a ∈ R+ tel que :

∀ x ∈ R − [−a ; a], f (x) = 0 .

Il est clair que, puisque  f est continue par morceaux sur R et
nulle en dehors de [−a ; a] , f est intégrable sur R.

Soit x ∈ R fixé. On a :

g(x) = 1√
2π

∫ +∞

−∞
f (t) e−i xt dt = 1√

2π

∫ a

−a
f (t) e−i xt dt

= 1√
2π

∫ a

−a
f (t)

( +∞∑
n=0

(−i xt)n

n!

)
dt

= 1√
2π

∫ a

−a

( +∞∑
n=0

f (t)
(−i xt)n

n!

)
dt .
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De même :

N∑
n=0

1

3n)!
+ j

N∑
n=0

1

3n + 1)!
+ j2

N∑
n=0

1

3n + 2)!

=
N∑

n=0

j3n

(3n!)
+

N∑
n=0

j3n+1

(3n + 1)!
+

N∑
n=0

j3n+2

(3n + 2)!
=

3N+2∑
p=0

jp

p!
,

d’où : A + jB + j2C = ej.

De même, ou par conjugaison, puisque A,B,C sont réels :

A + j2 B + jC = ej2 .

On déduit, par addition, puisque 1 + j + j2 = 0 :

3A = e + ej + ej2 = e + e− 1
2 +i

√
3

2 + e− 1
2 −i

√
3

2

= e + e− 1
2 2 cos

√
3

2
.

On conclut : A = 1

3

(
e + 2e− 1

2 cos

√
3

2

)
.

Remarquons que la méthode fournit aussi les valeurs de  B
et  C :

3B = e + j2ej + jej2

= e +
(

− 1

2
− i

√
3

2

)
e− 1

2 +i
√

3
2 +

(
− 1

2
+ i

√
3

2

)
e− 1

2 −i
√

3
2

= e − e− 1
2 cos

√
3

2
− e− 1

2
√

3 sin

√
3

2
,

et de même :

3C = e − e− 1
2 cos

√
3

2
+ e− 1

2
√

3 sin

√
3

2
.

Nous allons calculer la somme de la série entière∑
n�0

(−1)n xn

(n + 1)(2n + 1)
, puis essayer remplacer x par 1.

1) Calculons la somme  f (x) de la série entière, pour tout
x ∈ ]0 ; 1[. On a, en utilisant la décomposition en éléments
simples du coefficient :

f (x) =
+∞∑
n=0

(−1)n 1

(n + 1)(2n + 1)
xn

=
+∞∑
n=0

(−1)n

(
− 1

n + 1
+ 2

2n + 1

)
xn

=
+∞∑
n=0

(−1)n+1

n + 1
xn

︸ ︷︷ ︸
notée A(x)

+2
+∞∑
n=0

(−1)n

2n + 1
xn

︸ ︷︷ ︸
notée B(x)

car ces deux séries entières sont de rayon 1.

On a, pour tout x ∈ ]0 ; 1[ :

A(x) = 1

x

+∞∑
n=0

(−1)n+1xn+1

n + 1
= 1

x

+∞∑
n=1

(−1)n xn

n

= − 1

x

+∞∑
n=1

(−1)n−1xn

n
= − 1

x
ln (1 + x)

B(x) =
+∞∑
n=0

(−1)n

2n + 1
xn =

+∞∑
n=0

(−1)n(
√

x)2n

2n + 1

= 1√
x

+∞∑
n=0

(−1)n(
√

x)2n+1

2n + 1
= 1√

x
Arctan

√
x .

On obtient :

∀ x ∈ ]0 ; 1[, f (x) = − 1

x
ln (1 + x) + 2√

x
Arctan

√
x .

2) Nous allons montrer qu’on peut remplacer  x par 1 dans la
formule précédente, par continuité.

Notons, pour tout n ∈ N :

fn : [0 ; 1] −→ R, x �−→ (−1)n xn

(n + 1)(2n + 1)
.

• Pour tout n ∈ N , fn est continue sur [0 ; 1] .

• On a, pour n ∈ N :

|| fn||∞ = 1

(n + 1)(2n + 1)
∼
n∞

1

2n2
,

donc, d’après l’exemple de Riemann (2 > 1) et le théorème

d’équivalence pour des séries à termes � 0, la série  
∑
n�0

|| fn||∞

converge. Ainsi,
∑
n�0

fn converge normalement, donc unifor-

mément (PSI), sur [0 ; 1] .

D’après le cours, il en résulte que la somme  f est continue
sur [0 ; 1] , donc :

S = lim
x−→1−

(
− 1

x
ln (1 + x) + 2√

x
Arctan x

)

= −ln 2 + 2 Arctan 1 = −ln 2 + π

2
.

Soit n ∈ N . Il est clair que  In et  Jn existent comme
intégrales d’applications continues sur un segment.

On a, en passant par les nombres complexes :

In + i Jn =
∫ 2π

0
e cos t ei(nt−sin t) dt

=
∫ 2π

0
e( cos t−i sin t)+i nt dt =

∫ 2π

0
ee−i t

ei nt dt.

En utilisant le DSE(0) de l’exponentielle, de rayon infini, on
a donc :

In + i Jn =
∫ 2π

0

( +∞∑
k=0

(e−i t )k

k!

)
ei nt dt
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=
∫ 2π

0

( +∞∑
k=0

ei(n−k)t

k!

)
dt.

Nous allons essayer de permuter intégrale et série.

Notons, pour tout k ∈ N :

fk : [0 ; 2π] −→ C, t �−→ ei(n−k)t

k!
.

• Pour tout k ∈ N, fk est continue sur le segment [0 ; 2π] .

• On a, pour tout k ∈ N : || fk ||∞ = 1

k!
, donc la série∑

k�0

|| fk ||∞ converge, donc  
∑
k�0

fk converge normalement,

donc uniformément (PSI), sur [0 ; 2π] .

D’après un théorème du cours, on peut permuter intégrale et

série, donc : In + i Jn =
+∞∑
k=0

∫ 2π

0

ei (n−k)t

k!
dt.

De plus, si k =/ n, alors :

∫ 2π

0

ei (n−k)t

k!
dt =

[
ei (n−k)t

i (n − k)k!

]2π

0

= 0 ,

et, si k = n , alors :
∫ 2π

0

ei (n−k)t

k!
dt = 2π

n!
.

Les termes de la série précédente sont donc tous nuls, sauf celui

d’indice k = n , d’où : In + i Jn = 2π

n!
.

En séparant partie réelle et partie imaginaire, comme In et Jn

sont réels, on conclut : In = 2π

n!
, Jn = 0.

a) 1) • Puisque : ∀ n ∈ N, | sin n| � 1

et que la série entière  
∑
n�0

zn est de rayon 1, par théorème de

majoration, on déduit : R � 1.

• Montrons que la suite  ( sin n)n∈N ne converge pas vers 0, en
raisonnant par l’absurde.

Supposons : sin n −−−→
n ∞

0.

Alors, par suite extraite : sin (n + 1) −−−→
n ∞

0.

Mais, pour tout n ∈ N :

sin (n + 1) = sin n cos 1 + sin 1 cos n ,

donc, comme sin 1 =/ 0 :

cos n = sin (n + 1) − sin n cos 1

sin 1
−−−→

n ∞
0 .

Enfin : 1 = cos 2n + sin 2n −−−→
n ∞

0 + 0 = 0, contradiction.

Ceci montre que la suite ( sin n)n∈N ne converge pas vers 0.

Il en résulte que la série entière  
∑
n�0

sin n zn diverge pour  z = 1,

donc  R � 1.

Finalement : R = 1.

2) La série entière  
∑
n�1

sin n

n
zn a le même rayon que sa série

entière dérivée, qui est  
∑
n�1

sin n zn−1, et celle-ci a le même

rayon que la série entière  
∑
n�1

sin n zn, donc : R = 1.

3) La série entière  
∑
n�0

n sin n zn a le même rayon que

∑
n�0

n sin n zn−1, qui est la série entière dérivée de la série en-

tière  
∑
n�0

sin n zn, donc a le même rayon que celle-ci, d’où :

R = 1.

b) Soit z ∈ C
∗ . On a :

ln |anzn| = ln
∣∣∣ 3n

(
ln (n + 2)

)n−1 zn
∣∣∣

= n ln 3 − (n − 1) ln ln (n + 2) + n ln [z|
= n

(
ln 3 + ln |z|) − (n − 1) ln ln (n + 2) −−→

n ∞
− ∞,

par prépondérance classique, donc : anzn −−−→
n ∞

0.

On conclut : R = ∞.

c) Pour obtenir un équivalent simple du coefficient

an = Arcsin
n + 1

2n + 3
− π

6
lorsque l’entier n tend vers l’infini,

appliquons le théorème des accroissements finis à  Arcsin entre
1

2
et

n + 1

2n + 3
. Il existe cn, compris entre  

1

2
et  

n + 1

2n + 3
tel que :

an =
(

n + 1

2n + 3
− 1

2

)
Arcsin ′(cn) = − 1

2n + 3

1√
1 − c2

n

∼
n∞

− 1

2n

1√
1 −

(
1

2

)2
= − 1

n
√

3
.

Comme la série entière  
∑
n�1

− 1

n
√

3
zn est de rayon 1 (par la

règle de d’Alembert par exemple), on conclut, par théorème
d’équivalence : R = 1.

d) Comme   an = Arccos

(
1 − 1

n

)
−−−→

n ∞
Arccos 1 = 0,

on a :

an ∼
n∞

sin

(
Arccos

(
1 − 1

n

))

6.30



266

=
√

1 −
(

1 − 1

n

)2

=
√

2

n
− 1

n2
∼
n∞

√
2

n
.

Puisque la série entière 
∑

n

√
2

n
zn est de rayon 1 (par la règle

de d’Alembert par exemple), par théorème d’équivalence, on
conclut : R = 1.

e) Essayons d’encadrer |an| , pour tout n � 2. On a :

|an| = 1

n!

∣∣∣∣
∫ 1

0
t︸︷︷︸

�0

(t − 1)︸ ︷︷ ︸
�0

· · · (t − n)︸ ︷︷ ︸
�0

dt

∣∣∣∣

= 1

n!

∫ 1

0
t (1 − t) · · · (n − t) dt.

D’où : |an| � 1

n!

∫ 1

0
1 · 1 · 2 · · · n dt = 1

et :

|an| � 1

n!

∫ 1

0
t · (1 − t) · 1 · · · (n − 1) dt

= (n − 1)!

n!

∫ 1

0
(t − t2) dt = 1

n

[
t2

2
− t3

3

]1

0

= 1

6n
.

Ainsi : ∀ n � 2,
1

6n
� |an| � 1.

Comme les séries entières  
∑

n

1

6n
zn et  

∑
n

zn sont de rayon 1

(par la règle de d’Alembert par exemple), on conclut, par théo-
rème d’encadrement : R = 1.

f) Pour tout n ∈ N , l’application  t �−→ tne−t est intégrable

sur [0 ;+∞[ (par la règle t2 f (t) en +∞ , par exemple), donc

intégrable sur [n ;+∞[, ce qui montre que  an =
∫ +∞

n
tne−t dt

existe.

On a, pour tout n ∈ N :

an =
∫ +∞

n
tne−t dt �

∫ +∞

n
nne−t dt

= nn[−e−t ]+∞
n = nne−n︸ ︷︷ ︸

noté bn

> 0.

Et, pour tout z ∈ C
∗ :

∣∣∣∣bn+1zn+1

bnzn

∣∣∣∣ = (n + 1)n+1e−(n+1)

nne−n
|z|

=
(

n + 1

n

)n

(n + 1)e−1|z| � (n + 1)e−1|z| −−−→
n ∞

+ ∞,

donc :

∣∣∣∣bn+1zn+1

bnzn

∣∣∣∣ −−−→
n ∞

+ ∞ > 1,

et donc la série numérique  
∑

n

aznzn diverge (grossièrement).

Ceci montre : Rb = 0.

Par théorème de minoration, on conclut : R = 0.

g) On a, pour tout n ∈ N
∗ , par le changement de variable

t = x2, x = √
t, dx = 1

2
√

t
dt :

an =
∫ √

(n+1)π

√
nπ

sin (x2) dx =
∫ (n+1)π

nπ

sin t

2
√

t
dt .

• D’une part :

N∑
n=1

an =
∫ (N+1)π

π

sin t

2
√

t
dt −→

N∞

∫ +∞

π

sin t

2
√

t
dt ,

car on sait que l’intégrale impropre  
∫ →+∞

0

sin t√
t

dt converge.

Ceci montre que la série entière  
∑
n�1

anzn converge pour z = 1,

donc : R � 1.

• D’autre part, puisque  t �−→ sin t

2
√

t
est de signe fixe sur chaque

[nπ ; (n + 1)π], n ∈ N
∗ , on a :

N∑
n=1

|an| =
∫ (N+1)π

π

| sin t |
2
√

t
dt −→

N∞
+∞ ,

car on sait que l’intégrale impropre  
∫ →+∞

π

| sin t |√
t

dt diverge.

Ceci montre que la série entière  
∑
n�1

anzn n’est pas absolu-

ment convergente pour z = 1, donc : R � 1.

On conclut : R = 1.

h) Remarquons d’abord que, puisque 
√

2 est irrationnel, on a,

pour tout n � 1 : n
√

2 − E(n
√

2) =/ 0,

donc  an = 1

n
√

2 − E(n
√

2)
existe.

• D’une part, puisque 0 < n
√

2 − E(n
√

2) � 1 , on a : an � 1.

• D’autre part, en utilisant une expression conjuguée :

an = n
√

2 + E(n
√

2)

2n2 − (
E(n

√
2)

)2 .

Comme  2n2 − (
E(n

√
2)

)2
est un entier naturel non nul, il est

� 1, donc : an � n
√

2 + E(n
√

2) � 2n
√

2.

On obtient ainsi : ∀ n � 1, 1 � an � 2n
√

2.

Comme les séries entières  
∑

n

zn et  
∑

n

2n
√

2zn sont de

rayon 1 (par la règle de d’Alembert par exemple), on conclut,
par encadrement : R = 1.
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Nous allons utiliser la même méthode que celle employée
dans le cours pour montrer qu’une série entière a le même rayon
que sa série entière dérivée.

Notons  R et  R′ les rayons respectifs des deux séries entières∑
n

anzn,
∑

n

F(n)anzn .

1) Soit z ∈ C tel que |z| < R. Il existe alors Z ∈ C tel que :

|z| < |Z | < R , par exemple  Z = 1

2
(|z| + R).

On a, pour tout n :
∣∣F(n)anzn

∣∣ = |an Zn|
∣∣∣F(n)

( z

Z

)n∣∣∣ .

D’une part, puisque |Z | < R , la suite  
(|an Zn|)

n est bornée.

D’autre part, puisque F est une fraction rationnelle et que∣∣∣∣ z

Z

∣∣∣∣ < 1, par prépondérance classique, on a :

∣∣∣∣F(n)

(
z

Z

)n∣∣∣∣ −−−→
n ∞

0.

Il en résulte :
∣∣F(n)anzn

∣∣ −−→
n ∞

0 , donc : |z| � R′ .

On a montré : ∀ z ∈ C,
(|z| < R �⇒ |z| � R′).

Il en résulte : R � R′ .

2) On peut appliquer le résultat de 1) à  
∑

n

F(n)anzn et  
1

F

respectivement, ce qui permet d’échanger les rôles des deux
séries entières de l’énoncé, et on obtient : R′ � R.

Finalement : R′ = R .

a) • Rayon :

1) On a : ∀ n ∈ N, | cos n| � 1.

Comme la série entière 
∑
n�0

zn est de rayon 1, par théorème de

majoration : R � 1.

2) Montrons que la suite ( cos n)n�0 ne converge pas vers 0.

Raisonnons par l’absurde : supposons cos n −−−→
n ∞

0.

On a alors, par suite extraite : cos 2n −−−→
n ∞

0.

Mais : cos 2n = 2 cos 2n − 1 −−−→
n ∞

− 1, contradiction.

Ceci montre que la suite  ( cos n)n ne converge pas vers 0. 

Il en résulte que la série entière  
∑
n�0

cos n zn diverge pour

z = 1, donc : R � 1.

Finalement : R = 1. Cf. aussi l’exercice 6.30 a).

• Somme :

On a, pour tout x ∈ ] − 1 ; 1[ :

S(x) =
+∞∑
n=0

cos nxn =
+∞∑
n=0

ei n + e−i n

2
xn

= 1

2

+∞∑
n=0

ei n xn + 1

2

+∞∑
n=0

e−i n xn,

car ces deux séries entières sont de rayon 1, d’après la règle
de d’Alembert par exemple.

D’où :

S(x) = 1

2

+∞∑
n=0

(ei x)n + 1

2

+∞∑
n=0

(e−ix)n

= 1

2

1

1 − ei x
+ 1

2

1

1 − e−ix

= 1

2

2 − ei x − e−ix

(1 − ei x)(1 − e−ix)
= 1 − ( cos 1)x

1 − 2( cos 1)x + x2
.

Réponse : R = 1 et :

∀ x ∈ ] − 1 ; 1[, S(x) = 1 − ( cos 1)x

1 − 2( cos 1)x + x2
.

b) • Rayon :

Soit x ∈ R
∗ . Notons, pour tout n ∈ N : un = x3n+2

3n + 2
.

On a :
∣∣∣∣un+1

un

∣∣∣∣ =
∣∣∣∣ x3n+5

3n + 5

∣∣∣∣
∣∣∣∣3n + 2

x3n+2

∣∣∣∣ = 3n + 2

3n + 5
|x |3 −−−→

n ∞
|x |3 .

D’après la règle de d’Alembert, si |x | < 1, alors la série∑
n

|un| converge, et, si |x | > 1, alors la série  
∑

n

|un| di-

verge.

On conclut : R = 1.

• Somme :

L’application  S : ] − 1 ; 1[−→ R, x �−→
+∞∑
n=0

x3n+2

3n + 2
est de

classe C1 sur ] − 1 ; 1[ et :

∀ x ∈ ] − 1 ; 1[, S′(x) =
+∞∑
n=0

x3n+1 = x
+∞∑
n=0

(x3)n = x

1 − x3
.

En primitivant et puisque S(0) = 0 (terme constant de la série
entière définissant S), on a :

∀ x ∈ ] − 1 ; 1[, S(x) =
∫ x

0

t

1 − t3
dt .

Pour calculer cette intégrale, utilisons une décomposition en
éléments simples dans R(X) :

X

1 − X3
= X

(1 − X)(1 + X + X2)
= a

1 − X
+ bX + c

1 + X + X2
,

où (a,b,c) ∈ R
3 est à calculer.

On multiplie par 1 − X, puis on remplace X par 1, d’où :

a = 1

3
.

6.32
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On multiplie par X puis on fait tendre X vers l’infini, d’où :

0 = −a + b, donc  b = a = 1

3
.

Enfin, en remplaçant X par 0 : 0 = a + c , d’où :

c = −a = −1

3
.

On a donc la décomposition en éléments simples :

X

1 − X3
= 1

3

(
1

1 − X
+ X − 1

1 + X + X2

)
.

D’où le calcul de primitive :∫
t

1 − t3
dt = 1

3

∫ (
1

1 − t
+ t − 1

1 + t + t2

)
dt

= 1

3

∫
1

1 − t
dt + 1

3

∫ 1

2
(2t + 1) − 3

2
t2 + t + 1

dt

= −1

3
ln (1 − t) + 1

6
ln (t2 + t + 1) − 1

2

∫
dt

t2 + t + 1︸ ︷︷ ︸
notée J (t)

.

Par mise sous forme canonique pour un trinôme :

t2 + t + 1 =
(

t + 1

2

)2

+ 3

4

= 3

4

[
1 +

(
2√
3

(
t + 1

2

))2]
= 3

4

[
1 +

(
2t + 1√

3

)2]
.

D’où, par le changement de variable  u = 2t + 1√
3

:

J (t) =
∫ √

3
2 du

3
4 (1 + u2)

= 2√
3

Arctan u = 2√
3

Arctan
2t + 1√

3
.

D’où, pour tout x ∈ ] − 1 ; 1[ :

S(x) =
[

− 1

3
ln (1 − t) + 1

6
ln (1 + t + t2)

− 1√
3

Arctan
2t + 1√

3

]x

0

= −1

3
ln (1 − x) + 1

6
ln (1 + x + x2)

− 1√
3

Arctan
2x + 1√

3
+ 1√

3
Arctan

1√
3
.

Réponse : R = 1 et, pour tout x ∈ ] − 1 ; 1[ :

S(x) = −1

3
ln (1 − x) + 1

6
ln (1 + x + x2)

− 1√
3

Arctan
2x + 1√

3
+ π

6
√

3
.

c) Par la règle de d’Alembert, on obtient   R = 1.

La série entière proposée ressemble à la série entière∑
n�0

x2n+1

2n + 1
.

Soit x ∈ ] − 1 ; 1[.

1) Si x ∈ ]0 ; 1[, notons t = √
x .

On a alors x = t2 , donc :

S(x) =
+∞∑
n=0

xn

2n + 1
=

+∞∑
n=0

(t2)n

2n + 1

= 1

t

+∞∑
n=0

t2n+1

2n + 1
= 1

t
Argth t = 1√

x
Argth

√
x .

2) Si x ∈] − 1 ; 0[, notons t = √−x .

On a alors x = −t2 , donc :

S(x) =
+∞∑
n=0

xn

2n + 1
=

+∞∑
n=0

(−t2)n

2n + 1
= 1

t

+∞∑
n=0

(−1)n t2n+1

2n + 1

= 1

t
Arctan t = 1√−x

Arctan
√−x .

3) Enfin, S(0) = 1 , car  S(0) est le terme constant de la série
entière définissant S.

Réponse : R = 1 et :

S(x) =




1√
x

Argth
√

x si 0 < x < 1

1 si x = 0
1√−x

Arctan
√−x si − 1 < x < 0.

d) Par la règle de d’Alembert, on obtient R = +∞.

La série entière proposée ressemble à la série entière∑
n�0

x2n+1

(2n + 1)!
.

Soit x ∈ R .

1) Si x ∈ ]0 ;+∞[, notons t = √
x .

On a alors x = t2 , donc :

S(x) =
+∞∑
n=0

xn

(2n + 1)!
=

+∞∑
n=0

(t2)n

(2n + 1)!

= 1

t

+∞∑
n=0

t2n+1

(2n + 1)!
= 1

t
sh t = sh

√
x√

x
.

2) Si x ∈ ] − ∞; 0[, notons t = √−x .

On a alors x = −t2 , donc :

S(x) =
+∞∑
n=0

xn

(2n + 1)!
=

+∞∑
n=0

(−t2)n

(2n + 1)!

= 1

t

+∞∑
n=0

(−1)nt2n+1

(2n + 1)!
= 1

t
sin t = sin

√−x√−x
.

3) Enfin, S(0) = 1 , car S(0) est le terme constant de la série
entière définissant S.

Réponse :

R = ∞ et S(x) =




sh
√

x√
x

si x > 0

1 si x = 0
sin

√−x√−x
si x < 0.
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e) Par utilisation d’un équivalent et de la règle de d’Alembert,
on obtient : R = 1.

Formons la décomposition en éléments simples du coefficient
an de la série entière :

an = 3n

2n2 + n − 1
= 3n

(n + 1)(2n − 1)
= 1

n + 1
+ 1

2n − 1
.

On a alors, pour tout x ∈ ] − 1 ; 1[ :

S(x) =
+∞∑
n=0

an xn =
+∞∑
n=0

1

n + 1
xn

︸ ︷︷ ︸
notée A(x)

+
+∞∑
n=0

1

2n − 1
xn

︸ ︷︷ ︸
notée B(x)

car ces deux séries entières sont de rayon 1.

On a, si x =/ 0 :

A(x) = 1

x

+∞∑
n=0

xn+1

n + 1
= 1

x

+∞∑
n=1

xn

n
= − 1

x
ln (1 − x) ,

et  A(0) = 1 car  A(0) est le terme constant de la série en-
tière définissant  A(x) .

D’autre part, en isolant dans B(x) le terme constant, on a :

B(x) = −1 +
+∞∑
n=1

xn

2n − 1
= −1 + x

+∞∑
n=0

xn

2n + 1︸ ︷︷ ︸
notée C(x)

.

On a calculé C(x) dans l’exercice c) :

C(x) =




1√
x

Argth
√

x si 0 < x < 1

1 si x = 0

1√−x
Arctan

√−x si − 1 < x < 0.

On reporte la valeur de C(x) et on en déduit l’expression 
de A(x) .

Réponse : R = 1 et : S(x) =



− 1

x
ln (1 − x) − 1 + √

x Argth
√

x si 0 < x < 1

0 si x = 0

− 1

x
ln (1 − x) − 1 − √−xArctan

√−x si − 1 < x < 0.

f) • Rayon :

Soit z ∈ C .

Si |z| < 1, alors |zE(
√

n)| = |z|E(
√

n) −−−→
n ∞

0.

Si |z| > 1, alors   |zE(
√

n)| = |z|E(
√

n) −−−→
n ∞

+ ∞ .

On conclut : R = 1.

•  Somme :

Soit z ∈ C tel que |z| < 1. On a, pour tout N ∈ N
∗ :

(N+1)2−1∑
n=0

zE(
√

n) =
N∑

p=0

(p+1)2−1∑
n=p2

zE(
√

n)

=
N∑

n=0

p2+2p∑
n=p2

z p =
N∑

p=0

(2p + 1)z p.

En faisant tendre l’entier N vers l’infini, on obtient :

S(z) =
+∞∑
n=0

zE(
√

n) =
+∞∑
p=0

(2p + 1)z p = 2
+∞∑
p=0

pz p +
+∞∑
p=0

z p ,

car ces deux séries entières sont de rayon 1.

On sait (série géométrique) :
+∞∑
p=0

z p = 1

1 − z
.

D’où, en dérivant (algébriquement, car z ∈ C ici) :

+∞∑
p=0

pz p−1 = 1

(1 − z)2
,

et donc, en multipliant par z :
+∞∑
p=0

pz p = z

(1 − z)2
.

On obtient :

S(z) = 2
z

(1 − z)2
+ 1

1 − z
= 2z + (1 − z)

(1 − z)2
= 1 + z

(1 − z)2
.

Réponse : R = 1 et, pour tout z ∈ C tel que |z| < 1 :

S(z) = 1 + z

(1 − z)2
.

a) Notons Rc,Rs, Sc,Ss les rayons et les sommes des deux
séries entières proposées.

1) Rayons :

• On a : ∀ n ∈ N,
(| cos nθ| � 1 et | sin nθ| � 1

)
,

d’où, par théorème de majoration : Rc � 1 et Rs � 1 .

• Pour tout θ ∈ R , la suite  ( cos nθ)n�0 ne converge pas vers 0.
En effet, si cos nθ −−−→

n ∞
0 , alors, par suite extraite,

cos 2nθ −−−→
n ∞

0, d’où   2 cos 2nθ− 1 −−−→
n ∞

0,

contradiction avec   2 cos 2nθ− 1 −−−→
n ∞

− 1.

Ceci montre que la série entière  
∑
n�0

cos nθ xn diverge pour

x = 1, donc  Rc � 1.

• Pour tout θ ∈ R − πZ , la suite  ( sin nθ)n�0 ne converge pas
vers 0.

En effet, si  sin nθ −−−→
n ∞

0,

alors, par suite extraite, sin (n + 1)θ −−−→
n ∞

0 ,

6.33
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d’où  sin nθ cos θ+ sin θ cos nθ −−−→
n ∞

0,

puis (comme sin θ =/ 0) cos nθ −−−→
n ∞

0, contradiction comme

on l’a vu ci-dessus.

Ceci montre que la série entière  
∑
n�0

sin nθ xn diverge pour

x = 1, donc   Rs � 1.

Si θ ∈ πZ , alors, pour tout n ∈ N, sin nθ = 0, donc  Rs = ∞.

Finalement : Rc = 1 pour tout θ ∈ R , et  Rs = 1 si
θ ∈ R − πZ, Rs = ∞ si θ ∈ πZ .

2) Sommes :

Soit θ ∈ R .

Le rayon de la série entière  
∑
n�0

ei nθxn est 1 et on a, pour tout

x ∈ ] − 1 ; 1[ :

Sc(x) + i Ss(x) =
+∞∑
n=0

cos nθxn + i
+∞∑
n=0

sin nθxn

=
+∞∑
n=0

ei nθxn =
+∞∑
n=0

(ei θx)n = 1

1 − ei θx

= 1

(1 − x cos θ) − i x sin θ
= (1 − x cos θ) + i x sin θ

(1 − x cos θ)2 + (x sin θ)2
.

D’où, en séparant la partie réelle et la partie imaginaire :

Sc(x) = 1 − x cos θ

1 − 2x cos θ+ x2
, Ss(x) = x sin θ

1 − 2x cos θ+ x2
.

De plus, si θ ∈ πZ , alors : ∀ x ∈ R, Ss(x) = 0.

b) Notons  ρc,ρs, σc,σs les rayons et les sommes des deux sé-
ries entières proposées.

1) Rayons :

Puisqu’une série entière a le même rayon que sa série entière
dérivée, on a : ρc = Rc et  ρs = Rs.

2) Sommes :

• On a, pour tout x ∈ ] − 1 ; 1[ :

xσ′
c(x) =

+∞∑
n=1

cos nθ xn

= 1 − x cos θ

1 − 2x cos θ+ x2
− 1 = x cos θ− x2

1 − 2x cos θ+ x2
,

d’où, si x =/ 0 : σ′
c(x) = cos θ− x

1 − 2x cos θ+ x2
.

D’autre part : σ′
c(0) = cos θ , car il s’agit du terme constant

de la série entière définissant σ′(x) .

On a donc : ∀ x ∈ ] − 1 ; 1[, σ′
c(x) = cos θ− x

1 − 2x cos θ+ x2
.

On déduit, pour tout x ∈ ] − 1 ; 1[ :

σc(x) = σc(0) +
∫ x

0
σ

′
c(t) dt =

∫ x

0

cos θ− t

1 − 2t cos θ+ t2
dt

=−
[

1

2
ln (1−2t cos θ+t2)

]x

0

=−1

2
ln (1 − 2x cos θ+ x2) .

• On a, pour tout x ∈ ] − 1 ; 1[ :

xσ′
s(x) =

+∞∑
n=1

sin nθ xn = x sin θ

1 − 2x cos θ+ x2
,

d’où, si x =/ 0 : σ′
s(x) = sin θ

1 − 2x cos θ+ x2
.

D’autre part, σ′
s(0) = sin θ, car il s’agit du terme constant de

la série entière définissant σ′
s(x) .

On a donc : ∀ x ∈ ] − 1 ; 1[, σ′
s(x) = sin θ

1 − 2x cos θ+ x2
.

On déduit, pour tout x ∈ ] − 1 ; 1[ :

σs(x) = σs(0) +
∫ x

0

sin θ

1 − 2t cos θ+ t2
dt

=
∫ x

0

sin θ

(t − cos θ)2 + sin 2θ
dt

=
si sin θ =/ 0

∫ x

0

d

(
t − cos θ

sin θ

)
(

t − cos θ

sin θ

)2

+ 1

=
[
Arctan t − cos θ

sin θ

]x

0

= Arctan x − cos θ
sin θ − Arctan −cos θ

sin θ

= Arctan x − cos θ
sin θ + Arctan cos θ

sin θ .

Réponse : • Pour 
∑
n�1

cos nθ

n
xn :

R = 1 et  S(x) = −1

2
ln (1 − 2x cos θ+ x2)

• Pour 
∑
n�1

sin nθ

n
xn :

∗ Si θ ∈ πZ : R = +∞ et  S = 0

∗ Si θ /∈ πZ , : R = 1 et :

S(x) = Arctan
x − cos θ

sin θ
+ Arctan

cos θ

sin θ
,

ce dernier résultat pouvant être transformé sous diverses
formes.

a) On a, pour tout x ∈ R : ex =
+∞∑
k=0

xk

k!
,

d’où, pour tout n ∈ N et tout x ∈ R
∗ :

fn(x) = 1

xn+1

(
ex −

n∑
k=0

xk

k!

)
= 1

xn+1

+∞∑
k=n+1

xk

k!

= 1

xn+1

+∞∑
p=0

x p+n+1

(p + n + 1)!
=

+∞∑
p=0

x p

(p + n + 1)!
.
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Comme  fn(0) = 1

(n + 1)!
et que le terme constant de la der-

nière série entière est égal à  
1

(n + 1)!
, l’égalité est aussi vraie

pour x = 0, d’où :

∀ x ∈ R, fn(x) =
+∞∑
p=0

x p

(p + n + 1)!
.

Ceci montre que fn est dSE(0) de rayon infini, donc  fn est de
classe C∞ sur R.

b) On a : ∀ x ∈ R
∗, fn(x) = x−n−1ex −

n∑
k=0

1

k!
xk−n−1.

On en déduit, en dérivant n fois et en utilisant la formule de
Leibniz, pour tout x ∈ R

∗ :

f (n)
n (x)

=
n∑

p=0

(
n
p

)
(x−n−1)(n−p)(ex )(p) −

n∑
k=0

1

k!
(xk−n−1)(n)

= ex
n∑

p=0

n!

p!(n − p)!

[
(−n − 1) · · · (−2n + p)

]
x−n−1−n+p

−
n∑

k=0

1

k!
(k − n − 1) · · · (k − 2n)xk−2n−1

= ex
n∑

p=0

n!

p!(n − p)!
(−1)n−p (2n − p)!

n!
x−2n+p−1

−
n∑

k=0

1

k!
(−1)n (2n − k)!

(n − k)!
xk−2n−1

= e
x
2 (−1)n

x2n+1

(
e

x
2

n∑
p=0

(−1)p (2n − p)!

p!(n − p)!
x p

−e− x
2

n∑
k=0

(−1)k (2n − k)!

k!(n − k)!
(−x)k

)
.

En notant  Pn = (−1)n
n∑

p=0

(−1)p (2n − p)!

p!(n − p)!
Xp ∈ R[X],

on conclut :

∀ x ∈ R, f (n)
n (x) = e

x
2

x2n+1

(
e

x
2 Pn(x) − e− x

2 Pn(−x)
)

.

On a, pour tout z ∈ C , par produit de Cauchy de deux
séries entières de rayon infini :

ez
+∞∑
n=1

(−1)n−1

n

1

n!
zn

=
( +∞∑

n=0

1

n!
zn

)( +∞∑
n=1

(−1)n−1

n · n!
zn

)
=

+∞∑
n=1

cnzn,

où, pour tout n � 1 :

cn =
n−1∑
k=0

1

k!

(−1)n−k−1

(n − k)(n − k)!
= 1

n!

n−1∑
k=0

(−1)n−k−1

n − k

(
n
k

)

= 1

n!

n−1∑
k=0

(−1)n−k−1

(
n
k

)∫ 1

0
tn−k−1 dt

= 1

n!

∫ 1

0

( n−1∑
k=0

(−1)n−k−1

(
n
k

)
tn−k−1

)
dt

= 1

n!

∫ 1

0
−1

t

( n−1∑
k=0

(
n
k

)
(−t)n−k

)
dt

= 1

n!

∫ 1

0
−1

t

(
(1 − t)n − 1

)
dt

=
u = 1 − t

1

n!

∫ 1

0

1 − un

1 − u
du = 1

n!

∫ 1

0

( n−1∑
k=0

uk

)
du

= 1

n!

n−1∑
k=0

1

k + 1
= 1

n!

n∑
k=1

1

k
,

d’où l’égalité voulue.

1) Minoration du rayon R :

On a, pour tout n ∈ N
∗ :

|an| = 1

n!

∣∣∣∣
∫ 1

0

( n−1∏
k=0

(t − k)

)
dt

∣∣∣∣
= 1

n!

∫ 1

0
t
(
(1 − t) · · · (n − 1 − t)

)
dt

� 1

n!
1
(
1 · 2 · · · (n − 1)

) = (n − 1)!

n!
= 1

n
.

Comme la série entière  
∑
n�1

1

n
xn est de rayon 1, par théorème

de majoration, on conclut : R � 1.

2) Calcul de la somme S sur ] − 1 ; 1[ :

Soit x ∈ ] − 1 ; 1[ fixé. On a :

S(x) =
+∞∑
n=0

an xn = a0 +
+∞∑
n=1

∫ 1

0

(
xn

n!

n−1∏
k=0

(t − k)

)
dt .

Notons, pour tout n ∈ N
∗ :

fn : [0 ; 1] −→ R, t �−→ xn

n!

n−1∏
k=0

(t − k) .

• Pour tout n ∈ N
∗ , fn est continue sur le segment [0 ; 1] .

• On a, pour tout  n ∈ N
∗ et tout  t ∈ [0 ; 1] :

| fn(t)| = |x |n
n!

t
(
(1 − t) · · · (n − 1 − t)

)

� |x |n
n!

1 · 1 · · · (n − 1)
) = |x |n

n!
(n − 1)! = |x |n

n
� |x |n,

d’où : ∀ n ∈ N
∗, || fn||∞ � |x |n .
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Comme |x | < 1, la série géométrique 
∑
n�1

|x |n converge, donc,

par théorème de majoration pour des séries à termes � 0, la série

numérique  
∑
n�1

|| fn||∞ converge. Ceci montre que la  
∑
n�1

fn

converge normalement, donc uniformément (PSI), sur [0 ; 1].

D’après un théorème du cours, on peut alors permuter intégrale
et série, d’où :

S(x)

= a0 +
∫ 1

0

( +∞∑
n=1

xn

n!

n−1∏
k=0

(t − k)

)
dt

= 1 +
∫ 1

0

( +∞∑
n=1

t (t − 1) · · · (t − n + 1)

n!
xn

)
dt

=
∫ 1

0
(1 + x)t dt =

∫ 1

0
et ln (1+x) dt

=
si x =/ 0

[
et ln (1+x)

ln(1 + x)

]1

0

= eln(1+x) − 1

ln(1 + x)
= x

ln(1 + x)
.

D’autre part, S(0) = a0 = 1 , car  S(0) est le terme constant
de la série entière définissant S.

Ainsi :

∀ x ∈ ] − 1 ; 1[, S(x) =



x

ln(1 + x)
si x =/ 0

1 si x = 0.

3) Valeur du rayon  R :

Pour montrer R = 1, étudions la série entière au voisinage de
−1, point qui annule le dénominateur de l’expression de S(x) .

On a : S(x) = x

ln(1 + x)
−→

x−→−1+
0,

ce qui n’amène pas de résultat net sur la position de −1 par
rapport à l’intervalle [−R ; R].

Mais S est dérivable sur ] − 1 ; 1[ et on a, pour tout
x ∈ ] − 1 ; 1[ :

S′(x) =
ln (1 + x) − x

1 + x(
ln (1 + x)

)2 = (1 + x)ln(1 + x) − x

(1 + x)
(

ln (1 + x)
)2 ,

d’où, par prépondérance classique :

S′(x) ∼
x−→−1+

1

(1 + x)
(

ln (1 + x)
)2 −→

x−→−1+
+∞ .

Raisonnons par l’absurde : supposons R > 1. Comme S est de
classe C∞ sur ] − R ; R[ et que −1 ∈ ] − R ; R[, S′ est en
particulier continue en −1, contradiction avec le résultat pré-
cédent.

On conclut : R = 1.

a) Soit x ∈ R.

• Si |x | � 1, alors : ∀ n � 1,

∣∣∣∣ xn

n3/2

∣∣∣∣ � 1

n3/2
,

donc, d’après l’exemple de Riemann (3/2 > 1) et le théorème

de majoration pour des séries à termes � 0, la série 
∑
n�1

xn

n3/2

converge.

• Si |x | > 1, alors, par prépondérance :
xn

n3/2
−→
n∞

+∞, donc

la série 
∑
n�1

xn

n3/2
diverge grossièrement.

On conclut : Déf (S) = [−1 ; 1].

b) 1) • 1re méthode, PC :

Notons, pour tout n � 1 :

fn : [−1 ; 1] −→ R, x �−→ xn

n3/2
.

On a : ∀ n � 1, || fn||∞ = 1

n3/2
.

D’après l’exemple de Riemann (3/2 > 1), la série numérique∑
n�1

|| fn||∞ converge.

Ceci montre que la série 
∑
n�1

fn converge normalement sur

[−1 ; 1].

Comme, d’autre part, chaque fn est continue sur [−1 ; 1], il en
résulte, d’après le cours, que S est continue sur [−1 ; 1].

• 2è méthode, PC, PT :

D’après a) ou la règle de d’Alembert, la série entière 
∑
n�1

xn

n3/2

est de rayon, 1. D’après a), cette série entière converge en −1
et en 1.

D’après le théorème de la limite radiale, on conclut que la somme
S est continue sur [−1 ; 1].

2) D’après a) ou la règle de d’Alembert, le rayon de la série

entière 
∑
n�1

xn

n3/2
est 1, donc, d’après le cours, S est de classe

C∞ (donc C1) sur ] − 1 ; 1[. De plus :

∀ x ∈ ] − 1 ; 1[, S(x) =
+∞∑
n=1

xn−1

n1/2
.

c) La série numérique 
∑
n�1

(−1)n

n1/2
converge, d’après le TSCSA,

puisqu’il s’agit d’une série alternée dont la valeur absolue du
terme général décroît et tend vers 0. Il en résulte, d’après le théo-
rème de la limite radiale, que la somme de la série entière∑
n�1

xn−1

n1/2
est continue sur [−1 ; 1[.
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Ceci montre que S′ admet, en −1+ , une limite finie qui est
+∞∑
n=1

(−1)n−1

n1/2
.

Ainsi, S est continue sur [−1 ; 1], de classe C1 sur ] − 1 ; 1[,
et S′ admet une limite finie en −1+. D’après le théorème li-
mite de la dérivée, on conclut que S est de classe C1 sur [−1 ; 1[.

d) • On a, pour tout x ∈ ]0 ; 1[ :

S(x) =
+∞∑
n=1

xn−1

n1/2
�

+∞∑
n=1

xn−1

n
= 1

x

+∞∑
n=1

xn

n
= − 1

x
ln (1 − x).

Comme : − 1

x
ln (1 − x) −→

x−→1−
+∞,

il en résulte : S′(x) −→
x−→1−

+∞.

• Si S était de classe C1 sur [−1 ; 1], S′ admettrait en 1− une
limite finie, contradiction avec le résultat précédent. 

On conclut : S n’est pas de classe C1 sur [−1 ; 1].

1) Soit f convenant.

• Montrons que  f est de classe C∞ sur R.

À cet effet, montrons, par récurrence sur n, que, pour tout
n ∈ N

∗ , f est n fois dérivable sur R.

La propriété est vraie pour n = 1, par hypothèse.

Supposons que f est n fois dérivable sur R. Puisque :

∀ x ∈ R, f ′(x) = α f (x) + f (λx)

et que le second membre est n fois dérivable sur R, f ′ est n
fois dérivable sur R, donc f est n + 1 fois dérivable sur R.

On conclut, par récurrence sur n, que f est n fois dérivable sur R

pour tout n ∈ N
∗ , donc f est de classe C∞ sur R.

• Montrons que f est dSE(0). À cet effet, nous allons montrer
que le reste de Taylor de f en 0 tend vers 0.

Soit x ∈ R fixé. On a, pour tout n ∈ N , d’après la formule de
Taylor avec reste intégral :

f (x) =
n∑

k=0

f (k)(0)

k!
xk +

∫ x

0

(x − t)n

n!
f (n+1)(t) dt

︸ ︷︷ ︸
notée Rn(x)

.

Notons, pour tout n ∈ N : Mn = Sup
t∈[−x;x]

| f (n)(t)|.

On a, pour tout n ∈ N :

|Rn(x)| =
∣∣∣∣
∫ x

0

(x − t)n

n!
f (n+1)(t) dt

∣∣∣∣
�

∣∣∣∣
∫ x

0

|x − t |n
n!

Mn+1 dt

∣∣∣∣ = Mn+1

n!

∣∣∣∣
[

(x − t)n+1

n + 1

]x

0

∣∣∣∣
= Mn+1

n!

|x |n+1

n + 1
= Mn+1

(n + 1)!
|x |n+1.

Essayons d’établir une majoration de Mn .

Par hypothèse : ∀ t ∈ R, f (t) = α f (t) + f (λt),

d’où, par une récurrence immédiate :

∀ n ∈ N, ∀ t ∈ R, f (n+1)(t) = α f (n)(t) + λ
n f (n)(λt) ,

et donc, en passant aux bornes supérieures lorsque t décrit
[−x ; x] :

∀ n ∈ N, Mn+1 � |α|Mn + |λ|n Mn � (|α| + 1)Mn .

Par récurrence immédiate, on déduit :

∀ n ∈ N, Mn � (|α| + 1)n M0 .

D’où : |Rn(x)| � (|α| + 1)n+1 M0

(n + 1)!
|x |n+1 −−−→

n ∞
0,

par prépondérance classique de la factorielle sur les exponentielles.

On déduit, en faisant tendre l’entier n vers l’infini dans la for-
mule de Taylor avec reste intégral, que la série de Taylor de f

en 0,
∑
n�0

f (n)(0)

n!
xn, converge et a pour somme f (x) .

On conclut que f est dSE(0) de rayon infini.

2) Soit f dSE(0) de rayon infini, f (x) =
+∞∑
n=0

an xn . Alors, f est

dérivable sur R et on a :

f convient

⇐⇒ ∀ x ∈ R, f ′(x) = α f (x) + f (λx)

⇐⇒ ∀ x ∈ R,

+∞∑
n=1

nan xn−1 = α

+∞∑
n=0

an xn +
+∞∑
n=0

anλ
n xn

⇐⇒ ∀ x ∈ R,

+∞∑
n=0

(n + 1)an+1xn =
+∞∑
n=0

(α+ λ
n)an xn

⇐⇒
unicité du DSE(0)

∀ n ∈ N, (n + 1)an+1 = (α+ λ
n)an

⇐⇒ ∀ n ∈ N, an+1 = α+ λ
n

n + 1
an

⇐⇒ ∀ n ∈ N, an =
(

1

n!

n−1∏
k=0

(α+ λ
k)

)
a0 .

On conclut :

S=
{

f : R−→R, x �−→a
+∞∑
n=0

1

n!

n−1∏
k=0

(α+λk)xn ; a ∈ R

}
.

1) L’application  x �−→ 1√
1 + x2

= (1 + x2)−1/2 est

dSE(0) de rayon 1, d’après le cours. Par primitivation, il en ré-
sulte que l’application  x �−→ Argsh x est dSE(0) de rayon 1.
Par produit, l’application f est donc dSE(0) de rayon � 1.

2) Pour calculer le DSE(0) de f, nous allons utiliser la méthode
dite de l’équation différentielle.
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L’application f est dérivable sur R, d’où :

∀ x ∈ R,
d

dx

(√
1 + x2 f (x)

) = d

dx
(Argsh x) ,

c’est-à-dire :

∀ x ∈ R,
√

1 + x2 f ′(x) + x√
1 + x2

f (x) = 1√
1 + x2

,

donc : ∀ x ∈ R, (1 + x2) f (x) + x f (x) = 1.

En notant  f (x) =
+∞∑
n=0

an xn le DSE(0) de f, qui existe et est

de rayon � 1 comme on l’a vu plus haut, on a, pour tout

x ∈ ] − 1 ; 1[ :

0 = (1 + x2) f ′(x) + x f (x) − 1

= (1 + x2)

+∞∑
n=1

nan xn−1 + x
+∞∑
n=0

an xn − 1

=
+∞∑
n=1

nan xn−1 +
+∞∑
n=1

nan xn+1 +
+∞∑
n=0

an xn+1 − 1

=
+∞∑
n=0

(n + 1)an+1xn +
+∞∑
n=2

(n − 1)an−1xn +
+∞∑
n=1

an−1xn − 1

= (a1 − 1) +
+∞∑
n=1

(
(n + 1)an+1 + nan−1

)
xn .

Par unicité du DSE(0) de la fonction nulle, on déduit a1 = 1

et : ∀ n � 1, (n + 1)an+1 + nan−1 = 0.

Comme a0 = f (0) = 0 , il en résulte, de proche en proche :

∀ p ∈ N, a2p = 0,

ce que l’on pouvait aussi trouver en remarquant que f est im-
paire.

Et, pour tout p ∈ N :

a2p+1 = − 2p

2p + 1
a2p−1

=
(

− 2p

2p + 1

)(
− 2p − 2

2p − 1

)
· · ·

(
− 2

3

)
a1

= (−1)p2p p!

(2p + 1)(2p − 1) · · · 3
= (−1)p(2p p!)2

(2p + 1)!
.

On obtient :

∀ x ∈ ] − 1 ; 1[, f (x) =
+∞∑
p=0

(−1)p(2p p!)2

(2p + 1)!
x2p+1 .

3) Déterminons le rayon R par la règle de d’Alembert.

Soit x ∈ R
∗ fixé. Notons, pour tout p ∈ N, up le terme géné-

ral de la série obtenue. On a alors |up| > 0 et :

∣∣∣up+1

up

∣∣∣ =
(
2p+1(p + 1)!

)2

(2p + 3)!

(2p + 1)!

(2p p!)2
|x |2

= 4(p + 1)2

(2p + 2)(2p + 3)
|x |2 −→

p∞
|x |2,

donc : R = 1.

L’application f : x �−→ sin (αArcsin x) est de 

classe C∞ sur ] − 1 ; 1[ et on a, en dérivant, pour tout

x ∈ ] − 1 ; 1[ : f ′(x) = cos (αArcsin x)
α√

1 − x2
,

donc :
√

1 − x2 f ′(x) = α cos (αArcsin x),

puis, encore en dérivant :

√
1 − x2 f ′′(x) − x√

1 − x2
f ′(x)

= −α2 sin (αArcsin x)
1√

1 − x2
= − α2 f (x)√

1 − x2
,

d’où : (1 − x2) f ′′(x) − x f ′(x) + α
2 f (x) = 0.

Ainsi, f est solution de l’équation différentielle 

(E) (1 − x2)y′′ − xy′ + α
2 y = 0 .

• Supposons que f soit dSE(0), f (x) =
+∞∑
n=0

an xn , de rayon

R > 0. On peut alors dériver (deux fois) terme à terme sur

] − R ; R[, d’où :

0 = (1 − x2) f ′′(x) − x f ′(x) + α
2 f (x)

= (1 − x2)

+∞∑
n=2

n(n − 1)an xn−2

− x
+∞∑
n=1

nan xn−1 + α
2

+∞∑
n=0

an xn

=
+∞∑
n=2

n(n − 1)an xn−2 −
+∞∑
n=2

n(n − 1)an xn

−
+∞∑
n=1

nan xn +
+∞∑
n=0

α
2an xn

=
+∞∑
n=0

(n + 2)(n + 1)an+2xn −
+∞∑
n=2

n(n − 1)an xn

−
+∞∑
n=1

nan xn +
+∞∑
n=0

α
2an xn

=
+∞∑
n=0

(n + 2)(n + 1)an+2xn −
+∞∑
n=0

n(n − 1)an xn

−
+∞∑
n=0

nan xn +
+∞∑
n=0

α
2an xn
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=
+∞∑
n=0

(
(n + 2)(n + 1)an+2

− n(n − 1)an − nan + α
2an

)
xn

=
+∞∑
n=0

(
(n + 2)(n + 1)an+2 − (n2 − α

2)an
)
xn .

Par unicité du DSE(0) de la fonction nulle, on déduit :

∀ n ∈ N, (n + 2)(n + 1)an+2 = (n2 − α
2)an .

Comme  a0 = f (0) = 0 , on déduit, de proche en proche :

∀ p ∈ N, a2p = 0 .

Comme  a1 = f ′(0) = α , on déduit de proche en proche :

a2p+1 = (2p − 1)2 − α2

(2p + 1)(2p)
· · · 12 − α2

3 · 2
α

= α

(2p + 1)!

p∏
k=1

(
(2k − 1)2 − α

2
)
.

• Réciproquement, considérons la série entière  
∑
n�0

an xn où

an est défini ci-dessus.

Comme les a2p+1 sont tous =/ 0, et que, pour tout x ∈ R
∗ fixé :∣∣∣∣a2p+1x2p+1

a2p−1x2p−1

∣∣∣∣ =
∣∣∣∣a2p+1

a2p−1

∣∣∣∣ |x |2

=
∣∣∣∣ (2p − 1)2 − α2

(2p + 1)(2p)

∣∣∣∣ |x |2 −→
p∞

|x |2,

le rayon de la série entière est 1, qui est > 0 .

D’après le calcul fait plus haut, en réciproque, la somme S de
la série entière est solution de (E) sur ] − 1 ; 1[ .

De plus : S(0) = 0 et  S′(0) = α .

Ainsi, f et  S sont solutions de (E), sur ] − 1 ; 1[ et
f (0) = S(0), f ′(0) = S′(0) .

D’après le théorème de Cauchy linéaire, il en résulte :

∀ x ∈ ] − 1 ; 1[, f (x) = S(x) .

Ainsi, pour tout x ∈ ] − 1 ; 1[ :

f (x) =
+∞∑
p=0

α

(2p + 1)!

( p∏
k=1

(
(2k − 1)2 − α

2
))

x2p+1 ,

donc  f est dSE(0), de rayon, 1.

a) On a, en utilisant des DL(0) :

f (x) = 1

ex − 1
− 1

x
= x − (ex − 1)

x(ex − 1)

=
x −

(
x + x2

2 + o
x−→0

(x2)
)

x
(
x + o(x)

)

= − x2

2 + o(x2)

x2 + o(x2)
−→
x−→0

−1

2
.
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On conclut que  f admet une limite finie 	 en 0, et que :

	 = −1

2
.

On prolonge  f par continuité en 0, en posant : f (0) = −1

2
.

b) On a, pour tout x ∈ R
∗ :

f (x) = 1

ex − 1
− 1

x
= − x

ex − 1

ex − 1 − x

x2
.

• On sait : ∀ x ∈ R, ex =
+∞∑
n=0

xn

n!
,

donc : ex − 1 − x =
+∞∑
n=2

xn

n!
,

puis, si x =/ 0 :
ex − 1 − x

x2
=

+∞∑
n=2

xn−2

n!
=

+∞∑
n=0

xn

(n + 2)!
.

Considérons l’application 

u : R −→ R, x �−→




ex − 1 − x

x2
si x =/ 0

1

2
si x = 0.

On vient de montrer : ∀ x ∈ R
∗, u(x) =

+∞∑
n=0

xn

(n + 2)!
.

De plus, cette égalité est aussi vraie pour x = 0, car  u(0) = 1

2
,

et le terme constant de la série entière est  
1

2
.

On a donc : ∀ x ∈ R, u(x) =
+∞∑
n=0

xn

(n + 2)!
.

Ceci montre que  u est dSE(0) de rayon infini, donc, d’après
le cours, u est de classe C∞ sur R.

• De même, et plus brièvement, l’application 

v : R −→ R, x �−→



ex − 1

x
si x =/ 0

1 si x = 0
est de classe C∞ sur R.

On peut aussi remarquer, à cet effet :

∀ x ∈ R, v(x) = xu(x) + 1 .

• De plus, il est clair, sur la définition de v , que :

∀ x ∈ R, v(x) =/ 0 .

D’après le cours,
1

v
est donc de classe C∞ sur R.

• On a : ∀ x ∈ R
∗, f (x) = − 1

v(x)
u(x).

Et comme  f (0) = −1

2
, v(0) = 1, u(0) = 1

2
, l’égalité est aussi

vraie pour x = 0.
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On a donc : f = −1

v
u.

Comme  u et  
1

v
sont de classe C∞ sur R, par produit, f est

donc de classe  C∞ sur R.

a) Par hypothèse, f est dSE(0) de rayon R > 0, donc
f est de classe C∞ sur ] − R ; R[.

Puisque  tn −−−→
n ∞

0, que, pour tout n ∈ N, f (tn) = 0 et que

f est continue en 0, on déduit : f (0) = 0 .

On peut se ramener, en prenant une suite extraite, au cas où la
suite  (tn)n∈N est strictement décroissante et vérifie :

∀ n ∈ N, 0 < tn < R.

Pour tout n ∈ N , d’après le théorème de Rolle, puisque
f (tn) = f (tn+1) et que  f est continue sur [tn ; tn+1] et déri-
vable sur ]tn tn+1[, il existe  un ∈ ]tn ; tn+1[⊂]0 ; R[ tel que :

f ′(un) = 0.

On construit ainsi une suite réelle (un)n∈N telle que :


∀ n ∈ N, −R < un < R et un =/ 0 et f ′(un) = 0

un −−−→
n ∞

0.

On peut alors appliquer le résultat précédent à  f ′ à la place
de  f, puisque  f ′ est dSE(0) de même rayon que  f, d’où :

f ′(0) = 0.

En réitérant, on déduit : ∀ n ∈ N, f (n)(0) = 0.

Enfin, comme  f est dSE(0), on a :

∀ x ∈ ] − R ; R[, f (x) =
+∞∑
n=0

f (n)(0)

n!
xn = 0 .

b) Supposons qu’il existe  f : ] − 1 ; 1[−→ R, dSE(0) de rayon
� 1, telle que :

∀ n ∈ N − {0,1}, f

(
1

n

)
= − f

(
− 1

n

)
= 1

n3
.

Considérons les applications 

g : ] − 1 ; 1[−→ R, x �−→ g(x) = f (x) − x3

h : ] − 1 ; 1[−→ R, x �−→ h(x) = f (x) + x3 .

Puisque  f est dSE(0) de rayon � 1, g et  h le sont aussi. De
plus :

∀ n ∈ N − {0,1}, g

(
1

n

)
= 0 et h

(
− 1

n

)
= 0 .

D’après a), il en résulte :

∀ x ∈ ] − 1 ; 1[, g(x) = 0 et h(x) = 0 ,

d’où : ∀ x ∈ ] − 1 ; 1[, x3 = −x3, contradiction.

On conclut qu’il n’existe pas d’application  f convenant.

Rappelons la définition de la fonction 
 d’Euler :

∀ s ∈ ]0 ;+∞[, 
(s) =
∫ +∞

0
t s−1 e−t dt .

Ainsi, pour tout x ∈ ] − 1 ;+∞[ :


(1 + x) =
∫ +∞

0
t x e−t dt =

∫ +∞

0
ex ln t e−t dt

=
∫ +∞

0

+∞∑
n=0

(
(x ln t)n

n!
e−t

)
dt

=
∫ +∞

0

( +∞∑
n=0

(x ln t)n

n!
e−t

)
dt.

Nous allons essayer de permuter intégrale et série.

Soit x ∈ ] − 1 ; 1[ fixé. Notons, pour tout n ∈ N :

fn : ]0 ;+∞[−→ R, t �−→ (x ln t)n

n!
e−t .

• Pour tout n ∈ N , fn est continue par morceaux (car continue)

sur ]0 ;+∞[, et intégrable sur ]0 ;+∞[, car  
√

t fn(t) −→
t−→0+

0

et  t2 fn(t) −→
t−→+∞

0.

• 
∑
n�0

fn converge simplement sur ]0 ;+∞[ et a pour somme

S : t �−→ ex ln t e−t.

• S est continue par morceaux (car continue) sur ]0 ;+∞[.

• Montrons que la série  
∑
n�0

∫ +∞

0
| fn| converge.

On a, pour tout n ∈ N :
∫ +∞

0
| fn| =

∫ +∞

0

∣∣∣∣ (x ln t)n

n!
e−t

∣∣∣∣ dt

= |x |n
n!

∫ +∞

0
| ln t |n e−t dt

= |x |n
n!

(∫ 1

0
(−ln t)n e−t dt

︸ ︷︷ ︸
notée An

+
∫ +∞

1
( ln t)n e−t dt

︸ ︷︷ ︸
notée Bn

)
.

Et :

0 � An �
∫ 1

0
(−ln t)n dt

=
u = −ln t

∫ +∞

0
une−u du = 
(n + 1) = n!

0 � Bn �
∫ +∞

1
tn e−t dt

�
∫ +∞

0
tn e−t dt = 
(n + 1) = n! .

6.42

6.43



277

On a donc : ∀ n ∈ N,

∫ +∞

0
| fn| � |x |n

n!
2n! = 2|x |n .

Puisque |x | < 1, la série géométrique  
∑
n�0

|x |n converge, donc,

par théorème de majoration pour des séries à termes � 0, la

série  
∑
n�0

∫ +∞

0
| fn| converge.

D’après le théorème du cours sur l’intégration sur un intervalle
quelconque pour une série de fonctions, on peut permuter in-
tégrale et série, d’où :


(x + 1) =
+∞∑
n=0

∫ +∞

0

(x ln t)n

n!
e−t dt

=
+∞∑
n=0

∫ +∞

0

(
1

n!
(ln t)ne−t dt

)
xn .

Ceci montre que  x �−→ 
(1 + x) est dSE(0), de rayon R � 1.

Comme  
(1 + x) −→
x−→−1+

+∞, on peut préciser :

R = 1 .

1) Détermination du rayon R :

Essayons d’obtenir une estimation de  un lorsque l’entier  n
tend vers l’infini.

Comme, pour tout n ∈ N , 0 � 1

n + 1
� 1, considérons les

deux suites obtenues en remplaçant, dans l’énoncé,
1

n + 1
,

par 0, par 1. Autrement dit, considérons les suites

(vn)n∈N, (wn)n∈N définies par :
{

v0 = 0, v1 = 1, ∀ n ∈ N, vn+2 = vn+1 + vn

w0 = 0, w1 = 1, ∀ n ∈ N, wn+2 = wn+1 + wn + 1.

Une récurrence immédiate montre :

∀ n ∈ N, 0 � vn � un � wn .

• Calcul de vn :

La suite (vn)n∈N est une suite récurrente linéaire du second ordre,
à coefficients constants et sans second membre. L’équation ca-

ractéristique r2 − r − 1 = 0 admet deux solutions réelles dis-
tinctes :

r1 = 1 + √
5

2
, r2 = 1 − √

5

2
.

D’après le cours, il existe (λ1,λ2) ∈ R
2 tel que :

∀ n ∈ N, vn = λ1rn
1 + λ2rn

2 .

On calcule  (λ1,λ2) par les conditions initiales :

{
λ1 + λ2 = u0 = 0

λ1r1 + λ2r2 = u1 = 1
⇐⇒




λ1 = 1

r1 − r2
= 1√

5

λ2 = 1

r2 − r1
= − 1√

5
.

On a donc : ∀ n ∈ N, vn = 1√
5
(rn

1 − rn
2 ).

• Calcul de wn :

Cherchons une suite constante C vérifiant la même relation de
récurrence que  (wn)n∈N . Le réel  C convient si et seulement
si  C = C + C + 1, c’est-à-dire : C = −1.

Considérons donc la suite  (tn)n∈N définie par :

∀ n ∈ N, tn = wn + 1 .

On a, pour tout n ∈ N :

tn+2 = wn+2 + 1 = (wn+1 + wn + 1) + 1

= (wn+1 + 1) + (wn + 1) = tn+1 + tn .

Ainsi, (tn)n∈N est une suite récurrente linéaire du second ordre,
à coefficients constants et sans second membre. D’après le cours,
il existe  (µ1,µ2) ∈ R

2 tel que : ∀ n ∈ N, tn = µ1rn
1 + µ2rn

2 .

On calcule  (µ1,µ2) par les conditions initiales :

{
µ1 + µ2 = t0 = w0 + 1 = 1

µ1r1 + µ2r2 = t1 = w1 + 1 = 2
⇐⇒



µ1 = 2 − r2

r1 − r2

µ2 = − 2 − r1

r1 − r2
.

On a donc : ∀ n ∈ N, wn = tn − 1 = µ1rn
1 + µ2rn

2 − 1.

Comme  |r1| > 1 et  |r2| < 1, et que λ1 =/ 0 et µ1 =/ 0,

on a :




vn = λ1rn
1 + λ2rn

2 ∼
n∞

λ1rn
1

wn = µ1rn
1 + µ2rn

2 − 1 ∼
n∞

µ1rn
1 .

Il en résulte que les deux séries entières  
∑
n�0

vnzn et  
∑
n�0

wnzn

sont de rayon 
1

r1
.

Comme : ∀ n ∈ N, |vn| � |un| � |wn|,
on déduit que la série entière  

∑
n�0

unzn est de rayon :

R = 1

r1
= −r2 =

√
5 − 1

2
.

2) Détermination de la somme S :

Notons   S : ] − R ; R[�−→ R, x �−→
+∞∑
n=0

an xn .

Soit  x ∈ ] − R ; R[ . On a, pour tout n ∈ N :

un+2xn+2 =
(

un+1 + un + 1

n + 1

)
xn+2
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= x(un+1xn+1) + x2(un xn) + xn+2

n + 1
.

D’où :

+∞∑
n=0

un+2xn+2 = x
+∞∑
n=0

un+1xn+1 + x2
+∞∑
n=0

un xn +
+∞∑
n=0

xn+2

n + 1
,

les quatre séries entières étant de rayon � R.

On a donc :

S(x) − (u0 + u1x)= x
(
S(x) − u0

) + x2S(x) − x ln (1 − x) ,

d’où :

(1 − x − x2)S(x) = u0 + (u1 − u0)x − x ln (1 − x)

= x − x ln (1 − x) .

Finalement : ∀ x ∈ ] − R ; R[, S(x) = x − x ln (1 − x)

1 − x − x2
.

a) 1) Soit (n,k) ∈ N
2 tel que k � n.

Une permutation σ ayant exactement k points fixes est définie

par l’ensemble de ses k points fixes et par une permutation des

n − k autres éléments ne laissant fixe aucun de ces éléments.

On a donc :

Fn,k =
(

n
k

)
Fn−k,0 =

(
n
k

)
αn−k .

2) L’ensemble de toutes les permutations de {1,. . . ,n} se par-

titionne en sous-ensembles formés de permutations ayant

exactement k points fixes, 0 � k � n .

On a donc, par dénombrement :

n! =
n∑

k=0

Fn,k =
n∑

k=0

(
n
k

)
αn−k .

Par le changement d’indice p = n − k, on a donc :

n! =
n∑

p=0

(
n

n − p

)
αp =

n∑
p=0

(
n
p

)
αp .

b) 1) • On a : ∀ n ∈ N, 0 � αn = Fn,0 � n!,

donc : ∀ n ∈ N, 0 � αn

n!
� 1.

Comme la série entière  
∑
n�0

zn est de rayon 1, par majoration,

on déduit : R � 1.

• Soit z ∈ C tel que |z| < 1.

Par produit de Cauchy de deux séries numériques absolument

convergentes :

S(z) ez =
( +∞∑

n=0

αn

n!
zn

)( +∞∑
n=0

zn

n!

)

=
+∞∑
n=0

( n∑
k=0

αk

k!

1

(n − k)!

)
zn

=
+∞∑
n=0

1

n!

( n∑
k=0

(
n
k

)
αk

)
zn

=
+∞∑
n=0

1

n!
n!zn =

+∞∑
n=0

zn = 1

1 − z
,

d’où : S(z) = e−z

1 − z
.

2) On a donc, pour toutz ∈ C tel que |z| < 1 :

(1 − z)S(z) = e−z .

Mais :

(1 − z)S(z) = (1 − z)
+∞∑
n=0

αn

n!
zn

=
+∞∑
n=0

αn

n!
zn −

+∞∑
n=0

αn

n!
zn+1

= 1 +
+∞∑
n=1

αn

n!
zn −

+∞∑
n=1

αn−1

(n − 1)!
zn

= 1 +
+∞∑
n=1

(
αn

n!
− αn−1

(n − 1)!

)
zn .

Et :

(1 − z)S(z) = e−z =
+∞∑
n=0

(−1)n

n!
zn = 1 +

+∞∑
n=1

(−1)n

n!
zn .

Par unicité du DSE(0) de z �−→ (1 − z)S(z) , on a donc :

∀ n ∈ N
∗,

αn

n!
− αn−1

(n − 1)!
= (−1)n

n!
.

En sommant cette relation, on déduit, par télescopage :

αn

n!
− α0

0!
=

n∑
p=1

(−1)p

p!
,

puis : αn = n!
n∑

p=0

(−1)p

p!
.

3) La série  
∑
p�0

(−1)p

p!
relève du TSCSA, donc converge, et

a pour somme  e−1, d’où, pour tout n ∈ N tel que n � 2 :

∣∣∣∣αn − n!

e

∣∣∣∣ =
∣∣∣∣n!

n∑
p=0

(−1)p

p!
− n!

+∞∑
p=0

(−1)p

p!

∣∣∣∣

6.45



=
∣∣∣∣n!

+∞∑
p=n+1

(−1)p

p!

∣∣∣∣ � n!

∣∣∣∣ (−1)n+1

(n + 1)!

∣∣∣∣ = 1

n + 1
� 1

3
<

1

2
.

Ainsi, pour tout n ∈ N :

αn ∈ N et 0 <

(
n!

e
+ 1

2

)
− αn < 1 ,

donc : αn = E

(
n!

e
+ 1

2

)
.

Comme    
n!

e
− 1

2
< αn <

n!

e
+ 1

2
,

on déduit : αn = n!

e
+ O

n∞
(1).

a) Soit A > 0 fixé. Puisque la série  
∑
n�0

bn divergente

est à termes � 0, on a :
N∑

n=0

bn −→
N∞

+∞,

donc il existe N ∈ N tel que :
N∑

n=0

bn � A + 1.

Ayant ainsi fixé N, on a :
N∑

n=0

bn xn −→
x−→1−

N∑
n=0

bn .

Il existe donc η ∈ ]0 ; 1[ tel que :

∀ x ∈ [1 − η ; 1[,
N∑

n=0

bn xn �
( N∑

n=0

bn

)
− 1 � A .

Comme de plus les bn sont tous � 0 et que x � 0, on a :

∀ x ∈ [1 − η ; 1[, Sb(x) �
N∑

n=0

bn xn � A.

On a montré :

∀ A > 0, ∃ η ∈ ]0 ; 1[, ∀ x ∈ [1 − η ; 1[, Sb(x) � A .

On conclut : Sb(x) −→
x−→+1−

+∞.

b) Puisque  
an

bn
−−−→

n ∞
	 ∈ R , il existe M � 0 tel que :

∀ n ∈ N,

∣∣∣∣an

bn

∣∣∣∣ � M ,

donc : ∀ n ∈ N, |an| � Mbn .

Comme la série entière  
∑
n�0

bn xn est de rayon 1, par majora-

tion, la série entière  
∑
n�0

an xn est de rayon � 1 et sa somme

S est définie (au moins) sur ] − 1 ; 1[ .

Soit ε > 0 fixé.

Puisque  
an

bn
−−−→

n ∞
	 , il existe N ∈ N tel que :

∀ n � N ,

∣∣∣∣an

bn
− 	

∣∣∣∣ � ε .
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On a, pour tout x ∈ [0 ; 1[ :∣∣∣ Sa(x)

Sb(x)
− 	

∣∣∣ =
∣∣Sa(x) − 	Sb(x)

∣∣
Sb(x)

= 1

Sb(x)

∣∣∣∣
+∞∑
n=0

an xn −
+∞∑
n=0

	bn xn

∣∣∣∣

= 1

Sb(x)

∣∣∣
+∞∑
n=0

(an − 	bn)xn

∣∣∣∣ � 1

Sb(x)

+∞∑
n=0

|an − 	bn|xn

= 1

Sb(x)

N∑
n=0

|an − 	bn|xn + 1

Sb(x)

+∞∑
n=N+1

|an − 	bn|xn .

D’une part :

0 � 1

Sb(x)

+∞∑
n=N+1

|an − 	bn|xn

� 1

Sb(x)

+∞∑
n=N+1

εbn xn � 1

Sb(x)

+∞∑
n=0

εbn xn = ε.

D’autre part :

0 � 1

Sb(x)

N∑
n=0

|an − 	bn|xn

� 1

Sb(x)

N∑
n=0

|an − 	bn| −→
x−→1−

0,

car  
N∑

n=0

|an − 	bn| est fixé indépendamment de x ,

et    Sb(x) −→
x−→1−

+∞.

Il existe donc η ∈ ]0 ; 1[ tel que :

∀ x ∈ [1 − η ; 1[, 0 � 1

Sb(x)

( N∑
n=0

|an − 	bn|xn

)
� ε .

On a alors : ∀ x ∈ [1 − η ; 1[,

∣∣∣∣ Sa(x)

Sb(x)
− 	

∣∣∣∣ � 2ε.

On conclut :
Sa(x)

Sb(x)
− 	 −→

x−→1−
0,

c’est-à-dire :
Sa(x)

Sb(x)
−→

x−→1−
	.

a) On a : ∀ n ∈ N
∗, an = nn

enn!
> 0

et, pour tout x ∈ R
∗ fixé :∣∣∣∣an+1xn+1

an xn

∣∣∣∣ = (n + 1)n+1

en+1(n + 1)!

enn!

nn
|x |

= 1

e

(
1 + 1

n

)n

|x | −−−→
n ∞

1

e
e|x | = |x |.

D’après la règle de d’Alembert, on conclut : R = 1.

b) D’après la formule de Stirling : n! ∼
n∞

(
n

e

)n√
2πn,

donc : an = nn

enn!
∼
n∞

1√
2πn

, notébn .
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Puisque  an ∼
n∞

bn et que la série  
∑

n

an est divergente à termes

> 0 , d’après l’exercice 6.46, on a :

S(x) =
+∞∑
n=1

an xn ∼
x−→1−

+∞∑
n=1

bn xn = 1√
2π

+∞∑
n=1

xn

√
n

.

Il reste à trouver un équivalent simple de  
+∞∑
n=1

xn

√
n

lorsque

x −→ 1−. À cet effet, nous allons utiliser une comparaison
série/intégrale.

Soit x ∈ [0 ; 1[ fixé. Considérons l’application 

ϕx : [1 ;+∞[−→ R, t �−→ xt

√
t

.

Il est clair que  ϕx est continue et décroissante.

De plus : t2
ϕx (t) = t3/2et ln x −→

t−→+∞
0,

par prépondérance classique, car ln x < 0.

Il en résulte, par l’exemple de Riemann en +∞ (2 > 1 ) et le
théorème de majoration pour des fonctions � 0, que ϕx est

intégrable sur [1 ;+∞[.

Par comparaison série/intégrale, on a donc :

∫ +∞

1
ϕx (t) dt �

+∞∑
n=1

ϕx (n) � 1 +
∫ +∞

1
ϕx (t) dt .

On calcule l’intégrale :

∫ +∞

1
ϕx (t) dt =

∫ +∞

1

et ln x

√
t

dt =
u=√

t

∫ +∞

1

eu2 ln x

u
2u du

= 2
∫ +∞

1
eu2 ln x du =

v = u
√−ln x

2√−ln x

∫ +∞
√−ln x

e−v2
dv .

Comme  
√−ln x −→

x−→1−
0 et que  v �−→ e−v2

est intégrable sur

[0 ;+∞[, on a :
∫ +∞

√−ln x
e−v2

dv −→
x−→1−

∫ +∞

0
e−v2

dv =
√
π

2
.

D’autre part :
2√−ln x

∼
x−→1−

2√
1 − x

.

D’où :
∫ +∞

1
ϕx (t) dt ∼

x−→1−

√
π√

1 − x
−→

x−→1−
+∞ .

On a donc, par théorème d’encadrement pour des équivalents :
∞∑

n=1

xn

√
n

∼
x−→1−

√
π√

1 − x
.

On conclut : S(x) ∼
x−→1−

1√
2
√

1 − x
.

Soient n ∈ N
∗, x ∈ ] − 1 ; 1[ . Puisque f est de classe C∞

sur [−1 ; 1] , on peut appliquer la formule de Taylor avec reste
intégral sur le segment joignant 0 et x :

f (x) =
n−1∑
k=0

f (k)(0)

k!
xk +

∫ x

0

(x − t)n−1

(n − 1)!
f (n)(t) dt

︸ ︷︷ ︸
notée Rn(x)

.

On a, en utilisant l’inégalité de Cauchy et Schwarz :

|Rn(x)|2 �
∣∣∣
∫ x

0

( (x − t)n−1

(n − 1)!

)2
dt

∣∣∣ ∣∣∣
∫ x

0

(
f (n)(t)

)2
dt

∣∣∣ .

• D’une part :

∣∣∣
∫ x

0

( (x − t)n−1

(n − 1)!

)2
dt =

∣∣∣
∫ x

0

(x − t)2n−2

(
(n − 1)!

)2 dt
∣∣∣

=
∣∣∣ −

[ (x − t)2n−1

(2n − 1)
(
(n − 1)!

)2

]x

0

∣∣∣ = |x |2n−1

(2n − 1)
(
(n − 1)!

)2 .

• D’autre part :

∣∣∣
∫ x

0

(
f (n)(t)

)2
dt

∣∣∣ �
∫ 1

−1

(
f (n)(t)

)2
dt � (n!)2 ,

par hypothèse.

D’où :

|Rn(x)|2 � |x |2n−1

(2n − 1)
(
(n − 1)!

)2 (n!)2 = |x |2n−1n2

2n − 1
.

Puisque x ∈ ] − 1 ; 1[ , par prépondérance classique,
|x |2n−1n2

2n − 1
−−−→

n ∞
0 , donc Rn(x) −−−→

n ∞
0 .

Ceci montre que la série de Taylor de f en 0 converge et a pour
somme f.

On conclut : f est dSE(0), de rayon � 1.

Il est clair, par la règle de d’Alembert par exemple, que,

pour tout p ∈ N
∗ fixé, la série 

∑
n�0

1

16n

1

8n + p
converge et que :

+∞∑
n=0

1

16n(8n + p)
=

+∞∑
n=0

√
2 p

∫ 1/
√

2

0
x8n+p−1 dx .

Nous allons essayer de permuter intégrale et série.

Notons, pour tout p ∈ N
∗ et tout n ∈ N :

fn : [0 ; 1/
√

2] −→ R, x �−→
√

2 px8n+p−1 .

• Pour tout n ∈ N , fn est continue sur [0 ; 1/
√

2].

• 
∑
n�0

fn converge normalement, donc uniformément (PSI), sur

[0 ; 1/
√

2] car, pour tout n ∈ N :

6.49
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|| fn||∞ =
√

2 p

(
1√
2

)8n+p−1

=
√

2

16n
.

D’après un théorème du cours, on peut donc permuter intégrale
et série, d’où :

+∞∑
n=0

1

16n(8n + p)
=

√
2 p

∫ 1/
√

2

0

+∞∑
n=0

x8n+p−1 dx

=
√

2 p

∫ 1/
√

2

0

x p−1

1 − x8
dx .

Notons  S la somme du second membre de l’énoncé. On a alors :

S = 4
√

2
∫ 1/

√
2

0

1

1 − x8
dx − 2

√
2 4

∫ 1/
√

2

0

x3

1 − x8
dx

−
√

2 5

∫ 1/
√

2

0

x4

1 − x8
dx −

√
2 6

∫ 1/
√

2

0

x5

1 − x8
dx

=
∫ 1/

√
2

0

4
√

2 − 8x3 − 4
√

2x4 − 8x5

1 − x8
dx

=
u = x

√
2

∫ 1

0

4
√

2 − 2
√

2u3 − √
2u4 − √

2u5

1 − u8

16

du√
2

= 16
∫ 1

0

4 − 2u3 − u4 − u5

16 − u8
du .

Comme 1 est racine évidente du numérateur, on a :

4 − 2u3 − u4 − u5

= (1 − u)(4 + 4u + 4u2 + 2u3 + u4)

= (1 − u)(2 + u2)(2 + 2u + u2)

et :

16 − u8 = (4 − u4)(4 + u4)

= (2 − u2)(2 + u2)
(
(2 + u2)2 − 4u2

)
= (2 − u2)(2 + u2)(2 − 2u + u2)(2 + 2u + u2).

D’où : S = 16
∫ 1

0

1 − u

(2 − u2)(2 − 2u + u2)
du.

On effectue une décomposition en éléments simples, et on ob-
tient, après quelques calculs élémentaires :

S = 16
∫ 1

0

( −1

4
u

2 − u2
+

1

2
− 1

4
u

2 − 2u + u2

)
du

= 4

[
1

2
ln (2 − u2)

]1

0

+ 4
∫ 1

0

2 − u

2 − 2u + u2
du

︸ ︷︷ ︸
notée J

.

Par mise sous forme canonique d’un trinôme :

2 − 2u + u2 = (u − 1)2 + 1 .

On effectue donc le changement de variable  v = u − 1 :

J =
∫ 0

−1

1

v2 + 1
dv −

∫ 0

−1

v

v2 + 1
dv = π

4
+ 1

2
ln 2 .

On obtient : S = −2 ln 2 + 4

(
π

4
+ 1

2
ln 2

)
= π.

Remarque : cette formule de Simon Plouffe permet de calcu-
ler efficacement des approximations décimales de π .

a) 1) Soit x ∈ [0 ; a[ .

D’après l’hypothèse, on, a : ∀ k ∈ N,
xk

k!
f (k)(0) � 0,

donc la suite 
(
Sn(x)

)
n�0 est croissante.

De plus, d’après la formule de Taylor avec reste intégral :

∀ n ∈ N, f (x) = Sn(x) + Rn(x) .

D’après l’hypothèse, on a : ∀ n ∈ N, Rn(x) � 0,

donc : ∀ n ∈ N, Sn(x) � f (x).

Ainsi, la suite   
(
Sn(x)

)
n�0 est croissante et majorée par  f (x) ,

donc converge.

Par différence, comme Rn(x) = f (x) − Sn(x) , il en résulte que

la suite  
(
Rn(x)

)
n�0 converge.

2) Soient n ∈ N, (x,y) ∈ ]0 ; a[2 tel que : x < y. On a :

Rn(x)

xn+1
= 1

n!xn+1

∫ x

0
(x − t)n f (n+1)(t) dt

=
u = t/x

1

n!

∫ 1

0
(1 − u)n f (n+1)(xu) du.

Comme f (n+2) � 0, f (n+1) est croissante, donc :

∀ u ∈ [0 ; 1], f (n+1)(xu) � f (n+1)(yu) ,

puis :

Rn(x)

xn+1
= 1

n!

∫ 1

0
(1 − u)n f (n+1)(xu) du

� 1

n!

∫ 1

0
(1 − u)n f (n+1)(yu) du = Rn(y)

yn+1
.

3) Soit x ∈ [0 ; a[ .

Si x = 0, alors, Rn(x) = 0 −−−→
n ∞

0.

Supposons x > 0. Il existe y ∈ ]0 ; a[ tel que x < y, par

exemple  y = x + a

2
. On a alors, d’après 2) :

∀ n ∈ N, 0 � Rn(x) � Rn(y)
xn+1

yn+1
.

On a vu en a) 1) que la suite 
(
Rn(y)

)
n�0 converge, donc est

bornée.
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D’autre part, puisque  

∣∣∣∣ x

y

∣∣∣∣ < 1, on a :
xn+1

yn+1
−−−→

n ∞
0. Il en ré-

sulte : Rn(y)
xn+1

yn+1
−−−→

n ∞
0,

puis, par théorème d’encadrement : Rn(x) −−−→
n ∞

0.

4) On a donc, pour tout x ∈ [0 ; a[ :

Sn(x) = f (x) − Rn(x) −−−→
n ∞

f (x) − 0 = f (x) .

Ceci montre que, pour tout x ∈ [0 ; a[ , la série de Taylor de  f
en 0, prise en  x converge et a pour somme f (x) .

b) Soit x ∈ ] − a ; 0] . On, a, en utilisant le même changement
de variable qu’en a) 2) :

|Rn(x)| =
∣∣∣∣ xn+1

n!

∫ 1

0
(1 − u)n f (n+1)(xu) du

∣∣∣∣
= |x |n+1

n!

∫ 1

0
(1 − u)n f (n+1)(xu) du.

Comme f (n+1) est � 0 et croissante, on déduit :

|Rn(x)| � |x |n+1

n!

∫ 1

0
(1 − u)n f (n+1)(0) du

= |x |n+1

n!

[
− (1 − u)n+1

n + 1

]1

0

f (n+1)(0)

= |x |n+1

(n + 1)!
f (n+1)(0) � Rn(|x |).

D’après a) 4), puisque |x | ∈ [0 ; a[, on a : Rn(|x |) −−−→
n ∞

0 .

Il s’ensuit, par encadrement : Rn(x) −−−→
n ∞

0,

donc : Sn(x) = f (x) − Rn(x) −−−→
n ∞

f (x).

Ceci montre que la série de Taylor de  f en 0, prise en x, converge
et a pour somme f (x) .

c) D’après a) et b), on a :

∀ x ∈ ] − a ; a[, f (x) =
+∞∑
k=0

f (k)(0)

k!
xk ,

donc f est dSE(0), de rayon � a.
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7CHAPITRE 7Séries de Fourier

Les méthodes à retenir

Thèmes abordés dans les exercices
• Calcul des coefficients de Fourier, exponentiels (PC, PSI) ou trigonométriques,

d’une application R −→ K périodique et continue par morceaux

• Développement d’une application R −→ K périodique assez régulière en
série de Fourier

• Obtention de certaines sommes de séries numériques convergentes, par

exemple :
+∞∑
n=1

1

n2
= π2

6

• Obtention de certaines égalités entre intégrales et sommes de séries

• Obtention de certaines inégalités portant sur des intégrales.

Points essentiels du cours 
pour la résolution des exercices
• Définition des coefficients de Fourier, exponentiels (PC, PSI) ou trigonomé-

triques, d’une application R −→ K périodique et continue par morceaux

• Formule(s) donnant les coefficients de Fourier d’une dérivée

• Théorème de Dirichlet de convergence simple, théorème de Dirichlet de
convergence normale

• Théorème de Parseval, formule de Parseval réelle, formule de Parseval complexe.

Les méthodes à retenir 283

Énoncés des exercices 285

Du mal à démarrer ? 289

Corrigés 292

Plan

On note
CMT le K-espace vectoriel des applications R −→ K, T-périodiques
et continues par morceaux
CT le K-espace vectoriel des applications R −→ K, T-périodiques et
continues.©

 D
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Le programme PT comporte une définition de a0 différente de celle figurant dans les programmes
MP, PC, PSI. Nous optons pour les formules classiques, qui sont celles des programmes MP, PC,
PSI, et qui donnent comme série de Fourier trigonométrique de f :

a0

2
+

∑
n�1

(
an cos nωt + bn sin nωt

)
.
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Pour calculer directement,
quand c’est possible,
les coefficients de Fourier
d’un élément f de CMT

Appliquer, avec ω = 2π

T
, la définition des coefficients de Fourier expo-

nentiels (PC, PSI) de f : cn( f ) = 1

T

∫
[T ]

f (t) e−i nωt dt, n ∈ Z,

ou la définition des coefficients de Fourier trigonométriques de f :

an( f ) = 2

T

∫
[T ]

f (t) cos nωt dt, n ∈ N ,

bn( f ) = 2

T

∫
[T ]

f (t) sin nωt dt, n ∈ N
∗ .

Tenir compte d’une éventuelle parité ou imparité de f.
Pour calculer ces coefficients, utiliser, en général l’une des démarches
suivantes :
• calcul direct

➥ Exercice 7.1 a)

• intégration par parties

➥ Exercices 7.2 a), 7.4 a), 7.7 a), 7.19 a)

• linéarisation

➥ Exercices 7.3 a), 7.6

• intervention de l’exponentielle complexe

➥ Exercices 7.7 a), 7.19 a). 

Pour étudier les convergences 
de la série de Fourier
d’un élément f de CMT ,
et préciser sa somme

Appliquer l’un des deux théorèmes de Dirichlet :
• le théorème de convergence simple, lorsque f est T-périodique et de

classe C1 par morceaux.

➥ Exercices 7.1 b), 7.19 b)

• le théorème de Dirichlet de convergence normale, lorsque f est

T-périodique, de classe C1 par morceaux et continue sur R .

➥ Exercices 7.2 b), 7.3 b), 7.4 b), 7.6, 7.7, 7.21 c).

Pour obtenir 
des sommes de séries numériques,
après avoir calculé 
des coefficients de Fourier

Appliquer un des deux théorèmes de Dirichlet ou une formule de
Parseval.

➥ Exercices 7.1 c), 7.2 c), 7.3 c), 7.4 c), 7.7 c), 7.19 b), 7.21 c)

Les sommes de séries dont le terme général ressemble à an, bn, cn

proviennent souvent d’un théorème de Dirichlet.
Les sommes de séries dont le terme général ressemble à a2

n, b2
n, |cn|2,

proviennent souvent d’une formule de Parseval. 
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Énoncés des exercices

Exemple de développement en série de Fourier, créneau

Soit f : R −→ R , 2π-périodique, paire, telle que, pour tout t ∈ [0 ;π] :

f (t) = 1 si 0 � t <
π

2
, f (t) = 0 si t = π

2
, f (t) = −1 si

π

2
< t � π .

a) Vérifier f ∈ CM2π et calculer les coefficients de Fourier (trigonométriques) de f.

b) Étudier les convergences de la série de Fourier de f et préciser sa somme.

c) En déduire les sommes de séries suivantes :
+∞∑
p=0

(1)p

2p + 1
,

+∞∑
p=0

1

(2p + 1)2
,

+∞∑
n=1

1

n2
.

Exemple de développement en série de Fourier, dent de scie continue

Soit f : R −→ R , 2π-périodique, impaire, telle que :

f (t) = t si 0 � t <
π

2
, f (t) = π− t si

π

2
� t � π .

©
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Pour relier entre elles des sommes
de séries convergentes du genre
+∞∑
n=1

1
n2

, et 
+∞∑
p=0

1
(2p+1)2

Séparer, dans une somme partielle, les termes d’indices pairs, d’in-
dices impairs, puis passer aux limites.

➥ Exercices 7.1 c), 7.2 c), 7.7 c).

Pour calculer 
les coefficients de Fourier
d’une fonction,
lorsque le calcul direct 
ne paraît pas faisable

Exprimer la fonction comme somme d’une série de fonctions et mon-
trer que l’on peut permuter intégrale et série par l’une des trois
méthodes habituelles (cf. les méthodes à retenir du chapitre 5).

➥ Exercices 7.14, 7.15, 7.16, 7.17 a), 7.22 b)

Ne pas confondre l’indice d’un terme de la sommation donnant f ini-
tialement, et l’indice concernant le terme d’une série de Fourier. 

Pour obtenir une égalité entre 
une fonction et une somme 
de série trigonométrique

Essayer d’appliquer un des deux théorèmes de Dirichlet à une fonc-
tion bien choisie.

➥ Exercice 7.6.

Pour obtenir une inégalité
portant sur des intégrales 
de carrés de fonctions

Essayer de se ramener, quand c’est possible, à une inégalité portant
sur des sommes de séries numériques, en utilisant une formule de
Parseval.

➥ Exercices 7.9, 7.11, 7.13.

7.1

7.2

PC, PSI
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a) Vérifier f ∈ CM2π et calculer les coefficients de Fourier (trigonométriques) de f.

b) Étudier les convergences de la série de Fourier de f et préciser sa somme.

c) En déduire les sommes de séries suivantes :

+∞∑
p=0

1

(2p + 1)2
,

+∞∑
n=1

1

n2
,

+∞∑
p=0

1

(2p + 1)4
,

+∞∑
n=1

1

n4
.

Exemple de développement en série de Fourier, courant redressé

Soit f : R −→ R, t �−→ | sin t |.
a) Vérifier f ∈ CMπ et calculer les coefficients de Fourier (trigonométriques) de f.

b) Étudier les convergences de la série de Fourier de f et préciser sa somme.

c) En déduire les sommes de séries suivantes :
+∞∑
n=1

1

4n2 − 1
,

+∞∑
n=1

(−1)n

4n2 − 1
,

+∞∑
n=1

1

(4n2 − 1)2
.

Exemple de développement en série de Fourier, raccord de paraboles

Soit f : R −→ R , 2π-périodique, impaire, telle que : ∀ t ∈ [0 ;π], f (t) = t (π− t).

a) Vérifier f ∈ CM2π et calculer les coefficients de Fourier (trigonométriques) de f.

b) Étudier les convergences de la série de Fourier de f et préciser sa somme.

c) En déduire les sommes de séries :
+∞∑
p=0

(−1)p

(2p + 1)3
,

+∞∑
p=0

1

(2p + 1)6
,

+∞∑
n=1

1

n6
.

Coefficients de Fourier nuls

Soit f : [−π ;π] −→ C continue telle que : ∀ n ∈ Z,

∫ π

−π
f (t) ei nt dt = 0.

Montrer : f = 0.

Exemple de développement en série de Fourier

Montrer qu’il existe une suite réelle (αn)n∈N telle que : ∀ t ∈ R, | cos t | =
+∞∑
n=0

αn cos 2nt,

et déterminer une telle suite (αn)n∈N. 

Exemple de développement en série de Fourier avec paramètre

Soit λ ∈ ]0 ;+∞[ fixé. On considère l’application f : R −→ R , 2π-périodique, telle que :
∀ t ∈ ] − π ;π], f (t) = ch (λt).

a) Vérifier f ∈ CM2π et calculer les coefficients de Fourier (trigonométriques) de f.

b) Étudier les convergences de la série de Fourier de f et préciser sa somme.

c) En déduire les sommes de séries suivantes :
+∞∑
n=1

(−1)n

λ
2 + n2

,

+∞∑
n=1

1

λ
2 + n2

,

+∞∑
n=1

1

(λ2 + n2)2
.

Calcul d’une intégrale par utilisation de ζ(2)

Existence et calcul de I =
∫ +∞

1

x − E(x)

x3
dx .

7.3

7.4

7.5

7.6

7.7

7.8

PC, PSI



Énoncés des exercices

287

Inégalité sur des intégrales

Soient T ∈ ]0 ;+∞[,ω = 2π

T
, f : R −→ C , T-périodique, de classe C1, telle que :

∀ n ∈ {−1, 0, 1},
∫ 2π

0
f (t) ei nωt dt = 0 .

Montrer : || f ||2 � 1

2
|| f ′||2, où : || f ||2 =

(
1

T

∫ T

0
| f (t)|2 dt

) 1
2

, et de même pour || f ′||2. 

Nullité de certains coefficients de Fourier

Soit f : R −→ C , 2π-périodique, continue.

On suppose : ∀ k ∈ Z,

∫ 2π

0
f (t) ei (2k+1)t dt = 0. Montrer que f est π -périodique. 

Inégalité sur des intégrales

Soient T > 0, f : R −→ C, T-périodique, de classe C1 par morceaux, continue.

Montrer :
∫ T

0
| f |2 � T 2

4π2

∫ T

0
| f |2 + 1

T

∣∣∣∣
∫ T

0
f

∣∣∣∣
2

.

Nullité d’une fonction par orthogonalité

On note, pour tout n ∈ Z : en : R −→ C, t �−→ ei nt , ϕn = en−1 + en + en+1.

Soit f ∈ C2π telle que : ∀ n ∈ Z, (ϕn | f ) = 0, pour le produit scalaire usuel sur C2π.

Montrer : f = 0. 

Inégalité sur des intégrales

Soit f : R −→ C , 2π-périodique, de classe C2 par morceaux, de classe C1.

Montrer : 4
∫ 2π

0
| f |2 + 2

∫ 2π

0
| f ′′|2 � 5

∫ 2π

0
| f ′|2.

Série de Fourier d’une série trigonométrique complexe

Soit (γn)n∈Z une suite (indexée par Z ) à termes dans C.

On note, pour tout p ∈ N : Sp : R −→ C, t �−→
p∑

k=−p

γkei kt .

On suppose que la suite (Sp)p∈N converge uniformément sur R vers une application notée f.

Démontrer que f est 2π-périodique, continue, et que : ∀ n ∈ Z, cn( f ) = γn .

Série de Fourier d’une série trigonométrique réelle

Soient αn)n�0,(βn)n�1 deux suites réelles telles que la suite d’applications (Sn)n∈N définie par :

∀ t ∈ R, Sn(t) = α0

2
+

n∑
k=1

(αk cos kt + βk sin kt)

converge uniformément sur R vers une application notée f.

a) Montrer que f est 2π-périodique et continue sur R.

b) Établir :
(∀ n � 0, an( f ) = αn

)
et

(∀ n � 1, bn( f ) = β
)
.
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Développement en série de Fourier par utilisation d’une série trigonométrique

Soient z ∈ C tel que |z| < 1, et f : R −→ C, t �−→ 1

1 + z ei t
.

Vérifier f ∈ CM2π et calculer les coefficients de Fourier exponentiels de f. 

Développement en série de Fourier par utilisation d’une série trigonométrique

Soit a ∈ ]0 ;+∞[. On note f : R −→ R, t �−→ 1

ch a + cos t
.

a) Vérifier f ∈ CM2π et déterminer les coefficients de Fourier (trigonométriques) de f. On
pourra utiliser l’exercice 7.15.

b) En déduire, pour tout n ∈ N :
∫ π

0

cos nt

ch a + cos t
dt = π(−1)ne−na

sh a
et

∫ π

0

sin nt

ch a + cos t
dt = 0.

c) Calculer : I =
∫ π

0

1

(ch a + cos t)2
dt.

Calcul d’intégrales, connaissant ζ(2)

a) Montrer :
∫ 1

0

ln(1 + x)

x
dx =

+∞∑
n=1

(−1)n−1

n2
= π2

12
.

(Utiliser l’exercice 7.1 ou l’exercice 7.2.)

b) En déduire les valeurs des intégrales suivantes :

(1)

∫ 1

0

lnx

1 + x
dx, (2)

∫ 1

0

lnx

1 − x
dx, (3)

∫ 1

0

lnx

1 − x2
dx ,

puis de : (4)

∫ 1

0

x2 ln x

x2 − 1
dx, (5)

∫ 1

0
ln x ln (1 + x) dx, (6)

∫ +∞

0
ln th x dx ,

(7)

∫ +∞

0

x

ex + e2x
dx, (8)

∫ +∞

0

x

ex − 1
dx .

Exemple de développement en série de Fourier, calcul d’une intégrale

Soient x ∈ [0 ;+∞[, f : R −→ R , 2π-périodique, telle que f (π) = 0 et :

∀ t ∈ ] − π ;π[, f (t) = sh xt .

a) Vérifier f ∈ CM2π et calculer les coefficients de Fourier (trigonométriques) de f.

b) Étudier la convergence de la série de Fourier de f, et montrer :

∀ t ∈ ] − π ;π[, sh xt =
+∞∑
n=1

2(−1)n+1n shπx

π(n2 + x2)
sin nt .

c) En déduire :
∫ +∞

0

cos xt

ch t
dt = π

2 ch
πx

2

.

Utilisation des coefficients de Fourier pour la détermination d’une fonction assez régulière

Déterminer l’ensemble des applications f : R −→ C , 2π-périodiques, de classe C∞, telles
qu’il existe M ∈ R+ tel que : ∀ (n,x) ∈ N × R, | f (n)(x)| � M.
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Calcul d’intégrales utilisant des séries de Fourier

Soit α ∈ ]1 ;+∞[ .

a) Montrer : α

∫ +∞

0

dt

tα + 1
=

∫ 1

0

u
1
α−1 + u− 1

α

1 + u
du.

b) En déduire : α

∫ +∞

0

dt

tα + 1
= α+

+∞∑
n=1

(−1)n+1 2

α

n2 − 1

α2

.

c) Établir : ∀ x ∈ ]0 ; 1[,
+∞∑
n=1

2(−1)n+1x

π(n2 − x2)
= 1

sinπx
− 1

πx
,

en étudiant, pour x ∈ ]0 ; 1[ fixé, la fonction f : R −→ R , 2π-périodique, telle que
f (t) = cos xt si t ∈ ] − π ;π] .

d) Démontrer :
∫ +∞

0

dt

tα + 1
=

π

α

sin
π

α

.

e) En déduire les valeurs des intégrales suivantes :

1) 
∫ +∞

0

t x−1

1 + t
dt, x ∈ ]0 ; 1[ 2)

∫ +∞

0
t x−2 ln (1 + t) dt, x ∈ ]0 ; 1[

3)
∫ +∞

−∞

eat

ebt + ect
dt, (a,b,c) ∈ R

3, b < a < c

4)
∫ +∞

−∞

eat

ch ct
dt, (a,c) ∈ R

2, |a| < c 5)
∫ +∞

0

ch at

ch ct
dt, (a,c) ∈ R

2, |a| < c.

Trouver une fonction dont les coefficients de Fourier vérifient des inégalités

Soit (αn)n�0 une suite à termes dans R+ , convergeant vers 0.

a) Montrer qu’il existe une extractrice σ telle que la série 
∑
n�0

ασ(n) converge.

b) En déduire qu’il existe f : R −→ R , 2π-périodique, continue, telle que, en notant
an( f ), bn( f ) (n ∈ N) les coefficients de Fourier trigonométriques de f, il existe une infinité de
n ∈ N tels que : |an( f )| + |bn( f )| � αn . (Utiliser l’exercice 7.15.) 
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Du mal à démarrer ?
a) • Tracer la courbe représentative de f et montrer

f ∈ CM2π .

• Les bn sont tous nuls. Pour calculer an, appliquer la définition

des coefficients de Fourier trigonométriques de f.

b) Appliquer le théorème de Dirichlet de convergence simple.

c) • Appliquer b) en t = 0.

• Appliquer la formule de Parseval réelle.

• Séparer en termes d’indices pairs, d’indices impairs, d’abord sur

des sommes partielles, puis passer à la limite.

a) • Tracer la courbe représentative de f et montrer

f ∈ CM2π .

• Les an sont tous nuls. Pour calculer bn, appliquer la définition

des coefficients de Fourier trigonométriques de f. Utiliser une

intégration par parties.

7.1

7.2



b) Appliquer le théorème de Dirichlet de convergence normale

(PC, PSI) ou simple (PT).

c) • Appliquer b) en t = π

2
.

• Séparer en termes d’indices pairs, d’indices impairs, d’abord sur

des sommes partielles, puis passer à la limite.

• Appliquer la formule de Parseval réelle.

• Séparer en termes d’indices pairs, d’indices impairs, d’abord sur

des sommes partielles, puis passer à la limite.

a) • Tracer la courbe représentative de f et montrer

f ∈ CM2π .

• Les bn sont tous nuls. Pour calculer an, appliquer la définition

des coefficients de Fourier trigonométriques de f, en n’oubliant

pas qu’ici la pulsation est ω = 2 . Utiliser une linéarisation.

b) Appliquer le théorème de Dirichlet de convergence normale

(PC, PSI) ou simple (PT).

c) • Appliquer b) en t = 0, en t = π

2
.

• Appliquer la formule de Parseval réelle.

a) • Tracer la courbe représentative de f et montrer

f ∈ CM2π .

• Les an sont tous nuls. Pour calculer bn, appliquer la définition

des coefficients de Fourier trigonométriques de f. Faire deux

intégrations par parties successives, en gardant le facteur

t (π − t) groupé.

b) Appliquer le théorème de Dirichlet de convergence normale

(PC, PSI) ou simple (PT).

c) • Appliquer b) en t = π

2
.

• Appliquer la formule de Parseval réelle.

• Séparer en termes d’indices pairs, d’indices impairs, d’abord sur

des sommes partielles, puis passer à la limite.

Considérer g : R −→ C, 2π-périodisée de f.

Développer t �−→ | cos t | en série de Fourier, puis expri-

mer les cos 2nt à l’aide de cos 2nt .

a) • Tracer la courbe représentative de f (pour λ fixé) et

montrer f ∈ CM2π .

• Les bn sont tous nuls. Pour calculer an, appliquer la définition

des coefficients de Fourier trigonométriques de f. Utiliser l’ex-

ponentielle complexe, ou bien faire deux intégrations par par-

ties successives.

b) Appliquer le théorème de Dirichlet de convergence norma-

le(PC, PSI) ou simple (PT).

c) • Appliquer b) en t = 0, en t = π .

• Appliquer la formule de Parseval réelle.

1) Existence : Étude en +∞ par majoration.

2) Calcul :Pour N ∈ N
∗ ,décomposer l’intégrale 

∫ N+1

1

x − E(x)

x3
dx,

à l’aide de la relation de Chasles, en faisant intervenir

In =
∫ n+1

n

x − n

x3
dx . Calculer In et terminer.

Appliquer la formule de Parseval complexe à f et à f ′ , et uti-
liser la formule donnant les coefficients de Fourier exponentiels
de f ′ en fonction de ceux de f.

Considérer l’application 

g : R −→ C, t �−→ f (t + π) − f (t) .

Appliquer la formule de Parseval complexe à f et à f ′ , et uti-

liser la formule donnant les coefficients de Fourier exponentiels

de f ′ en fonction de ceux de f.

Noter g : R −→ C, t �−→ (eit − 2 + e−it ) f (t),

et montrer : ∀ n ∈ Z, (en | g) = 0.

En déduire, convenablement, g = 0 , puis, convenablement,

f = 0 .

Appliquer la formule de Parseval complexe à f, à f ′ , à f ′′, et

utiliser les formules donnant les coefficients de Fourier expo-

nentiels de f ′ et de f ′′ en fonction de ceux de f.

1) Montrer que f est 2π-périodique, par limite simple.

2) Montrer que f est continue, par limite uniforme.

3) Montrer, pour tout n ∈ Z fixé :

1

2π

∫
[2π]

Sp(t) e−int dt −→
p∞

1

2π

∫
[2π]

f (t) e−int dt .

a) • Montrer que f est 2π-périodique, par limite simple.

• Montrer que f est continue, par limite uniforme.

b) Montrer, pour tout p ∈ N fixé :

1

π

∫ π

−π

Sn(t) cos pt dt lim
1

π

∫ π

−π

f (t) cos pt dt .

Développer 
1

1 + z eit à l’aide de la série géométrique, puis

montrer que l’on peut permuter intégrale et série.

a) Utiliser l’exponentielle complexe pour obtenir :

∀ t ∈ R, f (t) = 1

sh a

(
ea

eit + ea
− e−a

eit + e−a

)
,
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puis utiliser la série géométrique pour obtenir :

∀ t ∈ R, f (t) = 1

sh a
+ 2

sh a

+∞∑
n=1

(−1)n e−na cos nt ,

et enfin montrer que l’on peut permuter intégrale et série.

c) Appliquer la formule de Parseval réelle.

a) Utiliser le DSE(0) de x �−→ ln(1 + x) . Par continuité et

convergence uniforme sur un segment, montrer que l’on peut

permuter intégrale et série. Obtenir :∫ 1

0

ln(1 + x)

x
dx =

+∞∑
n=1

(−1)n−1

n2 .

b) 1) Intégration par parties.

2), 3) Noter

I =
∫ 1

0

lnx

1 + x
dx, J =

∫ 1

0

lnx

1 + x
dx, K =

∫ 1

0

lnx

1 − x2
dx .

Montrer : I + J = 2K , I = 4J − 4K . En déduire J,K .

4) Séparer par linéarité.

5) Intégration par parties.

6) Changement de variable u = th x .

7) Changement de variable u = ex .

8) Changement de variable u = e−x .

a) Pour calculer les bn, utiliser l’exponentielle complexe, ou

bien deux intégrations par parties successives.

b) Appliquer le théorème de Dirichlet de convergence simple.

c) Développer 
cos xt

ch t
à l’aide de la série géométrique, montrer

que l’on peut permuter intégrale et série par étude de l’intégra-
le du reste, et obtenir :

∫ +∞

0

cos xt

ch t
dt =

+∞∑
n=0

2(−1)n(2n + 1)

(2n + 1)2 + x2 .

Utiliser enfin b).

1) Soit f convenant. Utiliser la relation exprimant les coeffi-

cients de Fourier exponentiels de f (k) en fonction de ceux

de f. En déduire :

∀ n ∈ Z − {−1, 0, 1}, cn( f ) = 0 ,

puis montrer :

∀ x ∈ R, f (x) = c−1( f ) e−ix + c0( f ) + c1( f ) eix .

2) Étudier la réciproque.

a) Relation de Chasles et changement de variable v = 1

t
dans une des deux intégrales, puis changement de variable
u = tα .

b) Utiliser le DSE(0) de u �−→ 1

1 + u
et montrer que l’intégrale

du reste tend vers 0. En déduire que l’on peut permuter intégra-
le et série.

c) Appliquer le théorème de Dirichlet de convergence normale à f.

d) Utiliser b) et c).

e) 1) Changement de variable u = t x.

2) Intégration par parties.

3) Changement de variable u = e(c−b)t .

4) Cas particulier de 3). 5) Appliquer 4).

a) Construire σ(0) tel que aσ(0) < 1 , puis σ(1) tel que

aσ(0) + aσ(1) < 1 , etc.

b) Considérer la suite réelle (un)n�0 définie, pour tout n ∈ N, par

un = αn s’il existe k ∈ N tel que n = σ(k) , un = 0 sinon, et

considérer, pour tout n ∈ N , l’application fn : R −→ R,

t �−→ un cos nt.
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a) • Soit N ∈ N. On a, en séparant les termes d’indices pairs, d’in-
dices impairs :

2N+1∑
n=1

1

n2
=

N∑
p=1

1

(2p)2
+

N∑
p=0

1

(2p + 1)2
.

D’où, en faisant tendre l’entier N vers l’infini, et puisque les
séries qui interviennent convergent :

+∞∑
n=1

1

n2
= 1

4

+∞∑
p=1

1

p2
+

+∞∑
p=0

1

(2p + 1)2
,

donc :

+∞∑
n=1

1

n2
= 1

1 − 1

4

+∞∑
p=0

1

(2p + 1)2
= 4

3

π2

8
= π2

6
.

Réponse :

+∞∑
p=0

(−1)p

2p + 1
= π

4
,

+∞∑
p=0

1

(2p + 1)2
= π2

8
,

+∞∑
n=1

1

n2
= π2

6
.

a)

Corrigés des exercices

7.1 y

tO π
2

ππ
2

--π --

y = f (t)

Il est clair que f est 2π-périodique et continue par morceaux
sur R donc f ∈ CM2π , et les coefficients de Fourier (trigono-
métriques) an, bn (n ∈ N) de f existent.

Puisque f est paire, on a : ∀ n ∈ N
∗, bn = 0.

On a, pour tout n ∈ N , en utilisant la parité de f :

an = 2

2π

∫ π

−π
f (t) cos nt dt = 2

π

∫ π

0
f (t) cos nt dt

= 2

π

(∫ π
2

0
cos nt dt −

∫ π

π
2

cos nt dt

)
.

On a donc a0 = 0, et, pour tout n � 1 :

an = 2

πn

([
sin nt

]π/2
0 − [

sin nt
]π
π/2

)
= 4

πn
sin

(
n
π

2

)
.

On a donc, pour tout p ∈ N :

a2p = 0 et a2p+1 = 4(−1)p

π(2p + 1)
.

b) Puisque f est 2π-périodique et de classe C1 par morceaux,
d’après le théorème de Dirichlet de convergence simple, la série
de Fourier de f converge simplement sur R et a pour somme

la régularisée f̃ de f.

On a donc, pour tout t ∈ R :

f̃ (t) = 1

2

(
f (t+) + f (t−)

) =
+∞∑
p=0

4(−1)p

π(2p + 1)
cos (2p + 1)t .

c) • En remplaçant t par 0 dans le résultat de b), on obtient :
+∞∑
p=0

4(−1)p

π(2p + 1)
= 1,donc :

+∞∑
p=0

(−1)p

2p + 1
= π

4
.

• Puisque f ∈ CM2π , d’après la formule de Parseval réelle, on a :

a2
0

4
+ 1

2

+∞∑
n=1

(a2
n + b2

n) = 1

2π

∫
π

−π

(
f (t)

)2
dt ,

c’est-à-dire ici :
1

2

+∞∑
p=0

16

π2(2p + 1)2
= 1

π

∫ π

0
dt = 1,

d’où :
+∞∑
p=0

1

(2p + 1)2
= π2

8
.

7.2
y

t
O

π
2

π

π
2--π

--
y = f (t)

Il est clair que f est 2π-périodique et continue par morceaux sur
R (et même, continue sur R), donc f ∈ CM2π et les coefficients
de Fourier (trigonométriques) an, bn, (n ∈ N) de f existent.

Puisque f est impaire, on a : ∀ n ∈ N, an = 0.

On a, pour tout n ∈ N
∗ , en utilisant l’imparité de f :

bn = 2

2π

∫
π

−π
f (t) sin nt dt = 2

π

∫
π

0
f (t) sin nt dt

= 2

π

( ∫ π/2

0
t sin nt dt +

∫
π

π/2
(π− t) sin nt dt

)

=
u = π− t

2

π

( ∫
π/2

0
t sin nt dt +

∫
π/2

0
u sin (nπ− nu) du

)

= 2

π

( ∫
π/2

0
t sin nt dt − (−1)n

∫
π/2

0
u sin nu du

)

= 2

π

(
1 + (−1)n

) ∫
π/2

0
t sin nt dt.
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Il s’ensuit : ∀ p ∈ N
∗, b2p = 0,

et, pour tout p ∈ N, grâce à une intégration par parties :

b2p+1 = 4

π

∫ π/2

0
t sin (2p + 1)t dt

= 4

π

([
− t

sin (2p + 1)t

2p + 1

]π/2

0

+
∫ π/2

0

cos (2p + 1)t

2p + 1
dt

)

= 4

π

[
sin (2p + 1)t

2p + 1

]π/2

0

= 4(−1)p

π(2p + 1)2
.

b) Puisque f est 2π-périodique, de classe C1 par morceaux 
sur R et continue sur R, d’après le théorème de Dirichlet de
convergence normale (PC, PSI), la série de Fourier de f
converge normalement (donc uniformément PSI, absolument,
simplement) sur R et a pour somme f.

On a donc : ∀ t ∈ R, f (t) =
+∞∑
p=0

4(−1)p

π(2p + 1)2
sin (2p + 1)t.

Remarque : La convergence normale résulte aussi de :

∀ p ∈ N,∀ t ∈ R,

∣∣∣∣ 4(−1)p

(2p + 1)2
sin (2p + 1)t

∣∣∣∣ � 4

π(2p + 1)2

et de la convergence de la série numérique 
∑
p�0

1

(2p + 1)2
.

c) • En remplaçant t par 
π

2
dans le résultat de b), on obtient :

+∞∑
p=0

4

π(2p + 1)2
= f

(
π

2

)
= π

2
,

donc :
+∞∑
p=0

1

(2p + 1)2
= π2

8
.

• On a, pour tout N ∈ N
∗, en séparant les termes d’indices pairs,

d’indices impairs :

2N+1∑
n=1

1

n2
=

N∑
p=1

1

(2p)2
+

N∑
p=0

1

(2p + 1)2
.

D’où, en faisant tendre l’entier N vers l’infini, et puisque les
séries qui interviennent convergent :

+∞∑
n=1

1

n2
= 1

4

+∞∑
p=1

1

p2
+

+∞∑
p=0

1

(2p + 1)2
,

d’où :
+∞∑
n=1

1

n2
= 1

1 − 1

4

+∞∑
p=0

1

(2p + 1)2
= 4

3

π2

8
= π2

6
.

• Puisque f ∈ CM2π , on a, d’après la formule de Parseval réelle :

a2
0

4
+ 1

2

+∞∑
n=1

(a2
n + b2

n) = 1

2π

∫ π

−π

(
f (t)

)2
dt ,

c’est-à-dire ici :

1

2

+∞∑
p=0

16

π2(2p + 1)4
= 1

2π

∫
π

−π

(
f (t)

)2
dt

= 1

π

∫
π

0

(
f (t)

)2
dt = 1

π

( ∫
π/2

0
t2 dt −

∫
π

π/2
(π− t)2 dt

)

=
u=π−t

1

π

( ∫
π/2

0
t2 dt +

∫
π/2

0
u2 du

)

= 2

π

∫
π/2

0
t2 dt = 2

π

[ t3

3

]π/2

0
= π2

12
.

d’où :
+∞∑
p=0

1

(2p + 1)4
= 2π2

16

π2

12
= π4

96
.

• Comme en 1), en séparant les termes d’indices pairs, d’in-
dices impairs et puisque les séries qui interviennent convergent,
on a :

+∞∑
n=1

1

n4
=

+∞∑
p=1

1

(2p)4
+

+∞∑
p=0

1

(2p + 1)4
,

donc :
+∞∑
n=1

1

n4
= 1

1 − 1

4

+∞∑
p=0

1

(2p + 1)4
= 16

15

π4

96
= π4

90
.

Réponse :
+∞∑
p=0

1

(2p + 1)2
= π2

8
,

+∞∑
n=1

1

n2
= π2

6
,

+∞∑
p=0

1

(2p + 1)4
= π4

96
,

+∞∑
n=1

1

n4
= π4

90
.

a)7.3

O

y

t

y = f(t)

22

L’application f : t �−→ | sin t | est π-périodique et continue par
morceaux (car continue), donc f ∈ CMπ , et les coefficients de
Fourier (trigonométriques) an, bn (n ∈ N) de f existent.

Comme f est paire, on a : ∀ n ∈ N
∗, bn = 0.

On a, pour tout n ∈ N :

an = 2

π

∫
π

0
f (t) cos 2nt dt = 2

π

∫
π

0
sin t cos 2nt dt

= 1

π

∫
π

0

(
sin (2n + 1)t − sin (2n − 1)t

)
dt

= 1

π

[
− cos (2n + 1)t

2n + 1
+ cos (2n − 1)t

2n − 1

]π
0

= 1

π

( 1

2n + 1
− 1

2n − 1

)
= − 4

π(4n2 − 1)
.
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On conclut :




∀ n ∈ N, an = − 4

π(4n2 − 1)

∀ n ∈ N
∗, bn = 0.

b) L’application f est π -périodique, de classe C1 par morceaux
sur R, continue sur R, donc, d’après le théorème de Dirichlet
de convergence normale (PC, PSI), la série de Fourier de f
converge normalement, donc uniformément (PSI), absolu-
ment, simplement, sur R et a pour somme f. D’où :

∀ t ∈ R, | sin t | = a0

2
+

+∞∑
n=1

(an cos 2nt + bn sin 2nt)

= 2

π
−

+∞∑
n=1

4

π(4n2 − 1)
cos 2nt.

c) • En remplaçant t par 0 dans le résultat de b), on obtient :

0 = 2

π
−

+∞∑
n=1

4

π(4n2 − 1)
,

d’où :
+∞∑
n=1

1

4n2 − 1
= 1

2
.

• En remplaçant t par 
π

2
dans le résultat de b), on obtient :

1 = 2

π
−

+∞∑
n=1

4

π(4n2 − 1)
(−1)n,

d’où :
+∞∑
n=1

(−1)n

4n2 − 1
= π

4

(
2

π
− 1

)
= 1

2
− π

4
.

• Puisque f ∈ CMπ, d’après la formule de Parseval réelle :

a2
0

4
= 1

2

+∞∑
n=1

(a2
n + b2

n) = 1

π

∫
π

0

(
f (t)

)2
dt,

c’est-à-dire ici :

1

π2
+ 1

2

+∞∑
n=1

16

π2(4n2 − 1)2
= 1

π

∫ π

0
sin 2t dt

= 1

2π

∫ π

0
(1 − cos 2nt) dt = 1

2π

[
t − sin 2t

2

]π
0

= 1

2
,

et on conclut :

+∞∑
n=1

1

(4n2 − 1)2
= π2

8

(
1

2
− 1

π2

)
= π2 − 2

16
.

Réponse :
+∞∑
n=1

1

4n2 − 1
= 1

2
,

+∞∑
n=1

(−1)n

4n2 − 1
= 1

2
− π

4
,

+∞∑
n=1

1

(4n2 − 1)2
= π2 − 2

16
.

a) Il est clair que f est 2π-périodique (par définition) et
continue par morceaux (et même continue) sur R, donc les coef-
ficients de Fourier (trigonométriques) an, bn (n ∈ N) de f
existent (voir schéma ci-après).

De plus, f est impaire, donc : ∀ n ∈ N, an = 0.

On a, pour tout n ∈ N
∗ :

bn = 2

2π

∫
[2π]

f (t) sin nt dt = 1

π

∫
π

−π
f (t) sin nt dt

= 2

π

∫
π

0
t (π− t) sin nt dt

=
ipp

2

π

([
− t (π− t)

cos nt

n

]π
0

−
∫

π

0
(−π+ 2t)

cos nt

n
dt

)

= − 2

πn

∫
π

0
(2t − π) cos nt dt

=
ipp

− 2

πn

([
(2t − π)

sin nt

n

]π
0

−
∫

π

0
2

sin nt

n
dt

)

= 4

πn2

∫
π

0
sin nt dt = − 4

πn2

[ cos nt

n

]π
0

= 4
(
1 − (−1)n

)
πn3

.

On conclut :




∀ n ∈ N, an = 0

∀ n ∈ N
∗, bn = 4

(
1 − (−1)n

)
πn3

.

b) Puisque f est 2π-périodique et de classe C1 par morceaux et
continue sur R (et même de classe C1 sur R), d’après le théo-
rème de convergence normale de Dirichlet, la série de Fourier
de f converge normalement (PC, PSI), donc uniformément (PSI),
absolument, simplement, sur R et a pour somme f. On a donc :

∀ t ∈ R, f (t) = a0

2
+

+∞∑
n=1

(an cos nt + bn sin nt)

=
+∞∑
n=1

4
(

1 − (−1)n
)

πn3
sin nt .

En particulier :

∀ t ∈ [0 ;π], t (π− t) =
+∞∑
n=1

4
(

1 − (−1)n
)

πn3
sin nt .

7.4

O

y

t

y = f(t)

22

4
π2
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c) 1) En remplaçant t par 
π

2
dans le résultat de b), on obtient :

π2

4
=

+∞∑
n=1

4
(

1 − (−1)n
)

πn3
sin

(
n
π

2

)

=
+∞∑
p=0

8

π(2p + 1)3
sin

(
(2p + 1)

π

2

)
=

+∞∑
p=0

8(−1)p

π(2p + 1)3
,

car les termes d’indices pairs sont tous nuls, d’où :

+∞∑
p=0

(−1)p

(2p + 1)3
= π3

32
.

2) Puisque f est 2π-périodique et continue par morceaux 
sur R, on a, d’après la formule de Parseval :

a2
0

4
+ 1

2

+∞∑
n=1

(a2
n + b2

n)

︸ ︷︷ ︸
noté PM

= 1

2π

∫
[2π]

(
f (t)

)2
dt

︸ ︷︷ ︸
noté SM

.

Ici :

PM = 1

2

+∞∑
n=1

16
(
1 − (−1)n

)2

π2n6
= 32

π2

+∞∑
p=0

1

(2p + 1)6

car les termes d’indices pairs sont tous nuls, et :

SM = 1

2π

∫
π

−π

(
f (t)

)2
dt = 1

π

∫
π

0

(
t (π− t)

)2
dt

= 1

π

∫
π

0
(t4 − 2πt3 + t2

π
2) dt = 1

π

[ t5

5
− 2π

t4

4
+ π

2 t3

3

]π
0

= 1

π

(
π5

5
− 2π

π4

4
+ π

2 π
3

3

)
= π

4
(1

5
− 1

2
+ 1

3

)
= π4

30
.

On a donc :
32

π2

+∞∑
p=0

1

(2p + 1)6
= π4

30
,

d’où :
+∞∑
p=0

1

(2p + 1)6
= π6

960
.

3) On a, pour tout N ∈ N, en séparant les termes d’indices pairs,
d’indices impairs :

2N+1∑
n=1

1

n6
=

N∑
p=1

1

(2p)6
+

N∑
p=0

1

(2p + 1)6

= 1

26

N∑
p=1

1

p6
+

N∑
p=0

1

(2p + 1)6
,

d’où, en faisant tendre l’entier N vers l’infini, et puisque les
séries qui interviennent convergent :

+∞∑
n=1

1

n6
= 1

26

+∞∑
n=1

1

n6
+

+∞∑
p=0

1

(2p + 1)6
,

et donc :

+∞∑
n=1

1

n6
= 1

1 − 1

26

+∞∑
p=0

1

(2p + 1)6
= 64

63

π6

960
= π6

945
.

Réponse :
+∞∑
p=0

(−1)p

(2p + 1)3
= π3

32
,

+∞∑
p=0

1

(2p + 1)6
= π6

960
,

+∞∑
n=1

1

n6
= π6

945
.

Considérons l’application g : R −→ C, coïncidant avec
f sur [−π ;π[ et 2π-périodique.

7.5

O

y

t

f
g

–π π

Ainsi, g ∈ CM2π.

Les coefficients de Fourier exponentiels de g sont, pour
n ∈ Z :

cn(g) = 1

2π

∫ π

−π
g(t) e−i nt dt = 1

2π

∫ π

−π
f (t) e−i nt dt = 0 .

D’après le cours, il en résulte g = 0, donc, en particulier :

∀ t ∈ [−π ;π[, f (t) = g(t) = 0.

Enfin, comme f est continue en π, on a aussi f (π) = 0, et on
conclut : f = 0.

Nous allons développer t �−→ | cos t | en série de Fourier,
puis exprimer les cos 2nt à l’aide de cos 2nt.

• L’application f : R −→ R, t �−→ | cos t |
est π -périodique et continue par morceaux (et même continue),
donc admet des coefficients de Fourier (trigonométriques), notés
an, bn (n ∈ N) .

De plus, f est paire, donc : ∀ n ∈ N
∗, bn = 0.

On a, pour tout n ∈ N :

7.6
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an = 2

π

∫
π/2

−π/2
| cos t | cos 2nt dt

= 4

π

∫
π/2

0
cos t cos 2nt dt

= 2

π

∫
π/2

0

(
cos (2n + 1)t + cos (2n − 1)t

)
dt

= 2

π

[ sin (2n + 1)t

2n + 1
+ sin (2n − 1)t

2n − 1

]π/2

0

= 2

π

( sin (2n + 1)
π

2
2n + 1

+
sin (2n − 1)

π

2
2n − 1

)

= 2

π

( (−1)n

2n + 1
− (−1)n

2n − 1

)
= − 4(−1)n

π(4n2 − 1)
.

On conclut :




∀ n ∈ N, an = 4(−1)n+1

π(4n2 − 1)

∀ n ∈ N
∗, bn = 0.

• Puisque f est 2π-périodique, de classe C1 par morceaux et

continue sur R , d’après le théorème de Dirichlet de convergence

normale, la série de Fourier de f converge normalement (PC,

PSI), donc uniformément (PSI), absolument, simplement, sur
R et a pour somme f.

Ainsi, pour tout t ∈ R :

f (t)

= a0

2
+

+∞∑
n=1

(an cos nt + bn sin nt)

= 2

π
+

+∞∑
n=1

4(−1)n+1

π(4n2 − 1)
cos 2nt

= 2

π
+

+∞∑
n=1

4(−1)n+1

π(4n2 − 1)
(2 cos 2nt − 1)

=
(

2

π
−

+∞∑
n=1

4(−1)n+1

π(4n2 − 1)

)

︸ ︷︷ ︸
noté α0

+
+∞∑
n=1

8(−1)n+1

π(4n2 − 1)︸ ︷︷ ︸
noté αn

cos 2nt

=
+∞∑
n=0

αn cos 2nt.

Ceci montre l’existence d’une suite réelle (αn)n∈N convenant.

De plus, en remplaçant t par 0 dans la formule initiale, on dé-

duit : 1 = 2

π
+

+∞∑
n=1

4(−1)n+1

π(4n2 − 1)
, puis :

α0 = 2

π
−

+∞∑
n=1

4(−1)n+1

π(4n2 − 1)
= 2

π
−

(
1 − 2

π

)
= 4

π
− 1 .

a)7.7
y

t

1

O

y = f(x)

Il est clair que f est 2π-périodique (par définition) et continue
par morceaux (et même continue) sur R, donc f admet des coef-
ficients de Fourier (trigonométriques) notés an, bn (n ∈ N) .

De plus, f est paire, donc : ∀ n ∈ N
∗, bn = 0.

On a, pour tout n ∈ N :

an = 2

2π

∫
[2π]

f (t) cos nt dt = 2

π

∫ π

0
chλt cos nt dt .

1re méthode : utilisation de l’exponentielle complexe :

On a :

an = 2

π

∫ π

0

eλt + e−λt

2

ei nt + e−i nt

2
dt

= 1

2π

(
e(λ+i n)t + e(λ−i n)t + e(−λ+i n)t + e(−λ−i n)t

)
dt

= 1

2π

[
e(λ+i n)t

λ+ i n
+ e(λ−i n)t

λ− i n
+ e(−λ+i n)t

−λ+ i n
+ e(−λ−i n)t

−λ− i n

]π
0

= 1

2π

(
e(λ+i n)π

λ+ i n
+ e(λ−i n)π

λ− i n
+ e(−λ+i n)π

−λ+ i n
+ e(−λ−i n)π

−λ− i n

)

= 1

2π

(
(−1)neλπ

λ+i n
+ (−1)neλπ

λ− i n
− (−1)ne−λπ

λ− i n
− (−1)ne−λπ

λ+ i n

)

= 1

2π
(−1)n(eλπ − e−λπ)

(
1

λ+ i n
+ 1

λ− i n

)

= (−1)nshλπ

π

2λ

λ
2 + n2

.

2e méthode : Utilisation de deux intégrations par parties :

On a :

∫ π

0
chλt cos nt dt

=
ipp

[
shλt

λ
cos nt

]π
0

−
∫ π

0

shλt

λ
(−n sin nt) dt

= (−1)nshλπ

λ
+ n

λ

∫ π

0
shλt sin nt d
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=
ipp

(−1)nshλπ

λ

+ n

λ

([
chλt

λ
sin nt

]π
0

−
∫ π

0

chλt

λ
(n cos nt) dt

)

= (−1)nshλπ

λ
− n2

λ
2

∫ π

0

chλt

λ
cos nt dt.

D’où :
∫ π

0
chλt cos nt dt

= 1

1 + n2

λ
2

(−1)n shλπ

λ
= (−1)nλ shλπ

λ
2 + n2

,

et donc : an = 2(−1)nλ shλπ

π(λ2 + n2)
.

b) Il est clair que f est 2π-périodique, de classe C1 par mor-
ceaux et continue sur R, donc, d’après le théorème de Dirichlet
de convergence normale, la série de Fourier de f converge nor-
malement (PC, PSI) (donc uniformément (PSI), absolument,
simplement) sur R et a pour somme f. On a donc :

∀ t ∈ R, f (t) = a0

2
+

+∞∑
n=1

(an cos nt + bn sin nt)

= shλπ

λπ
+

+∞∑
n=1

2(−1)nλ shλπ

π(λ2 + n2)
cos nt.

En particulier :

∀ t ∈ [−π ;π], chλt = shλπ

λπ
+

+∞∑
n=1

2(−1)nλ shλπ

π(λ2 + n2)
cos nt .

c) 1) En remplaçant t par 0 dans le résultat de b), on obtient :

1 = shλπ

λπ
+

+∞∑
n=1

2(−1)nλ shλπ

π(λ2 + n2)
,

d’où :
+∞∑
n=1

(−1)n

λ
2 + n2

= π

2λ shλπ

(
1 − shλπ

λπ

)
.

2) En remplaçant t par π dans le résultat de b), on obtient :

chλπ = shλπ

λπ
+

+∞∑
n=1

2(−1)nλ shλπ

π(λ2 + n2)
(−1)n,

d’où :
+∞∑
n=1

1

λ
2 + n2

= π

2λ shλπ

(
chλπ− shλπ

λπ

)
.

3) Puisque f est 2π-périodique et continue par morceaux,
d’après la formule de Parseval réelle, on a :

a2
0

4
+ 1

2

+∞∑
n=1

(a2
n + b2

n)

︸ ︷︷ ︸
noté PM

= 1

2π

∫
[2π]

(
f (t)

)2
dt

︸ ︷︷ ︸
noté SM

.

Et : PM =
(

shλπ

λπ

)2

+ 1

2

+∞∑
n=1

4λ2sh2
λπ

π2(λ2 + n2)2
,

SM = 1

2π

∫
π

−π

(
f (t)

)2
dt = 1

π

∫
π

0
ch2

λt dt

= 1

2π

∫
π

0
(1 + ch 2λt) dt

= 1

2π

[
t + sh 2λt

2λ

]π
0

= 1

2π

(
π+ sh 2λπ

2λπ

)
.

Donc :

+∞∑
n=1

1

(λ2 + n2)2

=
[

1

2π

(
π+ sh 2λπ

2λπ

)
−

(
shλπ

λπ

)2]
π2

2λ2 sh2
λπ

= λ
2
π2 + λπ shλπ chλπ− 2 sh2

λπ

4λ4sh2
λπ

.

1) Existence :

L’application f : x �−→ x − E(x)

x3
est continue sur [1 ;+∞[,

et : ∀ x ∈ [1 ;+∞[, 0 � f (x) � 1

x3
.

D’après l’exemple de Riemann en +∞ (3 > 1) et le théorème
de majoration pour des fonctions � 0, on conclut que f est in-

tégrable sur [1 ;+∞[, donc l’intégrale I =
∫ +∞

1
f (x) dx

existe.

2) Calcul :

Soit N ∈ N
∗. On a, en utilisant la relation de Chasles :

∫ N+1

1

x − E(x)

x3
dx =

N∑
n=1

∫ n+1

n

x − E(x)

x3
dx

=
N∑

n=1

∫ n+1

n

x − n

x3
dx

︸ ︷︷ ︸
notée In

.

et, pour tout n ∈ N
∗ :

In =
∫ n+1

n

(
1

x2
− n

x3

)
dx =

[
− 1

x
+ n

2x2

]n+1

n

=
(

− 1

n + 1
+ 1

n

)
+ 1

2

(
n

(n + 1)2
− n

n2

)

=
(

− 1

n + 1
+ 1

n

)
+ 1

2

(
(n + 1) − 1

(n + 1)2
− 1

n

)

= 1

2

(
1

n
− 1

n + 1

)
− 1

2

1

(n + 1)2
.

d’où :
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En particulier (pour n pair) : ∀ p ∈ Z, c2p(g) = 0.

D’autre part, par hypothèse (pour n impair) :

∀ p ∈ Z, c2p+1( f ) = 0 ,

donc : ∀ p ∈ Z, c2p+1(g) = −2c2p+1( f ) = 0.

Ainsi : ∀ n ∈ Z, cn( f ) = 0.

Comme, d’après le cours, l’application 

C2π −→ C
Z, f �−→ (

cn( f )
)

n∈Z

est linéaire injective, on déduit g = 0, c’est-à-dire :

∀ t ∈ R, f (t + π) = f (t) ,

et on conclut que f est π -périodique.

Puisque f est T-périodique et de classe C1 par morceaux
sur R, donc continue par morceaux sur R, f admet des coeffi-
cients de Fourier (exponentiels), définis par :

∀ n ∈ Z, cn( f ) = 1

T

∫ T

0
f (t) e−i nωt dt, ω = 2π

T
,

et on a, par la formule de Parseval :

1

T

∫ T

0
| f |2 =

+∞∑
n=−∞

|cn( f )|2 .

De même, puisque f ′ est T-périodique et continue par morceaux,
f ′ admet des coefficients de Fourier (exponentiels), et on a :

∀ n ∈ Z, cn( f ′) = i nωcn( f ),

et :
1

T

∫ T

0
| f ′|2 =

+∞∑
n=−∞

|cn( f ′)|2.

D’où :

1

T

∫ T

0
| f |2 =

∑
n∈Z

|cn( f )|2 = |c0( f )|2 +
∑
ni n∗

Z

|cn( f )|2

= |c0( f )|2 +
∑
n∈Z∗

|cn( f )|2
n2ω2

� |c0( f )|2 + 1

ω2

∑
n∈Z∗

|cn( f ′)|2

=
∣∣∣∣ 1

T

∫ T

0
f

∣∣∣∣
2

+ 1

ω2

∑
n∈Z

|cn( f ′)|2

= 1

T 2

∣∣∣∣
∫ T

0
f

∣∣∣∣
2

+ 1

ω2

1

T

∫ T

0
| f ′|2

= 1

T 2

∣∣∣∣
∫ T

0
f

∣∣∣∣
2

+ T

4π2

∫ T

0
| f |2.

Finalement :
∫ T

0
| f |2 � T 2

4π2

∫ T

0
| f ′|2 + 1

T

∣∣∣∣
∫ T

0
f

∣∣∣∣
2

.

∫ N+1

1

x − E(x)

x3
dx

= 1

2

N∑
n=1

(
1

n
− 1

n + 1

)
− 1

2

N∑
n=1

1

(n + 1)2

= 1

2

(
1 − 1

N + 1

)
− 1

2

N+1∑
n=2

1

n2

= 1 − 1

2(N + 1)
− 1

2

N+1∑
n=1

1

n2

−→
N∞

1 − 1

2

+∞∑
n=1

1

n2
= 1 − 1

2

π2

6
.

Finalement :
∫ +∞

1

x − E(x)

x3
dx = 1 − π2

12
.

Puisque f et f ′ sont T-périodiques et continues par
morceaux (car continues), on peut leur appliquer la formule
de Parseval, donc :

|| f ||22 = 1

T

∫ T

0
| f (t)|2 dt =

+∞∑
n=−∞

|cn( f )|2

|| f ′||22 = 1

T

∫ T

0
| f ′(t)|2 dt =

+∞∑
n=−∞

|cn( f ′)|2 .

D’autre part, par hypothèse :

c−1( f ) = c0( f ) = c1( f ) = 0 .

De plus, comme f est T-périodique, de classe C1 par morceaux
et continue sur R, d’après le cours :

∀ n ∈ Z, cn( f ′) = i nωcn( f ) ,

d’où : c−1( f ′) = c0( f ′) = c1( f ′) = 0.

On a donc :

|| f ′||22 =
∑

n∈Z, |n|�2

|cn( f ′)|2 =
∑

n∈Z, |n|�2

n2|cn( f )|2

�
∑

n∈Z, |n|�2

|cn( f )|2 = 4|| f ||22,

et on conclut : || f ||2 � 1

2
|| f ′||2.

Considérons l’application 

g : R −→ C, t �−→ f (t + π) − f (t) .

Ainsi : g = τ−π f − f .

Puisque f ∈ C2π , d’après le cours, on a donc g ∈ C2π et, pour
tout n ∈ Z :

cn(g) = cn(τ−π f − f ) = cn(τ−π f ) − cn( f )

= ei nπcn( f ) − cn( f ) = (
(−1)n − 1

)
cn( f ).
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On a, pour tout n ∈ Z :

0 = (ϕn | f ) = (en−1 − 2en + en+1 | f )

= (en−1 | f ) − 2(en | f ) + (en+1 | f )

= 1

2π

∫
[2π]

(
e−i (n−1)t − 2 e−i nt + e−i (n+1)t

)
f (t) dt

= 1

2π

∫
[2π]

e−i nt (ei t − 2 + e−i t ) f (t)︸ ︷︷ ︸
noté g(t)

dt.

L’application g est 2π-périodique, continue, et :

∀ n ∈ Z, (en | g) = 0 .

D’après le cours, il en résulte : g = 0.

Ainsi : ∀ t ∈ R, (ei t − 2 + e−i t ) f (t) = 0.

Mais : ∀ t ∈ R, ei t − 2 + e−i t = 2 cos t − 2 = −4 sin 2 t

2
.

On a donc : ∀ t ∈ R,

(
sin 2 t

2

)
f (t) = 0,

d’où : ∀ t ∈ R − 2πZ, f (t) = 0.

Comme f est continue sur R, l’égalité est encore vraie, par pas-
sage à la limite, en les points de 2πZ, et on conclut : f = 0.

Puisque f est 2π-périodique, de classe C2 par morceaux
et de classe C1 sur R, les coefficients de Fourier de f, f ′, f ′′

existent et vérifient :

∀ n ∈ Z, cn( f ′) = i ncn( f ), cn( f ′′) = (i n)2cn( f ) .

De plus, comme f, f ′, f ′′ sont dans CM2π , on peut leur ap-
pliquer la formule de Parseval :

1

2π

∫ 2π

0
| f |2 =

∑
n∈Z

|cn( f )|2,

1

2π

∫ 2π

0
| f |2 =

∑
n∈Z

|cn( f ′)|2 =
∑
n∈Z

n2|cn( f )|2,

1

2π

∫ 2π

0
| f ′′|2 =

∑
n∈Z

|cn( f ′′)|2 =
∑
n∈Z

n4|cn( f )|2.

D’où :

4
∫ 2π

0
| f |2 − 5

∫ 2π

0
| f ′|2 + 2

∫ 2π

0
| f ′′|2

= 2π

(
4
∑
n∈Z

|cn( f )|2 − 5
∑
n∈Z

n2|cn( f )|2

+ 2
∑
n∈Z

n4|cn( f )|2
)

= 2π
∑
n∈Z

(4 − 5n2 + 2n4)|cn( f )|2.

Le discriminant ∆ = −7 est < 0 , donc :

∀ n ∈ Z, 4 − 5n2 + 2n4 > 0 ,

et on déduit l’inégalité demandée.

1) Soit t ∈ R. On a : ∀ p ∈ N, Sp(t + 2π) = Sp(t).

D’où, en faisant tendre l’entier p vers l’infini, puisque (Sp)p

converge uniformément, donc simplement, vers f :

f (t + 2π) = f (t) .

Ceci montre que f est 2π-périodique.

2) Puisque chaque Sp est continue sur R et que (Sp)p converge

uniformément vers f sur R, d’après un théorème du cours,
f est continue sur R.

3) Soit n ∈ Z fixé.

Puisque :

∀ p∈N,∀ t ∈ R,
∣∣Sp(t) e−i nt − f (t) e−i nt

∣∣ � |Sp(t)− f (t)| ,

et que (Sp)p converge uniformément vers f sur R, la suite 

d’applications 
(
t �−→ Sp(t) e−i nt

)
p�0 converge uniformément

sur R vers l’application t �−→ f (t) e−i nt.

D’après un théorème du cours, il en résulte :

1

2π

∫
[2π]

Sp(t) e−i nt dt −→
p∞

1

2π

∫
[2π]

f (t) e−i nt dt .

Mais, comme la famille (t �−→ e−i kt )k∈Z est orthonormale
dans C2π pour le produit scalaire canonique, on a, pour tout
p � n :

1

2π

∫
[2π]

Sp(t) e−i nt dt =
p∑

k=−p

γk

1

2π

∫
[2π]

ei kt e−i pt dt = γn .

d’où : ∀ n ∈ Z, cn( f ) = 1

2π

∫
[2π]

f (t) e−i nt dt = γn .

a) • On a : ∀t ∈ R , ∀n ∈ N , Sn(t + 2π) = Sn(t),

d'où, puisque Sn

C.S.−−−→
n∞

f : ∀t ∈ R , f (t + 2π) = f (t) ,

et donc f est 2π-périodique.

• Puisque Sn

C.U.−−−→
n∞

f et que les Sn sont continues sur R, f est

continue sur R.

b) Soit p ∈ N.

Puisque Sn

C.U.−−−→
n∞

f et que t �−→ cos pt est bornée, la suite

d'applications 
(
t �−→ Sn(t)cos pt

)
n�0 converge uniformément

sur R vers (t �−→ f (t) cos pt). De plus, les t �−→ Sn(t)cos pt

(n ∈ N) sont continues sur le segment [−π;π]. 

On peut donc intervertir 
∫ π

−π
et lim

n∞
, d'où :
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ap( f ) = 1

π

∫ π

−π

(
lim
n∞

Sn(t)
)

cos pt dt

= 1

π

∫ π

−π

(
lim
n∞

(Sn(t) cos pt)
)

dt

= 1

π
lim
n∞

(∫ π

−π
Sn(t) cos pt dt

)
.

Mais, pour tout k de N :

∫ π

−π
cos kt cos pt dt =




2π si k = p = 0
π si k = p =/ 0
0 si k =/ p

∣∣∣∣∣∣
et      

∫ π

−π
sin kt cos pt dt = 0 ,

d'où : ∀n ∈ N ,
1

π

∫ π

−π
Sn(t) cos pt dt =

{
0 si n < p
αp si n � p.

Ainsi : ap( f ) = αp.

On obtient de même (pour p � 1) : bp( f ) = βp .

L'application f est 2π-périodique et continue sur R, donc
f ∈ CM2π , et les coefficients de Fourier exponentiels cn

(n ∈ Z) de f existent.

Soit n ∈ Z. Puisque |z eit | = |z| < 1, on a :

∀t ∈ R,
1

1 + z eit
=

+∞∑
k=0

(−z eit )k,

d’où : cn = 1

2π

∫ π

−π

e−int

1 + z eit
dt

= 1

2π

∫ π

−π
e−int

( +∞∑
k=0

(−z eit )k

)
dt

= 1

2π

∫ π

−π

( +∞∑
k=0

fk(t)

)
dt,

où on a noté, pour k ∈ N, fk : t �−→ (−1)k zkei(k−n)t .

On a : ∀k ∈ N, ∀t ∈ [−π;π], | fk(t)| = |z|k .

Comme |z| < 1, il en résulte que 
∑
k�0

fk converge normalement,

donc uniformément, sur [−π;π]. Puisque chaque fk est conti-

nue sur le segment [−π;π], on peut alors intervertir 
∫ π

−π
et 

+∞∑
k=0

:

cn = 1

2π

+∞∑
k=0

∫ π

−π
fk(t) dt

= 1

2π

+∞∑
k=0

(−1)k zk

∫ π

−π
ei(k−n)t dt.

Mais :
∫ π

−π
ei(k−n)t dt =

{
2π si n = k
0 si n =/ k

.

Finalement : ∀n ∈ Z, cn =
{

(−1)nzn si n � 0
0 si n < 0

.

a) L'application f est 2π-périodique et continue (car
ch a > 1 � −cos t) , donc f ∈ CM2π et les coefficients de
Fourier (trigonométriques) de f existent. Le but de la question
b) étant d'obtenir ces coefficients, nous n'allons pas procéder
de la façon directe utilisée dans les exercices 7.1 à 7.4.

On a :

∀t ∈ R , f (t) = 2

2 ch a + eit + e−it
= 2eit

e2it + 2eit ch a + 1
.

Par une décomposition en éléments simples dans R(X):

2X

X2 + 2X ch a + 1
= 2X

(X + ea)(X + e−a)

= 1

sh a

(
ea

X + ea
− e−a

X + e−a

)
,

d'où : ∀t ∈ R , f (t) = 1

sh a

(
ea

eit + ea
− e−a

eit + e−a

)
.

Remarquons que, puisque a ∈]0;+∞[, 0 < e−a < 1 < ea ,
d'où, en utilisant des séries géométriques, pour tout t de R :

f (t)= 1

sh a

(
1

1 + e−a+it
− e−a−it

1 + e−a−it

)

= 1

sh a

( +∞∑
n=0

(−1)n(e−a+it )n −e−a−it
+∞∑
n=0

(−1)n(e−a−it )n

)

= 1

sh a

(
1 +

+∞∑
n=1

(−1)ne−na+int +
+∞∑
n=1

(−1)ne−na−int

)

= 1

sh a
+ 2

sh a

+∞∑
n=1

(−1)ne−nacos nt.

Puisque : ∀n ∈ N
∗ , ∀t ∈ R,

∣∣∣(−1)ne−nacos nt
∣∣∣ � e−na, et que

0 � e−a < 1, la série d'applications 
∑
n�1

(
t �−→ (−1)ne−nacos t

)

converge normalement, donc uniformément, sur R.

D'après l'exercice 7.15, on conclut :


∀n ∈ N, an( f ) = 2(−1)ne−na

sh a
∀n ∈ N

∗, bn( f ) = 0.

b) D’après a), on a, pour tout n ∈ N :∫ π

0

cos nt

ch a + cos t
dt = π

2
an( f ) = π(−1)ne−na

sh a
,

∫ π

0

sin nt

ch a + cos t
dt = π

2
bn( f ) = 0.
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c) Puisque f ∈ CM2π , on a, d’après la formule de Parseval
réelle, et puisque f est paire :

a2
0

4
+ 1

2

+∞∑
n=1

(a2
n + b2

n)

= 1

2π

∫
π

−π

(
f (t)

)2
dt = 1

π

∫
π

0

(
f (t)

)2
dt.

D’où :∫ π

0

1

(ch a + cos t)2
dt =

∫ π

0

(
f (t)

)2
dt

= π

(
1

sh2a
+ 1

2

+∞∑
n=1

4e−2na

sh2a

)
= π

sh2a
+ 2π

sh2a

e−2a

1 − e−2a

= π

sh2a

1 + e−2a

1 − e−2a
= π

sh2a

ch a

sh a
= π ch a

sh3a
.

a) Remarquer d'abord que x �−→ ln(1 + x)

x
est intégrable

sur ]0; 1].

D'après le DSE(0) de x �−→ ln(1 + x), on a :

∀x ∈ [0; 1[, ln(1 + x) =
+∞∑
n=1

(−1)n−1xn

n
,

d'où : ∀x ∈]0; 1[,
ln(1 + x)

x
=

+∞∑
n=1

(−1)n−1xn−1

n
.

• La série d'applications 
∑
n�1

fn , où fn : [0; 1] −→ R

x �−→ (−1)n−1xn−1

n

converge

uniformément sur [0; 1]. En effet, pour tout x de [0; 1], la série

numérique 
∑
n�1

fn(x) est alternée et 
(| fn(x)|)

n�1 décroît et tend

vers 0. On en déduit :

∀n ∈ N, ∀x ∈ [0; 1],

|Rn(x)| =
∣∣∣∣∣

+∞∑
k=n+1

fk(x)

∣∣∣∣∣ � | fn+1(x)|

= xn

n + 1
� 1

n + 1
,

d'où : ||Rn||∞ −−−→
n∞

0 .

• Puisque chaque fn est continue sur [0; 1] et que 
∑
n�1

fn

converge uniformément sur [0; 1], on peut intervertir 
∫ 1

0
et 

+∞∑
n=1

,

d'où :

∫ 1

0

ln(1 + x)

x
dx =

∫ 1

0

( +∞∑
n=1

fn(x)

)
dx

=
+∞∑
n=1

∫ 1

0
fn(x) dx =

+∞∑
n=1

(−1)n−1

n2
.

• En séparant les termes d'indices pairs ou impairs et puisque
les séries envisagées sont absolument convergentes :

+∞∑
n=1

(1)n−1

n2
= −

+∞∑
p=1

1

(2p)2
+

+∞∑
p=0

1

(2p + 1)2

= −1

4

π2

6
+ π2

8
= π2

12
.

b) 1) À l'aide d'une intégration par parties, puisque x �−→ ln x

1 + x

et x �−→ ln(1 + x)

x
sont intégrables sur ]0; 1] et que

ln x ln(1 + x) admet une limite finie (0) en 0+ :

∫ 1

0

ln x

1 + x
dx

=
[
ln x ln(1 + x)

]1

0
−

∫ 1

0

ln(1 + x)

x
dx = −π2

12
.

2),3) Notons I =
∫ 1

0

ln x

1 + x
dx = −π2

12
, J =

∫ 1

0

ln x

1 − x
dx ,

K =
∫ 1

0

ln x

1 − x2
dx (qui existent).

On a : I + J =
∫ 1

0

2 ln x

1 − x2
dx = 2K .

D'autre part :

J =
[y = √

x]

∫ 1

0

2 ln y

1 − y2
2y dy

= 4
∫ 1

0

(y + 1) − 1

1 − y2
ln y dy = 4J − 4K

.

On obtient ainsi       

{
2K − J = I
4K − 3J = 0

∣∣∣∣,
d'où J = 2I = −π2

6
et  K = 3

2
I = −π2

8
.

On conclut :

∫ 1

0

ln x

1 + x
dx = −π2

12
,

∫ 1

0

ln x

1 − x
dx = −π2

6
,

∫ 1

0

ln x

1 − x2
dx = −π2

8

4) L'application x �−→ x2ln x

x2 − 1
est intégrable sur ]0; 1[, et :

∫ 1

0

x2ln x

x2 − 1
dx =

∫ 1

0

(
1 − 1

1 − x2

)
ln x dx

=
∫ 1

0
ln x dx −

∫ 1

0

ln x

1 − x2
dx

= [
x ln x − x

]1
0 + π2

8
= π2

8
− 1.
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On a, pour tout n de N∗ :

bn = 2

2π

∫ π

−π
f (t) sin nt dt = 2

π

∫ π

0
sh xt sin nt dt

= 1

2iπ

∫ π

0
(ext − e−xt )(eint − e−int )dt

= 1

2iπ

∫ π

0

(
e(x+in)t − e(x−in)t − e(−x+in)t + e(−x−in)t

)
dt

= 1

2iπ

[
e(x+in)t

x + in
− e(x−in)t

x − in
− e(−x+in)t

−x + in
+ e(−x−in)t

−x − in

]π
0

= 1

2iπ

(
e(x+in)π

x + in
− e(x−in)π

x − in
+ e(−x+in)π

x − in
− e−(x+in)π

x + in

)

= (−1)n

2iπ
(eπx − e−πx )

(
1

x + in
− 1

x − in

)

= 2(−1)n+1n shπx

π(n2 + x2)
.

b) Puisque f est 2π-périodique et de classe C1 par morceaux,

d'après le théorème de Dirichlet, la série de Fourier de f

converge simplement sur R et a pour somme la régularisée f̃
de f. On a donc :

∀t ∈ R, f̃ (t) = 1

2

(
f (t+) + f (t−)

)

=
+∞∑
n=1

2(−1)n+1n shπx

π(n2 + x2)
sin nt.

En particulier :

∀t ∈] − π;π[, sh xt = 2 shπx

π

+∞∑
n=1

(−1)n+1n

n2 + x2
sin nt.

c) En utilisant une série géométrique, on a, pour tout t de
]0;+∞[ :

cos xt

ch t
= 2 cos xt

et + e−t
= 2e−t cos xt

1 + e−2t

= 2e−t cos xt
+∞∑
n=0

(−e−2t )n =
+∞∑
n=0

fn(t),

où on a noté   fn : t ∈ [0;+∞[�−→ 2(−1)ne−(2n+1)t cos xt .

5) Les applications x �−→ ln x ln(1 + x) et x �−→ (x ln x − x)

1

1 + x
sont intégrables sur ]0; 1], et (x ln x − x)ln(1 + x)

admet une limite finie (0) en 0+ , d'où, par une intégration par
parties :∫ 1

0
ln x ln(1 + x) dx = [

(x ln x − x)ln(1 + x)
]1

0

−
∫ 1

0
(x ln x − x)

1

x + 1
dx

= −ln 2 −
∫ 1

0

x

1 + x
ln x dx +

∫ 1

0

x

1 + x
dx

= −ln 2 −
∫ 1

0

(
1 − 1

1 + x

)
ln x dx

+
∫ 1

0

(
1 − 1

1 + x

)
dx

=−ln 2−[
x ln x−x

]1
0 +

∫ 1

0

ln x

1 + x
dx + [

x − ln(1 + x)
]1

0

= 2 − 2 ln 2 − π2

12
.

6) L'application x �−→ ln th x est intégrable sur ]0;+∞[ et,
grâce au changement de variable défini par u = th x :∫ +∞

0
ln th x dx =

∫ 1

0

ln u

1 − u2
du = −π2

8
.

7) L'application x �−→ x

ex + e2x
est intégrable sur [0;+∞[ et,

par changements de variable :
∫ +∞

0

x

ex + e2x
dx =

[u = ex ]

∫ +∞

1

ln u

u2(1 + u)
du

=[
v = 1

u

]−
∫ 1

0

v ln v

1 + v
dv

= −
∫ 1

0

(
1 − 1

1 + v

)
ln v dv

= [ − v ln v + v
]1

0 +
∫ 1

0

ln v

1 + v
dv

= 1 − π2

12
.

8) L'application x �−→ x

ex − 1
est intégrable sur ]0;+∞[ et,

grâce au changement de variable défini par u = e−x :∫ +∞

0

x

ex − 1
dx = −

∫ 1

0

ln u

1 − u
du = π2

6
.

a) Il est clair que f est 2π-périodique et continue par mor-
ceaux sur R, donc les coefficients de Fourier (trigonométriques)
de f existent.

De plus, f est impaire, donc :

∀n ∈ N, an = 0.
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Considérons, pour t ∈]0;+∞[ et n ∈ N , le reste d'ordre n :

Rn(t) =
+∞∑

k=n+1

fk(t) = cos xt

ch t
−

n∑
k=0

fk(t).

On a :

Rn(t) =
+∞∑

k=n+1

2(−1)ke−(2k+1)t cos xt

= 2(−1)n+1e−(2n+3)t 1

1 + e−2t
cos xt ,

d'où l'intégrabilité de Rn sur ]0;+∞[, et :∣∣∣∣
∫ +∞

0
Rn(t) dt

∣∣∣∣ �
∫ +∞

0
|Rn(t)| dt

�
∫ +∞

0
2e−(2n+3)t dt = 2

2n + 3
−−−→

n∞
0.

On peut donc intervertir 
∫ +∞

0
et   

+∞∑
n=0

, d'où :

∫ +∞

0

cos xt

ch t
dt =

+∞∑
n=0

2(−1)n

∫ +∞

0
e−(2n+1)t cos xt dt.

Et, pour n ∈ N :
∫ +∞

0
e−(2n+1)t cos xt dt = 1

2

∫ +∞

0
e−(2n+1)t (eixt + e−ixt )dt

= 1

2

[
e(−(2n+1)+ix)t

−(2n + 1) + ix
+ e(−(2n+1)−ix)t

−(2n + 1) − ix

]+∞

0

= 1

2

(
1

(2n + 1) − ix
+ 1

(2n + 1) + ix

)
= 2n + 1

(2n + 1)2 + x2
.

D'où :
∫ +∞

0

cos xt

ch t
∂t =

+∞∑
n=0

2(−1)n(2n + 1)

(2n + 1)2 + x2
.

D'autre part, d'après b), en remplaçant t par 
π

2
:

sh
πx

2
= 2 shπx

π

+∞∑
n=1

(−1)n+1n

n2 + x2
sin n

π

2

= 2 shπx

π

+∞∑
p=0

2p + 1

(2p + 1)2 + x2
(−1)p,

d'où, si x =/ 0:
+∞∑
p=0

(−1)p(2p + 1)

(2p + 1)2 + x2
=
π sh

πx

2
2 shπx

= π

4 ch
πx

2

.

Comme la série d'applications 
∑
p�0

(
x �−→ (−1)p(2p + 1)

(2p + 1)2 + x2

)

relève du TSCSA, l'étude du reste montre qu'elle converge uni-
formément sur [0;+∞[, d'où, en faisant tendre x vers 0 :

+∞∑
p=0

(−1)p(2p + 1)

(2p + 1)2
= π

4
.

Ainsi : ∀x ∈ [0;+∞[ ,
+∞∑
p=0

(−1)p(2p + 1)

(2p + 1)2 + x2
= π

4 ch
πx

2

,

et finalement :
∫ +∞

0

cos xt

ch t
dt = π

2 ch
πx

2

.

1) Soit f convenant.

Puisque f est 2π-périodique et de classe C∞, pour tout k ∈ N,
f (k) admet des coefficients de Fourier (exponentiels) et on a :

∀ k ∈ N, ∀ n ∈ Z, cn( f (k)) = (i n)kcn( f ) .

Soit n ∈ Z − {−1, 0, 1}. On a :

∀ k ∈N , |cn( f )| = |cn( f (k))|
|i n|k | = 1

|n|k |cn( f (k))| .

En utilisant l’hypothèse :

∀ k ∈ N, |cn( f (k))| =
∣∣∣∣ 1

2π

∫
[2π]

f (k)(t) e−i nt dt

∣∣∣∣
� 1

2π

∫
[2π]

| f (k)(t)| dt � 1

2π
2πM = M.

On a donc : ∀ k ∈ N, |cn( f )| � M

|n|k .

Comme M et |n| sont fixés (indépendamment de k) et que

|n| � 2, on a :
M

|n|k −→
k∞

0,

d’où, puisque |cn( f )| ne dépend pas de k : |cn( f )| = 0 , puis :
cn( f ) = 0.

Ceci montre : ∀ n ∈ Z − {−1, 0, 1}, cn( f ) = 0.

D’autre part, puisque f est 2π-périodique et de classe C∞ sur R,
f est 2π-périodique, de classe C1 par morceaux et continue 
sur R, donc, d’après le théorème de Dirichlet de convergence
normale, la série de Fourier de f converge normalement, donc
simplement, sur R et a pour somme f. On a donc :

∀ x ∈ R, f (x) = lim
n∞

( n∑
k=−n

ck( f ) ei kx

)

= c−1( f ) e−i x + c0( f ) + c1( f ) ei x .

2) Réciproquement, soient (α,β,γ) ∈ C
3 et 

f : R −→ C, x �−→ α e−i x + β+ γ ei x .

L’application f est 2π-périodique, de classe C∞ et on a , pour
tout (n,x) ∈ N × R :

| f (n)(x)| = ∣∣α(−i)ne−i x + β0n + γin ei x
∣∣ � |α| + |β| + |γ| ,

donc f convient.

Finalement, l’ensemble des applications f convenant est :{
f : R −→ C, x �−→ α e−i x + β+ γ ei x ; (α,β,γ) ∈ C

3
}
.
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a) Pour tout α de ]1;+∞[, l'application t �−→ 1

tα + 1
est intégrable sur ]0;+∞[, et :
∫ +∞

0

dt

tα + 1
=

∫ 1

0

dt

tα + 1
+

∫ +∞

1

dt

tα + 1

=[
v = 1

t

]
∫ 1

0

dt

tα + 1
+

∫ 1

0

dv

v2

(
1

vα
+ 1

)

=
∫ 1

0

1 + tα−2

1 + tα
dt =

[u = tα]

∫ 1

0

1 + u1− 2
α

1 + u

1

α
u

1
α−1 du

= 1

α

∫ 1

0

u
1
α−1 + u− 1

α

1 + u
du.

b) On a : ∀u ∈ [0; 1[,
1

1 + u
=

+∞∑
n=0

(−1)nun ,

d'où : ∀u ∈]0; 1[,

u
1
α−1 + u− 1

α

1 + u
=

+∞∑
n=0

(−1)n
(
un−1+ 1

α + un− 1
α
)

.

Notons, pour n ∈ N :

fn : ]0; 1[−→ R , u �−→ (−1)n(un−1+ 1
α + un− 1

α ) .

Ainsi, la série d'applications 
∑
n�0

fn converge simplement sur

]0; 1[ et a pour somme 

S : u �−→ u
1
α−1 + u− 1

α

1 + u
.

Notons, pour n ∈ N , Rn le reste :

Rn = S −
n∑

k=0

fk =
+∞∑

k=n+1

fk .

Puisque S et les fk sont intégrables sur ]0; 1[, pour chaque n
de N , Rn est intégrable sur ]0; 1[, et :

∫ 1

0
Rn(u) du =

∫ 1

0

(
u

1
α−1 + u− 1

α
) +∞∑

k=n+1

(−1)kuk du

=
∫ 1

0

(
u

1
α−1 + u− 1

α
) (−1)n+1un+1

1 + u
du,

d'où :
∣∣∣∣
∫ 1

0
Rn(u) du

∣∣∣∣ =
∫ 1

0

(
u

1
α−1 + u− 1

α
) un+1

1 + u
du

�
∫ 1

0

(
u

1
α−1 + u− 1

α
)
un+1 du

=
∫ 1

0

(
un+ 1

α + un+1− 1
α
)

du

= 1

n + 1

α
+ 1

+ 1

n + 2 − 1

α

� 2

n + 1

,

et donc :
∫ 1

0
Rn(u) du −−−→

n∞
0.

On peut donc intervertir 
∫ 1

0
et 

+∞∑
n=0

, d'où :

∫ 1

0

u
1
α−1 + u− 1

α

1 + u
du =

+∞∑
n=0

∫ 1

0
(−1)n

(
un−1+ 1

α + un− 1
α
)

du

=
+∞∑
n=0

(−1)n

(
1

n + 1

α

+ 1

n + 1 − 1

α

)
.

D'après le TSCSA, les séries   
∑
n�0

(−1)n

n + 1

α

et    
∑
n�0

(−1)n

n + 1 − 1

α

convergent, d'où :
∫ 1

0

u
1
α−1 + u− 1

α

1 + u
du =

+∞∑
n=0

(−1)n

n + 1

α

+
+∞∑
n=0

(−1)n

n + 1 − 1

α

=
[p = n + 1]

+∞∑
n=0

(−1)n

n + 1

α

+
+∞∑
p=1

(−1)p−1

p − 1

α

= α+
+∞∑
n=1

(−1)n

(
1

n + 1

α

− 1

n − 1

α

)

= α+
+∞∑
n=1

(−1)n 2

α

n2 − 1

α2

.

c) L'application f est 2π-périodique et continue par morceaux
sur R, donc les coefficients de Fourier (trigonométriques) de
f existent. De plus, f est paire, donc les bn sont nuls, et, pour
tout n de N :

an = 2

2π

∫ π

−π
f (t) cos nt dt = 2

π

∫ π

0
cos xt cos nt dt

= 1

π

∫ π

0

(
cos(x + n)t + cos(x − n)t

)
dt

= 1

π

[
sin(x + n)t

x + n
+ sin(x − n)t

x − n

]π
0

= 1

π

(
(−1)nsinπx

x + n
+ (−1)nsinπx

x − n

)
= 2(−1)n x sinπx

π(x2 − n2)
.

Puisque f est 2π-périodique, de classe C1 par morceaux et conti-
nue sur R, d'après le théorème de convergence normale, la série
de Fourier de f converge normalement (donc simplement) 
sur R et a pour somme f, d'où :

∀t ∈ R, f (t) = sinπx

πx
+

+∞∑
n=1

2(−1)n x sinπx

π(x2 − n2)
cos nt.

En particulier, en remplaçant t par 0 :

1 = sinπx

πx
+

+∞∑
n=1

2(−1)n x sinπx

π(x2 − n2)
,
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d'où :

+∞∑
n=1

2(−1)n+1x

π(n2 − x2)
= 1

sinπx

(
1 − sinπx

πx

)
= 1

sinπx
− 1

πx
.

d) D'après b) et c) :

α

∫ +∞

0

dt

tα + 1
= α+

+∞∑
n=1

(−1)n+1 2

α

n2 − 1

α2

= α+ π


 1

sin
π

α

− 1
π

α


 = π

sin
π

α

.

On a prouvé : ∀α ∈]1;+∞[,
∫ +∞

0

dt

tα + 1
=

π

α

sin
π

α

.

e) 1) Remarquer d'abord que t �−→ t x−1

1 + t
est intégrable sur

]0;+∞[.

Le changement de variable défini par u = t x fournit :

∫ +∞

0

t x−1

1 + t
dt = 1

x

∫ +∞

0

1

1 + u
1
x

du,

d'où, en utilisant d) :
∫ +∞

0

t x−1

1 + t
dt = π

sinπx
.

2) Remarquer d’abord que l’application t �−→ t x−2ln(1 + t) est

intégrable sur ]0 ;+∞[.

On a, par intégration par parties, pour tout (ε,A) ∈ ]0 ;+∞[2

tel que ε � A :
∫ A

ε
t x−2 ln (1 + t) dt

=
[

t x−1

x − 1
ln (1 + t)

]A

ε

−
∫ A

ε

t x−1

x − 1

1

1 + t
dt,

d’où, en faisant tendre ε vers 0 et A vers +∞ :∫ +∞

0
t x−2ln(1 + t) dt

= 1

1 − x

∫ 1

0

t x−1

1 + t
dt = π

(1 − x) sinπx
.

3) Remarquer d'abord que t �−→ eat

ebt + ect
est intégrable sur R. 

On a :

∫ +∞

−∞

eat

ebt + ect
dt =

∫ +∞

−∞

e(a−b)t

1 + e(c−b)t
dt

=
[u = e(c−b)t ]

∫ +∞

0

u
a−b
c−b

1 + u

1

(c − b)u
du

= 1

c − b

∫ +∞

0

u
a−b
c−b −1

1 + u
du

= π

(c − b) sinπ
a − b

c − b

.

4) Il s’agit d’un cas particulier de 3), pour b = −c, donc :

∫ +∞

−∞

eat

ch ct
dt = π

2c sin

(
π

a + c

2c

) = π

2c cos

(
πa

2c

) .

5) On applique le résultat de 4) à a et à −a, et on utilise un ar-
gument de parité :

∫ +∞

0

ch at

ch ct
dt = 1

2

∫ +∞

−∞

ch at

ch ct
dt =

∫ +∞

−∞

eat + e−at

ch ct
dt

=
∫ 0

−∞

eat

ch ct
dt +

∫ +∞

0

e−at

ch ct
dt = π

c cos

(
πa

2c

) .

a) Puisque αn −−−→
n ∞

0 et que les αn sont tous � 0, il

existe σ(0) ∈ N tel que : ασ(0) < 1.

Puisque αn −−−→
n ∞

0 et que 1 − ασ(0) > 0, il existe

σ(1) > σ(0) tel que ασ(0) + ασ(1) < 1 .

De proche en proche, on construit une extractrice σ telle que :

∀ n ∈ N,

n∑
k=0

ασ(k) < 1.

Puisque la série 
∑
k�0

ασ(k) est à termes � 0 et à sommes par-

tielles majorées (par 1), d’après un théorème du cours, la série∑
n�0

ασ(n) converge.

b) Considérons la suite réelle (un)n�0 définie, pour tout n ∈ N ,

par : un = αn s’il existe k ∈ N tel que n = σ(k) , un = 0 sinon,

et considérons, pour tout n ∈ N :

fn : R −→ R, t �−→ un cos nt.

On a : ∀ n ∈ N, ∀ t ∈ R, |un cos nt | � un,

donc : ∀ n ∈ N, || fn||∞ � un .

Comme la série 
∑
n�0

un converge (d’après a)), par théorème de

majoration pour des séries à termes � 0, la série 
∑
n�0

|| fn||∞,

converge, donc 
∑
n�0

fn converge normalement, donc unifor-

mément, sur R.
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En particulier :

∀ k ∈ N, |aσ(k)( f )| + |bσ(k)( f )| = uσ(k) = ασ(k) .

Ainsi, il existe une infinité d’indices n ∈ N tels que :

|an( f )| + |bn( f )| � αn ,

puisqu’il y a même égalité.

306

D’après l’exercice 7.15, en notant 

f : R −→ R, t �−→ f (t) =
+∞∑
n=0

un cos nt ,

f est 2π-périodique, continue, et, pour tout n ∈ N :

an( f ) = un, bn( f ) = 0 .

On a alors : ∀ n ∈ N, |an( f )| + |bn( f )| = un .
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8CHAPITRE 8Équations 
différentielles

Thèmes abordés dans les exercices
• Résolution d’EDL1, avec ou sans second membre

• Étude des raccords éventuels

• Étude d’EDL1 matricielles

• Résolution de SDL1, avec ou sans second membre, à coefficients constants

• Résolution d’EDL2, avec ou sans second membre, à coefficients constants ou
variables

• Résolution de problèmes de Cauchy

• Étude qualitative de la solution maximale d’un problème de Cauchy

• Recherche de solutions dSE(0) pour une EDL1 ou une EDL2

• Résolution d’équations fonctionnelles, d’équations intégrales

• Étude d’inéquations différentielles

• Étude de propriétés qualitatives de solutions d’une EDL2.

Points essentiels du cours 
pour la résolution des exercices
• Résolution des EDL1 normalisées, sans second membre (formule du cours),

avec second membre (méthode de variation de la constante)

• Définition de la dérivée, théorème limite de la dérivée, pour l’étude des raccords

• Résolution d’un SDL1 à coefficients constants, avec ou sans second membre,
réduction des matrices carrées

• Structure et dimension de l’espace des solutions d’une EDL2, avec ou sans
second membre, normalisée, à termes continus sur un intervalle, théorème de
Cauchy et Lipschitz linéaire, et, pour PC, PSI, définition et propriétés du
wronskien de deux solutions de (E0)

• Méthode de Lagrange pour trouver une deuxième solution d’une EDL2 SSM

• Méthode de variation des constantes pour trouver une solution d’une EDL2 ASM
(PC, PSI)

• Résolution des EDL2 SSM à coefficients constants (intervention de l’équation
caractéristique), résolution des EDL2 à coefficients constants, avec second
membre exponentielle-polynôme

• Théorème de Cauchy et Lipschitz non linéaire.

Les méthodes à retenir 308

Énoncés des exercices 311

Du mal à démarrer ? 319

Corrigés 323
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Par commodité, on utilise
les abréviations suivantes :

ED : équation différentielle

EDL1 : équation différen-
tielle linéaire du premier
ordre

EDL2 : équation différen-
tielle linéaire du deuxiè-
me ordre

SDL1 : système différentiel
linéaire du premier ordre

SDL2 : système différentiel
linéaire du deuxième
ordre

SSM : sans second membre

ASM : avec second membre 
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Appliquer le cours : la solution générale de (E0) sur I est donnée

par : y : I −→ K, x �−→ λ exp
(

−
∫

a(x) dx
)
, λ ∈ K.

• Résoudre d’abord l’EDL1 SSM associée (E0), cf. ci-dessus.
D’après le cours, la solution générale de (E) est la somme d’une
solution particulière de (E) et de la solution générale de (E0).
Il reste donc à chercher une solution particulière de (E).

• Chercher une solution particulière de (E).

∗ Il se peut que (E) admette une solution évidente.

➥ Exercice 8.21

∗ Sinon, appliquer la méthode de variation de la constante qui,
connaissant une solution y0 de (E0) autre que la fonction nulle,
consiste à chercher une solution particulière y de (E) sous la forme
y = λy0 , où λ est la nouvelle fonction inconnue.

➥ Exercice 8.23

• On peut quelquefois grouper des termes de (E) pour faire apparaître
une dérivée d’une fonction simple.

➥ Exercice 8.1.

Résoudre (e) sur des intervalles sur lesquels α ne s’annule pas, puis
étudier les raccords, par continuité, par dérivabilité.

➥ Exercice 8.1.

Les méthodes à retenir

Pour résoudre 
une EDL1 SSM normalisée

(E0) y′ + ay = 0,

où a : I −→ K est continue sur
l’intervalle I, et y : I −→ K est 
l’inconnue supposée dérivable sur I

Pour résoudre une EDL1 ASM 
normalisée

(E)   y′ + ay = b,

où a,b : I −→ K sont continues sur
l’intervalle I, et y : I −→ K est 
l’inconnue, supposée dérivable sur I

Pour résoudre
une EDL1 ASM non normalisée

(e)   αy′ + βy = γ ,

où α,β, γ : I −→ K
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Écrire la matrice A du système.

• Si A est diagonalisable, d’après le cours, la solution générale 

de (S0) est donnée par : X : t �−→
n∑

k=1

Ck eλk t Vk, où λ1,. . . ,λn

sont les valeurs propres de A , comptées avec leur ordre de multi-
plicité, (V1,. . . ,Vn) est une base de vecteurs propres respectivement
associés à λ1,. . . ,λn , et C1,. . . ,Cn ∈ K.

➥ Exercice 8.4

• Si A n’est pas diagonalisable, trigonaliser A , en passant éventuel-
lement par les complexes, A = PT P−1 , où P ∈ GLn(K) ,
T ∈ Tn,s(K) . Noter Y = P−1 X , se ramener à Y ′ = T Y, résoudre en
cascade, et revenir à X par X = PY. Le calcul de P−1 n’est pas
nécessaire. 

• Si (S) possède une solution évidente, résoudre le SDL1 SSM asso-
cié (S0) , la solution générale de (S) étant la somme d’une solution
particulière de (S) et de la solution générale de (S0) .

➥ Exercice 8.6

• Si (S) n’a pas de solution évidente, diagonaliser ou trigonaliser la
matrice A de (S). Si, par exemple, A = P D P−1 où P ∈ GLn(K),

D ∈ Dn(K) , noter Y = P−1 X, C = P−1 B , se ramener à
Y ′ = DY + C, résoudre, et revenir à X par X = PY. Le calcul de
P−1 est ici nécessaire, pour exprimer C.

➥ Exercices 8.5, 8.30.

Si a, b sont des constantes, on sait, d’après le cours, exprimer la
solution générale de (E0), en utilisant l’équation caractéristique, cf.
Méthodes et exercices MPSI, ch. 10.
Sinon :

• Essayer de trouver deux solutions particulières de (E0), évidentes
ou simples, (y1,y2), formant famille libre. La solution générale 
de (E0) sur I est alors λ1 y1 + λ2 y2, (λ1,λ2) ∈ K

2 .

➥ Exercices 8.8, 8.11, 8.13

• Sinon, essayer de trouver une solution évidente ou simple y1 de
(E0) (un polynôme, une exponentielle, ...) ne s’annulant en aucun
point de I , puis appliquer la méthode de Lagrange, qui consiste à
chercher une deuxième solution particulière de (E0) sous la forme
y2 = λy1, où λ est une fonction inconnue (non constante). La solu-
tion générale de (E0) est alors λ1 y1 + λ2 y2, (λ1,λ2) ∈ K

2.

➥ Exercices 8.12, 8.34

• Suivant les éventuelles indications de l’énoncé, utiliser un change-
ment de variable et/ou un changement de fonction inconnue, ou
toute autre indication permettant de trouver une première solution.

➥ Exercices 8.7, 8.9 à 8.11, 8.33, 8.36.

Pour résoudre un SDL1 SSM,
à coefficients constants (S0)

Pour résoudre un SDL1 ASM,
à coefficients constants (S)

Pour résoudre une EDL2 SSM,
normalisée

(E0) y′′ + ay′ + by = 0,

où a,b,: I −→ K sont continues sur
l’intervalle I,
et y : I −→ K est l’inconnue,
supposée deux fois dérivable sur I
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Résoudre d’abord l’EDL2 SSM associée (E0), cf. ci-dessus.
D’après le cours, la solution générale de (E) est la somme d’une solu-
tion particulière de (E) et de la solution générale de (E0).
Il reste donc à trouver une solution particulière de (E0).

• Chercher une solution de (E), évidente ou simple, ou d’une forme
suggérée par l’énoncé.

• Si (E0) est à coefficients constants et si g est une exponentielle-
polynôme, chercher une solution de la même forme, cf. Méthodes
et exercices MPSI, ch. 10.

• Sinon, appliquer la méthode de variation des constantes, qui consis-
te, connaissant une base (y1,y2) du K-espace vectoriel des solutions
de (E0), à chercher une solution particulière de (E) sous la forme
y = λ1 y1 + λ2 y2 , où λ1,λ2 : I −→ K sont des fonctions incon-
nues, supposées dérivables sur I , en imposant λ′

1 y1 + λ
′
2 y2 = 0. On

résout le système d’équations 

{
λ

′
1 y1 + λ

′
2 y2 = 0

λ
′
1 y′

1 + λ
′
2 y′

2 = g
d’inconnues

λ
′
1,λ

′
2 (où g est le second membre de (E) normalisée). On déduit

λ1,λ2, puisy = λ1 y1 + λ2 y2 .

➥ Exercices 8.15, 8.16.

Résoudre (e) sur des intervalles sur lesquels α ne s’annule pas, puis
étudier les raccords, par continuité, par dérivée première, par dérivée
seconde.

➥ Exercices 8.8, 8.11.

Il faut aussi changer de fonction inconnue. Poser z(t) = y(x),
Calculer y(x), y′(x), y′′(x) (si nécessaire) en fonction de x, z(t),
z′(t), z′′(t), reporter dans (E), et se ramener à une ED (F) d’inconnue
z : t �−→ z(t). Pour que la méthode ait un intérêt, il faut que (F) soit
plus simple que (E).
Si (E) est une EDL2 à coefficients variables, souvent (F) sera une
EDL2 à coefficients constants.

➥ Exercices 8.10, 8.33, 8.38.

D’une part, montrer, par application du théorème de Cauchy et
Lipschitz, que (C) admet une solution maximale et une seule. D’autre
part, calculer une solution y de (C), en imposant éventuellement une
condition du genre : y ne s’annule en aucun point.

➥ Exercices 8.20, 8.27 à 8.29.

Souvent, raisonner par l’absurde, et montrer qu’alors on pourrait pro-
longer strictement y en une solution de (C), ce qui contredirait la
maximalité de y .

➥ Exercices 8.40, 8.47, 8.48, 8.52.

Pour résoudre une EDL2 ASM
normalisée

(E)   y′′ + ay′ + by = g,

où a,b,g : I −→ K sont continues
sur l’intervalle I,
et y : I −→ K est l’inconnue,
supposée deux fois dérivable sur I

Pour résoudre une EDL2 ASM,
non normalisée

(e)   αy′′ + βy′ + γy = δ

Pour effectuer un changement de
variable t = ϕ(x) dans une ED (E)
d’inconnue y : x �−→ y(x)

Pour calculer la solution maximale
d’un problème de Cauchy (C),
quand c’est possible

Pour étudier qualitativement la
solution maximale d’un problème
de Cauchy, par exemple pour 
préciser la nature de l’intervalle de
définition de la solution maximale

PC-PSI
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Déterminer d’abord toutes les solutions de l’ED, puis, parmi ces solu-
tions, chercher celle (celles) qui satisfait (satisfont) la condition sup-
plémentaire.

➥ Exercice 8.13.

Essayer de se ramener à une ED, en utilisant la dérivation.

➥ Exercices 8.26, 8.37, 8.41.

Supposer que y : x �−→ y(x) est dSE(0), y(x) =
+∞∑
n=0

an xn.

Remplacer, dans (E), y(x), y′(x), y′′(x) (si nécessaire) par des
sommes de séries entières, puis identifier en utilisant un argument
d’unicité pour le DSE(0) du second membre. En déduire an en fonc-
tion de n. Réciproquement, considérer la série entière obtenue, mon-
trer que son rayon est > 0 ; sa somme vérifie (E) d’après le calcul
direct, si celui-ci a été mené par équivalences logiques successives.

➥ Exercice 8.35.

Penser à utiliser le théorème de Cauchy et Lipschitz linéaire et/ou à
faire intervenir le wronskien (PC, PSI) de deux solutions de (E).

➥ Exercices 8.42 b), 8.43, 8.44.
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Pour déterminer une ou des 
solutions d’une ED satisfaisant 
une condition supplémentaire

Pour résoudre 
une équation fonctionnelle
ou une équation intégrale

Pour trouver 
des solutions y d’une ED (E) 
développables en série entière en 0

Pour résoudre des exercices 
abstraits sur des EDL2

Énoncés des exercices

Exemple d’EDL1 non normalisée

Résoudre l’ED (E) xy′ + y = Arctan x, d’inconnue y : R −→ R dérivable sur R. 

Étude d’inéquations différentielles linéaires du premier ordre

Soient a,b : [0 ;+∞[−→ R continues, y,z : [0 ;+∞[−→ R dérivables telles que :

y′ � ay + b, z′ � az + b, y(0) � z(0) .

Montrer : y � z.

À cet effet, considérer U = e−A(y − z), où A désigne une primitive de a sur [0 ;+∞[. 

Équation différentielle d’une famille de fonctions

On note, pour λ ∈ R, yλ : R −→ R, x �−→ yλ(x) = sh x + λ

ch x
.

Former une EDL1 normalisée satisfaite par toutes les yλ, c’est-à-dire trouver deux applications
a,b : R −→ R continues telles que : ∀λ ∈ R, y′

λ
+ ayλ = b . 

8.1

8.2

8.3
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Exemple de SDL1 SSM, à coefficients constants, à matrice diagonalisable

Résoudre le SDL1 : (S)




x ′ = 2x − 2y + z

y′ = 2x − 3y + 2z

z′ = −x + 2y

d’inconnues x,y,z : R −→ R dérivables 

(la variable sera notée t). 

Exemple de SDL1 ASM, à coefficients constants, à matrice diagonalisable

Résoudre le SDL1 : (S)




x ′ = −x + y − z + t + 1

y′ = −4x + 3y − 4z + 4t + 1

z′ = −2x + y − 2z + 2t + 1

d’inconnues x,y,z : R −→ R dérivables (la variable étant notée t). 

Exemple de SDL1 ASM, à coefficients constants, à matrice diagonalisable

Résoudre le SDL1 (S)




x ′ = −x + y + z − 1

y′ = x − y + z − 1

z′ = x + y − z − 1

d’inconnues x,y,z : R −→ R dérivables 

(la variable sera notée t). 

Résolution d’une EDL2 SSM par changement de fonction inconnue

Résoudre l’EDL2 : (E0) (x2 + 1)y′′ − (3x2 − 4x + 3)y′ + (2x2 − 6x + 4)y = 0,

d’inconnue y : R −→ R deux fois dérivable, en utilisant le changement de fonction inconnue

z = (x2 + 1)y. 

Résolution d’une EDL2 SSM par recherche d’une solution polynomiale, étude de raccord

Résoudre l’EDL2 : (e) x(x2 + 3)y′′ − (4x2 + 6)y′ + 6xy = 0,

d’inconnue y : R −→ R deux fois dérivable, sur tout intervalle ouvert non vide I de R. À cet effet,
on pourra chercher des solutions polynomiales.

Préciser la dimension de l’espace vectoriel SI des solutions de (e) sur I. 

Résolution d’une EDL2 SSM par changement de variable

Résoudre l’EDL2 : (E) (1 − x2)y′′ − xy′ + y = 0, d’inconnue y : ] − 1 ; 1[−→ R deux
fois dérivable, à l’aide du changement de variable défini par t = Arcsin x .

Résolution d’une EDL2 SSM par changement de variable puis changement de fonction
inconnue

Résoudre l’EDL2 : (E) x4 y′′ − y = 0, d’inconnue y : ]0 ;+∞[−→ R deux fois dérivable,

en utilisant le changement de variable t = 1

x
, puis le changement de fonction inconnue

u(t) = t z(t), où z(t) = y(x). 

Résolution d’une EDL2 SSM par recherche de deux solutions particulières, étude de raccord

Résoudre l’EDL2 : (e) xy′′ + (x − 2)y′ − 2y = 0, d’inconnue y : I −→ R deux fois déri-
vable sur I, sur tout intervalle ouvert I de R. À cet effet, on pourra chercher une solution particu-
lière polynomiale et une solution particulière de la forme x �−→ eαx , α ∈ R . 

8.4

8.5

8.6

8.7

8.8

8.9

8.10

8.11

PSI-PT

PSI-PT
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Résolution d’une EDL2 SSM par solution évidente et méthode de Lagrange

Résoudre l’EDL2 : (E) x2(x + 1)y′′ − x(x2 + 4x + 2)y′ + (x2 + 4x + 2)y = 0
d’inconnue y : ]0 ;+∞[−→ R deux fois dérivable. 

Résolution d’un problème de Cauchy linéaire d’ordre 2

Déterminer toutes les applications y : ] − 1 ; 1[−→ R deux fois dérivables, telles que :
∀ x ∈ ] − 1 ; 1[, (1 − x2)y′′(x) + 2xy′(x) − 2y(x) = 0, y(0) = 3, y′(0) = 4.

À cet effet, on pourra chercher des solutions polynomiales de l’ED. 

Étude d’une EDL2 SSM avec une condition initiale

On considère le problème : (P)

{
y′′ − xy′ + y = 0 (E)

y′′(0) = 0
d’inconnue y : R −→ R deux fois dérivable.

a) Montrer que, si y est solution de (E), alors y est trois fois dérivable et y(3) = xy′′.

b) En déduire l’ensemble S des solutions de (P). 

Résolution d’une EDL2 ASM, méthode de variation des constantes

Résoudre l’EDL2 : (E) y′′ + y = 1

cos x
, d’inconnue y : ] − π/2 ;π/2[−→ R, deux fois

dérivable. 

Résolution d’un problème de Cauchy linéaire d’ordre 2

Résoudre le problème de Cauchy : (P)

{
y′′ + y = tan2x (E)

y(0) = 0, y′(0) = 0

d’inconnue y : ] − π/2 ;π/2[−→ R deux fois dérivable. 

Résolution d’une EDL4 SSM, à coefficients constants, par deux méthodes

On considère l’EDL4 : (E) y(4) − 2y′′ + y = 0, d’inconnue y : R −→ R quatre fois dérivable.

a) Résoudre (E) en admettant que les résultats du cours sur les EDL2 SSM à coefficients constants
sont aussi valables, de façon analogue, à l’ordre 4.

b) 1) Est-ce que x �−→ ex est solution de (E) ?

2) En notant z : R −→ R, x �−→ y(x) e−x , montrer que (E) se ramène à une EDL2 d’inconnue
z′′ et en déduire une résolution de (E). 

Former une EDL2 pour laquelle des fonctions données sont solutions

Soient I un intervalle de R (non vide ni réduit à un point), y1,y2 : I −→ R de classe C2, telles
que l’application w, définie par w = y1 y′

2 − y′
1 y2, ne s’annule en aucun point de I. Montrer qu’il

existe un couple unique (p,q) d’applications continues de I dans R tel que y1 et y2 soient solu-
tions sur I de l’EDL2 (E0) y′′ + py′ + qy = 0, et calculer ce couple (p,q). 

Obtention de propriétés des solutions d’une EDL2 à l’aide d’une fonction auxiliaire

Montrer que toutes les solutions y de   (E) y′′ + ex y = 0 sur [0 ;+∞[sont bornées. À cet effet,
on pourra considérer U = y2 + e−x y′ 2 . 

Exemple de problème de Cauchy

Trouver toutes les y : ]0 ;+∞[−→ R dérivables telles que :




y′ = y

x + y2

y(2) = 1.©
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8.12

8.13

8.14

8.15

8.16

8.17

8.18

8.19

8.20

PC-PSI

PC-PSI
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Étude d’une EDL1

Déterminer l’ensemble a ∈ R tels qu’il existe f : [0 ;+∞[−→ R dérivable telle que :

∀ x ∈ [0 ;+∞[,
(

f ′(x) = f (x) − x2 + x et f (x) > 0
)
, f (1) = a.

Exemple d’inéquation différentielle du premier ordre

Soit f : [0 ;+∞[−→ R de classe C1 telle que : ∀ x ∈ [0 ;+∞[, x f ′(x) + 2 f (x) � 4x2.

Démontrer : ∀ x ∈ [0 ;+∞[, f (x) � x2.

Exemple d’équation se ramenant à une EDL1

Soit a ∈ R . Déterminer l’ensemble des applications f : R −→ R , de classe C1, telles que :

∀ x ∈ R − {a}, f (x) − f (a)

x − a
= 1

2

(
f ′(x) + f ′(a)

)
.

Étude de solutions d’une EDL1 matricielle SSM à coefficients constants

Soient n ∈ N
∗, A ∈ Mn(C). On considère l’ED (E) X ′ = AX , d’inconnue X : R −→ Mn,1(C)

dérivable. Soient α,β ∈ C, U,V ∈ Mn,1(C) . On note :

F : R −→ Mn,1(C)

t �−→ eαtU
, G : R −→ Mn,1(C)

t �−→ eβt V
, H = F + G .

Montrer que F et G sont solutions de (E) sur R si et seulement si H est solution de (E) sur R. 

Étude d’un problème de Cauchy linéaire SSM à coefficients constants

Montrer que le problème de Cauchy linéaire {
x ′ = −x + y, y′ = −y + z, z′ = −z + x

x(0) = 1, y(0) = j, z(0) = j2,

d’inconnues x,y,z : R −→ C dérivables, admet une solution et une seule, notée (x,y,z), et que,
pour tout t ∈ R, les points x(t), y(t), z(t) forment, dans le plan complexe, un triangle équilatéral
direct.

À cet effet, on pourra considérer U = x + jy + j2z. 

Exemple d’équation intégrale

Trouver toutes les applications f : ] − 1 ; 1[−→ R continues telles que :

∀ x ∈ ] − 1 ; 1[, f (x) = 1 +
∫ x

0

(
f (t)

)2
dt .

Exemple de résolution d’un problème de Cauchy, équation de Riccati

Déterminer la solution maximale y du problème de Cauchy :

(C) y′ = − 3

x
y + xy2 et y(2) = 1

3
.

Exemple de résolution d’un problème de Cauchy, équation incomplète en x

Montrer que le problème de Cauchy (C)

{
y′ + cos y = 0

y(π) = 0
admet une solution maximale et une

seule, et déterminer celle-ci. 

8.21

8.22

8.23

8.24

8.25

8.26

8.27

8.28
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Exemple d’étude d’un problème de Cauchy

Déterminer l’ensemble des c ∈ ]0 ;+∞[ tels qu’il existe y : [0 ; 1] −→ R dérivable telle que :
y′ = −(c2 + y2) et y(1) = 0.

Résolution d’un SDL1 SSM à coefficients constants, à matrice non diagonalisable

Résoudre le SDL1 : (S) x ′ = 2x − y + 2z, y′ = 10x − 5y + 7z, z′ = 4x − 2y + 2z

d’inconnues x,y,z : R −→ R dérivables. 

Étude d’un SD non linéaire

a) Montrer que le problème de Cauchy 

(C) x ′ = (t − 1)xy − 2

3
x + 1

3
y, y′ = (2t + 1)xy − 4

3
x + 2

3
y, x(0) = 1, y(0) = 1

admet une solution maximale et une seule, notée (x,y).

b) Établir que l’application z : t �−→ (2t + 1)x(t) − (t − 1)y(t) est constante et calculer cette
constante. 

Recherche de solutions dSE(0) pour une EDL1

On considère l’EDL1 : (E) (1 − x)y′ + y = g, où g : ] − 1 ; 1[−→ R est donnée, continue,
et y : ] − 1 ; 1[−→ R est l’inconnue, dérivable.

On note : (E0) (1 − x)y′ + y = 0.

a) Résoudre (E0).

b) On suppose, dans cette question, que g est développable en série entière en 0, g(x) =
+∞∑
n=0

bn xn,

de rayon � 1. Montrer que (E) admet au moins une solution y développable en série entière en 0,

y(x) =
+∞∑
n=0

an xn,de rayon � 1, et montrer :

a1 = −a0 + b0 et

(
∀ n � 2, an = 1

n(n − 1)

n−1∑
k=0

kbk

)
.

c) On suppose, dans cette question : ∀ x ∈ ] − 1 ; 1[, g(x) = − ln

(
1 − x

2

)
.

En utilisant b), déterminer une solution y de (E) sous forme d’une somme de série entière, puis
exprimer y à l’aide de fonctions usuelles. 

Résolution d’une EDL2 ASM par changement de variable

Résoudre l’ED   (E) x2 y′′ − 2y = x2 ln x, d’inconnue y : ]0 ;+∞[−→ R deux fois déri-
vable, par le changement de variable t = ln x. 

Résolution d’une EDL2 SSM par recherche d’une solution polynomiale

Résoudre l’ED       (E) x(x2 − 1)y′′ − 2(x2 − 1)y′ + 2xy = 0,

d’inconnue y : ]1 ;+∞[−→ R deux fois dérivable, sachant qu’il existe une solution polynomiale
autre que la fonction nulle. 

Recherche des solutions dSE(0) d’une EDL2 ASM

a) Trouver les solutions dSE(0) de l’ED       (e) x2 y′′ + 6xy′ + (6 − x2)y = −1.

b) Exprimer la (ou les) fonction obtenue en a) à l’aide des fonctions usuelles. ©
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Résolution d’une EDL2 ASM par diverses méthodes

On considère l’ED : (E) xy′′ − 2(x − 1)y′ + (x − 2)y = x ex ,

d’inconnue y : ]0 ;+∞[−→ R deux fois dérivable. Résoudre (E) par trois méthodes :

1) à l’aide du changement de fonction inconnue z = e−x y

2) à l’aide du changement de fonction inconnue u = y′ − y

3) en cherchant des solutions particulières de l’EDL2 SSM associée (E0) sous la forme
x �−→ xα ex, où α ∈ Z est une constante à choisir, puis en appliquant la méthode de variation des
constantes. 

Exemple d’équation fonctionnelle se ramenant à une EDL2

Trouver toutes les applications f : [−1 ; 1] −→ R dérivables telles que :

∀ t ∈ R, f ( cos t) = ( cos t) f ′( sin t) .

Exemple de SD1 non linéaire se ramenant à des EDL2

Trouver tous les couples ( f,g) d’applications de ]0 ;+∞[ dans R, dérivables, telles que :

∀ x ∈ ]0 ;+∞[,

(
f ′(x) = − g(x)

x
et g′(x) = − f (x)

x

)
.

Exemple d’EDL2 matricielle

Soient n ∈ N
∗, S ∈ S++

n . Montrer que toutes les solutions X : R −→ Mn,1(R) de l’EDL
X ′′ + SX = 0 sont bornées. 

Étude qualitative des solutions d’un problème de Cauchy

a) Montrer que le problème de Cauchy (C)

{
y′ = 2x + y2

y(0) = 0
admet une solution maximale et une

seule, notée f .

b) Montrer que f est de classe C∞ au voisinage de 0 et former le développement limité à 
l’ordre 11 en 0 de f. 

Exemple d’équation intégrale, équation de convolution

Trouver toutes les applications f : R −→ R continues telles que :

∀ x ∈ R, f (x) = −1 −
∫ x

0
(2x − t) f (t) dt .

Zéros des solutions d’une EDL2

Soient I un intervalle de R (ni vide ni réduit à un point), p : I −→ R continue sur I.

a) Soit z : I −→ R une application dérivable telle que z′ + pz > 0. Montrer que z admet au plus
un zéro dans I.

b) Soient q : I −→ R continue telle que q < 0, y : I −→ R deux fois dérivable, autre que l’ap-
plication nulle, telle que y′′ + py′ + qy = 0. Montrer que yy′ admet au plus un zéro dans I.

Parité, imparité de solutions d’une EDL2

Soient p : R −→ R continue impaire, q : R −→ R continue paire.

On considère l’ED   (E0) y′′ + py′ + qy = 0, d’inconnue y : R −→ R deux fois dérivable.
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a) Montrer que, pour toute solution f de (E0) sur R, l’application g : R −→ R

x �−→ f (−x)
symétrisée 

de f, est aussi solution de (E0).

b) 1) Montrer qu’il existe une solution f1 de (E0) unique telle que :

f1(0) = 1, f ′
1(0) = 0, f1 est  paire.

2) Montrer qu’il existe une solution f2 de (E0) unique telle que :

f2(0) = 0, f ′
2(0) = 1, f2 est impaire.

3) Établir que ( f1, f2) est une base du R-ev S0 des solutions de (E0) sur R. 

Étude de solutions d’une EDL2

On note S0 l’ensemble des solutions y : ]0 ;+∞[−→ R de l’ED :

(E0) y′′ + y′ −
(

x + 1 + 1

x

)
y = 0 .

a) Montrer que S0 est un plan vectoriel inclus dans C∞( ]0 ;+∞[,R).

b) Montrer que l’ensemble S = {
y ∈ S0 ; y(1) = 2

}
est une droite affine.

c) Soit y ∈ S. Calculer la courbure γy de la courbe représentative de y en le point d’abscisse 1, en

fonction de y′(1).

d) Quelle est la valeur maximale de γy lorsque y décrit S ? En donner une valeur approchée à 

10−3 près. 

Étude d’une inéquation différentielle du deuxième ordre

Soient (a,b) ∈ R
2 tel que 0 < a < b, f : [0 ;+∞[−→ R de classe C2 telle que :

∀ x ∈ [0 ;+∞[, a2 f (x) � f ′′(x) � b2 f (x) .

Montrer, pour tout x ∈ [0 ;+∞[ :

f (0) ch (ax) + f ′(0)
sh (ax)

a
� f (x) � f (0) ch (bx) + f ′(0)

sh (bx)

b
.

Résolution d’une ED2 non linéaire avec conditions initiales

Trouver tous les couples (I,y) où I est un intervalle ouvert de R tel que 0 ∈ I et y : I −→ R deux

fois dérivable sur I telle que :

{
yy′′ + y′ 2 = 0

y(0) = 1, y′(0) = 1.

Étude qualitative des solutions maximales d’une ED non linéaire

Soit f : R
2 −→ R une application de classe C1 et bornée. Montrer que toute solution maximale

de l’ED  (E) y′ = f (x,y) est définie sur R. 

Étude qualitative de la solution maximale d’un problème de Cauchy

On considère le problème de Cauchy (C) suivant : y′ = 1

1 + x2 + y2
et y(0) = 0,

où la variable (réelle) est notée x et la fonction inconnue (à valeurs réelles) est notée y.

1) Montrer que (C) admet une solution maximale et une seule, encore notée y.

Que peut-on dire de l’intervalle de définition I de y ?

Que peut-on dire de toute solution de (C), vis-à-vis de la solution maximale y ?©
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2) Établir que I est symétrique par rapport à 0 et que y est impaire.

On pourra, à cet effet, considérer J = {x ∈ R ;−x ∈ I } et z : J −→ R

x �−→ −y(−x)
.

On note encore y la restriction de l’application précédente à I ∩ [0 ;+∞[.

3) Montrer que y est strictement croissante, à valeurs � 0, majorée.

4) Établir que l’extrémité droite de l’intervalle de définition de y est +∞ .

5) Démontrer que y admet en +∞ une limite finie, notée 
 , et que : 0 < 
 <
π

2
.

6) Montrer que y est de classe C∞ et concave sur [0 ;+∞[.

7) Tracer l’allure de la courbe représentative de y.

On précisera la demi-tangente en O et la concavité.

8) Montrer que y admet un développement limité à l’ordre 5 en 0 et calculer celui-ci. 

Étude de périodicité pour les solutions d’un SDL1

Soient T ∈ ]0 ;+∞[, A : R −→ Mn(C) continue, T -périodique. On considère l’ED
(E0) X ′ = AX, d’inconnue X : R −→ Mn,1(C) dérivable sur R. Montrer qu’il existe une solu-
tion X de (E) sur R autre que l’application nulle, et λ ∈ C tels que :

∀ t ∈ R, X (t + T ) = λX (t) .

Étude d’une ED matricielle non linéaire

Soient a ∈ ]0 ;+∞[, n ∈ N
∗, A ∈ GLn(R), X : ] − a ; a[−→ Mn(R) dérivable telle que :{∀ t ∈ ] − a ; a[, X ′(t)X (t) = A

X (0) = In .

a) Démontrer : ∀ t ∈ ] − a ; a[, X (t)A = AX (t).

b) On suppose ici, de plus, que A est symétrique. Démontrer que, pour tout t ∈ ] − a ; a[ , X (t)
est symétrique. 

Inégalité sur des intégrales relatives à des solutions d’une EDL2

On note S0 l’ensemble des applications y : R −→ R deux fois dérivables sur R et solutions sur R

de l’EDL2 : (E0) y′′ − x2 y′ + y = 0.

Montrer qu’il existe α ∈ R
∗
+ tel que : ∀ y ∈ S0,

∫ 0

−1
|y′′ − y′| � α

∫ 1

0
|y′′ + y′|.

Étude de périodicité pour des solutions d’une EDL2 SSM

Soient T ∈ ]0 ;+∞[, f : R −→ C T-périodique et continue, (y1,y2) une base du C-espace vec-
toriel des solutions sur R de l’EDL2 SSM : (E0) y′′ + f y = 0.

a) Montrer qu’il existe (α1,β1,α2,β2) ∈ C
4 unique tel que :

∀ k ∈ {1,2}, ∀ x ∈ R, yk(x + T ) = αk y1(t) + βk y2(t) .

b) Démontrer que la matrice A =
(
α1 β1

α2 β2

)
est inversible. 
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Remarquer : xy′ + y = (xy)′ .

Étudier la dérivabilité en 0 de la fonction obtenue.

Calculer U ′ et montrer :U ′ � 0 .

Calculer y ′
λ

et obtenir une relation simple liant yλ et y ′
λ

.

Il s’agit d’un SDL1 SSM, à coefficients constants. Montrer

que la matrice de (S) est diagonalisable et la diagonaliser.

Appliquer enfin la formule du cours donnant la solution géné-

rale.

Il s’agit d’un SDL1 ASM, à coefficients constants. Montrer

que la matrice A de (S) est diagonalisable et la diagonaliser :

A = P D P−1 , avec les notations usuelles.

Noter X =



x

y

z


 , B(t) le second membre, U = P−1 X ,

C = P−1 B , et se ramener à la résolution de l’équation
U ′ = DU + C.

Il s’agit d’un SDL1 ASM, à coefficients constants. Montrer

que la matrice A de (S) est diagonalisable et déterminer valeurs

propres et sous-espaces propres. Remarquer une solution évi-

dente de (S).

1re méthode : Calculer z, z′, z′′ en fonction de x, y, y′, y′′

et grouper convenablement des termes dans l’équation (E) pour

faire apparaître z′′, z′, z . Se ramener à une EDL2 SSM à coeffi-

cients constants.

2e méthode : Calculer y, y′, y′′ en fonction de x, z, z′, z′′ et

reporter dans (E).

Il s’agit d’une EDL2 SSM non normalisée. Chercher une

solution polynomiale en cherchant d’abord son degré. Obtenir

ainsi deux solutions polynomiales formant famille libre. En

déduire la solution générale de (E) sur ] − ∞; 0[ et sur

]0 ;+∞[ . Étudier le raccord en 0.

Noter t = Arcsin x (donc x = sin t ) et y(x) = z(t) .

Calculer y(x), y′(x), y′′(x) en fonction de x, z(t) , z′(t), z′′(t) et

reporter dans (E). Se ramener à une EDL2 SSM à coefficients

constants, d’inconnue z .

Noter t = 1

x
et z(t) = y(x) . Calculer y(x), y′(x) , y′′(x) en

fonction de x, z(t) , z′(t), z′′(t) et reporter dans (E). Se ramener

ainsi à une EDL2 (F) d’inconnue z . Noter u = t z , calculer z, z′, z′′

en fonction de t, u, u′, u′′ et reporter dans (F). Se ramener ainsi

à une EDL2 à coefficients constants, d’inconnue u.

Chercher une éventuelle solution polynomiale, en cher-

chant d’abord son degré. Chercher une solution particulière

sous la forme x �−→ eαx, α ∈ R fixé à trouver. Montrer que la

famille des deux fonctions obtenues est libre et en déduire la

solution générale de (e) sur ] − ∞; 0[ et sur ]0 ;+∞[ . Étudier le

raccord en 0.

Il s’agit d’une EDL2 SSM normalisable sur ]0 ;+∞[ .

Remarquer la solution évidente y1 : x �−→ x . Chercher une

deuxième solution par la méthode de Lagrange.

Chercher une solution polynomiale de (E), en cherchant

d’abord son degré. Obtenir deux solutions de (E) formant famil-

le libre. En déduire la solution générale de (E). Enfin, traduire les

conditions imposées en 0.

a) Exprimer y′′ en fonction de x, y, y′ .

b) Si y convient, résoudre l’EDL1 SSM d’inconnue y′′ et tenir

compte de y′′(0) = 0. En déduire y .

Ne pas oublier d’étudier la réciproque.

Il s’agit d’une EDL2 ASM, normalisée sur l’intervalle

I = ] − π/2 ;π/2[ . Résoudre l’EDL2 SSM (E0) associée, puis

appliquer la méthode de variation des constantes.

Résoudre (E) en utilisant la méthode de variation des

constantes, puis traduire la condition en 0.

a) Il s’agit d’une EDL4 SSM, à coefficients constants. Former

l’équation caractéristique et en déduire (par généralisation du

résultat à l’ordre 2) la solution générale de (E).

b) 2) Noter z = y ex , donc y = e−x z , reporter dans (E), et se rame-

ner à une EDL2 (F) d’inconnue z′′. Résoudre (F), en déduire z , puis

y . Contrôler la cohérence des réponses obtenues en a) et en b).

Résoudre le système d’inconnues p,q formé par les deux

équations vérifiées par y1,y2 .

Calculer U ′ .

1) Appliquer le théorème de Cauchy et Lipschitz.

2) Montrer que, si y ne s’annule en aucun point, l’ED se ramène

à : y′ =
(

x

y

)′
. En déduire une solution du problème de Cauchy.

Conclure.

Résoudre l’EDL1 (E)   y′ = y − x2 − x , d’inconnue

y : [0 ;+∞[−→ R dérivable. Traduire ensuite les conditions

imposées.
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Considérer U : x �−→ x2 f (x) − x4 , calculer U ′ .

Résoudre l’EDL1 SSM y′ − 2

x − a
y = 0.

En déduire le changement de fonction inconnue :

g : R − {a} −→ R, x �−→ g(x) = f (x)

(x − a)2 .

Déterminer g , puis f, et utiliser le raccord en a.

Ne pas oublier d’étudier la réciproque.

1) Un sens est immédiat.

2) Réciproquement, si H est solution de (E), dériver, prendre les

valeurs en 0 et déduire AU = αU et AV = βV , puis conclure.

D’après un exercice de Première année (Méthodes et

exercices MPSI, ex. 2.27 a)), les points x(t), y(t), z(t) forment,

dans le plan complexe, un triangle équilatéral direct si et seule-

ment si : x(t) + jy(t) + j2z(t) = 0 . Considérer U = x + jy + j2z,

calculer U ′ , et déduire U = 0 .

1) Soit f convenant. Montrer que f est de classe C1 sur

] − 1 ; 1[ et satisfait un problème de Cauchy (C). Appliquer le

théorème de Cauchy et Lipschitz pour déduire que (C) admet

une solution maximale et une seule. Chercher une solution 

de (C) ne s’annulant en aucun point. En déduire f.

2) Étudier la réciproque.

1) Appliquer le théorème de Cauchy et Lipschitz pour

obtenir l’existence et l’unicité d’une solution maximale y de (C).

2) Chercher une solution y de l’ED ne s’annulant en aucun point,

en utilisant le changement de fonction inconnue z = 1

y
.

Conclure.

1) Appliquer le théorème de Cauchy et Lipschitz pour

obtenir l’existence et l’unicité d’une solution maximale de (C).

2) Chercher une solution y de l’ED telle que cos y ne s’annule en

aucun point. En déduire la solution maximale.

Conclure.

Pour c ∈ ]0 ;+∞[ fixé, résoudre l’ED (E) 

y′ = −(c2 + y2) ,

d’inconnue y : [0 ; 1] −→ R dérivable, et traduire ensuite

y(1) = 0 .

Conclure.

Il s’agit d’un SDL1 SSM, à coefficients constants. La matri-

ce A du système n’est pas diagonalisable, mais est trigonali-

sable. Obtenir P ∈ GL3(R), T ∈ T3,s(R) telles que :

A = PT P−1 . Noter U = P−1 X , se ramener à U ′ = T U,

résoudre en cascade, puis revenir à X .

a) Appliquer le théorème de Cauchy et Lipschitz.

b) Calculer z′ .

b) Noter y =
+∞∑
n=0

an xn (de rayon > 0), reporter dans (E),

obtenir une relation entre an+1, an, bn . En considérant

un = n(n − 1)an , déduire an en fonction de n.

Réciproquement, montrer que la série entière ainsi définie est

de rayon � 1 .

c) Obtenir : ∀ x ∈ ] − 1 ; 1[, y(x) =
+∞∑
n=2

2(1 − 2−n)

n(n − 1)
xn .

Rappeler les DSE(0) des fonctions t �−→ 1

1 − t
, et 

t �−→ −ln(1 − t), et déduire, par primitivation, la somme de la

série entière 
∑
n�1

tn+1

n(n + 1)
, puis y(x).

Noter t = ln x, z(t) = y(x). Calculer y(x), y′(x) , y′′(x) en

fonction de x, z(t), z(′(t), z′′(t), et reporter dans (E). Se ramener

ainsi à une EDL2, à coefficients constants, avec second membre

exponentielle-polynôme, que l’on sait résoudre. Revenir à y .

1) Chercher une éventuelle solution polynomiale en cher-

chant d’abord le degré. Obtenir y1 : x �−→ x2 − 1 .

2) Chercher une deuxième solution de (E) par la méthode de

Lagrange.

3) Conclure.

a) Noter y =
+∞∑
n=0

an xn (de rayon > 0), reporter dans (E),

obtenir une relation de récurrence sur les an et déduire an.

Réciproquement, montrer que la série entière obtenue∑
p�0

− x2p

(2p + 3)!
, est de rayon infini.

b) Exprimer y(x), obtenu ci-dessus, à l’aide de sh x .

Ne pas oublier l’examen du cas x = 0 .

1) Noter z = e−x y , d’où y = ex z. Calculer y, y′, y′′ en fonc-

tion de x, z, z′, z′′, reporter dans (E) et se ramener à une EDL1

d’inconnue z′ . Résoudre, déduire z′ puis z , puis y .

2) Noter u = y′ − y , donc u′ = y′′ − y′ . Dans (E), grouper des

termes pour faire apparaître u et u′ . Se ramener à une EDL1 d’in-

connue u. Résoudre, déduire u, puis une EDL1 sur y , puis y .
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3) Chercher des solutions particulières de (E0) sous la forme

y : x �−→ xαex , α ∈ Z . Obtenir y1 : x �−→ ex

x
et y2 : x �−→ ex .

Appliquer la méthode de variation des constantes.

Il ne s’agit pas d’une ED, puisque l’équation fait intervenir

les valeurs de f et f ′ en deux points variables différents.

1) Soit f convenant. Noter x = sin t , montrer que f est deux fois

dérivable sur ] − 1 ; 1[, et déduire que f satisfait une EDL2 SSM,

à coefficients constants. Résoudre celle-ci et déduire f.

2) Étudier la réciproque.

1) Soit ( f,g) convenant. Montrer que f et g sont deux fois

dérivables et vérifient une EDL2 SSM d’Euler (1). Noter

t = ln x, u(t) = f (x). Calculer f (x), f ′(x), f ′′(x) en fonction

de x, u(t), u′(t), u′′(t) , et reporter dans (1). Se ramener ainsi à

une EDL2 SSM, à coefficients constants, d’inconnue u. Déduire u,

puis f, puis g .

2) Étudier la réciproque.

Utiliser le théorème spectral pour se ramener à des EDL2

SSM, à coefficients constants.

a) Appliquer le théorème de Cauchy et Lipschitz.

b) • Montrer, par récurrence sur n, que, pour tout n ∈ N, f est de

classe Cn surI .

• Utiliser le théorème de Taylor et Young pour l’existence du

DL11(0) de f.

• Calculer f (k)(0) pour k = 1, 2, 3, 4 et en déduire que le

DL11(0) de f est de la forme :

f (x) = x2 + a5x5 + · · · + a11x11 + o
x−→0

(x11) .

Reporter dans l’ED et en déduire les valeurs des coefficients

a5,. . . ,a11 .

Montrer d’abord que, si f convient, alors f est de classe C2.

Remplacer ensuite le problème par un problème équivalent, à

l’aide de dérivations.

Se ramener à l’ED y′′ + xy′ + 3y = 0 avec les conditions

y(0) = −1, y′(0) = 0 . Effectuer le changement de fonction

inconnue z = ex2/2 y .

a) Considérer u = z eP, où P est une primitive de p sur I .

Calculer u′ .

b) En notant z = yy′ , montrer d’abord z′ + pz � 0. Établir

z′ + pz > 0 , par un raisonnement par l’absurde utilisant le

théorème de Cauchy et Lipschitz linéaire. Appliquer enfin a).

b) 1) et 2) Appliquer le théorème de Cauchy et Lipschitz

linéaire.

a) • Montrer que S0 est un plan vectoriel.

• Montrer que, pour toute y ∈ S0, y est de classe C∞ , par un rai-

sonnement par récurrence.

b) Exploiter l’application 

θ : S0 −→ R
2, y �−→

(
y(1), y ′(1)

)
,

qui, d’après le cours, est une bijection linéaire.

c) Se rappeler que la courbure γy de la courbe représentative de

y en le point d’abscisse 1 est donnée par :

γy = y′′(1)(
1 + (

y′(1)
)2)3/2 .

d) Montrer que y′(1) décrit tous les réels, et étudier l’application 

γ : R −→ R, t �−→ γ (t) = 6 − t

(1 + t2)3/2
.

• Noter g = f ′′ − α2 f et calculer f en fonction de g , à l’aide

de la méthode de variation des constantes. Obtenir :

∀ x ∈ [0 ;+∞[,

f (x) = 1

a

∫ x

0
g(t) sh

(
a(x − t)

)
dt + f (0) ch ax + f ′(0)

sh ax

a
.

En déduire la première inégalité demandée.

• Pour la deuxième inégalité, appliquer le résultat précédent à

des éléments convenablement modifiés.

1) Soit (I,y) convenant. Déduire 
y2

2
= Ax + B , où A,B

sont des constantes, puis : y2 = 2x + 1.

Par un raisonnement rigoureux, utilisant le théorème des

valeurs intermédiaires, déduire :

∀ x ∈ I, y(x) = √
2x + 1 .

2) Étudier la réciproque.

Soient y une solution maximale de y′ = f (x,y) , I = ]α ;β[

l’intervalle de définition de y , où α,β vérifient

−∞ � α < β � +∞ . Raisonner par l’absurde : supposer

β ∈ R . Montrer que l’on peut prolonger alors y convenable-

ment en β , pour contredire la maximalité de y . En déduire :

β = +∞ .

1) Appliquer le théorème de Cauchy et Lipschitz.

2) Montrer que z est solution du problème de Cauchy (C).

3) Remarquer : ∀ x ∈ I ∩ [0 ;+∞[, y′(x) � 1

1 + x2
,

et déduire : ∀ x ∈ I ∩ [0 ;+∞[, y(x) � π

2
.
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4) Raisonner par l’absurde : supposer I ∩ [0 ;+∞[ = [0 ; b[, où

b ∈ R . Montrer que l’on peut prolonger convenablement y en

b, pour contredire la maximalité de y .

5) Pour obtenir l’inégalité stricte 
 <
π

2
, raisonner par l’absurde.

6) α) Montrer, par récurrence sur n, que y est de classe Cn, pour

tout n ∈ N
∗.

β) Montrer : y′′ � 0.

8) Appliquer le théorème de Taylor-Young pour obtenir l’exis-

tence du DL5(0) de y . Se rappeler que y est impaire. Procéder

par coefficients indéterminés.

L’ensemble S0 des solutions de (E0) sur R est un C-espa-

ce vectoriel de dimension finie. Montrer que l’application qui, à

tout X ∈ S0, associe t �−→ X (t + T ) , est un endomorphisme 

de S0 . Se rappeler que tout endomorphisme d’un C-ev de

dimension finie (� 1 ) admet au moins une valeur propre (et un

vecteur propre associé).

a) Montrer d’abord que, pour tout t ∈ ] − a ; a[, X (t) est

inversible. Considérer 

Y : ] − a ; a[−→ Mn(R), t �−→ Y (t) = X (t)A − AX (t) .

Calculer Y ′ . Montrer que Y est solution du problème de Cauchy

linéaire : Y ′ = −AX−1Y X−1 et Y (0) = 0,

et déduire : Y = 0 .

b) Considérer le problème de Cauchy (non linéaire) :

(C) Z ′ = AZ−1 et Z(0) = In .

Montrer que la solution maximale de (C) est un prolongement

de X . Considérer :

U : ] − a ; a[−→ Mn(R), t �−→ U(t) = tX (t)

et calculer U ′U . En déduire X = U.

L’ensemble S0 est un R-espace vectoriel de dimension 2.

Montrer que les applications N1,N2 : S0 −→ R définies, pour

tout y ∈ S0, par :

N1(y) =
∫ 0

−1
|y′′ − y′|, N2(y) =

∫ 1

0
|y′′ + y′|

sont des normes sur S0 .

Appliquer enfin le théorème d’équivalence des normes en

dimension finie.

a) Noter, pour k ∈ {1,2} :

zk : R −→ C, x �−→ yk(x + T ) .

Montrer que zk est solution de (E0) sur R. En déduire l’existen-

ce et l’unicité de (αk , βk) .

b) Noter Y : R −→ M2,1(C), x �−→
(

y1(x)

y2(x)

)
.

Montrer : ∀ x ∈ R, Y (x + T ) = AY (x).

Montrer, de même qu’en a), l’existence de B ∈ M2(C) telle 

que : ∀ x ∈ R, Y (x − T ) = BY (x).

En utilisant le wronskien de (y1,y2) , obtenir : B A = I2 .
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Soit y : R −→ R une application dérivable sur R.

On a :

(E) ∀ x ∈ R, xy′ + y = Arctan x

⇐⇒ ∀ x ∈ R, (xy)′ = Arctan x

⇐⇒ ∃ C ∈ R, ∀ x ∈ R, xy =
∫

Arctan x dx + C (F) .

En primitivant par parties :∫
Arctan x dx = x Arctan x −

∫
x

1 + x2
dx

= x Arctan x − 1

2
ln (1 + x2).

Donc (F) est équivalente à :

∃C ∈ R, ∀x ∈ R, xy(x) = x Arctan x − 1

2
ln (1 + x2) + C .

En prenant la valeur en 0, on a nécessairement C = 0. D’où :

(F) ⇐⇒ ∀ x ∈ R
∗, y(x) = Arctan x − 1

2x
ln (1 + x2) .

1) Si y convient, comme 

1

2x
ln (1 + x2) ∼

x−→0

x2

2x
= x

2
−→
x−→0

0 ,

on a alors y(0) = 0.

2) Réciproquement, considérons y : R −→ R définie, pour tout
x ∈ R , par :

y(x) =



Arctan x − 1

2x
ln(1 + x2) si x =/ 0

0 si x = 0.

Il est clair que y est dérivable sur R∗, et, d’après l’étude pré-
cédente, y est solution de (E) sur R∗.

De plus : ∀ x ∈ R
∗, y′(x) = 1

2x2
ln (1 + x2),

donc : y′(x) −→
x−→0

1

2
.

Ainsi, y est de classe C1 sur R∗, continue en 0, et y′ admet une

limite finie (égale à 
1

2
) en 0. D’après le théorème limite de la

dérivée, y est de classe C1 sur R et y′(0) = 1

2
.

Ainsi, y est dérivable sur R et vérifie (E) sur R.

On conclut que (E) admet une solution et une seule :

y(x) =



Arctan x − 1

2x
ln(1 + x2) si x =/ 0

0 si x = 0.

Puisque a est continue sur [0 ;+∞[, a admet des pri-
mitives sur [0 ;+∞[. Notons A une primitive de a sur
[0 ;+∞[, et U = e−A(y − z).

Par opérations, U est dérivable sur [0 ;+∞[ et :

U ′ = e−A(y′ − z′) − a e−A(y − z)

= e−A
(
(y′ − z′) − a(y − z)

)
= e−A

(
(y′ − ay)︸ ︷︷ ︸

� b

− (z′ − az)
)

︸ ︷︷ ︸
� b

� 0 .

Ceci montre que U est croissante sur l’intervalle [0 ;+∞[.

Comme    U(0) = e−A(0)
(

y(0) − z(0)︸ ︷︷ ︸
� 0

)
� 0,

on déduit U � 0, et on conclut : y � z.

Pour tout λ ∈ R , yλ est dérivable sur R et, pour tout
x ∈ R :

y′
λ
(x) = ch x − λ sh x

ch2x
= ch x − sh x

ch x

λ

ch x

= ch x − sh x

ch x

(
yλ(x) − sh x

)

= − sh x

ch x
yλ(x) + ch2x + sh2x

ch x
d’où :

∀ x ∈ R, y′
λ
(x) + sh x

ch x
yλ(x) = ch2x + sh2x

ch x
,

On conclut que les applications a,b : R −→ R définies, pour
tout x ∈ R , par :

a(x) = sh x

ch x
, b(x) = ch2x + sh2x

ch x
,

conviennent.

Il s’agit d’un SDL1 SSM, à coefficients constants.

La matrice de (S) est : A =

 2 −2 1

2 −3 2
−1 2 0


 .

On calcule le polynôme caractéristique (par exemple en déve-
loppant par rapport à la première colonne) et on obtient :

χA(λ) = −λ3 − λ
2 + 5λ− 3

= (λ− 1)(−λ2 − 2λ+ 3) = −(λ+ 3)(λ− 1)2.

Ainsi, les valeurs propres de A sont −3 (simple) et 1 (double).
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Déterminons les sous-espaces propres.

Soit X =

 x

y
z


 ∈ M3,1(R) .

•  X ∈ SEP (A,−3) ⇐⇒ AX = −3X

⇐⇒




5x − 2y + z = 0

2x + 2z = 0

−x + 2y + 3z = 0

⇐⇒
{

z = −x

y = 2x
,

donc : SEP (A,−3) = Vect V1 , où : V1 =

 1

2
−1


 .

• X ∈ SEP (A,1)⇐⇒AX = X⇐⇒x − 2y + z = 0,

donc SEP (A,1) = Vect (V2,V3) ,

où V2 =

 1

0
−1


 , V3 =


 2

1
0


 , par exemple.

Puisque χA est scindé que R et que la dimension de chaque sous-
espace propre est égale à l’ordre de multiplicité de la valeur
propre associée, d’après le cours, A est diagonalisable.

D’après le cours, la solution générale de (S) est donnée par :

t �−→ X (t) =
3∑

k=1

Ckeλk t Vk

= C1 e−3t


 1

2
−1


 + C2 et


 1

0
−1


 + C3 et


 2

1
0


 ,

ou encore :


x(t) = C1 e−3t + (C2 + 2C3) et

y(t) = 2C1 e−3t + C3 et

z(t) = −C1 e−3t − C2 et

(C1, C2, C3) ∈ R
3 .

Il s’agit d’un SDL1 ASM, à coefficients constants.

La matrice de (S) est : A =

−1 1 −1

−4 3 −4
−2 1 −2


 .

On calcule le polynôme caractéristique de A (par exemple 
par C1 C1 − C3, puis L3 L3 + L1) et on obtient :

χA(λ) = −(λ+ 1)λ(λ− 1).

Il en résulte que A admet trois valeurs propres simples, qui sont
−1, 0, 1, et, comme A est d’ordre trois, d’après le cours, on
conclut que A est diagonalisable.

On calcule des vecteurs propres associés, et on obtient, par

exemple,


 0

1
1


 ,


 1

0
−1


 ,


 1

2
0


 .

Ainsi, A = P D P−1, où :

P =

 0 1 1

1 0 2
1 −1 0


 , D =


−1 0 0

0 0 0
0 0 1


 .

Comme (S) est un système avec second membre et que (S) n’ad-
met pas de solution évidente (on pourrait cependant chercher
une solution où x, y, z seraient des polynômes de degrés � 2),

on calcule P−1 et on obtient :

P−1 =

 2 −1 2

2 −1 1
−1 1 −1


 .

Notons X =

 x

y
z


 , B(t) =


 t + 1

4t + 1
2t + 1


 . On a alors :

X ′ = AX + B ⇐⇒ X ′ = P D P−1 X + B

⇐⇒ P−1 X ′ = D P−1 X + P−1 B.

Notons U = P−1 X =

 u

v

w


 , C = P−1 B =


 2t + 3

2
t − 1


 .

Alors :

X ′ = AX + B ⇐⇒ U ′ = DU + C

⇐⇒

 u′

v′

w′


 =


−1 0 0

0 0 0
0 0 1





 u

v

w


 +


 2t + 3

2
t − 1




⇐⇒




u′ = −u + 2t + 3

v′ = 2

w′ = w + (t − 1).

La résolution de chacune de ces trois EDL1 ASM à coefficients
constants est immédiate, et on obtient :

X ′ = AX + B

⇐⇒ ∀ t ∈ R,




u(t) = 2t + 1 + C1 e−t

v(t) = 2t + C2

w(t) = −t + C3 et

(C1, C2, C3) ∈ R
3 .

Enfin :

X = PU =

 0 1 1

1 0 2
1 −1 0





 2t + 1 + C1 e−t

2t + C2

−t + C3 et


 ,

donc la solution générale de (S) est donnée par :



x(t) = t + C2 + C3 et

y(t) = 1 + C1 e−t + 2C3 et

z(t) = 1 + C1 e−t − C2

(C1, C2, C3) ∈ R
3 .
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Il s'agit d'un système différentiel linéaire à coefficients
constants. En notant   

A =

−1 1 1

1 −1 1
1 1 −1


 , X =


 x

y
z


, B =


−1

−1
−1


,

(x,y,z) est solution du système différentiel proposé si et 
seulement si X est solution de l'équation différentielle (matri-
cielle) :

X ′ = AX + B .

La matrice A est diagonalisable dans M3(R) et un calcul élé-
mentaire (ou la calculatrice) fournit :

A = P D P−1,

où    P =

 1 1 1

1 −1 0
1 0 −1


 , D =


 1 0 0

0 −2 0
0 0 −2


 .

La solution générale de l'ED sans second membre X ′ = AX
est, d'après le cours :

X : t �−→ λet


 1

1
1


 + µe−2t


 1

−1
0


 + νe−2t


 1

0
−1


 ,

(λ,µ,ν) ∈ R
3.

D'autre part, l'ED avec second membre X ′ = AX + B admet

la solution évidente t �−→

 1

1
1


.

Finalement, la solution générale du système différentiel pro-
posé est :

t �−→



x(t) = 1 + λet + µe−2t + νe−2t

y(t) = 1 + λet − µe−2t

z(t) = 1 + λet − νe−2t

∣∣∣∣∣∣ , (λ,µ,ν) ∈ R
3.

Comme le suggère l’énoncé, pour y : R −→ R deux fois

dérivable, considérons z = (x2 + 1)y , qui est deux fois déri-
vable.

1re méthode :

Comme (E) commence par (x2 + 1)yz′′ , calculons z′ et zz′′ .
On a :

z = (x2 + 1)y, z′ = 2xy + (x2 + 1)y′ ,

zz′′ = 2y + 4xy′ + (x2 + 1)yz′′ ,

d’où :

(x2 + 1)yz′′ − (3x2 − 4x + 3)y′ + (2x2 − 6x + 4)y

= (zz′′ − 2y − 4xy′) − (3x2 − 4x + 3)y′ + (2x2 − 6x + 4)y

= zz′′ − 3(x2 + 1)y′ + (2x2 − 6x + 2)y

= zz′′ − 3(z′ − 2xy) + (2x2 − 6x + 2)y

= zz′′ − 3z′ + 2z .

Ainsi, y est solution de (E) si et seulement si z est solution de :
(F) zz′′ − 3z′ + 2z = 0.

L’ED (F) est une EDL2 SSM à coefficients constants. L’équation
caractéristique r2 − 3r + 2 = 0 admet deux solutions réelles
1 et 2, donc, d’après le cours, la solution générale de (F) est :

z : x �−→ λ ex + µ e2x , (λ,µ) ∈ R
2 .

On conclut que l’ensemble S des solutions de (E) est :

S =
{

y : R −→ R, x �−→ λ ex + µ e2x

x2 + 1
; (λ,µ) ∈ R

2

}
.

2e méthode :

On a y = z

x2 + 1
, d’où l’on calcule y′ et yz′′ en fonction de

z, z′, zz′′. On reporte dans (E), des termes se simplifient, et on
retrouve (F) de la première méthode.

L’ED (e) est une EDL2 SSM, non normalisée. L’ED nor-
malisée associée, sur un intervalle I ne contenant pas 0 
est :

(E) y′′ − 4x2 + 6

x(x2 + 3)
y′ + 6

x2 + 3
y = 0 .

• Cherchons une (ou des) solution particulière de (e) sous forme

de polynôme : y(x) =
n∑

k=0

ak xk , où n ∈ N , a0,. . . ,an ∈ R,

an =/ 0. Le terme de degré n + 1 dans le premier membre 
de (e) doit être nul :

n(n − 1)an − 4nan + 6an = 0 ,

d’où, puisque an =/ 0 : n2 − 5n + 6 = 0,

donc n = 2 ou n = 3.

Notons donc y(x) = ax3 + bx2 + cx + d, (a,b,c,d) ∈ R
4 .

On a alors, en calculant y′ et yz′′ et en reportant dans le 
premier membre de (e), avec des notations classiquement abu-
sives :

x(x2 + 3)yz′′ − (4x2 + 6)y′ + 6xy

= x(x2 + 3)(6ax + 2b) − (4x2 + 6)(3ax2 + 2bx + c)

+ 6x(ax3 + bx2 + cx + d)

= 2cx2 + (−6b + 6d)x − 6c.

Ainsi, y est solution de (E) sur I si et seulement si :
c = 0, d = b. Deux solutions polynomiales particulières sont
donc :

y1 : x �−→ x3, y2 : x �−→ x2 + 1 ,

obtenues pour (a, b, c, d) égal à (1, 0, 0, 0) , à (0, 1, 0, 1) res-
pectivement.

Il est clair que la famille (y1,y2) est libre.

D’après le cours, l’ensemble SI des solutions de (E) sur I est
donc :

SI =
{

y : I −→ R, x �−→ ax3 + b(x2 + 1) ; (a,b) ∈ R
2
}

.
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• Étudions le raccord en 0.

Soit I un intervalle ouvert de R, tel que 0 ∈ I.

Notons 

y : I − {0} −→ R, x �−→
{

ax3 + b(x2 + 1) si x < 0

αx3 + β(x2 + 1) si x > 0,

pour (a,b,α,β) ∈ R
4 fixé.

On a : y(x) −→
x−→0−

b et y(x) −→
x−→0+

β,

donc y est prolongeable par continuité en 0 si et seulement si
β = b.

Supposons β = b et notons y(0) = b.

Alors, y est continue sur I, dérivable sur I − {0} et :

y′(x) =
{

3ax2 + 2bx si x < 0

3αx2 + 2bx si x > 0.

Comme : y′(x) −→
x−→0−

0 et y′(x) −→
x−→0+

0,

d’après le théorème limite de la dérivée, y est de classe C1

sur I.

L’application y est de classe C2 sur I − {0} et :

y′′(x) =
{

6ax + 2b si x < 0

6αx + 2b si x > 0.

Comme : y′′(x) −→
x−→0−

2b et yz′′(x) −→
x−→0+

2b,

d’après le théorème limite de la dérivée (appliqué à y′), y est
de classe C2 sur I.

De plus, y satisfait (e) en le point 0.

Finalement, l’ensemble SI des solutions de (e) sur I est :

SI =
{

I −→ R ;

x �−→




ax3 + b(x2 + 1) si x < 0

b si x = 0

αx3 + b(x2 + 1) si x > 0

; (a,α,b) ∈ R
3

}
.

• Pour tout intervalle ouvert non vide I de R, SI est un R-

espace vectoriel, et : dim (SI ) =
{ 2 si 0 /∈ I

3 si 0 ∈ I.

L’ED  (E)  est une EDL2 SSM, non normalisée, mais nor-
malisable sur ] − 1 ; 1[ .

Comme le suggère l’énoncé, utilisons le changement de variable
t = Arcsin x , donc x = sin t , et notons 
z : ] − π/2 ;π/2[−→ R,t �−→ z(t) = y(x) la nouvelle fonc-
tion inconnue. Par composition, z est deux fois dérivable et on
a, avec des notations classiquement abusives :

y(x) = z(t) ,

y′(x) = z′(t)
dt

dx
= z′(t)

1√
1 − x2

,

yz′′(x) = zz′′(t)
1

1 − x2
+ z′(t)

x

(1 − x2)3/2
.

d’où : (E) ⇐⇒ z′′ + z = 0 (F).

L’ED (F) est une EDL2 SSM, à coefficients constants.

D’après le cours, la solution générale de (F) est :

z : t �−→ A cos t + B sin t, (A,B) ∈ R
2 .

Comme t = Arcsin x , on a : sin t = x, cos t = √
1 − x2 .

On conclut que l’ensemble S des solutions de (E) sur ] − 1 ; 1[
est :

S = {
y : ] − 1 ; 1[−→ R, x �−→ A

√
1 − x2 + Bx ;

(A,B) ∈ R
2
}
.

Remarque :

Au lieu de la méthode proposée dans l’énoncé (changement de
variable t = Arcsin x , suggéré par la présence de 1 − x2 de-
vant y′′), on aurait pu remarquer que x �−→ x est solution évi-
dente de (E), puis trouver une deuxième solution par la méthode
de Lagrange.

Il s’agit d’une EDL2 SSM, non normalisée, mais nor-
malisable sur ]0 ;+∞[.

Comme le suggère l’énoncé, effectuons le changement de va-

riable t = 1

x
, donc aussi un changement de fonction inconnue

z(t) = y(x), où z est deux fois dérivable. On a, avec des no-
tations classiquement abusives :

y(x) = z(t), y′(x) = z′(t)
dt

dx
= −z′(t)

1

x2
,

y′′(x) = z′′(t)
1

x4
+ z′(t)

2

x3
.

D’où : x4 y′′(x) − y(x) = z′′(t) + 2

t
z′(t) − z(t).

Ainsi, y est solution de (E) sur ]0 ;+∞[ si et seulement si z
est solution sur ]0 ;+∞[ de :

(F) z′′ + 2

t
z′ − z = 0 .

Comme le suggère l’énoncé, effectuons le changement de
fonction inconnue défini par u(t) = t z(t) .

L’application u est deux fois dérivable et, :

z = 1

t
u, z′ = − 1

t2
u + 1

t
u′, z′′ = 2

t3
u − 2

t2
u′ + 1

t
u′′ ,

d’où : z′′ + 2

t
z′ − z = 1

t
u′′ − 1

t
u.

Ainsi, z est solution de (F) sur ]0 ;+∞[ si et seulement si u
est solution sur ]0 ;+∞[ de : (G) u′′ − u = 0.

L’ED (G) est une EDL2 SSM, à coefficients constants.
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L’équation caractéristique r2 − 1 = 0 admet deux solutions
réelles 1 et −1. D’après le cours , la solution générale de (G)
est donc :

u : t �−→ a et + b e−t , (a,b) ∈ R
2 .

Par le changement de fonction inconnue u = t z, la solution gé-
nérale de (F) sur ]0 ;+∞[ est :

z : t �−→ 1

t
(a et + b e−t ), (a,b) ∈ R

2 .

Enfin, par le changement de variable t = 1

x
, on conclut que

l’ensemble S des solutions de (E) sur ]0 ;+∞[ est :

S = {
y : ]0 ;+∞[−→ R,

x �−→ x
(
a e

1
x + b e− 1

x
) ; (a,b) ∈ R

2
}
.

Il s’agit d’une EDL2 SSM, non normalisée sur R, mais
normalisable sur I si 0 /∈ I.

Cherchons, selon l’indication de l’énoncé, une solution de (e)

sous la forme d’un polynôme y : x �−→
n∑

k=0

ak xk , où n ∈ N,

a0,. . . ,an ∈ R, an =/ 0 . Le coefficient du terme en xn du pre-
mier membre de (e) doit être nul : nan − 2an = 0, d’où,
puisque an =/ 0 : n = 2.

Cherchons donc une solution particulière de (e) sous la forme

y : x �−→ ax2 + bx + c, (a,b,c) ∈ R
3 . On a alors, avec des

notations classiquement abusives :

xy′′ + (x − 2)y′ − 2y

= x2a + (x − 2)(2ax + b) − 2(ax2 + bx + c)

= −(2a + b)x − 2(b + c).

Pour que y soit solution de (e) sur R, il faut et il suffit que
2a + b = 0 et b + c = 0, c’est-à-dire : b = −2a et c = 2a .

Ainsi, par exemple (en prenant a = 1 ), l’application

y1 : x �−→ x2 − 2x + 2 est solution de (e) sur R.

• Cherchons, selon l’indication de l’énoncé, une solution par-
ticulière de la forme y : x �−→ eαx , α ∈ R fixé. On a, avec des
notations classiquement abusives :

y = eαx , y′ = α eαx , yz′′ = α
2eαx ,

puis :

xy′′ + (x − 2)y′ − 2y = xα2eαx + (x − 2)α eαx − 2 eαx

= (
(α2 + α)x − 2(α+ 1)

)
eαx = (α+ 1)(αx − 2) eαx .

En choisissant α = −1, l’application y2 : x �−→ e−x est solu-
tion de (e) sur R.

• Il est clair que, pour tout intervalle ouvert non vide I de R,
la famille (y1|I , y2|I ) est libre. D’après le cours, si 0 /∈ I,
l’ensemble SI des solutions de (e) sur I est donc :

SI = {
y : I −→ R, x �−→ λ(x2 − 2x + 2) + µ e−x ;

(λ,µ) ∈ R
2
}
.

• Étudions le raccord en 0.

Soit I un intervalle ouvert contenant 0, et soient

(λ1,µ1,λ2,µ2) ∈ R
4 , y : I −→ R l’application définie par :

y(x) =
{
λ1(x2 − 2x + 2) + µ1 e−x si x < 0

λ2(x2 − 2x + 2) + µ2 e−x si x > 0.

On a : y(x) −→
x−→0−

2λ1 + µ1 et y(x) −→
x−→0+

2λ2 + µ2,

donc y est prolongeable par continuité en 0 si et seulement si :

2λ2 + µ2 = 2λ1 + µ1.

Supposons cette condition réalisée, et notons y(0) = 2λ1 + µ1.

Alors, y est continue sur I, de classe C1 sur I − {0}, et, pour
tout x ∈ I − {0} :

y′(x) =
{
λ1(2x − 2) − µ1 e−x si x < 0

λ2(2x − 2) − µ2 e−x si x < 0.

On a : y′(x) −→
x−→0−

−2λ1 − µ1

et      y′(x) −→
x−→0+

−2λ2 − µ2 = −2λ1 − µ1,

donc, d’après le théorème limite de la dérivée, y est de 

classe C1 sur I et y′(0) = −2λ1 − µ1 .

L’application y est de classe C2 sur I − {0} et, pour tout

x ∈ I − {0} : y′′(x) =
{

2λ1 + µ1 e−x si x < 0

2λ2 + µ2 e−x si x > 0.

On a : y′′(x) −→
x−→0−

2λ1 + µ1

et     y′′(x) −→
x−→0+

2λ2 + µ2 = 2λ1 + µ1,

donc, d’après le théorème limite de la dérivée (appliqué à y′),
y est de classe C2 sur I et y′′(0) = 2λ1 + µ1.

Enfin, il est immédiat que y vérifie (e) en 0.

On conclut que, si 0 ∈ I, l’ensemble SI des solutions de (e) 
sur I est :

SI =
{

y : I −→ R, x �−→ y(x) =



λ1(x2 − 2x + 2) + µ1 e−x si x < 0

2λ1 + µ1 si x = 0

λ2(x2 − 2x + 2) + (2λ1 + µ1 − 2λ2) e−x si x > 0 ;

(λ1,µ1,λ2) ∈ R
3

}
.

et donc SI est un R-espace vectoriel de dimension 3.
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Il s’agit d’une EDL2 SSM, normalisable sur ]0 ;+∞[.

• Une solution évidente est y1 : x �−→ x .

• Cherchons une deuxième solution par la méthode de Lagrange,
c’est-à-dire sous la forme y : x �−→ xλ(x) , où λ est une fonc-
tion inconnue, supposée deux fois dérivable. On a, avec des no-
tations classiquement abusives : y = xλ , y′ = λ+ xλ′ ,
y′′ = 2λ′ + xλ′′,

donc :

x2(x + 1)y′′ − x(x2 + 4x + 2)y′ + (x2 + 4x + 2)y

= x2(x + 1)(2λ′ + xλ′′) − x(x2 + 4x + 2)(λ+ xλ′)

+ (x2 + 4x + 2)xλ

= x3(x + 1)λ′′ + (
2x2(x + 1) − x2(x2 + 4x + 2)

)
λ

′

= x2
(
x(x + 1)λ′′ − (x2 + 2x)λ′).

Ainsi, y est solution de (E) si et seulement si λ est solution 
de : (F) (x + 1)λ′′ − (x + 2)λ′ = 0.

Une solution particulière (autre que la solution nulle) de cette
EDL1 SSM (d’inconnue λ′) est donnée par :

λ
′(x) = exp

(∫
x + 2

x + 1
dx

)
= exp

(∫ (
1 + 1

x + 1

)
dx

= exp
(
x + ln(x + 1)

) = (x + 1) ex .

Une fonction λ convenant est donnée par :

λ(x) =
∫

(x + 1) ex dx = x ex .

Une solution particulière de (E) est donc :

y2 : ]0 ;+∞[−→ R, x �−→ x2 ex .

• Puisque (E) est une EDL2 SSM normalisée, à coefficients
continus sur l’intervalle ]0 ;+∞[, d’après le cours, l’ensemble
S des solutions de (E) sur ]0 ;+∞[ est un R-espace vectoriel
de dimension 2.

D’après le cours sur la méthode de Lagrange, la famille (y1,y2)

est libre.

On a vu plus haut : y1 ∈ S, y2 ∈ S.

On conclut que l’ensemble S des solutions de (E) sur ]0 ;+∞[
est :

S = {
y : ]0 ; ,+∞[−→ R, x �−→ α1x + α2x2 ex ;

(α1,α2) ∈ R
2
}
.

Il s’agit de résoudre une EDL2 SSM, normalisée, avec
conditions en un point.

• Comme le suggère l’énoncé, cherchons d’éventuelles solu-
tions polynomiales de 

(E) (1 − x2)y′′ + 2xy′ − 2y = 0 .

Notons y : x �−→
n∑

k=0

ak xk , une fonction polynomiale, où

n ∈ N, a0,. . . ,an ∈ R, an =/ 0. Si y est solution de (E), alors
le terme de degré n du premier membre est nul, donc :

−n(n − 1)an + 2nan − 2an = 0,

c’est-à-dire : (−n2 + 3n − 2)an = 0,

donc : n = 1 ou n = 2.

Considérons donc y : x �−→ ax2 + bx + c , pour (a,b,c) ∈ R
3

fixé. On a, avec des notations classiquement abusives :

(1 − x2)y′′ + 2xy′ − 2y

= (1 − x2)2a + 2x(2ax + b) − 2(ax2 + bx + c)
= 2(a − c) .

Ainsi, y est solution de (E) si et seulement si : c = a. En par-
ticulier, les deux applications :

y1 : x �−→ x et y2 = x �−→ x2 + 1

sont solutions de (E) (on peut d’ailleurs contrôler ceci par un
calcul direct). Comme, d’après le cours, l’ensemble S des so-
lutions de (E) sur ] − 1 ; 1[ est un R-espace vectoriel de di-
mension 2, et que (y1,y2) est libre, on déduit :

S =
{

y : ] − 1 ; 1[−→ R ; x �−→ αx + β(x2 + 1) ;
(α,β) ∈ R

2
}
.

Avec ces notations, on a :

∀ x ∈ ] − 1 ; 1[, y′(x) = α+ 2βx ,

donc : y(0) = β et y′(0) = α , puis :{
y(0) = 3

y′(0) = 4
⇐⇒

{
β = 3

α = 4.

On conclut qu’il y a une solution et une seule, l’application :

y : ] − 1 ; 1[−→ R, x �−→ 3x2 + 4x + 3 .

a) Soit y une solution de (E).

Alors, y est deux fois dérivable et y′′ = xy′ − y . Comme
xy′ − y est dérivable, y′′ est dérivable, donc y est trois fois dé-
rivable et : y(3) = (xy′ − y) = xy′′.

b) • Soit y une solution de (P).

D’après a), y est trois fois dérivable et y(3) = xy′′. Ainsi, y′′

vérifie une EDL1 SSM. Il existe donc λ ∈ R tel que :

∀ x ∈ R, yz′′(x) = λ exp

(∫
x dx

)
= λ e

x2
2 .

Mais yz′′(0) = 0, donc λ = 0, puis yz′′ = 0. Il existe donc
(α,β) ∈ R

2 tel que : ∀ x ∈ R, y(x) = αx + β.

Puis : ∀ x ∈ R, 0 = y′′ − xy′ + y = β,

On a donc : ∀ x ∈ R, y(x) = αx .

• Réciproquement, il est évident que, pour tout α ∈ R, l’ap-
plication y : R −→ R, x �−→ αx est solution de (P).
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Finalement, l’ensemble S des solutions de (P) est :

S = {
y : R −→ R ; x �−→ αx ; α ∈ R

}
.

Il s’agit d’une EDL2 ASM, normalisée sur l’intervalle
I = ] − π/2 ;π/2[.

La solution générale de l’EDL2 SSM associée 

(E0) y′′ + y = 0

est  y : x �−→ A cos x + B sin x, (A,B) ∈ R
2 .

Cherchons une solution particulière de (E), par la méthode de
variation des constantes, sous la forme 

y : x �−→ A(x) cos x + B(x) sin x ,

où A,B sont des fonctions inconnues, supposées dérivables. 
On a, par la méthode :

∀ x ∈ I,




A′(x) cos x + B ′(x) sin x = 0

−A′(x) sin x + B ′(x) cos x = 1

cos x

⇐⇒ ∀ x ∈ I,

{
A′(x) = −tan x

B ′(x) = 1

⇐� ∀ x ∈ I,

{
A(x) = ln cos x

B(x) = x .

Une solution particulière de (E) est donc :

y : x �−→ cos x ln cos x + x sin x .

On conclut que la solution générale de (E) sur I est :

y : x �−→ cos ln cos x + x sin x + A cos x + B sin x,

(A,B) ∈ R
2.

L’ED  (E)  est une EDL2 ASM, normalisée sur l’inter-
valle I = ] − π/2 ;π/2[.

1) Résolution de (E) :

La solution générale de l’EDL2 SSM associée 

(E0) y′′ + y = 0

est : y : x �−→ A cos x + B sin x, (A,B) ∈ R
2 .

Cherchons une solution particulière de (E), par la méthode de
variation des constantes, sous la forme 

y : x �−→ A(x) cos x + B(x) sin x ,

où A,B sont des fonctions inconnues, supposées dérivables. On
a, par la méthode :

∀ x ∈ I,

{
A′(x) cos x + B ′(x) sin x = 0

−A′(x) sin x + B ′(x) cos x = tan2x

⇐⇒ ∀ x ∈ I,




A′(x) = −tan2x sin x = − sin 3x

cos 2x

B ′(x) = tan2x cos x = sin 2x

cos x
.

Calculons A(x) et B(x) par primitivation (à une constante ad-
ditive près), en utilisant, par exemple, les règles de Bioche :

A(x) = −
∫

sin 3x

cos 2x
dx =

u = cos x

∫
1 − u2

u2
du = − 1

u
− u

= − 1

cos x
− cos x = −1 + cos 2x

cos x
,

B(x) =
∫

sin 2x

cos x
dx =

v = sin x

∫
v2

1 − v2
dv

=
∫ (

− 1 + 1

1 − v2

)
dv = −v + 1

2
ln

∣∣∣∣1 + v

1 − v

∣∣∣∣
= − sin x + 1

2
ln

1 + sin x

1 − sin x
.

On en déduit une solution particulière de (E) :

y : x �−→ y(x) = −1 + cos 2x

cos x
cos x

+
(

− sin x + 1

2
ln

1 + sin x

1 − sin x

)
sin x

= −2 + 1

2
sin x ln

1 + sin x

1 − sin x
,

puis la solution générale de (E) :

y : x �−→ −2 + 1

2
sin x ln

1 + sin x

1 − sin x
+A cos x + B sin x, (A,B) ∈ R

2.

2) Résolution de (P) :

Traduisons les conditions en 0.

• On a : y(0) = 0 ⇐⇒ −2 + A = 0 ⇐⇒ A = 2.

• On calcule y′(x), pour tout x ∈ I :

y′(x) = 1

2
cos x ln

1 + sin x

1 − sin x
+ sin x

d

dx

(
1

2
ln

1 + sin x

1 − sin x

)

− A sin x + B cos x,

d’où : y′(0) = 0 ⇐⇒ B = 0.

Finalement, le problème (P) admet une solution et une seule :

y : ] − π/2 ;π/2[,

x �−→ −2 + 1

2
sin x ln

1 + sin x

1 − sin x
+ 2 cos x .

a) Il s’agit d’une EDL4 SSM, à coefficients constants.
On forme l’équation caractéristique :

r 4 − 2r2 + 1 = 0 ⇐⇒ (r2 − 1)2 = 0
⇐⇒ (r − 1)2(r + 1)2 = 0,

dont les solutions sont −1 (double) et 1 (double).

D’après le cours, généralisé à l’ordre 4, la solution générale 
de (E) est donnée, pour tout x ∈ R , par :

y(x) = (Ax + B) ex + (Cx + D) e−x , (A,B,C,D) ∈ R
4 .
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b) 1) L’application y1 : x �−→ ex est solution évidente de (E).

2) En notant, selon l’énoncé, z = yy−1
1 , comme y1 est solution

de (E), la fonction constante égale à 1 sera solution de la nou-
velle équation.

On a, avec des notations classiquement abusives :

y = z ex , y′ = (z′ + z) ex , y′′ = (z′′ + 2z′ + z) ex

y(3) = (z(3) + 3z′′ + 3z′ + z) ex

y(4) = (z(4) + 4z(3) + 6z′′ + 4z′ + z) ex ,

donc :

(E) y(4) − 2y′′ + y = 0 ⇐⇒ (F) z(4) + 4z(3) + 4z′′ = 0 .

En notant u = z′′ , on a :

(F) ⇐⇒ (G) u′′ + 4u′ + 4u = 0 .

L’ED (G) est une EDL2 SSM, à coefficients constants.
L’équation caractéristique r2 + 4r + 4 = 0 admet une solution
double réelle −2, donc la solution générale de (G) est :
u : x �−→ (λx + µ) e−2x , (λ,µ) ∈ R

2.

Comme u = zz′′ , en primitivant deux fois, la solution générale
de (F) est :

z : x �−→ (αx + β) e−2x + (γx + δ), (α,β,γ,δ) ∈ R
4 .

Enfin, comme y = z ex , la solution générale de (E) est donnée,
pour tout x ∈ R , par :

y(x) = (αx + β) e−x + (γx + δ) ex , (α,β,γ,δ) ∈ R
4 .

On retrouve bien le même résultat qu’en a).

On a, pour toutes applications p,q : I −→ R :{
y′′

1 + py′
1 + qy1 = 0

y′′
2 + py′

2 + qy2 = 0
⇐⇒ (S)

{
py′

1 + qy1 = −y′′
1

py′
2 + qy2 = −y′′

2 .

Comme w = y1 y2′ − y1′ y2 ne s’annule en aucun point de I,

pour tout x ∈ I , le système linéaire (S) d’inconnue 
(

p(x),q(x)
)

est de Cramer, donc admet une solution et une seule. On a 
donc :

(S) ⇐⇒
(

p = y′′
1 y2 − y1 y′′

2

w
et q = y′

1 y′′
2 − y′′

1 y′
2

w

)
.

Ces formules montrent l’existence et l’unicité de (p,q). De plus,
comme y1 et y2 sont de classe C2 sur I, par opérations, p et q
sont continues sur I.

On conclut qu’il existe un couple (p,q) et un seul convenant,
et il est donné par les formules ci-dessus.

Soit y une solution de (E). Avec des notations classi-
quement abusives, l’application U = y2 + e−x y′ 2 est dérivable
sur [0 ;+∞[ et :

U ′ = 2yy′ − e−x y′ 2 + e−x 2y′ y′′

= 2y′ e−x (ex y + y′′) − e−x y′ 2 = − e−x y′ 2 � 0,

donc U est décroissante.

On a donc : ∀ x ∈ [0 ;+∞[, U(x) � U(0).

Il en résulte : ∀ x ∈ [0 ;+∞[, y2(x) � U(x) � U(0),

puis : ∀ x ∈ [0 ;+∞[, 0 � |y(x)| �
√

U(0).

Ceci montre que y est bornée.

1) L’application 

F : U = R
∗
+ × R −→ R, (x,y) �−→ y

x + y2

est de classe C1 sur l’ouvert U de R2, et (2,1) ∈ U. D’après
le théorème de Cauchy et Lipschitz, le problème de Cauchy

(C)




y′ = y

x + y2

y(2) = 1
admet une solution maximale et une

seule, notée encore y, et l’intervalle de définition I de y est ou-
vert.

Ceci montre l’unicité d’une éventuelle solution de (C) sur
]0 ;+∞[.

2) • Supposons ]0 ;+∞[⊂ I et : ∀ x ∈ ]0 ;+∞[, y(x) =/ 0 .
On a alors, avec des notations classiquement abusives :

y′ = y

x + y2
⇐⇒ y′x + y′ y2 = y ⇐⇒ y′ y2 = y − xy′

⇐⇒ y′ = y − xy′

y2
⇐⇒ y′ =

(
x

y

)′
.

Il existe donc C ∈ R tel que : y = x

y
+ C,

d’où : y2 − Cy − x = 0.

De plus : y(2) = 1 ⇐⇒ 1 − C − 2 = 0 ⇐⇒ C = −1.

On obtient : y2 + y − x = 0.

Le discriminant de cette équation du second degré est
∆ = 1 + 4x > 0, donc pour tout x ∈ ]0 ;+∞[ :

y(x) = −1 − √
1 + 4x

2
ou y(x) = −1 + √

1 + 4x

2
.

Comme y(2) = 1, ceci nous amène à considérer la fonction ob-
tenue ci-dessus avec le signe + devant la racine carrée.

3) Réciproquement, considérons l’application :

y : ]0 ;+∞[−→ R, x �−→ 1

2

( − 1 + √
1 + 4x

)
.

Il est clair que y est dérivable sur ]0 ;+∞[, que y est solution

de y′ = y

x + y2
, sur ]0 ;+∞[ (d’après 2)), et que y(2) = 1.

Finalement, il y a une solution et une seule :

y : ]0 ;+∞[−→ R, x �−→ 1

2

( − 1 + √
1 + 4x

)
.

330

8.19

8.20

8.18



1) Résolvons l’EDL1 (E) y′ = y − x2 + x , d’incon-
nuey : [0 ;+∞[−→ R dérivable.

La solution générale de l’EDL1 SSM associée 

(E0) y′ = y

est : y : x �−→ λ ex , λ ∈ R .

Cherchons une solution particulière de (E) sous la forme 
y : x �−→ αx2 + βx + γ, (α,β,γ) ∈ R

3 .

On a, pour tout x ∈ [0 ;+∞[ :

y′(x) − (
y(x) − x2 + x

)
= (2αx + β) − (αx2 + βx + γ− x2 + x)

= (1 − α)x2 + (2α− β− 1)x + (β− γ).

Il suffit donc que :

1 − α = 0, 2α− β− 1 = 0, β− γ = 0 ,

c’est-à-dire : α = 1, β = 1, γ = 1.

Une solution particulière de (E) est donc :

y : x �−→ x2 + x + 1 .

D’après le cours, la solution générale de (E) est donc :

y : x �−→ x2 + x + 1 + λ ex , λ ∈ R .

Considérons donc, pour λ ∈ R , l’application :

f : [0 ;+∞[−→ R, x �−→ x2 + x + 1 + λ ex ,

qui est dérivable sur [0 ;+∞[.

2) Si λ < 0, alors y(x) −→
x−→+∞

−∞, contradiction avec la

deuxième condition de l’énoncé.

On a donc nécessairement : λ � 0.

Alors : ∀ x ∈ [0 ;+∞[, f ′(x) = 2x + 1 + λ ex > 0,

donc f est strictement croissante sur [0 ;+∞[.

Il en résulte que f > 0 si et seulement si f (0) > 0 .

Et : f (0) = 1 + λ . 
Ainsi, f convient si et seulement si : 1 + λ > 0.

Enfin : a = f (1) = 3 + λ e, donc : λ = a − 3

e
,

puis : λ > −1 ⇐⇒ a − 3

e
> −1 ⇐⇒ a > 3 − e.

On conclut que l’ensemble des a ∈ R demandé est :
]3 − e ;+∞[.

Considérons l’application 

U : [0 ;+∞[−→ R, x �−→ U(x) = x2 f (x) − x4 ,

suggérée par l’expression x f ′(x) + 2 f (x) − 4x2 de l’énoncé.

Cette application U est dérivable et, on a, pour tout

x ∈ [0 ;+∞[ : U ′(x) = x
(
x f ′(x) + 2 f (x) − 4x2

)
� 0.

Il en résulte que U est croissante. Comme de plus, U(0) = 0 ,
on déduit : U � 0, c’est-à-dire :

∀ x ∈ [0 ;+∞[, x2 f (x) � x4 .

En simplifiant par x2 , on déduit :

∀ x ∈ ]0 ;+∞[, f (x) � x2 .

Comme f est continue en 0, l’inégalité est encore vraie en 0,
et on conclut : ∀ x ∈ [0 ;+∞[, f (x) � x2.

1) Soit f convenant. On a alors :

∀ x ∈ R − {a},

f ′(x) − 2

x − a
f (x) = − 2

x − a
f (a) − f ′(a) .

La solution générale de l’EDL1 SSM y′ − 2

x − a
y = 0, sur

I1 = ] − ∞; a[ ou I2 = ]a ;+∞[, est donnée par :

y : x �−→ λ exp

(∫
2

x − a
dx

)
= λ(x − a)2, λ ∈ R .

Conformément à la méthode de variation de la constante,
considérons l’application 

g : R − {a} −→ R, x �−→ f (x)

(x − a)2
,

qui est de classe C1 sur R − {a} . On a ainsi :

∀ x ∈ R − {a}, f (x) = (x − a)2g(x) ,

d’où, en dérivant et en reportant l’expression de f ′(x) dans l’éga-
lité initiale :

∀ x ∈ R − {a}, (x − a)2g′(x) = − 2

x − a
f (a) − f ′(a) ,

et donc :

∀ x ∈ R − {a}, g′(x) = − 2

(x − a)3
f (a) − f ′(a)

(x − a)2
.

Par primitivation sur ] − ∞; a[ et sur ]a ;+∞[, on déduit qu’il
existe (α,β,γ,λ,µ,ν) ∈ R

6 tel que :



∀ x ∈ ] − ∞; a[, g(x) = α

(x − a)2
+ β

x − a
+ γ

∀ x ∈ ]a ;+∞[, g(x) = λ

(x − a)2
+ µ

x − a
+ ν,

d’où :{∀ x ∈ ] − ∞; a[, f (x) = α+ β(x − a) + γ(x − a)2

∀ x ∈ ]a ;+∞[, f (x) = λ+ µ(x − a) + ν(x − a)2.

On a alors :




f (x) −→
x−→a−

α et f (x) −→
x−→a+

λ

f ′(x) −→
x−→a−

β et f ′(x) −→
x−→a+

µ,
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d’où, puisque f est de classe C1 sur R :

α = λ et β = µ ,

puis, pour tout x ∈ R :

f (x) =
{
α+ β(x − a) + γ(x − a)2 si x � a

α+ β(x − a) + ν(x − a)2 si x � a.

2) Réciproquement, pour tout (α,β) ∈ R
2, l’application obtenue

ci-dessus est de classe C1 sur R et, pour tout x ∈ R − {a} :

f (x) − f (a)

x − a
=

{
β+ γ(x − a) si x < a

β+ ν(x − a) si x > a,

1

2

(
f ′(x) + f ′(a)

) =




1

2

(
β+ 2γ(x − a) + β

)
si x < a

1

2

(
β+ 2ν(x − a) + β

)
si x > a,

donc f convient.

On conclut que l’ensemble des applications convenant est :{
f : R −→ R, x �−→{

α+ β(x − a) + γ(x − a)2 si x � a

α+ β(x − a) + ν(x − a)2 si x � a
; (α,β) ∈ R

2
}
.

Remarquons d’abord que F, G, H sont dérivables 
sur R.

1) Si F et G sont solutions de (E)   X ′ = AX , alors :

H ′ = (F + G)′ = F ′ + G ′ = AF + AG = A(F + G) = AH ,

donc H est solution de (E).

2) Réciproquement, supposons que H est solution de (E). On
a donc :

∀ t ∈ R, α eαtU + β eβt V = A(eαtU + eβt V ) ,

d’où aussi, en dérivant :

∀ t ∈ R, α2eαtU + β
2eβt V = A(αeαtU + β eβt V ) .

En prenant les valeurs en 0, on obtient :
{
αU + βV = A(U + V ) = AU + AV

α2U + β
2V = A(αU + βV ) = αAU + βAV,

d’où :

{
(AU − αU) + (AV − βV ) = 0

α(AU − αU) + β(AV − βV ) = 0.

Comme α =/ β , on déduit, par exemple en effectuant
L2 L2 − αL1 et L2 L2 − βL1 :

{
AU − αU = 0

AV − βV = 0.

On a alors, pour tout t ∈ R :

F ′(t) = α eαtU = eαt AU = A(eαtU) = AF(t) ,

donc F est solution de (E), et, de même, G est solution de (E).

D’après le cours, le problème de Cauchy linéaire pro-
posé admet une solution et une seule, notée (x,y,z).

Considérons U = x + jy + j2z . L’application U est de 
classe C1 sur R et :

U ′ = x ′ + jy′ + j2z′

= (−x + y) + j(−y + z) + j2(−z + x)

= (j2 − 1)x + (1 − j)y + (j − j2)z

= (1 − j)
(

− (1 + j)x + y + jz
)

= (1 − j)(j2x + y + jz)

= (1 − j)j2(x + jy + j2z) = (j2 − 1)U.

Par résolution de l’EDL1 SSM obtenue ci-dessus, il existe

U0 ∈ C tel que : ∀ t ∈ R, U(t) = e(j2−1)tU0.

De plus :

U0 = U(0) = x(0) + jy(0) + j2z(0) = 1 + j2 + j = 0 ,

d’où : ∀ t ∈ R, U(t) = 0.

Ainsi : ∀ t ∈ R, x(t) + jy(t) + j2z(t) = 0.

D’après un exercice de Première année (Méthodes et Exercices
PCSI-PTSI, ex. 2.26 a)), les points x(t), y(t), z(t) forment, dans
le plan complexe, un triangle équilatéral direct.

1) Soit f convenant. Puisque f est continue, l’applica-

tion x �−→
∫ x

0

(
f (t)

)2
dt, est de classe C1, donc f est de 

classe C1 sur ] − 1 ; 1[ . On a alors, en dérivant :

∀ x ∈ ] − 1 ; 1[, f ′(x) = (
f (x)

)2
,

et, d’autre part : f (0) = 1 .

• Considérons le problème de Cauchy (C)

{
y′ = y2

y(0) = 1.

Puisque l’application (x,y) �−→ y2 est de classe C1 sur l’ou-
vert U = ] − 1 ; 1[×R et que (0,1) ∈ U, d’après le théorème
de Cauchy et Lipschitz, (C) admet une solution maximale et
une seule.

• D’autre part, cherchons une solution y de (C) ne s’annulant
en aucun point. On a :

y′ = y2 ⇐⇒ y′

y2
= 1

⇐⇒ ∃λ ∈ R, ∀ x ∈ ] − 1 ; 1[, − 1

y(x)
= x + λ

⇐⇒ ∃λ ∈ R, ∀ x ∈ ] − 1 ; 1[, y(x) = − 1

x + λ
.

332

8.24

8.26

−→ −→
8.25



Puis : y(0) = 1 ⇐⇒ − 1

λ
= 1 ⇐⇒ λ = −1.

Ainsi, y0 : ] − ∞; 1[−→ R, x �−→ 1

1 − x

est solution de (C), nécessairement maximale, puisque
y0(x) −→

x−→1−
+∞.

D’après le cours, f est restriction de y0, d’où :

∀ x ∈ ] − 1 ; 1[, f (x) = 1

1 − x
.

2) Réciproquement, f : ] − 1 ; 1[−→ R, x �−→ 1

1 − x
est

continue sur ] − 1 ; 1[ , et, pour tout x ∈ ] − 1 ; 1[ :

1 +
∫ x

0

(
f (t)

)2
dt = 1 +

∫ x

0

1

(1 − t)2
dt

= 1 +
[

1

1 − t

]x

0

= 1 +
(

1

1 − x
− 1

)
= 1

1 − x
= f (x),

donc f convient.

Finalement, il y a une application et une seule convenant :

f : ] − 1 ; 1[−→ R, x �−→ 1

1 − x
.

1) Existence et unicité de y :

Puisque l’application F : (x,y) �−→ − 3

x
y + xy2

est de classe C1 sur l’ouvert U = ]0 ;+∞[×R de R2, et que(
2,

1

3

)
∈ U , d’après le théorème de Cauchy et Lipschitz, le

problème de Cauchy (C)




y′ = − 3

x
y + xy2

y(2) = 1

3

admet une so-

lution maximale et une seule, notée y, et l’intervalle de défi-
nition I de y est ouvert.

Remarquons : 2 ∈ I et I ⊂ ]0 ;+∞[ .

2) Calcul de y :

• Cherchons une solution particulière y de (C) ne s’annulant
en aucun point.

Soient J un intervalle ouvert tel que 2 ∈ J et J ⊂ ]0 ;+∞[,
et y : J −→ R dérivable telle que :

∀ x ∈ J, y(x) =/ 0 .

Notons  z : J −→ R, x �−→ 1

y(x)
, qui est dérivable sur J. 

On a, avec des notations classiquement abusives :

y′ = − 3

x
y + xy2 ⇐⇒ − z′

z2
= − 3

xz
+ x

z2

⇐⇒ z′ = 3

x
z − x (F).

Il s’agit maintenant d’une EDL1 ASM. La solution générale

de l’EDL1 SSM associée z′ = 3

x
z est donnée par :

z(x) = λ exp

(∫
3

x
dx

)
= λ e3 ln x = λx3, λ ∈ R .

On cherche une solution particulière de (E) par la méthode de
variation de la constante, sous la forme
z : x �−→ z(x) = λ(x)x3, où λ est la nouvelle fonction in-
connue, supposée dérivable. On a, avec des notations classi-
quement abusives :

z′ = 3

x
z − x ⇐⇒ λ

′x3 = −x

⇐⇒ λ
′ = − 1

x2
⇐� λ = 1

x
.

Une solution particulière de (F) est donc :

z : x �−→ 1

x
x3 = x2 .

D’après le cours, la solution générale de (F) est donc :

z : x �−→ x2 + λx3, λ ∈ R .

Il en résulte que, pour tout λ ∈ R fixé, la fonction 

y : x �−→ 1

z(x)
= 1

x2 + λx3

est une solution de l’ED de l’énoncé. Et, pour cette fonction :

y(2) = 1

3
⇐⇒ 1

4 + 8λ
= 1

3
⇐⇒ λ = −1

8
.

Considérons donc la fonction 

y1 : x �−→ 1

x2 − 1
8 x3

= 8

8x2 − x3
.

D’après ce qui précède, y1 est solution de (C) sur l’intervalle
]0 ; 8[ . De plus : y(x) −→

x−→8−
+∞ , donc y1 est nécessairement

la solution maximale de (C).

On conclut que la solution maximale de (C) est :

y : ]0 ; 8[−→ R, x �−→ 8

8x2 − x3
.

1) L’application 

F : R
2 −→ R, (x,y) �−→ − cos y

est de classe C1 sur l’ouvert R2 de R2, donc, d’après le théo-
rème de Cauchy et Lipschitz, le problème de Cauchy

(C)

{
y′ = F(x,y)

y(π) = 0
admet une solution maximale et une seule,

notée y, et l’intervalle de définition de y est ouvert.

2) Cherchons des solutions de y′ + cos y = 0 telles que cos y
ne s’annule pas. On a alors, avec des notations classiquement
abusives :
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y′ + cos y = 0 ⇐⇒ dx

dy
= − 1

cos y

⇐⇒ x =
∫

− dy

cos y
=

t=tan (y/2)
−

∫ 2
dt

1 + t2

1 − t2

1 + t2

= −2
∫

dt

1 − t2
= −2 Argth t + C, si |t | < 1, C ∈ R

⇐⇒ t = th
C − x

2
= −th

(
x

2
− C

2

)

⇐⇒ tan
y

2
= −th

( x

2
− C

2

)

⇐� y = −2 Arctan

[
th

(
x

2
− C

2

)]
.

Et :

y(π) = 0⇐⇒−2 Arctan

[
th

(
π

2
− C

2

)]
= 0⇐⇒C = π .

Considérons donc l’application 

y : R −→ R, x �−→ −2 Arctan

(
th

x − π

2

)
.

Cette application y est dérivable sur R et satisfait (C). De plus,
il est évident, puisque y est définie sur R, que y est solution
maximale de (C).

Finalement, la solution maximale de (C) est y définie ci-dessus.

Soit c ∈ ]0 ;+∞[.

Résolvons l’ED (E)   y′ = −(c2 + y2) . On a, avec des nota-
tions classiquement abusives :

(E) ⇐⇒ dy

c2 + y2
= −dx

⇐⇒
∫

dy

c2 + y2
= −x + λ, λ ∈ R

⇐⇒ 1

c
Arctan

y

c
= −x + λ, λ ∈ R

⇐⇒ y = c tan
(
c(−x + λ)

)
.

De plus, pour cette fonction y :

y(1) = 0 ⇐⇒ tan
(
c(−1 + λ)

) = 0

⇐⇒ c(λ− 1) = kπ, k ∈ Z ⇐⇒ λ = 1 + kπ

c
.

Ainsi :

y = c tan
(

c
(

− x + 1 + kπ

c

))
= c tan

(
c(−x + 1)

)
.

Enfin :

Déf (y) ⊃ [0 ; 1] ⇐⇒ ∀ x ∈ [0 ; 1], c(−x + 1) /∈ π

2
+ πZ

⇐⇒ [0 ; c] ⊂
]

− π

2
; π

2

[
⇐⇒ c ∈

]
0 ; π

2

[
.

On conclut que l’ensemble cherché est :

]
0 ; π

2

[
.

Il s’agit d’un SDL1 SSM, à coefficients constants. La ma-

trice de (S) est : A =

 2 −1 2

10 −5 7
4 −2 2


 .

Un calcul élémentaire (polynôme caractéristique) montre que
les valeurs propres de A sont −1 (simple) et 0 (double), et que
les sous-espaces propres sont :

SEP (A,−1) = Vect (V1), V1 =

 1

−1
−2


 ,

SEP (A,0) = Vect (V2), V2 =

 1

2
0


 .

Il en résulte que A n’est pas diagonalisable.

Notons V3 =

 0

0
1


 par exemple (n’importe quel vecteur hors

de Vect (V1,V2) conviendra), et :

P = ( V1 V2 V3 ) =

 1 1 0

−1 2 0
−2 0 1


 .

Alors, P est inversible et un calcul élémentaire (ou la calcula-

trice) donne : P−1 = 1

3


 2 −1 0

1 1 0
4 −2 3


 .

En notant T = P−1 AP, on obtient, après calcul du produit des

trois matrices : T =

−1 0 −1

0 0 3
0 0 0


 ,

qui est triangulaire supérieure.

Autrement dit, nous avons trigonalisé A .

Notons U = P−1 X, donc X = PU. On a :

(S) ⇐⇒ X ′ = AX ⇐⇒ U ′ = T U .

Notons U =

 u

v

w


 . On a :

(S) ⇐⇒

 u′

v′

w′


 =


−1 0 −1

0 0 3
0 0 0





 u

v

w




⇐⇒




u′ = −u − w

v′ = 3w

w′ = 0

⇐⇒ ∃ (C1,C2,C3) ∈ R
3, ∀ t ∈ R,




w(t) = C3

v(t) = 3C3t + C2

u(t) = C1 e−t − C3.
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Puis :

 x

y
z


 = X = PU =


 1 1 0

−1 2 0
−2 0 1





 C1 e−t − C3

C2 + 3C3t
C3.




On conclut que la solution générale de (S) est donnée, pour tout
t ∈ R, par :


x(t) = C1 e−t + 3C3t + (C2 − C3)

y(t) = −C1 e−t + 6C3t + (2C2 + C3)

z(t) = −2C1 e−t + 3C3

(C1,C2,C3) ∈ R
3 .

a) L’application F : R
3 −→ R

2,

(t,x,y) �−→(
(t − 1)xy − 2

3
x + 1

3
y, (2t + 1)xy − 4

3
x + 2

3
y

)

est de classe C1 sur l’ouvert R3 de R3, et (0,1,1) ∈ R
3 , donc,

d’après le théorème de Cauchy et Lipschitz, le problème de
Cauchy (C) admet une solution maximale et une seule, notée
(x,y), et l’intervalle de définition de cette solution maximale
est ouvert.

b) L’application z : t �−→ (2t + 1)x(t) − (t − 1)y(t)

est dérivable sur I et, pour tout t ∈ I :

z′(t) = (2t + 1)x ′(t) + 2x(t) − (t − 1)y′(t) − y(t)

= (2t + 1)

(
(t − 1)x(t)y(t) − 2

3
x(t) + 1

3
y(t)

)
+ 2x(t)

−(t − 1)

(
(2t + 1)x(t)y(t) − 4

3
x(t) + 2

3
y(t)

)
− y(t)

=
(

− 2

3
(2t + 1) + 2 + 4

3
(t − 1)

)
x(t)

+
(

1

3
(2t + 1) − 2

3
(t − 1) − 1

)
y(t) = 0.

Comme z′ = 0 sur l’intervalle I, on déduit que z est constante
sur I. Et : z(0) = x(0) + y(0) = 2 .

On conclut que z est constante égale à 2.

a) D’après le cours, la solution générale de (E0) est don-
née, pour x ∈ ] − 1 ; 1[, par :

y(x) = λ exp

(
−

∫
1

1 − x
dx

)
= λ(1 − x), λ ∈ R .

b) Soit y : ] − 1 ; 1[−→ R une application dSE(0),

y(x) =
+∞∑
n=0

an xn, de rayon � 1. 

D’après le cours, on peut dériver terme à terme :

∀ x ∈ ] − 1 ; 1[, y′(x) =
+∞∑
n=1

nan xn−1 .

On a alors, pour tout x ∈ ] − 1 ; 1[ :

(1 − x)y′(x) + y(x)

= (1 − x)

+∞∑
n=1

nan xn−1 +
+∞∑
n=0

an xn

=
+∞∑
n=1

nan xn−1 −
+∞∑
n=1

nan xn +
+∞∑
n=0

an xn

=
+∞∑
n=0

(n + 1)an+1xn −
+∞∑
n=0

nan xn +
+∞∑
n=0

an xn

=
+∞∑
n=0

(
(n + 1)an+1 − (n − 1)an

)
xn .

Par unicité du DSE(0) de g, y est solution de (E) sur ] − 1 ; 1[
si et seulement si :

∀ n ∈ N, (n + 1)an+1 − (n − 1)an = bn (1) .

• Supposons que la suite (an)n∈N vérifie (1). La suite (an)n∈N

est une suite récurrente linéaire du premier ordre, à coefficients
variables, avec second membre. En multipliant par n, on ob-
tient :

∀ n ∈ N, (n + 1)nan+1 − n(n − 1)an = nbn .

Notons, pour tout n ∈ N : un = n(n − 1)an.

On a alors : ∀ n ∈ N, un+1 − un = nbn,

d’où, par sommation et télescopage :

∀ n ∈ N, un = u0︸︷︷︸
= 0

+
n−1∑
k=0

kbk ,

et donc :

∀ n ∈ N − {0,1}, an = un

n(n − 1)
= 1

n(n − 1)

n−1∑
k=0

kbk .

De plus, d’après (1) (pour n = 0) : a1 + a0 = b0.

Réciproquement, considérons la suite (an)n∈N définie par
a0 ∈ R, a1 = −a0 + b0 et :

∀ n � 2, an = 1

n(n − 1)

n−1∑
k=0

kbk .

Il est clair que la suite (an)n∈N vérifie (1).

De plus, pour tout x ∈ ] − 1 ; 1[ et tout n � 2 :

|an xn| � 1

n(n − 1)

( n−1∑
k=0

k|bk |
)

|x |n

� 1

n(n − 1)
(n − 1)

( n−1∑
k=0

|bk |
)

|x |n �
n−1∑
k=0

|bk xk |.
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Puisque la série entière 
∑
k�0

bk xk est de rayon � 1, pour tout

x ∈ ] − 1 ; 1[ fixé, la série numérique 
∑
k�0

|bk xk | converge, donc

la suite 

( n−1∑
k=0

|bk xk |
)

n�2
est bornée.

Il en résulte que la suite 
(|an xn|)

n�2 est bornée.

Ceci montre que le rayon de convergence de la série entière∑
n�0

an xn est � 1.

D’après les calculs faits plus haut (par équivalence logique),

la somme de la série entière 
∑
n�0

an xn est solution de (E).

On conclut que (E) admet au moins une solution y dSE(0),

y(x) =
+∞∑
n=0

an xn, de rayon � 1, définie par a0 ∈ R (quel-

conque, par exemple a0 = 0), a1 = −a0 + b0, et :

∀ n � 2, an = 1

n(n − 1)

n−1∑
k=0

kbk .

c) • L’application g : x �−→ −ln

(
1 − x

2

)
est dSE(0), de 

rayon 2 (� 1), et :

∀ x ∈ ] − 1 ; 1[, g(x) =
+∞∑
n=1

1

n

(
x

2

)n

.

En appliquant b), et en choisissant, par exemple, a0 = 0,
on a : a1 = b0 = 0 et :

∀ n � 2, an = 1

n(n − 1)

n−1∑
k=0

k
1

k2k
= 1

n(n − 1)

n−1∑
k=0

(
1

2

)k

= 1

n(n − 1)

1 −
(

1

2

)n

1 − 1

2

= 2

n(n − 1)
(1 − 2−n).

Une solution y de (E) sur ] − 1 ; 1[ est donc :

y : ] − 1 ; 1[−→ R, x �−→
+∞∑
n=2

2

n(n − 1)
(1 − 2−n)xn .

• Nous allons exprimer la somme de cette dernière série en-
tière à l’aide des fonctions usuelles.

Rappelons : ∀ t ∈ ] − 1 ; 1[,
+∞∑
n=0

tn = 1

1 − t

et : ∀ t ∈ ] − 1 ; 1[,
+∞∑
n=1

tn

n
= −ln(1 − t).

En primitivant, on obtient :

∀ t ∈ ] − 1 ; 1[,
+∞∑
n=1

tn+1

n(n + 1)
=

∫ t

0
−ln(1 − u) du

=
ipp

[ − u ln(1 − u)
]t

0 −
∫ t

0

u

1 − u
du

= −t ln (1 − t) −
∫ t

0

(
− 1 + 1

1 − u

)
du

= −t ln(1 − t) + t + ln (1 − t) = (1 − t)ln(1 − t) + t.

D’où, pour tout x ∈ ] − 1 ; 1[ :

y(x) =
+∞∑
n=2

2

n(n − 1)
(1 − 2−n)xn

=
+∞∑
n=1

2

(n + 1)n
(1 − 2−(n+1))xn+1

= 2
+∞∑
n=1

1

n(n + 1)

(
xn+1 − (2−1x)n+1

)

= 2
+∞∑
n=1

xn+1

(n + 1)n
− 2

+∞∑
n=1

(2−1x)n+1

(n + 1)n
,

car x ∈ ] − 1 ; 1[ et 2−1x ∈ ] − 1 ; 1[,

= 2
(
(1 − x)ln(1 − x) + x

) − 2
((

1 − x

2

)
ln

(
1 − x

2

)
+ x

2

)

= 2(1 − x)ln(1 − x) − (2 − x) ln

(
1 − x

2

)
+ x .

Il s’agit d’une EDL2 ASM, normalisable sur ]0 ;+∞[.
Effectuons, comme le suggère l’énoncé, le changement de va-
riable t = ln x, donc aussi le changement de fonction incon-
nue z(t) = y(x). On a alors :

y(x) = z(t), y′(x) = z′(t)
dt

dx
= z′(t)

1

x
,

y′′(x) = z′′(t)
1

x2
− z′(t)

1

x2
.

Ainsi, y est solution de (e) sur ]0 ;+∞[ si et seulement si :
∀ t ∈ R, z′′(t) − z′(t) − 2z(t) = t e2t (F).

Il s’agit maintenant d’une EDL2 ASM à coefficients constants,
avec second membre du type polynôme-exponentielle.
Considérons l’EDL2 SSM associée :

(F0) z′′ − z′ − 2z = 0 .

L’équation caractéristique r2 − r − 2 = 0 admet deux solutions
réelles, −1 et 2. D’après le cours, la solution générale de (E0)

est :

z : t �−→ α e−t + β e2t , (α,β) ∈ R
2 .

Puisque le coefficient 2 de e2t du second membre est racine
simple de l’équation caractéristique, cherchons une solution 
de (F) de la forme :

z : t �−→ (at2 + bt + c) e2t , (a,b,c) ∈ R
2 .

On a :

z(t) = (at2 + bt + c) e2t ,
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z′(t) = (
2(at2 + bt + c) + (2at + b)

)
e2t

z′′(t) = (
4(at2 + bt + c) + 4(2at + b) + 2a

)
e2t .

En reportant dans (F) et en identifiant (polynômes en t), on ob-
tient, après quelques lignes de calcul élémentaire, que z est so-
lution de (F) si et seulement si :

a = 1

6
et b = −1

9
.

Ainsi, une solution, de (F) est :

z : t �−→
(

1

6
t2 − 1

9
t

)
e2t .

La solution générale de (F) est donc :

z : t �−→
(

1

6
t2 − 1

9
t

)
e2t + α e−t + β e2t , (α,β) ∈ R

2 .

En remplaçant t par ln x , on conclut que la solution générale
de (E) sur ]0 ;+∞[ est :

y : x �−→
(

1

6
(lnx)2 − 1

9
ln x

)
x2 + α

x
+ βx2, (α,β) ∈ R

2 .

Il s’agit d’une EDL2 SSM, normalisée, à coefficients va-
riables.

1) Recherche d’une éventuelle solution polynomiale :

Soient n ∈ N, a0,. . . ,an ∈ R tels que an =/ 0,

y : x �−→
n∑

k=0

ak xk .

Si y est solution de (E) sur ]1 ;+∞[, alors le terme de degré
n + 1 dans le premier membre doit être nul, donc :
n(n − 1)an − 2nan + 2an = 0,

c’est-à-dire : (n2 − 3n + 2) an︸︷︷︸
=/ 0

= 0,

donc : n = 1 ou n = 2.

Cherchons donc une solution éventuelle de (E) sous la forme

y : x �−→ ax2 + bx + c, (a,b,c) ∈ R
3 . On a alors, avec des

notations classiquement abusives :

x(x2 − 1)y′′ − 2(x2 − 1)y′ + 2xy

= x(x2 − 1)2a − 2(x2 − 1)(2ax + b) + 2x(ax2 + bx + c)

= (2a + 2c)x + 2b.

Ainsi, y est solution de (E) si et seulement si :

2a + 2c = 0, 2b = 0 ,

c’est-à-dire : b = 0 et c = −a.

En particulier, l’application 

y1 : ]1 ;+∞[−→ R, x �−→ x2 − 1

est solution de (E).

2) Recherche d’une deuxième solution de (E) par la méthode
de Lagrange :

D’après la méthode de Lagrange, on cherche une seconde 
solution de (E) sous la forme y : x �−→ (x2 − 1)λ(x) ,
où λ : ]1 ;+∞[−→ R est la nouvelle fonction inconnue, sup-
posée dérivable. On a, avec des notations classiquement abu-
sives :

y = (x2 − 1)λ, y′ = (x2 − 1)λ′ + 2xλ,

y′′ = (x2 − 1)λ′′ + 4xλ′ + 2λ,

donc :

x(x2 − 1)y′′ − 2(x2 − 1)y′ + 2xy

= x(x2 − 1)
(
(x2 − 1)λ′′ + 4xλ′ + 2λ

)
−2(x2 − 1)

(
(x2 − 1)λ′ + 2xλ

) + 2x(x2 − 1)λ

= x(x2 − 1)2
λ

′′ + (
4x2(x2 − 1) − 2(x2 − 1)2

)
λ

′

+(
2x(x2 − 1) − 4x(x2 − 1) + 2x(x2 − 1)︸ ︷︷ ︸

= 0

)
λ

= x(x2 − 1)2
λ

′′ + 2(x2 − 1)(x2 + 1)λ′

= (x2 − 1)
(
x(x2 − 1)λ′′ + 2(x2 + 1)λ′).

Ainsi, y est solution de (E) si et seulement si λ est solution de :
(F) x(x2 − 1)λ′′ + 2(x2 + 1)λ′ = 0.

Une solution, autre que la fonction nulle, de cette EDL1 en λ′,
SSM, est donnée par :

λ
′(x) = exp

(
−

∫
2(x2 + 1)

x(x2 − 1)
dx

)
.

Pour calculer l’intégrale, effectuons d’abord le changement de
variable t = x2 :∫

2(x2 + 1)

x(x2 − 1)
dx =

t=x2

∫
t + 1

t (t − 1)
dt .

Effectuons ensuite une décomposition en éléments simples :∫
t + 1

t (t − 1)
dt =

∫ (
− 1

t
+ 2

t − 1

)
dt

= − ln t + 2 ln (t − 1).

D’où : λ
′(x) = exp

(
ln (x2) − 2 ln(x2 − 1)

) = x2

(x2 − 1)2
.

Pour calculer λ , on, peut effectuer une intégration par parties :

λ(x) =
∫

x2

(x2 − 1)2
dx =

∫ (
− 1

2
x
)( −2x

(x2 − 1)2

)
dx

= −1

2
x

1

x2 − 1
+ 1

2

∫
1

x2 − 1
dx

= − x

2(x2 − 1)
− 1

4
ln

x + 1

x − 1
.

On obtient une deuxième solution particulière de (E) :

y2 : ]1 ;+∞[−→ R,

x �−→ (x2 − 1)λ(x) = − x

2
− x2 − 1

4
ln

x + 1

x − 1
.
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D’après le cours sur la méthode de Lagrange, la famille (y1,y2)

est libre.

On conclut que l’ensemble S des solutions de (E) sur ]1 ;+∞[
est :

S =
{

y : ]1 ;+∞[−→ R,

x �−→ a(x2 − 1) + b

(
x

2
+ x2 − 1

4
ln

x + 1

x − 1

)
; (a,b) ∈ R

2

}
.

a) • Soit y : x �−→
+∞∑
n=0

an xn une fonction dSE(0), de

rayon > 0 . On a, pour tout x ∈ ] − R ; R[ avec des notations
classiquement abusives :

x2 y′′ + 6xy′ + (6 − x2)y

= x2
+∞∑
n=2

n(n − 1)an xn−2

+ 6x
+∞∑
n=1

nan xn−1 + (6 − x2)

+∞∑
n=0

an xn

=
+∞∑
n=2

n(n − 1)an xn +
+∞∑
n=1

6nan xn

+ 6
+∞∑
n=0

an xn −
+∞∑
n=0

an xn+2

=
+∞∑
n=2

n(n − 1)an xn +
+∞∑
n=1

6nan xn

+ 6
+∞∑
n=0

an xn −
+∞∑
n=2

an−2xn

= 6a0 + 12a1x

+
+∞∑
n=2

(
n(n − 1)an + 6nan + 6an − an−2

)
xn

= 6a0 + 12a1x +
+∞∑
n=2

(
(n2 + 5n + 6)an − an−2

)
xn .

Par unicité du DSE(0) de la fonction constante égale à −1, on
a :

y est solution de (E)

⇐⇒




6a0 = −1, 12a1 = 0

∀ n � 2, (n2 + 5n + 6︸ ︷︷ ︸
=/ 0

)an − an−2 = 0

⇐⇒




a0 = −1

6
, a1 = 0

∀ n � 2, an = an−2

(n + 2)(n + 3)
.

Ceci revient à ∀ p ∈ N, a2p+1 = 0 et, pour tout p ∈ N, en ré-
itérant :

a2p = a2p−2

(2p + 3)(2p + 2)

= 1

(2p + 3)(2p + 2)

1

(2p + 1)(2p)
· · · 1

5 · 4
a0

= 1

(2p + 3) · · · 4

(
− 1

6

)
= − 1

(2p + 3)!
.

• Réciproquement, la série entière 
∑
p�0

− 1

(2p + 3)!
x2p est de

rayon infini et sa somme, d’après les calculs précédents, est so-
lution de (e) sur R.

On conclut que (e) admet une solution et une seule dSE(0), l’ap-
plication :

f : R −→ R, x �−→
+∞∑
p=0

− x2p

(2p + 3)!
,

et de plus, le rayon est infini.

b) On a, pour tout x ∈ R
∗ :

f (x) = −
+∞∑
p=0

x2p

(2p + 3)!
= − 1

x3

+∞∑
p=0

x2p+3

(2p + 3)!

= − 1

x3
(sh x − x).

D’autre part, f (0) est le terme constant de la série entière dé-
finissant f.

On conclut :

f : R −→ R, x �−→




x − sh x

x3
si x =/ 0

−1

6
si x = 0.

Il s’agit d’une EDL2 ASM, normalisable sur ]0 ;+∞[,
à coefficients variables.

1) Effectuons le changement de fonction inconnue z = e−x y ,
d’où y = ex z. On a :

y = ex z, y′ = ex (z′ + z), y′′ = ex (z′′ + 2z′ + z) .

Ainsi, y est solution de (E) si et seulement si z est solution 
de :

(F) xex (z′′ + 2z′ + z) − 2(x − 1)ex (z′ + z) + (x − 2)ex z = x ex ,

et : (F) ⇐⇒ xz′′ + 2z′ = x .

En notant v = z′ , on a : (F) ⇐⇒ xv′ + 2v = x (G).

Il s’agit d’une EDL1 ASM. La solution générale de l’EDL1 SSM
associée (G0) xv′ + 2v = 0

est : v : x �−→ λ exp

(
−

∫
2

x
dx

)
= λ

x2
, λ ∈ R.
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Cherchons une solution particulière de (G) sous forme d’un po-

lynôme de degré 1 : v : x �−→ αx + β, (α,β) ∈ R
2 . On a :

∀ x ∈ ]0 ;+∞[, xv′ + 2v = x

⇐⇒ ∀ x ∈ ]0 ;+∞[, αx + 2(αx + β) = x

⇐⇒ 3α = 1, 2β = 0.

Ainsi, v : x �−→ 1

3
x est solution de (G).

La solution générale de (G) est donc :

v : x �−→ 1

3
x + λ

x2
, λ ∈ R .

Par v = z′ , la solution générale de (F) est :

z : x �−→ 1

6
x2 − λ

x
+ µ, (λ,µ) ∈ R

2 .

La solution générale de (E) est obtenue par y = ex z :

y : x �−→
(

1

6
x2 − λ

x
+ µ

)
ex , (λ,µ) ∈ R

2 .

2) En notant u = y′ − y, on a : u′ = yz′′ − y′, donc :

(E) xy′′ − 2(x − 1)y′ + (x − 2)y = x ex

⇐⇒ x(y′′ − y′) − x(y′ − y) + 2(y′ − y) = x ex

⇐⇒ xu′ − (x − 2)u = x ex (H).

Il s’agit d’une EDL1 ASM. La solution générale de l’EDL1
SSM associée (H0) xu′ − (x − 2)u = 0 est :

u : x �−→ λ exp

(∫
x − 2

x
dx

)
= λ

ex

x2
, λ ∈ R .

Cherchons une solution particulière de (H) par la méthode de

variation de la constante, sous la forme u : x �−→ λ(x)
ex

x2
, où

λ est la nouvelle fonction inconnue, supposée dérivable. On a
alors, avec des notations classiquement abusives :

(H) ⇐⇒ λ
′ e

x

x
= x ex ⇐⇒λ

′ = x2 ⇐� λ(x) = x3

3
(I) .

Une solution de (H) est donc :

u : x �−→ λ(x)
ex

x2
= 1

3
x ex .

La solution générale de (H) est donc :

u : x �−→ 1

3
x ex + λ

ex

x2
, λ ∈ R .

On résout ensuite : (I) y′ − y = u = 1

3
x ex + λ

ex

x2
.

Il s’agit d’une EDL1 ASM. La solution générale de l’EDL1
SSM associée y′ − y = 0 est : y : x �−→ µ ex , µ ∈ R . On
cherche une solution particulière de (I) par la méthode de va-
riation de la constante, sous la forme y : x �−→ µ(x) ex , où µ
est la nouvelle fonction inconnue, supposée dérivable. On a :

y′ − y = 1

3
x ex + λ

ex

x2
⇐⇒ µ

′ex = 1

3
x ex + λ

ex

x2

⇐⇒ µ
′ = 1

3
x + λ

x2
⇐� µ(x) = x2

6
− λ

x
.

Une solution particulière de (E) est donc :

y : x �−→
(

x2

6
− λ

x

)
ex .

La solution générale de (E) est donc :

y : x �−→ x2

6
ex − λ

ex

x
+ µ ex , (λ,µ) ∈ R

2 .

3) L’EDL2 SSM associée est :

(E0) xy′′ − 2(x − 1)y′ + (x − 2)y = 0 .

Cherchons une solution particulière y de (E0) sous la forme
y : x �−→ xα ex , où α ∈ Z est à trouver. On a :

y = xα ex , y′ = (xα + αxα−1) ex ,

y′′ = (
xα + 2αxα−1 + α(α− 1)xα−2

)
ex ,

d’où :

xy′′ − 2(x − 1)y′ + (x − 2)y

= (
xα+1 + 2αxα + α(α− 1)xα−1

)
ex

−2(x − 1)(xα + αxα−1)ex + (x − 2)xαex

= xα−1ex
(
x2 + 2αx + α(α− 1) − 2(x − 1)(x + α) + (x − 2)x

)
= xα−1ex

α(α+ 1).

En prenant α = 0 ou α = −1, on obtient une solution parti-
culière de (E0). Ainsi, les deux applications 

y1 : x −→ ex

x
, y2 : x �−→ ex

sont solutions de (E0).

On cherche maintenant une solution de (E) par la méthode de
variation des constantes, sous la forme :

y : x �−→ u1(x)y1(x) + u2(x)y2(x) ,

où u1,u2 : ]0 ;+∞[ sont les fonctions inconnues, supposées dé-
rivables et liées par une certaine condition. On a, par la mé-
thode :




u′
1 y1 + u′

2 y2 = 0

u′
1 y′

1 + u′
2 y′

2 = x ex

x

⇐⇒




u′
1

ex

x
+ u′

2 ex = 0

u′
1

xex − ex

x2
+ u′

2 ex = ex

⇐⇒
{

u′
1 + xu′

2 = 0

(x − 1)u′
1 + x2u′

2 = x2

⇐⇒
{

u′
1 + xu′

2 = 0
x(u′

1 + xu′
2) − u′

1 = x2 ⇐⇒
{

u′
1 + u′

2x = 0
u′

1 = −x2

⇐⇒
{

u′
1 = −x2

u′
2 = x

⇐�




u1 = − x3

3

u2 = x2

2
.
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Une solution particulière de (E) est donc :

y : x �−→ u1(x)y1(x) + u2(x)y2(x)

= − x3

3

ex

x
+ x2

2
ex = x2ex

6
.

On conclut que la solution générale de (E) est :

y : x �−→ x2ex

6
+ λ

ex

x
+ µex , (λ,µ) ∈ R

2 .

1) Soit f convenant. Par le changement de variable
x = sin t , on a :

∀ x ∈ [−1 ; 1], f (
√

1 − x2) =
√

1 − x2 f ′(x) ,

d’où :

∀ x ∈ ] − 1 ; 1[, f ′(x) = 1√
1 − x2

f (
√

1 − x2) (1) .

Puisque f est dérivable sur [−1 ; 1] , le second membre est dé-
rivable sur ] − 1 ; 1[ , donc f est deux fois dérivable sur
] − 1 ; 1[ . On, a alors, en dérivant dans l’équation de l’énoncé,
pour tout t ∈ R − πZ :

− sin t f ′( cos t) = − sin t f ′( cos t) + cos 2t f ′′( sin t) .

Mais, en remplaçant t par π/2 − t dans l’énoncé, on a, pour
tout t ∈ R : f ( sin t) = sin t f ′( cos t).

d’où, pour tout t ∈ R − πZ :

cos 2t f ′′( sin t) − sin t f ′( sin t) + f ( sin t) = 0 ,

ou encore, pour tout x ∈ ] − 1 ; 1[ :

(1 − x2) f ′′(x) − x f ′(x) + f (x) = 0 (E) .

Il s’agit maintenant d’une EDSL2 SSM, à coefficients variables,
normalisée sur ] − 1 ; 1[ . On remarque que y1; x �−→ x est so-
lution évidente. Vu les rôles analogues de cos t et sin t , on peut
conjecturer que y2 : x �−→ √

1 − x2 soit solution de (E). Un
calcul simple montre que y2 est solution de (E) sur ] − 1 ; 1[ .
D’après le cours, la solution générale de (E) sur ] − 1 ; 1[ est
donc : α1 y1 + α2 y2, (α1,α2) ∈ R

2. 
Ceci montre qu’il existe (α1,α2) ∈ R

2 tel que :

∀ x ∈ ] − 1 ; 1[, f (x) = α1x + α2

√
1 − x2 .

Puisque f est continue sur [−1 ; 1] , on a aussi :

∀ x ∈ [−1 ; 1], f (x) = α1x + α2

√
1 − x2 .

Comme f est dérivable en 1 et que x �−→ √
1 − x2 ne l’est pas,

on a nécessairement α2 = 0, et donc :

∀ x ∈ [−1 ; 1], f (x) = α1x .

2) La réciproque est évidente.

Finalement, l’ensemble S des applications convenant est :

S = {
f : [−1 ; 1] −→ R ; x �−→ αx ; α ∈ R

}
.

1) Soit ( f,g) convenant.

Puisque : ∀ x ∈ ]0 ;+∞[, f ′(x) = − g(x)

x

et que g est dérivable, f ′ est dérivable, donc f est deux fois dé-
rivable sur R.

De même, g est deux fois dérivable sur R.

Comme : ∀ x ∈ ]0 ;+∞[, x f ′(x) = −g(x),

on déduit, en dérivant :

∀ x ∈ ]0 ;+∞[, x f ′′(x) + f ′(x) = −g′(x) = f (x)

x
,

c’est-à-dire :

∀ x ∈ ]0 ;+∞[, x2 f ′′(x) + x f ′(x) − f (x) = 0 (1) .

Ainsi, f satisfait une EDL2 SSM. Il s’agit d’une ED d’Euler.
Effectuons le changement de variable t = ln x, x = et , d’où
le changement de fonction inconnue f (x) = u(t) . On a :

f (x) = u(t), f ′(x) = u′(t)
1

x
, f ′′(x) = u′′(t)

1

x2
− u′(t)

1

x2
,

d’où : (1) ⇐⇒ ∀ t ∈ R, u′′(t) − u(t) = 0 (2).

Il s’agit maintenant d’une EDL2 SSM à coefficients constants.
La solution générale de (2) est :

u : t �−→ α et + β e−t , (α,β) ∈ R
2 ,

d’où la solution générale de (1) :

f : x �−→ αx + β

x
, (α,β) ∈ R

2 .

On déduit, pour tout x ∈ ]0 ;+∞[ :

g(x) = −x f ′(x) = −x
(
α− β

x2

)
= −αx + β

x
.

2) Réciproquement, pour tout (α,β) ∈ R
2, on vérifie aisément

que le couple ( f,g) d’applications de ]0 ;+∞[ dans R, défini,
pour tout x ∈ ]0 ;+∞[, par :

f (x) = αx + β

x
, g(x) = −αx + β

x
,

convient.

Finalement, l’ensemble des couples ( f,g) convenant est donné
par :

∀ x ∈ ]0 ;+∞[,




f (x) = αx + β

x

g(x) = −αx + β

x

; (α,β) ∈ R
2 .

Puisque S ∈ S++
n , d’après le cours, il existe Ω ∈ On(R),

D = diag (λ1,. . . ,λn) ∈ Dn(R
∗
+) telles que : S = Ω∆Ω−1.

Pour X : R −→ Mn,1(R) deux fois dérivable sur R, notons

Y = Ω−1 X, qui est deux fois dérivable sur R. On a :

X ′′ + SX = 0 ⇐⇒ ΩY ′′ + (Ω∆Ω−1)ΩY = 0
⇐⇒ Y ′′ + DY = 0.
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Notons 




y1
...

yn


 = Y. Alors :

Y ′′ + DY = 0 ⇐⇒ ∀ k ∈ {1,. . . ,n}, y′′
k + λk yk = 0

⇐⇒ ∀ k ∈ {1,. . . ,n}, ∃ (Ak,Bk) ∈ R
2,

∀ t ∈ R, yk(t) = Ak cos (
√
λk t) + Bk sin (

√
λk t).

Comme cos et sin, sont bornées sur R, chaque yk est bornée
sur R, donc Y est bornée sur R, puis, comme X = ΩY , et que
Ω ne dépend pas de t, X est bornée sur R .

a) L’application 

F : R × R −→ R, (x,y) �−→ 2x + y2

est de classe C1 sur l’ouvert R2, donc, d’après le théorème de
Cauchy et Lipschitz, le problème de Cauchy (C) admet une so-
lution maximale et une seule, notée f, et l’intervalle de défi-
nition de f est ouvert.

b) 1) Montrons, par récurrence sur n, que f est de classe Cn

sur I, pour tout n ∈ N .

• Puisque f est dérivable sur I, f est de classe C0 sur I.

• Si f est de classe Cn sur I, alors, comme :

∀ x ∈ I, f ′(x) = 2x + (
f (x)

)2
,

f ′ est de classe Cn sur I, donc f est de classe Cn+1 sur I.

Ceci montre, par récurrence sur n, que f est de classe Cn

sur I, pour tout n ∈ N .

On conclut que f est de classe C∞ sur I.

2) Puisque f est de classe C∞ sur I, d’après le théorème de
Taylor-Young, f admet un développement limité à tout ordre
en 0, en particulier, f admet un DL11(0) .

On a déjà f (0) = 0 (par hypothèse), et on a :

f ′ = 2x + f 2, f ′′ = 2 + 2 f f ′, f (3) = 2 f ′2 + 2 f f ′′ ,

f (4) = 6 f ′ f ′′ + 2 f f (3) ,

d’où :

f ′(0) = 0, f ′′(0) = 2, f (3)(0) = 0, f (4)(0) = 0 .

D’après la formule de Taylor-Young, on a donc déjà :

f (x) =
4∑

k=0

f (k)(0)

k!
xk + o

x−→0
(x4) = x2 + o(x4) .

Le DL11(0) de f est donc de la forme :

f (x) = x2 + a5x5 + · · · + a11x11 + o(x11) ,

où a5,. . . ,a11 sont des réels à calculer.

D’après le théorème de Taylor-Young, puisque f est de 
classe C∞, on peut dériver terme à terme :

f ′(x) = 2x + 5a5x4 + · · · + 11a11x10 + o(x10) .

D’autre part :

2x + (
f (x)

)2

= 2x + (
x2 + a5x5 + · · · + a11x11 + o(x10)

)2

= 2x + (
x4 + 2a5x7 + 2a6x8 + 2a7x9 + (2a8 + a2

5)x10 + o(x10)
)
.

Par unicité du DL10(0) de f ′, on déduit :

5a5 = 1, a6 = 0, a7 = 0, 2a5 = 8a8, 2a6 = 9a9,

2a7 = 10a10, 2a8 + a2
5 = 11a11 ,

d’où :

a5 = 1

5
, a6 = 0, a7 = 0, a8 = 1

4
a5 = 1

20
, a9 = 2

9
a6 = 0 ,

a10 = 2

10
a7 = 0, a11 = 1

11
(2a8 + a2

5) = 7

550
.

On conclut au DL11(0) de f :

f (x) = x2 + 1

5
x5 + 1

20
x8 + 7

550
x11 + o

x−→0
(x11) .

Si f convient, alors le second membre, dans l’énoncé,

est C1, donc f est C1, puis, en réitérant, f est C2.

On a alors :

f convient

⇐⇒∀ x ∈ R, f (x) = −1 − 2x
∫ x

0
f (t) dt +

∫ x

0
t f (t) dt

⇐⇒



f (0) = −1

∀ x ∈ R, f ′(x) = −2x f (x) − 2
∫ x

0
f (t) dt + x f (x)

⇐⇒
{

f (0) = −1, f ′(0) = 0

∀ x ∈ R, f ′′(x) = −x f ′(x) − 3 f (x).

Autrement dit, la question revient à la résolution d’un problème
de Cauchy linéaire :

(C)

{
y(0) = −1, y′(0) = 0

yz′′ + xy′ + 3y = 0 (E).

La présence de y′′ + xy′ incite à considérer une nouvelle fonc-

tion inconnue : z = ex2/2 y . On a alors :

y = e−x2/2z, y′ = −xe−x2/2z + e−x2/2z′,

y′′ = (x2 − 1)e−x2/2z − 2xe−x2/2z′ + e−x2/2z′′.

D’où : y′′ + xy′ + 3y = ex2/2(z′′ − xz′ + 2z).

Pour l’EDL2 SSM   (F)   z′′ − xz′ + 2z = 0 , cherchons une
solution sous forme polynomiale.

Si z : x �−→ an xn + · · · + a0 est solution de (E), où n ∈ N,

a0,. . . ,an ∈ R, an =/ 0 , alors le terme de degré n du premier
membre de (E) doit être nul : −nan + 2an = 0 d’où : n = 2.
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Cherchons donc une solution sous la forme :
z : x �−→ ax2 + bx + c, (a,b,c) ∈ R

3. En reportant dans (F),
on obtient facilement b = 0, a = 1, c = −1 .

Ainsi, une solution particulière de (F) est :

z : x �−→ x2 − 1 ,

et une solution particulière de (E) est :

y : x �−→ (x2 − 1) e−x2/2 .

De plus : y(0) = −1 et :

∀ x ∈ R, y′(x) = (
3x − x3

)
e−x2/2 ,

donc : y′(0) = 0.

Ainsi, y est solution de (C).

D’après le cours, le problème de Cauchy linéaire (C) admet une
solution et une seule.

On conclut qu’il y a une application et une seule convenant :

f : R −→ R, x �−→ (x2 − 1)e−x2/2.

a) L’application continue p admet au moins une primi-

tive P sur I. Notons u = zeP . L’application u est dérivable sur
I et :

u′ = z′eP + zp eP = (z′ + pz︸ ︷︷ ︸
> 0

)eP > 0 .

Il en résulte que u est strictement croissante sur I, donc u admet
au plus un zéro dans I.

Comme z = u e−P et que e−P ne s’annule en aucun point, on
conclut que z admet au plus un zéro.

b) Notons z = yy′ . L’application z est dérivable sur I et :

z′ = (yy′)′ = yy′′ + y′ 2 = y(−py′ − qy) + y′ 2 ,

donc : z′ + pz = y′ 2 − q︸︷︷︸
< 0

y2 � 0.

Montrons z′ + pz > 0, en raisonnant par l’absurde.

Supposons qu’il existe a ∈ I tel que : (z′ + pz)(a) = 0.

On a alors :
(
y′(a)

)2

︸ ︷︷ ︸
� 0

+ ( − q(a)
)

︸ ︷︷ ︸
> 0

(
y(a)

)2

︸ ︷︷ ︸
� 0

= 0,

donc y′(a) = 0 et y(a) = 0 . Mais alors, y et la fonction
constante nulle sont solutions sur I du problème de Cauchy li-

néaire :

{
y′′ + py′ + qy = 0

y(a) = 0, y′(a) = 0.

D’après le théorème de Cauchy linéaire, il en résulte y = 0,
ce qui est exclu par l’énoncé.

Ce raisonnement par l’absurde montre : z′ + pz > 0.

On peut alors appliquer le résultat de a) et conclure que z admet
au plus un zéro dans I.

a) Soit f une solution de (E0).

L’application g : R −→ R, x �−→ f (−x) est deux fois déri-
vable sur R et, pour tout x ∈ R :

g(x) = f (−x), g′(x) = − f ′(−x), g′′(x) = f ′′(−x) ,

d’où, pour tout x ∈ R :

g′′(x) + p(x)g′(x) + q(x)g(x)

= f ′′(−x) − p(x) f ′(−x) + q(x) f (−x)

= f ′′(−x) + p(−x) f ′(−x) + q(−x) f ′(−x)

= ( f ′′ + p f ′ + q f )(−x) = 0,

et on conclut que g est solution de (E0) sur R.

b) 1) D’après le théorème de Cauchy et Lipschitz linéaire, il
existe une solution f1 et une seule de (E0) telle que :

f1(0) = 1 et f ′
1(0) = 0 .

Montrons que f1 est paire.
Considérons la symétrisée g1 de f1. 
D’après a), g1 est solution de (E0) sur R, et on a :

g1(0) = f1(0) = 1, g′
1(0) = − f ′

1(0) = 0 .

Ainsi, f1 et g1 sont solutions sur R du problème de Cauchy li-
néaire : (E0), y(0) = 1, y′(0) = 0.

D’après le théorème de Cauchy linéaire, on a donc g1 = f1 ,
c’est-à-dire : ∀ x ∈ R, f1(−x) = f1(x),

donc f1 est paire.

2) D’après le théorème de Cauchy linéaire, il existe une solu-
tion et une seule f2 de (E0) telle que :

f2(0) = 0 et f ′
2(0) = 1 .

Montrons que f2 est impaire.

Considérons la symétrisée g2 de f2. D’après a), g2 est solution
de (E0) sur R, et on a :

g2(0) = f2(0) = 0, g′
2(0) = − f ′

2(0) = −1 .

Ainsi, f2 et −g2 sont solutions du problème de Cauchy :

(E0), y(0) = 0, y′(0) = 1 .

D’après le théorème de Cauchy linéaire, on a donc −g2 = f2 ,
c’est-à-dire : ∀ x ∈ R, − f2(−x) = f2(x),

donc f2 est impaire.

3) • Montrons que ( f1, f2) est libre.

Soit (α1,α2) ∈ R
2 tel que : α1 f1 + α2 f2 = 0.

On a alors aussi, par dérivation : α1 f ′
1 + α2 f ′

2 = 0.

En prenant les valeurs en 0, on a :{
(α1 f1 + α2 f2)(0) = 0

(α1 f ′
1 + α2 f ′

2)(0) = 0
⇐⇒

{
α1 = 0

α2 = 0.

Ceci montre que ( f1, f2) est libre.
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• D’après le cours, l’ensemble S0 des solutions de (E0) sur R
est un R-espace vectoriel de dimension 2. D’autre part, on vient
de voir que ( f1, f2) est une famille libre dans S0 .

On conclut : ( f1, f2) est une base de S0 .

a) • Puisque (E0) est une EDL2 SSM, normalisée, à coef-
ficients continus sur l’intervalle ]0 ;+∞[, d’après le cours, l’en-
semble S0 des solutions de (E0) sur ]0 ;+∞[ est un R-espace
vectoriel de dimension 2, c’est-à-dire un plan vectoriel.

• Soit y ∈ S0. Montrons, par récurrence sur n, que, pour tout
n ∈ N

∗ , y est de classe Cn sur ]0 ;+∞[.

Puisque y est deux fois dérivable, y est de classe C1.

Si, pour un n ∈ N
∗ , y est de classe Cn, alors l’application

x �−→ −y′(x) +
(

x + 1 + 1

x

)
y(x) est Cn−1, donc y′′ est

Cn−1, y est Cn+1.

Ceci montre, par récurrence sur n, que, pour tout n ∈ N
∗ , y est

de classe Cn sur ]0 ;+∞[.

On conclut : S0 ⊂ C∞( ]0 ;+∞[ ; R).

b) D’après le théorème de Cauchy linéaire, l’application 

θ : S0 −→ R
2, y �−→ (

y(1),y′(1)
)

est une bijection linéaire. Comme 

S = {
y ∈ S0 ; y(1) = 2

} = θ
−1({2} × R) ,

S est l’image réciproque par θ de la droite affine {2} × R

de R2. Il en résulte que S est une droite affine.

c) La courbure de γy au point d’abscisse 1 est donnée par :

γy = y′′(1)(
1 + (

y′(1)
)2)3/2 .

Ici :

y(1) = 2, y′′(1) = −y′(1) + (1 + 1 + 1)y(1)

= −y′(1) + 6 ,

donc : γy = 6 − y′(1)(
1 + y′(1)2

)3/2 .

d) D’après le théorème de Cauchy linéaire, pour tout t ∈ R, il
existe y ∈ S0 unique telle que :

y(1) = 2 et y′(1) = t .

La valeur maximale de γy est donc la valeur maximale (si elle

existe) de l’application 

γ : R −→ R, t �−→ γ(t) = 6 − t

(1 + t2)3/2
.

L’application γ est dérivable sur R et, après un calcul élé-
mentaire, pour tout t ∈ R :

γ
′(t) = (1 + t2)−5/2(2t2 − 18t − 1) .

On en déduit le tableau des variations de γ :

t −∞ t1 t2 +∞
γ′(t) + 0   − 0   +
γ(t) 0   ↗ ↘ ↗ 0

t1 = 9 − √
83

2
, t2 = 9 + √

83

2
.

La valeur maximale de γ est donc atteinte en t1 :

γ(t1) = 6 − t1

(1 + t2
1 )3/2

� 6,027 . . .

• Notons g = f ′′ − a2 f . Nous allons calculer f en fonc-
tion de g, par résolution de l’EDL2   (E)    y′′ − a2 y = g. La
solution générale de l’EDL2 SSM associée (E0) y′′ − a2 y = 0
est (puisque a =/ 0) :

y : x �−→ λ ch ax + µ sh ax, (λ,µ) ∈ R
2 .

Cherchons une solution particulière de (E) par la méthode de
variation des constantes, sous la forme :

y : x �−→ u(x) ch ax + v(x) sh ax ,

où u,v sont des fonctions inconnues, dérivables, satisfaisant une
certaine condition.

On a, pour tout x ∈ [0 ;+∞[ :{
u′(x) ch ax + v′(x) sh ax = 0

u′(x)a sh ax + v′(x)a ch ax = g(x)

⇐⇒




u′(x) = − 1

a
g(x) sh ax

v′(x) = 1

a
g(x) ch ax .

La solution générale de (E) est donc donnée par :

y(x) = − 1

a
ch ax

∫ x

0
g(t)sh at dt + 1

a
sh ax

∫ x

0
g(t)ch at dt

+λ ch ax + µ sh ax, (λ,µ) ∈ R
2.

On a alors, pour tout x ∈ [0 ;+∞[ :

y′(x) = − sh ax
∫ x

0
g(t) sh at dt + ch ax

∫ x

0
g(t) sh at dt

+λa sh ax + µa ch a.

D’où :

{
y(0) = f (0)

y′(0) = f ′(0)
⇐⇒

{
λ = f (0)

µa = f ′(0).

On conclut que, pour tout x ∈ [0 ;+∞[ :

f (x) = − 1

a
ch ax

∫ x

0
g(t) sh at dt

+ 1

a
sh ax

∫ x

0
g(t) ch at dt + f (0) ch ax + f ′(0)

sh ax

a

= 1

a

∫ x

0
g(t) sh

(
a(x − t)

)
dt + f (0) ch ax + f ′(0)

sh ax

a
.
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• Comme, par hypothèse, g � 0, et que :

∀ x ∈ [0 ;+∞[, ∀ t ∈ [0 ; x], sh
(
a(x − t)

)
� 0 ,

on déduit :

∀ x ∈ [0 ;+∞[, f (x) � f (0) ch ax + f ′(0)
sh ax

a
.

• En appliquant le résultat précédent à (b, a,− f,−g) à la place
de (a, b, f, g), on déduit l’autre inégalité demandée.

1) Soit (I,y) convenant. On a :

yy′′ + y′ 2 = 0 ⇐⇒ (yy′)′ = 0

⇐⇒ ∃ A ∈ R,

(
y2

2

)′
= yy′ = A

⇐⇒ ∃ (A,B) ∈ R
2, ∀ x ∈ R,

y2

2
= Ax + B.

De plus, comme 
y2

2
= Ax + B, et yy′ = A , on a :

{
y(0) = 1
y′(0) = 1

⇐⇒
{ B = 1/2

A = 1.

D’où : ∀ x ∈ I,
(
y(x)

)2 = 2x + 1.

Il s’ensuit : ∀ x ∈ I, x � −1

2
,

donc, puisque I est ouvert : I ⊂ ] − 1/2 ;+∞[.

Comme : ∀ x ∈ I,
(
y(x)

)2 = 2x + 1 =/ 0,

y ne s’annule en aucun point de I. Ainsi, l’application y est conti-
nue sur l’intervalle I et ne s’annule en aucun point de I, donc,
d’après le théorème des valeurs intermédiaires, y est de signe
strict fixe. Comme de plus y(0) = 1 > 0, on déduit y > 0,
d’où :

∀ x ∈ I, y(x) = √
2x + 1 .

2) Réciproquement, pour tout intervalle ouvert I tel que
0 ∈ I ⊂ ] − 1/2 ;+∞[, l’application 

y : I −→ R, x �−→ √
2x + 1

est deux fois dérivable sur I et un calcul simple montre que :
yy′′ + y′ 2 = 0.

Finalement, l’ensemble des couples (I,y) convenant est 
défini par : I est un intervalle ouvert quelconque tel que
0 ∈ I ⊂ ] − 1/2 ;+∞[ et y : I −→ R, x �−→ √

2x + 1.

Soit y une solution maximale de  (E)   y′ = f (x,y) .

D’après le cours, l’intervalle de définition I de y est ouvert. Il
existe donc (α,β) ∈ R ∪ {−∞,+∞} tel que : I = ]α ;β[.
Nous allons montrer β = +∞ , en raisonnant par l’absurde.
Supposons β ∈ R . Il existe a ∈ ]α ;β[. On a , pour tout
x ∈ [a ;β[ :

y(x) = y(a) +
∫ x

a
y′(t) dt = y(a) +

∫ x

a
f
(
t,y(t)

)
dt

Puisque f est de classe C1 et bornée sur R2, l’application

t �−→ f
(
t,y(t)

)
est continue et bornée sur l’intervalle borné

[a ;β[ , donc est intégrable sur [a ;β[ . Il en résulte que l’ap-

plication x �−→
∫ x

a
f
(
t,y(t)

)
dt , admet une limite finie 


lorsque x −→ β
− . D’après la formule vue plus haut, on dé-

duit : y(x) −→
x−→β−

y(a) + 
.

Considérons l’application Y : ]α ;β] −→ R définie par :

Y (x) =
{

y(x) si α < x < β

y(a) + 
 si x = β.

Alors, Y est continue sur ]α ;β] , de classe C1 sur ]α ;β[ et :

y′(x) = f
(
x,y(x)

) −→
x−→β−

f
(
β,y(a) + 


)
.

D’après le théorème limite de la dérivée, on déduit que Y est
de classe C1 sur ]α ;β] et que :

y′(β) = f
(
β,y(a) + 


) = f
(
β,Y (β)

)
.

Ainsi, Y est solution de (E) sur ]α ;β] , ce qui contredit la maxi-
malité de y.

Ce raisonnement par l’absurde montre : β = +∞ .

De même : α = −∞.

On conclut que y est définie sur R.

1) L’application R
2 −→ R, (x,y) �−→ 1

1 + x2 + y2
,

est de classe C1 sur l’ouvert R2 de R2, et (0,0) ∈ R
2, donc,

d’après le théorème de Cauchy et Lipschitz (non linéaire) le
problème de Cauchy (C) admet une solution maximale et une
seule, encore notée y, l’intervalle de définition de y est ouvert,
et toute solution de (C) est restriction de y.

2) Notons J = {x ∈ R ; −x ∈ I } le symétrisé de I , et
z : J −→ R, x �−→ z(x) = −y(−x) la symétrisée de y.

L’application z est dérivable sur J (par composition, puisque
y est dérivable sur I), on a z(0) = −y(0) = 0 ,

et, pour tout x ∈ J :

z′(x) = y′(−x) = 1

1 + (−x)2 + (
y(−x)

)2

= 1

1 + x2 + (
z(x)

)2 .

Ceci montre que z est solution de (C) sur J.

Il en résulte que z est restriction de la solution maximale y, c’est-
à-dire : J ⊂ I et ∀ x ∈ J, z(x) = y(x).

• En notant I = ]α ;β[ où −∞ � α < 0 < β � +∞ , on a :

J ⊂ I ⇐⇒] − β ;−α[ ⊂ ]α ;β[

⇐⇒ (
α � −β et − α � β

) ⇐⇒ β = −α.
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On déduit : I = ] − α ;α[, donc I est symétrique par rapport
à 0.

• Et : ∀ x ∈ I, y(x) = z(x) = −y(−x),

donc y est impaire.

3) • L’application y est dérivable sur l’intervalle I et :

∀ x ∈ I, y′(x) = 1

1 + x2 + (
y(x)

)2 > 0 ,

donc y est strictement croissante sur I.

• On a de plus y(0) = 0, donc y est à valeurs � 0 (sur
I ∩ [0 ;+∞[).

• On a, pour tout x ∈ I ∩ [0 ;+∞[ :

y′(x) = 1

1 + x2 + (
y(x)

)2 � 1

1 + x2
,

d’où, en intégrant, pour tout x ∈ I ∩ [0 ;+∞[ :

y(x) = y(0) +
∫ x

0
y′(t) dt

�
∫ x

0

1

1 + t2
dt = Arctan x � π

2
,

ce qui montre que y est majorée.

4) Raisonnons par l’absurde : supposons qu’il existe
b ∈ ]0 ;+∞[ tel que : I ∩ [0 ;+∞[ = [0 ; b[ .

Puisque y est croissante et majorée, y admet en b− une limite
finie, notée L.

Considérons l’application 

Y : [0 ; b] −→ R, x �−→
{

y(x) si x =/ b

L si x = b.

Puisque y est continue sur [0 ; b[ et que y(x) −→
x−→b−

L, Y est

continue sur [0 ; b].

D’autre part, Y , qui coïncide avec y sur [0 ; b[, est dérivable
sur [0 ; b[ et :

∀ x ∈ [0 ; b[, y′(x) = y′(x) = 1

1 + x2 + (
y(x)

)2 .

Puisque y est continue sur [0 ; b[ (car dérivable), par opéra-

tions, Y ′ est continue sur [0 ; b[, donc Y est de classe C1 sur
[0 ; b[.

Enfin :

y′(x) = 1

1 + x2 + (
y(x)

)2 −→
x−→b−

1

1 + b2 + L2
,

donc Y ′ admet en b− une limite finie.

D’après le théorème limite de la dérivée, on déduit que Y est

de classe C1 sur [0 ; b] et que Y ′(b) = 1

1 + b2 + L2
.

Mais alors, Y est solution de (C) sur [0 ; b], ce qui contredit la
maximalité de y.

Ce raisonnement par l’absurde montre que l’extrémité droite
de I n’est pas un réel, donc est +∞ .

5) Puisque y est croissante et majorée, y admet en +∞ une li-
mite finie notée 
 .

De plus, comme on l’a vu en 3), pour tout x ∈ [0 ;+∞[ :

0 � y(x) � π

2
.

On déduit, par passage à la limite lorsque x tend vers +∞ :

0 � 
 � π

2
.

On a, par exemple : 
 � y(1) > 0, donc 
 > 0.

Si 
 = π

2
, alors, en faisant tendre x vers +∞ dans l’encadre-

ment obtenu plus haut, on déduit :∫ +∞

0

1

1 + t2 + (
y(t)

)2 dt =
∫ +∞

0

1

1 + t2
dt ,

contradiction, car t �−→ 1

1 + t2
− 1

1 + t2 + (
y(t)

)2 est conti-

nue, à valeurs � 0 et n’est pas l’application nulle. On a donc


 =/ π

2
.

Finalement : 0 < 
 <
π

2
.

6) α) Récurrence.

• Puisque y est dérivable, donc continue,
1

1 + x2 + y2
est

continue, donc y′ est continue, y est C1.

• Si y est Cn, pour un n ∈ N
∗ , alors 

1

1 + x2 + y2
est Cn,

y′ est Cn, y est Cn+1.

On conclut : y est de classe C∞ sur [0 ;+∞[.

β) Ainsi, y est C2 et : y′′ = − 2x + 2yy′

(1 + x2 + y2)2
� 0, car

x � 0, y � 0, y′ � 0 .

On conclut que y est concave sur [0 ;+∞[.

7) On a : y′(0) = 1

1 + 02 + 02
= 1.
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8) Puisque y est de classe C∞ sur [0 ;+∞[ (et même sur R),
d’après le théorème de Taylor-Young, y admet un développe-
ment limité à tout ordre, y′ aussi, et on passe du premier au se-
cond par dérivation terme à terme.

En particulier, y admet un DL5(0) . De plus, y(0) = 0,
y′(0) = 1, et y est impaire (sur R).

Le DL5(0) de y est donc de la forme :

y(x) = x + ax3 + bx5 + o
x−→0

(x5), (a,b) ∈ R
2 ,

et on a : y′(x) = 1 + 3ax2 + 5bx4 + o(x4).

On reporte dans l’équation différentielle, présentée de préfé-
rence sous forme d’un produit que d’un quotient :

y′ = 1

1 + x2 + y2
⇐⇒ (1 + x2 + y2)y′ = 1

⇐⇒
(

1 + x2 + (
x + ax3 + bx5 + o(x5)

)2
)

(
1 + 3ax2 + 5bx4 + o(x4)

) = 1

⇐⇒ (
1 + 2x2 + 2ax4 + o(x4)

)
(
1 + 3ax2 + 5bx4 + o(x4)

) = 1

⇐⇒ 1 + (3a + 2)x2 + (5b + 8a)x4 + o(x4) = 1

⇐⇒
{

3a + 2 = 0

5b + 8a = 0
⇐⇒




a = −2

3

b = 16

15
,

en utilisant l’unicité du DL4(0) de l’application nulle.

On conclut que y admet le DL5(0) suivant :

y(x) = x − 2

3
x3 + 16

15
x5 + o

x−→0
(x5).

Notons S0 l’ensemble des solutions de (E0) sur R.
D’après le cours, S0 est un C-espace vectoriel de dimen-
sion n.

• Considérons, pour X ∈ S0, l’application translatée de X
par T :

X1 : R −→ Mn,1(C), t �−→ X1(t) = X (t + T ) .

Il est clair que X1 est dérivable sur R, et :

∀ t ∈ R, X ′
1(t) = X ′(t + T )

= A(t + T )X (t + T ) = A(t)X1(t),

donc X1 ∈ S0 .

On peut donc considérer l’application :

φ : S0 −→ S0, X �−→ φ(X) = X1 .

• L’application φ est linéaire car, pour tout α ∈ C et toutes
X,Y ∈ S0 :

∀ t ∈ R,
(
φ(αX + Y )

)
(t) = (αX + Y )(t + T )

= αX (t + T ) + y(t + T ) = αφ(X)(t) + φ(Y )(t)

= (
αφ(X) + φ(Y )

)
(t),

donc : φ(αX + Y ) = αφ(X) + φ(y).

• Ainsi, φ est un endomorphisme du C-espace vectoriel S0 , et
celui-ci est de dimension finie supérieure ou égale à 1 (car égale
à n).

D’après le cours (conséquence du théorème de d’Alembert),
φ admet au moins une valeur propre et un vecteur propre as-
socié. Il existe donc λ ∈ C et X ∈ S0 tels que : φ(X) = λX.
Ainsi, X est une solution de (E0) sur R, autre que l’applica-
tion nulle, et telle que :

∀ t ∈ R, X (t + T ) = λX (t) .

a) Remarquons d’abord que, puisque A est inversible et
que, pour tout t ∈ R, X ′(t)X (t) = A , pour tout t ∈ R, X (t)
est inversible.

Considérons l’application 

Y : ] − a ; a[−→ Mn(R), t �−→ Y (t) = X (t)A − AX (t) .

Puisque X est dérivable sur ] − a ; a[ , par opérations, Y est dé-
rivable sur ] − a ; a[ et :

Y ′ = (X A − AX)′ = X ′ A − AX ′

= (AX−1)A − A(AX−1) = AX−1(AX − X A)X−1

= −AX−1Y X−1.

D’après le cours, le problème de Cauchy linéaire :

Y ′ = −AX−1Y X−1, Y (0) = 0

d’inconnue Y : ] − a ; a[−→ Mn(R) supposée dérivable,
admet une solution et une seule.

Comme Y et l’application constante nulle conviennent, on a donc
Y = 0, d’où : X A − AX = 0, c’est-à-dire :

∀ t ∈ ] − a ; a[, X (t)A = AX (t).

b) Considérons le problème de Cauchy non linéaire 

(C) z′ = AZ−1, Z(0) = In ,

d’inconnue Z, à valeurs dans GLn(R).

Puisque l’application :

] − a ; a[×GLn(R) −→ Mn(R), (t,Z) �−→ AZ−1

est de classe C1 sur l’ouvert ] − a ; a[×GLn(R) , (C) admet
une solution maximale et une seule. D’après le cours, comme
X est solution de (C), la solution maximale est un prolonge-
ment de X .

Considérons l’application 

U : ] − a ; a[−→ Mn(R), t �−→ U(t) = tX (t) .
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Puisque X est dérivable sur ] − a ; a[ , par opération, U l’est
aussi, et on a :

U ′U = (tX)′tX = t(X ′)tX = t(AX−1)tX

= tX−1 tA tX = tX−1 t(X A) =
a)

t X−1 t(AX)

= tX−1 tX tA = tA = A.

De plus  : U(0) = tX (0) = tIn = In et :

∀ t ∈ ] − a ; a[, U(t) ∈ GLn(R) .

Ainsi, X et U sont solutions de (C) sur ] − a; a[, d’où, d’après

le cours : ∀ t ∈ ] − a ; a[, U(t) = X (t),

c’est-à-dire : ∀ t ∈ ] − a ; a[, tX (t) = X (t).

On conclut que, pour tout t ∈ ] − a ; a[ , la matrice X (t) est sy-
métrique.

Puisque (E0) est une EDL2 SSM, normalisée, à coeffi-
cients continus sur l’intervalle [−1 ; 1], d’après le cours, S0 est
un R-espace vectoriel de dimension 2. Nous allons montrer que
les applications N1,N2 : S0 −→ R définies, pour tout y ∈ S0,
par ; 

N1(y) =
∫ 0

−1
|y′′ − y′|, N2(y) =

∫ 1

0
|y′′ + y′| ,

sont des normes sur S0 . Comme S0 est un R-ev de dimension
finie (égale à 2), il en résultera que N1 et N2 sont équivalentes,
d’où, en particulier, le résultat demandé.

1) Étude de N1 :

• On a, pour toutes y1,y2 ∈ S0 :

N1(y1 + y2) =
∫ 0

−1

∣∣(y1 + y2)
′′ − (y1 + y2)

′∣∣

=
∫ 0

−1

∣∣(y′′
1 − y′

1) + (y′′
2 − y′

2)
∣∣

�
∫ 0

−1
|y′′

1 − y1′ | +
∫ 0

−1
|y′′

2 − y′
2| = N2(y1) + N2(y2).

• On a, pour tout α ∈ R et toute y ∈ S0 :

N1(αy) =
∫ 0

−1

∣∣(αy)′′ − (αy)′
∣∣

= |α|
∫ 0

−1
|y′′ − y′| = |α|N1(y).

• Soit y ∈ S0 telle que N1(y) = 0.

Comme y′′ = x2 y′ − y et que yest deux fois dérivable, y′′ est

dérivable, donc, en particulier, y est de classe C2.

Ainsi,
∫ 0

−1
|y′′ − y′| = 0, et |y′′ − y′| est continue et � 0,

d’où : ∀ x ∈ [−1 ; 0], y′′(x) − y′(x) = 0.

Par résolution de cette EDL1 d’inconnue y′, il existe λ ∈ R tel
que : ∀ x ∈ [−1 ; 0], y′(x) = λ ex ,

puis il existe µ ∈ R tel que :

∀ x ∈ [−1 ; 0], y(x) = λ ex + µ .

On a alors, pour tout x ∈ [−1 ; 0] :

0 = y′′(x) − x2 y′(x) + y(x)

= λ ex − x2
λ ex + (λ ex + µ) = −λx2ex + 2λex + µ.

En remplaçant x par 0, on déduit µ = −2λ , puis :

∀ x ∈ [−1 ; 0], λ(−x2 ex + 2 ex − 2) = 0 ,

donc λ = 0, d’où : ∀ x ∈ [−1 ; 0], y(x) = 0.

En particulier, y est solution de (E0) sur [−1 ; 1] et
y(0) = 0, y′(0) = 0 . D’après le théorème de Cauchy linéaire,
le problème de Cauchy linéaire 

(C)

{
y′′ − x2 y′ + y = 0

y(0) = 0, y′(0) = 0

d’inconnue y : [−1 ; 1] −→ R , admet une solution et une
seule. Comme y et la fonction constante nulle sont solutions
de (C), on déduit : y = 0.

Ceci montre que N1 est une norme sur S0 .

2) On montre, de même, que N2 est une norme sur S0 .

3) Puisque N1 et N2 sont des normes sur le R-espace vectoriel
S0 qui est de dimension finie (égale à 2), d’après le cours, N1

et N2 sont équivalentes, donc, en particulier, il existe α ∈ R
∗
+

tel que :

∀ y ∈ S0, N1(y) � αN2(y) ,

d’où le résultat demandé.

a) Notons, pour k ∈ {1,2} :

zk : R −→ C, x �−→ yk(x + T ) .

Soit k ∈ {1, 2} . L’application zk est deux fois dérivable sur R
et, pour tout x ∈ R :

z′′
k (x) + f (x)zk(x) = y′′

k (x + T ) + f (x)yk(x + T )

= y′′
k (x + T ) + f (x + T )yk(x + T )

= (yz′′
k + f yk)(x + T ) = 0 ,

donc zk est solution de (E0) sur R.

Comme (y1,y2) est une base du R-ev S0 des solutions de (E0),

il existe (αk,βk) ∈ R
2 tel que : zk = αk y1 + βk y2,

c’est-à-dire : ∀ x ∈ R, yk(x + T ) = αk y1(x) + βk y2(x).

b) Notons 

Y : R −→ M2,1(C), x �−→ Y (x) =
(

y1(x)

y2(x)

)
.
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On a, pour tout x ∈ R :

Y (x + T ) =
(

y1(x + T )

y2(x + T )

)
=

(
α1 y1(x) + β1 y2(x)

α2 y1(x) + β2 y2(x)

)

=
(
α1 β1

α2 β2

)(
y1(x)

y2(x)

)
= AY (x).

Mais, de la même façon, puisque f est aussi −T-périodique, il
existe B ∈ M2(C) telle que :

∀ x ∈ R, Y (x − T ) = BY (x) .

On a alors :

∀ x ∈ R,

Y (x) = Y
(
(x + T ) − T

) = BY (x + T ) = B AY (x) ,

c’est-à-dire : ∀ x ∈ R, (B A − I2)Y (x) = 0.

En dérivant, on obtient :

∀ x ∈ R, (B A − I2)Y
′(x) = 0 .

En groupant les colonnes en matrices carrées d’ordre deux,
on a :

∀ x ∈ R, (B A − I2)

(
y1(x) y′

1(x)

y2(x) y′
2(x)

)
= 0 .

Comme (y1,y2) est une base de S0 , d’après le cours, le wrons-

kien w = y1 y′
2 − y′

1 y2 =
∣∣∣∣ y1 y2

y′
1 y′

2

∣∣∣∣ n’est pas la fonction nulle,

d’où B A − I2 = 0, et on conclut que A est inversible.
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9CHAPITRE 9Fonctions 
de plusieurs
variables réelles

Thèmes abordés dans les exercices
• Étude de limite ou de continuité pour une fonction de plusieurs variables réelles

• Existence et calcul éventuel des dérivées partielles premières, des dérivées par-
tielles successives

• Détermination de la classe d’une fonction de plusieurs variables réelles

• Étude de C1-difféomorphismes d’un ouvert de Rn sur un ouvert de Rn, n � 2

• Recherche d’extrémums locaux, d’extrémums globaux, pour une fonction réel-
le de deux ou de plusieurs variables réelles 

• Résolution d’équations aux dérivées partielles du premier ordre (EDP1), du
second ordre (EDP2).

Points essentiels du cours 
pour la résolution des exercices
• Définition et propriétés de la continuité d’une fonction f de plusieurs variables

réelles, lien entre la continuité de f et la continuité des fonctions partielles de f

• Définition et propriétés algébriques des dérivées partielles premières, des déri-
vées partielles successives, en particulier le théorème de composition des fonc-
tions de classe C1, de classe Ck, de classe C∞

• Définition et caractérisation (faisant intervenir le jacobien) des C1-difféomor-
phismes d’un ouvert de Rn sur un ouvert de Rn

• Définition de la notion d’extrémum local, pour une fonction f de plusieurs
variables réelles, lien avec le notion de point critique de f lorsque f est de clas-
se C1 sur un ouvert de Rn, et, pour PT, intervention de s2 − rt lorsque f est de
classe C2 sur un ouvert de R2

• Résolution de l’EDP1 
∂ f

∂x
= g, f inconnue, g donnée.

Les méthodes à retenir 350

Énoncés des exercices 353

Du mal à démarrer ? 355

Corrigés 357
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Chapitre 9 • Fonctions de plusieurs variables réelles

350

Les méthodes à retenir

∗ Cas de deux variables réelles :
Essayer d’abord d’appliquer les théorèmes généraux.
• S’il s’agit d’une forme indéterminée, se ramener d’abord, par chan-

gement de variables par translation à une étude en (0,0).
Former les fonctions partielles f (·,0) et f (0,·).

• Si l’une de ces deux fonctions partielles n’a pas de limite en 0, ou si
ces deux fonctions ont des limites en 0 différentes, alors f n’a pas de
limite en (0,0).

• Si f (·,0) et f (0,·) admettent une même limite finie � en 0, envisager
des fonctions composées du type x �−→ f (x,x) ,
x �−→ f (x,λx), λ ∈ R, ou plus compliquées en tenant compte de
l’exemple proposé. Si ces diverses fonctions (d’une variable) ont la
même limite � en 0, on peut essayer d’établir que f admet � pour
limite en (0,0), en formant | f (x,y) − �| et en essayant de majorer
cette expression par une expression plus simple et de limite 0
lorsque (x,y) tend vers (0,0). À cet effet, il peut être intéressant de
faire un changement de variables, par exemple en coordonnées
polaires.

➥ Exercices 9.1, 9.6, 9.7

∗ Cas de plusieurs variables réelles :
Essayer d’adapter les méthodes précédentes.

➥ Exercices 9.16, 9.17. 

∗ Cas de deux variables réelles :
• Essayer d’abord d’appliquer les théorèmes généraux, en particulier

le théorème de composition des applications de classe C1.
• En un point litigieux (c’est-à-dire en lequel les théorèmes 

généraux ne s’appliquent pas) (x0,y0), pour étudier l’existence 

et la valeur de 
∂ f

∂x
(x0,y0), former la fonction partielle

f (·,y0) : x �−→ f (x,y0) et étudier sa dérivabilité en x0. On a ainsi,

sous réserve d’existence :
∂ f

∂x
(x0,y0) = (

f (·,y0)
)′
(x0), et de même :

∂ f

∂y
(x0,y0) = (

f (x0,·)
)′
(y0).

• Pour montrer que f n’est pas de classe C1, on peut essayer de rai-
sonner par l’absurde, en utilisant une fonction composée.

➥ Exercice 9.1.

∗ Cas de plusieurs variables réelles :
Essayer d’adapter les méthodes précédentes. 

Pour étudier 
l’existence et la valeur 
de la limite en un point
ou pour étudier la continuité 
en un point 
d’une fonction 
de deux variables réelles
ou de plusieurs variables réelles

Pour étudier 
l’existence et la valeur 
des dérivées partielles premières
d’une fonction f
de deux variables réelles
ou de plusieurs variables réelles
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Commencer par montrer que φ est de classe C1 sur U et bijective.
Ensuite :
• montrer que φ−1 est de classe C1 sur V, si φ−1 est exprimable

➥ Exercice 9.9

• montrer que le jacobien de φ en tout point (x,y) de U n’est pas nul.

➥ Exercice 9.8.

• Essayer d’abord d’appliquer les théorèmes généraux, en particulier
le théorème de composition des applications de classe C2 (ou Cn,
ou C∞), et calculer successivement les dérivées partielles pre-
mières, puis les dérivées partielles secondes (puis successives).

➥ Exercices 9.2, 9.3

• En un point litigieux (c’est-à-dire en lequel les théorèmes généraux
ne s’appliquent pas), étudier successivement les dérivées partielles
premières, puis les dérivées partielles secondes (ou successives),
comme indiqué plus haut. 

• Essayer d’abord d’appliquer les théorèmes généraux.
• Essayer de se ramener à l’intervention d’une fonction d’une variable

réelle. Se rappeler que toute fonction développable en série entière
en 0 est de classe C∞ au voisinage de 0.

➥ Exercice 9.20.

• On sait résoudre les deux EDP1 :
∂ f

∂x
= g,

∂ f

∂y
= h,

où g,h : U −→ R sont données (continues), par primitivation. Par

exemple, la solution générale de l’EDP1 
∂ f

∂x
= g est

f : (x,y) �−→
∫

g(x,y) dx + ϕ(y), où ϕ est une fonction quel-

conque de classe C1 (sur un intervalle à préciser).
• On essaiera de se ramener à cette EDP1 simple par un changement

de variables (et donc aussi un changement de fonction inconnue)
donné (ou suggéré) par l’énoncé.

➥ Exercice 9.11.

• On sait résoudre les trois EDP2 :

∂2 f

∂x2
= g,

∂2 f

∂x∂y
= h,

∂2 f

∂y2
= k ,

où g,h,k : U −→ R sont données (continues), par deux primitiva-
tions successives.

➥ Exercice 9.4

Pour montrer qu’une application
φ : U −→ V
est un C1-difféomorphisme
d’un ouvert U de Rn

sur un ouvert V de Rn, n � 2

Pour étudier 
l’existence et la valeur 
des dérivées partielles secondes
(ou successives) 
d’une fonction 
de deux variables réelles 
ou de plusieurs variables réelles

Pour montrer 
qu’une application f : U −→ R

est de classe C∞

sur un ouvert U de Rn

Pour résoudre une équation 
aux dérivées partielles 
du premier ordre (EDP1)
d’inconnue f : U −→ R de classe C1

sur un ouvert (convexe) U de R2

Pour résoudre une équation 
aux dérivées partielles 
du deuxième ordre (EDP2)
d’inconnue f : U −→ R de classe C2

sur un ouvert (convexe) de R2
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• Essayer de se ramener à l’une de ces EDP2 par un changement de
variables (et donc aussi un changement de fonction inconnue) donné
(ou suggéré) par l’énoncé.

➥ Exercice 9.12.

• Si l’on cherche les solutions d’une forme particulière d’une EDP, on
peut essayer de se ramener à une ED. 

• Commencer par déterminer les points critiques de f, c’est-à-dire les
points en lesquels les deux dérivées partielles premières de f s’an-
nulent simultanément. En effet, d’après le cours, si f : U −→ R est
de classe C1 sur l’ouvert U de R2 et si f admet un extrémum local
en un point (x0,y0) de U , alors (x0,y0) est un point critique de f.

• Si, de plus, f est de classe C2 sur U , calculer les trois dérivées par-
tielles secondes de f en tout point de U , en déduire les valeurs de
r = f ′′

x2(x0,y0), s = f ′′
xy(x0,y0), t = f ′′

y2(x0,y0), et former s2 − rt .

Si s2 − rt > 0, alors f n’admet pas d’extrémum local en (x0,y0)

(point-col)

Si s2 − rt < 0 alors f admet un extrémum local en (x0,y0), un
minimum si r > 0 (ou t > 0), un maximum si r < 0 (ou t < 0).
Si s2 − rt = 0, étudier le signe de f (x,y) − f (x0,y0) pour (x,y)

voisin de (x0,y0), par exemple en utilisant des chemins particuliers.

• Former f (x,y) − f (x0,y0) pour (x,y) voisin de (x0,y0) et montrer
l’un des trois résultats suivants :
1) f (x,y) − f (x0,y0) est � 0 au voisinage de (x0,y0), auquel cas f
admet un minimum local en (x0,y0)

2) f (x,y) − f (x0,y0) est � 0 au voisinage de (x0,y0), auquel cas f
admet un maximum local en (x0,y0)

3) f (x,y) − f (x0,y0) n’est de signe fixe sur aucun voisinage de
(x0,y0), auquel cas f n’admet pas d’extremum local en (x0,y0). Pour
ce dernier cas, on pourra essayer s’utiliser des chemins particuliers.

➥ Exercices 9.5, 9.13.

• Essayer de montrer que f est bornée et atteint ses bornes, par utilisa-
tion du théorème de continuité sur un compact.

➥ Exercice 9.14

• Si f atteint une de ses bornes en un point (x0,y0) intérieur à X et si f
est de classe C1 sur l’intérieur X◦ de X, alors f|X◦ admet un extré-
mum local en (x0,y0), donc (x0,y0) est un point critique de f|X◦ .

➥ Exercice 9.14

• Si f atteint une de ses bornes en un point du bord de X, essayer de
se ramener à une recherche d’extrémum global pour une fonction
d’une variable réelle.

➥ Exercice 9.21

• Dans certains cas simples, l’étude peut être résolue par l’utilisation
d’inégalités classiques.

➥ Exercice 9.15.

Pour déterminer 
les extrémums locaux
d’une application f : U −→ R

de classe C1 ou C2

sur un ouvert U de R2

Pour déterminer 
les extrémums globaux
d’une application f : X −→ R,
où X ⊂ R

2

PT

PC-PSI
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Énoncés des exercices
Étude de continuité et de caractère C1 pour une fonction de deux variables réelles

Étudier la continuité et le caractère C1 sur R
2 de la fonction f définie par : f (0,0) = 0

et f (x,y) = sin (xy)

|x | + |y| si (x,y) =/ (0,0) . 

Fonction harmonique

Soit P ∈ C[X]. On note : f : R
2 −→ C, (x,y) �−→ P(x + i y).

Montrer que f est harmonique sur R2. 

Laplacien d’une fonction radiale

Soit f : ]0 ;+∞[−→ R de classe C2.

On note U = R
3 − {(0,0,0)}, g : U −→ R, (x,y,z) �−→ f (

√
x2 + y2 + z2) .

Montrer que g est de classe C2 sur U et que, pour tout (x,y,z) ∈ U, on a, en notant

ρ = √
x2 + y2 + z2 : �g(x,y,z) = f ′′(ρ) + 2

ρ
f ′(ρ), où � désigne le laplacien. 

Résolution d’une EDP2 avec condition

Trouver toutes les applications f : R
2 −→ R de classe C2 telles que :

∀ (x,y) ∈ R
2, f ′′

xy(x,y) = 0 et f (x,x) = 0 .

Exemples de recherche d’extrémums locaux 
de fonctions numériques de deux variables réelles

Déterminer les extrémums locaux des applications f suivantes, pour lesquelles on donne l’en-
semble de départ et l’image f (x,y) de (x,y) :

a) R
2, 4x + 2y − x2 − y2 − 2x3 (PT) b) R

2, xy + x3 y2 (PC, PSI, PT).  

Exemples d’étude de limite pour des fonctions de deux variables réelles

Étudier l’existence et la valeur éventuelle d’une limite finie en (0,0) pour les fonctions f de deux
variables réelles définies par les formules suivantes :

a)
xy

x2 + xy + y2
b)

x2 y

x2 − xy + y2
c)

x3 y4

x4 + y6
d)

xy4

x4 + y6
e)

exy − 1

ex − 1
.

Limite pour une fonction de deux variables réelles

L’application f : R
2 − {(0,0)} −→ R, (x,y) �−→ (ex − 1) ln (1 + y) − (ey − 1) ln (1 + x)

x2 + y2

a-t-elle une limite en (0,0) ? 

Exemple de C1 -difféomorphisme à deux variables

Montrer que l’application f : R
2 −→ R

2, (x,y) �−→ (x3 + 3x ey, y − x2)

est un C1-difféomorphisme de R2 sur R2. 

9.1

9.2

9.3

9.4

9.5

9.6

9.7

9.8
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Exemple de C1 -difféomorphisme à deux variables

On note U =]0 ;+∞[2 et φ : (x,y) �−→
(

x3 y2,
1

x2 y

)
.

Montrer que φ est un C1-difféomorphisme de U sur U. 

Étude d’une intégrale dépendant d’un paramètre

Soit f : R
2 −→ R de classe C2, telle que f ′

x et f ′
y soient 1-périodiques par rapport à la première

variable, et que : f ′′
x2 = f ′′

y2. Montrer que l’application 

J : R −→ R, y �−→ J (y) = 1

2

∫ 1

0

((
f ′
x (x,y)

)2 + (
f ′

y(x,y)
)2)

dx

est constante. 

Exemple d’EDP1

Trouver toutes les applications f : (R∗
+)2 −→ R de classe C1 telles que :

∀ (x,y) ∈ (R∗
+)2, x

∂ f

∂x
(x,y) + y

∂ f

∂y
(x,y) = x√

x2 + y2
,

en utilisant les coordonnées polaires. 

Exemple d’EDP2

On note U = {
(x,y) ∈ R

2 ; y > |x |}. Trouver toutes les applications f : U −→ R de classe C1

sur U telles que : ∀ (x,y) ∈ U,
∂2 f

∂x2
(x,y) − ∂2 f

∂y2
(x,y) = 1√

y2 − x2
,

en utilisant le changement de variables défini par : u = x + y, v = y − x. 

Extrémums locaux d’une fonction numérique de deux variables réelles

Déterminer les extrémums locaux de 

f : U =] − π/2 ;π/2[2−→ R, (x,y) �−→ tan x th y − th x tan y .

Exemple de recherche de borne supérieure 
pour une fonction numérique de deux variables réelles

Déterminer Sup
(x,y)∈[0;+∞[2, x+y�π

sin x sin y sin (x + y).

Exemple d’extrémums liés

Calculer la borne supérieure et la borne inférieure de xy + z2, lorsque (x,y,z) ∈ R
3 vérifie

x2 + y2 + z2 = 9. 

Limite pour une fonction de trois variables réelles

Existence et valeur éventuelle de la limite en (0,0,0)

de f (x,y,z) = xyz

x2 + y2 + z2 + xy + xz + yz
.

Limite pour une fonction de trois variables réelles

On note U = {
(x,y,z) ∈ R

3 ; x2 + y2 − z2 =/ 0
}

.

9.9

9.10

9.11

9.12

9.13

9.14

9.15

9.16

9.17
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L’application f : U −→ R, (x,y,z) �−→ x4 + y4 − z4

x2 + y2 − z2
admet-elle une limite (finie ou infinie) 

en (0,0,0) ? 

Dérivabilité par rapport à une variable complexe

Soient Ω un ouvert non vide de R2, f : Ω −→ C de classe C1.

On note : U = {
x + i y ; (x,y) ∈ Ω

}
et g : U −→ C l’application définie, pour tout (x,y) ∈ Ω ,

par : g(x + i y) = f (x,y) .

Montrer que les deux propriétés suivantes sont équivalentes :

(1) ∀ (x,y) ∈ Ω, f ′
x (x,y) + i f ′

y(x,y) = 0

(2) pour tout z0 ∈ U, l’application z �−→ g(z) − g(z0)

z − z0
admet une limite finie h(z0) lorsque

z −→ z0. 

Différentielle de X �−→ X−1

Soit n ∈ N
∗ .

a) Montrer que GLn(R) est ouvert dans Mn(R).

b) Établir que l’application f : GLn(R) −→ Mn(R), X �−→ X−1 est de classe C1 et calculer sa
différentielle. 

Classe C∞ pour une fonction de deux variables réelles

Démontrer que l’application f : R
2 −→ R, (x,y) �−→




exy − 1

x
si x =/ 0

y si x = 0

est de classe C∞ sur R2.

Exemple de recherche de borne supérieure 
pour une fonction numérique de deux variables réelles
Déterminer Sup

(x,y)∈[0 ;+∞[2, x+y�2

x2 y2(x2 + y2).

Du mal à démarrer ?

9.18

9.19

9.20

9.21

PSI

Seul le point (0,0) pose problème.

• Pour montrer la continuité en (0,0), majorer convenablement

| f (x,y) − f (0,0)|.
• Pour montrer que f n’est pas de classe C1 sur R2, montrer que

x �−→ f (x,x) n’est pas dérivable en 0.

Décomposer P sur la base canonique, et examiner le cas

de Xk .

Calculer 
∂g

∂x
(x,y,z) à l’aide de f ′(ρ), x, ρ , puis 

∂2g

∂x2
(x,y,z)

à l’aide de f ′′(ρ), f ′(ρ), f (ρ), x, ρ, et en déduire ∆g(x,y,z) .

Résoudre l’EDP2 f ′′
xy = 0 et traduire ensuite la deuxième

condition.

a) Déterminer les points critiques de f, puis, en ces points,

calculer s2 − rt.

b) Déterminer les points critiques de f, puis étudier, par exemple,

f (x,x) − f (0,0) et f (x,−x) − f (0,0) .

a) Étudier f (x,0) et f (x,x) .

b) Mettre le trinôme sous forme canonique.

9.1

9.3

9.2

9.4

9.5

9.6
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c) Noter X = x2 et Y = |y|3 , puis ρ = (X2 + Y 2)1/2 , et majorer

convenablement | f (x,y)|.
d) Étudier, par exemple, f (x,x2/3) .

e) Montrer que l’application 

ϕ : R −→ R, t �−→



et − 1

t
si t �= 0

1 si t = 0

est continue sur R, et exprimer f à l’aide de ϕ .

Utiliser, par exemple, des développements limités.

Pour montrer que f est bijective, se ramener à une équa-

tion d’inconnue x, et montrer, par étude de variations d’une

fonction, que cette équation admet une solution et une seule.

Utiliser le théorème de caractérisation des C1-difféomor-

phismes.

Montrer que φ est bijective, en exprimant sa réciproque.

Appliquer ensuite la définition d’un C1-difféomorphisme.

Appliquer le théorème de dérivation sous le signe 

∫ 1

0
,

pour montrer que J est de classe C1 et exprimer J ′.

En notant φ : (θ, ρ) �−→ (ρ cos θ, ρ sin θ) et  g = f ◦ φ,

calculer 
∂g

∂ρ
.

L’EDP1 proposée se ramène à une EDP1 d’inconnue g , plus

simple à résoudre. Revenir à f.

En notant φ : (x,y) �−→ (x + y, x − y) et g = f ◦ φ−1 ,

calculer les dérivées partielles premières de f en fonction de

celles de g , puis calculer deux des dérivées partielles succes-

sives de f en fonction des dérivées partielles de g .

L’EDP2 de l’énoncé se ramène à une EDP2 d’inconnue g , plus

simple à résoudre. Revenir à f.

Déterminer les points critiques de f : il y en a un seul, (0,0).

Étudier, par exemple, f (x,x2).

En notant T = {
(x,y) ∈ [0 ;+∞[2 ; x + y � π

}
et

f : T −→ R, (x,y) �−→ sin x sin y sin (x + y) , montrer que f

est bornée et atteint sa borne supérieure, et montrer que celle-ci

est atteinte à l’intérieur de T. Déterminer les points critiques de f

sur l’intérieur de T.

Utiliser l’inégalité classique :

∀ (x,y) ∈ R
2, |xy| � 1

2
(x2 + y2) .

On peut ici résoudre la question sans faire intervenir de dérivée

partielle.

Noter X = y + z, Y = z + x, Z = x + y , puis majorer

convenablement | f (x,y,z)| .

Étudier f (x,0,0) et f (x,x,
√

2 x + x4) .

Utiliser la formule de Taylor-Young.

a) GLn(R) = det−1(R∗) .

b) • Utiliser la formule :

∀ X ∈ GLn(R), X−1 = 1

det (X)

tcom (X)

pour montrer que f : X −→ X−1 est de classe C1 sur l’ouvert

GLn(R) .

• Pour déterminer dX f , calculer, pour H assez petite,

(X + H)−1 − X−1 , en faisant apparaître X − (X + H) .

Considérer 

ϕ : R −→ R, t �−→



et − 1

t
si t �= 0

1 si t = 0.

Montrer que ϕ est développable en série entière en 0, de rayon
infini, donc ϕ est de classe C∞ sur R.

Exprimer f à l’aide de ϕ .

1re méthode Étude d’extrémum pour une fonction numérique

de deux variables réelles :

En notant C = {
(x,y) ∈ [0 ;+∞[2 ; x + y � 2

}
et f : C −→ R, (x,y) �−→ x2 y2(x2 + y2) , montrer que f

admet une borne supérieure et que celle-ci est atteinte.

Déterminer les points critiques de f sur l’intérieur de C et en

déduire que la borne supérieure de f est atteinte sur le bord 

de C . Étudier la restriction de f au bord de C .

2è méthode : Se ramener à une étude d’extrémum pour une fonc-

tion numérique d’une seule variable réelle :

Considérer, pour y ∈ [0 ; 2] fixé, l’application 

h : [0 ; 2 − y] −→ R, x �−→ f (x,y) ,

déterminer Sup
x∈[0;2−y]

h(x), puis étudier l’expression obtenue, en

fonction de y . Il pourra alors être commode de poser t = y − 1.

9.7

9.8

9.9

9.10

9.11

9.12

9.13

9.14

9.15

9.16

9.17

9.18

9.19

9.20

9.21
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• D’après les théorèmes généraux, f est de classe C1 sur
l’ouvert R2 − {(0,0)} .

• On a :

| f (x,y)| = | sin (xy)|
|x | + |y| � |xy|

|x | + |y| � |x | −→
(x,y)−→(0,0)

0 ,

donc : f (x,y) −→
(x,y)−→(0,0)

0 = f (0,0),

ce qui montre que f est continue en (0,0).

Il en résulte que f est continue sur R2.

• Considérons l’application 

g : R −→ R, x �−→ g(x) = f (x,x) .

On a :

g(x) − g(0)

x − 0
= sin (x2)

2x |x | ∼
x−→0

x

2|x | −→
x−→0±

±1

2
.

Ainsi, g n’est pas dérivable en 0.

Si f était de classe C1 sur R2, par composition, g serait de 
classe C1 sur R, contradiction.

On conclut : f n’est pas de classe C1 sur R2.

Rappelons qu’une application f : U −→ C , de classe
C2 sur un ouvert U de R2 est dite harmonique si et seulement
si son laplacien est nul, le laplacien de f étant :

� f = ∂2 f

∂x2
+ ∂2 f

∂y2
.

Vu la linéarité du laplacien, décomposons le polynôme P sur
la base canonique :

P =
n∑

k=0

akXk, où n ∈ N, a0,. . . ,an ∈ C.

Notons, pour tout k ∈ {0,. . . ,n} :

ek : R
2 −→ C, (x,y) �−→ (x + i y)k .

Ainsi : f =
n∑

k=0

akek .

Puisque ∆ est linéaire, on a : ∆ f =
n∑

k=0

ak∆ek .

Et, pour tout k ∈ {0,. . . ,n} et tout (x,y) ∈ R
2 :

∂ek

∂x
(x,y) = k(x + i y)k−1,

∂ek

∂y
(x,y) = i k(x + i y)k−1 ,

puis :
∂2ek

∂x2
(x,y) = k(k − 1)(x + i y)k−2,

∂2ek

∂y2
(x,y) = −k(k − 1)(x + i y)k−2 ,

d’où : ∆ek(x,y) = 0, et enfin : ∆ f = 0.

On conclut que f est harmonique sur R2.

Puisque (x,y,z) �−→ √
x2 + y2 + z2 est de classe C2

sur  U et à valeurs  > 0, et que  f est de classe C2 sur ]0 ;+∞[,
par composition, l’application

g : (x,y,z) �−→ f (
√

x2 + y2 + z2) est de classe C2 sur U .

On a, en notant ρ = √
x2 + y2 + z2 , pour tout (x,y,z) ∈ U :

∂g

∂x
(x,y,z) = f ′(ρ)

x

ρ
,

puis :

∂2g

∂x2
(x,y,z) = f ′′(ρ)

(
x

ρ

)2

+ f ′(ρ)
1

ρ
+ f ′(ρ)x

−1

ρ2

x

ρ

= f ′′(ρ)
x2

ρ2
+ f ′(ρ)

1

ρ
− f ′(ρ)

x2

ρ3
,

et de même par rapport à y ou à z.

D’où : ∆g(x,y,z) = ∂2g

∂x2
+ ∂2g

∂y2
+ ∂2g

∂z2

= f ′′(ρ)
x2 + y2 + z2

ρ2
+ 3 f ′(ρ)

1

ρ
− f ′(ρ)

x2 + y2 + z2

ρ3

= f ′′(ρ) + 2

ρ
f ′(ρ).

1) Soit f convenant. Par résolution de l’EDP2 f ′′
xy = 0,

il existe A,B : R −→ R de classe C2 telles que :
∀ (x,y) ∈ R

2, f (x,y) = A(x) + B(y).

On a, pour tout x ∈ R :

f (x,x) = 0 ⇐⇒ A(x) + B(x) = 0 ,

et donc : ∀ (x,y) ∈ R
2, f (x,y) = A(x) − A(y).

2) Réciproquement, pour toute application A : R −→ R de
classe C2 sur R, l’application 

f : R
2 −→ R, (x,y) �−→ A(x) − A(y)

est de classe C2 sur R2 et convient.

On conclut que les applications cherchées sont les 

f : R
2 −→ R, (x,y) �−→ A(x) − A(y) ,

où  A : R −→ R est de classe C2 sur R.

Corrigés des exercices

9.1

9.2

9.3

9.4



358

Dans chacun des deux exemples, f est de classe C2 sur

l’ouvert R2.

a) On a, pour tout (x,y) ∈ R
2 :

{
f ′

x (x,y) = 4 − 2x − 6x2

f ′
y(x,y) = 2 − 2y,

donc f admet deux points critiques exactement :

A(−1, 1), B(2/3, 1) .

D’après le cours, si f admet un extrémum local, comme f est

de classe C1 sur l’ouvert R2, celui-ci est en un point critique
de f.

On a, pour tout (x,y) ∈ R
2 :

f ′′
x2(x,y) = −2 − 12x, f ′′

xy(x,y) = 0, f ′′
y2(x,y) = −2 .

• En A : r = 10, s = 0, t = −2, s2 − rt = 20 > 0, donc  f
n’a pas d’extrémum local en A (il s’agit d’un point-col).

• En B : r = −10, s = 0, t = −2, s2 − rt = −20 < 0,

t < 0, donc  f admet un maximum local en B .

Finalement, f admet un extrémum local et un seul, en (2/3, 1),
c’est un maximum local, et  f (2/3,1) = 71/27 .

b) On a, pour tout (x,y) ∈ R
2 :

{
f ′

x (x,y) = y + 3x2 y2 = y(1 + 3x2 y)

f ′
y(x,y) = x + 2x3 y = x(1 + 2x2 y),

d’où l’on déduit :

{
f ′

x (x,y) = 0

f ′
y(x,y) = 0

⇐⇒
{

x = 0

y = 0.

Ainsi, f admet un point critique et un seul : (0,0).

Comme :{
f (x,x) − f (0,0 = x2 + x5 > 0 si x ∈ ]0 ; 1]

f (x,−x) − f (0,0) = −x2 + x5 < 0 si x ∈ ]0 ; 1],

f n’a pas d’extrémum local en (0,0).

Finalement, f n’a pas d’extrémum local.

a) On a : f (x,0) = 0 −→
x−→0

0 et :

f (x,x) = x2

3x2
= 1

3
−→
x−→0

1

3
=/ 0 ,

donc f n’a pas de limite en (0,0).

b) On a, par mise d’un trinôme sous forme canonique, pour tout
(x,y) ∈ R

2 :

x2 − xy + y2 =
(

y − x

2

)2

+ 3

4
x2 .

En particulier, f est définie sur R2 − {(0,0)} .

De plus, pour tout (x,y) ∈ R
2 − {(0,0)} :

| f (x,y)| = x2|y|(
y − x

2

)2

+ 3

4
x2

� |y|
3/4

−→
(x,y)−→(0,0)

0 .

On conclut : f (x,y) −→
(x,y)−→(0,0)

0.

c) En notant X = x2 et Y = |y|3, on a :

| f (x,y)| = |x |3 y4

x4 + y6
= X3/2Y 4/3

X2 + Y 2
.

Puis, en notant ρ = (X2 + Y 2)1/2 :

X3/2Y 4/3

X2 + Y 2
� ρ3/2ρ4/3

ρ2
= ρ

5/6 −→
ρ−→0

0 .

On conclut : f (x,y) −→
(x,y)−→(0,0)

0.

d) Soit α > 0 fixé à choisir.

On a : f (x,xα) = x1+4α

x4 + x6α
.

Pour  α = 2

3
, de sorte que 6α = 4, on a :

f (x,x2/3) = x11/3

2x4
= 1

2x1/3
−→
x−→0

+∞ .

On conclut : f n’a pas de limite en (0,0).

e) Ici : Def ( f ) = R
∗ × R.

Considérons l’application 

ϕ : R −→ R, t �−→



et − 1

t
si t =/ 0

1 si t = 0.

Comme  ϕ(t) = et − 1

t
−→
t−→0

1 = ϕ(0),

ϕ est continue en 0, puis  ϕ est continue sur R.

On a, pour tout (x,y) ∈ (R∗)2 :

f (x,y) = exy − 1

ex − 1
= y

exy − 1

xy

x

ex − 1
= y ϕ(xy)

ϕ(x)
.

D’autre part, le résultat obtenu est aussi vrai lorsque  y = 0
(et x =/ 0).

Ainsi : ∀ (x,y) ∈ R
∗ × R, f (x,y) = y ϕ(xy)

ϕ(x)
.

Comme  ϕ est continue sur R et ne s’annule en aucun point,
par opérations, on conclut :

f (x,y) −→
(x,y)−→(0,0)

0 .

9.5

9.6
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On a, par développements limités en 0 :



ex − 1 = x
(
1 + ε1(x)

)
, où ε1(x) −→

x−→0
0

ln (1 + x) = x
(
1 + ε2(x)

)
, où ε2(x) −→

x−→0
0,

d’où :

(ex − 1) ln (1 + y) − (ey − 1) ln (1 + x)

= xy
((

1 + ε1(x)
)(

1 + ε2(y)
) − (

1 + ε1(y)
)(

1 + ε2(x)
))

= xy
(
ε1(x) + ε2(y) + ε1(x)ε2(y)

−ε1(y) − ε2(x) − ε1(y)ε2(x)
)

= xyε(x,y) ,

où : ε(x,y) −→
(x,y)−→(0,0)

0.

Donc :

| f (x,y)| =
∣∣∣∣ xy ε(x,y)

x2 + y2

∣∣∣∣ =
∣∣∣∣ xy

x2 + y2

∣∣∣∣ |ε(x,y)|

� 1

2
|ε(x,y)| −→

(x,y)−→(0,0)
0.

On conclut : f (x,y) −→
(x,y)−→(0,0)

0.

Il est clair que f est de classe C1 sur R2. Pour tout (x,y)

de R2, la matrice jacobienne de f en (x,y) est :

Jf (x,y) =
(

3x2 + 3ey 3xey

−2x 1

)
,

qui est inversible car :

det
(
Jf (x,y)

) = 3x2 + 3ey + 6x2ey > 0.

Montrons que f est bijective.

Soit (X,Y ) ∈ R
2 fixé. On a, pour tout (x,y) de R2 :

f (x,y) = (X,Y ) ⇐⇒
{

X = x3 + 3xey

Y = y − x2

⇐⇒
{

3eY xex2 + x3 − X = 0
y = x2 + Y.

L’application  ϕ : x �−→ 3eY xex2 + x3 − X est de classe C1

sur R, strictement croissante sur R, et lim
x→−∞

ϕ(x) = −∞ ,

lim
x→+∞

ϕ(x) = +∞ ; il existe donc x ∈ R , unique, tel que

ϕ(x) = 0 . 

Ceci montre que le système d’équations précédent, d’incon-
nue (x,y), admet une solution et une seule, et donc que f est
bijective. 

Finalement, f est un C1-difféomorphisme de R2 sur R2.

• U =]0 ;+∞[2 est un ouvert de R2 et, d’après les théo-

rèmes généraux, φ est de classe C1 sur U .

• Montrons que φ est une bijection de U sur U et explici-

tons φ−1 .

Il est d’abord clair que : ∀ (x,y) ∈ U, φ(x,y) ∈ U.

Soit (u,v) ∈ U . On a, pour tout (x,y) ∈ U :

φ(x,y) = (u,v)

⇐⇒




x3 y2 = u

1

x2 y
= v

⇐⇒



x3 y2 = u

x2 y = 1

v

⇐⇒




y = 1

vx2

x3 1

v2x4
= u

⇐⇒



x = 1

uv2

y = u2v3.

Considérons donc l’application 

ψ : U −→ U, (u,v) �−→
(

1

uv2
, u2v3

)
.

Nous venons de montrer :

∀ (x,y) ∈ U, ∀ (u,v) ∈ U,

(u,v) = φ(x,y) ⇐⇒ (x,y) = ψ(u,v).

Ainsi, φ est bijective et  ψ = φ
−1.

• D’après les théorèmes généraux,

φ
−1 : (u,v) �−→

(
1

uv2
,u2v3

)

est de classe C1 sur U .

On conclut que φ est un C1-difféomorphisme de U sur U .

Considérons l’application 

F : R
2 −→ R, (x,y) �−→ 1

2

(
f ′2
x (x,y) + f ′2

y (x,y)
)

.

Puisque  f est de classe C2 sur R2, par opérations, F est de

classe C1 sur R2. En particulier :

• pour tout x ∈ [0 ; 1], F(x,·) est continue sur R

• pour tout y ∈ R , F(·,y) est continue par morceaux et inté-
grable sur le segment [0 ; 1]

• 
∂ F

∂y
existe sur [0 ; 1] × R

• pour tout x ∈ [0 ; 1],
∂ F

∂y
(x,·) est continue sur R

• pour tout y ∈ R ,
∂ F

∂y
(·,y) est continue par morceaux sur

[0 ; 1]

9.7

9.8

9.10

9.9



• 
∂ F

∂y
vérifie l’hypothèse de domination locale sur [0 ; 1] × R,

car  
∂ F

∂y
est continue sur R2, donc bornée sur tout compact 

de R2.

D’après le théorème de dérivation sous le signe 
∫ 1

0
, J est de

classe C1 sur R et, pour tout y ∈ R :

J ′(y) =
∫ 1

0
F ′

y(x,y) dx

= 1

2

∫ 1

0

(
2 f ′

x (x,y) f ′′
xy(x,y) + 2 f ′

y(x,y) f ′′
y2(x,y)

)
dx

=
∫ 1

0
( f ′

x f ′
y)

′
x (x,y) dx =

[
f ′

x f ′
y

]x=1

x=0
= 0,

car f ′
x et f ′

y sont 1-périodiques en x .

Ceci montre que J est constante sur R.

L’application φ : (θ,ρ) �−→ (ρcos θ, ρsin θ) est un C1-

difféomorphisme de l’ouvert U =]0; π
2

[×]0;+∞[ sur l’ou-

vert (R∗
+)2. 

L’application f �−→ f ◦ φ est donc une bijection de

C1
(
(R∗

+)2,R
)

sur C1(U,R) . 

Soient f ∈ C1
(
(R∗

+)2,R
)
, g = f ◦ φ . On a, pour tout (θ,ρ)

de U , par dérivation d’une fonction composée :

∂g

∂ρ
(θ,ρ)

= ∂ f

∂x
(ρcos θ, ρsin θ)cos θ+ ∂ f

∂y
(ρ cos θ,ρsin θ)sin θ.

Ainsi, f est solution de l’EDP (équation aux dérivées partielles)
de l’énoncé si et seulement si  g est solution de l’EDP :

∀ (θ,ρ) ∈ U,
∂g

∂ρ
(θ,ρ) = cos θ

ρ
.

Comme, pour θ ∈]0; π
2

[ fixé, ρ décrit l’intervalle ]0;+∞[,

la solution générale de l’EDP ci-dessus est

g : (θ,ρ) �−→ cos θ ln ρ+ A(θ) , où A ∈ C1
(
]0; π

2
[,R

)
.

Puisque ρ = √
x2 + y2 et θ = Arctan

y

x
, on conclut que la so-

lution générale de l’EDP proposée est :

f : (x,y) �−→ x

2
√

x2 + y2
ln (x2 + y2) + C

(
y

x

)
,

où    C ∈ C1
(
]0;+∞[, R

)
.
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L’application  φ1 : U −→ R
2

(x,y)�−→(x+y, y−x)
est de classe C2 sur

l’ouvert U , et :

φ1(U) = {
(u,v) ∈ R

2; u + v > |u − v|} =]0;+∞[2.

En notant  V = φ1(U) et  φ : U −→ V
(x,y)�−→(x+y, y−x)

, U et V sont des

ouverts de R2 et φ est un C2-difféomorphisme de U
sur V, c’est-à-dire :

φ est de classe C2, φ est bijective, φ−1 est de classe C2.

9.11

9.12

Soient f ∈ C2(U,R), g = f ◦ φ−1 . On a, avec des notations
abusives classiques :




∂ f

∂x
= ∂g

∂u

∂u

∂x
+ ∂g

∂v

∂v

∂x
= ∂g

∂u
− ∂g

∂v

∂ f

∂y
= ∂g

∂u

∂u

∂y
+ ∂g

∂v

∂v

∂y
= ∂g

∂u
+ ∂g

∂v
,




∂2 f

∂x2
= ∂

∂x

(
∂ f

∂x

)

= ∂

∂u

(
∂g

∂u
− ∂g

∂v

)
∂u

∂x
+ ∂

∂v

(
∂g

∂u
− ∂g

∂v

)
∂v

∂x

=
(

∂2g

∂u2
− ∂2g

∂u∂v

)
−

(
∂2g

∂v∂u
− ∂2g

∂v2

)

= ∂2g

∂u2
− 2

∂2g

∂u∂v
+ ∂2g

∂v2

∂2 f

∂y2
= ∂

∂y

(
∂ f

∂y

)

= ∂

∂u

(
∂g

∂u
+ ∂g

∂v

)
∂u

∂y
+ ∂

∂v

(
∂g

∂u
+ ∂g

∂v

)
∂v

∂y

=
(

∂2g

∂u2
+ ∂2g

∂u∂v

)
+

(
∂2g

∂v∂u
+ ∂2g

∂v2

)

= ∂2g

∂u2
+ 2

∂2g

∂u∂v
+ ∂2g

∂v2
.

Ainsi, f est solution de l’EDP de l’énoncé si et seulement si:

∀ (u,v) ∈ V, −4
∂2g

∂u∂v
(u,v) = 1√

uv
.

Pour v ∈]0;+∞[ fixé, on « intègre » par rapport à u (u décrit
l’intervalle ]0;+∞[) :
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∂g

∂v
(u,v) = −1

2

√
u√
v

+ a(v),

où   a ∈ C1
(
]0;+∞[, R

)
. 

Puis, pour u ∈]0;+∞[ fixé, on intègre par rapport à v
(
v dé-

crit l’intervalle ]0;+∞[
)

:

g(u,v) = −√
u
√

v + A(v) + B(u),

où  A est une primitive de a, et B ∈ C2
(
]0;+∞[, R

)
. 

La solution générale de l’EDP de l’énoncé est :

f : (x,y) �−→ −
√

y2 − x2 + A(y − x) + B(x + y),

où A,B ∈ C2
(
]0;+∞[, R

)
.

• L’application  f est de classe C1 sur l’ouvert

U =] − π/2 ;π/2[2, donc, si  f admet un extrémum local, c’est
nécessairement en un point critique.

• Recherche des points critiques de f :

On a, pour tout (x,y) ∈ U :




f ′
x (x,y) = 1

cos 2x
th y − 1

ch2x
tan y

f ′
y(x,y) = tan x

1

ch2 y
− th x

1

cos 2 y
.

Donc :

(S)

{
f ′

x (x,y) = 0

f ′
y(x,y) = 0

⇐⇒




1

cos 2x

sh y

ch y
= 1

ch2x

sin y

cos y

sin x

cos x

1

ch2 y
= sh x

ch x

1

cos 2 y

⇐⇒
{

ch2x sh y cos y = cos 2x sin y ch y

sin x ch x cos 2 y = cos x sh x ch2 y

⇐⇒
{

(ch x cos y)(ch x sh y) = ( cos x ch y)( cos x sin y)

(ch x cos y)( sin x cos y) = ( cos x ch y)(sh x ch y)

�⇒ (ch x sh y)(sh x ch y) = ( sin x cos y)( cos x sin y)

⇐⇒ sh 2x sh 2y = sin 2x sin 2y .

Si  x =/ 0 et  y =/ 0, alors :

(S) �⇒
∣∣∣∣ sin 2x

sh 2x

∣∣∣∣
∣∣∣∣ sin 2y

sh 2y

∣∣∣∣ = 1 .

Mais, on sait (par étude de variations de fonctions, par exemple)
que : ∀ t ∈ ]0 ;+∞[, | sin t | < t < sh t,

d’où ici :

∣∣∣∣ sin 2x

sh 2x

∣∣∣∣ < 1 et

∣∣∣∣ sin 2y

sh 2y

∣∣∣∣ < 1, contradiction.

Ceci montre : x = 0 ou   y = 0.

Si x = 0, alors :

(S) ⇐⇒ sh y

ch y
= sin y

cos y
⇐⇒ th y = tan y .

Mais on sait (par étude de variations de fonctions, par exemple)
que : ∀ t ∈ ]0 ;π/2[, 0 < th t < t < tan t.

Il s’ensuit : y = 0.

Ainsi, f admet un point critique et un seul, le point (0,0).

• Étude en (0,0) :

On a :

f (x,x2) = tan x th (x2) − th x tan (x2)

=
(

x + x3

3
+ o(x3)

)(
x2 + o(x4)

)

−
(

x − x3

3
+ o(x3)

)(
x2 + o(x4)

)

= 2

3
x5 + o(x5) ∼

x−→0

2

3
x5.

Il en résulte, au voisinage de 0 :{
f (x,x2) > 0 pour x > 0

f (x,x2) < 0 pour x < 0.

On déduit que  f n’a pas d’extrémum local en (0,0).

Finalement, f n’a pas d’extrémum local.

• Existence de la borne supérieure :

Notons   T = {
(x,y) ∈ [0 ;+∞[2 ; x + y � π

}
.

9.13

9.14

y

xO

T

Il est clair que T est fermé borné, donc compact.

D’autre part, l’application 

f : T −→ R, (x,y) �−→ sin x sin y sin (x + y)

est continue sur T .

D’après le cours, il en résulte que  f est bornée et atteint ses
bornes. Notons M = Sup

(x,y)∈T
f (x,y).

Comme  f s’annule en tout point du bord de  T et que, par
exemple, f (π/4,π/4) > 0, f atteint  M en un point de l’in-
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térieur T ◦ de T . Comme  f est de classe C1 sur T ◦, ce point
est un point critique de f.

• Recherche des points critiques de f :

On a, pour tout (x,y) ∈ T ◦ :
{

f ′
x (x,y) = 0

f ′
y(x,y) = 0

⇐⇒




sin y︸︷︷︸
/= 0

(
cos x sin (x + y) + sin x cos (x + y)

) = 0

sin x︸︷︷︸
/= 0

(
cos y sin (x + y) + sin y cos (x + y)

) = 0

⇐⇒
{

sin (2x + y) = 0

sin (x + 2y) = 0
⇐⇒

{
2x + y ≡ 0 [π]

x + 2y ≡ 0 [π]

⇐⇒
{

x ≡ y [π]

x ≡ 0 [π/3]
⇐⇒ x = y = π/3.

• On conclut :

Sup
(x,y)∈[0 ;+∞[2;x+y�π

f (x,y) = f (π/3,π/3) = 3
√

3

8
.

Rappelons : ∀ (x,y) ∈ R
2, |xy| � 1

2
(x2 + y2).

Soit (x,y,z) ∈ R
3 tel que x2 + y2 + z2 = 9 .

On a alors :

•  xy + z2 � 1

2
(x2 + y2) + z2 � x2 + y2 + z2 = 9,

atteint (au moins) en (x,y,z) = (0,0,3) .

•   xy + z2 � −1

2
(x2 + y2) + z2

= −1

2
(x2 + y2 + z2) + 3

2
z2 = −9

2
+ 3

2
z2 � −9

2
,

atteint (au moins) en (x,y,z) = (3/
√

2,−3/
√

2, 0) .

On conclut que les bornes inférieures et supérieures demandées
sont, respectivement : −9/2, 9.

• En notant X = y + z, Y = z + x, Z = x + y, on a :

2(x2 + y2 + z2 + xy + xz + yz)

= (x + y)2 + (x + z)2 + (y + z)2 = X2 + Y 2 + Z 2,

donc :

x2 + y2 + z2 + xy + xz + yz = 0 ⇐⇒ X2 + Y 2 + Z 2 = 0

⇐⇒




X = 0

Y = 0

Z = 0

⇐⇒




y + z = 0

x + z = 0

x + y = 0

⇐⇒




x = 0

y = 0

z = 0.

Ainsi, f est définie sur U = R
3 − {(0,0,0)} .

• Avec les mêmes notations, on a, pour tout (x,y,z) ∈ U :

x + y + z = 1

2
(X + Y + Z), donc :

x = 1

2
(−X + Y + Z), y = 1

2
(X − Y + Z),

z = 1

2
(X + Y − Z),

d’où :

f (x,y,z) = 1

4

(−X + Y + Z)(X − Y + Z)(X + Y − Z)

X2 + Y 2 + Z 2
.

Il en résulte :

| f (x,y,z)| � 1

4

(|X | + |Y | + |Z |)3

X2 + Y 2 + Z2

� 1

4

(
3(X2 + Y 2 + Z2)1/2

)3

X2 + Y 2 + Z2
= 27

4
(X2 + Y 2 + Z2)1/2.

Comme  (X2 + Y 2 + Z 2)
1
2 −→

(x,y,z)−→(0,0,0)
0,

on conclut, par encadrement : f (x,y,z) −→
(x,y,z)−→(0,0,0)

0 .

On a : f (x,0,0) = x4

x2
= x2 −→

x−→0
0 et :

f (x, x,
√

2 x + x4) = 2x4 − (
√

2 x + x4)4

2x2 − (
√

2 x + x4)2

= 2x4 − (
4x4 + o(x4)

)
2x2 − (

2x2 + 2
√

2 x5 + o(x5)
)

= −2x4 + o(x4)

−2
√

2 x5 + o(x5)
∼

x−→0

1√
2 x

−→
x−→0+

+∞,

donc  f n’a pas de limite, ni finie ni infinie, en (0,0,0) .

(1) �⇒ (2) :

On suppose : ∀ (x,y) ∈ Ω, f ′
x (x,y) + i f ′

y(x,y) = 0.

Soient z0,z ∈ U, tels que z =/ z0, (x0,y0), (x,y) ∈ Ω tels que
z0 = x0 + i y0, z = x + i y. On a, en utilisant la formule de
Taylor-Young à l’ordre 0 pour une fonction de deux variables

réelles, de classe C1 :

g(z) − g(z0)

z − z0
= f (x,y) − f (x0,y0)

(x − x0) + i (y − y0)

= 1

(x − x0) + i (y − y0)

[
(x − x0) f ′

x (x0,y0)

+ (y − y0) f ′
y(x0,y0) + o

(||(x − x0, y − y0)||
)]

= 1

(x − x0) + i (y − y0)

[(
(x − x0) + i (y − y0)

)
f ′
x (x0,y0)

+ o
(||(x − x0, y − y0)||

)]
= f ′

x (x0,y0) + o(1) −→
(x,y)−→(x0,y0)

f ′
x (x0,y0).

9.16

9.15

9.18

9.17
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Ceci montre que 
g(z) − g(z0)

z − z0
admet une limite finie h(z0)

lorsque z −→ z0, et :

h(z0) = f ′
x (x0,y0) = −i f ′

y(x0,y0) .

(2) �⇒ (1) :

On suppose qu’il existe une application h : U −→ C telle que,
pour tout z0 ∈ U, on ait   

g(z) − g(z0)

z − z0
−→

z−→z0
h(z0).

On a, en utilisant la formule de Taylor-Young à l’ordre 0 pour

une fonction de deux variables réelles de classe C1 :

1

(x − x0) + i (y − y0)[
(x − x0) f ′

x (x0,y0) + (y − y0) f ′
y(x0,y0)

+ o
(||(x − x0, y − y0)||

)]

= g(z) − g(z0)

z − z0
−→

z−→z0
h(z0).

En particulier, pour  y = y0 et  x variable :

(x − x0) f ′
x (x0,y0)

x − x0
−→

x−→x0
h(z0) ,

donc : h(z0) = f ′
x (x0,y0),

et, pour  x = x0 et  y variable :

(y − y0) f ′
y(x0,y0)

i (y − y0)
−→

y−→y0
h(z0) ,

donc : h(z0) = −i f ′
y(x0,y0).

Il en résulte : f ′
x (x0,y0) = −i f ′

y(x0,y0),

c’est-à-dire : f ′
x (x0,y0) + i f ′

y(x0,y0) = 0.

a) Puisque 

GLn(R) = {
X ∈ Mn(R) ; det (X) =/ 0

} = det−1(R∗) ,

GLn(R) est l’image réciproque de l’ouvert R∗ de R par l’ap-
plication continue det. D’après le cours, il en résulte que
GLn(R) est un ouvert de Mn(R) .

b) 1) Puisque, pour toute X ∈ GLn(R) :

X−1 = 1

det (X)

tcom (X),

les coefficients de X−1 s’expriment comme fonctions ration-

nelles des coefficients de X , alors les coefficients de X−1 sont

des fonctions de classe C1, donc f est de classe C1 sur l’ou-
vert GLn(R).

2) Soit X ∈ GLn(R).

Puisque GLn(R) est un ouvert de Mn(R) , il existe ε > 0 tel
que :

∀ H ∈ Mn(R),
(||H || � ε �⇒ X + H ∈ GLn(R)

)
.

On a, pour toute H ∈ Mn(R) telle que ||H || � ε :

f (X + H) − f (X) = (X + H)−1 − X−1

= (X + H)−1
(
X − (X + H)

)
X−1 = −(X + H)−1 H X−1 ,

d’où :

f (X + H) − f (X) + X−1 H X−1

= (
X−1 − (X + H)−1

)
H X−1.

Notons       L X : Mn(R) −→ Mn(R), H �−→ −X−1 H X−1 .

Il est clair que  L X est linéaire.

D’autre part, comme l’application  f est continue sur GLn(R),

on a : (X + H)−1 −→
H−→0

X−1,

donc :
(
X−1 − (X + H)−1

)
H X−1 = o

H−→0
(||H ||).

On obtient : f (X + H) = f (X) + L X (H) + o
H−→0

(||H ||) .

On conclut que, pour tout X ∈ GLn(R), L X est la différen-
tielle de  f en X . Autrement dit :

∀ X ∈ GLn(R), ∀ H ∈ Mn(R), dX f (H) = L X (H) .

Considérons l’application ϕ : R −→ R définie par :

ϕ(t) =



et − 1

t
si t =/ 0

1 si t = 0.

On a : ∀ (x,y) ∈ R
2, f (x,y) = yϕ(xy) .

Par composition, il suffit donc de prouver que  ϕ est de 
classe C∞ sur R ; ainsi, dans cet exemple, on se ramène à l’étude
d’une fonction d’une variable réelle.

On sait: ∀ t ∈ R, et =
+∞∑
n=0

tn

n!
,

d’où :

∀ t ∈ R
∗,

et − 1

t
= 1

t

+∞∑
n=1

tn

n!
=

+∞∑
n=1

tn−1

n!
=

+∞∑
n=0

tn

(n + 1)!
.

Comme de plus ϕ(0) = 1, on obtient :

∀ t ∈ R, ϕ(t) =
+∞∑
n=0

tn

(n + 1)!
.

Ceci montre que  ϕ est développable en série entière en 0, de
rayon infini, donc ϕ est de classe C∞ sur R, puis, par com-

position, f est de classe C∞ sur R2.

(1)

(2)

9.19

9.20
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1re méthode : Étude d’extrémum pour une fonction nu-
mérique de deux variables réelles :

Notons C = {
(x,y) ∈ [0 ;+∞[2 ; x + y � 2

}
,

f : C −→ R, (x,y) �−→ x2 y2(x2 + y2) .

le maximum de  f est atteint en un point du segment 

S = {
(x,y) ∈ [0 ;+∞[2 ; x + y = 2

}
.

Il est clair que, lorsque (x,y) décrit S , le produit
p = xy = x(2 − x) décrit [0 ; 1] .

On a, pour tout (x,y) ∈ S :

f (x,y) = x2 y2(x2 + y2) = p2(4 − 2p) = 4p2 − 2p3 .

L’application  g : [0 ; 1] −→ R, p �−→ 4p2 − 2p3 est déri-
vable et, pour tout p ∈ [0 ; 1] :

g′(p) = 8p − 6p2 = 2p(4 − 3p) � 0 ,

donc  g est croissante sur [0 ; 1] .

Il s’ensuit : Sup
p∈[0 ;1]

g(p) = g(1) = 2.

On conclut que   Sup
(x,y)∈[0 ;+∞[2 ; x+y�2

x2 y2(x2 + y2) ,

existe, est égale à 2, et est atteinte en (1,1) et en ce point seu-
lement.

2è méthode : Se ramener à une étude d’extrémum pour une fonc-
tion numérique d’une variable réelle :

• Pour y ∈ [0 ; 2] fixé, considérons l’application :

h : [0 ; 2 − y] −→ R,

x �−→ h(x) = f (x,y) = x2 y2(x2 + y2) = x4 y2 + x2 y4 .

L’application  h est dérivable sur [0 ; 2 − y] et :

∀ x ∈ [0 ; 2 − y], h′(y) = 4x3 y2 + 2xy4

= 2xy2(2x2 + y2) � 0 ,

donc  h est croissante sur [0 ; 2 − y] .

Il en résulte que  h admet une borne supérieure et que celle-
ci est atteinte en 2 − y :

Sup
x∈[0 ;2−y]

h(x) = h(2 − y) = (2 − y)2 y2
(
(2 − y)2 + y2

)
.

• Par commodité, notons t = y − 1 et :

k : [−1 ; 1] −→ R, t �−→ k(t) = h(2 − y)

= (1 + t)2(1 − t)2
(
(1 + t)2 + (1 − t)2

)
= 2(1 − t2)2(1 + t2).

L’application  k est dérivable sur [−1 ; 1] et, par simple 
calcul, pour tout t ∈ [−1 ; 1] :

k ′(t) = −2t (1 − t2)(1 + 3t2) � 0 ,

donc  k est croissante sur [−1 ; 0] et décroissante sur [0 ; 1] .

Il en résulte que  k atteint sa borne supérieure en t = 0, c’est-
à-dire pour  y = 1, et alors  x = 2 − y = 1 .

On conclut que  Sup
(x,y)∈[0 ;+∞[2 ; x+y�2

x2 y2(x2 + y2) existe, est

égale à 2, et est atteinte en (1,1) et en ce point seulement.

9.21
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• Existence de la borne supérieure de f :

Il est clair que  C est fermé borné dans R2, donc  C est com-
pact. D’autre part, par les théorèmes généraux, f est continue
sur C. D’après le cours, il en résulte que  f est bornée et 
atteint ses bornes. En particulier, la borne supérieure deman-
dée existe et est atteinte.

• Recherche des points critiques :

Notons  C◦ l’intérieur de C, c’est-à-dire :

C◦ = {
(x,y) ∈ [0 ;+∞[2 ; x > 0, y > 0, x + y < 2

}
.

L’application  f est de classe C1 sur l’ouvert C◦, donc, si  f

admet un extrémum local en un point (x,y) de C◦, alors  (x,y)

est un point critique de f.

On a, pour tout (x,y) ∈ C◦ :
{

f ′
x (x,y) = 0

f ′
y(x,y) = 0

⇐⇒
{

4x3 y2 + 2xy4 = 0

2x4 y + 4x2 y3 = 0

⇐⇒
{

2xy2(2x2 + y2) = 0

2x2 y(x2 + 2y2) = 0
⇐⇒ (

x = 0 ou y = 0
)
,

ce qui est exclu.

Ceci montre que f n’a pas de point critique dansC◦, donc  f
n’a pas d’extrémum local dans C◦.

Comme on a vu plus haut que le maximum de  f est atteint, il
en résulte que ce maximum n’est pas atteint dans C◦, donc est
atteint au bord de C.

• Étude de f au bord de C :

Comme :




f (1,1) = 2 > 0

∀ x ∈ [0 ; 2], f (x,0) = 0

∀ y ∈ [0 ; 2], f (0,y) = 0,
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10CHAPITRE 10Compléments
d’algèbre linéaire

Thèmes abordés dans les exercices
• Étude d’intersections, de sommes, de sommes directes de sev d’un ev

• Montrer qu’une famille, finie ou infinie, est libre, est liée 

• Détermination d’une base duale, d’une base préduale (PSI)

• Obtention de formules de décomposition, à l’aide de formes linéaires (PC,
PSI)

• Manipulation de projecteurs en dimension finie

• Obtention de factorisations de matrices

• Utilisation de décomposition en blocs pour des matrices

• Calculs sur des normes de matrices.

Points essentiels du cours
pour la résolution des exercices
• Définition de famille libre, famille liée, famille génératrice, finie ou infinie

• Définition et propriétés des sommes de sev, des sommes directes de sev

• Théorème d’isomorphisme pour les applications linéaires, et, en dimension
finie, théorème du rang

• Interpolation de Lagrange

• Définition et propriétés des formes linéaires, des hyperplans (PC, PSI)

• En dimension finie, base duale d’une base de E, base préduale d’une base
de E∗ (PSI)

• Trace d’une matrice carrée : définition, propriétés, cas d’un projecteur en
dimension finie

• Manipulation des blocs

• Définition d’une norme sur Mn,p(K), pour K = R ou C , norme d’algèbre,
continuité des opérations.

Les méthodes à retenir 366

Énoncés des exercices 367

Du mal à démarrer ? 372

Corrigés 376
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Les méthodes à retenir

Essayer de passer par les éléments.

➥ Exercice 10.1.

Pour obtenir des relations
(souvent des inclusions)
entre sev

K désigne un corps commutatif. 
K désigne R ou C .
On abrège espace vectoriel en ev, sous-espace vectoriel en sev.

Pour montrer 
qu’une famille infinie est libre

Montrer que toute sous-famille finie est libre

➥ Exercices 10.2 a), 10.11.

Pour montrer 
qu’une famille infinie est liée

Montrer qu’il existe une sous-famille finie liée.

➥ Exercice 10.2 b).

Pour déterminer 
la base préduale (u1,. . . ,un)

d’une base (ϕ1,. . . ,ϕn) du dual E∗

d’un ev E de dimension finie

Résoudre le système d’équations 

∀ (i, j) ∈ {1,. . . ,n}2, ϕi (uj ) = δi j ,

où u1,. . . ,un sont les inconnues, et où δi j est le symbole de

Kronecker, δi j =
{ 1 si i = j

0 si i =/ j.
En considérant les coordonnées de u1,. . . ,un dans une base fixée
(e1,. . . ,en) de E, résoudre n systèmes linéaires à n inconnues et n
équations, ayant le même premier membre.

➥ Exercice 10.7

En groupant ces systèmes linéaires, on peut se ramener à une équation
matricielle t Q P = In, où P est la matrice de passage de (e1,. . . ,en)

∗

à (ϕ1,. . . ,ϕn) et Q celle de (e1,. . . ,en) à (u1,. . . ,un).

➥ Exercice 10.9

Dans certains exemples simples, quelques éléments de (e1,. . . ,en)

peuvent être évidents.

➥ Exercice 10.8.

Pour montrer qu’une forme
linéaire ψ est linéairement décom-
posable sur une famille libre
(ϕ1,. . . ,ϕp) du dual E∗ d’un ev E

• Essayer éventuellement de montrer que (ϕ1,. . . ,ϕp) est une base

de E∗

➥ Exercices 10.21, 10.22.

PSI

PC-PSI
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• Amener, par un calcul élémentaire, des coefficients α1,. . . ,αp tels

que ψ =
p∑

k=1

αkϕk .

• Utiliser le résultat du cours : ψ se décompose linéairement sur la
famille libre (ϕ1,. . . ,ϕp) du dual E∗ d’un ev E de dimension finie

si et seulement si 
p⋂

k=1

Ker (ϕk) ⊂ Ker (ψ).

➥ Exercice 10.20.

Pour obtenir un résultat en liaison
avec la dualité, en dimension finie

Penser à faire intervenir une base duale ou une base préduale.

➥ Exercice 10.7.

Pour étudier un ou des projecteurs
en dimension finie

Se rappeler que, pour un projecteur en dimension finie, la trace est
égale au rang. La trace, qui est linéaire, pourra être manipulée en liai-
son avec une sommation. Le rang, qui est un entier naturel, est � 0.

➥ Exercices 10.11, 10.14, 10.33 d).

Pour obtenir 
une factorisation d’une matrice
en deux matrices 
de formats ou de rangs imposés

Essayer d’utiliser le théorème du cours caractérisant les matrices
A ∈ Mn,p(K ) telles que rg (A) = r : il existe P ∈ GLn(K ),

Q ∈ GLp(K ) telles que A = PJn,p,r Q , où on a noté Jn,p,r =(
Ir 0
0 0

)
∈ Mn,p(K ).

➥ Exercices 10.15, 10.26, 10.27, 10.29.

Pour manipuler des matrices
décomposées en blocs

Essayer d’amener des combinaisons linéaires, des produits de
matrices décomposées en blocs.

➥ Exercices 10.19 b), 10.25, 10.26, 10.28,
10.29, 10.31.
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PC-PSI

PSI

Énoncés des exercices

Une formule sur somme et intersection de sev

Soient E un K-ev, A,B,C des sev de E .

Montrer : A + (
B ∩ (A + C)

) = A + (
C ∩ (A + B)

)
.

Famille infinie libre, famille infinie liée 

Étudier la liberté des familles d’applications suivantes, pour les lois usuelles :

a)

(
fa : [0 ;+∞[−→ R, x �−→ 1

x + a

)
a∈ ]0 ;+∞[

b)
(

fa : R −→ R, x �−→ ch (x − a)
)

a∈R
.

10.1

10.2
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10.3

10.4

10.5

10.6

10.7

10.8

10.9

Étude de l’existence d’une factorisation d’une matrice

Existe-t-il A ∈ M3,2(R) et B ∈ M2,3(R) telles que AB = C , où C désigne successivement les

matrices : C =

 1 0 0

0 0 0
0 0 0


 ,


 1 1 1

1 1 1
0 0 0


 ,


 1 1 1

1 1 0
1 0 0


 ?

Séparation de vecteurs par une forme linéaire

Soient E un K-ev de dimension finie � 1, x,y ∈ E tels que x =/ y . Montrer qu’il existe ϕ ∈ E∗

telle que : ϕ(x) =/ ϕ(y) . 

Utilisation de formes linéaires sur un espace de polynômes

Soient n ∈ N , a0,. . . ,an ∈ R deux à deux distincts. Montrer qu’il existe (λ0,. . . ,λn) ∈ R
n+1

unique tel que : ∀ P ∈ Rn[X], P ′(0) =
n∑

k=0

λk P(ak).

Famille des évaluations sur un ensemble fini

Soient n ∈ N
∗, X = {x1,. . . ,xn} un ensemble fini à n éléments. On note F = K X et, pour tout

i ∈ {1,. . . ,n}, on note Ei : F −→ K , f �−→ f (xi ) , appelée évaluation en xi . Montrer que la
famille (Ei )1�i�n est une base de F∗ . 

Exemple de détermination d’une base préduale dans un ev de dimension 3

Soient E un R-ev de dimension 3, B = (e1, e2, e3) une base de E , (ϕ1,ϕ2,ϕ3) les éléments 
de E∗ définis, pour tout x = x1e1 + x2e2 + x3e3 de E , par :

ϕ1(x) = x1 + x2, ϕ2(x) = x2 + x3, ϕ3(x) = x1 + x3 .

Montrer que (ϕ1,ϕ2,ϕ3) est une base de E∗ et en déterminer la base préduale. 

Exemple de détermination d’une base préduale dans un ev de dimension 4

On note E = R3[X],ϕ1,ϕ2,ϕ3,ϕ4 les éléments de E∗ définis, pour tout P ∈ E, par :

ϕ1(P) = P(0), ϕ2(P) = P(1), ϕ3(P) = P ′(0), ϕ4(P) = P ′(1) .

Montrer que (ϕ1,ϕ2,ϕ3,ϕ4) est une base de E∗ , et en déterminer la base préduale. 

Exemple de détermination d’une base préduale dans un ev de dimension 3

On note E = R2[X],ϕ1,ϕ2,ϕ3 les éléments de E∗ définis, pour tout P ∈ E, par :

ϕ1(P) = P(1), ϕ2(P) = P ′(1), ϕ3(P) =
∫ 1

0
P(x) dx .

Montrer que (ϕ1,ϕ2,ϕ3) est une base de E∗ et en déterminer la base préduale. 

Projecteurs de somme nulle, en dimension finie

Soient N ∈ N
∗, E un K -ev de dimension finie, p1,. . . ,pN des projecteurs de E .

Montrer :
N∑

i=1

pi = 0 ⇐⇒ (∀ i ∈ {1,. . . ,N }, pi = 0
)
.
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Exemple de famille infinie libre

Montrer que la famille 
(

fa : R −→ R, x �−→ |x − a|3/2
)

a∈R
est libre dans RR. 

Base de polynômes avec conditions sur les degrés

Soit E un sev de dimension finie de K [X].

a) Montrer que E admet au moins une base formée de polynômes de degrés deux à deux dis-
tincts.

b) Montrer que E admet au moins une base formée de polynômes de degrés tous égaux. 

Formes linéaires et trace

Soit n ∈ N
∗ . Montrer que, pour toute A ∈ Mn(K ), l’application Mn(K ) −→ K ,

X �−→ tr (AX) est un élément de Mn(K )∗, puis montrer que l’application
θ : Mn(K ) −→ Mn(K )∗ définie par :

∀ A ∈ Mn(K ), ∀ X ∈ Mn(K ),
(
θ(A)

)
(X) = tr (AX)

est un isomorphisme de K-ev. 

Projecteurs et coefficients irrationnels

Soient n ∈ N
∗, A,B,C ∈ Mn(C) telles que : A2 = A, B2 = B, C2 = C .

On note M = A + √
2 B + √

3 C et on suppose M2 = M . Montrer : B = C = 0 . 

Factorisation d’une matrice

Soient n,p ∈ N
∗, A ∈ Mn,p(K ), r = rg (A) .

Montrer : ∃ U ∈ Mn,r (K ), ∃V ∈ Mr,p(K ), A = U V .

Rang d’une matrice décomposée en blocs

a) 1) Montrer que, si une matrice M est décomposée en blocs de colonnes, M = (U | V ), alors :

rg (M) � rg (U) + rg (V ).

2) Montrer que, si une matrice M est décomposée en blocs de lignes, M =
(

R
S

)
, alors :

rg (M) � rg (R) + rg (S).

3) En déduire que, si une matrice M est décomposée en quatre blocs M =
(

A B
C D

)
, (où A

et D ne sont pas nécessairement carrées), alors : rg (M) � rg (A) + rg (B) + rg (C) + rg (D) .

b) Soient m,n,p ∈ N
∗ tel que m � n et p � n , M =

(
A B
C 0

)
∈ Mn(K ) , où A ∈ Mm,p(K ) ,

B ∈ Mm,n−p(K ) , C ∈ Mn−m,p(K ) .

Déduire de a) que, si M est inversible, alors : rg (A) � m + p − n.

Normes subordonnées à ||.||1 et à ||.||∞
Soient n,p ∈ N

∗, A = (ai j )i j ∈ Mn,p(K).

On note : ||A||� = Max
1� j�p

( n∑
i=1

|ai j |
)

, ||A||c = Max
1�i�n

( p∑
j=1

|ai j |
)

,
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et, pour tout X = (xj )1� j�p ∈ Mp,1(K) : ||X ||1 =
p∑

j=1

|xj |, ||X ||∞ = Max
1� j�p

|xj |.

Montrer : ||A||� = Sup
X∈Mp,1(K)−{0}

||AX ||1
||X ||1 , ||A||c = Sup

X∈Mp,1(K)−{0}

||AX ||∞
||X ||∞ .

Comparaison de normes subordonnées, réelles, complexes

Soient n ∈ N
∗, A ∈ Mn(R).

On note : |||A|||R = Sup
X∈Mn,1(R)−{0}

||AX ||2
||X ||2 , |||A|||C = Sup

X∈Mn,1(C)−{0}

||AX ||2
||X ||2 .

Établir : |||A|||R = |||A|||C. 

Endomorphismes d’image et de noyau imposés

Soient E un K-ev, F,G deux sev de E supplémentaires dans E . On note :

G =
{

f ∈ L(E) ; Im ( f ) = F et Ker ( f ) = G
}

.

a) Établir que G est un groupe pour la loi ◦.

b) On suppose ici que E est de dimension finie. On note n = dim (E), p = dim (F),

B1 = (e1,. . . ,ep) une base de F , B2 = (ep+1,. . . ,en) une base de G, B = (e1,. . . ,en), qui est
une base de E .

Montrer que l’application θ : f �−→ MatB( f ) est un isomorphisme de groupes de (G,◦) sur

(H,·), où H =
{(

M 0
0 0

)
∈ Mn(K ) ; M ∈ GLp(K )

}
.

Intersection de noyaux de formes linéaires

Soient p ∈ N
∗ , E un K-ev de dimension finie, f,ϕ1,. . . ,ϕp ∈ E∗ . Montrer :

f ∈ Vect (ϕ1,. . . ,ϕp) ⇐⇒
p⋂

i=1

Ker (ϕi ) ⊂ Ker ( f ) .

Intervention de formes linéaires sur un espace de polynômes

Soient n ∈ N
∗, a1,. . . ,an ∈ R deux à deux distincts. Montrer que les deux propriétés suivantes

sont équivalentes :

(i) ∃ (λ1,. . . ,λn) ∈ R
n, ∀ P ∈ Rn[X],

∫ 1

−1
P(x) dx =

n∑
k=1

λk P(ak)

(ii) 
∫ 1

−1

( n∏
k=1

(x − ak)

)
dx = 0.

Étude de formes linéaires sur un espace de polynômes

Soient n ∈ N
∗, E = Kn[X], a ∈ K .

a) On note, pour tout j ∈ {0,. . . ,n} : ϕj : E −→ K, P �−→ P ( j)(a).

Montrer que (ϕ0,. . . ,ϕn) est une base de E∗ .

b) Soient k ∈ {0,. . . ,n},ϕ ∈ E∗ . Montrer que les deux propriétés suivantes sont équivalentes :
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(i) ∀ P ∈ Kn−k[X], ϕ
(
(X − a)k P

) = 0

(ii) ∃ (λ0,. . . ,λk−1) ∈ K
k, ∀ P ∈ E, ϕ(P) =

k−1∑
i=0

λi P (i)(a).

Égalité de sommes de carrés de formes linéaires

a) Soient E un R-ev de dimension finie, p,q ∈ N
∗,ϕ1,. . . ,ϕp,ψ1,. . . ,ψq ∈ E∗ . Montrer :

(
∀ x ∈ E,

p∑
i=1

(
ϕi (x)

)2
=

q∑
j=1

(
ψj (x)

)2
)

�⇒ Vect (ϕ1,. . . ,ϕp) = Vect (ψ1,. . . ,ψq) .

À cet effet, on pourra utiliser le résultat de l’exercice 10.24.

b) Le résultat de a) subsiste-t-il lorsque le corps R est remplacé par C ? 

Hyperplans de Mn(K) rencontrant GLn(K)

Soit n ∈ N − {0,1}. Montrer que tout hyperplan de Mn(K ) rencontre GLn(K ) . 

Rang d’une matrice triangulaire par blocs, un bloc diagonal étant égal à l’identité

a) Soient n,p ∈ N
∗, B ∈ Mn,p(K ), C ∈ Mp(K ) . Montrer: rg

(
In B
0 C

)
= n + rg (C).

b) Soient n,p ∈ N
∗, R ∈ Mn,p(K ), S ∈ Mp,n(K ) . Montrer :

p + rg (In + RS) = n + rg (Ip + SR) .

Rang d’une matrice diagonale par blocs

a) Soient n,p ∈ N
∗, A ∈ Mn(K ), B ∈ Mp(K ) . Montrer :

rg

(
A 0
0 B

)
= rg (A) + rg (B) .

b) Soient n ∈ N
∗, A,B ∈ Mn(K) . Montrer que, si 

(
A 0
0 A

)
et 

(
B 0
0 B

)
sont équivalentes,

alors A et B sont équivalentes.

c) Soient n,p ∈ N
∗, A,B ∈ Mn(K ), U,V ∈ Mp(K ) . Montrer que, si A et B sont équivalentes

et si 

(
A 0
0 U

)
et 

(
B 0
0 V

)
sont équivalentes, alors U et V sont équivalentes.

Déformation d’un endomorphisme, pour une image et un noyau imposés

Soient E un K-ev de dimension finie, f ∈ L(E), F un sev de E tel que dim (F) � rg ( f ), G un

supplémentaire de F dans E . Montrer qu’il existe (u,v) ∈ (
L(E)

)2
tel que :

Im (u ◦ f ◦ v) = F et Ker (u ◦ f ◦ v) = G.

Caractérisation de matrices inversibles par blocs

Soient M =
(

A B
C D

)
, où A ∈ GLn(K ), B ∈ Mn,p(K ), C ∈ Mp,n(K ), D ∈ Mp(K ) . Montrer

que M est inversible si et seulement si D − C A−1 B est inversible, et calculer alors M−1 sous
forme de matrice décomposée en blocs. 
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Étude des matrices X telles que AXB = 0
Soient m,n,p,q ∈ N

∗, A ∈ Mm,n(K ), B ∈ Mp,q(K ) .

On note : E = {
X ∈ Mn,p(K ) ; AX B = 0

}
.

Montrer que E est un K-ev et déterminer sa dimension. 

Factorisation d’une matrice carrée non inversible

Soient n ∈ N
∗, A ∈ Mn(K ) non inversible. Montrer qu’il existe B,C ∈ Mn(K ) telles que :

A = BC, B est inversible, C est nilpotente.

Étude de rang pour une matrice par blocs

Soient n,p ∈ N
∗, M =

(
A B
C D

)

où A ∈ GLn(K ), B ∈ Mn,p(K ), C ∈ Mp,n(K ) D ∈ Mp(K ) . 

Montrer : rg (M) = n ⇐⇒ D = C A−1 B.

À cet effet, on pourra utiliser le résultat de l’exercice 10.26. 

Réunion de plusieurs sev

Soient K un corps commutatif infini, E un K-ev, p ∈ N
∗ , F1,. . . ,Fp des sev de E tels que

p⋃
i=1

Fi = E . Démontrer qu’il existe i ∈ {1,. . . ,p} tel que Fi = E. 

Projecteur associé à un sous-groupe fini de GL(E)

Soient E un K -ev de dimension finie, e = IdE, G un sous-groupe fini de GL(E) ,

n = Card (G). On note : p = 1

n

∑
g∈G

g.

a) Montrer : ∀ h ∈ G, p ◦ h = p . b) En déduire que p est un projecteur de E .

c) Établir :
⋂
g∈G

Ker (g − e) = Im (p). d) Déduire : dim

( ⋂
g∈G

Ker (g − e)

)
= 1

n

∑
g∈G

tr (g).
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Du mal à démarrer ?

Montrer deux inclusions, en passant par les éléments.

Se rappeler que, dans un ev, une famille infinie est dite

libre si et seulement si toute sous-famille finie est libre, et

qu’une famille infinie est liée si et seulement si elle n’est pas

libre, c’est-à-dire si et seulement s’il existe une sous-famille finie

liée.

a) Pour montrer que ( fa)a∈[0 ;+∞[ est libre, utiliser l’unicité

d’une décomposition en éléments simples.

b) Pour montrer que ( fa)a∈R est liée, établir, par exemple, que

( f−1, f0, f1) est liée.

Dans les deux premiers exemples, il existe des matrices

A,B très simples convenant. Pour le troisième exemple, si (A,B)

convient, raisonner sur les rangs et obtenir une contradiction.

Utiliser un théorème du cours sur la dualité en dimension

finie.

Considérer les formes linéaires :

ϕk : E −→ R, P �−→ P(ak), k ∈ {1,. . . ,n}

ψ : E −→ R, P �−→ P ′(0) .

1) Vérifier, pour tout i ∈ {1,. . . ,n} : Ei ∈ F∗ .
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2) Montrer que (Ei )1�i�n est libre, en exploitant, pour

j ∈ {1,. . . ,n} fixé, l’application f j : xi �−→ δi j .

3) Conclure.

1) Vérifier : ϕ1,ϕ2,ϕ3 ∈ E∗ .

2) Montrer que (ϕ1,ϕ2,ϕ3) est libre, en revenant à la définition.

3) En déduire que (ϕ1,ϕ2,ϕ3) est une base de E∗ .

4) La base préduale (u1,u2,u3) est définie par :

∀ (i, j) ∈ {1,2,3}2, ϕi (uj ) = δi j .

Résoudre trois systèmes linéaires ayant le même premier

membre.

1) Vérifier : ϕ1,ϕ2,ϕ3,ϕ4 ∈ E∗ .

2) Partant d’une combinaison linéaire nulle, exploiter, par

exemple, des polynômes simples s’annulant en 0 et 1 et dont la

dérivée s’annule en 0 ou en 1, pour montrer que (ϕ1,ϕ2,ϕ3,ϕ4)

est libre.

3) En déduire que (ϕ1,ϕ2,ϕ3,ϕ4) est une base de E∗ .

4) La base préduale (P1,P2,P3,P4) est définie par :

∀ (i, j) ∈ {1,2,3,4}2, ϕi (Pj ) = δi j .

Les polynômes P3 et P4 ont pu être déterminés en 2).

Pour calculer P1 et P2 , résoudre deux systèmes linéaires ayant le

même premier membre.

1) Vérifier : ϕ1,ϕ2,ϕ3 ∈ E∗ .

2) Partant d’une combinaison linéaire nulle, l’appliquer, par

exemple, à 1, X, X2 et en déduire que les coefficients sont tous

nuls, pour montrer que (ϕ1,ϕ2,ϕ3) est libre.

3) En déduire que (ϕ1,ϕ2,ϕ3) est une base de E∗ .

4) La base préduale (P1,P2,P3) est définie par :

∀ (i, j) ∈ {1,2,3}2, ϕi (Pj ) = δi j .

En notant, pour i ∈ {1,2,3}, Pi = ai1 + ai2X + ai3X2 , se rame-

ner à un produit de deux matrices carrées d’ordre 3, égal à I3.

Utiliser le théorème du cours sur le rang et la trace d’un

projecteur en dimension finie.

Se rappeler que dans un ev, une famille infinie est dite

libre si et seulement si toute sous-famille finie est libre.

Remarquer que, pour tout a ∈ R, fa est de classe C2 sur

R − {a}, mais n’est pas de classe C2 sur R.

a) Récurrence sur n = dim (E) . Partant d’une base

(P1,. . . ,Pn+1) telle que deg (P1) � . . . � deg (Pn+1) , construire

une base (Q1,. . . ,Qn+1) telle que Qn+1 = Pn+1 et que :

∀ i ∈ {1,. . . ,n}, deg (Qi ) < deg (Pn+1), puis utiliser l’hypothèse

de récurrence.

b) Partant d’une base (P1,. . . ,Pn) telle que

deg (P1) < . . . < deg (Pn) , construire une base (S1,. . . ,Sn) telle

que Sn = Pn et que : ∀ i ∈ {1,. . . ,n}, deg (Si ) = deg (Pn).

1) Montrer que, pour toute A ∈ Mn(K ) , l’application 

ϕA : Mn(K ) −→ K , X �−→ tr (AX)

est élément de Mn(K )∗ .

2) Montrer que θ est linéaire, injective (en utilisant les matrices

élémentaires), puis conclure.

Se rappeler le théorème du cours sur rang et trace d’un

projecteur en dimension finie, et montrer que, si (α,β,γ ) ∈ Z
3

est tel que α + β
√

2 + γ
√

3 = 0 , alors α = β = γ = 0 .

Utiliser le théorème du cours faisant intervenir la matrice Jn,p,r.

a) 1) Se rappeler que le rang d’une matrice est égal à la

dimension du sev engendré par les colonnes de cette matrice.

2) Appliquer 1) en transposant.

3) Combiner 1) et 2).

b) Utiliser a) et rg (M) = n .

1) • Montrer :

∀ X ∈ Mp,1(K), ||AX ||1 � ||A||� ||X ||1 .

• Considérer la matrice-colonne élémentaire Ej, où j est tel que

||A||� =
n∑

i=1

|ai j |.

2) • Montrer :

∀ X ∈ Mp,1(K), ||AX ||∞ � ||A||c ||X ||∞ .

• Considérer la matrice-colonne X =




ε1
.
.
.

εp


 , où :

εj =



|ai0 j |
ai0 j

si ai0 j �= 0

1 si ai0 j = 0,

i0 étant tel que ||A||c =
p∑

j=1

|ai0 j |.

Une inégalité est immédiate.

Pour l’autre inégalité, pour toute X ∈ Mn,1(C) − {0} , noter

X = U + iV, où U,V ∈ Mn,1(R) , et calculer ||X ||22 et ||AX ||22 .
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a) Attention :G va être un groupe pour la loi ◦, mais G n’est

pas nécessairement un sous-groupe de GL(E) .

Montrer successivement le caractère interne de la loi, l’existence

d’un neutre, qui est le projecteur sur F parallèlement à G, l’asso-

ciativité,l’existence,pour chaque élément,d’un symétrique,en uti-

lisant le théorème d’isomorphisme.

b) • Montrer que, pour tout f ∈ G , la matrice de f dans B est 

de la forme 

(
M 0

0 0

)
, où M ∈ GLp(K ).

• Réciproquement, montrer que, pour toute matrice

A =
(

M 0

0 0

)
de H , où M ∈ GLp(K ), l’endomorphisme f

de E , représenté par A dans B , est élément de G.

Construire ainsi deux applications θ et ϕ , réciproques l’une de

l’autre, et montrer que θ est un morphisme du groupe (G,◦) sur

(H,·). Conclure.

1) Le sens �⇒ est facile.

2) Réciproquement, supposer 
p⋂

i=1

Ker (ϕi ) ⊂ Ker ( f ).

Noter r = rg (ϕ1,. . . ,ϕp) et se ramener au cas où, par exemple,

ϕr+1,. . . ,ϕp se décomposent linéairement sur ϕ1,. . . ,ϕr .

1) Un sens est facile.

2) Réciproquement, supposer ∫ 1

−1

( n∏
k=1

(x − ak)

)
dx = 0 .

Considérer les formes linéaires :

φ : Rn[X] −→ R, P �−→
∫ 1

−1
P(x) dx ,

ϕk : Rn[X] −→ R, P �−→ P(ak), k ∈ {1,. . . ,n} .

Montrer que (ϕ1,. . . ,ϕn) est libre et montrer, en raisonnant par

l’absurde, que (ϕ,ϕ1,. . . ,ϕn) est liée.

a) • Vérifier : ∀ j ∈ {0,. . . ,n}, ϕj ∈ E∗.

• Montrer que (ϕj )0� j�n est libre en revenant à la définition et

en utilisant les Pk = (X − a)k , 0 � k � n .

• En déduire que (ϕ0,. . . ,ϕn) est une base de E∗ .

b) Pour ϕ ∈ E∗ fixée quelconque, décomposer ϕ sur la base

(ϕ0,. . . ,ϕn) et traduire (i) par équivalences logiques succes-

sives.

a) Montrer :
p⋂

i=1

Ker (ϕi ) =
q⋂

j=1

Ker (ψj ),

et utiliser le résultat de l’exercice 10.20.

b) Considérer, par exemple : E = C, p = 2, q = 1 ,

ϕ1 : x �−→ x, ϕ2 : x �−→ ix, ψ1 : x �−→ 0 .

Soit H un hyperplan de Mn(K ) .Raisonner par l’absurde :sup-

poser H ∩ GLn(K ) = ∅ .

Montrer que H contient alors toutes les matrices nilpotentes, en

raisonnant par l’absurde.

Construire deux matrices nilpotentes dont la somme est

inversible.

Conclure.

a) Remarquer, par exemple :

(
In B

0 C

)(
In −B

0 Ip

)
=

(
In 0

0 C

)
.

b) Faire apparaître In + RS et Ip + SR dans des produits par

blocs de matrices carrées d’ordre n + p , et utiliser le résultat

de a).

a) Utiliser le théorème du cours faisant intervenir les

matrices J... .

Il suffit de trouver un couple (u,v) ∈ (
L(E)

)2
tel que

u ◦ f ◦ v = p , où p est le projecteur sur F parallèlement à G.

Utiliser le théorème du cours sur les matrices J... .

1re méthode : Recherche de l’inverse par résolution d’un

système :

En notant N =
(

X Y

Z T

)
, résoudre M N = In+p .

2e méthode : Utilisation d’une factorisation par blocs :

Remarquer :(
In 0

−C A−1 Ip

)(
A B

C D

)(
In −A−1 B

0 Ip

)

=
(

A B

0 D − C A−1 B

)
.

1) Montrer que E est un K-ev.

2) Utiliser le théorème du cours faisant intervenir les matrices Jm,n,a

et Jp,q,b ,où a = rg (A), b = rg (B) (et,pour la commodité, a � b).

Utiliser des décompositions en neuf blocs.

Noter r = rg (A) < n et considérer une matrice nilpotente

simple Mr ∈ Mr+1(K ) de rang r,et Nr =
(

Mr 0

0 0

)
∈ Mn(K ).

Remarquer :

(
In 0

C A−1 −Ip

)(
A B

C D

)(
In −A−1 B

0 Ip

)

=
(

A 0

0 C A−1 B − D

)
.
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Du mal à démarrer ?
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Récurrence sur p.

Si F1,. . . ,Fp+1 sont des sev de E tels que :

p+1⋃
i=1

Fi = E, Fp+1 �= E,

p⋃
i=1

Fi �= E ,

considérer x,y ∈ E tels que x /∈ Fp+1 et y /∈
p⋃

i=1

Fi , et envisa-

ger la droite affine passant par y et dirigée par x.

a) Remarquer que, pour tout h ∈ G, l’application

g �−→ g ◦ h est une permutation de G, donc :

∑
g∈G

g ◦ h =
∑
g∈G

g .

b) Calculer p2 en utilisant a), pour l’un des deux facteurs.

c) 1) Montrer que, pour tout x ∈
⋂
g∈G

Ker (g − e) , on a : p(x) = x .

2) Réciproquement, montrer que, pour tout x ∈ Im (p) , on a

g(x) = (g ◦ p)(x) , et que, comme en a), g ◦ p = p.

d) Se rappeler le théorème sur rang et trace pour un projecteur

en dimension finie.
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Corrigés des exercices
10.1

10.2

1) Soit x ∈ A + (
B ∩ (A + C)

)
.

Il existe a ∈ A, b ∈ B ∩ (A + C) tels que : x = a + b .

On a alors b ∈ B, et il existe a′ ∈ A, c ∈ C tels que : b = a′ + c.

On déduit : x = a + b = (a + a′) + c .

D’une part : a + a′ ∈ A .

D’autre part, c ∈ C et c = (−a′) + b ∈ A + B ,

donc c ∈ C ∩ (A + B).

On obtient : x ∈ A + (
C ∩ (A + B)

)
.

Ceci montre :

A + (
B ∩ (A + C)

) ⊂ A + (
C ∩ (A + B)

)
.

2) En appliquant le résultat de 1) au couple (B,C) à la place
de (C,B), on obtient l’autre inclusion.

On conclut :

A + (
B ∩ (A + C)

) = A + (
C ∩ (A + B)

)
.

Remarque : On peut aussi montrer que les deux sev étudiés sont
égaux à (A + B) ∩ (A + C) .

a) Soient n ∈ N
∗, a1,. . . ,an ∈ ]0 ;+∞[ deux à deux

distincts, λ1,. . . ,λn ∈ R tels que :
n∑

k=1

λk fak = 0.

On a alors : ∀ x ∈ [0 ;+∞[,
n∑

k=1

λk

x + ak
= 0.

En réduisant au même dénominateur, on obtient une égalité de
fonctions polynomiales sur la partie infinie [0 ;+∞[ de R, donc
une égalité de polynômes, puis, en revenant aux fractions ra-
tionnelles :

n∑
k=1

λk

X + ak
= 0 .

Par unicité de la décomposition en éléments simples de la frac-
tion nulle, on déduit :

∀ k ∈ {1,. . . ,n}, λk = 0 .

Ceci montre que la famille ( fa)a∈ ]0 ;+∞[ est libre.

b) Remarquons, pour tout a ∈ R :

∀ x ∈ R, fa(x) = ch (x − a) = ch a ch x − sh a sh x ,

donc fa se décompose linéairement sur les deux applications
ch et sh.

Il en résulte que la famille ( fa)a∈R, qui a une infinité d’éléments
(donc strictement plus de 2), est liée.

De façon explicite, pour tout x ∈ R :

( f−1 + f1)(x) = ch (x + 1) + ch (x − 1)

= 2 ch 1 ch x = (2 ch 1) f0(x),

donc : f−1 − 2 ch 1 f0 + f1 = 0,

ce qui montre que ( fa)a∈R est liée.

1) Il est clair que A =

 1 0

0 0
0 0


 , B =

(
1 0 0
0 0 0

)

conviennent.

2) Il est clair que A = 1

2


 1 1

1 1
0 0


 , B =

(
1 1 1
1 1 1

)

conviennent.

3) S’il existe (A,B) convenant, on a alors :

3 = rg (C) = rg (AB) � rg (A) � 2 ,

contradiction.

Ceci montre qu’il n’existe par (A,B) convenant.

Puisque x − y =/ 0 et puisque E est de dimension finie,
d’après le cours, il existe ϕ ∈ E∗ telle que ϕ(x − y) = 1 ,

et on a alors ϕ(x) = ϕ(y) + 1, donc ϕ(x) =/ ϕ(y) .

Notons E = Rn[X] et, pour tout k ∈ {0,. . . ,n} :

ϕk : E −→ R, P �−→ P(ak) .

Comme a0,. . . ,an sont deux à deux distincts, d’après le cours
sur l’interpolation polynomiale, (ϕ0,. . . ,ϕn) est une base du

dual E∗ de E .

D’autre part, l’application ψ : E −→ R, P �−→ P ′(0)

est linéaire, donc ψ ∈ E∗.

Il existe donc (λ0,. . . ,λn) ∈ R
n+1 unique tel que :

ψ =
n∑

k=0

λkϕk ,

c’est-à-dire tel que :

∀ P ∈ Rn[X], P ′(0) =
n∑

k=0

λk P(ak) .

1) D’abord, pour tout i ∈ {1,. . . ,n}, Ei ∈ F∗ , car Ei est
une application de F dans K et Ei est linéaire :

∀α ∈ K , ∀ f,g ∈ F, Ei (α f + g) = (α f + g)(xi )

= α f (xi ) + g(xi ) = αEi ( f ) + Ei (g).

2) Soit (α1,. . . ,αn) ∈ K n tel que :
n∑

i=1

αi Ei = 0.
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Soit j ∈ {1,. . . ,n} fixé. Considérons l’application 

f j : X −→ K , xi �−→
{

1 si i = j

0 si i =/ j.

On a : 0 =
n∑

i=1

αi f j (xi ) = αj .

Ceci montre que (E1,. . . ,En) est libre dans F∗ .

3) Puisque X est fini et a n éléments, F = K X est de dimension
finie égale à n, donc F∗ est aussi de dimension finie et égale à n.
Comme, d’après 2), (E1,. . . ,En) est une famille libre de n élé-
ments de F∗ , on conclut que c’est une base de F∗ .

1) Il est clair que ϕ1,ϕ2,ϕ3 sont bien des formes linéaires,
donc : ϕ1,ϕ2,ϕ3 ∈ E∗.

2) Soit (α1,α2,α3) ∈ R
3. On a :

α1ϕ1 + α2ϕ2 + α3ϕ3 = 0

⇐⇒ ∀ x ∈ E, α1ϕ1(x) + α2ϕ2(x) + α3ϕ3(x) = 0

⇐⇒ ∀ (x1,x2,x3) ∈ R
3,

α1(x1 + x2) + α2(x2 + x3) + α3(x1 + x3) = 0

⇐⇒ ∀ (x1,x2,x3) ∈ R
3,

(α1 + α3)x1 + (α1 + α2)x2 + (α2 + α3)x3 = 0

⇐⇒




α1 + α3 = 0

α1 + α2 = 0

α2 + α3 = 0

⇐⇒




α3 = −α1

α2 = −α1

−2α1 = 0

⇐⇒




α1 = 0

α2 = 0

α3 = 0.

Ceci montre que (ϕ1,ϕ2,ϕ3) est libre.

3) Puisque (ϕ1,ϕ2,ϕ3) est libre et de cardinal 3 dans E∗ qui
est de dimension 3 (égale à celle de E ), on conclut que
(ϕ1,ϕ2,ϕ3) est une base de E∗ .

4) Notons B = (u1,u2,u3) la base préduale de la base
(ϕ1,ϕ2,ϕ3) de E∗ .

En notant u1 = x1e1 + x2e2 + x3e3, (x1,x2,x3) ∈ R
3 , on a :



ϕ1(u1) = 1

ϕ2(u1) = 0

ϕ3(u1) = 0

⇐⇒




x1 + x2 = 1

x2 + x3 = 0

x1 + x3 = 0

⇐⇒




x2 = −x3

x1 = −x3

−2x3 = 1

⇐⇒




x1 = 1/2

x2 = 1/2

x3 = −1/2.

D’où : u1 = 1

2
e1 + 1

2
e2 − 1

2
e3.

On calcule de même u2 et u3, par permutation circulaire ou par
résolution de systèmes linéaires ayant le même premier membre,
et on obtient facilement :

u2 = −1

2
e1 + 1

2
e2 + 1

2
e3, u3 = 1

2
e1 − 1

2
e2 + 1

2
e3 .

1) Il est clair que ϕ1,ϕ2,ϕ3,ϕ4 sont des applications li-

néaires de E dans R, donc : ϕ1,ϕ2,ϕ3,ϕ4 ∈ E∗ .

2) Soit (α1,α2,α3,α4) ∈ R
4 tel que :

4∑
i=1

αiϕi = 0. On a donc :

∀ P ∈ E,

4∑
i=1

αiϕi (P) = 0, c’est-à-dire :

∀ P ∈ E, α1 P(0) + α2 P(1) + α3 P ′(0) + α4 P ′(1) = 0 .

On remarque que X2(X − 1) est zéro de ϕ1,ϕ2,ϕ3.

En notant P4 = X2(X − 1), on a, en effet :

P4(0) = 0, P4(1) = 0, P ′
4(0) = 0, P ′

4(1) = 1 ,

d’où l’on déduit α4 = 0.

De même, en notant P3 = X(X − 1)2 , on a :

P3(0) = 0, P ′
3(0) = 1, P3(1) = 0, P ′

3(1) = 0 ,

d’où : α3 = 0.

Ces deux polynômes nous serviront plus loin.

On obtient alors : ∀ P ∈ E, α1 P(0) + α2 P(1) = 0.

En appliquant ceci à X, à X − 1 , on déduit :

α2 = 0, α1 = 0 .

Ceci montre que (ϕ1,ϕ2,ϕ3,ϕ4) est libre dans E∗ .

3) Comme dim (E∗) = dim (E) = 4 , il en résulte que
(ϕ1,ϕ2,ϕ3,ϕ4) est une base de E∗ .

4) Nous avons déjà obtenu, plus haut, deux polynômes de la
base préduale B de (ϕ1,ϕ2,ϕ3,ϕ4) .

Ainsi, B = (P1,P2,P3,P4)

où   P3 = X(X − 1)2 = X3 − 2X2 + X

et    P4 = X2(X − 1) = X3 − X2.

En notant P1 = aX3 + bX2 + cX + d , où (a,b,c,d) ∈ R
4 est

inconnu, on a :



ϕ1(P1) = 1

ϕ2(P1) = 0

ϕ3(P1) = 0

ϕ4(P1) = 0

⇐⇒




P1(0) = 1

P1(1) = 0

P ′
1(0) = 0

P ′
1(1) = 0

⇐⇒




d = 1

a + b + c + d = 0

c = 0

3a + 2b + c = 0

⇐⇒




c = 0

d = 1

a = 2

b = −3.

On obtient : P1 = 2X3 − 3X2 + 1.

De même, après résolution d’un système linéaire ayant les
mêmes premiers membres que le précédent, on obtient :

P2 = −2X3 + 3X2.
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1) Il est immédiat que ϕ1,ϕ2,ϕ3 sont des applications li-

néaires de E dans R, donc : ϕ1,ϕ2,ϕ3 ∈ E∗.

2) Soit (α1,α2,α3) ∈ R
3 tel que α1ϕ1 + α2ϕ2 + α3ϕ3 = 0. 

On a donc :

∀ P ∈ E, α1 P(1) + α2 P ′(1) + α3

∫ 1

0
P(x) dx = 0 .

En appliquant cette égalité à P = 1, P = X, P = X2 succes-
sivement, on obtient :



α1 + α3 = 0

α1 + α2 + α3

2
= 0

α1 + 2α2 + α3

3
= 0.

Par combinaison linéaire ou par substitution, on déduit facile-
ment : α1 = 0, α2 = 0, α3 = 0.

Ceci montre que (ϕ1,ϕ2,ϕ3) est libre dans E∗ .

3) Comme dim (E∗) = dim (E) = 3 , on conclut que
(ϕ1,ϕ2,ϕ3) est une base de E∗ .

4) Notons (P1,P2,P3) la base préduale de (ϕ1,ϕ2,ϕ3). En no-

tant, pour i ∈ {1,2,3} : Pi = ai1 + ai2X + ai3X2, on a :

∀ (i, j) ∈ {1,2,3}2, ϕj (Pi ) = δi j

⇐⇒




ϕ1(P1) = 1

ϕ2(P1) = 0

ϕ3(P1) = 0

et




ϕ1(P2) = 0

ϕ2(P2) = 1

ϕ3(P2) = 0

et




ϕ1(P3) = 0

ϕ2(P3) = 0

ϕ3(P3) = 1

⇐⇒

 a11 a12 a13

a21 a22 a23

a31 a32 a33




︸ ︷︷ ︸
notée A


 1 0 1

1 1 1/2
1 2 1/3




︸ ︷︷ ︸
notée M

=

 1 0 0

0 1 0
0 0 1


 .

Un calcul d’inverse de matrice carrée d’ordre 3 inversible

fournit : A = M−1 =

 −2 6 −3

1/2 −2 3/2
3 −6 3


 .

On conclut que la base préduale de (ϕ1,ϕ2,ϕ3) est la base

(P1,P2,P3) définie par :

P1 = −2 + 6X − 3X2, P2 = 1

2
− 2X + 3

2
X2,

P3 = 3 − 6X + 3X2.

Un sens est trivial.

Réciproquement, supposons 
N∑

i=1

pi = 0.

Pour tout i ∈ {1,. . . ,N }, comme E est de dimension finie et
puisque pi est un projecteur de E , on a : rg (pi ) = tr (pi ).

D’où : 0 = tr

( N∑
i=1

pi

)
=

N∑
i=1

tr (pi ) =
N∑

i=1

rg (pi )︸ ︷︷ ︸
� 0

.

Il en résulte : ∀ i ∈ {1,. . . ,N }, rg (pi ) = 0,

donc : ∀ i ∈ {1,. . . ,N }, pi = 0.

Soient n ∈ N
∗ et a1,. . . ,an ∈ R deux à deux distincts,

λ1,. . . ,λn ∈ R tel que :
n∑

k=1

λk fak = 0.

Soit i ∈ {1,. . . ,n}. Supposons λi =/ 0. On a alors :

fai = − 1

λi

∑
1�k�n, k =/ i

λk fak .

Remarquons que, pour tout a ∈ R , fa est de classe C2 sur

R − {a} , mais n’est pas de classe C2 sur R.

Alors, d’une part fai n’est de classe C2 sur aucun intervalle ou-
vert contenant ai , et, d’autre part, d’après l’égalité précédente,

par opérations, fai est de classe C2 sur un intervalle ouvert assez
petit, contenant ai , contradiction.

Ceci montre : ∀ i ∈ {1,. . . ,n}, λi = 0.

On conclut : la famille ( fa)a∈R est libre.

a) Récurrence sur n = dim (E) .

• La propriété est évidente pour n = 1.

• Supposons la propriété vraie pour n.

Soit E un sev de K [X], de dimension n + 1. Alors, E admet
au moins une base B = (P1,. . . ,Pn+1). En réordonnant B, on
peut se ramener au cas où :

∀ i ∈ {1,. . . ,n + 1}, deg (Pi ) � deg (Pn+1) .

Considérons la famille C = (Q1,. . . ,Qn+1) définie par
Qn+1 = Pn+1 et, pour tout i ∈ {1,. . . ,n} :

Qi =
{

Pi si deg (Pi ) < deg (Pn+1)

Pi − αi Pn+1 si deg (Pi ) = deg (Pn+1),

où αi est tel que deg (Pi − αi Pn+1) < deg (Pn+1) .

À cet effet, il suffit de prendre pour αi le quotient des termes
de plus haut degré de Pi et Pn+1.

Par construction, les polynômes Q1,. . . ,Qn+1 se décomposent
linéairement sur P1,. . . ,Pn+1.

Réciproquement, comme Pn+1 = Qn+1 et que, pour tout
i ∈ {1,. . . ,n}, Pi = Qi ou Pi = Qi + αi Qn+1, les polynômes
P1,. . . ,Pn+1 se décomposent linéairement sur Q1,. . . ,Qn+1.

Il en résulte : Vect (C) = Vect (B) = E .

Comme dim (E) = n + 1 = et que C engendre E et a n + 1
éléments, on conclut que C est une base de E .

Considérons F = Vect (Q1,. . . ,Qn) , qui est un sev de di-
mension n de R[X]. D’après l’hypothèse de récurrence, F admet
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au moins une base F = (R1,. . . ,Rn) formée de polynômes de
degrés deux à deux différents.

Notons G = (R1,. . . ,Rn,Pn+1) .

Comme E = F ⊕ Pn+1 K [X] et que F est une base de F , il
est clair que G est une base de E .

Enfin, comme : ∀ i ∈ {1,. . . ,n}, Ri ∈ Vect (Q1,. . . ,Qn)

et que (Q1,. . . ,Qn) sont tous de degrés < deg (Pn+1), on a :

∀ i ∈ {1,. . . ,n}, deg (Ri ) < deg (Pn+1).

Finalement, G est une base de E formée de polynômes de de-
grés deux à deux différents.

Ceci montre le résultat voulu, par récurrence sur n.

b) Notons n = dim (E) . D’après a), E admet au moins une base
formée de polynômes de degrés deux à deux différents. En 
réordonnant, E admet au moins une base B = (P1,. . . ,Pn) telle
que :

deg (P1) < . . . < deg (Pn) .

Notons, pour tout i ∈ {1,. . . ,n} :

Si =
{

Pi + Pn si i < n

Pn si i = n.

Il est clair qu’alors :

∀ i ∈ {1,. . . ,n}, deg (Si ) = deg (Pn) .

Par construction, les polynômes S1,. . . ,Sn se décomposent li-
néairement sur P1,. . . ,Pn.

Réciproquement, comme :

∀ i ∈ {1,. . . ,n}, Pi =
{

Si − Sn si i < n

Sn si i = n,

P1,. . . ,Pn se décomposent linéairement sur S1,. . . ,Sn .

Comme dim (E) = n et que la famille C = (S1,. . . ,Sn) a n
éléments et engendre E , on conclut que C est une base de E .

Finalement, E admet au moins une base formée de polynômes
de degrés tous égaux.

1) Soit A ∈ Mn(K ).

L’application ϕA : Mn(K ) −→ K , X �−→ tr (AX)

est linéaire car :

∀α ∈ K , ∀ X,Y ∈ Mn(K ),

ϕA(αX + Y ) = tr
(
A(αX + Y )

) = tr (αAX + AY )

= α tr (AX) + tr (AY ) = αϕA(X) + ϕA(Y ).

Ainsi : ϕA ∈ Mn(K )∗ .

2) Considérons l’application θ : Mn(K ) −→ Mn(K )∗ définie
par :

∀ A ∈ Mn(K ), ∀ X ∈ Mn(K ), θ(A)(X) = tr (AX) .

Autrement dit, avec les notations de 1) ci-dessus :

∀ A ∈ Mn(K ), θ(A) = ϕA .

• Montrons que θ est linéaire.

Soient α ∈ K , A,B ∈ Mn(K ) .

On a, pour toute X ∈ Mn(K ) :

θ(αA + B)(X) = tr
(
(αA + B)X

)

= tr (αAX + B X) = α tr (AX) + tr (B X)

= αθ(A)(X) + θ(B)(X) =
(
αθ(A) + θ(B)

)
(X),

donc : θ(αA + B) = αθ(A) + θ(B),

ce qui montre la linéarité de θ .

• Montrons que θ est injective.

Soit A ∈ Ker (θ). On a θ(A) = 0 , c’est-à-dire :

∀ X ∈ Mn(K ), tr (AX) = 0 .

Notons A = (ai j )i j . Soit (i, j) ∈ {1,. . . ,n}.

On a, en utilisant les matrices élémentaires :

0 = tr AEi j ) = tr




a1i

(0)
... (0)

ani


 = aji ,

car la colonne numéro i de A a été ainsi déplacée en colonne
numéro j.

On a donc : A = 0 .

Ainsi, Ker (θ) = {0}, donc θ est injective.

• Puisque θ : Mn(K ) −→ Mn(K )∗ est linéaire, injective, et que
Mn(K ) et Mn(K )∗ sont de dimensions finies égales, on conclut
que θ est un isomorphisme de K-ev.

Puisque A,B,C,M sont des matrices de projecteurs, leurs
traces sont égales à leurs rangs et sont des entiers naturels. D’où :

tr (M) = tr (A +
√

2 B +
√

3 C)

= tr (A) +
√

2 tr (B) +
√

3 tr (C),

donc :
(

tr (A) − tr (M)︸ ︷︷ ︸
noté α

)
+ tr (B)︸ ︷︷ ︸

noté β

√
2 + tr (C)︸ ︷︷ ︸

noté γ

√
3 = 0 .

On a donc (α,β,γ) ∈ Z
3 et α+ β

√
2 + γ

√
3 = 0 . 

Montrons : (α,β,γ) = (0,0,0) .

On a en faisant passer γ
√

3 dans le second membre, puis en

élevant au carré : α2 + 2β2 + 2αβ
√

2 = 3γ2,

d’où, si αβ =/ 0 :
√

2 = 3γ2 − α2 − 2β2

2αβ
∈ Q,
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contradiction, car on sait que 
√

2 est irrationnel.

Il en résulte : αβ = 0.

De même, on obtient : αγ = 0 et βγ = 0. Si α =/ 0 , il en ré-
sulte β = 0 et γ = 0, puis α = 0, contradiction.

On a donc α = 0.

Comme βγ = 0, on a β = 0 ou γ = 0, puis β = 0 et γ = 0.

On conclut : α = 0, β = 0, γ = 0.

Ici : tr (B) = 0 et tr (C) = 0,

donc : rg (B) = tr (B) = 0 et rg (C) = tr (C) = 0,

et on conclut : B = 0 et C = 0.

D’après le cours, puisque r = rg (A) ,

il existe P ∈ GLn(K ), Q ∈ GLp(K ) telles que :

A = PJn,p,r Q, où : Jn,p,r =
(

Ir 0r,p−r

0n−r,r 0n−r,p−r

)
.

Il est clair que : Jn,p,r =
(

Ir

0n−r,r

)
( Ir 0r,p−r ) ,

d’où la décomposition de A en produit :

A = P

(
Ir

0n−r,r

)
︸ ︷︷ ︸

notée U

( Ir 0r,p−r ) Q︸ ︷︷ ︸
notée V

,

et on a bien : U ∈ Mn,r (K ), V ∈ Mr,p(K ).

a) 1) En notant U1,. . . ,Up les colonnes de U , et
V1,. . . ,Vq les colonnes de V, on a :

Vect (U1,. . . ,Up,V1,. . . ,Vq)

= Vect (U1,. . . ,Up) + Vect (V1,. . . ,Vq),

donc :

dim Vect (U1,. . . ,Up,V1,. . . ,Vq)

� dim Vect (U1,. . . ,Up) + dim Vect (V1,. . . ,Vq),

c’est-à-dire : rg (M) � rg (U) + rg (V ).

2) On applique 1) en transposant :

rg (M) = rg

(
R
S

)
= rg

(t( R
S

))
= rg ( t R t S )

� rg (t R) + rg (t S) = rg (R) + rg (S).

3) On combine les deux résultats précédents :

rg (M) = rg

(
A B
C D

)
� rg

(
A
C

)
+ rg

(
B
D

)

�
(
rg (A) + rg (C)

) + (
rg (B) + rg (D)

)
.

b) D’après a) et puisque M est inversible, on a :

n = rg (M) � rg (A) + rg (B) + rg (C) .

Comme B ∈ Mm,n−p(K ) et C ∈ Mn−m,p(K ) , on a, en parti-

culier : rg (B) � n − p et rg (C) � n − m,

d’où : n � rg (A) + (n − p) + (n − m),

et on conclut : rg (A) � m + p − n.

1) • On a, pour tout X =




x1
...

xp


 ∈ Mp,1(K) :

||AX ||1 =
n∑

i=1

∣∣∣∣
p∑

j=1

ai j xj

∣∣∣∣

�
n∑

i=1

p∑
j=1

|ai j | |xj | =
p∑

j=1

( n∑
i=1

|ai j |
)

|xj |

�
p∑

j=1

||A||� |xj | = ||A||�
p∑

j=1

|xj | = ||A||� ||X ||1.

d’où : ∀ X ∈ Mp,1(K) − {0}, ||AX ||1
||X ||1 � ||A||�.

• Puisque ||A||� = Max
1� j�p

( n∑
i=1

|ai j |
)

, il existe un indice

j ∈ {1,. . . ,p} tel que : ||A||� =
n∑

i=1

|ai j |.

Considérons la matrice-colonne X = Ej, dont tous les éléments

sont nuls, sauf celui situé à la ligne numéro j, et qui est égal 
à 1.

On a : ||X ||1 = 1 et AX =




a1 j

...

anj


, donc :

||AX ||1 =
p∑

j=1

|ai j | = ||A||� ,

d’où :
||AX ||1
||X1|| = ||A||�.

Autrement dit, le majorant ||A||� obtenu ci-dessus, est atteint.

On conclut : Sup
X∈Mp,1(K)−{0}

||AX ||1
||X ||1 = ||A||�.

2) • On a, pour tout X =




x1
...

xp


 ∈ Mp,1(K) :

||AX ||∞ = Max
1�i�n

∣∣∣∣
n∑

j=1

ai j xj

∣∣∣∣

� Max
1�i�n

p∑
j=1

|ai j | |xj | � Max
1�i�n

( p∑
j=1

|ai j | ||X ||∞
)

=
(

Max
1�i�n

p∑
j=1

|ai j |
)

||X ||∞ = ||A||c ||X ||∞.
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d’où : ∀ X ∈ Mp,1(K) − {0}, ||AX ||∞
||X ||∞ � ||A||c.

• Puisque ||A||c = Max
1�i�n

( p∑
j=1

|ai j |
)

, il existe un indice

i0 ∈ {1,. . . ,n} tel que : ||A||c =
p∑

j=1

|ai0 j |.

Considérons la colonne X =



ε1
...

εp


 ∈ Mp,1(K) définie, pour

tout j ∈ {1,. . . ,p} , par :

εj =




|ai0 j |
ai0 j

si ai0 j =/ 0

1 si ai0 j = 0.

On a ||X ||∞ = 1, car chaque terme de X est de module 1, et
donc aussi X =/ 0.

On a : ||AX ||∞ = Max
1�i�n

( p∑
j=1

|ai jεj |
)

�
p∑

j=1

|ai0 jεj |.

Mais, pour tout j ∈ {1,. . . ,p} : |ai0 jεj | = |ai0 j |,
comme on le voit en séparant les cas ai0 j =/ 0, ai0 j = 0.

D’où : ||AX ||∞ �
p∑

j=1

|ai0 j | = ||A||c.

Ainsi, il existe X ∈ Mp,1(K) tel que :
||AX ||∞
||X ||∞ � ||A||c.

Autrement dit, compte tenu de l’inégalité obtenue au point pré-
cédent, le majorant obtenu au point précédent est atteint.

On conclut : Sup
X∈Mp,1(K)−{0}

||AX ||∞
||X ||∞ = ||A||c.

1) L’inégalité |||A|||R � |||A|||C est immédiate, puisque
Mn,1(R) − {0} ⊂ Mn,1(C) − {0} .

2) Soit X ∈ Mn,1(C) − {0} .

Il existe U,V ∈ Mn,1(R) tel que : X = U + i V . On a :

||X ||22 = (U + i V )∗(U + i V ) =t (U − i V )(U + i V )

=t UU +t V V + i (tU V −t V U︸ ︷︷ ︸
= 0

) = ||U ||22 + ||V ||22

et, puisque A,U,V sont réelles :

||AX ||22 = ||A(U + i V )||22 = ||AU + i AV ||22
= ||AU ||22 + ||AV ||22 � |||A|||2

R
||U ||22 + |||A|||2

R
|||V |||22

= |||A|||2
R

(||U ||22 + ||V ||22) = |||A|||2
R

||X ||22.
Ceci montre :

∀ X ∈ Mn,1(C) − {0}, ||AX ||2 � |||A|||R ||X ||2 .

Par définition de |||A|||C , il en résulte :

|||A|||C � |||A|||R .

Finalement, on conclut : |||A|||R = |||A|||C.

a) 1) Caractère interne de la loi :

Montrons que la loi ◦ est interne dans G .

Soient f1, f2 ∈ G .

• * On a : Im ( f2 ◦ f1) ⊂ Im ( f2) = F .

* Soit z ∈ F. On a : z ∈ F = Im ( f2) , donc il existe y ∈ E tel
que : z = f2(y) . Puisque E = F ⊕ G, il existe u ∈ F, v ∈ G
tels que y = u + v . On a alors :

z = f2(y) = f2(u + v) = f2(u) + f2(v) .

Mais u ∈ F = Im ( f1) , donc il existe x ∈ E tel que u = f1(x) ,
et, d’autre part, v ∈ G = Ker ( f2) , donc f2(v) = 0.

D’où : z = f2
(

f1(x)
) = f2 ◦ f1(x) ∈ Im ( f2 ◦ f1).

Ceci montre : F ⊂ Im ( f2 ◦ f1).

On conclut : Im ( f2 ◦ f1) = F .

•  * On a : Ker ( f2 ◦ f1) ⊃ Ker ( f1) = G .

* Soit x ∈ Ker ( f2 ◦ f1) ; On a   f2
(

f1(x)
) = 0, donc :

f1(x) ∈ Im ( f1) ∩ Ker ( f2) = F ∩ G = {0} ,

d’où x ∈ Ker ( f1) = G .

Ceci montre : Ker ( f2 ◦ f1) ⊂ G .

On conclut : Ker ( f2 ◦ f1) = G .

On a obtenu : f2 ◦ f1 ∈ G.

2) Neutre :

Considérons le projecteur p sur F parallèlement à G. On a :

p ∈ L(E), Im (p) = F, Ker (p) = G, donc : p ∈ G .

Soit f ∈ G .

• Comme : ∀ x ∈ E, f (x) ∈ Im ( f ) = F,

on a : ∀ x ∈ E, p
(

f (x)
) = f (x),

ce qui montre : p ◦ f = f.

• On a : ∀ x ∈ E, x − p(x) ∈ Ker (p) = G = Ker ( f ),

donc : ∀ x ∈ E, f
(
x − p(x)

) = 0,

c’est-à-dire : ∀ x ∈ E, f (x) = f
(

p(x)
)
,

ce qui montre : f = f ◦ p.

Ainsi, p est neutre pour ◦ dans G.

3) Associativité :

Il est connu que la loi ◦ est associative.
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4) Symétriques :

Soit f ∈ G. Puisque F est un supplémentaire de G = Ker ( f )

dans E , d’après le théorème d’isomorphisme, l’application 

f ′ : F −→ Im ( f ) = F, x �−→ f (x)

est un isomorphisme de K-ev.

Considérons g : E −→ E, x �−→ f ′−1
(

p(x)
)
,

où p a été défini plus haut.

• Il est clair que g est linéaire.

On a : Im (g) = f ′−1
(

p(E)
) = f ′−1(F) = F.

On a, pour tout x ∈ E :

x ∈ Ker (g) ⇐⇒ g(x) = 0 ⇐⇒ f ′−1
(

p(x)
) = 0

⇐⇒ p(x) = 0 ⇐⇒ x ∈ G,

donc : Ker (g) = G .

Ceci montre : g ∈ G.

• On a, pour tout x ∈ E :

( f ◦ g)(x) = f
(

f ′−1
(

p(x)
)) = f ′( f ′−1

(
p(x)

)) = p(x) ,

donc : f ◦ g = p .

• Soit x ∈ E. 

Comme f (x) ∈ Im ( f ) = F , on a : p
(

f (x)
) = f (x) , puis :

g
(

f (x)
) = f ′−1

(
p
(

f (x)
)) = f ′−1

(
f (x)

)
.

Mais f = f ◦ p, donc :

f ′−1
(

f (x)
) = f ′−1

(
f
(

p(x)
)) = f ′−1

(
f ′(p(x)

)) = p(x) .

Ainsi : g ◦ f = p .

Ceci montre : g ◦ f = f ◦ g = p,

donc f admet g pour symétrique dans (G,◦).

Finalement : (G,◦) est un groupe.

b) •  Pour tout f ∈ G , comme Im ( f ) = F et Ker ( f ) = G , la

matrice de f dans B est de la forme 

(
M 0
0 0

)
, où M est la

matrice de l’endomorphisme f ′ induit par f sur F .

De plus :

rg (M) = rg

(
M 0
0 0

)
= rg ( f ) = dim (F) = p .

Il en résulte M ∈ GLp(K ) , donc 

(
M 0
0 0

)
∈ H.

On peut donc considérer l’application 

θ : G −→ H, f �−→ MatB( f ) .

• Réciproquement, considérons l’application ϕ qui, à une ma-
trice A de H , associe l’endomorphisme f de E tel que
MatB( f ) = A .

Avec ces notations, puisque A =
(

M 0
0 0

)
= MatB( f ) , où

M ∈ GLp(K ) , on a : Im ( f ) = F et Ker ( f ) = G , donc :
f ∈ G .

• Il est clair que θ et ϕ sont des applications réciproques l’une
de l’autre, donc sont bijectives.

• De plus, avec des notations évidentes :

∀ f1, f2 ∈ G, θ( f2)θ( f1) =
(

M2 0
0 0

)(
M1 0
0 0

)

=
(

M2 M1 0
0 0

)
= θ( f2 ◦ f1).

Ainsi, θ est un isomorphisme de (G,◦) sur (H,·).

• Comme (G,◦) est un groupe, par transport de structure, (H,·)
est un groupe.

Finalement, l’application θ : f �−→ MatB( f ) est un isomor-
phisme du groupe (G,◦) sur le groupe (H,·).

1) Supposons f ∈ Vect (ϕ1,. . . ,ϕp) . Il existe

(α1,. . . ,αp) ∈ K p tel que : f =
p∑

i=1

αiϕi . On a alors, pour tout

x ∈
p⋂

i=1

Ker (ϕi ) : f (x) =
p∑

i=1

αiϕi (x) = 0,

et donc : x ∈ Ker ( f ) .

Ceci montre :
p⋂

i=1

Ker (ϕi ) ⊂ Ker ( f ).

2) Réciproquement, supposons :
p⋂

i=1

Ker (ϕi ) ⊂ Ker ( f ) .

Notons r = rg (ϕ1,. . . ,ϕp). Quitte à permuter ϕ1,. . . ,ϕp , on

peut supposer que (ϕ1,. . . ,ϕr ) est libre et que ϕr+1,. . . ,ϕp se

décomposent linéairement sur ϕ1,. . . ,ϕr .

Pour tout k ∈ {r + 1,. . . ,p} , d’après 1) appliqué à ϕk à la place

de f, on a :
r⋂

i=1

Ker (ϕi ) ⊂ Ker (ϕk).

Il en résulte :
r⋂

i=1

Ker (ϕi ) =
p⋂

i=1

Ker (ϕi ).

D’après le cours, puisque (ϕ1,. . . ,ϕr ) est libre dans E∗ , la

forme linéaire f, qui s’annule sur 
r⋂

i=1

Ker (ϕi ) , est combinai-

son linéaire de ϕ1,. . . ,ϕr , donc :

f ∈ Vect (ϕ1,. . . ,ϕr ) = Vect (ϕ1,. . . ,ϕp) .

(i) �⇒ (ii) :

Il suffit d’appliquer (i) à P =
n∏

k=1

(X − ak) ∈ Rn[X] :
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∫ 1

−1

( n∏
k=1

(x − ak)

)
dx =

n∑
k=1

λk P(ak)︸ ︷︷ ︸
= 0

= 0 .

(ii) �⇒ (i) :

On suppose :
∫ 1

−1

( n∏
k=1

(x − ak)

)
dx = 0.

Notons : ϕ : Rn[X] −→ R, P �−→
∫ 1

−1
P(x) dx,

et, pour tout k ∈ {1,. . . ,n} :

ϕk : Rn[X] −→ R, P �−→ P(ak) .

Il est clair que ϕ,ϕ1,. . . ,ϕn sont des éléments du dual de Rn[X].

D’autre part, d’après le cours sur l’interpolation polynomiale,
puisque a1,. . . ,an sont deux à deux distincts, la famille
(ϕ1,. . . ,ϕn) est libre.

Montrons, en raisonnant par l’absurde, que la famille
(ϕ,ϕ1,. . . ,ϕn) est liée. Supposons (ϕ,ϕ1,. . . ,ϕn) libre.  Alors,

cette famille de n + 1 éléments est libre dans Rn[X]∗, qui est de
dimension n + 1, donc cette famille est une base de Rn[X]∗.
D’après le cours, il existe une base (P0,. . . ,Pn) de Rn[X], pré-
duale de (ϕ,ϕ1,. . . ,ϕn). 

On a donc : ∀ k ∈ {1,. . . ,n}, ϕk(P0) = 0,

c’est-à-dire : ∀ k ∈ {1,. . . ,n}, P0(ak) = 0.

Comme P0 ∈ Rn[X] , il existe alors α ∈ R tel que :

P0 = α

n∏
k=1

(X − ak). D’après l’hypothèse (ii) :

ϕ(P0) = αϕ

( n∏
k=1

(X − ak)

)
= 0 .

Mais, d’autre part : ϕ(P0) = 1, contradiction.

Ce raisonnement par l’absurde montre que la famille
(ϕ,ϕ1,. . . ,ϕn) est liée.

Comme (ϕ1,. . . ,ϕn) est libre, il en résulte qu’il existe

(λ1,. . . ,λn) ∈ R
n tel que : ϕ =

n∑
k=1

λkϕk, c’est-à-dire :

∀ P ∈ Rn[X],
∫ 1

−1
P(x) dx =

n∑
k=1

λk P(ak) ,

ce qui montre (i).

a) Notons, pour tout j ∈ {0,. . . ,n} :

ϕj : E −→ K, P �−→ P ( j)(a) .

Il est clair que : ∀ j ∈ {0,. . . ,n}, ϕj ∈ E∗.

Montrons que (ϕ0,. . . ,ϕn) est une base de E∗ .

• Soit (α0,. . . ,αn) ∈ K
n+1 tel que 

n∑
j=0

αjϕj = 0.

On a alors :

∀ P ∈ E, 0 =
( n∑

j=0

αjϕj

)
(P) =

n∑
j=0

αj P ( j)(a) .

Soit k ∈ {0,. . . ,n} .

En appliquant ceci à Pk = (X − a)k ∈ E , puisque les P ( j)(a)

sont tous nuls si j =/ k et que P (k)
k (a) = k! =/ 0, on déduit :

∀ k ∈ {0,. . . ,n}, αk = 0.

Ceci montre que (ϕ0,. . . ,ϕn) est libre.

• Comme dim (E∗) = dim (E) = n + 1 et que (ϕ0,. . . ,ϕn) est
libre dans E∗ , on conclut que (ϕ0,. . . ,ϕn) est une base de E∗ .

b) Soit ϕ ∈ E∗ fixée quelconque. Puisque (ϕ0,. . . ,ϕn) est une

base de E∗ , il existe (γ0,. . . ,γn) ∈ K
n+1 unique tel que :

ϕ =
n∑

i=0

γiϕi .

Puisque 
(
(X − a)q

)
0�q�n−k

est une base de Kn−k[X], on a, par

linéarité :

(i) ∀ P ∈ Kn−k[X], ϕ
(
(X − a)k P

) = 0

⇐⇒ ∀ q ∈ {0,. . . ,n − k}, ϕ(
(X − a)k(X − a)q

) = 0

⇐⇒ ∀ r ∈ {k,. . . ,n}, ϕ(
(X − a)r

) = 0

⇐⇒ ∀ r ∈ {k,. . . ,n},
n∑

i=0

γiϕi

(
(X − a)r

) = 0.

Mais :

∀ r ∈ {k,. . . ,n}, ∀ i ∈ {0,. . . ,n},

ϕi

(
(X − a)r

) = (
(X − a)r

)(i)
(a) =

{
0 si i < r ou i > r

r! si i = r.

On a donc :

(i) ⇐⇒ ∀ r ∈ {k,. . . ,n}, r!γr = 0

⇐⇒ ∀ r ∈ {k,. . . ,n}, γr = 0

⇐⇒ ϕ ∈ Vect (ϕ0,. . . ,ϕk−1)

⇐⇒ ∃ (λ0 . . . ,λk−1) ∈ K
k,ϕ =

k−1∑
i=0

λiϕi

⇐⇒ ∃ (λ0,. . . ,λk−1) ∈ K
k,

∀ P ∈ E, ϕ(P) =
k−1∑
i=0

λi P (i)(a).

a) Supposons :

∀ x ∈ E,

p∑
i=1

(
ϕ(x)

)2 =
q∑

j=1

(
ψj (x)

)2
.
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• Montrons :
p⋂

i=1

Ker (ϕi ) =
q⋂

j=1

Ker (ψj ).

Soit x ∈
p⋂

i=1

Ker (ϕi ).

On a donc : ∀ i ∈ {1,. . . ,p}, ϕi (x) = 0,

d’où :
p∑

i=1

(
ϕi (x)

)2 = 0,

puis, d’après l’hypothèse :
q∑

j=1

(
ψj (x)

)2

︸ ︷︷ ︸
� 0

= 0.

Il en résulte : ∀ j ∈ {1,. . . ,q}, ψj (x) = 0,

donc : x ∈
q⋂

j=1

Ker (ψj ).

Ceci montre :
p⋂

i=1

Ker (ϕi ) ⊂
q⋂

j=1

Ker (ψj ).

Vu les rôles symétriques des deux familles (ϕ1,. . . ,ϕp) et

(ψ1,. . . ,ψq), on a aussi l’autre inclusion, d’où l’égalité :

p⋂
i=1

Ker (ϕi ) =
q⋂

j=1

Ker (ψj ) .

• D’après l’exercice 10.24, on a donc, pour toute ϕ ∈ E∗ :

ϕ ∈ Vect (ϕ1,. . . ,ϕp) ⇐⇒
p⋂

i=1

Ker (ϕi ) ⊂ Ker (ϕ)

⇐⇒
q⋂

j=1

Ker (ψj ) ⊂ Ker (ϕ) ⇐⇒ ϕ ∈ Vect (ψ1,. . . ,ψq),

ce qui montre : Vect (ϕ1,. . . ,ϕp) = Vect (ψ1,. . . ,ψq).

b) Le résultat de a) ne subsiste pas lorsque le corps R est rem-
placé par C, comme le montre l’exemple suivant :

E = C, p = 2, q = 1,

ϕ1 : x �−→ x, ϕ2 : x �−→ i x, ψ1 : x �−→ 0 .

Dans cet exemple :

∀ x ∈ E,

p∑
i=1

(
ϕi (x)

)2 = x2 + (i x)2 = 0 =
q∑

j=1

(
ψj (x)

)2
,

et cependant :

Vect (ϕ1,ϕ2) = Vect (ϕ1) =/ {0} = Vect (ψ1) .

Soit H un hyperplan de Mn(K ). Raisonnons par l’ab-
surde : supposons : H ∩ GLn(K ) = ∅ .

1) Montrons que H contient toutes les matrices nilpotentes.

Soit N ∈ Mn(K ) , nilpotente.

Raisonnons par l’absurde : supposons N /∈ H.

D’après le cours, puisque N /∈ H et que H est un hyperplan
de Mn(K ), on a : Mn(K ) = H ⊕ K N .

En particulier, il existe M ∈ H et α ∈ K tels que :
In = M + αN . Alors : M = In − αN .

Puisque N est nilpotente, il existe k ∈ N
∗ tel que N k = 0 d’où :




(In − αN )

( k−1∑
p=0

(αN )p

)
= In − α

k N k = In

( k−1∑
p=0

(αN )p

)
(In − αN ) = In − α

k N k = In,

d’où : In − αN ∈ GLn(K ) .

Ainsi : M ∈ H ∩ GLn(K ), contradiction.

Ceci montre que H contient toutes les matrices nilpotentes.

2) Considérons les matrices suivantes de Mn(K ) :

N1 =




0 . . . . . . 0
.
.
.

. . . (0)
.
.
.

0 (0)
. . .

.

.

.

1 0 . . . 0


 , N2 =




0 1 0 . . . 0

0
. . .

. . . (0)
.
.
.

.

.

.
. . .

. . . 0
.
.
. (0)

. . . 1
0 . . . . . . . . . 0




.

Il est clair que N1 et N2 sont nilpotentes.

D’après 1) : N1 ∈ H et N2 ∈ H , puis, comme H est un sev :
N1 + N2 ∈ H .

Mais : N1 + N2 =




0 1 0 . . . 0

0
. . .

. . . (0)
...

...
. . .

. . . 0

0 (0)
. . . 1

1 0 . . . . . . 0




,

qui est inversible, contradiction.

Ce raisonnement par l’absurde montre que tout hyperplan de
Mn(K ) rencontre GLn(K ) .

a) On a, par exemple :
(

In B
0 C

)(
In −B
0 Ip

)
=

(
In 0
0 C

)
.

La matrice 

(
In −B
0 Ip

)
est triangulaire, à éléments diagonaux

tous non nuls (car égaux à 1), donc cette matrice est inversible,
d’où, d’après le cours :

rg

(
In B
0 C

)
= rg

(
In 0
0 C

)
.

D’autre part, il est clair (par la méthode de Gauss, par exemple)

que rg

(
In 0
0 C

)
= n + rg (C).

384

10.24

10.25



On conclut : rg

(
In B
0 C

)
= n + rg (C).

b) On a, à l’aide de produits par blocs :
(

In R
−S Ip

)(
In 0
S Ip

)
=

(
In + RS R

0 Ip

)
,

(
In R
−S Ip

)(
In −R
0 Ip

)
=

(
In 0
−S Ip + SR

)
.

Les matrices carrées 

(
In 0
S Ip

)
,

(
In −R
0 Ip

)
sont inver-

sibles (comme en 1)), donc, d’après le cours :

rg

(
In R
−S Ip

)
= rg

(
In + RS R

0 Ip

)
,

rg

(
In R
−S Ip

)
= rg

(
In 0
−S Ip + SR

)
.

D’après a) et le résultat analogue pour des matrices triangu-
laires inférieures par blocs (se démontrant comme en a), ou par
transposition à partir du résultat de a)), on a :

rg

(
In + RS R

0 Ip

)
= p + rg (In + RS) ,

rg

(
In 0
−S Ip + SR

)
= n + rg (Ip + SR) .

On conclut : p + rg (In + RS) = n + rg (Ip + SR).

a) Notons a = rg (A), b = rg (B) . D’après le cours, il
existe P,Q ∈ GLn(K ), R,S ∈ GLp(K ) telles que :

A = PJn,a Q, B = RJp,b S, où 

Jn,a =
(

Ia 0
0 0

)
∈ Mn(K ), Jp,b =

(
Ib 0
0 0

)
∈ Mp(K ) .

On a alors, en faisant des produits de matrices diagonales par
blocs :
(

A 0
0 B

)
=

(
PJn,a Q 0

0 RJp,b S

)

=
(

P 0
0 R

)(
Jn,a 0
0 Jp,b

)(
Q 0
0 S

)
.

Il est clair que 

(
P 0
0 R

)
et 

(
Q 0
0 S

)
sont inversibles. 

On a donc :

rg

(
A 0
0 B

)
= rg

(
Jn,a 0
0 Jp,b

)

= a + b = rg (A) + rg (B).

b) On suppose que les matrices 

(
A 0
0 A

)
et 

(
B 0
0 B

)
sont

équivalentes. D’après a), on a alors : 2 rg (A) = 2 rg (B) , donc

rg (A) = rg (B), et on conclut que les matrices A et B sont équi-
valentes.

c) On suppose que A et B sont équivalentes et que 

(
A 0
0 U

)

et 

(
B 0
0 V

)
sont équivalentes. On a alors rg (A) = rg (B) , et,

d’après a) ; rg (A) + rg (U) = rg (B) + rg (V ) .

Il s’ensuit : rg (U) = rg (V ), donc les matrices U et V sont équi-
valentes.

Il suffit de trouver un couple (u,v) ∈ (
L(E)

)2
tel que

u ◦ f ◦ v = p, où p est le projecteur sur F parallèlement à G.

Notons r = rg ( f ), d = dim (F) = rg (p) .

Le K-ev E , de dimension finie, admet au moins une base B.
Notons A,P1 les matrices respectives de f,p dans B.

D’après le cours, il existe P,Q, R,S ∈ GLn(K ) telles que
A = PJr Q et P1 = RJd S , où :

Jr =
(

Ir 0
0 0

)
∈ Mn(K ), Jd =

(
Id 0
0 0

)
∈ Mn(K ) .

Soient (u,v) ∈ (
L(E)

)2
quelconque. Notons U,V les matrices

respectives de u,v dans B.

On a :

u ◦ f ◦ v = p ⇐⇒ U AV = P1 ⇐⇒ U PJr QV = RJd S

⇐⇒ (R−1U P)Jr (QV S−1) = Jd .

Choisissons : U = RJr P−1 et V = Q−1Jd S .

On a alors : (R−1U P)Jr (QV S−1) = Jr Jr Jd = Jd,

car d � r .

Ainsi, il existe (u,v) ∈ (
L(E)

)2
convenant.

1re méthode : Recherche de l’inverse par résolution d’un
système :

Cherchons l’éventuel inverse de M sous forme de matrice dé-
composée en blocs, dans le même format que pour M . Soit

N =
(

X Y
Z T

)
. On a :

M N = In+p ⇐⇒
(

A B
C D

)(
X Y
Z T

)
=

(
In 0
0 Ip

)

⇐⇒




AX + B Z = In (1)

AY + BT = 0 (2)

C X + DZ = 0 (3)

CY + DT = Ip (4).

Les équations (1) et (3) ont pour inconnues X et Z,

les équations (2) et (4) ont pour inconnues Y et T .
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Puisque A est inversible :{
(2)

(4)
⇐⇒

{
Y = −A−1 BT

(D − C A−1 B)T = Ip (5).

Si D − C A−1 B n’est pas inversible, l’équation (5) n’a pas de
solution (en T), donc M n’est pas inversible.

Supposons D − C A−1 B inversible.

Alors : {
(2)

(4)
⇐⇒

{
Y = −A−1 B(D − C A−1 B)−1

T = (D − C A−1 B)−1.

D’autre part, puisque A est inversible :{
(1)

(3)
⇐⇒

{
X + A−1 B Z = A−1

C X + DZ = 0

⇐⇒
{

X + A−1 B Z = A−1

(D − C A−1 B)Z = −C A−1 [L2  − L2 − C L1]

⇐⇒
{

Z = −(D − C A−1 B)−1C A−1

X = A−1 + A−1 B(D − C A−1 B)−1C A−1.

On conclut que la matrice carrée M est inversible si et seule-
ment si D − C A−1 B est inversible et que, dans ce cas, en no-
tant E = (D − C A−1 B)−1 , on a :

M−1 =
(

A−1 + A−1 B EC A−1 −A−1 B E
−EC A−1 E

)
.

2e méthode : Utilisation d’une factorisation par blocs :

On remarque (cf. aussi l’exercice 10.31) :

(
In 0

−C A−1 Ip

) M︷ ︸︸ ︷(
A B
C D

)(
In −A−1 B
0 Ip

)

=
(

A 0
0 D − C A−1 B

)
.

Les deux matrices autour de M sont triangulaires et à termes
diagonaux tous non nuls (car égaux à 1), donc ces deux ma-
trices sont inversibles. Il en résulte que M est inversible si et

seulement si 

(
A 0
0 D − C A−1 B

)
est inversible, ce qui revient,

puisque A est supposée inversible, à ce que D − C A−1 B soit
inversible.

On a alors, en notant E = (D − C A−1 B pour la commodité :

M =
(

In 0
−C A−1 Ip

)−1( A 0
0 E−1

)(
In −A−1 B
0 Ip

)−1

donc :

M−1 =
(

In −A−1 B
0 Ip

)(
A−1 0
0 E

)(
In 0

−C A−1 Ip

)

=
(

A−1 + A−1 B EC A−1 −A−1 B E
−EC A−1 E

)
.

1) • On a E ⊂ Mn,p(K ) et 0 ∈ E .

• On a, pour tout α ∈ K et tous X,Y ∈ E :

A(αX + Y )B = α AX B︸ ︷︷ ︸
= 0

+ AY B︸ ︷︷ ︸
= 0

= 0 ,

donc αX + Y ∈ E.

On conclut : E est un K-ev.

2) D’après le cours, il existe des matrices P,Q ∈ GLn(K ),

R,S ∈ GLp(K ) telles que : A = PJm,n,a Q et B = RJp,q,b S,

où on a noté : a = rg (A), b = rg (B),

Jm,n,a =
(

Ia 0
0 0

)
∈ Mm,n(K ) ,

Jp,q,b =
(

Ib 0
0 0

)
∈ Mp,q(K ) .

On peut supposer, par exemple a � b , et décomposer en neuf
blocs :

Jm,n,a =

 Ia 0 0

0 0 0
0 0 0


 , Jp,q,b =


 Ia 0 0

0 Ib−a 0
0 0 0


 .

Soit X ∈ Mn,p(K ) , quelconque. On a :

X ∈ E ⇐⇒ AX B = 0

⇐⇒ (PJm,n,a Q)X (RJp,q,b S) = 0

⇐⇒ Jm,n,a(Q X R)Jp,q,b = 0.

Décomposons Q X R en blocs :

Q X R =

 U1 V1 W1

U2 V2 W2

U3 V3 W3


 .

On obtient, par produit par blocs de trois matrices :

Jm,n,a(Q X R)Jp,q,b =

 U1 V1 0

0 0 0
0 0 0


 .

Donc : X ∈ E ⇐⇒ (
U1 = 0 et V1 = 0

)
.

Ainsi, l’application X �−→ Q X R est un isomorphisme d’es-
paces vectoriels de E sur le K-ev des matrices décomposées
en neuf blocs et telles que les deux premiers blocs soient nuls.

Il en résulte : dim (E) = np − ab .

Le résultat est identique lorsque a � b .

On conclut : dim (E) = np − rg (A) rg (B).

Notons r = rg (A) < n et :

Mr =




0 1 0 . . . . . . 0
...

. . .
. . .

. . . (0)
...

...
. . .

. . .
. . .

...
... (0)

. . .
. . . 0

0 . . . . . . . . . 0 1




∈ Mr+1(K ),
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Nr =
(

Mr 0
0 0

)
∈ Mn(K ) .

Il est clair que Mr est nilpotente, donc Nr est nilpotente.

Comme rg (A) = r = rg (Nr ) , il existe P,Q ∈ GLn(K ) telles
que : A = P Nr Q. On a alors :

A = ( P Q︸︷︷︸
notée B

)(Q−1 Nr Q︸ ︷︷ ︸
notée C

) .

Alors, B,C sont dans Mn(K ), B est inversible car P et Q le
sont, et C est nilpotente, car :

Cr+1 = (Q−1 Nr Q)r+1 = Q−1 Nr+1
r Q = Q−10Q = 0 .

Le couple (B,C) convient.

On a l’égalité matricielle suivante, par produit par blocs :

(
In 0

C A−1 −Ip

)(
A B
C D

)(
In −A−1 B
0 Ip

)

=
(

A 0
0 C A−1 B − D

)
.

Les matrices 

(
In 0

C A−1 −Ip

)
et 

(
In −A−1 B
0 Ip

)
,

sont triangulaires, à termes diagonaux tous non nuls (car égaux
à 1), donc ces deux matrices sont inversibles.

Il en résulte, d’après le cours :

rg

(
A B
C D

)
= rg

(
A 0
0 C A−1 B − D

)
.

D’après l’exercice 10.26 :

rg

(
A 0
0 C A−1 B − D

)
= rg (A) + rg (C A−1 B − D)

= n + rg (C A−1 B − D) .

D’où :

rg (M) = n ⇐⇒ n = n + rg (C A−1 B − D)

⇐⇒ rg (C A−1 B − D) = 0

⇐⇒ C A−1 B − D = 0 ⇐⇒ D = C A−1 B.

Récurrence sur p.

• La propriété est évidente pour p = 1.

• Supposons-la vraie pour un p ∈ N
∗ . Soient F1,. . . ,Fp+1 des

sev de E tels que 
p+1⋃
i=1

Fi = E . Si Fp+1 = E, alors le résultat

voulu est acquis.

Supposons donc Fp+1 =/ E . Il existe alors x ∈ E tel que

x /∈ Fp+1 . Comme E =
p+1⋃
i=1

Fi , on a alors x ∈
p⋃

i=1

Fi . Si

p⋃
i=1

Fi = E, alors, d’après l’hypothèse de récurrence, il existe

i ∈ {1,. . . ,p} tel que Fi = E , donc, a fortiori, il existe
i ∈ {1,. . . ,p + 1} tel que Fi = E, d’où le résultat voulu.

Supposons donc 
p⋃

i=1

Fi =/ E .

Il existe alors y ∈ E tel que y /∈
p⋃

i=1

Fi , c’est-à-dire :

∀ i ∈ {1,. . . ,p}, y /∈ Fi .

L’idée consiste maintenant à remarquer que la droite affine pas-
sant par y et dirigée par x ne rencontre les Fi qu’en un nombre
fini de points.

Puisque K est infini, il existe λ1,. . . ,λp+2 ∈ K deux à deux dis-
tincts. Les p + 2 vecteurs y + λk x , pour k ∈ {1,. . . ,p + 2}

sont dans E =
p+1⋃
i=1

Fi . Il existe donc i ∈ {1,. . . ,p + 1} et

k,� ∈ {1,. . . ,p + 2} distincts, tels que : y + λk x ∈ Fi et
y + λ�x ∈ Fi .

Comme y = 1

λ� − λk

(
λ�(y + λk x) − λk(y + λ�x)

) ∈ Fi ,

on a nécessairement i /∈ {1,. . . ,p}, donc i = p + 1.

Comme x = 1

λk − λ�

(
y + λk x) − (y + λ�x)

)
∈ Fi ,

on a nécessairement i =/ p + 1.

On aboutit à une contradiction.

Ceci montre : ∃ i ∈ {1,. . . ,p + 1}, Fi = E,

et établit le résultat voulu, par récurrence sur p.

a) On a, pour tout h ∈ G :

p ◦ h = 1

n

(∑
g∈G

g

)
◦ h = 1

n

∑
g∈G

g ◦ h = 1

n

∑
k∈G

k = p ,

car l’application g �−→ g ◦ h est une permutation de G.

b) On déduit :

p2 = p ◦
(

1

n

∑
g∈G

g

)
= 1

n

∑
g∈G

p ◦ g = 1

n

∑
g∈G

p = 1

n
np = p ,

donc p est un projecteur de E .

c) 1) Soit x ∈
⋂
g∈G

Ker (g − e).

On a alors : ∀ g ∈ G, (g − e)(x) = 0,

c’est-à-dire : ∀ g ∈ G, g(x) = x,

d’où : p(x) = 1

n

∑
g∈G

g(x) = 1

n

∑
g∈G

x = 1

n
nx = x,

et donc : x ∈ Im (p) .

Ceci montre :
⋂
g∈G

Ker (g − e) ⊂ Im (p).
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2) Réciproquement, soit x ∈ Im (p). Puisque p est un projec-
teur, on a alors : p(x) = x. D’où :

∀ g ∈ G, g(x) = g
(

p(x)
) = g ◦ p(x).

Mais, comme en a) (de l’autre côté), on a :

∀ g ∈ G, g ◦ p = p .

D’où : ∀ g ∈ G, g(x) = p(x) = x,

et donc : ∀ g ∈ G, x ∈ Ker (g − e).

Ceci montre : ∀ g ∈ G, Im (p) ⊂ Ker (g − e),

et donc : Im (p) ⊂
⋂
g∈G

Ker (g − e).

On conclut à l’égalité : Im (p) =
⋂
g∈G

Ker (g − e).

d) D’après c) et puisque p est un projecteur en dimension finie :

dim

( ⋂
g∈G

Ker (g − e)

)
= dim Im (p) = rg (p)

= tr (p) = tr

(
1

n

∑
g∈G

g

)
= 1

n

∑
g∈G

tr (g).

Remarque : Il en résulte que 
∑
g∈G

tr (g) est un entier naturel mul-

tiple de n.
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11CHAPITRE 11Déterminants, 
systèmes linéaires

Les méthodes à retenir

Thèmes abordés dans les exercices
• Calculs de déterminants

• Étude de l’inversibilité d’une matrice carrée, par l’étude de son déterminant

• Étude de comatrice (PSI)

• Résolution de systèmes linéaires. 

Points essentiels du cours
pour la résolution des exercices
• Définition et propriétés de : déterminant d’une famille de n vecteurs dans un

ev de dimension n, déterminant d’un endomorphisme, déterminant d’une
matrice carrée

• Formuler det

(
A B
0 C

)
= det (A) det (C) lorsque A et C sont des matrices

carrées

• Calcul pratique des déterminants : opérations licites sur les colonnes, sur les
lignes, développement par rapport à une rangée

• Définition de la comatrice d’une matrice carrée A ∈ Mn(K ) et formule (PSI) :

A t com (A) = t com (A) A = det (A)In.

Les méthodes à retenir 389

Énoncés des exercices 391

Du mal à démarrer ? 395

Corrigés 397

Plan

K désigne un corps commutatif.

• Essayer de faire apparaître des 0 par des opérations licites sur les
lignes ou sur les colonnes, pour développer ensuite par rapport à une
rangée ne contenant qu’un terme non nul, si possible.

➥ Exercices 11.1, 11.2

• Factoriser le plus possible au fur et à mesure des calculs.

➥ Exercices 11.1, 11.2.

Pour calculer un déterminant
d’ordre trois ou quatre
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Chapitre 11 • Déterminants, systèmes linéaires

390

• Essayer de faire apparaître des 0 par des opérations licites sur les
lignes ou sur les colonnes, pour développer ensuite par rapport à une
rangée ne contenant qu’un terme non nul, si possible, ou pour se
ramener au déterminant d’une matrice triangulaire.

➥ Exercices 11.7 a), b), c), d), f), 11.13

• Factoriser le plus possible au fur et à mesure des calculs.

➥ Exercice 11.7

• Essayer, dans certains cas, de voir si une colonne est combinaison
linéaire des autres colonnes, ou si une ligne est combinaison linéaire
des autres lignes, auquel cas le déterminant est nul.

➥ Exercices 11.2 c), 11.7 e)

• Essayer de faire apparaître des 0 par opérations licites sur les lignes
ou sur les colonnes, pour ensuite, en développant, faire apparaître une
relation de récurrence, souvent d’ordre un ou d’ordre deux, et enfin
calculer le terme général de la suite ainsi considérée.

➥ Exercices 11.7 f), g), 11.13

• Le cas particulier des matrices tridiagonales à coefficients constants
est important.

➥ Exercice 11.7 f)

• Utiliser la multilinéarité et l’alternance du déterminant, lorsque les
colonnes (ou les lignes) se décomposent linéairement sur des colonnes
(ou des lignes) particulières.

➥ Exercice 11.11.

Essayer d’amener une équation polynomiale satisfaite par A.

➥ Exercices 11.8, 11.12.

Se ramener au déterminant d’une matrice carrée, en considérant la
matrice de f dans une base convenable de E .

➥ Exercice 11.6.

Partir d’une égqlité convenable de matrices décomposés en blocs
(souvent issues de produits de matrices) et passer aux déterminants.

➥ Exercice 11.18, 11.19.

Utiliser des combinaisons linéaires d’équations pour se ramener à un
système équivalent plus simple.

➥ Exercices 11.5, 11.10.

Pour calculer un déterminant
d’ordre n

Pour calculer le déterminant 
d’une matrice carrée A
non donnée par ses éléments

Pour calculer le déterminant 
d’un endomorphisme
d’un ev E de dimension finie 

Pour obtenir des égalités portant
sur des déterminants de matrices
décomposées en blocs

Pour résoudre un système affine
avec paramètre(s)
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Essayer d’utiliser :

• la définition de com (A) : les termes de com (A) sont les cofacteurs
des termes de A
• la formule du cours :

A t com (A) = t com (A)A = det (A) In,

qui, dans le cas particulier où A est inversible, permet de relier
com (A) et A−1 par la formule :

A−1 = 1

det (A)

t com (A).

➥ Exercices 11.14, 11.15, 11.21.
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Énoncés des exercices
Exemples de calculs de déterminants d’ordre trois

Calculer les déterminants d’ordre trois suivants, en exprimant le résultat sous forme factorisée, pour
(a,b,c) ∈ K 3 :

a)

∣∣∣∣∣∣
a b ab
a c ac
b c bc

∣∣∣∣∣∣ b)

∣∣∣∣∣∣
1 a bc
1 b ca
1 c ab

∣∣∣∣∣∣ c)

∣∣∣∣∣∣
1 1 1
a2 b2 c2

a3 b3 c3

∣∣∣∣∣∣ d)

∣∣∣∣∣∣
2a a − b − c 2a

b − c − a 2b 2b
2c 2c c − a − b

∣∣∣∣∣∣ .

Exemples de calculs de déterminants d’ordre quatre

Calculer les déterminants d’ordre quatre suivants, en exprimant le résultat sous forme factorisée,
pour a,b,c,d,x ∈ K :

a)

∣∣∣∣∣∣∣∣

a b c b
b a b c
c b a b
b c b a

∣∣∣∣∣∣∣∣
b)

∣∣∣∣∣∣∣∣

1 a a2 b + c + d
1 b b3 c + d + a
1 c c4 d + a + b
1 d d5 a + b + c

∣∣∣∣∣∣∣∣

c)

∣∣∣∣∣∣∣∣

(1 + x)2 (2 + x)2 (3 + x)2 (4 + x)2

22 32 42 52

32 42 52 62

42 52 62 72

∣∣∣∣∣∣∣∣
.

Déterminant d’une famille de p formes linéaires prises en p points

Soient p ∈ N
∗ , E un K-ev de dimension finie, ϕ1,. . . ,ϕp ∈ E∗. Montrer que (ϕ1,. . . ,ϕp) est

libre si et seulement s’il existe (x1,. . . ,xp) ∈ E p tel que : det
((
ϕi (xj )

)
1�i, j�p

)
=/ 0.

Étude d’inverse pour une matrice triangulaire par blocs

Soient n,p ∈ N
∗, M =

(
A B
0 C

)
où A ∈ Mn(K ), B ∈ Mn,p(K ), C ∈ Mp(K ) .

a) Montrer que M est inversible si et seulement si A et C sont inversibles.

b) Lorsque A et C sont inversibles, exprimer M−1 sous forme de blocs. 

11.1

11.2

11.3

11.4

Pour manipuler la comatrice
d’une matrice carrée A d’ordre n

PSI

PSI
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Exemple de résolution d’un système affine à trois équations et trois inconnues, avec
paramètre

Pour m ∈ R fixé, résoudre le système d’équations, d’inconnue (x,y,z) ∈ R
3 :

(S)




mx + y + z = 1

x + my + z = m

x + y + mz = m2.

Déterminant de l’endomorphisme de transposition sur Mn(R)

Soit n ∈ N
∗. On note : f : Mn(R) −→ Mn(R), M �−→ f (M) = t M.

a) Vérifier : f ∈ L
(
Mn(R)

)
.

b) Calculer rg ( f ), tr ( f ), det ( f ).

Exemples de calculs de déterminants d’ordre n

Calculer les déterminants suivants, pour n ∈ N
∗, a1,. . . ,an, x, a,b ∈ K :

a)

∣∣∣∣∣∣∣∣∣∣∣

1 n n . . . n
n 2 n . . . n
n n 3 . . . n
...

...
...

. . .
...

n n n . . . n

∣∣∣∣∣∣∣∣∣∣∣
[n]

b)

∣∣∣∣∣∣∣∣∣∣∣

a1 a2 a3 . . . an

a1 a1 + a2 − x a3 . . . an

a1 a2 a2 + a3 − x . . . an
...

...
...

. . .
...

a1 a2 a3 . . . an−1 + an − x

∣∣∣∣∣∣∣∣∣∣∣
[n]

c) det
(
aMax (i, j)

)
1�i, j�n d)

∣∣∣∣∣∣∣∣∣∣∣

x + a1 a1 a1 . . . a1

a2 x + a2 a2 . . . a2

a3 a3 x + a3 . . . a3
...

...
...

. . .
...

an an an . . . x + an

∣∣∣∣∣∣∣∣∣∣∣
[n]

e) det
(
(i j + i + j)1�i, j�n

)
f)

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 −1 0 . . . 0

a b
. . . (0)

...

a2 ab
. . .

. . . 0
...

... b −1
an an−1b . . . ab b

∣∣∣∣∣∣∣∣∣∣∣∣∣
[n+1]

g)

∣∣∣∣∣∣∣∣∣∣∣∣

1 + a2 a 0 . . . 0

a 1 + a2
. . . (0)

...

0
. . .

. . .
. . . 0

... (0)
. . . 1 + a2 a

0 . . . 0 a 1 + a2

∣∣∣∣∣∣∣∣∣∣∣∣
[n]

.

Déterminant de la matrice obtenue en multipliant le terme général d’une matrice carrée
par (−1)i+j

Soient n ∈ N
∗, A = (ai j )i j ∈ Mn(K ) . On note B = (

(−1)i+ j ai j
)

i j
∈ Mn(K ).

Montrer : det (B) = det (A).

11.5

11.6

11.7

11.8
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Matrices de rang 1

Soient n ∈ N
∗, H ∈ Mn(C) telle que rg (H) = 1.

a) 1) Montrer qu’il existe U,V ∈ Mn,1(C) telles que : H = U tV .

2) En déduire : H 2 = tr (H)H.

b) Montrer : det (In + H) = 1 + tr (H) .

c) 1) Établir que In + H est inversible si et seulement si tr (H) =/ − 1 et que, dans ces condi-

tions : (In + H)−1 = In − 1

1 + tr (H)
H.

2) Soit A ∈ GLn(C) telle que tr (H A−1) =/ − 1.

Montrer que A + H est inversible et que : (A + H)−1 = A−1 − 1

1 + tr (H A−1)
A−1 H A−1.

Exemple de résolution d’un système affine à n équations et n inconnues

Résoudre le système d’équations suivant :


x2 = ax1 + b
x3 = ax2 + b

...

xn = axn−1 + b
x1 = axn + b

∣∣∣∣∣∣∣∣∣∣∣
, d’inconnue (x1,. . . ,xn) ∈ C

n , de paramètre (a,b) ∈ C
2.

Exemple de calcul d’un déterminant d’ordre n

Calculer le déterminant d’ordre n suivant, pour a1,. . . ,an,x ∈ K fixés :

D =

∣∣∣∣∣∣∣∣∣

a2
1 + x a1a2 . . . a1an

a2a1 a2
2 + x . . . a2an

...
...

. . .
...

ana1 ana2 . . . a2
n + x

∣∣∣∣∣∣∣∣∣
[n]

.

Signe du déterminant d’un polynôme particulier de matrices carrées

Soient n ∈ N
∗, A,B ∈ Mn(R) telles que AB = B A, (p,q) ∈ R

2 tel que p2 − 4q � 0. Montrer :

det (A2 + p AB + q B2) � 0.

Déterminant de Vandermonde

a) Soient n ∈ N
∗, (x1,. . . ,xn) ∈ K n . On appelle déterminant de Vandermonde, et on note ici

V(x1,. . . ,xn) , l’élément de K défini par :

V(x1,. . . ,xn) =
∣∣∣∣∣∣
1 x1 x2

1 . . . xn−1
1

...
...

...
...

1 xn x2
n . . . xn−1

n

∣∣∣∣∣∣
[n]

= det
(
(x j−1

i )1�i, j�n
)
.

Montrer :

V(x1,. . . ,xn) =
∏

n�i> j�1

(xi − xj ).

b) Calculer, pour n ∈ N − {0,1} et x1,. . . ,xn ∈ K le déterminant :

D =

∣∣∣∣∣∣∣
1 x1 . . . xn−2

1 x2 . . . xn

...
...

...
...

1 xn . . . xn−2
n x1 . . . xn−1

∣∣∣∣∣∣∣
[n]

.
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11.11

11.12

11.13
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Matrice semblable à une comatrice et réciproquement

Soient n ∈ N
∗, A,B ∈ GLn(K ) telles que det (A) = det (B). Montrer :

A ∼ com (B) ⇐⇒ B ∼ com (A),

où com désigne la comatrice, et ∼ désigne la similitude des matrices carrées.

Exemple de calcul de la comatrice d’une matrice carrée inversible

Soient n ∈ N − {0,1}, A =




1 + n (1)

. . .

(1) 1 + n


 ∈ Mn(R).

a) Montrer que A est inversible et exprimer A−1 à l’aide de A.

b) Calculer det (A).

c) Déterminer com (A).

Exemple de résolution d’un système de n + 1 équations à n + 1 inconnues

Soient n ∈ N
∗, a ∈ C. Résoudre le système d’équations (S) d’inconnue (x0,. . . ,xn) ∈ C

n+1 :




x0 = 1

x0 + x1 = a

x0 + 2x1 + x2 = a2

...

x0 +
(

n
1

)
+ . . . +

(
n
n

)
xn = an .

Lien entre (AB)2 = 0 et (BA)2 = 0

Soit n ∈ N
∗ . A-t-on : ∀ A,B ∈ Mn(K ), (AB)2 = 0 �⇒ (B A)2 = 0 ?

On étudiera successivement les cas n = 1, n = 2, n � 3. 

Lien entre les polynômes caractéristiques de AB et de BA

Soient (p,q) ∈ N
∗ 2, A ∈ Mp,q(K ), B ∈ Mq,p(K ) . Montrer :

(−X)qdet (AB − XIp) = (−X)pdet (B A − XIq) .

Déterminant d’une matrice par blocs

Soient n ∈ N
∗, A,B,C ∈ Mn(K ), D ∈ GLn(K ) telles que C D = DC. Montrer :

det

(
A B
C D

)
= det (AD − BC) .

Étude de det (xA + B)

Soient n ∈ N
∗, A,B ∈ Mn(C). On considère l’application 

P : C −→ C, x �−→ P(x) = det (x A + B) .

11.14

11.15

11.16

11.17

11.18

11.19

11.20
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a) Montrer que P est une application polynomiale, de degré � n.

b) Établir : 1) deg (P) � rg (A) 2) val (P) � n − rg (B) . 

Rang de la comatrice d’une matrice carrée

Soient n ∈ N − {0,1}, A ∈ Mn(K ). Établir :




rg(A) = n �⇒ rg
(
com(A)

) = n

rg(A) = n − 1 �⇒ rg
(
com(A)

) = 1

rg(A) � n − 2 �⇒ rg
(
com(A)

) = 0.

.

Du mal à démarrer ?
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Essayer de faire apparaître des 0 par opérations licites sur

les lignes ou sur les colonnes, pour développer ensuite par rap-

port à une rangée contenant deux 0, ou pour combiner avec la

règle de Sarrus, valable pour les déterminants d’ordre 2 ou 3.

a) Essayer de faire apparaître des 0 par opérations licites

sur les lignes ou sur les colonnes, pour développer ensuite par

rapport à une rangée contenant trois 0.

b) Remarquer que, en notant s = a + b + c + d, la quatrième

colonne est combinaison linéaire des deux premières colonnes.

c) Par opérations licites sur les colonnes, se ramener à des

déterminants plus simples.

1) Si le déterminant proposé n’est pas nul, montrer que

(ϕ1,. . . ,ϕp) est libre en revenant à la définition.

2) Réciproquement, si (ϕ1,. . . ,ϕp) est libre, utiliser le théorème

de la base incomplète, puis envisager une base préduale.

a) Passer par les déterminants.

b) Noter M =
(

X Y

Z T

)
et résoudre un système de quatre

équations matricielles.

Par exemple, commencer par remplacer (S) par un systè-

me équivalent plus simple. Ceci fera apparaître m − 1 en facteur

et incitera à séparer en cas : m �= 1, m = 1.

b) Former la matrice de f dans une base de Mn(R) formée

d’une base de Sn(R) suivie d’une base de An(R).

a) Opérer Cj Cj − C1 pour j = 1,. . . ,n − 1, et se

ramener au déterminant d’une matrice triangulaire.

b) Opérer Li  − Li − L1 pour i = 2,. . . ,n , et se ramener au

déterminant d’une matrice triangulaire.

c) Opérer Li  − Li − Li+1 pour i = 1,. . . ,n − 1 , et se rame-

ner au déterminant d’une matrice triangulaire.

d) Opérer Cj  − Cj − C1 pour j = 2,. . . ,n, pour faire appa-

raître des 0, des x, des −x , puis opérer L1  − L1 +
n∑

i=2

Li , et

se ramener au déterminant d’une matrice triangulaire.

e) Remarquer que les colonnes du déterminant proposé se

décomposent linéairement sur deux colonnes fixes.

f) Développer le déterminant Dn+1 proposé par rapport à la

dernière colonne et obtenir une relation de récurrence donnant

Dn+1 en fonction de Dn .

g) Développer le déterminant Dn proposé par rapport à sa pre-

mière ligne (par exemple), puis développer le déterminant

d’ordre n − 1 obtenu par rapport à sa première colonne.

Montrer ainsi que la suite (Dn)n est une suite récurrente linéai-

re du second ordre à coefficients constants et sans second

membre, d’où le calcul de son terme général.

Première méthode : revenir à la définition du déterminant

d’une matrice carrée comme sommation de produits, indexée

par le groupe symétrique.

Seconde méthode : remarquer que B = D AD, où D est la

matrice diagonale diag
(
(−1)i

)
1�i�n

.

a) 1) • 1re méthode : Utilisation de J1 :

Utiliser une décomposition de H faisant intervenir la matrice

J1 =
(

1 (0)

(0) (0)

)
.

• 2e méthode : Considération des éléments de H :

Remarquer qu’il existe U ∈ Mn,1(C) telle que les colonnes

de H soient colinéaires à U.

2) Utiliser : tV U ∈ C.

b) 1) 1re méthode : Utilisation de la multilinéarité et de l’alternance

du déterminant :

Noter B = (e1,. . . ,en) la base canonique de Mn,1(C) et dévelop-

per det (In + H) par multilinéarité et alternance.

11.1

11.2

11.3

11.4

11.5

11.6

11.7

11.8

11.9
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2) 2e méthode : Utilisation d’une trigonalisation de H :

Montrer que H est semblable à une matrice triangulaire dont la

diagonale est formée de n − 1 fois 0 et de tr (H) , et en déduire

det (In + H) .

c) 1) En notant M = In + H , former une équation de degré 2,

satisfaite par M , et en déduire M−1 .

2) Appliquer 1) à H A−1 à la place de H .

Remplacer (S) par un système équivalent, obtenu en

exprimant x2,. . . ,xn en fonction de x1, et avec une dernière

équation portant sur x1.

Séparer en cas : an �= 1, an = 1.

En notant B = (E1,. . . ,En) la base canonique de

Mn,1(R) , A =




a1
.
.
.

an


 , le déterminant proposé est celui d’une

famille de colonnes décomposées linéairement sur
E1,. . . ,En, A. Utiliser la multilinéarité et l’alternance de detB.

Utiliser la factorisation de X2 + pX + q dans C[X].

a) Commencer par calculer le déterminant de

Vandermonde pour n = 1, n = 2, n = 3.

Montrer le résultat voulu, par récurrence sur n, en utilisant des

opérations licites sur les colonnes, permettant, dans le calcul du

déterminant à l’ordre n, de faire apparaître le déterminant à

l’ordre n − 1.

b) En multipliant, pour chaque i, la ligne numéro i par xi , se

ramener à un déterminant de Vandermonde.

• Se rappeler que deux matrices carrées de même ordre

A,C sont dites semblables si et seulement s’il existe une matri-

ce carrée inversible P telle que A = PC P−1.

• Puisque A et B sont inversibles, on peut exprimer les coma-

trices de A et B à l’aide des inverses de A et B.

a) Décomposer linéairement A sur In et la matrice

U ∈ Mn(R) dont tous les termes sont égaux à 1. Remarquer

que U 2 = nU, d’où l’on déduit une équation du second degré

satisfaite par A, puis l’inversibilité de A et le calcul de A−1.

b) Opérer C1  − C1 + C2 + . . . + Cn, puis Cj  − Cj − C1

pour j = 2,. . . ,n, pour se ramener au déterminant d’une matri-

ce triangulaire.

c) Puisque A est inversible, on peut exprimer com (A) à l’aide de

A−1 et utiliser le résultat obtenu en a).

Remarquer que le système est triangulaire. Calculer x0, x1 ,

x2 et conjecturer une formule pour xk ,1 � k � n + 1, que l’on

montrera par récurrence forte sur k.

Cas n = 1 : Évident.

2) Cas n = 2 : Se rappeler :

∀ M ∈ M2(K ), M2 − tr (M) + det (M) I2 = 0 .

3) Cas n � 3 : Construire un contrexemple pour n = 3 , et le

compléter par des 0 pour n � 3.

Faire apparaître AB − XIp et B A − XIq dans des produits

par blocs de matrices carrées d’ordre p + q.

Remarquer, pour D inversible et C D = DC :(
A B

C D

)(
D 0

−C D−1

)
=

(
AD − BC B D−1

0 In

)
.

a) Développer le déterminant.

b) 1) En notant r = rg (A) , utiliser le théorème du cours faisant

intervenir Jr =
(

Ir 0

0 0

)
.

2) Par définition, pour P ∈ C[X] − {0} , val (P) est le degré du

terme de plus bas degré de P, et val (0) = +∞.

Considérer le changement de variable y = 1

x
, et :

S : C −→ C, y �−→ det (y B + A) .

Séparer l’étude en trois cas : rg (A) = n , rg (A) = n − 1 ,

rg (A) � n − 2.

1) Dans le cas rg (A) = n, faire intervenir l’inversibilité de A.

2) Dans le cas rg (A) = n − 1, montrer rg
(
com (A)

) = 1 en uti-

lisant la formule du cours A t com (A) = det (A) In et en remar-

quant qu’alors Im
(

t com (A)
) ⊂ Ker (A).

3) Dans le cas rg (A) � n − 2, montrer com (A) = 0.
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a)∣∣∣∣∣∣
a b ab
a c ac
b c bc

∣∣∣∣∣∣ =
L2 L2−L1

L3 L3−L2

∣∣∣∣∣∣
a b ab
0 c − b a(c − b)

b − a 0 (b − a)c

∣∣∣∣∣∣

= (c − b)(b − a)

∣∣∣∣∣∣
a b ab
0 1 a
1 0 c

∣∣∣∣∣∣
=

Sarrus
ac(c − b)(b − a).

b)∣∣∣∣∣∣
1 a bc
1 b ca
1 c ab

∣∣∣∣∣∣ =
L2 L2−L1

L3 L3−L1

∣∣∣∣∣∣
1 a bc
0 b − a c(a − b)

0 c − a b(a − c)

∣∣∣∣∣∣

= (b − a)(c − a)

∣∣∣∣∣∣
1 a bc
0 1 −c
0 1 −b

∣∣∣∣∣∣

= (b − a)(c − a)

∣∣∣∣ 1 −c
1 −b

∣∣∣∣ = (a − b)(b − c)(c − a).

c)∣∣∣∣∣∣
1 1 1
a2 b2 c2

a3 b3 c3

∣∣∣∣∣∣ =
C2 −C2−C1

C3 −C3−C1

∣∣∣∣∣∣
1 0 0
a2 b2 − a2 c2 − a2

a3 b3 − a3 c3 − a3

∣∣∣∣∣∣

= (b − a)(c − a)

∣∣∣∣∣∣
1 0 0
a2 b + a c + a
a3 b2 + ba + a2 c2 + ca + a2

∣∣∣∣∣∣
= (b − a)(c − a)

∣∣∣∣ b + a c + a
b2 + ba + a2 c2 + ca + a2

∣∣∣∣

=
L2 −L2−aL1

(b − a)(c − a)

∣∣∣∣ b + a c + a
b2 c2

∣∣∣∣

=
C2 −C2−C1

(b − a)(c − a)

∣∣∣∣ b + a c − b
b2 c2 − b2

∣∣∣∣

= (b − a)(c − a)(c − b)

∣∣∣∣ b + a 1
b2 c + b

∣∣∣∣
= (b − a)(c − a)(c − b)(ab + ac + bc).

d)∣∣∣∣∣∣
2a a − b − c 2a

b − c − a 2b 2b
2c 2c c − a − b

∣∣∣∣∣∣

=
C2 −C2−C1

C3 −C3−C1

∣∣∣∣∣∣
2a −(a + b + c) 0

b − c − a a + b + c a + b + c
2c 0 −(a + b + c)

∣∣∣∣∣∣

= (a + b + c)2

∣∣∣∣∣∣
2a −1 0

b − c − a 1 1
2c 0 −1

∣∣∣∣∣∣

=
L1 −L1+L2+L3

L2 −L2+L3

(a + b + c)2

∣∣∣∣∣∣
a + b + c 0 0
b + c − a 1 0

2c 0 −1

∣∣∣∣∣∣

= −(a + b + c)3.

a)∣∣∣∣∣∣∣∣

a b c b
b a b c
c b a b
b c b a

∣∣∣∣∣∣∣∣
=

C3 C3−C1

C4 C4−C2

∣∣∣∣∣∣∣∣

a b c − a 0
b a 0 c − a
c b a − c 0
b c 0 a − c

∣∣∣∣∣∣∣∣

=
L1 −L1+L3

L2 −L2+L4

∣∣∣∣∣∣∣∣

a + c 2b 0 0
2b a + c 0 0
c b a − c 0
b c 0 a − c

∣∣∣∣∣∣∣∣
= (a − c)2

∣∣∣∣ a + c 2b
2b a + c

∣∣∣∣
= (a − c)2

(
(a + c)2 − (2b)2

)
= (a − c)2(a + c − 2b)(a + c + 2b).

b) En notant s = a + b + c + d et C1, C2, C3, C4 les colonnes
du déterminant proposé, on a :

S =




b + c + d
c + d + a
d + a + b
a + b + c


 =




s − a
s − b
s − c
s − d


 = s




1
1
1
1


 −




a
b
c
d




= sC1 − C2.

Corrigés des exercices
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Ainsi, les colonnes du déterminant proposé forment une famille
liée, donc ce déterminant est nul.

c)

∣∣∣∣∣∣∣∣

(1 + x)2 (2 + x)2 (3 + x)2 (4 + x)2

22 32 42 52

32 42 52 62

42 52 62 72

∣∣∣∣∣∣∣∣

=
Cj  −Cj −Cj−1,

j=2, 3, 4

∣∣∣∣∣∣∣∣

(1 + x)2 2x + 3 2x + 5 2x + 7
22 5 7 9
32 7 9 11
62 9 11 13

∣∣∣∣∣∣∣∣

=
Cj  −Cj −Cj−1,

j=3, 4

∣∣∣∣∣∣∣∣

(1 + x)2 2x + 3 2 2
22 5 2 2
32 7 2 2
42 9 2 2

∣∣∣∣∣∣∣∣
= 0.

1) Supposons qu’il existe x1,. . . ,xp ∈ E tels que :

det
((
ϕi (xj )

)
1�i, j�p

)
=/ 0 .

Soit (α1,. . . ,αp) ∈ K p tel que 
p∑

i=1

αiϕi = 0.

On a alors : ∀ j ∈ {1,. . . ,p},
p∑

i=1

αiϕi (xj ) = 0,

donc 
p∑

i=1

αi Li = 0, en notant Li la ligne numéro i du déter-

minant envisagé.

Comme ce déterminant n’est pas nul, il en résulte :

α1 = 0,. . . ,αp = 0 .

Ceci montre que (ϕ1,. . . ,ϕp) est libre.

2) Réciproquement, supposons (ϕ1,. . . ,ϕp) libre.

D’après le théorème de la base incomplète, puisque E∗ est de
dimension finie et que dim (E∗) = dim (E) = n , il existe
ϕp+1,. . . ,ϕn ∈ E∗ telles que la famille B1 = (ϕ1,. . . ,ϕp,

ϕp+1,. . . ,ϕn) soit une base de E∗ . Considérons la base pré-

duale B = (x1,. . . ,xp,xp+1,. . . ,xn) de B1. On a alors :

∀ (i, j) ∈ {1,. . . ,n}2, ϕi (xj ) = δi j ,

donc, en particulier :

∀ (i, j) ∈ {1,. . . ,p}2, ϕi (xj ) = δi j ,

et donc : det
((
ϕi (xj )

)
1�i, j�p

)
=/ 0.

a) Puisque 

det (M) = det

(
A B
0 C

)
= det (A) det (C) ,

on a :

det (M) =/ 0 ⇐⇒
(

det (A) =/ 0 et det (C) =/ 0
)

,

donc M est inversible si et seulement si A et C sont inversibles.

b) On suppose A et C inversibles, donc, d’après a), M est in-
versible.

Décomposons M−1 en blocs inconnus, de même que pour M :

M−1 =
(

X Y
Z T

)
. Alors :

M M−1 = In+p ⇐⇒
(

A B
0 C

)(
X Y
Z T

)
=

(
In 0
0 Ip

)

⇐⇒




AX + B Z = In

AY + BT = 0

C Z = 0

CT = Ip

⇐⇒
C inversible




Z = 0

T = C−1

AX = In

AY = −BC−1

⇐⇒
A inversible




Z = 0

T = C−1

X = A−1

Y = −A−1 BC−1.

On conclut : M−1 =
(

A−1 −A−1 BC−1

0 C−1

)
.

En notant L1, L2, L3 les lignes successives (S), en 
effectuant L2 L2 − L1 et L3 L3 − L2, on a :

(S)




mx + y + z = 1

x + my + z = m

x + y + mz = m2

⇐⇒




mx + y + z = 1

(1 − m)x + (m − 1)y = m − 1

(1 − m)y + (m − 1)z = m2 − m

⇐⇒




mx + y + z = 1

(1 − m)(x − y + 1) = 0

(1 − m)(y − z + m) = 0.

Séparons en deux cas :

1er cas : m =/ 1 :

Alors :

(S) ⇐⇒




mx + y + z = 1

x − y + 1 = 0

y − z + m = 0

−→

−→
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⇐⇒




y = z − m

x = z − 1 − m

m(z − 1 − m) + (z − m) + z = 1 (E).

Et :

(E) ⇐⇒ (m + 2)z − (m2 + 2m + 1) = 0.

• Si m =/ − 2, alors : (E) ⇐⇒ z = (m + 1)2

m + 2
, puis on obtient :

y = z − m = (m + 1)2

m + 2
− m = 1

m + 2
,

x = z − 1 − m = (m + 1)2

m + 2
− (m + 1) = −m + 1

m + 2
.

• Si m = −2, alors : (E) ⇐⇒ 0z − 1 = 0, qui n’a pas de 
solution.

2è cas : m = 1 :

Alors : (S) ⇐⇒ x + y + z = 1.

On conclut que l’ensemble S des solutions de (S) est :

S =




{(
− m + 1

m + 2
,

1
m + 2

,
(m + 1)2

m + 2

)}
si m =/ 1 et m =/ − 2

∅ si m = −2

{
(x, y, 1 − x − y) ; (x,y) ∈ R

2
}

si m = 1.

a) On a, pour tout α ∈ R et toutes A,B ∈ Mn(R) :

f (αA + B) = t (αA + B) = α
t A + t B

= α f (A) + f (B),

donc f ∈ L
(
Mn(R)

)
.

b) D’après le cours, les sev Sn(R) et An(R), formés respecti-
vement des matrices symétriques et des matrices antisymétriques,
sont supplémentaires dans Mn(R) et :

dim
(
Sn(R)

) = n(n + 1)

2
, dim

(
An(R)

) = n(n − 1)

2
.

Il existe donc une base B de Mn(R) formée successivement par
une base de Sn(R) et une base de An(R). 

La matrice de f dans cette base est la matrice diagonale

D = diag (1,. . . ,1,−1,. . . ,−1) formée de 
n(n + 1)

2
termes

égaux à 1, suivis de 
n(n − 1)

2
termes égaux à −1.

Il est clair alors que :

rg ( f ) = n2 , tr ( f ) = n(n + 1)

2
− n(n − 1)

2
= n ,

det ( f ) = 1
n(n+1)

2 (−1)
n(n−1)

2 = (−1)
n(n−1)

2 .

a)∣∣∣∣∣∣∣∣∣∣∣

1 n n . . . n
n 2 n . . . n
n n 3 . . . n
...

...
...

. . .
...

n n n . . . n

∣∣∣∣∣∣∣∣∣∣∣
[n]

=
Cj  −Cj −Cn ,

j=1,...,n−1

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 − n 0 0 . . . 0 n
0 2 − n 0 . . . 0 n
0 0 3 − n . . . 0 n
...

...
...

. . .
...

...

0 0 0 . . . −1 n
0 0 0 . . . 0 n

∣∣∣∣∣∣∣∣∣∣∣∣∣
[n]

= (1 − n)(2 − n) . . . (−1)n = (−1)n−1n! .

b)

∣∣∣∣∣∣∣∣∣∣∣

a1 a2 a3 . . . an

a1 a1 + a2 − x a3 . . . an

a1 a2 a2 + a3 − x . . . an
...

...
...

. . .
...

a1 a2 a3 . . . an−1 + an − x

∣∣∣∣∣∣∣∣∣∣∣

=
Li Li −L1,

i=2,...,n

∣∣∣∣∣∣∣∣∣∣∣

a1 a2 a3 . . . an

0 a1 − x 0 . . . 0
0 0 a2 − x 0
...

. . .
. . . 0

0 . . . . . . 0 an−1 − x

∣∣∣∣∣∣∣∣∣∣∣
= a1(a1 − x)(a2 − x) . . . (an−1 − x).

c)

det
(
aMax (i, j)

)
1�i, j�n

=

∣∣∣∣∣∣∣∣∣∣

a a2 a3 . . . an

a2 a2 a3 . . . an

a3 a3 a3 . . . an

...
...

...
. . .

...

an an an . . . an

∣∣∣∣∣∣∣∣∣∣

=
Li Li −Li+1,

i=1,...,n−1

∣∣∣∣∣∣∣∣∣∣∣

a − a2 0 . . . 0 0
a2 − a3 . . . 0 0

. . .
...

...

. . . an−1 − an 0
an

∣∣∣∣∣∣∣∣∣∣∣
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= (a − a2)(a2 − a3) . . . (an−1 − an)an

= (
a(1 − a)

)(
a2(1 − a)

)
. . .

(
an−1(1 − a)

)
an

= a1+2+...+n(1 − a)n−1 = a
n(n+1)

2 (1 − a)n−1.

d)∣∣∣∣∣∣∣∣∣∣∣

x + a1 a1 a1 . . . a1

a2 x + a2 a2 . . . a2

a3 a3 x + a3 . . . a3
...

...
...

. . .
...

an an an . . . x + an

∣∣∣∣∣∣∣∣∣∣∣

=
Cj Cj −C1,

j=2,...,n

∣∣∣∣∣∣∣∣∣∣∣

x + a1 −x −x . . . −x
a2 x 0 . . . 0
a3 0 x . . . 0
...

...
...

. . .
...

an 0 0 . . . x

∣∣∣∣∣∣∣∣∣∣∣

=
L1 L1+(L2+...+Ln )

∣∣∣∣∣∣∣∣∣∣∣∣

x + a1 + . . . + an 0 0 . . . 0
a2 x 0 . . . 0

a3 0 x
...

...
...

. . .
. . . 0

an 0 . . . 0 x

∣∣∣∣∣∣∣∣∣∣∣∣
= xn−1

(
x +

n∑
i=1

ai

)
.

e) Notons, pour j ∈ {1,. . . ,n}, Cj la colonne numéro j du 

déterminant proposé. On a, pour tout j ∈ {1,. . . ,n} :

Cj = (
i j + i + j

)
1�i�n

= (
i( j + 1) + j

)
1�i�n

= ( j + 1)


 1

...

n


 + j


 1

...

1


 .

Ainsi, Cj se décompose linéairement sur deux colonnes fixes

(c’est-à-dire indépendantes de j).

Si n � 3, alors la famille des colonnes est liée, donc le déter-
minant proposé est nul.

Si n = 1, alors le déterminant est égal à 3.

Si n = 2, alors le déterminant est 

∣∣∣∣ 3 5
5 8

∣∣∣∣ = −1.

f) En notant Dn+1 le déterminant d’ordre n + 1 proposé, on a,
par développement par rapport à la dernière colonne :

Dn+1 =

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 −1 0 . . . 0

a b
. . . (0)

...

a2 ab
. . .

. . . 0
...

... b −1
an an−1b . . . ab b

∣∣∣∣∣∣∣∣∣∣∣∣∣
[n+1]

= bDn +

∣∣∣∣∣∣∣∣∣∣∣∣

1 −1 0 . . . 0

a b
. . . (0)

...
...

...
. . .

. . . 0
an−2 an−3b . . . b −1
an an−1b . . . . . . ab

∣∣∣∣∣∣∣∣∣∣∣∣
[n]

.

En mettant a en facteur dans la dernière ligne de ce dernier dé-
terminant, on fait apparaître encore Dn , d’où :

Dn+1 = bDn + aDn = (a + b)Dn .

Il en résulte, par suite géométrique :

Dn+1 = (a + b)n D1 = (a + b)n .

g) Notons Dn le déterminant proposé.

On a, pour n � 3, en développant par rapport à la 1ère ligne :

Dn =

∣∣∣∣∣∣∣

1 + a2 a
a 0

0
a

a 1 + a2

∣∣∣∣∣∣∣
[n]

= (1 + a2)

∣∣∣∣∣∣∣

1 + a2 a
a 0

0 a
a 1 + a2

∣∣∣∣∣∣∣
[n−1]

− a

a 0 0
0 1 + a2 a 0

a
0

a 1 + a2
[n−1]= (1 + a2)Dn−1 − a2 Dn−2.

a

a

0

−→

−→

En notant D0 = 1,

comme D1 = 1 + a2 et D2 = (1 + a2)2 − a2,

la formule Dn = (1 + a2)Dn−1 − a2 Dn−2 est valable pour tout
n � 2.

On déduit : Dn − Dn−1 = a2(Dn−1 − Dn−2) ,

d’où, par remplacements successifs :

Dn − Dn−1 = (a2)n−1(D1 − D0) = a2n ,

puis, en sommant :

Dn = a2n + a2n−2 + . . . + a2 + D0 = a2n + . . . + a2 + 1.

Si a2 =/ 1, on peut écrire : Dn = 1 − a2n+2

1 − a2
.

Et, si a2 = 1, alors Dn = n + 1. 

Première méthode (PSI) :

En notant B = (bi j )i j , on obtient par la définition du détermi-
nant :

det (B) =
∑
σ∈Sn

ε(σ)bσ(1),1 . . . bσ(n),n

=
∑
σ∈Sn

ε(σ)(−1)σ(1)+1aσ(1),1 . . . (−1)σ(n)+naσ(n),n

=
∑
σ∈Sn

ε(σ)(−1)

(
σ(1)+...+σ(n)

)
+(1+...+n)

aσ(1),1 . . . aσ(n),n

11.8
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=
∑
σ∈Sn

ε(σ)(−1)2(1+...+n)aσ(1),1 . . . aσ(n),n

=
∑
σ∈Sn

ε(σ)aσ(1),1 . . . aσ(n),n = det (A).

Seconde méthode (PC, PT) :

On remarque : ∀ (i, j) ∈ {1,. . . ,n}2, bi j = (−1)i ai j (−1) j .

Ainsi, B est le produit B = D AD, où D est la matrice dia-

gonale D = diag
(
(−1)i

)
1�i, j�n

. On a alors :

det (B) = det (D AD) = det (D) det (A) det (D)

= (
det (D)

)2
det (A) =

( n∏
i=1

(−1)i
)2

det (A) = det (A).

a) •  1re méthode : Utilisation de J1 :

D’après le cours, il existe P,Q ∈ GLn(C) telles que

H = P J1 Q , où J1 =
(

1 (0)

(0) (0)

)
.

Comme 

(
1 (0)

(0) (0)

)
=

(
1

(0)

)
( 1 (0) ) ,

on a : H = P

(
1

(0)

)
( 1 (0) ) Q.

En notant U = P

(
1

(0)

)
et V = tQ

(
1

(0)

)
,

on a donc : U,V ∈ Mn,1(C) et H = U tV .

• 2e méthode : Considération des éléments de H :

Puisque rg (H) = 1, il existe U ∈ Mn,1(C) telle que les co-

lonnes de H soient colinéaires à U, donc il existe v1,. . . ,vn ∈ C

tels que :

H = ( v1U | . . . | vnU )

=




v1u1 . . . vnu1
...

...

v1un . . . vnun


 =




u1
...

un


 ( v1 . . . vn ) .

En notant U =




u1
...

un


 ∈ Mn,1(C) , on a : H = U tV .

2) De 1), on déduit :

H 2 = (U tV )(U tV ) = U (tV U)︸ ︷︷ ︸
∈ C

tV

= (tV U)U tV = (tV U)H.

En notant U =




u1
...

un


 , V =




v1
...

vn


 , on a :

H = U tV

=




u1
...

un


 ( v1 . . . vn ) =




v1u1 . . . vnu1
...

...

v1un . . . vnun




et :

tV U = ( v1 . . . vn )




u1
...

un


 = v1u1 + · · · + vnun ,

donc : tr (H) = v1u1 + · · · + vnun =t V U.

On conclut : H 2 = tr (H)H.

b) 1) 1re méthode : Utilisation de la multilinéarité et de l’al-
ternance du déterminant :

En notant B = (e1,. . . ,en) la base canonique de Mn,1(C) , on

a, par multilinéarité du déterminant :

det (In + H) =

∣∣∣∣∣∣∣∣

1 + u1v1 u1v2 . . . u1vn

u2v1 1 + u2v2 u2vn
...

. . .
...

unv1 unv2 . . . 1 + unvn

∣∣∣∣∣∣∣∣
= detB(e1 + v1U, e2 + v2U, . . . , en + vnU)

= detB(e1,. . . ,en) + (
v1detB(U,e2,. . . ,en)

+ · · · + vndetB(e1,. . . ,en−1,U)
)
,

car les autres déterminants, contenant deux fois la colonne U ,
sont nuls.

Et, comme U = u1e1 + · · · + unen , on a, par multilinéarité et

alternance du déterminant, pour chaque k ∈ {1,. . . ,n} :

detB(e1,. . . ,ek−1,U,ek+1,. . . ,en)

= uk detB(e1,. . . ,ek,. . . ,en) = uk .

On obtient :

det (In + H) = 1 +
n∑

k=1

vkuk = 1 + tr (H) .

2) 2e méthode : Utilisation d’une trigonalisation de H :

Puisque H ∈ Mn(C) , d’après le cours, H est trigonalisable.

D’autre part, puisque rg (H) = 1, on a, d’après le théorème du

rang : dim Ker (H) = n − rg (H) = n − 1, donc 0 est valeur

propre de H , d’ordre � n − 1.

En notant λ la dernière valeur propre de H , on a :

tr (H) = (n − 1) · 0 + 1 · λ = λ ,

d’où : λ = tr (H) .

Ainsi, il existe P ∈ GLn(C) telle que H = PT P−1, où T est
de la forme :
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T =




0

0
. . . (∗)

... (0) 0
0 . . . 0 tr (H)


 .

On a alors :

det (In + H) = det (In + PT P−1)

= det
(

P(In + T )P−1
)

= det (In + T )

=

∣∣∣∣∣∣∣∣∣

1

0
. . . (∗)

... (0) 1
0 . . . 0 1 + tr (H)

∣∣∣∣∣∣∣∣∣
= 1 + tr (H).

c) 1) • D’après le résultat de b), In + H est inversible si et seu-

lement si 1 + tr (H) =/ 0, c’est-à-dire tr (H) =/ − 1 .

• Supposons tr (H) =/ − 1 . Notons M = In + H.

On a alors H = M − In , d’où, d’après a) :

(M − In)
2 = tr (H)(M − In) ,

donc : M2 − (
2 + tr (H)

)
M = −(

1 + tr (H)︸ ︷︷ ︸
=/ 0

)
In .

Ceci montre que M est inversible et que :

M−1 = − 1

1 + tr (H)

(
M − (2 + tr (H)

)
In

)

= − 1

1 + tr (H)

(
− (

1 + tr (H)
)
In + H

)

= In − 1

1 + tr (H)
H.

2) On a : A + H = (In + H A−1)A

et rg (H A−1) � rg (H) = 1.

Le cas H A−1 = 0 étant d’étude immédiate, on peut supposer

rg (H A−1) = 1, et on peut alors appliquer le résultat de 1) à

H A−1 à la place de H .

On déduit que In + H A−1 est inversible et que :

(In + H A−1)−1 = In − 1

1 + tr (H A−1)
H A−1 .

d’où :

(A + H)−1 =
(
(In + H A−1)A

)−1

= A−1(In + H A−1)−1 = A−1 − 1

1 + tr (H A−1)
A−1 H A−1.

(S) ⇐⇒




x2 = ax1 + b
x3 = ax2 + b = a(ax1 + b) + b

= a2x1 + (a + 1)b
...

xn = an−1x1 + (an−2 + . . . + 1)b
x1 = an x1 + (an−1 + . . . + 1)b.

1) Cas an =/ 1

On obtient x1 = (an−1 + . . . + 1)b

1 − an
= b

1 − a
, puis en repor-

tant :

x2 = ax1 + b = b

1 − a
,. . . ,xn = b

1 − a
.

2) Cas an = 1

α) Si a =/ 1, alors an−1 + . . . + 1 = an − 1

a − 1
= 0 , et donc :

(S) ⇐⇒




x2 = ax1 + b
x3 = a2x1 + (a + 1)b
...

xn = an−1x1 + (an−2 + . . . + 1)b.

β) Si a = 1 et b =/ 0, comme x1 = x1 + nb , (S)n’a pas de 
solution.

γ) Si a = 1 et b = 0, alors (S) ⇐⇒ x1 = x2 = . . . = xn.

Finalement :

S =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

{(
b

1 − a
,. . . ,

b

1 − a

)}
si an =/ 1

{(
x1,ax1 + b,a2x1 + (a + 1)b,. . . ,

an−1x1 + (an−2 + . . . + 1)b
)
; x1 ∈ C

}
si (an = 1 et a =/ 1)

∅ si (a = 1 et b =/ 0)

{(x1,. . . ,x1); x1 ∈ C} si (a = 1 et b = 0).

Notons B = (E1,. . . ,En) la base canonique de
Mn,1(R) , Cj la colonne numéro j du déterminant D proposé,

pour j = 1,. . . ,n, A =




a1
...

an


 . On a alors :

D =

∣∣∣∣∣∣∣∣∣

a2
1 + x a1a2 . . . a1an

a2a1 a2
2 + x . . . a2an

...
...

. . .
...

ana1 ana2 . . . a2
n + x

∣∣∣∣∣∣∣∣∣
= detB

(
a1 A + xE1,. . . ,an A + xEn).

En développant par multilinéarité et alternance, il ne reste que
n + 1 déterminants :
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D = detB(xE1,. . . ,xEn) +
n∑

j=1

detB(xE1,. . . ,aj A,. . . ,xEn)

= xn + xn−1
n∑

j=1

aj detB(E1,. . . ,A,. . . ,En).

On a, pour j ∈ {1,. . . ,n} fixé, en développant successivement
par rapport à la dernière colonne, depuis la colonne n jusqu’à
la colonne j :

detB(E1,. . . ,A,. . . ,En) =∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 . . . 0 a1 0 . . . . . . 0

0
. . . (0)

...
...

...
...

... (0)
. . . 0

...
... (0)

...

0 . . . 0 1
...

...
...

0 . . . . . . 0 aj 0 . . . . . . 0
...

...
... 1 0 . . . 0

... (0)
...

... 0
. . . (0)

...
...

...
...

... (0)
. . . 0

0 . . . . . . 0 an 0 . . . 0 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
[n]

=

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 . . . . . . 0 a1

0
. . . (0)

...
...

...
. . .

. . . 0
...

... (0)
. . . 1

...

0 . . . . . . 0 aj

∣∣∣∣∣∣∣∣∣∣∣∣∣
[ j]

= aj .

Finalement : D = xn + xn−1
n∑

j=1

a2
j .

Puisque p2 − 4q � 0, le trinôme réel X2 + pX + q

admet deux zéros complexes conjugués (égaux si p2 − 4q = 0,

distincts si p2 − 4q < 0). Il existe donc z ∈ C tel que :

X2 + pX + q = (X − z)(X − z).

Ainsi : z + z = −p et zz = q. On a alors :

(A − zB)(A − zB) = A2 − zB A − z AB + zzB2

= A2 − (z + z)AB + zzB2

= A2 + p AB + q B2,

d’où :

det (A2 + p AB + q B2) = det
(
(A − zB)(A − zB)

)
= det (A − zB) det (A − zB)

= det (A − zB) det (A − zB)

= ∣∣det (A − zB)
∣∣2 � 0.

a) • Si n = 1 : V(x1) = x1.

• Si n = 2 : V(x1,x2) =
∣∣∣∣ 1 x1

1 x2

∣∣∣∣ = x2 − x1.

• Si n = 3 :

V(x1,x2,x3) =
∣∣∣∣∣∣
1 x1 x2

1

1 x2 x2
2

1 x3 x2
3

∣∣∣∣∣∣

=
C2 −C2−x1C1

C3 −C3−x1C2

∣∣∣∣∣∣
1 0 0
1 x2 − x1 x2

2 − x1x2

1 x3 − x1 x2
3 − x1x3

∣∣∣∣∣∣

= (x2 − x1)(x3 − x1)

∣∣∣∣ 1 x2

1 x3

∣∣∣∣
= (x2 − x1)(x3 − x1)(x3 − x2).

• On a, pour tout n ∈ N tel que n � 3 :

V(x1,. . . ,xn) =

∣∣∣∣∣∣∣∣∣

1 x1 x2
1 . . . xn−1

1

1 x2 x2
2 . . . xn−1

2
...

...
...

...

1 xn x2
n . . . xn−1

n

∣∣∣∣∣∣∣∣∣
=

Cj  −Cj −x1Cj−1,

j=2,...,n

∣∣∣∣∣∣∣∣∣

1 0 0 . . . 0
1 x2 − x1 x2

2 − x1x2 . . . xn−1
2 − x1xn−2

2
...

...
...

...

1 xn − x1 x2
n − x1xn . . . xn−1

n − x1xn−2
n

∣∣∣∣∣∣∣∣∣

= (x2 − x1) . . . (xn − x1)

∣∣∣∣∣∣∣
1 x2 . . . xn−2

2
...

...
...

1 xn . . . xn−2
n

∣∣∣∣∣∣∣
[n−1]

= (x2 − x1) . . . (xn − x1)V(x2,. . . ,xn).

On conclut, par récurrence sur n, ou encore, de proche en proche :

V(x1,. . . ,xn) =
n−1∏
j=1

( n∏
i= j+1

(xi − xj )

)
=

∏
n�i> j�1

(xi − xj ).

b) Pour faire apparaître σn = x1 . . . xn, comme la dernière 
colonne contient ce produit en omettant un facteur, multiplions,

pour chaque i ∈ {1,. . . ,n}, la ligne numéro i du déterminant
D proposé par xi :

x1 . . . xn D = x1 . . . xn

∣∣∣∣∣∣∣
1 x1 . . . xn−2

1 x2 . . . xn

...
...

...
...

1 xn . . . xn−2
n x1 . . . xn−1

∣∣∣∣∣∣∣
[n]

=

∣∣∣∣∣∣∣
x1 x2

1 . . . xn−1
1 σn

...
...

...
...

xn x2
n . . . xn−1

n σn

∣∣∣∣∣∣∣
[n]
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= σn

∣∣∣∣∣∣∣
x1 x2

1 . . . xn−1
1 1

...
...

...
...

xn x2
n . . . xn−1

n 1

∣∣∣∣∣∣∣
[n]

.

On reconnaît alors un déterminant de Vandermonde, à l’ordre
près des colonnes.

La permutation circulaire c =
(

1 2 . . . n
n 1 . . . n − 1

)
est

composée de n − 1 transpositions échangeant deux éléments
consécutivement, donc ε(c) = (−1)n−1, d’où, d’après l’alter-
nance du déterminant :

σn D = x1 . . . xn D = σn(−1)n−1V(x1,. . . ,xn).

Si x1,. . . ,xn sont tous non nuls, on conclut :

D = (−1)n−1V(x1,. . . ,xn).

Supposons, par exemple x1 = 0. Alors, en revenant à la défi-
nition de D :

D =

∣∣∣∣∣∣∣∣∣

1 x1 . . . xn−1
1 x2 . . . xn

1 x2 . . . xn−1
2 0

...
...

...
...

1 xn . . . xn−1
n 0

∣∣∣∣∣∣∣∣∣
[n]

= (−1)n+1x2 . . . xnV(x2,. . . ,xn)

= (−1)n−1(x2 − 0) . . . (xn − 0)V(x2,. . . ,xn)

= (−1)n−1V(0,x2,. . . ,xn) = (−1)n−1V(x1,x2,. . . ,xn).

Finalement, pour tout (x1,. . . ,xn) ∈ K n :

D = (−1)n−1V(x1,. . . ,xn).

Puisque A,B ∈ GLn(K ), d’après une formule du
cours :

com (A) = det (A) t A−1, com (B) = det (B) t B−1.

1) Supposons A ∼ com (B).

Il existe P ∈ GLn(K ) telle que : A = P com (B)P−1.

On a alors : A = P det (B) t B−1 P−1,

donc : t B−1 = 1

det (B)
P−1 AP, puis :

B = 1

det (B)

t (P−1 AP)−1 = 1

det (B)

t P−1 t A−1 t P

= 1

det (A)

t P−1 t A−1 t P = ( t P)−1com (A) t P.

Ceci montre : B ∼ com (A).

2) Comme A et B ont des rôles symétriques, la réciproque 
s’obtient en échangeant A et B , d’où le résultat voulu.

a) En notant U la matrice carrée d’ordre n dont tous
les termes sont égaux à 1, on remarque que A = nIn + U.

Comme U 2 = nU, on obtient (A − nIn)
2 = n(A − nIn) , d’où

A2 − 3n A + 2n2In = 0, puis :

A

(
− 1

2n2
(A − 3n In)

)
= In

et (
− 1

2n2
(A − 3n In)

)
A = In .

Ceci montre que A est inversible et que 

A−1 = − 1

2n2
(A − 3n In).

b) On a :

det (A) =

∣∣∣∣∣∣∣
1 + n (1)

. . .

(1) 1 + n

∣∣∣∣∣∣∣

=
C1 −C1+C2+...+Cn

∣∣∣∣∣∣∣∣∣∣∣∣

2n 1 . . . . . . 1

2n 1 + n
. . . (1)

...
... 1

. . .
. . .

...
...

... (1)
. . . 1

2n 1 . . . 1 1 + n

∣∣∣∣∣∣∣∣∣∣∣∣
[n]

= 2n

∣∣∣∣∣∣∣∣∣∣∣∣

1 1 . . . . . . 1

1 1 + n
. . . (1)

...
... 1

. . .
. . .

...
...

... (1)
. . . 1

1 1 . . . 1 1 + n

∣∣∣∣∣∣∣∣∣∣∣∣
[n]

=
Cj  −Cj −C1,

j=2,...,n

2n

∣∣∣∣∣∣∣∣∣∣∣∣

1 0 . . . . . . 0

1 n
. . . (0)

...
... 0

. . .
. . .

...
...

... (0)
. . . 0

1 0 . . . 1 n

∣∣∣∣∣∣∣∣∣∣∣∣
[n]

= 2nnn−1 = 2nn .

c) Puisque A est inversible, on a, d’après une formule du cours :

A−1 = 1

det (A)

t com (A), donc :

com (A) = det (A) t A−1 = 2nn t

(
− 1

2n2
(A − 3n In)

)

= −nn−2(A − 3n In).

Il s’agit d’un système linéaire en cascade, c’est-à-dire
d’un système linéaire dont la matrice A est triangulaire. De plus,
les termes diagonaux de cette matrice triangulaire A sont tous
égaux à 1, donc non nuls, donc A est inversible. Ceci montre
que le système proposé (S) admet une solution et une seule.
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Calculons les valeurs des premières inconnues :

x0 = 1 , x1 = a − x0 = a − 1,
x2 = a2 − (x0 + 2x1) = a2 − 1 − 2(a − 1) = (a − 1)2.

Montrons, par récurrence forte (bornée) sur k que :

∀ k ∈ {0,. . . ,n}, xk = (a − 1)k .

La propriété est vraie pour k = 0.

Supposons-la vraie de 0 jusqu’à k. On a alors :

xk+1 = ak+1 −
k∑

i=0

(
k + 1

i

)
xi

= ak+1 −
k∑

i=0

(
k + 1

i

)
(a − 1)i

= ak+1 −
( k+1∑

i=0

(
k + 1

i

)
(a − 1)i − (a − 1)k+1

)

= ak+1 −
((

(a − 1) + 1
)k+1 − (a − 1)k+1

)

= (a − 1)k+1,

ce qui établit le résultat pour k + 1.

On obtient ainsi :

∀ k ∈ {0,. . . ,n}, xk = (a − 1)k .

Finalement, l’ensemble S des solutions de (S) est :

S =
{(

1, a − 1, (a − 1)2,. . . ,(a − 1)n
)}

.

1) Cas n = 1 :

Il est évident que la réponse, pour n = 1, est oui.

2) Cas n = 2 :

Rappelons la formule suivante, que l’on peut montrer par un
calcul élémentaire, ou bien par application du théorème de
Cayley et Hamilton :

∀ M ∈ M2(K ), M2 − tr (M)M + det (M) I2 = 0 (1) .

Soient A,B ∈ M2(K ) telles que (AB)2 = 0 .

Alors, AB n’est pas inversible, d’où, d’après (1) appliquée à
M = AB : − tr (AB)AB = 0 (2).

Si AB = 0, alors :

(B A)2 = (B A)(B A) = B( AB︸︷︷︸
= 0

)A = 0 .

Supposons AB =/ 0.

On a alors, d’après (2) : tr (AB) = 0.

D’où, en appliquant (1) à M = B A , et puisque l’on a
tr (B A) = tr (AB) = 0 et det (B A) = det (AB) = 0 :

(B A)2 − tr (B A)B A + det (B A)I2 = 0 ,

et donc : (B A)2 = 0 .

La réponse, pour n = 2, est donc : oui.

3) Cas n � 3 :

Donnons un contrexemple pour le cas n = 3, ce contrexemple
se généralisant à l’ordre n, pour n � 3, en complétant partout
par des 0.

Pour A =

 1 0 0

0 1 0
0 0 0


 et B =


 0 1 0

0 0 0
1 0 0


 , on a :

AB =

 0 1 0

0 0 0
0 0 0


 et B A =


 0 1 0

0 0 0
1 0 0


 ,

puis : (AB)2 = 0 et (B A)2 =

 0 0 0

0 0 0
0 1 0


 =/ 0.

La réponse, pour n � 3, est donc : non.

Faisons apparaître AB − XIp et B A − XIq dans des pro-

duits par blocs de matrices carrées d’ordre p + q :
(−XIp A

−B Iq

)
︸ ︷︷ ︸

notée M

(
Ip 0
B Iq

)
=

(
AB − XIp A

0 Iq

)

(
Ip 0
B −XIq

)(−XIp A
−B Iq

)
︸ ︷︷ ︸

M

=
(−XIp A

0 B A − XIq

)
.

En, passant aux déterminants, on obtient :{
det (M)1p1q = det (AB − XIp)1q

1p(−X)qdet (M) = (−X)pdet (B A − XIq),

d’où :

(−X)qdet (AB − XIp) = (−X)qdet (M)

= (−X)pdet (B A − XIq),

ce qui établit le résultat demandé.

On a l’égalité matricielle suivante, par produit par
blocs, pour D inversible et C D = DC :

(
A B
C D

)(
D 0

−C D−1

)
=

(
AD − BC B D−1

0 In

)
.

En passant aux déterminants, on obtient :

det

(
A B
C D

)
det (D) det (D−1) = det (AD − BC) ,

donc : det

(
A B
C D

)
= det (AD − BC).
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a) Il est clair, par exemple par développement par rap-
port à une rangée et par récurrence, que

P : x �−→ det (x A + B)

est une application polynomiale, de degré � n.

b) 1) Notons r = rg (A) . D’après le cours, il existe
Q,R ∈ GLn(C) telles que A = Q Jr R , où on a noté

Jr =
(

Ir 0
0 0

)
∈ Mn(C).

On a alors, pour tout x ∈ C :

P(x) = det (x A + B) = det (x Q Jr R + B)

= det
(
Q(x Jr + Q−1 B R−1)R

)
= det (Q) det (x Jr + Q−1 B R−1) det (R).

En notant Q−1 B R−1 = (αi j )i j , la matrice carrée

x Jr + Q−1 B R−1 est à termes constants (vis-à-vis de x), sauf
les r premiers de la diagonale, qui sont les x + αi i.

En développant ce déterminant, il est clair qu’il s’agit d’une
fonction polynomiale de degré � r.

On a donc : deg (P) � r = rg (A).

2) On a, pour tout x ∈ C
∗ :

1

xn
P(x) = det

(
1

x
(x A + B)

)
= det

(
1

x
B + A

)
.

Notons S : C −→ C, y �−→ det (y B + A).

D’après a), appliqué à (B,A) au lieu de (A,B) , S est une fonc-
tion polynomiale de degré � rg (B).

En notant P = a0 + · · · + anXn, on a , pour tout y ∈ C
∗ :

yn P

(
1

y

)
= yn

(
a0 + a1

y
+ · · · + an

yn

)

= a0 yn + a1 yn−1 + · · · + an,

donc le degré de la fonction polynomiale y �−→ yn P

(
1

y

)
est :

n − val (P), où val (P) désigne la valuation de P .

On déduit : n − val (P) � rg (B),

et on conclut : val (P) � n − rg (B).

1) Si rg(A) = n , alors det(A) =/ 0 et, comme(
1

det(A)
t A

)
com(A) = In , com(A) est inversible, donc

rg
(
com(A)

) = n.

2) Supposons rg(A) = n − 1 .

Comme A t com(A) = det(A)In = 0 ,

on a Im
(t

com(A)
) ⊂ Ker(A) , et donc :

rg
(
com(A)

) = rg
(t

com(A)
)

� dim
(
Ker(A)

)
.

Mais, d’après le théorème du rang  :

dim
(
Ker(A)

) = n − rg(A) = 1 .

D’autre part, comme rg(A) = n − 1 , il existe une matrice car-
rée d’ordre n − 1 extraite de A et inversible, et donc au moins
un des cofacteurs de A est =/ 0, d’où com(A) =/ 0 .

Finalement : rg
(
com(A)

) = 1.

3) Si rg(A) � n − 2, alors tous les cofacteurs de A sont nuls,
puisque ce sont des déterminants de matrices carrées d’ordre n − 1

extraites de A, et on a donc com(A) = 0, rg
(
com(A)

) = 0.
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12CHAPITRE 12Réduction 
des endomorphismes
et des matrices carrées

Thèmes abordés dans les exercices 

• Détermination des vp et des SEP d’une endomorphisme ou d’une matrice car-
rée

• Calcul ou étude du polynôme caractéristique d’un endomorphisme d’un ev de
dimension finie, du polynôme caractéristique d’une matrice carrée

• Étude de la diagonalisabilité d’un endomorphisme d’un ev de dimension finie
ou d’une matrice carrée, obtention d’une diagonalisation

• Résolution d’équations matricielles

• Obtention de renseignements sur une matrice carrée satisfaisant une équation

• Étude de la trigonalisabilité d’un endomorphisme d’un ev de dimension finie
ou d’une matrice carrée, obtention d’une trigonalisation.

Points essentiels du cours 
pour la résolution des exercices

• Définitions de : valeur propre, spectre, vecteur propre, sous-espace propre

• Définition du polynôme caractéristique, lien avec les valeurs propres, coeffi-
cients remarquables 

• Définition de la diagonalisabilité, d’une diagonalisation

• CNS de diagonalisabilité faisant intervenir le polynôme caractéristique et les
dimensions des SEP

• CS de diagonalisabilité

• Définition de la trigonalisabilité, d’une trigonalisation

• CNS de trigonalisabilité portant sur le polynôme caractéristique, cas de C

• Notion de polynôme d’endomorphisme, de polynôme de matrice carrée, leur
manipulation (PC-PSI)

• Définition de polynôme annulateur d’un endomorphisme ou d’une matrice car-
rée (PC-PSI)

• Inclusion du spectre dans l’ensemble des zéros d’un polynôme annulateur 
(PC-PSI)

• CNS de diagonalisabilité par existence d’un polynôme annulateur scindé
simple (PC-PSI)

• Théorème de Cayley et Hamilton. (PSI)

Les méthodes à retenir 408

Énoncés des exercices 410

Du mal à démarrer ? 419

Corrigés 423

Plan
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Les méthodes à retenir

Essayer l’une des trois méthodes suivantes :

1) Revenir à la définition, c’est-à-dire résoudre l’équation f (x) = λx,

d’inconnues λ ∈ K , x ∈ E − {0}.
À cet effet, on pourra raisonner par équivalences successives, ou par
analyse-synthèse.

➥ Exercice 12.5.

2) Déterminer les valeurs propres de f, par exemple en formant le
polynôme caractéristique χ f de f (si E est de dimension finie), cher-
cher les zéros de χ f, puis déterminer les sous-espaces propres asso-
ciés.

➥ Exercices 12.3, 12.5, 12.34.

Si E est un ev de polynômes, lors de la résolution de(
f (P) = λP et P =/ 0

)
, envisager le degré de P, ou des polynômes

P simples, ou des diviseurs simples de P.

➥ Exercices 12.4, 12.25.

Si E est un ev de fonctions, envisager l’intervention d’une équation
différentielle.

➥ Exercice 12.7.

3) Faire intervenir la notion de polynôme annulateur, si f ou A satis-
fait une équation simple.

➥ Exercices 12.5, 12.17.

Penser à utiliser tr (A) et éventuellement tr (A2).

➥ Exercice 12.8.

Traduire l’égalité AX = λX , où X ∈ Mn,1(C) − {0} par un système
d’égalités portant sur λ et sur les termes de X et, si nécessaire, faire
intervenir la notion de module d’un nombre complexe, souvent à l’ai-
de d’inégalités.

➥ Exercice 12.24.

Pour déterminer 
les valeurs propres
et les vecteurs propres
d’un endomorphisme f
d’un K-ev E,
ou d’une matrice carrée A de Mn(K)

Pour déterminer une ou deux
valeurs propres manquantes,
pour une matrice carrée A

Pour étudier les valeurs propres et
les vecteurs propres d’une matrice
A ∈ M(C) dont les coefficients
interviennent explicitement

Par commodité, on utilise les abréviations suivantes :
ev pour : espace vectoriel
sev pour : sous-espace vectoriel
vp pour : valeur propre
−→vp pour : vecteur propre
SEP pour : sous-espace propre

K désigne un corps commutatif.
K désigne R ou C .

Sauf mention contraire, n désigne un entier � 1.

PC, PSI
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Former χA(λ) = det (A − λIn) et calculer de déterminant en essayant
de privilégier les factorisations.

➥ Exercices 12.5, 12.10, 12.21, 12.34, 12.51 à 12.53.

Essayer de se ramener, lorsque c’est possible, à des déterminants de
matrices triangulaires par blocs.

➥ Exercice 12.27.

Penser éventuellement à faire intervenir des arguments issus de l’ana-
lyse, en particulier le théorème des valeurs intermédiaires, sur le
polynôme caractéristique de A ou (PC, PSI) sur un polynôme annula-
teur de A .

➥ Exercices 12.17, 12.39, 12.52.

Effectuer une transformation du genre :

Ln Ln + λLn−1 + · · · + λ
n−1L1 .

➥ Exercice 12.52.

Essayer de former le polynôme caractéristique χA , en déduire les
valeurs propres de A , et, pour chaque valeur propre λ de A , détermi-
ner une base de SEP (A,λ) . La matrice carrée A est diagonalisable
dans Mn(K ) si et seulement si : χA est scindé sur K et, pour chaque
valeur propre λ de A , dim SEP (A,λ) est égale à l’ordre de multipli-
cité de λ dans χA . Dans ce cas, on aura alors A = P D P−1, où D est
la matrice diagonale des valeurs propres de A , dans un ordre arbitrai-
re, et P est la matrice obtenue en mettant côte à côte les vecteurs d’une
base de vecteurs propres de A associés, dans l’ordre, aux valeurs
propres. Lors du calcul de χA , essayer de factoriser au maximum.

➥ Exercices 12.10 à 12.12, 12.15, 12.21

Se rappeler aussi le théorème spectral, vu dans un autre chapitre :
toute matrice symétrique réelle est diagonalisable dans Mn(R).

➥ Exercices 12.8, 12.13, 12.29, 12.40.

• Lorsque les valeurs propres et les vecteurs propres sont calculables,
appliquer la CNS de diagonalisabilité.

➥ Exercices 12.10 à 12.12, 12.21, 12.29 a).

• Lorsque A satisfait une équation, appliquer la CNS de diagonalisa-
bilité faisant intervenir un polynôme annulateur.

➥ Exercices 12.32 b), 12.35, 12.36.

Essayer d’utiliser, si c’est possible, une diagonalisation de A , pour se
ramener à une équation C2 = D, où D est diagonale et C inconnue.
Avant de résoudre C2 = D, on peut souvent préciser la forme de C,
en utilisant le fait que C et D commutent.

➥ Exercices 12.13, 12.28, 12.29, 12.46 à 12.48.

Pour calculer 
le polynôme caractéristique
d’une matrice A ∈ Mn(K)

Pour étudier 
les valeurs propres réelles
d’une matrice A ∈ Mn(R)

Pour déterminer 
le polynôme caractéristique 
d’une matrice-compagnon

Pour étudier 
la diagonalisabilité
d’une matrice carrée A
et éventuellement la diagonaliser,
dans un exemple numérique 
pouvant comporter des paramètres

−→

Pour étudier la diagonalisabilité
d’une matrice carrée A

Pour résoudre 
une équation matricielle,
par exemple B2 = A,
où A est donnée et B inconnue
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Essayer, lorsque A est diagonale ou diagonalisable, de se ramener à
des calculs sur les éléments ou à des calculs par blocs

➥ Exercice 12.63.

Essayer de faire intervenir une diagonalisation ou une trigonalisation.

➥ Exercices 12.20, 12.42, 12.43, 12.62.

Essayer d’utiliser la CNS de trigonalisabilité : A est trigonalisable
dans Mn(K ) si et seulement si χA est scindé sur K .

➥ Exercice 12.42.

Penser à faire intervenir la notion de polynôme annulateur.

➥ Exercices 12.16 à 12.19, 12.39, 12.40, 12.44, 12.45.

Essayer d’utiliser une diagonalisation ou une trigonalisation de A
dans Mn(C), puis de revenir aux réels.

➥ Exercices 12.39, 12.40.

Utiliser : le spectre de A est inclus dans l’ensemble des zéros de P
dans K .

➥ Exercices 12.15, 12.39, 12.40.

Essayer d’utiliser une diagonalisation ou une trigonalisation de A .

➥ Exercices 12.14, 12.20.

Pour étudier le commutant
d’une matrice A de Mn(K)

Pour étudier une équation 
matricielle dans un contexte de
polynômes de matrices carrées

Pour résoudre une question faisant
intervenir la trigonalisabilité

Pour étudier une matrice carrée
satisfaisant une équation

Pour étudier une matrice A ∈ Mn(R)

qui annule un polynôme P ∈ R[X]
non scindé sur R

Pour obtenir des renseignements,
par exemple sur la trace
ou le déterminant, d’une matrice A
de Mn(K) , lorsqu’on dispose 
d’un polynôme P annulateur de A

Pour calculer les puissances 
d’une matrice carrée

12.1

12.2

Énoncés des exercices
Condition sur les coefficients d’une matrice carrée 
pour qu’un vecteur donné soit vecteur propre

Déterminer tous les (x,y) ∈ R
2 tels que la matrice  


 x 1 1

1 y 1
1 1 0


 admette  


 1

2
3


 pour vecteur

propre.

Condition sur les coefficients d’une matrice carrée 
pour que deux vecteurs donnés soient vecteurs propres

Trouver tous les (a,b) ∈ R
2 tels que la matrice  A =

(
1 a

−1 b

)
admette  U =

(
2
1

)
et  

(
1
1

)

pour vecteurs propres. 

PC-PSI

PC-PSI

PC-PSI
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Exemples de détermination des éléments propres de matrices triangulaires

Déterminer les valeurs propres et les sous-espaces propres de  A =

 0 1 1

0 0 1
0 0 1


 ∈ M3(R), et de

B =

 0 1 1

0 1 1
0 0 0


 ∈ M3(R).

Spectre d’un endomorphisme d’un espace de polynômes

On note E = Rn[X] et f l’application  P 
−→ f (P) = X
(
P(X) − P(X − 1)

)
.

a) Vérifier que  f est un endomorphisme du R-ev E .

b) Former la matrice A de f dans la base canonique B = (1,X,. . . ,Xn) de E .

c) Déterminer noyau, rang, image, spectre de f. 

Éléments propres d’un endomorphisme de M2(R)

Déterminer les valeurs propres et les sous-espaces propres de 

f : M2(R) −→ M2(R),

(
a b
c d

)

−→

(
d −b
−c a

)
.

Éléments propres d’un endomorphisme d’un espace de polynômes

On considère l’application  f : R[X] −→ R[X] définie, pour tout P ∈ R[X], par :

f (P) = X(X − 1)P(−1) + (X + 1)(X − 1)P(0) + (X + 1)XP(1) .

a) 1) Vérifier que f est linéaire.

2) Déterminer Ker ( f ) et Im ( f ).

b) Déterminer les valeurs propres et les sous-espaces propres de f, en considérant la matrice A de
l’endomorphisme induit par f sur E , et en utilisant a) 2). 

Éléments propres d’un endomorphisme d’un espace de fonctions

On note E = C∞(R,R) et on considère l’application  T : E −→ E, f 
−→ g, où  g est définie
par : ∀ x ∈ R, g(x) = f ′(x) − x f (x).

a) Montrer que T est un endomorphisme surjectif de E .

b) Déterminer les valeurs propres et les sous-espaces propres de T . 

Exemple de détermination du spectre d’une matrice carrée

Soient n ∈ N tel que n � 3, An =



1 . . . 1
... (0)

...

1 . . . 1


 ∈ Mn(R).

a) Calculer les valeurs propres de An. b) CNS sur n pour que Sp
R
(An) ⊂ Z ? 

Non-diagonalisabilité de matrices élémentaires

Soient n ∈ N − {0,1}, (i, j) ∈ {1,. . . ,n}2 tel que i =/ j . Montrer que Ei j, matrice élémentaire de
Mn(K ), n’est pas diagonalisable. 

©
 D

un
od

. L
a 

ph
ot

oc
op

ie
 n

on
 a

ut
or

is
ée

 e
st

 u
n 

dé
lit

.

12.3

12.4

12.5

12.6

12.7

12.8

12.9



Chapitre 12 • Réduction des endomorphismes et des matrices carrées

412

Exemple d’étude de diagonalisabilité

CNS sur a ∈ R pour que la matrice  M(a) =

 3 − a −5 + a a

−a a − 2 a
5 −5 −2


 ∈ M3(R) soit diagona-

lisable ? 

Exemple d’étude de diagonalisabilités

Étudier, pour (a,b,c) ∈ R
3, la diagonalisabilité de  M =


 0 a c

b 0 c
b −a 0


 dans M3(R) , dans

M3(C) . 

Exemple de condition de diagonalisabilité

CNS sur (a,. . . , f ) ∈ C
6 pour que  A =




0 a b c
0 0 d e
0 0 1 f
0 0 0 1


 soit diagonalisable dans M4(C) ? 

Exemple d’étude d’une équation matricielle

Trouver au moins une matrice X ∈ M3(C) telle que : X 2 =

 0 1 1

1 0 1
1 1 0


 .

Exemple de détermination de la limite de la suite des puissances d’une matrice carrée

On note  A = 1

3


 1 0 2

2 1 0
0 2 1


 ∈ M3(R). Déterminer lim

n∞
An .

Étude d’un endomorphisme d’un espace de fonctions de dimension finie

On note f1, f2, f3, f4 : R −→ R les applications définies, pour tout x ∈ R , par :

f1(x) = ch x, f2(x) = sh x, f3(x) = x ch x, f4(x) = x sh x ,

et on note B = ( f1, f2, f3, f4), E = Vect (B).
a) Montrer que B est une base de E . Quelle est la dimension de E ?

b) Montrer que D : f 
−→ f ′ est un endomorphisme du R-ev E et exprimer A = MatB( f ) .

c) 1) Calculer A2, A4 . (On pourra utiliser une écriture en blocs.)

2) En déduire : ∀ f ∈ E, f (4) − 2 f ′′ + f = 0 .

d) Déterminer les valeurs propres et les sous-espaces propres de D .

Est-ce que D est diagonalisable ? 

Étude d’une équation matricielle

Trouver toutes les matrices A ∈ Mn(R) diagonalisables dans Mn(R) telles que : A3 + 2A = 3 In .

Étude d’une équation matricielle

Soit A ∈ Mn(R) telle que : 2A3 + 3A2 − 6A − I3 = 0 .

Montrer que A est diagonalisable dans Mn(R). 

12.10

12.11
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Exemple d’équation portant sur un endomorphisme

Soient E un R-ev de dimension 3, f ∈ L(E) .

On suppose : f 4 = f 2 et {−1,1} ⊂ Sp ( f ) . Montrer que f est diagonalisable. 

Étude d’une équation matricielle avec transposition

Soit M ∈ Mn(R) telle que : M2 + t M = 2 In .

Démontrer que M est diagonalisable dans Mn(R). 

Utilisation de la trigonalisation pour l’étude d’une matrice nilpotente

Soit A ∈ Mn(C) nilpotente. Montrer : An = 0. 

Exemple de trigonalisation

On note A = 1

2


 1 1 −1

1 −1 1
2 0 0


 ∈ M3(R).

a) Calculer χA. b) Est-ce que A est diagonalisable ?

c) Montrer que A est semblable à T =

 0 1 0

0 0 1
0 0 0


 .

Liens entre les spectres de f ◦ g et g ◦ f

Soient E un K-ev, f,g ∈ L(E) .

a) Montrer : Sp ( f ◦ g) ∪ {0} = Sp (g ◦ f ) ∪ {0} .

b) Établir que, si E est de dimension finie, alors : Sp ( f ◦ g) = Sp (g ◦ f ).

c) Donner un exemple d’ev E (non de dimension finie) et d’endomorphismes f,g de E tels que :

Sp ( f ◦ g) =/ Sp (g ◦ f ) . 

Inégalité sur le rayon spectral d’une matrice carrée

Soit ||.|| une norme d’algèbre sur Mn(C), c’est-à-dire une norme sur l’ev Mn(C) telle que :

∀ A,B ∈ Mn(C), ||AB|| � ||A|| ||B||.
Soit A ∈ Mn(C). On note ρ(A) = Max

λ∈SpC(A)

|λ|, appelé rayon spectral de A.

Démontrer : ρ(A) � ||A||. 

Valeurs propres d’une matrice stochastique

Soit A = (ai j )i j ∈ Mn(R) telle que :
(

∀ (i, j) ∈ {1,. . . ,n}2, ai j ∈ [0 ; 1]

)
et

(
∀ i ∈ {1,. . . ,n},

n∑
j=1

ai j = 1

)
.

a) Montrer que 1 est valeur propre de A.

b) Établir : ∀λ ∈ Sp
C
(A), ∃ i ∈ {1,. . . ,n}, |λ− aii | � 1 − aii ,

et conclure : Sp
C
(A) ⊂

n⋃
i=1

B ′(aii , 1 − aii ).
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Éléments propres d’un endomorphisme d’un espace de polynômes

On note f : R[X] −→ R[X], P 
−→ (X3 + X)P ′ − (3X2 − 1)P .

a) Vérifier que f est un endomorphisme de R[X].

b) Déterminer les valeurs propres et les sous-espaces propres de f. 

Spectre d’un endomorphisme d’un espace de fonctions

On note E le R-ev des applications f : [0 ;+∞[−→ R continues et de limite nulle en +∞ , et T
l’endomorphisme de E qui, à f ∈ E , associe l’application

T ( f ) : [0 ;+∞[−→ R, x 
−→ f (x + 1) . Déterminer le spectre de T . 

Polynôme caractéristique d’une matrice par blocs

Soient   A ∈ Mn(K ), M =
(

In In

A A

)
∈ M2n(K ).

Exprimer le polynôme caractéristique de M en fonction de celui de A. 

Exemple de résolution d’équation matricielle

On note  A =
(−1 0

10 4

)
∈ M2(R).

Résoudre l’équation M3 − 2M = A , d’inconnue M ∈ M2(R). 

Exemple de résolution d’équation matricielle

On note  A =

 1 2 −2

2 1 2
−2 2 1


 ∈ M3(R).

a) Montrer que A est diagonalisable et diagonaliser A.

b) Résoudre l’équation (1) M2 = A, d’inconnue M ∈ M3(R). 

Exemple d’étude de diagonalisabilité

On note An = (ai j )i j ∈ Mn(R) la matrice définie par :

ai j = 1 si
(
i = 1 ou j = n

)
, ai j = 0 sinon.

La matrice An est-elle diagonalisable ? 

Exemple de recherche d’anticommutant

Soit A ∈ Mn(K ) diagonalisable telle que : ∀ (λ,µ) ∈ (
Sp

C
(A)

)2
, λ+ µ =/ 0. 

Montrer, pour toute M ∈ Mn(C) : AM + M A = 0 ⇐⇒ M = 0. 

Étude de matrices vérifiant une équation

Soient k ∈ N
∗, A ∈ Mn(K ) tels que : Ak+1 = Ak .

a) Montrer : ∀ q ∈ N, Ak+q = Ak. b) Établir que Ak est diagonalisable.

c) Démontrer que, pour tout p ∈ {1,. . . ,k − 1}, Ak − Ap est nilpotente. 

Matrices symétriques complexes non diagonalisables

a) Déterminer l’ensemble des matrices symétriques complexes d’ordre 2 non diagonalisables.

12.25
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b) En déduire que, pour tout n ∈ N − {0,1}, il existe une matrice symétrique complexe d’ordre n
non diagonalisable. 

Matrices de permutation circulaire, déterminant circulaire

a) Soient n ∈ N − {0,1}, Jn =




0 1 0 . . . . . . 0
...

. . .
. . .

. . . (0)
...

...
. . .

. . . 0
...

... (0)
. . . 1 0

0
. . . 1

1 0 . . . . . . 0 0




∈ Mn(C).

Déterminer les valeurs propres de Jn et montrer que Jn est diagonalisable.

b) En déduire, pour n ∈ N − {0,1} et a0,. . . ,an−1 ∈ C, le déterminant circulant

Dn =

∣∣∣∣∣∣∣∣∣

a0 a1 . . . an−1

an−1 a0 . . . an−2
...

...
...

a1 a2 . . . a0

∣∣∣∣∣∣∣∣∣
.

Diagonalisabilité à partir d’une hypothèse sur des images

Soient E un K-ev de dimension finie, a,b ∈ K tels que a =/ b , e = IdE , f ∈ L(E) tel que :
Im ( f − ae) ∩ Im ( f − be) = {0}. Montrer que f est diagonalisable. 

Étude de diagonalisabilité pour un endomorphisme sur un espace de matrices carrées 

Soient A,B,C ∈ Mn(K ) telles que : B2 = B, C2 = C, B AC = 0, C B = 0, tr (A) =/ 0.

On note f : Mn(K ) −→ Mn(K ), M 
−→ tr (M)A + tr (A)B MC .

a) Vérifier que f est un endomorphisme de Mn(K ).

b) Démontrer que f est diagonalisable. 

Involutions qui anticommutent, en dimension 4 

Soient A,B ∈ M4(C) telles que : A2 = B2 = I4 et AB + B A = 0 .

a) En calculant tr (B AB) de deux façons, montrer : tr (A) = tr (B) = 0.

b) Montrer que A et B sont diagonalisables, et déterminer les valeurs propres de A et B , ainsi que
leurs ordres de multiplicité.

c) On note C = i AB.

1) Vérifier : C2 = I4, AC + C A = 0, BC + C B = 0.

2) En déduire les valeurs propres de i AB et tr (AB) .

Spectres disjoints

Soient A,B ∈ Mn(C). Montrer que les propriétés suivantes sont équivalentes :

(1)        Sp
C
(A) ∩ Sp

C
(B) = ∅ (ii)        χA(B) ∈ GLn(C). 

Exemple de propriété des solutions d’une équation matricielle

Soit A ∈ Mn(R) telle que A3 − 3A − 4 In = 0. Démontrer : det (A) > 0. 
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Exemple de propriété des solutions d’une équation matricielle

Soit A ∈ Mn(R) telle que : A3 − 4A2 + 6A = 0. Montrer : 0 � tr (A2) � 2 n .

Polynômes caractéristiques de A et de P(A)

Soient A ∈ Mn(K ), P ∈ K [X]. On suppose que le polynôme caractéristique de A est scindé, et

on note χA = (−1)n
n∏

k=1

(X − λk).

Montrer : χP(A) = (−1)n
n∏

k=1

(
X − P(λk)

)
, et donc, χP(A) est scindé. 

Lien entre f nilpotent et Sp (f) = {0}
Soient E un K-ev de dimension finie � 1, f ∈ L(E).

a) Montrer que, si f est nilpotent, alors Sp( f ) = {0}.

b) On suppose ici K = C . Montrer que, si Sp( f ) = {0}, alors f est nilpotent. 

Étude d’une équation matricielle

Soient A ∈ Mn(R), p,q ∈ N
∗ . On suppose : Ap(A − In)

q = 0 et tr (A) = 0. Montrer : Ap = 0. 

Étude d’une équation matricielle

Trouver toutes les matrices A ∈ Mn(R) telles que : A5 = A2 et tr (A) = n. 

Une équation matricielle qui n’a pas de solution

Montrer que l’équation X2 =

 0 1 0

0 0 1
0 0 0


 , d’inconnue X ∈ M3(C), n’a pas de solution. 

(On pourra utiliser l’exercice 12.20.) 

Exemple d’équation matricielle

On note A =

 1 0 0

1 1 0
1 0 4


 ∈ M3(R). Résoudre l’équation X2 = A , d’inconnue X ∈ M3(R). 

Exemple d’équation matricielle

On note A =

 1 0 −2

2 −1 −2
0 0 3


 ∈ M3(R), et P = X5 + X + 1 ∈ R[X]. 

Résoudre l’équation P(M) = A, d’inconnue M ∈ M3(R). 

Exemple d’équation matricielle faisant intervenir la comatrice

Soient n ∈ N tel que n � 3, A ∈ Mn(C)telle que tcom (A) = In − A. La matrice A est-elle dia-
gonalisable ? 

Polynômes caractéristiques de AB et de BA

Soient A,B ∈ Mn(K ). Montrer : χAB = χB A. 
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Étude de det (AA + In)

Soit A ∈ Mn(C).

a) Établir : χAA ∈ R[X]. (On pourra utiliser l’exercice 12.49

b) En déduire : det (AA + In) ∈ R. 

Exemple de calcul de polynôme caractéristique et d’étude de diagonalisabilité

Soient n ∈ N − {0,1}, An = (ai j )i j ∈ Mn(R) définie par :

ai j = 1 si i � j ou (i = 1 et j = n), ai j = 0 sinon .

a) Calculer le polynôme caractéristique χAn
de An.

b) Démontrer que, dans ]1 ;+∞[, Anadmet une valeur propre et une seule.

À cet effet, on pourra considérer ϕ : [1 ;+∞[−→ R, λ 
−→ (λ− 1)n
λ

−n+2 − 1.

Polynôme caractéristique d’une matrice-compagnon 

Soient  a1,. . . ,an ∈ C , A =




a1 1 0 . . . . . . 0

a2 0
. . .

. . . (0)
...

...
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . . 0

...
... (0)

. . . 1
an 0 . . . . . . . . . 0




∈ Mn(C).

a) Former χA.

b) On suppose ici : ∀ k ∈ {1,. . . ,n}, ak ∈ ]0 ;+∞[.

Démontrer que, dans ]0 ;+∞[, A admet une valeur propre unique. 

Exemple de calcul de polynôme caractéristique et d’étude de spectre

On note, pour (n,z) ∈ (N − {0,1}) × C : A(n,z) =




1 0 . . . 0 z

1
. . .

. . . (0) 0
...

. . .
. . .

...

1 (1)
. . . 0

1 1 . . . 1 1




∈ Mn(C).

a) Calculer le polynôme caractéristique χn de A(n,z) .

b) Montrer : Sp
C

(
A(n,z)

) ⊂ B ′(0, Max (2, 1 +
√

|z| 2
n
2 −1

)
.

Étude de diagonalisabilité pour une matrice par blocs

a) On note M =
(

1 4
1 1

)
∈ M2(R). Montrer que M est diagonalisable et diagonaliser M .

b) Soient A ∈ Mn(R), B =
(

A 4A
A A

)
, C =

(
3A 0
0 −A

)
.

1) Montrer que B est semblable à C.

2) Établir que B est diagonalisable si et seulement si A est diagonalisable. 
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Décomposition d’un endomorphisme diagonalisable 
en combinaison linéaire de projecteurs

Soient E un K-ev de dimension finie, e = IdE , f ∈ L(E) diagonalisable. On note, pour tout

λ ∈ Sp ( f ), Eλ = SEP ( f,λ) , et pλ le projecteur sur Eλ parallèlement à 
⊕

µ∈Sp ( f )−{λ}
Eµ.

a) Montrer : ∀ A ∈ K [X],
∑

λ∈Sp ( f )

A(λ)pλ = A( f ). En particulier :
∑

λ∈Sp ( f )

λpλ = f.

b) Établir : ∀λ ∈ Sp ( f ), ∃ L ∈ K [X], pλ = L( f ) . 

Minoration de la dimension du commutant d’une matrice carrée

On note Tn,s(C) le C-ev des matrices triangulaires supérieures de Mn(C), et T′
n,s(C) le sev de

Tn,s(C) formé des matrices de Tn,s(C) à termes diagonaux tous nuls. On note, pour A ∈ Mn(C) :

f A : Mn(C) −→ Mn(C), M 
−→ AM − M A et C(A) = {
M ∈ Mn(C) ; f A(M) = 0

}
.

a) Vérifier, pour toute A ∈ Mn(C), f A ∈ L
(
Mn(C)

)
, et, pour toute A ∈ Tn,s(C) ,

f A
(
Tn,s(C)

) ⊂ Tn,s(C).

b) En déduire : ∀ A ∈ Mn(C), dim
(
C(A)

)
� n .

Étude de diagonalisabilité

Soient n ∈ N − {0,1}, A ∈ Mn(C) telle que : rg (A) = 2, tr (A) = 0, An =/ 0. Montrer que 
A est diagonalisable dans Mn(C). 

Liens entre les diagonalisabilités de A et de A2 , pour A inversible

Soit A ∈ GLn(C) . Montrer que A est diagonalisable si et seulement si A2 est diagonalisable. 

Étude de diagonalisabilité pour une matrice par blocs

Soient A,B ∈ GLn(C), M =
(

0 B
A 0

)
. Démontrer que M est diagonalisable si et seulement si

AB est diagonalisable. (On pourra utiliser l’exercice 12.58.) 

Étude de diagonalisabilité pour une matrice par blocs

Soient p,q ∈ N
∗, A ∈ GLp(K ), B ∈ Mp,q(K ), M =

(
A B
0 0

)
∈ Mp+q(K ).

a) Montrer que M est semblable à 

(
A 0
0 0

)
.

b) En déduire que M est diagonalisable si et seulement si A est diagonalisable. 

Liens entre les qualités de f − λ e et de P(f) − P(λ) e

Soient E un C-ev, e = IdE , f ∈ L(E), P ∈ C[X].

a) Soit λ ∈ C. Montrer que, si f − λ e n’est pas injective (resp. n’est pas surjective), alors
P( f ) − P(λ)e n’est pas injective (resp. n’est pas surjective).

b) On suppose ici deg (P) � 1. Soit µ ∈ C. Montrer que, si P( f ) − µe n’est pas injective (resp.
n’est pas surjective), alors il existe λ ∈ C tel que µ = P(λ) et que f − λ e ne soit pas injective
(resp. ne soit pas surjective). 
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Exemple de déterminant d’une somme de matrices

Soient A ∈ GLn(C), N ∈ Mn(C) nilpotente, telles que AN = N A . Montrer :

det (A + N ) = det (A) . 

Commutant et bicommutant d’une matrice diagonalisable

Soit A ∈ Mn(K ) diagonalisable. On note λk (1 � k � p) les valeurs propres de A ,
ωk (1 � k � p) l’ordre de multiplicité de λk, D = diag

1�k�p
(λkIωk ),, P ∈ GLn(K ) telle que

A = P D P−1. On note C(A) le commutant de A dans Mn(K ) :

C(A) = {
X ∈ Mn(K ) ; AX = X A

}
,

et C ′(A) le commutant de C(A) dans Mn(K ) :

C ′(A) = {
B ∈ Mn(K ) ; ∀ X ∈ C(A), X B = B X

}
.

a) Déterminer C(A) et préciser dim
(
C(A)

)
.

b) Déterminer C ′(A) et préciser dim
(
C ′(A)

)
.

Diagonalisation simultanée

Soient E un K-ev de dimension finie n � 1, Iun ensemble non vide, ( fi )i∈I une famille d’endo-
morphismes diagonalisables de E , commutant deux à deux, c’est-à-dire tels que :

∀ (i, j) ∈ I 2, fi ◦ f j = f j ◦ fi .

Démontrer qu’il existe une base de E dans laquelle tous les fi sont diagonalisables (on pourra faire
une récurrence forte sur n). 

Conséquence d’une diagonalisation simultanée

Soient E un K-ev de dimension finie, M l’ensemble des f ∈ L(E) tels qu’il existe k ∈ N
∗ (dépen-

dant de f) tel que f k soit diagonalisable. Démontrer que, pour tout ( f,g) ∈ M2 tel que
f ◦ g = g ◦ f, on a : f ◦ g ∈ M. (On pourra utiliser l’exercice 12.64.) 

Étude de matrices proportionnelles semblables

a) Soit A ∈ Mn(C). Montrer que, si A et 2A sont semblables, alors A est nilpotente. (On pourra
utiliser l’exercice 12.42.)

b) Donner un exemple de C-ev (non de dimension finie) et de f ∈ L(E) tels que : f n’est pas nil-
potent et il existe g ∈ GL(E) tel que 2 f = g ◦ f ◦ g−1. 

Du mal à démarrer ?
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Revenir à la définition d’un vecteur propre.

1re méthode : Utilisation de la définition :

Revenir à la définition d’une vecteur propre, en traduisant que

les familles (AU,U) et (AV,V ) sont liées.

2e méthode : Utilisation d’une matrice de passage :

En notant P = ( U V ) , traduire que P−1 AP est diagonale.

Revenir à la définition. Dans cet exercice, les matrices A et

B semblent peu différentes par leurs écritures, mais A ne sera

pas diagonalisable et B sera diagonalisable.
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a) Immédiat.

b) Calculer f (X j ) pour tout j ∈ {0,. . . ,n}.

c) Remarquer que A est triangulaire supérieure, à termes diago-

naux tous �= 0 sauf le premier.

1re méthode : Étude matricielle :

Former la matrice de f dans la base canonique de M2(R).

2e méthode : Utilisation d’un polynôme annulateur :

Remarquer que f 2 est l’identité.

a) 1) Immédiat.

2) • On obtient : Ker ( f ) = (X + 1)X(X − 1)R[X].

• Montrer : Im ( f ) = R2[X].

b) • 0 est vp de f et SEP ( f,0) est déjà obtenu.

• Montrer que, si (λ,P) ∈ R
∗ × (

R(X] − {0}) vérifie f (P) = λP ,

alors P ∈ R2[X] .

a) • Vérifier : T ∈ L(E) .

• Pour montrer que T est surjectif, utiliser le théorème de Cauchy

et Lipschitz sur les ED linéaires du premier ordre.

b) Revenir à la définition et résoudre une EDL1.

Remarquer d’abord que An est symétrique réelle.

a )• Montrer que 0 est vp et préciser dim SEP (An,0) .

• Il manque (au plus) deux valeurs propres λ1,λ2. Utiliser

A2
n, tr (An), tr (A2

n) .

b) Traduire 
√

2n − 3 ∈ N .

Raisonner par l’absurde.

Former le polynôme caractéristique de M(a) et détermi-

ner dim SEP (A,−2).

Former le polynôme caractéristique de M . Discuter selon

le signe de ab − ac + bc.

Les valeurs propres sont évidentes. Déterminer les dimen-

sions des SEP associés à 0,1.

1re méthode : Réduction :}

Diagonaliser A, A = P D P−1 , et chercher X sous la forme

X = P∆P−1 ,∆ diagonale.

2e méthode : Utilisation d’une particularité de A :

En notant I = I3 et U la matrice dont chaque terme est égal à

1, chercher X sous la forme X = (a − b)I + bU .

Diagonaliser A, en déduire An, puis lim
n∞ An .

a) Montrer que B est libre, par exemple en utilisant des

DL3(0).

b) Calculer D fi pour 1 � i � n.

c) 1) En notant I =
(

1 0

0 1

)
, J =

(
0 1

1 0

)
, remarquer

A =
(

J I

0 J

)
,

2) Calculer A4 − 2A2 + I4.

d) D’après c), X4 − 2X2 + 1 est annulateur de f.

Utiliser la notion de polynôme annulateur.

Utiliser la notion de polynôme annulateur. Étudier les varia-

tions de ce polynôme.

Séparer en deux cas selon que 0 est ou n’est pas vp de f.

Exprimer t M , puis M = t(t M) , pour obtenir un polynôme

annulateur de M , de degré 4.

Trigonaliser A dans Mn(C) , et étudier la forme des puis-

sances successives d’une matrice triangulaire supérieure dont

les termes diagonaux sont tous nuls.

a) Immédiat.

b) Raisonner par l’absurde.

c) Noter B = (e1, e2, e3) la base canonique de M3,1(R), f l’endo-

morphisme de M3,1(R) représenté par A dans B, et chercher

une base C = (v1, v2, v3) de M3,1(R) telle que f soit représenté

dans C par T.

a) Montrer : Sp ( f ◦ g) − {0} ⊂ Sp (g ◦ f ), en revenant aux

définitions.

b) 1re méthode : Étude des caractères bijectifs :

Séparer en cas selon que f ou g est bijectif ou non.

2e méthode : Utilisation des polynômes caractéristiques :

Utiliser l’exercice 12.49.

c) Envisager, par exemple, E = C∞([0 ; 1],R) et f : u 
−→ u′,
g : v 
−→ g(v) , où g(v) est la primitive de g s’annulant en 0.

Soient λ ∈ SpC(A), X ∈ SEP (A,λ) − {0} .

Considérer la matrice M de Mn(C) obtenue en répétant X côte

à côte, n fois.

a) Calculer AU ,où U ∈ Mn,1(R) est à termes tous égaux à 1.

b) Soient λ ∈ SpC(A), X ∈ Mn,1(C) − {0} tel que AX = λX.

Montrer, en passant aux éléments :
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∀ i ∈ {1,. . . ,n}, |λ − aii | |xii | �
∑
j �=i

ai j |xj | ,

et considérer i tel que : |xi | = Max
1� j�n

|xj |.

a) Immédiat.

b) Montrer que, si P est −→vp de f, alors deg (P) = 3 , puis noter

P = aX3 + bX2 + cX + d, (a,b,c,d) ∈ R
4 .

1) Soit λ ∈ Sp (T ), f ∈ E − {0} telle que T ( f ) = λ f .

Calculer f (x + n) pour x ∈ [0 ;+∞[ et n ∈ N.

Déduire : λ ∈ ] − 1 ; 1[ .

2) Réciproquement, montrer que, pour tout λ ∈ ] − 1 ; 1[ , il exis-

te f ∈ E − {0} telle que T ( f ) = λ f, en construisant f par inter-

valles successifs.

Former le polynôme caractéristique χM de M , en mani-

pulant des blocs. On peut commencer par multiplier des

colonnes par 1 − X .

1) Commencer par diagonaliser A, A = P D P−1 .

2) Si M convient, alors M commute avec A, et en déduire la

forme de N telle que M = P N P−1 . Résoudre ensuite

N 3 − 2N = D.

a) Méthode du cours.

b) Remarquer que, si une matrice M vérifie (1), alors M commu-

te avec A. Déterminer la forme des matrices commutant avec D ,

matrice diagonale obtenue en a).

Écrire la matrice An.

Raisonner par l’absurde, en remarquant que les valeurs propres

de An sont 0 et 1.

Avec les notations usuelles, A = P D P−1 .

Pour M ∈ Mn(K ) , noter N = P−1 M P et résoudre

DN + N D = 0 .

a) Récurrence sur q.

b) Montrer : (Ak)2 = Ak et utiliser un polynôme annulateur.

c) Calculer (Ak − Ap)k en utilisant la formule du binôme de

Newton.

a) Noter A =
(

a b

b c

)
et traduire que A admet une vp

double et que le SEP associé est de dimension 1.

b) Compléter un exemple obtenu en a) par des termes tous nuls.

a) Former le polynôme caractéristique de Jn , par exemple

en développant par rapport à la première colonne, puis faire

intervenir les racines n-èmes de 1 dans C.

b) Remarquer que la matrice envisagée se décompose linéaire-

ment sur In, Jn, J 2
n ,. . . ,J n−1

n .

Montrer : ∀ x ∈ E, ( f − ae) ◦ ( f − be)(x) = 0,

puis utiliser la notion de polynôme annulateur.

a) Immédiat.

b) Calculer f 2(M) pour toute M ∈ Mn(K ) , et en déduire un

polynôme annulateur de f.

a) Utiliser la formule :

∀ X,Y ∈ M4(C), tr (XY ) = tr (Y X) .

b) Utiliser la notion de polynôme annulateur et l’ordre (4) des

matrices envisagées.

c) 1) Immédiat.

2) Le couple (A,C) vérifie les mêmes hypothèses que le couple

(A,B).

Utiliser une factorisation de χA, qui est scindé sur C.

Utiliser la notion de polynôme annulateur et faire interve-

nir une diagonalisation dans Mn(C) .

Utiliser la notion de polynôme annulateur et faire interve-

nir une diagonalisation dans Mn(C) .

Utiliser une trigonalisation de A dans Mn(K ) .

a) Supposer f k = 0, k ∈ N
∗ . Montrer :

Sp ( f ) ⊂ {0} et 0 ∈ Sp ( f ) .

b) Réciproquement, si K = C et Sp ( f ) = {0} , utiliser une trigo-

nalisation de f, et étudier la forme des puissances successives

d’une matrice triangulaire supérieure dont tous les termes dia-

gonaux sont nuls.

Utiliser la notion de polynôme annulateur.

Montrer que A − In est inversible.

Utiliser la notion de polynôme annulateur et utiliser une

trigonalisation de A dans Mn(C) .

Raisonner par l’absurde et utiliser l’exercice 12.20.

Commencer par déterminer les matrices qui commutent

avec A.

1) Diagonaliser A, A = Q DQ−1 .

2) Montrer que, si M convient, alors M commute avec A, d’où la

forme de N telle que M = QN Q−1 . Résoudre des équations du

5éme degré dans R.

Utiliser la formule : det (A) In = Atcom (A), et la notion de

polynôme annulateur.
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Envisager, par exemple, les produits matriciels :(
λ In A

B In

)(−In 0

B In

)
,

(
λ In A

B In

)(−In A

0 −λ In

)

et passer aux déterminants.

a) Calculer χAA(λ) , en utilisant l’exercice 12.49.

b) Envisager λ = −1 .

a) Former le polynôme caractéristique de An, par exemple

en développant par rapport à la première ligne.

b) Étudier les variations de ϕ .

a) Utiliser : Ln Ln + λLn−1 + · · · + λn−1 L1.

b) Étudier les variations de : ϕ : λ 
−→ (−1)nχA(λ)

λn
.

a) Former le polynôme caractéristique χn de A(n,z) en

développant, par exemple, par rapport à la première ligne.

b) Soit λ ∈ Sp
C

(
A(n,z)

)
. Supposer |λ| � 2 , noter, pour la commo-

dité, µ = |λ − 1| et obtenir une inégalité sur µ , puis sur |λ|.

a) Immédiat.

b) 1) Remarquer que B se déduit de C comme M se déduit de

D =
(

3 0

0 −1

)
, dans a).

2) Séparer en deux sens.

a) Soit x ∈ E .

On a x =
∑
λ

pλ(x) , et déduire A( f )(x).

b) Noter Sp ( f ) = {λ1,. . . ,λN } où λ1,. . . ,λN sont deux à deux

distincts. Utiliser le cours sur l’interpolation polynomiale.

a) La linéarité de f A est immédiate.

Pour l’inclusion, examiner les termes diagonaux de f A(T ) pour

T ∈ Tn,s(C) .

b) Utiliser une trigonalisation de A dans Mn(C) , A = PT P−1 .

1) Montrer que θ : B 
−→ P−1 B P est un isomorphisme d’ev de

C(A) sur C(T ).

2) Appliquer le théorème du rang à :

gT : Tn,s(C) −→ Tn,s(C), U 
−→ T U − U T .

Utiliser une trigonalisation de A.

1) Un sens est immédiat.

2) Supposer A2 diagonalisable. Utiliser un polynôme scindé

simple P annulateur de A2 et montrer que l’on peut supposer

P(0) �= 0. Faire intervenir les deux racines carrées complexes

d’un complexe non nul.

Calculer M2 et utiliser l’exercice 12.58.

Noter N =
(

A 0

0 0

)
.

a) Chercher une matrice X ∈ Mp,q (K ) telle que, en notant

P =
(

Ip X

0 Iq

)
, on ait : M = P N P−1 , c’est-à-dire M P = P N.

c) Séparer en deux sens.

a) 1) Si f − λe n’est pas injectif, revenir à la définition.

2) Montrer la non-surjectivité par contraposition. Supposer

P( f ) − P(λ)e surjectif. Factoriser P(X) − P(λ) par X − λ , et

déduire que f − λe n’est pas surjectif.

b) Factoriser : P(X) − µ = α

n∏
k=1

(X − tk).

Montrer que A−1 N est nilpotente et utiliser une trigonali-

sation.

Noter A = P D P−1, D = diag (λ1Iω1 ,. . . ,λpIωp ) .

a) Pour X ∈ Mn(K ) , noter M = P−1 X P et résoudre

DM = M D en utilisant des blocs.

2) Pour B ∈ Mn(K ) , noter Z = P−1 B P et résoudre M Z = Z M

en utilisant des blocs.

Récurrence forte sur n.

Pour le passage de n à n + 1 , séparer en deux cas :

le cas où toutes les fi sont des homothéties, immédiat

le cas où il existe i0 ∈ I tel que fi0 ne soit pas une homothétie.

Considérer les vp et les SEP de fi0 et appliquer l’hypothèse à la

famille ( fi,k)i∈I , où fi,k est l’endomorphisme induit par fi sur le

SEP numéro k de fi0.

Soit ( f,g) ∈ M2 tel que f ◦ g = g ◦ f . Appliquer le résultat

de l’exercice 12.64 à la famille ( f p,g p) où p ∈ N
∗ est à définir.

a) Supposer A et 2A semblables. Montrer :

∀λ ∈ SpC(A), ∀ k ∈ N, 2kλ ∈ SpC(A)

et déduire : ∀λ ∈ SpC(A), λ = 0.

Utiliser l’exercice 12.42.

b) Considérer, par exemple, E = C
Z et :

f : (xn)n 
−→ (2nun)n, g : (un)n 
−→ (un+1)n .
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Pour (x,y) ∈ R
2, notons 

A =

 x 1 1

1 y 1
1 1 0


 , U =


 1

2
3


 .

On, a, puisque U =/ 0 :

U −→vp de A ⇐⇒ ∃λ ∈ R, AU = λU

⇐⇒ ∃λ ∈ R,




x + 5 = λ

2y + 4 = 2λ

3 = 3λ

⇐⇒
{

x + 5 = 1

2y + 4 = 2
⇐⇒

{
x = −4

y = −1.

On conclut qu’il y a un couple  (x,y) convenant et un seul,
(x,y) = (−4,−1) .

1re méthode : Utilisation de la définition :

Puisque  U =/ 0 et  V =/ 0, A admet  U et  V pour vec-
teurs propres si et seulement si :

AU est colinéaire à  U , et  AV est colinéaire à  V.

On a : AU =
(

1 a
−1 b

)(
2
1

)
=

(
2 + a

−2 + b

)
, donc :

AU colinéaire à U

⇐⇒
∣∣∣∣ 2 + a 2
−2 + b 1

∣∣∣∣ = 0 ⇐⇒ a − 2b + 6 = 0.

Et : AV =
(

1 a
−1 b

)(
1
1

)
=

(
1 + a

−1 + b

)
, donc :

AV colinéaire à V

⇐⇒
∣∣∣∣ 1 + a 1
−1 + b 1

∣∣∣∣ = 0 ⇐⇒ a − b + 2 = 0.

Enfin :

{
a − 2b + 6 = 0

a − b + 2 = 0
⇐⇒

{ a = 2

b = 4.

On conclut qu’il y a un couple  (a,b) convenant et un seul,
(a,b) = (2,4).

2e méthode : Utilisation d’une matrice de passage :

Notons P = ( U V ) =
(

2 1
1 1

)
. Il est clair que  P est in-

versible et  P−1 =
(

1 −1
−1 2

)
. La matrice  A admet  U et

V pour vecteurs propres si et seulement si  P−1 AP est dia-

gonale. On calcule le produit P−1 AP et on obtient :

P−1 AP =
(

4 + a − b 2 + a − b
−6 − a + 2b −3 − a + 2b

)
.

On a : P−1 AP diagonale 

⇐⇒
{

2 − a + b = 0

−6 − a + 2b = 0
⇐⇒

{ a = 2

b = 4.

• Puisque A (resp. B ) est triangulaire, les valeurs
propres de A (resp. B ) se lisent sur sa diagonale, donc : les va-
leurs propres de A (resp. B ) sont 0 (double) et 1 (simple).

• Soit X =

 x

y
z


 ∈ M3,1(R). On a :

1) ∗ X ∈ SEP (A,0) ⇐⇒ AX = 0

⇐⇒
{ y + z = 0

z = 0
⇐⇒

{
y = 0

z = 0,

donc   SEP (A,0) = Vect


 1

0
0


 , dim SEP (A,0) = 1

∗ X ∈ SEP (A,1) ⇐⇒ AX = X

⇐⇒
{

y + z = x

z = y
⇐⇒

{
x = 2y

z = y,

donc   SEP (A,1) = Vect


 2

1
1


 , dim SEP (A,1) = 1

2) ∗ X ∈ SEP (B,0) ⇐⇒ B X = 0 ⇐⇒ y + z = 0,

donc   SEP (B,0) = Vect

(
 1

0
0


 ,


 0

1
−1


)

,

dim SEP (B,0) = 2

∗ X ∈ SEP(B,1) ⇐⇒ B X = X ⇐⇒
{ y = x

z = 0,

donc   SEP (B,1) = Vect


 1

1
0


 , dim SEP (B,1) = 1.

Remarque : Il en résulte que A n’est pas diagonalisable dans
M3(R) , et que B est diagonalisable dans M3(R) .

Corrigés des exercices

12.1

12.2

12.3
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a) • On a, pour tout α ∈ R et tous P,Q ∈ R(X] :

f (αP + Q)

= X
(
(αP + Q)(X) − (αP + Q)(X − 1)

)
= X

(
αP(X) + Q(X) − αP(X − 1) − Q(X − 1)

)
= αX

(
P(X) − P(X − 1)

) + X
(
Q(X) − Q(X − 1)

)
= α f (P) + f (Q),

donc  f est linéaire.

• Soit P ∈ E = Rn[X].

On a alors : P(X) − P(X − 1) ∈ Rn−1[X] , car les termes de
degré n se simplifient, puis :

f (P) = X
(
P(X) − P(X − 1)

) ∈ Rn[X] = E .

On conclut que f est un endomorphisme de E .

b) On a, pour tout j ∈ {0,. . . ,n} :

f (X j ) = X
(
X j − (X − 1) j

)

= X
(

X j −
j∑

i=0

(
j
i

)
(−1) j−i Xi

)

= X

(
−

j−1∑
i=0

(
j
i

)
(−1) j−i Xi

)
=

j−1∑
i=0

(
j
i

)
(−1) j−i−1Xi+1

=
k = i + 1

j∑
k=1

(
j

k − 1

)
(−1) j−kXk .

D’où la matrice  A de  f dans la base canonique de E :

A =




0
1 ∗

. . .

j

(0)
. . .

n




,

où le terme situé à la k-ème ligne et à la j-ème colonne est égal

à 

(
j

k − 1

)
(−1) j−k , pour (k, j) ∈ {0,. . . ,n}2.

c) • Noyau :

Puisque A est triangulaire, que le premier terme diagonal est
nul et que les autres termes diagonaux sont tous non nuls,
Ker ( f ) est de dimension 1, de base (1) .

• Rang :

D’après le théorème du rang :

rg ( f ) = dim (E) − dim Ker ( f ) = (n + 1) − 1 = n .

• Image :

Par définition de f, on a :

∀ P ∈ E, f (P) = X
(
P(X) − P(X − 1)

) ∈ X Rn−1[X] ,

donc : Im ( f ) ⊂ X Rn−1[X].

D’autre part :

dim Im ( f ) = rg ( f ) = n = dim (X Rn−1[X]) .

On conclut : Im ( f ) = X Rn−1[X] = Vect (X,. . . ,Xn).

• Spectre :

Puisque A est triangulaire supérieure, les valeurs propres de f
se lisent sur la diagonale de A , donc :

Sp( f ) = {0,1,. . . ,n} .

D’abord, il est clair que f est un endomorphisme 
de E .

1re méthode : Étude matricielle

Formons la matrice M de f dans la base canonique
B = (E11, E12, E21, E22) de M2(R) .

On a : f (E11) = E22, f (E12) = −E12,

f (E21) = −E21, f (E22) = E11 ,

d’où : M =




0 0 0 1
0 −1 0 0
0 0 −1 0
1 0 0 0


 .

On calcule le polynôme caractéristique de M , par exemple en
développant par rapport à la première colonne :

χM(λ) =

∣∣∣∣∣∣∣∣

−λ 0 0 1
0 −1 − λ 0 0
0 0 −1 − λ 0
1 0 0 −λ

∣∣∣∣∣∣∣∣

=−λ
∣∣∣∣∣∣
−1 − λ 0 0

0 −1 − λ 0
0 0 −λ

∣∣∣∣∣∣−
∣∣∣∣∣∣

0 0 1
−1 − λ 0 0

0 −1 − λ 0

∣∣∣∣∣∣
= (−λ)2(−1 − λ)2 − (−1 − λ)2

= (1 + λ)2(λ2 − 1) = (λ− 1)(λ+ 1)3.

On déduit que les valeurs propres de M sont :

−1 (triple) et 1 (simple).

On a, pour toute X =




x1

x2

x3

x4


 ∈ M4,1(R) :

• M X = −X ⇐⇒ x4 = −x1 , donc :

SEP (M,−1) = Vect







1
0
0

−1


 ,




0
1
0
0


 ,




0
0
1
0





 ,

SEP ( f,−1) = Vect

((
1 0
0 −1

)
,

(
0 1
0 0

)
,

(
0 0
1 0

))

12.4

12.5



425

• M X = X ⇐⇒ (
x1 = x4, x2 = 0, x3 = 0

)
donc 

SEP (M,1) = Vect




1
0
0
1


 , SEP ( f,1) = Vect

(
1 0
0 1

)
.

2e méthode : Utilisation d’un polynôme annulateur (PC, PSI)

On remarque que, pour toute  A =
(

a b
c d

)
:

f 2(A) = f

(
d −b
−c a

)
=

(
a b
c d

)
= A ,

donc : f 2 = IdM2(R) .

Remarque : f est une symétrie.

Ainsi, le polynôme X2 − 1 est annulateur de A .

Il en résulte : Sp ( f ) ⊂ {−1,1}.

On a, pour toute A =
(

a b
c d

)
:

• f (A) = −A ⇐⇒ d = −a , donc 

SEP ( f,−1) = Vect

((
1 0
0 −1

)
,

(
0 1
0 0

)
,

(
0 0
1 0

))

• f (A) = A ⇐⇒ (
d = a, b = 0, c = 0

)
, donc :

SEP ( f,1) = Vect

(
1 0
0 1

)
.

a) 1) On a, pour tout α ∈ R et tous P,Q ∈ R[X] :

f (αP + Q)

= X(X − 1)(αP + Q)(−1) + (X + 1)(X − 1)(αP + Q)(0)

+ (X + 1)X(αP + Q)(1)

= α
(
X(X − 1)P(−1) + (X + 1)(X − 1)P(0)

= +(X + 1)XP(1)
) + (

X(X − 1)Q(−1)

+(X + 1)(X − 1)Q(0) + (X + 1)XQ(1)
)

= α f (P) + f (Q),

donc  f est linéaire.

2) • On a, pour tout P ∈ R[X] :

P ∈ Ker ( f ) ⇐⇒ f (P) = 0

⇐⇒ X(X − 1)P(−1) + (X + 1)(X − 1)P(0)

+ (X + 1)XP(1) = 0

⇐⇒ (
P(−1) + P(0) + P(1)

)
X2

+ ( − P(−1) + P(1)
)
X − P(0) = 0

⇐⇒




P(−1) + P(0) + P(1) = 0

−P(−1) + P(1) = 0

P(0) = 0

⇐⇒




P(−1) = 0

P(0) = 0

P(1) = 0

⇐⇒ (X + 1)X(X − 1) | P.

On conclut : Ker ( f ) = (X + 1)X(X − 1)R[X].

• ∗ D’après la définition de f, il est clair que :

∀ P ∈ R[X], f (P) ∈ R2[X] ,

donc : Im ( f ) ⊂ R2[X].

∗ On a :




f
(
X(X − 1)

) = 2X(X − 1)

f
(
(X + 1)(X − 1)

) = −(X + 1)(X − 1)

f
(
(X + 1)X

) = 2(X + 1)X,

donc les trois polynômes 

A = X(X − 1), B = (X + 1)(X − 1), C = (X + 1)X

sont dans Im ( f ).

De plus,

−A + C = 2X, A + C = 2X2, 2B − A − C = −2 ,

donc 1,X,X2 se décomposent sur A,B,C .

Ainsi :

R2[X] = Vect (1,X,X2) ⊂ Vect (A,B,C) = Im ( f ) .

On conclut : Im ( f ) = R2[X].

b) • On a étudié plus haut Ker ( f ).

Il en résulte que 0 est valeur propre de f et que :

SEP ( f,0) = Ker ( f ) = (X + 1)X(X − 1)R[X] .

• Si (λ,P) ∈ R
∗ × R(X] − {0} est tel que f (P) = λP, alors :

P = 1

λ
f (P) = f

(
1

λ
P

)
∈ Im ( f ) ⊂ R2[X].

Le sev  R2[X] est stable par f , car Im ( f ) ⊂ R2[X] .
Considérons l’endomorphisme  g de R2[X] induit par  f sur
R2[X]. La matrice de  g dans la base (A,B,C) de R2[X] (dé-

finie plus haut) est :


 2 0 0

0 −1 0
0 0 2


 .

Il en résulte que les valeurs propres de  g sont 2 et −1, et que :

SEP (g,2) = Vect (A,C), SEP (g,−1) = Vect (B) .

On conclut :

Sp ( f ) = {−1, 0, 2}
SEP ( f,−1) = Vect

(
(X + 1)(X − 1)

)
SEP ( f,0) = Vect

(
(X + 1)X(X − 1)

)
SEP ( f,2) = Vect

(
(X + 1)X, (X − 1)X

) = Vect (X,X2) .

12.6
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a) • Il est clair que, pour toute f ∈ E, l’application

T ( f ) : x 
−→ f ′(x) − x f (x) est définie sur R et que
T ( f ) ∈ E .

On a, pour tout α ∈ R et toutes f,g ∈ E :

∀ x ∈ R, T (α f + g)(x)

= (α f + g)′(x) − x(α f + g)(x)

= α f ′(x) + g′(x) − αx f (x) − xg(x)

= α
(

f ′(x) − x f (x)
) + (

g′(x) − xg(x)
)

= αT ( f )(x) + T (g)(x)

= (
αT ( f ) + T (g)

)
(x),

donc : T (α f + g) = αT ( f ) + T (g),

ce qui montre que T est linéaire.

On conclut : T est un endomorphisme du R-ev E .

• Soit g ∈ E. D’après le théorème de Cauchy et Lipschitz li-
néaire, il existe f : R −→ R , dérivable sur R, telle que :

∀ x ∈ R, f ′(x) − x f (x) = g(x).

De plus, à l’aide d’une récurrence immédiate, f est de classe
C∞, donc : f ∈ E .

Ainsi : ∀ g ∈ E, ∃ f ∈ E, T ( f ) = g,

donc T est surjective.

b) Soit (λ, f ) ∈ R × (E − {0}) . On a :

T ( f ) = λ f

⇐⇒ ∀ x ∈ R, f ′(x) − x f (x) = λ f (x)

⇐⇒ ∀ x ∈ R, f ′(x) − (x + λ) f (x) = 0

⇐⇒ ∃ C ∈ R, ∀ x ∈ R, f (x) = C e
x2
2 +λx .

On conclut :

Sp (T ) = R

∀λ ∈ R, SEP (T,λ) = Vect ( fλ) ,

où fλ : R −→ R, x 
−→ e
x2
2 +λx .

On peut d’abord remarquer que An est symétrique réelle,
donc diagonalisable dans Mn(R) . En particulier, le polynôme
caractéristique de An est scindé sur R.

a) • On a : rg (An) = 2, donc, d’après le théorème du rang :
dim Ker (An) = n − rg (A) = n − 2 � 1.

Ceci montre que 0 est valeur propre de An et que :

dim SEP (An,0) = n − 2 .

• Il nous manque donc (au plus) deux valeurs propres, notées
λ1,λ2.

∗ Puisque χAn
est scindé sur R :

tr (A) = λ1 + λ2 + (n − 2) · 0 ,

et d’autre part : tr (A) = 2, donc : λ1 + λ2 = 2 .

∗ Calculons A2
n. On obtient :

A2
n =




n 2 . . . 2 n
2 2 . . . 2 2
...

... (2)
...

...

2 2 . . . 2 2
n 2 . . . 2 n




,

d’où : tr (A2
n) = 2n + (n − 2)2 = 4n − 4.

Et, d’autre part : tr (A2
n) = λ

2
1 + λ

2
2 + (n − 2) 02,

d’où : λ2
1 + λ

2
2 = 4n − 4. On déduit :

4 = (λ1 + λ2)
2 = λ

2
1 + λ

2
2 + 2λ1λ2 = (4n − 4) + 2λ1λ2 ,

d’où : λ1λ2 = 4 − 2n .

Ainsi :

{
λ1 + λ2 = 2

λ1λ2 = 4 − 2n,
donc λ1 et  λ2 sont les solutions

de l’équation  t2 − 2t + (4 − 2n) = 0, d’inconnue t ∈ R . 
Le discriminant de cette équation du second degré est
∆ = 4 − 4(4 − 2n) = 8n − 12 > 0 , d’où, à l’ordre près :

λ1 = 1 − √
2n − 3, λ2 = 1 + √

2n − 3.

Ainsi, les valeurs propres de An sont :

0 (dordre n − 2) ,

1 − √
2n − 3 (dordre 1), 1 + √

2n − 3 (dordre 1) .

b) On a :

Sp
R
(An) ⊂ Z ⇐⇒

{
1 − √

2n − 3 ∈ Z

1 + √
2n − 3 ∈ Z

⇐⇒ √
2n − 3 ∈ Z ⇐⇒ ∃ k ∈ N,

√
2n − 3 = k

⇐⇒ ∃ k ∈ N, 2n − 3 = k2 (1).

Si n convient, nécessairement k est impair. Donc :

(1) ⇐⇒ ∃ t ∈ N, 2n − 3 = (2t + 1)2

⇐⇒ ∃ t ∈ N, n = 2(t2 + t + 1).

Puisque, de plus, n � 3, on conclut :

Sp
R
(An) ⊂ Z ⇐⇒ ∃ t ∈ N

∗, n = 2(t2 + t + 1) .

Les premières valeurs de n sont : 6, 14, 26 . . .

Puisque Ei j est triangulaire, ses valeurs propres se li-

sent sur sa diagonale, donc SpK (Ei j ) = {0}. Si Ei j était diago-

nalisable, alors il existerait P ∈ GLn(K ) telle que
Ei j = P0P−1 = 0 , contradiction.

On conclut que Ei j n’est pas diagonalisable.

12.7

12.8

12.9



427

Formons le polynôme caractéristique de M(a) :

χM(a)(λ)

=
∣∣∣∣∣∣
3 − a − λ −5 + a a

−a a − 2 − λ a
5 −5 −2 − λ

∣∣∣∣∣∣

=
L1  − L1 − L2

∣∣∣∣∣∣
3 − λ −3 + λ 0
−a a − 2 − λ a
5 −5 −2 − λ

∣∣∣∣∣∣

=
C2  − C2 + C1

∣∣∣∣∣∣
3 − λ 0 0
−a −2 − λ a
5 0 −2 − λ

∣∣∣∣∣∣

= (3 − λ)

∣∣∣∣−2 − λ a
0 −2 − λ

∣∣∣∣
= (3 − λ)(−2 − λ)2 = −(λ+ 2)2(λ− 3).

Ainsi, les valeurs propres de M(a) sont :

−2 (double) et  3 (simple).

Déterminons la dimension de SEP (A,−2) .

On a, pour tout X =

 x

y
z


 ∈ M3,1(R) :

AX = −2X ⇐⇒




(5 − a)x + (−5 + a)y + az = 0

−ax + ay + az = 0

5x − 5y = 0

⇐⇒
({ x = y

z = 0
si a =/ 0

)
ou

(
x = y si a = 0

)
.

Il en résulte : dim SEP (A,−2) =
{ 1 si a =/ 0

2 si a = 0.

On conclut que M(a) est diagonalisable si et seulement si :
a = 0.

Formons le polynôme caractéristique de M , par exemple
en développant par la règle de Sarrus :

χM(λ) =
∣∣∣∣∣∣
−λ a c
b −λ c
b −a −λ

∣∣∣∣∣∣
= −λ3 + bcλ− acλ+ abλ = −λ(

λ
2 − (ab − ac + bc)

)
.

1er cas : ab − ac + bc > 0 :

Alors, M admet trois valeurs propres réelles deux à deux dis-
tinctes, donc M est diagonalisable dans M3(R) , donc M est
diagonalisable dans M3(C) .

2e cas : ab − ac + bc < 0 :

Alors, M admet trois valeurs propres complexes deux à deux
distinctes, donc  M est diagonalisable dans M3(C) , mais,

comme  χM n’est pas scindé sur R, M n’est pas diagonali-

sable dans M3(R) .

3e cas : ab − ac + bc = 0 :

Alors, χM(λ) = −λ3, donc  M n’a comme valeur propre (réelle
ou complexe) que 0.

Si (a,b,c) = (0,0,0) , alors M = 0, donc M est diagonalisable
dans M3(R) et dans M3(C) .

Supposons (a,b,c) =/ (0,0,0) . Si M était diagonalisable dans
M3(R) ou M3(C) , M serait semblable à 0, donc M = 0,
contradiction. Ceci montre que  M n’est pas diagonalisable
dans M3(R) ni dans M3(C) .

En conclusion :

• M est diagonalisable dans M3(R) si et seulement si :

ab − ac + bc > 0 ou (a,b,c) = (0,0,0)

• M est diagonalisable dans M3(C) si et seulement si :

ab − ac + bc =/ 0 ou (a,b,c) = (0,0,0) .

Puisque  A est triangulaire, les valeurs propres de  A
se lisent sur sa diagonale : 0  (double), 1 (double).

On a, pour tout  X =




x
y
z
t


 ∈ M4,1(R) :

AX = 0 ⇐⇒




ay + bz + ct = 0

dz + et = 0

z + f t = 0

t = 0

⇐⇒




ay = 0

z = 0

t = 0.

Il en résulte : dim SEP (A,0) = 2 ⇐⇒ a = 0.

De même : AX = X ⇐⇒




ay + bz + ct = x

dz + et = y

f t = 0

.

Il en résulte : dim SEP (A,1) = 2 ⇐⇒ f = 0.

On conclut que  A est diagonalisable si et seulement si :

a = 0 et f = 0.

1re méthode : Réduction :

La matrice  A =

 0 1 1

1 0 1
1 1 0


 est symétrique réelle, donc dia-

gonalisable dans M3(R) .

Un calcul élémentaire fournit A = P D P−1, où :

P =

 1 1 1

1 −1 0
1 0 −1


 , D =


 2 0 0

0 −1 0
0 0 −1


 ,

12.10
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P−1 = 1

3


 1 1 1

1 −2 1
1 1 −2


 .

En notant  ∆ =



√
2 0 0

0 i 0
0 0 i


et  X = P∆P−1 , on a alors :

X2 = (P∆P−1)2 = P∆2 P−1 = P D P−1 = A.

Ainsi, X convient. On calcule  X par produit de trois ma-
trices et on obtient :

X = 1

3




√
2 + 2i

√
2 − i

√
2 − i√

2 − i
√

2 + 2i
√

2 − i√
2 − i

√
2 − i

√
2 + 2i


 .

2e méthode : Utilisation d’une particularité de A :

Vu la forme de la matrice  A , on conjecture qu’il existe

X =

 a b b

b a b
b b a


 convenant, où (a,b) ∈ C

2.

En notant I = I3 et U =

 1 1 1

1 1 1
1 1 1


, on a :

X2 = A ⇐⇒ (
(a − b)I + bU)

)2 = −I + U

⇐⇒ (a − b)2 I + 2b(a − b)U + b2 U 2︸︷︷︸
= 3U

= −I + U

⇐⇒ (
(a − b)2 + 1)I + (

2b(a − b) + 3b2 − 1
)
U = 0

⇐�
{

(a − b)2 + 1 = 0

2ab + b2 − 1 = 0

⇐�
{

a − b = i

2ab + b2 − 1 = 0
⇐⇒

{
a = b + i

2b(b + i) + b2 − 1 = 0

⇐⇒
{

a = b + i

3b2 + 2i b − 1 = 0
⇐�




a =
√

2 + 2i

3

b =
√

2 − i

3

et on retrouve la même solution  X que dans la première mé-
thode.

Remarque : On a déterminé une matrice  X convenant, mais
il se peut, a priori, qu’il y en ait d’autres. es.

On forme le polynôme caractéristique de  A , on cal-
cule les valeurs propres de  A (dans C) et les SEP de  A , et,
après quelques calculs élémentaires, on obtient  A = P D P−1,
où :

P =

 1 1 1

1 j2 j
1 j j2


 , D =




1 0 0
0 i

√
3

3 0

0 0 − i
√

3
3


 ,

P−1 = 1

3


 1 1 1

1 j j2

1 j2 j


 .

Comme  

∣∣∣∣ i
√

3

3

∣∣∣∣ < 1, on a :

Dn =

 1 0 0

0
(

i
√

3
3

)n
0

0 0
( − i

√
3

3

)n




−−−→
n ∞

∆ =

 1 0 0

0 0 0
0 0 0


 ,

d’où, par continuité des opérations dans M3(C) et en effectuant
le produit de trois matrices :

An = P Dn P−1 −−−→
n ∞

P∆P−1 = 1

3


 1 1 1

1 1 1
1 1 1


 .

a) Soit (α1,α2,α3,α4) ∈ R
4 tel que :

4∑
i=1

αi fi = 0.

On a :

∀ x ∈ R, α1 ch x + α2 sh x + α3x ch x + α4x sh x = 0 .

En prenant le DL3(0) , on a :

α1

(
1 + x2

2

)
+ α2

(
x + x3

6

)
+ α3x

(
1 + x2

2

)
+ α4x2

+ o
x−→0

(x3) = 0,

c’est-à-dire :

α1 + (α2 + α3)x +
(
α1

2
+ α4

)
x2

+
(
α2

6
+ α3

2

)
x3 + o(x3) = 0 .

Par unicité du DL3(0) de la fonction nulle, on a alors :

α1 = 0, α2 + α3 = 0,
α1

4
+ α4 = 0,

α2

6
+ α3

2
= 0 ,

d’où : α1 = 0, α4 = 0, α2 = 0, α3 = 0.

Ceci montre que  B = ( f1, f2, f3, f4) est libre, donc  B est
une base de  E = Vect (B), et : dim (E) = 4.

b) • On a, pour tout x ∈ R :

D f1(x) = sh x = f2(x) ,

D f2(x) = ch x = f1(x) ,

D f3(x) = ch x + x sh x = f1(x) + f4(x) ,

D f4(x) = sh x + x ch x = f2(x) + f3(x) .

Comme  D est linéaire, il en résulte :

∀ f ∈ E, D f ∈ E .

On conclut que  D est un endomorphisme du R-ev  E .

12.14
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• On a :

D f1 = f2, D f2 = f1, D f3 = f1 + f4, D f4 = f2 + f3 ,

donc la matrice de  D dans  B est :

A =




0 1 1 0
1 0 0 1
0 0 0 1
0 0 1 0


 .

c) 1) En notant  I =
(

1 0
0 1

)
, et  J =

(
0 1
1 0

)
,

on a A =
(

J I
0 J

)
, d’où, par produit par blocs :

A2 =
(

J I
0 J

)(
J I
0 J

)
=

(
J 2 2J
0 J 2

)
=

(
I 2J
0 I

)
,

A4 = (A2)2 =
(

I 2J
0 I

)(
I 2J
0 I

)
=

(
I 4J
0 I

)
.

2) On a alors :

A4 − 2A2 + I4 =
(

I 4J
0 I

)
−2

(
I 2J
0 I

)
+

(
I 0
0 I

)
=0 ,

donc : D4 − 2D2 + IdE = 0,

c’est-à-dire : ∀ f ∈ E, f (4) − 2 f ′′ + f = 0.

d) • D’après c), le polynôme  P = X4 − 2X2 + 1 est annula-
teur de  D . Comme  P = (X2 − 1)2 = (X + 1)2(X − 1)2, il en
résulte, d’après le cours :

Sp (D) ⊂ {−1,1} .

Soit  X =




x1

x2

x3

x4


 ∈ M4,1(R). On a :

∗ AX = −X ⇐⇒




x1 + x2 = 0

x3 = 0

x4 = 0,

donc  −1 ∈ Sp
R
(A) et  SEP (A,−1) = Vect




1
−1
0
0




∗ AX = X ⇐⇒




x2 = x1

x3 = 0

x4 = 0,

donc  1 ∈ Sp
R
(A) et  SEP (A,1) = Vect




1
1
0
0


 .

On conclut :

Sp (D) = {−1,1},

SEP (D,−1) = Vect ( f1 − f2) ,

SEP (D,1) = Vect ( f1 + f2) .

• Puisque la somme des dimensions des SEP de E est 2 =/ 4,
on conclut que  D n’est pas diagonalisable.

1) Soit  A convenant.

Le polynôme  P = X3 + 2X − 3 annule  A ,

et  P = (X − 1) (X2 + X + 3)︸ ︷︷ ︸
∆ < 0

, donc : Sp
R
(A) ⊂ {1}.

Comme A est supposée diagonalisable dans Mn(R) , il existe
alors P ∈ GLn(R) telle que A = PIn,P−1 , d’où A = In.

2) Réciproquement, il est clair que In convient.

Finalement, il y a une matrice et une seule convenant : A = In.

Le polynôme  P = 2X3 + 3X2 − 6X − 1 est annula-
teur de  A .

Étudions les variations de P .

On a : P ′ = 6X2 + 6X − 6 = 6(X2 + X − 1),

qui s’annule en  x1 = −1 − √
5

2
et x2 = −1 + √

5

2
.

D’où le tableau des variations de P :

12.16

12.17

x x1 x2 + ∞

+ +

+ ∞

P'(x)

P(x) 0 0 0

0 0

>0

<0

α β γ

De plus : x1 < −1 < 0 < x2

et : P(−1) = 6 > 0, P(0) = −1 < 0 .

Il en résulte, par le théorème des valeurs intermédiaires (P est
continu sur l’intervalle R) et la stricte monotonie par intervalles,
que  P admet, dans R, exactement trois zéros  α,β,γ , deux à
deux distincts.

Ainsi, P est scindé simple dans R[X] et annulateur de  A, donc,
d’après le cours, A est diagonalisable dans Mn(R) .

1) Si 0 est valeur propre de f, alors −1, 0, 1 sont va-
leurs propres de f et dim (E) = 3, donc (condition suffisante
du cours), f est diagonalisable.

2) Supposons que 0 ne soit pas valeur propre de f. Alors, f est
inversible. Comme f 2 ◦ ( f 2 − e) = f 4 − f 2 = 0 , on déduit
f 2 − e = 0. Ainsi, le polynôme  X2 − 1 est annulateur de f.
Comme  X2 − 1 = (X − 1)(X + 1) , ce polynôme est scindé
simple et annulateur de f, donc, d’après le cours, f est dia-
gonalisable.

On conclut que  f est diagonalisable.

12.18
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−→

−→

On a : t M = 2 In − M2,

d’où :

M = t(2 In − M2) = 2 In − ( t M)2

= 2 In − (2 In − M2)2 = −M4 + 4M2 − 2 In,

et donc : M4 − 4M2 + M + 2 In = 0.

Ceci montre que le polynôme  P = X4 − 4X2 + X + 2 est an-
nulateur de P .

De plus :

P = (X − 1)(X3 + X2 − 3X − 2)

= (X − 1)(X + 2)(X2 − X − 1)

= (X − 1)(X + 2)

(
X − 1 − √

5

2

)(
X − 1 + √

5

2

)
.

Ainsi, P est scindé simple et annulateur de M , donc, d’après
le cours, M est diagonalisable.

Puisque A ∈ Mn(C), A est trigonalisable dans Mn(C).

Il existe P ∈ GLn(C), T ∈ Tn,s(C) telles que : A = PT P−1.

Comme  A est nilpotente, il existe k ∈ N
∗ tel que Ak = 0. Il

en résulte que le spectre de A est inclus dans {0} , donc les termes
diagonaux de T sont tous nuls :

T =



0 ∗
. . .

(0) 0


 .

On voit alors que, dans le calcul des puissances successives 
de T , la diagonale de 0 se décale vers le haut :

T 2 =




0 0 ∗
...

. . .
. . .

... (0)
. . . 0

0 . . . . . . 0


 ,. . . ,

T n−1 =




0 0 . . . 0 ∗
...

. . .
. . . (0) 0

...
. . .

. . .
...

... (0)
. . . 0

0 . . . . . . 0 0




, T n = 0.

d’où : An = (PT P−1)n = PT n P−1 = 0.

a) Formons le polynôme caractéristique :

χA(λ) =
(

1

2

)3
∣∣∣∣∣∣
1 − 2λ 1 −1

1 −1 − 2λ 1
2 0 −2λ

∣∣∣∣∣∣

=
C3  − C3 + C2

1

8

∣∣∣∣∣∣
1 − 2λ 1 0

1 −1 − 2λ −2λ
2 0 −2λ

∣∣∣∣∣∣

=
L2  − L2 − L3

1

8

∣∣∣∣∣∣
1 − 2λ 1 0

−1 −1 − 2λ 0
2 0 −2λ

∣∣∣∣∣∣

= 1

8
(2λ)

∣∣∣∣ 1 − 2λ 1
−1 −1 − 2λ

∣∣∣∣ = −λ

4
(4λ2) = −λ3.

b) D’après a) : Sp
R
(A) = {0}. Si  A était diagonalisable,

A serait semblable à la matrice nulle, donc A = 0 , exclu. 
On conclut : A n’est pas diagonalisable.

c) Notons B = (e1, e2, e3) la base canonique de M3,1(R) et  
f l’endomorphisme de M3,1(R) représenté par A dans B. 
On cherche une base C = (v1,v2,v3) de M3,1(R) telle que  f
soit représenté par T dans C. On a :

MatC( f ) = T⇐⇒(
f (v1) = 0, f (v2) = v1, f (v3) = v2

)
,

donc, si  C convient, alors f 2(v3) = f (v2) = v1 =/ 0. 

On calcule  A2 et on obtient : A2 = 1

4


 0 0 0

2 2 −2
2 2 −2


 .

Par exemple, v3 =

 1

0
0


 vérifie  f 2(v3) =/ 0.

Notons donc   v2 = f (v3) = A


 1

0
0


 = 1

2


 1

1
2


 ,

v1 = f (v2) = 1

2
A


 1

1
2


 = 1

4


 0

2
2


 = 1

2


 0

1
1


 .

La famille C = (v1,v2,v3) est libre, car :

detB(C) = 1

4

∣∣∣∣∣∣
0 1 1
1 1 0
1 2 0

∣∣∣∣∣∣ = 1

4

∣∣∣∣ 1 1
1 2

∣∣∣∣ = 1

4
=/ 0 .

Puisque  A représente  f dans B et que  T représente  f dans C,
A est semblable à  T .

a) • Soit λ ∈ Sp ( f ◦ g) − {0}.

On a donc λ =/ 0 et il existe x ∈ E − {0} tel que
f ◦ g(x) = λx . D’où :

(g ◦ f )
(
g(x)

) = g
(
( f ◦ g)(x)

) = g(λx) = λg(x) .

Si g(x) = 0 , alors λx = f
(
g(x)

) = 0, contradiction, car

λ =/ 0 et x =/ 0.

On a donc g(x) =/ 0 , et il s’ensuit : λ ∈ Sp (g ◦ f ) .

Ainsi : Sp ( f ◦ g) − {0} ⊂ Sp (g ◦ f ) .

• On déduit : Sp ( f ◦ g) ∪ {0} ⊂ Sp (g ◦ f ) ∪ {0}.
• Par rôles symétriques de  f et  g, on conclut :

Sp ( f ◦ g) ∪ {0} = Sp (g ◦ f ) ∪ {0} .
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b) On suppose ici que E est de dimension finie.

1re méthode : Étude de caractères bijectifs :

• Si  f et  g sont bijectifs, alors  f ◦ g et  g ◦ f sont bijec-
tifs, donc 0 /∈ Sp ( f ◦ g) et 0 /∈ Sp (g ◦ f ), et on déduit de a) :

Sp ( f ◦ g) = Sp (g ◦ f ).

• Si  f ou  g n’est pas bijectif, alors  f ◦ g et  g ◦ f ne sont
pas bijectifs, donc ne sont pas injectifs, (car E est de dimen-
sion finie), donc 0 ∈ Sp ( f ◦ g) et 0 ∈ Sp (g ◦ f ), et on déduit
de a) : Sp ( f ◦ g) = Sp (g ◦ f ).

2e méthode : Utilisation des polynômes caractéristiques :

D’après l’exercice 12.55, χ f ◦g = χg◦ f , donc

Sp ( f ◦ g) = Sp (g ◦ f ) , puisque le spectre est l’ensemble des
zéros du polynôme caractéristique.

c) Prenons E = C∞([0 ; 1],R), f : E −→ E
u 
−→u′ , g : E −→ E

v 
−→g(v)
,

où g(v) est la primitive de v s’annulant en 0.

Alors, g ◦ f (1) = 0, donc 0 ∈ Sp (g ◦ f ), mais f ◦ g = IdE ,
donc 0 /∈ Sp ( f ◦ g).

Dans cet exemple : Sp ( f ◦ g) =/ Sp (g ◦ f ).

Soit λ ∈ Sp
C
(A) .

Il existe X ∈ Mn,1(C) − {0} tel que : AX = λX .

Considérons la matrice carrée  M de Mn(C) obtenue en ré-
pétant X côte à côte, n fois, c’est-à-dire que les colonnes de
M sont toutes égales à X .

On a alors M =/ 0 et AM = λM, d’où :

|λ| ||M|| = ||λM|| = ||AM|| � ||A|| ||M|| .

Comme M =/ 0 , on a ||M|| > 0, d’où finalement :

|λ| � ||A|| .

a) En notant U =



1
...

1


 ∈ Mn,1(R), on a :

AU =




n∑
j=1

a1 j

...

n∑
j=1

anj




=



1
...

1


 = U .

Ceci montre que 1 est valeur propre de A . De plus, U est un
vecteur propres pour A , associé à la valeur propre 1.

b) Soit λ ∈ Sp
C
(A) . Il existe X ∈ Mn,1(C) − {0} tel que

AX = λX . Notons X =




x1
...

xn


 . On a donc :

∀ i ∈ {1,. . . ,n},
n∑

j=1

ai j xj = λxi ,

d’où : ∀ i ∈ {1,. . . ,n}, (λ− aii )xi =
∑
j=/ i

ai j xj ,

puis, en passant aux modules :

|λ− aii | |xi | = |(λ− aii )xi | =
∣∣∣∣
∑
j=/ i

ai j xj

∣∣∣∣
�

∑
j=/ i

|ai j | |xj | =
∑
j=/ i

ai j |xj |.

Il existe i ∈ {1,. . . ,n}) tel que : |xi | = Max
1� j�n

|xj |,
et on a alors :

|λ− aii | |xi | �
(∑

j=/ i

ai j

)
|xi | = (1 − aii )|xi | .

Comme X =/ 0, on a |xi | > 0, et on déduit :

|λ− aii | � 1 − aii .

On conclut : Sp
C
(A) ⊂

n⋃
i=1

B ′(aii , 1 − aii ).

12.23
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y

xa11 a22 a33 1O

Exemple : n = 3 , 0 < a11 < a22 <33< 1

a) • Il est clair que  f va de R[X] dans R[X].

• La linéarité de  f est immédiate, résultant de la linéarité de
la dérivation.

b) Soit  (λ,P) ∈ R × (
R[X] − {0}) tel que f (P) = λP. 

Il existe n ∈ N, (a0,. . . ,an) ∈ R
n+1 tel que P =

n∑
k=0

akXk,

et an =/ 0.

Alors, f (P) est de degré � n + 2, et le terme de degré n + 2

de f (P) est (n − 3)anXn+2, d’où nécessairement n = 3.
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1

1 2 3

y

xO

y = f(x)

En notant P = aX3 + bX2 + cX + d, (a,b,c,d) ∈ R
4 , on ob-

tient :

f (P) = λP

⇐⇒ (X3 + X)(3aX2 + 2bX + c)

−(3X2 − 1)(aX3 + bX2 + cX + d)

= λ(aX3 + bX2 + cX + d)

⇐⇒ −bX4 + (4a − 2c)X3 + (3b − 3d)X2 + 2cX + d

= λ(aX3 + bX2 + cX + d)

⇐⇒ (
b = 0,λa = 4a − 2c,λb = 3b − 3d,

λc = 2c,λd = d
)

⇐⇒ (
b = 0, d = 0, λa = 4a − 2c, λc = 2c

)

⇐⇒
∣∣∣∣∣∣
λ = 2, a = c, b = 0, d = 0

ou
c = 0, λ = 4, b = 0, d = 0.

Finalement : Sp ( f ) = {2, 4},

SEP ( f,2) = Vect (X3 + X), SEP ( f,4) = Vect (X3) .

Il est immédiat que  E est bien un R-ev et que  T est
bien un endomorphisme de E .

1) Soit  λ ∈ Sp (T ) . 
Il existe  f ∈ E − {0} telle que : T ( f ) = λ f .

On a donc : ∀ x ∈ [0 ;+∞[, f (x + 1) = λ f (x).

Par une récurrence immédiate, il en résulte :

∀ x ∈ [0 ;+∞[, ∀ n ∈ N, f (x + n) = λ
n f (x) .

Puisque f =/ 0, il existe x0 ∈ [0 ;+∞[ tel que f (x0) =/ 0,

d’où : λn = f (x0 + n)

f (x0)
−−−→

n ∞
0, et donc : λ ∈ ] − 1 ; 1[ .

2) Réciproquement, soit λ ∈ ] − 1 ; 1[ .

Il est clair qu’il existe f0 : [0 ; 1] −→ R, continue, telle que :
f0(1) = λ f0(0) et f0 =/ 0. Il suffit, par exemple, de prendre pour
f0 l’application, affine sur [0 ; 1] , qui envoie 0 en 1 et envoie
1 en λ .

Considérons l’application f : [0 ;+∞[−→ R définie, pour tout
x ∈ [0 ;+∞[, par : f (x) = λ

n f0(x + n), où n désigne la par-
tie entière de x .

Il est clair que : f ∈ E et T ( f ) = λ f , donc λ est valeur propre
de T .

On conclut : Sp ( f ) = ] − 1 ; 1[.

Formons le polynôme caractéristique χM de M :

χM(X) = det

(
In − XIn In

A A − XIn

)
.

En multipliant les colonnes numéros n + 1 à 2n par (1 − X),
on obtient :

(1 − X)n
χM(X) = det

(
(1 − X)In (1 − X)In

A (1 − X)(A − XIn)

)
.

En, faisant Cj Cj − Cj−n pour j = n + 1,. . . 2n , on a :

(1 − X)n
χM(X)

= det

(
(1 − X)In 0

A (1 − X)(A − XIn) − A

)

= det
(
(1 − X)In

)
det

( − XA − X(1 − X)In
)

= (1 − X)n(−X)ndet
(
A − (X − 1)In

)
= (1 − X)n(−X)n

χA(X − 1).

Ainsi : (1 − X)n
(
χM (X) − (−X)n

χA(X − 1)
) = 0.

Comme l’anneau K [X] est intègre et que (1 − X)n =/ 0, on peut
simplifier et on conclut :

χM(X) = (−X)n
χA(X − 1) .

1) Réduction de A :

Un calcul élémentaire montre que A est diagonalisable et que
A = P D P−1, où :

P =
(

1 0
−2 1

)
, D =

(−1 0
0 4

)
, P−1 =

(
1 0
2 1

)
.

2) Résolution de l’équation M3 − M = A :

Si  M convient, alors  M commute avec A , puisque  M com-
mute avec tout polynôme en M .

Notons N = P−1 M P .
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Puisque AM = M A, on déduit DN = N D .

En notant D =
(

a b
c d

)
, on a :

DN = N D

⇐⇒
(−1 0

0 4

)(
a b
c d

)
=

(
a b
c d

)(−1 0
0 4

)

⇐⇒
(−a −b

4c 4d

)
=

(−a 4b
−c 4d

)

⇐⇒
{−b = 4b

4c = −c
⇐⇒

{ b = 0

c = 0.

Il en résulte N =
(

a 0
0 d

)
, (a,d) ∈ R

2.

On a alors :

M3 − 2M = A ⇐⇒ N 3 − 2N = D

⇐⇒
{

a3 − 2a = −1

d3 − 2d = 4
⇐⇒

{
a3 − 2a + 1 = 0

d3 − 2d − 4 = 0

⇐⇒
{

(a − 1)(a2 + a − 1) = 0

(d − 2)(d2 + 2d + 2) = 0

⇐⇒




a ∈
{

1,
−1 − √

5

2
,
−1 + √

5

2

}

d = 2.

Pour chacune des trois matrices  N ainsi obtenues, on calcule
M , par produit de trois matrices, et on conclut que l’ensemble
S des solutions de l’équation proposée est :

S =
{(

1 0
2 2

)
,




−1 − √
5

2
0

5 + √
5 2


 ,




−1 + √
5

2
0

5 − √
5 2


}

.

a) • Puisque  A est symétrique réelle, A est diago-
nalisable dans M3(R) .

• Un calcul élémentaire fournit une diagonalisation de A ,
A = P D P−1, où :

P =

 1 0 1

1 1 −1
0 1 1


 , D =


 3 0 0

0 3 0
0 0 −3


 ,

P−1 = 1

3


 2 1 −1

−1 1 2
1 −1 1


 .

b) Remarquons que, si une matrice M vérifie (1), alors  M
commute avec A .

Soit M ∈ M3(R). Notons X = P−1 M P . On a :

AM = M A ⇐⇒ DX = X D .

Comme  D =
(

3 I2 0
0 −3

)
, décomposons X de même :

X =
(

Y L
C z

)
. On a :

DX = X D

⇐⇒
(

3 I2 0
0 −3

)(
Y L
C z

)
=

(
Y L
C z

)(
3 I2 0
0 −3

)

⇐⇒
(

3Y 3L
−3C −3z

)
=

(
3Y −3L
3C −3z

)

⇐⇒
{

SL = −3L

−3C = 3C
⇐⇒

{ L = 0

C = 0.

Ceci montre que, si M est solution de (1), alors, en notant

X = P−1 M P , X est de la forme X =
(

Y 0
0 z

)
, où

Y ∈ M2(R), z ∈ R.

Avec les notations précédentes :

(1) M2 = A ⇐⇒ X2 = D

⇐⇒
(

Y 0
0 z

)2

=
(

3 I2 0
0 −3

)
⇐⇒

{
Y 2 = 3 I2

z2 = −3.

Comme l’équation z2 = −3 n’a pas de solution dans R, on

conclut que l’équation proposée n’a pas de solution dans M3(R) .

Il s’agit de An =



1 . . . 1

(0)
...

1


 ∈ Mn(R).

Puisque  An est triangulaire, les valeurs propres de  An se li-
sent sur sa diagonale, donc  An admet pour valeurs propres :

0 (d’ordre n − 2) et 1 (d’ordre 2).

Supposons  An diagonalisable. Alors, An est semblable à la

matrice diagonale D = diag (1,1,0,. . . ,0) . En particulier,

comme D2 = D , on a : A2 = A . Mais le (1,n)ème terme de

A2 est  n, contradiction.

Ceci montre que  A n’est pas diagonalisable.

Puisque  A est diagonalisable dans Mn(K ), il existe

P ∈ GLn(K ), D = diag (λ1,. . . ,λn) ∈ Dn(K ) telles que

A = P D P−1.

Soit M ∈ Mn(K ) . Notons N = P−1 M P . On a :

AM + M A = 0 ⇐⇒ DN + N D = 0 .

Notons N = (νi j )i j . On a :
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DN + N D = 0

⇐⇒ ∀ (i, j) ∈ {1,. . . ,n}2, λiνi j + νi jλj = 0

⇐⇒ ∀ (i, j) ∈ {1,. . . ,n}2, (λi + λj︸ ︷︷ ︸
=/ 0

)νi j = 0

⇐⇒ ∀ (i, j) ∈ {1,. . . ,n}2, νi j = 0

⇐⇒ N = 0 ⇐⇒ M = 0.

On conclut, avec les hypothèses de l’énoncé :

AM + M A = 0 ⇐⇒ M = 0 .

a) Récurrence sur q.

La propriété est évidente pour q = 0.

Si, pour q ∈ N fixé, Ak+q = Ak , alors :

Ak+(q+1) = A(k+q)+1 = Ak+q A = Ak A = Ak+1 = Ak .

On conclut, par récurrence sur q :

∀ q ∈ N, Ak+q = Ak .

b) En particulier : Ak+k = Ak , c’est-à-dire (Ak)2 = Ak. Ainsi,

le polynôme X2 − X = X(X − 1) est scindé simple sur K et

annulateur de Ak , donc, d’après le cours, Ak est diagonali-
sable.

Plus précisément, Ak est une matrice de projecteur.

c) Soit p ∈ {1,. . . ,k − 1} . Puisque  Ak et  Ap commutent, on
peut appliquer la formule du binôme de Newton :

(Ak − Ap)k =
k∑

i=0

(
k
i

)
(Ak)i (−1)k−i (Ap)k−i

=
k∑

i=0

(
k
i

)
(−1)k−i A(k−p)i+pk .

Comme : ∀ i ∈ {0,. . . ,k}, (k − p)i + pk � pk � k,

on a : ∀ i ∈ {1,. . . ,k}, A(k−p)i+pk = Ak,

d’où :

(Ak − Ap)k =
( k∑

i=0

(
k
i

)
(−1)k−i

)
Ak

= (
1 + (−1)

)k
Ak = 0k Ak = 0Ak = 0.

On conclut : Ak − Ap est nilpotente.

a) Notons A =
(

a b
b c

)
une matrice symétrique com-

plexe d’ordre 2, quelconque, (a,b,c) ∈ C
3.

Comme χA est scindé sur C, A n’est pas diagonalisable si et
seulement si : A admet une valeur propre double et le SEP
associé est de dimension 1.

On calcule le polynôme caractéristique de  A :

χA(λ) =
∣∣∣∣ a − λ b

b c − λ

∣∣∣∣ = λ
2 − (a + c)λ+ (ac − b2) .

Alors :

χA admet une racine double

⇐⇒ (a + c)2 − 4(ac − b2) = 0

⇐⇒ (a − c)2 + 4b2 = 0

⇐⇒ c = a + 2εi b, ε = ±1.

Sachant que A admet une valeur propre double, A n’est pas

diagonalisable si et seulement si A n’est pas une matrice d’ho-

mothétie, c’est-à-dire si et seulement si on n’a pas b = 0 et

a = c. Mais, avec c = a + 2εi b, on a : a = c ⇐⇒ b = 0 .

Finalement, l’ensemble S des matrices symétriques complexes

d’ordre 2 non diagonalisables est :

S =
{(

a b
b a + 2εi b

)
; (ε, a, b) ∈ {−1,1} × C × C

∗
}

.

b) En particulier, d’après a), la matrice  A2 =
(

0 1
1 2i

)
,

obtenue pour  ε = 1, a = 0, b = 1 est symétrique complexe

non diagonalisable.

Il est alors clair que, pour tout n ∈ N − {0,1}, la matrice

An =
(

A2 (0)

(0) (0)

)
∈ Mn(C) , obtenue en complétant A2 par

des termes tous nuls, est symétrique complexe et non diago-

nalisable.

En effet, si  An était diagonalisable, par endomorphisme in-

duit, d’après le cours, A2 serait diagonalisable, contradiction.

On conclut que, pour tout n ∈ N − {0,1}, il existe une matrice

symétrique complexe non diagonalisable.

a) • Formons le polynôme caractéristique de Jn, par

exemple en développant par rapport à la première colonne :

χJn (λ)
=

∣∣∣∣∣∣∣∣∣

−λ 1 (0)

. . .
. . .

(0)
. . . 1

1 −λ

∣∣∣∣∣∣∣∣∣
[n]

= (−λ)

∣∣∣∣∣∣∣∣∣

−λ 1 (0)

. . .
. . .

(0)
. . . 1

−λ

∣∣∣∣∣∣∣∣∣
[n − 1]
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+ (−1)n+1

∣∣∣∣∣∣∣∣∣

1

−λ . . . (0)

. . .
. . .

(0) −λ 1

∣∣∣∣∣∣∣∣∣
[n − 1]

= (−λ)(−λ)n−1 + (−1)n+1 = (−1)n(λn − 1).

Il en résulte que les valeurs propres de Jn sont les

ωk = exp

(
2i pπ

n

)
, p ∈ {0,. . . ,n − 1} , toutes simples.

• Puisque Jn ∈ Mn(C)) et que Jn admet n valeurs propres deux
à deux distinctes, d’après la condition suffisante du cours,
Jn est diagonalisable.

b) D’après a), en notant D = diag (ω0,. . . ,ωn−1) , il existe

P ∈ GLn(C) telle que Jn = P D P−1.

Soit (a0,..,an−1) ∈ C
n. On remarque que :




a0 a1 . . . an−1

an−1 a0 . . . an−2
...

...
...

a1 a2 . . . a0




= a0In + a1 Jn + a2 J 2
n + · · · + an−1 J n−1

n .

d’où :

Dn =

∣∣∣∣∣∣∣∣∣

a0 a1 . . . an−1

an−1 a0 . . . an−2
...

...
...

a1 a2 . . . a0

∣∣∣∣∣∣∣∣∣
[n]

= det

( n−1∑
k=0

ak J k

)
= det

( n−1∑
k=0

ak P Dk P−1

)

= det
(

P
( n−1∑

k=0

ak Dk
)

P−1
)

= det
( n−1∑

k=0

ak Dk
)

= det

(
diag

0�p�n−1

n−1∑
k=0

akω
p
k

)
=

n−1∏
p=0

n−1∑
k=0

ak exp

(
2i kpπ

n

)
.

Par exemple, pour n = 3, on obtient :∣∣∣∣∣∣
a0 a1 a2

a2 a0 a1

a1 a2 a0

∣∣∣∣∣∣
= (a0 + a1 + a2)(a0 + a1j + a2j2)(a0 + a1j2 + a2j) .

Soit x ∈ E. En notant y = ( f − ae) ◦ ( f − be)(x) ,

on a :

{
y = ( f − ae)

(
( f − be)(x)

) ∈ Im ( f − ae)

y = ( f − be)
(
( f − ae)(x)

) ∈ Im ( f − be),

donc : y = Im ( f − ae) ∩ Im ( f − be) = {0}.

Ceci montre : ∀ x ∈ E, ( f − ae) ◦ ( f − be)(x) = 0,

c’est-à-dire : ( f − ae) ◦ ( f − be) = 0.

Le polynôme P = (X − ae)(X − be) est donc annulateur
de f. De plus, comme a =/ b , P est scindé simple sur K.

D’après le cours, on conclut que f est diagonalisable.

a) Il est clair que  f est une application de Mn(K ) dans
Mn(K ).

La linéarité de  f est immédiate : on a, pour tout α ∈ R et toutes
M,N ∈ Mn(K ) :

f (αM + N ) = tr (αM + N )A + tr (A)B(αM + N )C

= (
α tr (M) + tr (N )

)
A + α tr (A)B MC + tr (A)B NC

= α
(
tr (M)A + tr (A)B MC

) + (
tr (M)A + tr (A)B NC

)
= α f (M) + f (N ) .

On conclut que f est un endomorphisme de Mn(K ).

b) Cherchons un polynôme annulateur de f, scindé simple.

Commençons par calculer f 2.

On a, pour toute M ∈ Mn(K ) :

f 2(M) = f
(

f (M)
) = tr

(
f (M)

)
A + tr (A)B f (M)C

= tr
(
tr (M)A + tr (A)B MC

)
A

+ tr (A)B
(
tr (M)A + tr (A)B MC)C

= (
tr (M)tr (A) + tr (A)tr (B MC)

)
A

+ tr (A)tr (M) B AC︸ ︷︷ ︸
= 0

+(
tr (A)

)2
B2︸︷︷︸

= B

M C2︸︷︷︸
= C

.

De plus :

tr (B MC) = tr
(
B(MC)

)
= tr

(
(MC)B

) = tr
(
M(C B︸︷︷︸

= 0

)
) = 0.

D’où :

f 2(M) = tr (M) tr (A)A + (
tr (A)

)2
B MC

= tr (A)
(
tr (M)A + tr (A)B MC

) = tr (A) f (M).

Ceci montre : f 2 = tr (A) f.

Ainsi, le polynôme  P = X2 − tr (A)X est annulateur de f.

De plus, P = X
(
X − tr (A)

)
est scindé simple sur K, car

tr (A) =/ 0.

D’après le cours, on conclut que f est diagonalisable.

a) On a :{
tr

(
B(AB)

) = tr
(
(AB)B

) = tr (AB2) = tr (A)

tr
(
(B A)B

) = tr
(
(−AB)B

) = −tr (AB2) = −tr (A),

donc : tr (A) = 0.
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x −∞ −1 1 +∞
P ′(x) + 0 − 0 +
P(x) −∞ ↗ 2 ↘ −6 ↗ +∞

Comme  A et  B ont des rôles symétriques dans les hypo-
thèses, on a aussi : tr (B) = 0.

b) • Puisque A2 = I4 , le polynôme  X2 − 1 est annulateur 

de A . De plus, X2 − 1 = (X − 1)(X + 1) est scindé simple 
sur C. D’après le cours, on déduit que A est diagonalisable.

De même, B est diagonalisable.

• Puisque X2 − 1 est annulateur de A , on a : Sp (A) ⊂ {−1,1}.
Notons α (resp. β ) l’ordre de multiplicité de la valeur propre
−1 (resp. 1) de A , avec la convention α = 0 si −1 n’est pas
valeur propre de A , β = 0 si 1 n’est pas valeur propre de  A .

Comme  χA est scindé sur C, on a : α+ β = 4.

D’autre part : 0 = tr (A) = α(−1) + β1.

On déduit : α = β = 2.

On conclut que les valeurs propres de A sont :

−1 (double) et 1 (double).

De même pour B .

c) 1) On a :

C2 = (i AB)2 = −(AB)(AB) = −A(B A)B

= A(AB)B = A2 B2 = I4I4 = I4,

AC + C A = i (AAB + AB A) = i A(AB + B A) = 0 ,

BC + C B = i (B AB + AB B) = i (B A + AB)B = 0 .

2) Le couple (A,C) vérifie les mêmes hypothèses que le
couple (A,B) , donc, d’après a) et b), les valeurs propres de C
sont −1 (double) et 1 (double), et on a tr (C) = 0, d’où
tr (AB) = −i tr (C) = 0 .

Le polynôme χA est scindé dans C[X] ; il existe 

donc (λ1,. . . ,λn) ∈ C
n tel que χA =

n∏
i=1

(λi − X), d'où:

χA(B) =
n∏

i=1

(λi In − B) . On a alors :

χA(B) ∈ GLn(C)

⇐⇒ (∀ i ∈ {1,. . . ,n}, λi In − B ∈ GLn(C))

⇐⇒ (∀ i ∈ {1,. . . ,n}, λi /∈ Sp
C
(B)

)

⇐⇒ Sp
C
(A) ∩ Sp

C
(B) = ∅.

Remarque : Puisque  A et  B ont des rôles symétriques dans
(i), les conditions (i) ou (ii) sont aussi équivalentes à :

χB(A) ∈ GLn(C) .

Par hypothèse, le polynôme P = X3 − 3X − 4 est an-
nulateur de A .

On a : P ′ = 3X2 − 3 = 3(X − 1)(X + 1),

d’où le tableau des variations de P :

On déduit, par le théorème des valeurs intermédiaires et la stricte
monotonie par intervalles, que  P admet, dans R, un zéro et
un seul, noté α. De plus : α > 1.

Il existe donc β ∈ C − R tel que :

P = (X − α)(X − β)(X − β) .

Ainsi, P est scindé simple sur C et annulateur de A , donc,
d’après le cours, A est diagonalisable dans Mn(C) .

Il existe donc P ∈ GLn(C) telle que A = P D P−1, où :

D = diag (α,. . . ,α︸ ︷︷ ︸
p fois

,β,. . . ,β︸ ︷︷ ︸
q fois

,β,. . .β︸ ︷︷ ︸
q fois

) .

d’où : det (A) = det (D) = α
p
β

q
β

q = α
p|ββ|q > 0.

Par hypothèse, le polynôme P = X3 − 4X2 + 6X est
annulateur de A . On a :

P = X(X2 − 4X + 6)

= X(
(
X − (2 − i

√
2)

)(
X − (2 + i

√
2)

)
,

donc P est scindé simple sur C.

D’après le cours, il en résulte que  A est diagonalisable dans
Mn(C). Il existe donc P ∈ GLn(C) telle que A = P D P−1, où :
D = diag (0,. . . ,0︸ ︷︷ ︸

p fois

,α,. . . ,α︸ ︷︷ ︸
q fois

,α,. . . ,α︸ ︷︷ ︸
q fois

),

et α = 2 − i
√

2, p,q ∈ N.

On a alors : A2 = P D2 P−1,

d’où : tr (A2) = tr (D2) = p · 02 + qα2 + q(α)2

= q(α2 + (α)2) = 4q.

Comme : 0 � 4q � 2(p + 2q) = 2n,
on conclut : 0 � tr (A2) � 2 n.

Puisque χA est scindé sur K, A est trigonalisable dans
Mn(K ). Il existe donc Q ∈ GLn(K )

et T =



λ1 ∗

. . .

(0) λn


 ∈ Tn,s(K )

telles que A = QT Q−1 .

On a alors : P(A) = P(QT Q−1) = Q P(T )Q−1,

donc :

χP(A)(X) = χP(T )(X) =

∣∣∣∣∣∣∣
P(λ1) − X ∗

. . .

(0) P(λn) − X

∣∣∣∣∣∣∣
=

n∏
k=1

(
P(λk) − X

) = (−1)n
n∏

k=1

(
X − P(λk)

)
.
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a) Supposons  f nilpotent.

Il existe donc k ∈ N
∗ tel que f k = 0.

• 1) (PC, PSI) Puisque le polynôme  Xk est annulateur de f, d’après

le cours, on a donc : Sp ( f ) ⊂ {λ ∈ K ; λk = 0} = {0}.
2) (PT) Soit λ ∈ Sp ( f ) . Il existe x ∈ E − {0} tel que
f (x) = λ x . On déduit (à l’aide d’une récurrence immédiate :

f k(x) = λ
k x . On a donc λk = 0, puis λ = 0. Ceci montre

Sp ( f ) ⊂ {0}.

• Montrons que 0 est valeur propre de f.

Puisque f k = 0, on a :
(
det ( f )

)k = det ( f k) = 0,

donc det ( f ) = 0 , f n’est pas injectif, 0 est valeur propre 
de f.

Ainsi : {0} ⊂ Sp ( f ).

On conclut : Sp ( f ) = {0}.

b) On suppose ici K = C et Sp ( f ) = {0} . Puisque K = C ,
d’après le cours, f est trigonalisable. Il existe donc une base
B de E telle que la matrice  T de f dans B soit triangulaire su-
périeure.

Comme Sp ( f ) = {0} , les éléments diagonaux de T sont tous
nuls, donc  T est de la forme :

T =



0 ∗
. . .

(0) 0


 .

On voit alors que les puissances successives de T sont de la
forme :

T 2 =




0 0 ∗
. . .

. . .

(0)
. . . 0

0


 , . . . ,

FT n−1 =




0 0 ∗
. . . (0) 0

(0)
. . .

0


 , . . . , T n = 0.

Ainsi, f n = 0, donc  f est nilpotent.

Par hypothèse, le polynôme  P = Xp(X − 1)q est 
annulateur de A. Comme  P est scindé sur R, d’après le cours,
A est trigonalisable dans Mn(R) .

D’autre part : Sp
R
(A) ⊂ {λ ∈ R ; P(λ) = 0} = {0,1}.

En notant a (resp. b) l’ordre de multiplicité de 0 (resp. 1) 
dans χA, on a donc : tr (A) = a0 + b1 = b.

Comme, par hypothèse, tr (A) = 0, on déduit b = 0, donc 
1 n’est pas valeur propre de A .

Il en résulte que  A − In est inversible. En multipliant par l’in-
verse de  (A − In)

q dans l’égalité d’hypothèse, on conclut :

Ap = 0.

1) Soit  A convenant.

Le polynôme  P = X5 − X2 est annulateur de A , et :

P = X2(X3 − 1) = X2(X − 1)(X − j)(X − j2)

est scindé sur C, donc, d’après le cours, A est trigonalisable
dans Mn(C) .

Il existe donc P ∈ GLn(C), T ∈ Tn,s(C) telles que

A = PT P−1.

De plus, les termes diagonaux de T sont, à l’ordre près :

0 (m fois), 1 (p fois), j (q fois), j2 (q fois), où m,p,q ∈ N

et m + p + 2q = n .

En effet, comme j ∈ C − R , les ordres de multiplicité de j et

j2 dans le polynôme χA de R[X] sont égaux.

Alors : tr (A) = tr (T ) = m0 + p1 + qj + qj2 = p − q.

Ainsi : m, p, q ∈ N, m + p + 2q = n, p − q = n,

d’où : 0 = (m + p + 2q) − (p − q) = m + 3q,

donc m = 0 et q = 0, puis p = n .

On a donc : T =



1 ∗
. . .

(0) 1


 ,

et  0, j,j2 ne sont pas valeurs propres de A .

Il en résulte que A, A − jIn, A − j2In sont inversibles.

Comme A2(A − In)(A − jIn)(A − j2In) = 0 ,

on déduit A − In = 0, A = In.

2) Réciproquement, pour A = In , on a bien A5 = A2 et
tr (A) = n.

On conclut qu’il y a une matrice et une seule convenant,
A = In.

Notons  N =

 0 1 0

0 0 1
0 0 0


 ∈ M3(C).

Supposons qu’il existe X ∈ M3(C) telle que X2 = N .

On a N 3 = 0, donc (X2)3 = 0, X6 = 0. Ainsi, X est nilpo-
tente.

D’après l’exercice 12.20, puisque  X ∈ M3(C) est nilpotente,

on a X3 = 0 .

Alors : N 2 = (X2)2 = X4 = X3 X = 0.

Mais N 2 =

 0 0 1

0 0 0
0 0 0


 =/ 0 , contradiction.
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On conclut qu’il n’existe pas de matrice  X ∈ M3(C) telle que

X2 = N .

Remarquons que  A est triangulaire (inférieure).

Si une matrice  X ∈ M3(R) vérifie X2 = A , alors  X com-
mute avec A . Déterminons d’abord les matrices qui commu-
tent avec A . Dans cet exemple, on peut y arriver par un simple
calcul sur les éléments des matrices.

Notons X =

 a b c

x y z
u v w


 .

On a, en effectuant le produit matriciel :

X A = AX ⇐⇒

 a + b + c b 4c

x + y + z y 4z
u + v + w v 4w




=

 a b c

a + x b + y c + z
a + 4u b + 4v c + 4w




⇐⇒
(

c = 0, b = 0, z = 0, v = 0, y = a, u + w = a + 4u
)
,

donc, en particulier, X est de la forme X =

 a 0 0

x a 0
u 0 w


 ,

où (a,x,u,w) ∈ R
4.

En reportant dans l’équation de l’énoncé :

X2 = A ⇐⇒

 a2 0 0

2ax a2 0
au + wu 0 w2


 =


 1 0 0

1 1 0
1 0 4




⇐⇒
(

a2 = 1, 2ax = 1, au + wu = 1, w2 = 4

)

⇐⇒
(

a = 1, w = 2, x = 1

2
, u = 1

3

)

ou

(
a = 1, w = −2, x = 1

2
, u = −1

)

ou

(
a = −1, w = 2, x = −1

2
, u = 1

)

ou

(
a = −1, w = −2, x = −1

2
, u = −1

3

)
.

On conclut que l’ensemble  S des solutions de l’équation de

l’énoncé est S =
{

X1, X2,−X1,−X2

}
, où :

X1 =

 1 0 0

1/2 1 0
1/3 0 2


 , X2 =


 1 0 0

1/2 1 0
−1 0 −2


 .

1) Réduction de A :

Un calcul élémentaire montre que A est diagonalisable et

fournit une diagonalisation de A , A = Q DQ−1 , où :

Q =

 0 1 1

1 1 1
0 0 −1


 , D =


−1 0 0

0 1 0
0 0 3


 ,

Q−1 =

−1 1 0

1 0 1
0 0 −1


 .

2) Soit M ∈ M3(R).

Notons N = Q−1 M Q , où Q est définie ci-dessus.

On a donc M = QN Q−1, d’où :

P(M) = A ⇐⇒ P(QN Q−1) = Q DQ−1

⇐⇒ Q P(N )Q−1 = Q DQ−1 ⇐⇒ P(N ) = D.

Si P(N ) = D, alors N commute avec D , donc, d’après l’exer-
cice 12.63 ou par un calcul élémentaire, on déduit que N est
diagonale.

Notons donc N =

 x 0 0

0 y 0
0 0 z


 , (x,y,z) ∈ R

3 .

On a : P(N ) = D ⇐⇒




P(x) = −1

P(y) = 1

P(z) = 3.

Il nous reste à résoudre trois équations du 5ème degré dans R.

L’application  P : R −→ R, t 
−→ t5 + t + 1 est dérivable
(donc continue) sur R et :

∀ t ∈ R, P(t) = 5t4 + 1 > 0 ,

donc P est strictement croissante sur R.

D’autre part :

P(t) −→
t−→−∞

−∞ et P(t) −→
t−→+∞

+∞ .

D’après le théorème de la bijection monotone, il s’ensuit que,
pour tout C ∈ R, l’équation P(t) = C , d’inconnue t ∈ R,
admet une solution et une seule.

De plus, on remarque :

P(−1) = −1, P(0) = 1, P(1) = 3 .

Il en résulte :




P(x) = −1

P(y) = 1

P(z) = 3.

⇐⇒




x = −1

y = 0

z = 1.

On conclut que l’équation proposée admet une solution et une
seule, que l’on calcule enfin par produit de trois matrices :
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M = Q


−1 0 0

0 1 0
0 0 3


 Q−1 =


 0 0 −1

1 −1 −1
0 0 1


 .

On a, d’après une formule du cours :

det (A) In = A tcom (A) = A(In − A) = A − A2 ,

d’où : A2 − A + det (A) In = 0.

Notons  ∆ = 1 − 4 det (A) le discriminant de cette équation
du second degré.

1er cas : ∆ =/ 0 :

Le polynôme  X2 − X + det (A) est annulateur de A et scindé
simple sur C, donc, d’après le cours, A est diagonalisable.

2) ∆ = 0 :

On a alors : 0 = A2 − A + 1

4
In =

(
A − 1

2
In

)2

,

donc : Sp
C
(A) ⊂

{
1

2

}
.

Si  A est diagonalisable, alors  A est semblable à  
1

2
In, donc

A = 1

2
In . Mais alors : det (A) =

(
1

2

)n

=/ 1

4
,

car n � 3, contradiction.

Il en résulte que  A n’est pas diagonalisable.

On conclut :

A est diagonalisable si et seulement si det (A) =/ 1

4
.

On a, dans M2n(K ) :(
λIn A
B In

)(−In 0
B In

)
=

(
AB − λIn A

0 In

)
,

(
λIn A
B In

)(−In A
0 −λIn

)
=

(−λIn 0
−B B A − λIn

)
.

D’où, en passant aux déterminants :

det (AB − λIn) = (−1)ndet

(
λIn A
B In

)
,

(−λ)ndet (B A − λIn) = (−1)n(−λ)ndet

(
λIn A
B In

)
,

et donc :

(−λ)n
(
det (B A − λIn) − det (AB − λIn)

) = 0 .

Comme K [λ] est un anneau intègre et que le polynôme (−λ)n

n’est pas le polynôme nul, on peut simplifier par (−λ)n, et on
déduit :

det (B A − λIn) = det (AB − λIn) ,

c’est-à-dire : χAB = χB A.

Voir aussi l’exercice 11.18.

a) On a, pour tout λ ∈ C :

χAA(λ) = det (AA − λ In) = det
(

AA − λ In)

= det (AA − λ In) = χAA(λ) =
exercice 11.55

χAA(λ) .

D’après le cours sur les polynômes, il en résulte que χAA est

à coefficients réels, c’est-à-dire, avec l’indéterminée X au lieu
de λ : χAA ∈ R[X].

b) On a alors : det (AA + In) = χAA(−1) ∈ R.

a) Formons le polynôme caractéristique de An, par
exemple en développant par rapport à la première ligne :

χAn
(λ) =

∣∣∣∣∣∣∣∣∣∣∣∣

1 − λ 0 . . . 0 1
1 1 − λ (0) 0
...

. . .
...

... (1) 1 − λ 0
1 . . . . . . . . . 1 − λ

∣∣∣∣∣∣∣∣∣∣∣∣
[n]

= (1 − λ)

∣∣∣∣∣∣∣
1 − λ (0)

. . .

(1) 1 − λ

∣∣∣∣∣∣∣
[n − 1]

+(−1)n+1

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 − λ 0 . . . 0
...

. . .
. . . (0)

...
...

. . .
. . . 0

... (1)
. . . 1 − λ

1 . . . . . . . . . 1

∣∣∣∣∣∣∣∣∣∣∣∣∣
[n − 1]︸ ︷︷ ︸

noté Dn−1

= (1 − λ)n + (−1)n+1 Dn−1

et :

Dn =

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 − λ 0 . . . 0
...

. . .
. . . (0)

...
...

. . .
. . . 0

... (1)
. . . 1 − λ

1 . . . . . . . . . 1

∣∣∣∣∣∣∣∣∣∣∣∣∣
[n]

=
C1 C1 − C2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λ 1 − λ 0 . . . 0

0 1
. . . (0)

...
...

...
. . .

. . . 0
...

... (1)
. . . 1 − λ

0 1
...

... 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
[n]

= λDn−1.

12.48

12.49

12.50

12.51



=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a1 − λ 1 0 . . . . . . 0

a2 −λ . . . (0)
...

a3 0
. . .

. . .
...

...
. . .

. . .
. . . 0

... (0)
. . . −λ 1

α 0 . . . . . . 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
[n]

= (−1)n+1
α

∣∣∣∣∣∣∣∣∣∣∣∣

1 0 . . . . . . 0

−λ . . .
. . . (0)

...

0
. . .

. . .
. . .

...
... (0)

. . .
. . . 0

0 . . . 0 −λ 1

∣∣∣∣∣∣∣∣∣∣∣∣
[n − 1]

= (−1)n+1
α,

où :

α = an + λan−1 + · · · + λ
n−2a2 + λ

n−1(a1 − λ)

= an + λan−1 + · · · + a1λ
n−1 − λ

n .

On conclut :

χA(λ) = (−1)n
(
λ

n − (a1λ
n−1 + · · · + an)

)
.

b) On suppose ici : ∀ k ∈ {1,. . . ,n}, ak ∈ ]0 ;+∞[.

Notons ϕ : ]0 ;+∞[−→ R,

λ 
−→ ϕ(λ) = (−1)nχA(λ)

λ
n = 1 −

(
a1

λ
+ · · · + an

λ
n

)
.

Il est clair que  χA et  ϕ ont, dans ]0 ;+∞[, les mêmes zéros.

L’application  ϕ est dérivable (donc continue) sur ]0 ;+∞[

et : ∀λ ∈ ]0 ;+∞[, ϕ′(λ) = a1

λ
2 + . . . + nan

λ
n+1 > 0,

donc ϕ est strictement croissante sur ]0 ;+∞[.

De plus : ϕ(λ) −→
λ−→0+

−∞ et ϕ(λ) −→
λ−→+∞

1.
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λ 1 +∞
ϕ′(λ) +
ϕ(λ) −1 ↗ +∞

λ 0 +∞
ϕ′(λ) +
ϕ(λ) −∞ ↗ 1

−→
De proche en proche :

Dn = λDn−1 = . . . = λ
n−2 D2

= λ
n−2

∣∣∣∣ 1 1 − λ

1 1

∣∣∣∣ = λ
n−2
λ = λ

n−1.

d’où : χAn
(λ) = (1 − λ)n + (−1)n+1

λ
n−2.

b) Considérons l’application  ϕ : [1 ;+∞[−→ R , définie,
pour tout λ ∈ [1 ;+∞[, par :

ϕ(λ) = (−1)nχAn
(λ)

λ
n−2 = (λ− 1)n

λ
−n+2 − 1 .

Ainsi, les valeurs propres de  An situées dans [1 ;+∞[ sont
les zéros de ϕ.

L’application  ϕ est dérivable sur [1 ;+∞[ et, pour tout
λ ∈ [1 ;+∞[ :

ϕ
′(λ) = n(λ− 1)n−1

λ
−n+2 + (λ− 1)n(−n + 2)λ−n+1

= (λ− 1)n−1
λ

−n+1(nλ+ (−n + 2)(λ− 1)
)

= (λ− 1)n−1
λ

−n+1( 2λ+ (n − 2)︸ ︷︷ ︸
> 0

)
.

On en déduit le tableau de variation de ϕ :

Puisque l’application ϕ est strictement croissante et continue
sur l’intervalle [1 ;+∞[ et que ϕ(1) = −1 et
ϕ(λ) −→

λ−→+∞
+∞, d’après le théorème de la bijection mono-

tone, ϕ admet un zéro et un seul dans ]1 ;+∞[.

On conclut que An admet, dans ]1 ;+∞[, une valeur propre et
une seule.

a) Formons le polynôme caractéristique de A :

χA(λ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a1 − λ 1 0 . . . . . . 0

a2 −λ . . .
. . . (0)

...

a3 0
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0
... (0)

. . . −λ 1
an 0 . . . . . . 0 −λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
[n]

Ln Ln + λLn−1 + · · · + λ
n−1 L1

12.52

D’après le théorème de la bijection monotone,ϕ admet un zéro
et un seul.

On conclut que, dans ]0 ;+∞[, A admet une valeur propre et
une seule.

a) Formons le polynôme caractéristique χn de A(n,z) ,

la variable étant notée classiquement λ , en développant, par
exemple, par rapport à la première ligne :

χn(λ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 − λ 0 . . . 0 z

1
. . .

. . . (0) 0
...

. . .
. . .

. . .
...

... (1)
. . .

. . . 0
1 . . . . . . 1 1 − λ

∣∣∣∣∣∣∣∣∣∣∣∣∣
[n]
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= (1 − λ)

∣∣∣∣∣∣∣
1 − λ (0)

. . .

∗ 1 − λ

∣∣∣∣∣∣∣
[n − 1]

+ (−1)n+1z

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 − λ 0 . . . 0

1
. . .

. . . (0)
...

...
. . .

. . . 0
... (1)

. . . 1 − λ

1 . . . . . . 1 1

∣∣∣∣∣∣∣∣∣∣∣∣∣
[n − 1]︸ ︷︷ ︸

noté Dn−1

.

On a, par Cj Cj − Cj+1 , pour j = n − 2,. . . ,1 :

Dn−1 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λ 0

0 λ ∗
...

...
. . .

. . .
...

...
. . . λ 1 − λ 0

... (0) 0 λ 1 − λ

0 . . . . . . . . . 0 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
[n − 1]

= λ
n−2 .

Ainsi : χn(λ) = (1 − λ)n + (−1)n+1zλn−2.

b) Soit λ ∈ Sp
C

(
A(n,z)

)
. D’après a), on a :

(1 − λ)n + (−1)n+1zλn−2 = 0 .

Supposons |λ| � 2.

Notons µ = |λ− 1| � |λ| − 1 � 1 > 0. On a :

µ
n = |1 − λ|n = |zλn−2| = |z|∣∣(λ− 1) + 1

∣∣n−2

� |z|(|λ− 1| + 1
)n−2 � |z|(µ+ 1)n−2.

D’où : µ
2 = µn

µn−2
� |z|

(
1 + µ

µ

)n−2

.

Comme µ � 1, on a :
1 + µ

µ
= 1

µ
+ 1 � 2,

puis : µ2 � |z|2n−2 , donc   µ �
√

|z| 2
n
2 −1.

Enfin :

|λ| = ∣∣1 − (1 − λ)
∣∣ � 1 + |1 − λ| = 1 + µ

� 1 +
√

|z| 2
n
2 −1 .

On conclut : |λ| � Max
(
2, 1 +

√
|z| 2

n
2 −1

)
.

Finalement :

Sp
C

(
A(n,z)

) ⊂ B ′
(

0,Max
(
2, 1 +

√
|z| 2

n
2 −1

))
.

a) Un calcul élémentaire montre que  M est diagona-
lisable et que : M = P D P−1 , où :

P =
(

2 2
1 −1

)
, D =

(
3 0
0 −1

)
, P−1 = 1

4

(
1 2
1 −2

)
.

b) 1) On remarque, par un calcul par blocs suggéré par la dia-
gonalisation précédente, en notant I = In :(

A 4A
A A

)
︸ ︷︷ ︸

B

=
(

2I 2I
I −I

)
︸ ︷︷ ︸

notée Q

(
3A 0
0 −A

)
︸ ︷︷ ︸

C

1

4

(
I 2I
I −2I

)
︸ ︷︷ ︸

notée R

.

On a : Q R =
(

I 0
0 I

)
= I2n,

donc  Q est inversible et R = Q−1 .

Ceci montre que  B est semblable à  C.

2) • Supposons  A diagonalisable.

Il existe U ∈ GLn(R),∆ ∈ Dn(R) telles que : A = U∆U−1.
On a alors :

C =
(

3A 0
0 −A

)

=
(

U 0
0 U

)
︸ ︷︷ ︸

notée V, inversible

(
3∆ 0
0 −∆

)
︸ ︷︷ ︸

diagonale

(
U−1 0

0 U−1

)
︸ ︷︷ ︸

= V −1

,

ce qui montre que C est diagonalisable.

• Réciproquement, si  C =
(

3A 0
0 −A

)
est diagonalisable,

alors, par endomorphisme induit, −A est diagonalisable, donc
A est diagonalisable.

On conclut : B est diagonalisable si et seulement si  A est
diagonalisable.

Par commodité, si une somme est indexée par
λ ∈ Sp ( f ), nous la noterons indexée par λ seulement.

a) Soit A ∈ K [X].

Puisque f est diagonalisable, on a : E =
⊕
λ

Eλ.

Soit x ∈ E. Par définition de pλ, on a :

x =
∑
λ

pλ(x) et ∀λ ∈ Sp ( f ), pλ(x) ∈ Eλ .

On a alors :

A( f )(x) = A( f )
(∑

λ

pλ(x)
) =

∑
λ

A( f )
(

pλ(x)
)

=
cours

∑
λ

A(λ)pλ(x) =
(∑

λ

A(λ)pλ
)
(x),

d’où : A( f ) =
∑
λ

A(λ)pλ.

En particulier, pour A = X (polynôme de degré 1), on a :

f =
∑
λ

λpλ.

b) Notons Sp ( f ) = {λ1,. . . ,λN } , où λ1,. . . ,λN sont deux à
deux différents.

12.54
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Soit j ∈ {1,. . . ,N } . D’après le cours sur l’interpolation poly-
nomiale, il existe Aj ∈ K [X] tel que :

∀ i ∈ {1,. . . ,N }, Aj (λi ) = δi j =
{

1 si i = j

0 si i =/ j.

On a alors, d’après a) :

Aj ( f ) =
∑
λ

Aj (λ)pλ =
N∑

i=1

Aj (λi )pλi = pλj .

Ainsi : ∀ ∈ {1,. . . ,N }, ∃ Aj ∈ K [X], pλj = Aj ( f ).

Autrement dit, chaque  pλ (pour λ ∈ Sp ( f )) est un polynôme
en f.

a) • Soit A ∈ Mn(C).

Il est clair que f A : M 
−→ AM − M A est une application de
Mn(C) dans Mn(C) .

La linéarité de f A est immédiate : pour tout α ∈ C et toutes
M,N ∈ Mn(C) :

f A(αM + N ) = A(αM + N ) − (αM + N )A

= α(AM − M A) + (AN − N A) = α fA(M) + f A(N ) .

On conclut : ∀ A ∈ Mn(C), f A ∈ L
(
Mn(C)

)
.

• Soient A ∈ Tn,s(C), M ∈ Tn,s(C).

Notons   A = (ai j )i j , M = (mi j )i j .

Alors, f A(M) = AM − M A ∈ Tn,s(C) et, pour tout
i ∈ {1,. . . ,n}, le terme diagonal numéro i de f A(M) est
aii mii − mii aii = 0 .

Ceci montre : ∀ M ∈ Tn,s(C), f A(M) ∈ T′
n,s(C).

On conclut : ∀ A ∈ Tn,s(C), f A
(
Tn,s(C)

) ⊂ T′
n,s(C).

b) Soit A ∈ Mn(C).

D’après le cours, A est trigonalisable dans Mn(C) . Il existe
P ∈ GLn(C), T ∈ Tn,s(C) telles que A = PT P−1.

1) Montrons que l’application  θ : B 
−→ P−1 B P est un iso-
morphisme de C(A) sur C(T ) .

• θ est bien une application de C(A) dans C(T ) , car, pour toute
B ∈ C(A) , on a :

θ(B)T = (P−1 B P)T = P−1 B(PT P−1)P = P−1 B AP

= P−1 AB P = (P−1 AP)(P−1 B P) = T θ(B) ,

donc θ(B) ∈ C(T ) .

• Il est clair que  C(A) et  C(T ) sont bien des C-ev.

• La linéarité de θ est immédiate.

• Pour tout U ∈ C(T ) , il existe B ∈ C(A) unique tel que
θ(B) = U , c’est B = PU P−1.

Ainsi, θ : C(A) −→ C(T ), B 
−→ P−1 B P

est un isomorphisme d’ev.

On a donc : dim
(
C(A)

) = dim
(
C(T )

)
.

2) D’autre part, d’après a) et le théorème du rang, appliqué à 

gT : Tn,s(C) −→ Tn,s(C), U 
−→ T U − U T ,

on a :

dim Ker (gT ) = dim
(
Tn,s(C)

) − dim Im (gT )

� dim
(
Tn,s(C)

) − dim
(
Tn,s(C)

) = n.

Enfin :

Ker (gT )={
U ∈ Tn,s(C) ; T U = U T

}=Tn,s(C) ∩ C(T ).

D’où :

dim
(
C(T )

)
� dim

(
Tn,s(C) ∩ C(T )

) = dim Ker (gT ) � n.

On conclut : dim
(
C(A)

)
� n.

Puisque A ∈ Mn(C), d’après le cours, A est trigona-
lisable.

Il existe  P ∈ GLn(C), T =



λ1 ∗

. . .

0 λn


 ∈ Tn,s(C) ,

telles que : A = PT P−1.

Comme rg (A) = 2, d’après le théorème du rang :

dim Ker (A) � n − 2 .

On peut donc supposer  λ1 = . . . = λn−2 = 0, par exemple. 
On a alors :

0 = tr (A) =
n∑

k=1

λk = (n − 2)0 + λn−1 + λn ,

donc : λn−1 + λn = 0.

Si λn−1 = 0, alors λn = 0, T =



0 ∗
. . .

0 0


 .

En calculant les puissances successives de T , on obtient T n = 0
(cf. aussi l’exercice 12.20), puis :

An = (PT P−1)n = PT n P−1 = 0 ,

contradiction.

On a donc : λn−1 =/ 0.

Puisque λn = −λn−1 =/ 0 , les trois nombres complexes
0,λn−1,λn sont deux à deux distincts. De plus :

dim Ker (A) = n − rg (A) = n − 2 ,

dim Ker (A − λn−1In) � 1, dim Ker (A − λnIn) � 1 .

On conclut : A est diagonalisable dans Mn(C) .
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1) Il est clair que, si A est diagonalisable, A = P D P−1

où P ∈ GLn(C), D ∈ Dn(C), alors A2 est diagonalisable,

puisque A2 = P D2 P−1.

2) Réciproquement, supposons A2 diagonalisable.

D’après le cours, il existe  P ∈ C[X] scindé simple tel que

P(A2) = 0. On peut supposer  P normalisé, c’est-à-dire dont
le coefficient du terme de plus haut degré égal à 1.

• Supposons X | P .

Il existe alors k ∈ N
∗, Q ∈ C[X] tels que P = Xk Q et

Q(0) =/ 0 , d’où A2k Q(A2) = 0 . Comme A est inversible, on

déduit Q(A2) = 0, et on est ramené au cas suivant.

• Supposons X |/ P , c’est-à-dire P(0) =/ 0.

Ainsi, P est scindé simple non multiple de X. Il existe donc
N ∈ N

∗, z1,. . . ,zN ∈ C
∗ deux à deux distincts tels que

P =
N∏

k=1

(X − zk).

On a donc :
N∏

k=1

(A2 − zkIn) = P(A2) = 0.

Notons, pour chaque k ∈ {1,. . . ,N }, uk une racine carrée com-

plexe de zk, et R =
N∏

k=1

(
(X − uk)(X + uk)

)
. Il est clair que R

est scindé simple et annulateur de A , puisque
R(A) = P(A2) = 0 .

D’après le cours, on conclut que A est diagonalisable.

On remarque :

M2 =
(

0 B
A 0

)(
0 B
A 0

)
=

(
B A 0
0 AB

)
.

a) 1) Supposons AB diagonalisable.

Comme B A = B(AB)B−1 ∼ AB, B A est aussi diagonali-

sable. Il est clair alors que  

(
B A 0
0 AB

)
est diagonalisable.

D’autre part :

(
det (M)

)2 = det (M2) = det (B A) det (AB)

= (
det (A)

)2(
det (B)

)2 =/ 0,

car A,B ∈ GLn(C) .

Ainsi, M est inversible et  M2 est diagonalisable.

D’après l’exercice 12.58, on conclut que  M est diagonalisable.

2) Réciproquement, supposons que  M est diagonalisable.

Alors, M2 est diagonalisable.

Comme M2 =
(

B A 0
0 AB

)
, AB est matrice d’un endo-

morphisme induit par un endomorphisme représenté par M2,
donc AB est diagonalisable.

Finalement, M est diagonalisable si et seulement si AB est dia-
gonalisable.

Notons  N =
(

A 0
0 0

)
.

a) Cherchons, par exemple, une matrice X ∈ Mp,q(K ) telle que,

en notant P =
(

Ip X
0 Iq

)
, qui est inversible, on ait :

M = P N P−1 . On a :

M = P N P−1 ⇐⇒ M P = P N

⇐⇒
(

A B
0 0

)(
Ip X
0 Iq

)
=

(
Ip X
0 Iq

)(
A 0
0 0

)

⇐⇒
(

A AX + B
0 0

)
=

(
A 0
0 0

)

⇐⇒ AX + B = 0 ⇐⇒ X = −A−1 B.

Ainsi, en notant P =
(

Ip −A−1 B
0 Iq

)
, la matrice P est in-

versible et M = P N P−1 , ce qui montre que M et N sont sem-
blables.

b) D’après a), M est diagonalisable si et seulement si N est dia-
gonalisable.

D’autre part :

• si A est diagonalisable, alors 

(
A 0
0 0

)
est diagonalisable

• si  

(
A 0
0 0

)
est diagonalisable, alors, par endomorphisme

induit, A est diagonalisable.

Ainsi,

(
A 0
0 0

)
est diagonalisable si et seulement si  A l’est.

On conclut que  

(
A B
0 0

)
est diagonalisable si et seulement

si  A est diagonalisable.

a) 1) Supposons f − λe non injective.

Alors, il existe x ∈ E − {0} tel que ( f − λe)(x) = 0, c’est-à-
dire f (x) = λx.

Il s’ensuit, d’après le cours : P( f )(x) = P(λ)x , donc(
P( f ) − P(λ)

)
(x) = 0.

Ceci montre que  P( f ) − P(λ)e n’est pas injectif.

2) Raisonnons par contraposition.

Supposons  P( f ) − P(λ)e surjectif. Puisque le polynôme
P(X) − P(λ) s’annule en λ , il existe Q ∈ C[X] tel que :

P(X) − P(λ) = (X − λ)Q(X) .

On a donc : P( f ) − P(λ)e = ( f − λe) ◦ Q( f ).

12.58
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Soit y ∈ E. Puisque  P( f ) − P(λ) est surjectif, il existe x ∈ E

tel que : y = (
P( f ) − P(λ)

)
(x).

On a alors : y = ( f − λe)
(
Q( f )(x)

)
.

Ceci montre : ∀ y ∈ E, ∃ x ∈ E, y = ( f − λe)(x),

donc  f − λe est surjectif.

On a montré, par contraposition, que, si  f − λe n’est pas sur-
jectif, alors  P( f ) − P(λ)e n’est pas surjectif.

b) Le polynôme  P(X) − µ est scindé sur C. Il existe donc
n ∈ N

∗,α ∈ C
∗, t1,. . . ,tn ∈ C tels que :

P(X) − µ = α

n∏
k=1

(X − tk) .

On a alors : P( f ) − µe = α( f − t1e) ◦ · · · ◦ ( f − tne).

Si, pour tout k ∈ {1,. . . ,n} , f − tke est injectif (resp. surjec-
tif), alors, par composition, P( f ) − µe est injectif (resp. sur-
jectif).

Il en résulte, par contraposition, que, si  P( f ) − µe n’est pas
injectif (resp. n’est pas surjectif), alors il existe k ∈ {1,. . . ,n}
tel que  f − tke n’est pas injectif (resp. n’est pas surjectif), donc
il existe λ ∈ C tel que µ = P(λ) et que  f − λe n’est pas in-
jectif (resp. n’est pas surjectif).

Puisque  A et  N commutent et que  A est inversible,

A−1 et N commutent. En effet :

AN = N A �⇒ A−1(AN )A−1 = A−1(N A)A−1

�⇒ N A−1 = A−1 N .

Comme  A−1 et  N commutent et que  N est nilpotente, A−1 N

est nilpotente. En effet, il existe  k ∈ N
∗ tel que N k = 0, et 

on a : (A−1 N )k = (A−1)k N k = 0.

D’après le cours, A−1 N est trigonalisable dans Mn(C) .

Comme de plus  A−1 N est  nilpotente, sa seule valeur propre

est 0. Il existe donc P ∈ GLn(C) telle que A−1 N = PT P−1,
où T est triangulaire supérieure à termes diagonaux tous nuls :

T =

 0 ∗

. . .

(0) 0


.

On a alors :

det (A + N ) = det
(
A(In + A−1 N )

)
= det (A) det (In + A−1 N ) = det (A) det (In + PT P−1)

= det (A) det
(
P(In + T )P−1

) = det (A) det (In + T ).

Comme : det (In + T ) =
∣∣∣∣∣∣

1 ∗
. . .

(0) 1

∣∣∣∣∣∣ = 1,

on conclut : det (A + N ) = det,(A).

Puisque  A est diagonalisable, il existe P ∈ GLn(C),

D ∈ Dn(C) telles que : A = P D P−1, où :

D = diag (λ1,. . . ,λ1︸ ︷︷ ︸
ω1 fois

,. . . ,λp,. . . ,λp︸ ︷︷ ︸
ωp fois

) .

Ainsi : D =



λ1Iω1 (0)

. . .

(0) λpIωp


 .

a) • Soit X ∈ Mn(K ) . Notons M = P−1 X P . On a :

X ∈ C(A) ⇐⇒ AX = X A ⇐⇒ DM = M D .

Décomposons M en blocs de la même façon que pour D ci-
dessus : M = (mi j )1�i, j�p où les  Mi j sont des blocs. On a :

DM = M D

⇐⇒ ∀ (i, j) ∈ {1,. . . ,p}2, λi Iωi Mi j = Mi jλj Iωj

⇐⇒∀ (i, j) ∈ {1,. . . ,p}2, (λi − λj )Mi j = 0

⇐⇒∀ (i, j) ∈ {1,. . . ,p}2,
(
i =/ j �⇒ Mi j = 0

)
,

car λ1,. . . ,λp sont deux à deux distincts.

On conclut :

C(A) =
{

P M P−1 ; M =




M1 (0)

. . .

(0) Mp


 ,

Mk ∈ Mωk (K )

}
.

• Il est clair que  C(A) est un K-ev et que l’application

M 
−→ P M P−1 est un isomorphisme d’ev de C(D)

sur C(A) .

On a donc :

dim
(
C(A)

) = dim
(
C(D)

) =
p∑

k=1

dim
(
Mωk (k)

) =
p∑

k=1

ω
2
k .

b) • Soient B ∈ Mn(K ), Z = P−1 B P . 

On a, avec les notations de a) :

B ∈ C ′(A) ⇐⇒ ∀ X ∈ C(A), X B = B X

⇐⇒ ∀ M ∈ C(D), M Z = Z M.

Décomposons  Z en blocs de la même façon que pour D ,
Z = (Zi j )i j , où les Zi j sont des blocs.

On a :

B ∈ C ′(A)

⇐⇒ ∀ M1,. . . ,Mp, ∀ (i, j) ∈ {1,. . . ,p}2, Mj Zi j = Zi j Mi

�⇒ ∀ (i, j) ∈ {1,. . . ,p}2,
(
i =/ j �⇒ Zi j = 0

)
,

comme on le voit en examinant le cas particulier Mi = Iωi et

Mj = 0.
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Ainsi, si B ∈ C ′(A), alors  Z est diagonale par blocs, de la

forme Z =




Z1 (0)

. . .

(0) Zp


 , et alors :

B ∈ C ′(A)

⇐⇒ ∀ M1,. . . ,Mp, ∀ (i, j) ∈ {1,. . . ,p}2, Mj Zj = Zi Mi

�⇒ ∀ i ∈ {1,. . . ,p}, ∀ Mi ∈ Mωi (K ), Mi Zi = Zi Mi .

De même qu’en a), on montre que, si une matrice carrée  Mi

commute avec toute matrice carrée, alors  Mi est de la forme
αi Iωi , où αi ∈ K.

La réciproque est évidente.

On a donc :

B ∈ C ′(A)

⇐⇒ ∃ (α1,. . . ,αp) ∈ K p, Z =



α1Iω1 (0)

. . .

(0) αpIωp


 .

Finalement :

C ′(A) =
{

P Z P−1 ; Z =



α1Iω1 (0)

. . .

(0) αpIωp




(α1,. . . ,αp) ∈ K p

}
.

• Il est clair alors que C ′(A) est un K-ev et que :

dim
(
C ′(A)

) = p .

Récurrence forte sur n.

La propriété est évidente pour n = 1.

Soit n ∈ N
∗ .

Supposons la propriété vraie pour tout entier p ∈ {1,. . . ,n} et
soient E un K-ev de dimension finie n + 1, I un ensemble non
vide, ( fi )i∈I une famille d’endomorphismes diagonalisables 
de E commutant deux à deux.

Le cas où toutes les fi sont des homothéties est d’étude im-
médiate.

Supposons qu’il existe i0 ∈ I tel que  fi0 ne soit pas une ho-
mothétie.

Notons λ1,. . . ,λr les valeurs propres distinctes de fi0 ,

E1,. . . ,Er les SEP pour fi0 associés respectivement à λ1,. . . ,λr .

Puisque  fi0 est diagonalisable et n’est pas une homothétie,

on a : ∀ k ∈ {1,. . . ,r}, 1 � dim (Ek) � n.

Soient k ∈ {1,. . . ,r}, i ∈ I . Puisque  fi et  fi0 commutent,

d’après le cours, Ek est stable par fi. Notons  fi,k l’endo-

morphisme de Ek induit par fi. Pour chaque k ∈ {1,. . . ,r} ,
( fi,k)i∈I est une famille d’endomorphismes de Ek commutant

deux à deux, donc, par hypothèse, il existe une base Bk de Ek

telle que :

∀ i ∈ I, MatBk ( fi,k) ∈ Dnk (K ) ,

où nk = dim (Ek) � n.

Notons B la réunion ordonnée de B1,. . . ,Br. Alors, B est une
base de E et, pour tout i ∈ I, la matrice de fi dans B est dia-
gonale.

Ceci montre le résultat pour n + 1.

On a établi la propriété demandée, par récurrence forte sur la
dimension de E .

Soit ( f,g) ∈ M2 tel que f ◦ g = g ◦ f.

Puisque f ∈ M , il existe k ∈ N
∗ tel que f k soit diagonalisable,

et, puisque g ∈ M, il existe � ∈ N
∗ tel que g� soit diagonali-

sable. Notons p = k� ∈ N
∗. Puisque  f et  g commutent,

on a :
( f ◦ g)p = f p ◦ g p = ( f k)� ◦ (g�)k .

Comme  f k et  g� sont diagonalisables, il est immédiat que
( f k)� et  (g�)k sont diagonalisables. Puisque  f et  g com-
mutent, f p et  g p commutent. D’après l’exercice 12.64, il en
résulte que  f p et  g p sont simultanément diagonalisables, c’est-
à-dire qu’il existe une base B de E telle que les matrices de f p

et  g p dans B soient diagonales. Par produit, la matrice de
f p ◦ g p dans B est diagonale. Ceci montre que  ( f ◦ g)p est
diagonalisable. On conclut : f ◦ g ∈ M.

a) Supposons  A et  2A semblables.

Soit λ ∈ Sp
C
(A). Alors, 2λ ∈ Sp

C
(A) , puis, par une récurrence

immédiate : ∀ k ∈ N, 2k
λ ∈ Sp

C
(A).

Si λ =/ 0, alors les 2kλ , lorsque k décrit N, sont deux à deux
distincts, donc A admet une infinité de valeurs propres, contra-
diction.

On a donc : λ = 0.

Ceci montre : Sp
C
(A) ⊂ {0} .

D’autre part, puisque  A ∈ Mn(C), on a  Sp
C
(A) =/ ∅ .

Il en résulte : Sp
C
(A) = {0} .

D’après l’exercice 12.42, on conclut que A est nilpotente.

Remarque : La réciproque est vraie, c’est-à-dire que, si A est
nilpotente, alors A est semblable à 2A. Mais la résolution clas-
sique de cette question utilise la réduction de Jordan, qui n’est
pas au programme.

b) Prenons E = C
Z , le C-ev des suites complexes indexées 

par Z . Considérons l’application 

f : E −→ E, u = (un)n∈Z 
−→ (2nun)n∈Z .

Il est clair que : f ∈ L(E) .

• On a, en notant 1 la suite constante égale à 1 :

f (1) = (2n)n∈Z ,

12.64
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puis, par récurrence immédiate :

∀ k ∈ N
∗, f k(1) = (2kn)n∈Z =/ 0 ,

donc : ∀ k ∈ N
, f k =/ 0.

Ceci montre que f n’est pas nilpotent.

• Considérons l’application 

g : E −→ E, (un)n∈Z 
−→ (un+1)n∈Z .

Il est clair que : g ∈ L(E) .

On a, pour toute u = (un)n∈Z :

(g ◦ f ◦ g−1)(u) = (g ◦ f )
(
(un−1)n∈Z

) = g
(
(2nun−1)n∈Z

)

= (2n+1un)n∈Z = 2(2nun)n∈Z = 2 f (u).

Ainsi : g ◦ f ◦ g−1 = 2 f.
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13CHAPITRE 13Espaces 
préhilbertiens réels

Thèmes abordés dans les exercices
• Montrer qu’une application ϕ : E × E −→ R est une fbs

• Montrer qu’une application φ : E −→ R est une fq, et expliciter la forme
polaire ϕ de φ

• Étude de signe pour une fq

• Obtention d’inégalités faisant intervenir des ps ou/et des normes euclidiennes

• Étude des endomorphismes orthogonaux, manipulation des matrices orthogo-
nales

• Étude de sev orthogonaux, de sev supplémentaires orthogonaux, détermination
d’un projeté orthogonal, d’une distance

• Détermination d’un adjoint, manipulation d’un ou plusieurs adjoints (PSI)

• Étude de matrices symétriques réelles, de matrices symétriques positives, de
matrices symétriques définies-positives

• Inégalités issues de matrices symétriques positives

• Décomposition de matrices en divers produits.

Points essentiels du cours 
pour la résolution des exercices
• Définition de fbs, de fq, formules les reliant, propriétés de calcul

• Définition de fq positive, de fq définie-positive

• Interprétation matricielle des fbs (PT)

• Définition de ps, d’eve, produits scalaires usuels

• Inégalité de Cauchy et Schwarz, inégalité de Minkowski, études des cas d’éga-
lité

• Définition et propriétés de l’orthogonalité

• Théorème de projection orthogonale sur un sev de dimension finie dans un
espace préhilbertien réel

• Définition et propriétés des endomorphismes symétriques (ou : auto-adjoints) 

• Définition et propriétés des endomorphismes orthogonaux

• Définition et propriétés de l’adjoint d’un endomorphisme d’un eve, interpréta-
tion matricielle dans une b.o.n. (PSI)

• Théorème fondamental (ou : théorème spectral) pour un endomorphisme
symétrique, pour une matrice symétrique réelle

Les méthodes à retenir 448

Énoncés des exercices 451

Du mal à démarrer ? 460

Corrigés 465
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• Définition de S+
n , de S++

n , de matrice symétrique positive, de matrice symé-
trique définie-positive

• Caractérisation des éléments de S+
n ou S++

n parmi ceux de Sn(R) à l’aide de
leur spectre 

Les méthodes à retenir
Par commodité, on utilise les abréviations suivantes :

ev pour : espace vectoriel
sev pour : sous-espace vectoriel
fbs pour : forme bilinéaire symétrique
fq pour : forme quadratique
ps pour : produit scalaire
eve pour : espace vectoriel euclidien
b.o.n. pour : base orthonormale.
Sauf mention contraire, n désigne un entier � 1.

Pour relier 
fbs et fq associées

Utiliser :
– l’expression de la fq φ associée à ϕ : ∀ x ∈ E, φ(x) = ϕ(x,x)

➥ Exercice 13.1

– une expression de la fbs ϕ associée à la fq φ :

∀ (x,y) ∈ E2, ϕ(x,y) = 1

2

(
φ(x + y) − φ(x) − φ(y)

)
,

∀ (x,y) ∈ E2, ϕ(x,y) = 1

4

(
φ(x + y) − φ(x − y)

)
.

➥ Exercice 13.1.

Pour montrer
qu’une application
φ : E −→ R

est une fq sur un R-ev E

Exprimer la forme polaire ϕ de φ par dédoublement, et vérifier que ϕ
est une fbs sur E et que φ est la fq associée à ϕ.

➥ Exercices 13.3, 13.7, 13.25, 13.26.

Pour établir
une inégalité portant
sur des produits scalaires
ou/et des normes euclidiennes

Essayer d’utiliser l’inégalité de Cauchy et Schwarz, moins fréquem-
ment l’inégalité triangulaire.

➥ Exercices 13.4, 13.46.

Pour montrer
qu’une matrice rectangulaire
(éventuellement carrée) M
est nulle

Il suffit de montrer ||M||22 = 0, c’est-à-dire : tr (t M M) = 0.

➥ Exercices 13.14, 13.42, 13.46, 13.47.
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Pour obtenir des inégalités
ou des égalités portant
sur des produits scalaires
ou des normes euclidiennes

Essayer, si les inégalités usuelles semblent inopérantes, d’introduire
un paramètre λ réel dans une inégalité liée à la notion de produit sca-
laire, puis faire varier λ et choisir λ au mieux, ce qui revient souvent
à traduire qu’un certain discriminant est � 0, comme dans la preuve
classique de l’inégalité de Cauchy et Schwarz.

➥ Exercice 13.56.

Pour montrer que deux sev
F,G d’un espace
préhilbertien 

(
E,(. | .))

sont orthogonaux entre eux

Revenir à la définition, c’est-à-dire montrer :

∀ x ∈ F, ∀ y ∈ G, (x | y) = 0 .

➥ Exercice 13.6 a).

Pour montrer qu’un sev G
d’un eve 

(
E,(. | .))

est l’orthogonal
d’un sev F de E

Montrer : ∀ x ∈ F, ∀ y ∈ G, (x | y) = 0

et : F ⊕ G = E ou dim (F) + dim (G) = dim (E).

➥ Exercice 13.6 a).

Pour calculer
le projeté orthogonal pF(x) d’un
élément x d’un espace
préhilbertien

(
E,(. | .))

sur un sev F
de dimension finie de E

• Si on connaît un sev G de E tel que E = F ⊕⊥ G, décomposer x en
x = y + z où y ∈ F et z ∈ G, et on a alors pF(x) = y.

➥ Exercice 13.6 b).

• Si on connaît une b.o.n. ( f1,. . . , fp) de F, appliquer la formule du

cours : pF(x) =
p∑

k=1

( fk | x) fk .

➥ Exercice 13.5.

Pour étudier
un endomorphisme
orthogonal f
d’un eve 

(
E,(. | .))

Essayer d’utiliser :
– la définition : ∀ (x,y) ∈ E2,

(
f (x)

∣∣ f (y)
) = (x | y)

➥ Exercice 13.30

– la caractérisation par la conservation de la norme :

∀ x ∈ E, || f (x)|| = ||x ||
– la caractérisation par le fait que l’image d’une b.o.n. soit une b.o.n.
– la traduction matricielle dans une b.o.n. B : MatB( f ) ∈ On(R) .

Pour traduire
qu’une matrice A ∈ M3(R)

est orthogonale

En plus des caractérisations des matrices orthogonales d’ordre n quel-
conque, penser à utiliser un produit vectoriel.

➥ Exercices 13.19, 13.20.
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Pour calculer l’adjoint
d’un endomorphisme f
d’un eve 

(
E,(. | .))

Essayer de :
– se ramener à la définition de l’adjoint, c’est-à-dire exprimer, pour
(x,y) ∈ E2 quelconque,

(
f (x)

∣∣ y
)

sous la forme 
(
x

∣∣ g(y)
)
, où g est

indépendant de x et y .
➥ Exercice 13.21

– utiliser la matrice A de f dans une b.o.n. B de E, et on a alors :
MatB( f ∗) = tA . 

Pour manipuler
un (ou des) adjoint(s)

Utiliser la définition : ∀ (x,y) ∈ E2,
(

f (x)
∣∣ y) = (

x
∣∣ f ∗(y)

)
,

et en particulier : ∀ x ∈ E, || f (x)||2 = (
x

∣∣ f ∗ ◦ f (x)
)
.

➥ Exercices 13.32, 13.33, 13.48, 13.49.

Pour résoudre
une question
faisant intervenir
une (seule) matrice
symétrique réelle S

Utiliser :
– la définition : tS = S
– le théorème fondamental (ou : théorème spectral), sous sa forme
matricielle :

∀ S ∈ Sn(R), ∃(Ω,D) ∈ On(R) × Dn(R), S = ΩDΩ−1 .

On est ainsi ramené à l’étude d’une matrice diagonale, pour laquelle
on pourra passer aux éléments.

➥ Exercices 13.14, 13.37 à 13.40, 13.43, 13.58, 13.64, 13.67,
13.70, 13.72 à 13.74, 13.76 à 13.78.

Pour résoudre
une question
faisant intervenir
une (seule) matrice
de S+

n ou de S++
n

Utiliser l’un ou/et l’autre des deux résultats suivants :
– la définition de S ∈ S+

n ou de S ∈ S++
n :

S ∈ S+
n ⇐⇒

(
S ∈ Sn(R) et

(∀ X ∈ Mn,1(R), tX SX � 0
))

S ∈ S++
n ⇐⇒

(
S ∈ Sn(R) et

(∀ X ∈ Mn,1(R) − {0}, tX SX > 0
))

.

➥ Exercices 13.10, 13.13, 13.17, 13.40, 13.62. 13.63, 13.69

– la caractérisation des matrices de S+
n ou de S++

n parmi celles de
Sn(R) à l’aide de leur spectre :

S ∈ S+
n ⇐⇒ (

S ∈ Sn(R) et Sp
R
(S) ⊂ R+

)
S ∈ S++

n ⇐⇒ (
S ∈ Sn(R) et Sp

R
(S) ⊂ R

∗
+
)

,

qui n’est pas dans le cours, mais est un exercice incontournable.
➥ Exercices 13.9, 13.11, 13.15 à 13.18, 13.60, 13.61, 13.64,

13.67, 13.72, 13.78.

Pour transformer
une expression
faisant intervenir
une matrice S de S+

n

Essayer d’utiliser l’existence d’une matrice R de S+
n telle que R2 = S ,

cf. exercice 13.11.

➥ Exercices 13.41, 13.53 à 13.55, 13.59, 13.71, 13.72.

PSI

PSI
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Énoncés des exercices

Étude de sev inclus dans le cône isotrope d’une forme quadratique

Soient E un R-ev, ϕ une fbs sur E , φ la fq associée à ϕ. On note C(φ) le cône isotrope de φ,
c’est-à-dire : C(φ) = {x ∈ E ; φ(x) = 0}.
Établir, pour tout sev F de E : F ⊂ C(φ) ⇐⇒ (∀ (x,y) ∈ F2, ϕ(x,y) = 0

)
.

Réciproque de l’inégalité de Cauchy et Schwarz

Soient E un R-ev, ϕ une fbs sur E , φ la fq associée à ϕ.

On suppose : ∀ (x,y) ∈ E2,
(
ϕ(x,y)

)2 � φ(x)φ(y). Montrer : φ � 0 ou φ � 0.

Exemple de forme quadratique positive sur un espace de fonctions

On note E = C([0 ; 1] ; R) et φ : E −→ R, f �−→
∫ 1

0
f 2 −

(∫ 1

0
f

)2

.

a) Montrer que φ est une fq sur E et exprimer sa forme polaire.

b) Montrer que φ est positive et déterminer le noyau de ϕ. 

Exemple d’intervention de l’inégalité de Cauchy et Schwarz

Soient (E,||.||) un espace vectoriel normé réel, n ∈ N
∗, (x1,. . . ,xn) ∈ En, (α1,. . . ,αn) ∈ R

n.

Montrer :

∣∣∣∣
∣∣∣∣

n∑
i=1

αi xi

∣∣∣∣
∣∣∣∣
2

�
( n∑

i=1

α
2
i

)( n∑
i=1

||xi ||2
)

.

Matrice d’une symétrie orthogonale

Former, dans Rn usuel muni de sa base canonique B et de son produit scalaire canonique (. | .) , la
matrice de la symétrie orthogonale autour de la droite vectorielle engendrée par un vecteur unitaire
v = (v1,. . . ,vn) . 

Orthogonalité entre Sn(R) et An(R)

Soit n ∈ N
∗ . On munit Mn,1(R) de son produit scalaire canonique 

(M,N ) �−→ (M | N ) = tr (t M N ) .
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Pour résoudre
une question
dans laquelle interviennent
deux matrices 
symétriques réelles A,B

Essayer de :
– appliquer le théorème fondamental à A et répercuter la transforma-
tion sur B :

A = ΩDΩ−1, Ω ∈ On(R), D ∈ Dn(R), B = ΩCΩ−1 ,

où C n’est pas nécessairement diagonale, mais C est quand même
symétrique.
Se ramener ainsi à une matrice diagonale (D) et une matrice 
pleine (C) au lieu de deux matrices pleines (A,B).

➥ Exercices 13.55, 13.60.

13.1

13.2

13.3

13.4

13.5

13.6
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a) Montrer que Sn(R) et An(R) sont deux sev supplémentaires orthogonaux dans Mn(R).

b) 1) Pour toute M ∈ Mn(R) , calculer la distance d
(
M,Sn(R)

)
en fonction de M .

2) Exemple : Pour M =
n∑

i=1

Ei1 , calculer d
(
M,Sn(R)

)
. 

Exemple de fq définie positive sur un espace de polynômes

On note E = X R[X] et q : E −→ R, P �−→
∫ 1

0
(P + P ′)P ′.

Montrer que E est un R-ev et que q est une fq définie positive sur E . 

Calcul d’une borne inférieure par théorème de la projection orthogonale

Calculer Inf
(a,b)∈R2

∫ 1

0
x2

∣∣ ln x − ax − b
∣∣2

dx .

Caractérisation des matrices symétriques positives parmi les matrices symétrique réelles

Soit S ∈ Sn(R) . Montrer :

a) S ∈ S+
n ⇐⇒ Sp

R
(S) ⊂ R+ b) S ∈ S++

n ⇐⇒ Sp
R
(S) ⊂ R

∗
+. 

Somme de matrices symétriques positives

Soient n,p ∈ N
∗, S1,. . . ,Sp ∈ S+

n . Montrer :
p∑

k=1

Sk = 0 ⇐⇒
(
∀ k ∈ {1,. . . ,p}, Sk = 0

)
.

Existence de la racine carrée symétrique positive d’une matrice symétrique positive

Montrer : a) ∀ S ∈ S+
n , ∃ R ∈ S+

n , S = R2 b) ∀ S ∈ S++
n , ∃ R ∈ S++

n , S = R2 .

(On pourra utiliser l’exercice 13.9.) 

Inversibilité de la somme d’une matrice symétrique définie positive et d’une matrice
antisymétrique

Soient S ∈ S++
n , A ∈ An(R) . Montrer : S + A ∈ GLn(R) . 

Exemple de matrice symétrique positive

Soient n � 2, A = (ai j )i j ∈ Mn(R) définie par : ai j =
{

n − 1 si i = j

−1 si i =/ j.

Montrer : A ∈ S+
n . A-t-on A ∈ S++

n ? 

Matrices symétriques nilpotentes, matrices normales nilpotentes

a) Soit S ∈ Sn(R) nilpotente. Montrer : S = 0.

b) Soit A ∈ Mn(R) normale, c’est-à-dire telle que tAA = AtA, et nilpotente. Montrer : A = 0. 

Matrice de S+
n issue d’une matrice de S++

n

Montrer : ∀ S ∈ S++
n , S + S−1 − 2 In ∈ S+

n . 

13.7

13.8

13.9

13.10

13.11

13.12

13.13

13.14

13.15
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Matrices symétriques telles que Sp = In

Soient p ∈ N
∗, S ∈ Sn(R) telle que S p = In. Montrer :

{
p impair �⇒ S = In

p pair �⇒ S2 = In .

Matrices de la forme tAA

Soient A ∈ Mn(R), S = tAA.

a) Montrer : S ∈ S+
n . b) Établir : S ∈ S++

n ⇐⇒ A ∈ GLn(R) . 

Factorisation d’une matrice diagonalisable

Soit M ∈ Mn(R) diagonalisable dans Mn(R).

Montrer : ∃ A ∈ S++
n , ∃ B ∈ Sn(R), M = AB.

Matrices orthogonales d’ordre 3 dont la première ligne est imposée

Trouver toutes les matrices A ∈ O3(R) de première ligne 
( 3

5

4

5
0
)

.

Matrices de similitude directe dont les deux premières colonnes sont données

CNS sur (a,b,c) ∈ R
3 pour que la matrice A =


 2 −1 a

2 2 b
−1 2 c


 soit la matrice, dans une b.o.n.,

d’une similitude directe. 

Exemple de détermination d’un adjoint

Soient 
(
E,(. | .)) un eve, a,b ∈ E . Déterminer l’adjoint f ∗ de f ∈ L(E) défini par :

∀ x ∈ E, f (x) = (a | x)b − (b | x)a .

CNS pour que p∗ ∈ Vect (e,p)

Soient 
(
E,(. | .)) un eve, e = IdE , p ∈ L(E) tel que p2 = p.

Montrer : p∗ ∈ Vect (e,p) ⇐⇒ p∗ = p.

Image d’une forme quadratique

Soient E un R-ev non réduit à {0} , ϕ une fbs sur E telle que ϕ =/ 0, q la forme quadratique asso-
ciée à ϕ. Montrer :

1) q positive ⇐⇒ q(E) = R+ 2) q négative ⇐⇒ q(E) = R−

3) q ni positive ni négative ⇐⇒ q(E) = R . 

Exemple de fq définie par un polynôme homogène de degré 2

Soit n ∈ N tel que n � 2. On note : φ : R
n −→ R, (x1,. . . ,xn) �−→

∑
1�i< j�n

(xi − xj )
2.

a) Vérifier que φ est une fq positive sur Rn.

b) Déterminer le cône isotrope de φ , c’est-à-dire C(φ) = {x ∈ R
n ; φ(x) = 0}. 

Étude de signes pour une fq sur un espace de polynômes

On note E = R[X] et φ : E −→ R, P �−→
+∞∑
n=0

P(n)P(−n) e−n .
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a) Montrer que φ est une fq sur E .

b) On note E+ (resp. E− ) le sev de E formé des polynômes pairs (resp. impairs). Montrer que
E+ et E− sont des sev de E supplémentaires dans E , orthogonaux pour la forme polaire ϕ
de φ , et que :

(∀ P ∈ E+ − {0}, φ(P) > 0
)

et
(∀ P ∈ E− − {0}, φ(P) < 0

)
.

Étude d’une forme quadratique

Soient 
(
E,(. | .)) un eve, p ∈ N

∗, (α1,. . . ,αp) ∈ (R∗
+)p, (u1,. . . ,up) ∈ E p .

On note : φ : E −→ R, x �−→ φ(x) =
p∑

i=1

αi (ui | x)2.

a) Montrer que φ est une fq sur E , et exprimer sa forme polaire ϕ.

b) CNS sur (u1,. . . ,up) pour que ϕ soit un produit scalaire sur E . 

Annulation d’un produit scalaire

Soient 
(
E,(. | .)) un eve, f ∈ L(E),λ,µ ∈ Sp ( f ) tels que λ � 0 � µ, x (resp. y) un vecteur

propre de f associé à λ (resp. µ). Établir : ∃z ∈ [x ; y],
(

f (z) | z
) = 0,

où [x ; y] désigne le segment de E joignant x et y : [x ; y] = {(1 − t)x + t y ; t ∈ [0 ; 1]} . 

Exemple de produit scalaire sur un espace de polynômes

Soit (a0,. . . ,an) ∈ R
n+1. On note E = Rn[X] et :

ϕ : E × E �−→ R, (P,Q) �−→
n∑

k=0

P (k)(ak)Q(k)(ak) .

a) Montrer que ϕ est un produit scalaire sur E .

b) Dans le cas n = 2, a0 = −1, a1 = 0, a2 = 1, trouver une b.o.n. de E pour ϕ. 

Comportement d’une forme quadratique au voisinage de 0

Soient 
(
E,(. | .)) un eve, ||.|| la norme euclidienne associée à (. | .) , φ une fq sur E . Montrer :

|φ(x)|3/4

||x || −→
x−→0

0.

Endomorphisme orthogonal d’un espace de matrices carrées

On note, pour A ∈ Mn(R) : f A : Mn(R) −→ Mn(R), M �−→ AM.

CNS sur A pour que f A soit un endomorphisme orthogonal de Mn(R) muni de son produit sca-
laire canonique. 

Orthogonaux de sev dans un espace de fonctions

On note E = C1([0 ; 1] ; R) et, pour ( f,g) ∈ E2 : ( f | g) = f (0)g(0) +
∫ 1

0
f ′(t)g′(t) dt.

a) Vérifier que (. | .) est un produit scalaire sur E .

b) 1) Quel est l’orthogonal de F = Vect (e0), où e0 : [0 ; 1] −→ R, t �−→ 1 ?

2) Quel est l’orthogonal de G = {g ∈ E ; g(0) = 0} ? 
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Étude de Ker (f + f ∗) pour f tel que f 2 = 0

Soient 
(
E,(. | .)) une eve, f ∈ L(E) tel que f 2 = 0.

Montrer : Ker ( f + f ∗) = Ker ( f ) ∩ Ker ( f ∗).

Noyaux de polynômes de f ou de f ∗

Soient 
(
E,(. | .)) un eve, f ∈ L(E), P,Q ∈ R[X] premiers entre eux.

Montrer : Ker
(
P( f )

) ⊥ Ker
(
Q( f ∗)

)
.

Endomorphismes orthogonaux f tels que Sp (f + f ∗) = {2}
Soient 

(
E,(. | .)) un eve, e = IdE , f ∈ O(E), g = f + f ∗ .

Montrer : Sp (g) = {2} ⇐⇒ f = e.

Exemple de matrice symétrique définie positive

On note A = (
Min (i, j)

)
1�i, j�n

∈ Mn(R). Montrer : A ∈ S++
n . 

Terme diagonal nul dans une matrice symétrique positive

Soit S = (ai j )i j ∈ S+
n . Montrer que, si un terme diagonal de S est nul, alors tous les termes de S

situés dans la ligne ou dans la colonne de celui-ci sont nuls. 

Expression variationnelle du rayon spectral

Soit S ∈ S+
n . On note λ1,. . . ,λn les valeurs propres de S (non nécessairement distinctes),

ρ(S) = Max
1�i�n

|λi | , le rayon spectral de S, ||.||2 la norme euclidienne canonique sur Mn(R).

Démontrer : ρ(S) = Sup
X∈Mn,1(R), ||X ||2=1

||SX ||2.

Endomorphismes symétriques dont le spectre évite un intervalle

Soient 
(
E,(. | .)) un eve, f ∈ S(E), (a,b) ∈ R

2 tel que a � b .

On suppose : Sp ( f )∩ ]a ; b[= ∅ . Montrer : ∀ x ∈ E,
(

f (x) − ax
∣∣ f (x) − bx

)
� 0,

et étudier le cas d’égalité lorsque Sp ( f ) ∩ [a ; b] = ∅. 

Encadrement des vp réelles de A à l’aide des vp de 
1
2
(A +t A)

Soient A ∈ Mn(R), S = 1

2
(A + t A).,

On note α (resp. β) la plus petite (resp. grande) valeur propre de S.

Montrer, pour toute valeur propre réelle λ de A : α � λ � β . 

Matrice symétrique par blocs

Soient   (p,q) ∈ (N∗)2, A ∈ S++
p , C ∈ S++

q , B ∈ Mp,q(R), M =
(

A B
t B −C

)
∈ Mp+q(R).

Démontrer que M est symétrique et inversible. 

Inégalité issue de l’inégalité de Cauchy et Schwarz

Montrer : ∀ S ∈ S++
n , ∀ X,Y ∈ Mn,1(R), ( tX SX)( tY S−1Y ) � ( tXY )2.
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Trace et matrices antisymétriques, symétriques, symétriques positives

Soit (A,B) ∈ (
An(R)

)2
. Montrer : tr

(
(AB − B A)4

)
� 0 et étudier le cas d’égalité. 

Exemple d’équation matricielle faisant intervenir une transposée

Résoudre l’équation X t X X = In, d’inconnue X ∈ Mn(R) . 

Caractérisation des matrices de SO2(R)

Soit A ∈ M2(R). Montrer : A ∈ SO2(R) ⇐⇒
{

tr ( tAA) = 2

det (A) = 1.

Étude de noyau pour une matrice vérifiant une condition de positivité

Soit A ∈ Mn(R) telle que : ∀ X ∈ Mn,1(R), t X AX � 0. Montrer : Ker (A) = Ker (tA) . 

Borne supérieure sur un cercle de matrices

Déterminer la borne supérieure de tr (X) + tr (Y ) lorsque le couple (X,Y ) de 
(
Mn(R)

)2
véri-

fie : t X X +tY Y = In . 

Matrices M nilpotentes telles que In + M soit orthogonale

Déterminer l’ensemble des M ∈ Mn(R) telles que M soit nilpotente et que In + M soit
orthogonale. 

Noyau et image d’un endomorphisme normal

Soient 
(
E,(. | .)) un eve, f ∈ L(E) normal, c’est-à-dire tel que : f ◦ f ∗ = f ∗ ◦ f. Montrer :

a) Ker ( f ∗) = Ker ( f ) b) Ker ( f ) ©⊥ Im ( f ) = E c) Im ( f ∗) = Im ( f ). 

Endomorphismes tels que f ◦ f ∗ = f 2

Soient 
(
E,(. | .)) un eve, f ∈ L(E) . Montrer : f ◦ f ∗ = f 2 ⇐⇒ f = f ∗.

Expression de tr (f ∗ ◦ f) à l’aide de deux b.o.n.

Soient 
(
E,(. | .)) un eve, n = dim (E) � 1, f ∈ L(E),B = (e1,. . . ,en), B′ = (e′

1,. . . ,e
′
n) deux

b.o.n. de E . Montrer :
∑

1�i, j�n

(
f (ei )

∣∣ e′
j

)2 = tr ( f ∗ ◦ f ).

Endomorphisme d’un espace de polynômes

On note E = R[X] muni du produit scalaire (. | .) défini par :

∀ (P,Q) ∈ E2, (P | Q) =
∫ 1

−1
P(x)Q(x) dx .

On note, pour tout n ∈ N, En = Rn[X].

a) 1) Montrer que, pour tout n ∈ N , il existe fn ∈ L(En) unique tel que :

∀ P,Q ∈ En,
(
P

∣∣ fn(Q)
) = (XP | Q) .

2) Établir : ∀ n ∈ N
∗, ∀ k ∈ {0,. . . ,n − 1}, fn(X

k) = Xk+1.

3) Est-ce que fn est auto-adjoint ?

b) Calculer f2(Xk) pour k ∈ {0,1,2} . 
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Racine carrée symétrique positive d’une matrice symétrique positive

a) Montrer : ∀ S ∈ S+
n , ∃ !R ∈ S+

n , R2 = S .

On dit que R est la racine carrée symétrique positive de S, et on note : R = S1/2.

b) Établir : ∀ S ∈ S+
n , ∃ P ∈ R[X], S1/2 = P(S).

c) En déduire que, pour tout (A,B) ∈ (S+
n )2, A et B commutent si et seulement si A1/2 et B1/2

commutent. 

Décomposition polaire dans GLn(R)

Démontrer : ∀ A ∈ GLn(R), ∃(Ω,S) ∈ On(R) × S++
n , A = ΩS . 

Diagonalisabilité de certains produits de deux matrices

Soient A ∈ S++
n , B ∈ Sn(R). Montrer que AB est diagonalisable dans Mn(R). (On pourra utiliser

l’exercice 13.11.) 

Trace d’un produit de deux matrices symétriques positives

Soient A,B ∈ S+
n . Montrer : 0 � tr (AB) � tr (A) tr (B) . 

Noyaux de blocs d’une matrice symétrique positive

Soit S ∈ S+
n partitionnée en blocs : S =

(
A tB
B C

)
, où (p,q) ∈ (N∗)2, p + q = n,

A ∈ Mp(R), B ∈ Mp,q(R), C ∈ Mq(R) . Montrer :

Ker (A) ⊂ Ker (B) et Ker (C) ⊂ Ker (t B) .

Concavité, convexité de fonctions liées à un spectre

Soient A,B ∈ Sn(R) . On note, pour tout t ∈ R, f (t) (resp. g(t) ) la plus petite (resp. grande)
valeur propre de A + t B . Montrer que f est concave et que g est convexe. (On pourra utiliser
l’exercice 13.37.) 

Matrices satisfaisant une condition de trace

Soit A ∈ Sn(R) telle que : ∀ B ∈ S++
n , tr (AB) � 0. Montrer : A ∈ S+

n . 

Spectre complexe de SA , pour S ∈ S++
n et A +t A ∈ S++

n

Soient S ∈ S++
n , A ∈ Mn(R) telle que A +t A ∈ S++

n .

Démontrer : ∀λ ∈ Sp
C
(S A), Ré (λ) > 0. (On pourra utiliser l’exercice 13.11.) 

Étude de AB + BA = 0, pour A ∈ S+
n , B ∈ Sn(R)

a) Soient A ∈ S+
n , B ∈ Sn(R) telles que AB + B A = 0 . Montrer : AB = B A = 0 .

b) Donner un exemple de couple (A,B) tel que :

A ∈ S+
2 − {0}, B ∈ S+

2 − {0}, AB = B A = 0 .

Produit scalaire issu d’une matrice par blocs

Soit A ∈ S++
n .

Montrer que l’application ϕ :
(
Mn,1(R)

)2 −→ R, (X,Y ) �−→ − det

(
0 tY
X A

)

est un produit scalaire. ©
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Matrice de Hilbert

On note Hn =
(

1

i + j − 1

)
1�i, j�n

∈ Mn(R). Montrer : Hn ∈ S++
n . 

Matrice inversible issue de matrices symétriques positives

Démontrer : ∀ A ∈ S++
n , ∀ B ∈ S+

n , In + AB ∈ GLn(R) . 

Inégalité sur un déterminant de matrice symétrique positive 

Montrer : ∀ S ∈ S+
n , 1 + (

det (S)
)1/n �

(
det (In + S)

)1/n
. 

Famille obtusangle

Soient 
(
E,(. | .)) un eve, n = dim (E) � 1.

Une famille finie (x1,. . . ,xp) d’éléments de E est dite obtusangle si et seulement si :

∀ (i, j) ∈ {1,. . . ,p}2,
(
i =/ j �⇒ (xi | xj ) < 0

)
.

a) Soit p ∈ N − {0,1} . Montrer que, si (x1,. . . ,xp) est obtusangle, alors (x1,. . . ,xp−1) est
libre.

b) En déduire qu’il n’existe pas de famille obtusangle dans E, de cardinal � n + 2. 

Déterminants de matrices carrées extraites d’une matrice orthogonale

Soient n ∈ N − {0,1}, p ∈ {1,. . . ,n − 1},Ω = (ωi j )i j ∈ On(R),

A = (ωi j )1�i, j�p , B = (ωi j )p+1�i, j�n, de sorte que : Ω =
(

A ∗
∗∗ B

)
.

Montrer : |det (A)| = |det (B)| ∈ [0 ; 1]. (On pourra utiliser l’exercice 12.49.) 

Inégalité de convexité, inégalités de Hadamard

a) 1) Soit S = (si j )i j ∈ S+
n . On note λ1,. . . ,λn les valeurs propres de S (non nécessairement dis-

tinctes). Soit f : [0 ;+∞[−→ R une application convexe. Démontrer :
n∑

i=1

f (sii ) �
n∑

k=1

f (λk).

2) En déduire : ∀ S = (si j )i j ∈ S+
n , det (S) �

n∏
i=1

sii .

b) Établir : ∀ A = (ai j )i j ∈ Mn(R), |det (A)| �
( n∏

i=1

n∑
j=1

a2
i j

)1/2

.

Majoration d’une valeur absolue de déterminant

Soient (α,β) ∈ (R∗
+)2, A ∈ Mn(R) telle que : tAA = αA + β

tA .

Démontrer : |det (A)| � (α+ β)n . (On pourra utiliser l’exercice 13.67 b).) 

Matrice symétrique positive dont les termes sont des aires

Soient D1,. . . ,Dn des domaines simples de R2 (pour lesquels on puisse définir l’aire). On note,
pour tout (i, j) ∈ {1,. . . ,n}2, ai j l’aire de Di ∩ Dj , et A = (ai j )i j ∈ Mn(R). Démontrer :
A ∈ S+

n . 
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Étude de matrices normales

Soit A ∈ Mn(R) telle que AtA = tAA. On suppose que les valeurs propres de tAA sont toutes
simples. Démontrer : tA = A. 

Caractérisation des matrices A diagonalisables, par une factorisation de t A

Soit A ∈ Mn(R). Montrer que les deux propriétés suivantes sont équivalentes :

(i) A est diagonalisable dans Mn(R) (ii) ∃ S ∈ S++
n , t A = S−1 AS. 

Inégalités sur déterminants et traces

a) Montrer : ∀ S ∈ S+
n ,

(
det (S)

)1/n � 1

n
tr (S).

b) En déduire :

1) ∀ A ∈ Mn(R), |det (A)| �
(

1

n
tr (t AA)

)n/2

2) ∀ A,B ∈ S+
n , det (A) det (B) �

(
1

n
tr (AB)

)n

.

Les matrices t AA et AtA sont orthogonalement semblables

Soit A ∈ Mn(R). Montrer que AtA et tAA sont orthogonalement semblables, c’est-à-dire qu’il
existe Ω ∈ On(R) telle que : AtA = Ω tAAΩ−1 . 

Mineurs de Gauss

a) Soit A = (ai j )i j ∈ Sn(R) . Pour chaque p ∈ {1,. . . ,n} , on note Ap = (ai j )1�i, j�p ∈ Sp(R).
Les det (Ap), 1 � p � n, sont appelés les mineurs de Gauss de A.

α) Montrer : A ∈ S+
n �⇒ (∀ p ∈ {1,. . . ,n}, det (Ap) � 0

)
.

β) La réciproque du résultat précédent est-elle vraie ?

γ) Démontrer : A ∈ S++
n ⇐⇒ (∀ p ∈ {1,. . . ,n}, det (Ap) > 0

)
.

b) En déduire que S++
n est un ouvert de S+

n .

c) Soient a ∈ ] − 1 ; 1[ et A = (a|i− j |)1�i, j�n .Montrer : A ∈ S++
n . 

Décomposition de Choleski

Soit S ∈ Sn(R) . Démontrer :

a) S ∈ S+
n ⇐⇒ (∃ T ∈ Tn,s(R), S = tT T

)

b) S ∈ S++
n ⇐⇒ (∃ T ∈ Tn,s ∩ GLn(R), S = tT T

)
.

Inégalité sur les vp d’une matrice symétrique réelle à termes � 0

Soient A ∈ Sn(R) à termes tous � 0, λ1,. . . ,λn les valeurs propres de A, rangées de sorte que :
λ1 � . . . � λn. Démontrer : λ1 � |λn|. 

Orthodiagonalisation simultanée d’une famille commutative de matrices symétriques
réelles

Soient I un ensemble non vide, (Si )i∈I une famille d’éléments de Sn(R), commutant deux à deux.
Démontrer qu’il existe Ω ∈ On(R) telle que : ∀ i ∈ I, Ω−1 SiΩ ∈ Dn(R).

©
 D

un
od

. L
a 

ph
ot

oc
op

ie
 n

on
 a

ut
or

is
ée

 e
st

 u
n 

dé
lit

.

13.70

13.71

13.72

13.73

13.74

13.75

13.76

13.77



Chapitre 13 • Espaces préhilbertiens réels

460

Simplification de matrices symétriques positives

Soit P ∈ R[X] tel que P(0) = 0 et que P|R+ soit strictement croissante.

Soient A,B ∈ S+
n telles que P(A) = P(B). Montrer : A = B.

(On pourra utiliser l’exercice 13.77.) 

Théorème du minimax de Courant et Fischer

Soient S ∈ Sn(R) , λ1,. . . ,λn les valeurs propres de S, rangées de sorte que : λ1 � . . . � λn.
Pour chaque r ∈ {0,. . . ,n − 1} , on note Fr l’ensemble des sev de Mn,1(R) de dimension n − r .

Démontrer : ∀ r ∈ {0,. . . ,n − 1}, λr+1 = Inf
F∈Fr

(
Sup

X∈F et tX X=1

t X SX

)
.

13.78

13.79

Du mal à démarrer ?

Utiliser, pour le sens �⇒ , l’expression de ϕ(x,y) à l’aide

de φ(x + y), φ(x), φ(y) , et, pour le sens ⇐� , l’expression de

φ(x) à l’aide de ϕ .

Raisonner par l’absurde.

a) Considérer l’application ϕ : E × E −→ R obtenue par

dédoublement de φ, et montrer que ϕ est une fbs et que φ est

la fq associée à ϕ .

b) 1) Utiliser l’inégalité de Cauchy et Schwarz pour des inté-

grales.

2) Utiliser le cas d’égalité dans l’inégalité de Cauchy et Schwarz

pour des intégrales.

Appliquer convenablement l’inégalité triangulaire et l’in-

égalité de Cauchy et Schwarz.

Avec les notations usuelles, et en notant p l’orthoprojec-

teur sur Rv, on a : s = 2p − e et p(x) = (v | x)v .

a) Pour montrer l’orthogonalité, calculer (S | A) pour

S ∈ Sn(R) et A ∈ An(R) , et obtenir (S | A) = 0 .

b) 1) Décomposer M sur Sn(R) et An(R) .

Considérer l’application ϕ : E × E −→ R obtenue par

dédoublement de φ.

Noter, par exemple, f,ϕ1,ϕ2 les éléments de E définis,

pour tout x ∈ [0 ; 1], par :

f (x) =
{

x ln x si x �= 0

0 si x = 0
ϕ1(x) = x2, ϕ2(x) = x ,

et F = Vect (ϕ1,ϕ2) .

Interpréter la question comme le calcul du carré de la distance

de f à F . Appliquer le théorème de projection orthogonale et

chercher le projeté orthogonal ϕ de f sur F sous la forme

aϕ1 + bϕ2, (a,b) ∈ R
2.

a) 1) Supposer S ∈ S+
n . Soit λ ∈ SpR(S). Utiliser un vecteur

propre V pour S , associé à la valeur propre λ .

2) Réciproquement, supposer : SpR(S) ⊂ R+ .

Utiliser le théorème fondamental (ou : théorème spectral), puis

se ramener à un calcul faisant intervenir une matrice diagonale.

b) Reprendre a) en précisant le caractère strict de certaines

inégalités.

Un sens est évident. Pour l’autre sens, calculer

t X

( p∑
k=1

Sk

)
X, pour X ∈ Mn,1(R).

a) Utiliser le théorème fondamental, l’exercice 13.9, et la
matrice diagonale formée des racines carrées des valeurs
propres de S .

b) Compléter a) par une étude d’inégalités strictes ou d’inversi-

bilité.

Soit X ∈ Mn,1(R) telle que (S + A)X = 0 . Déduire
t X SX = 0 , puis X = 0 .

Pour X = t ( x1 . . . xn ) ∈ Mn,1(R), calculer t X AX et remar-

quer :

t X AX = ||U ||2||X ||2 − (U | X)2, où U = t ( 1 . . . 1 ) .
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a) Utiliser le théorème fondamental.

b) Appliquer a) à S = t AA , puis utiliser la norme euclidienne

associée au ps canonique sur Mn(R) .

Utiliser le théorème fondamental et l’exercice 13.9 pour se

ramener à des matrices diagonales.

Utiliser le théorème fondamental pour se ramener à une

matrice diagonale.

a) Calculer t X SX pour X ∈ Mn,1(R).

b) Compléter a) par une étude d’inversibilité.

Utiliser le théorème fondamental et l’exercice 13.17.

En notant L1,L2,L3 les lignes de A, vérifier ||L1|| = 1,

noter L2 = ( a b c ) , traduire (L1 | L2) = 0 et ||L2||22 = 1 ,

puis, au signe près, L3 = L1 ∧ L2 .

D’après le cours, A est la matrice, dans une b.o.n., d’une

similitude directe si et seulement si :

∃α ∈ R
∗
+, αA ∈ SO3(R) .

Noter C1,C2,C3 les colonnes de 
1

3
A, et traduire la condition

1

3
A ∈ SO3(R), en utilisant un produit vectoriel.

Exprimer 
(

f (x)
∣∣ y

)
, pour tout (x,y) ∈ E2 sous la forme

(x | . . .) .

Un sens est évident.

Réciproquement, supposer p∗ = αe + βp, (α,β) ∈ R
2 . Calculer

p∗ ◦ p et séparer en cas : α + β �= 0, α + β = 0 .

• Montrer d’abord les implications directes, dans les trois

cas :

1) si q � 0 et q �= 0 , il existe x ∈ E tel que q(x) > 0 et remar-

quer : ∀ t ∈ R+, t = q

( √
t√

q(x)
x

)

2) le cas q � 0 est analogue au cas q � 0

3) si q n’est ni positive ni négative, utiliser u,v ∈ E tels que :

q(u) < 0 et q(v) > 0 .

• 1) Montrer la réciproque en raisonnant par l’absurde et en uti-

lisant les implications directes de 2) et 3).

2), 3) Analogues à 1).

a) Remarquer qu’il s’agit d’un polynôme homogène de

degré 2, à valeurs � 0 .

b) Immédiat.

a) • Ne pas oublier de montrer que, pour tout P ∈ E , la série∑
n�0

P(n)P(−n) e−n, converge.

• Considérer l’application ϕ : E × E −→ R obtenue par dédou-
blement de φ.

a) Considérer l’application ϕ : E × E −→ R obtenue par

dédoublement de ϕ .

b) Remarquer φ � 0 et traduire que φ est définie-positive.

Se rappeler que le segment joignant x et y dans E est, par

définition :

[x ; y] = {
(1 − t)x + t y ; t ∈ [0 ; 1]

}
.

Considérer l’application u : [0 ; 1] −→ R définie par :

t ∈ [0 ; 1] �−→ u(t) =
(

f
(
(1 − t)x + t y

) ∣∣∣ (1 − t)x + t y
)

,

et appliquer le théorème des valeurs intermédiaires.

a) Certaines vérifications sont immédiates. Pour montrer

ϕ(P,P) �⇒ P = 0 , raisonner sur les degrés.

b) Appliquer le procédé d’orthogonalisation de Schmidt à la

base canonique (1, X, X2) de E .

Utiliser le résultat du cours sur une majoration relative aux

applications bilinéaires en dimension finie.

Traduire que, pour tout (M,N ) ∈ (
Mn(R)

)2
:

(
f A(M)

∣∣ f A(N )
) = (M | N ) .

a) Immédiat.

b) 1) Pour f ∈ E , traduire f ∈ F⊥.

2) Montrer G⊥ ⊂ F en considérant, pour f ∈ G⊥,

g = f − f (0)e0. Verifier  : e0 ∈ G⊥.

1) Une inclusion est immédiate.

2) Réciproquement, soit x ∈ Ker ( f + f ∗) . Déduire

f ◦ f ∗(x) = 0 , puis, en utilisant le ps, montrer f ∗(x) = 0 .

Appliquer le théorème de Bezout.

• Un sens est évident.

• Réciproquement, supposer Sp (g) = {2}. Remarquer que g est

symétrique et appliquer le théorème fondamental, puis déduire

g = 2e. Calculer ( f − e)∗ ◦ ( f − e) .

1re méthode : Utilisation d’une factorisation de A :

Remarquer A = tT T où T est une matrice triangulaire très

simple. Appliquer alors l’exercice 13.17.
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2e méthode : Décomposition de la fq en somme de carrés :

Obtenir, avec les notations usuelles :

t X AX = (x1 + · · · + xn)
2 + · · · + x2

n .

Soit i ∈ {1,. . . ,n} tel que aii = 0 . Considérer,

pour j ∈ {1,. . . ,n} tel que j �= i , et pour α ∈ R :
t(αEi + Ej )S(αEi + Ej ) .

Utiliser le théorème fondamental pour se ramener à une

matrice diagonale.

1) Inégalité :

Utiliser le théorème fondamental.

2) Étude du cas d’égalité :

Reprendre les calculs de 1) en supposant qu’il y a égalité.

Il existe X ∈ Mn,1(R) − {0} tel que : AX = λX. Calculer
tX S X et utiliser le théorème fondamental.

Pour X ∈ Mp,1(R) et Y ∈ Mq,1(R) , traduire

M

(
X

Y

)
=

(
0

0

)
, en faisant apparaître tX AX et tY CY.

Utiliser l’exercice 13.11.

Noter C = AB − B A.

1) Inégalité : Obtenir successivement :

C ∈ An(R), C2 ∈ Sn(R), C4 ∈ S+
n .

2) Étude du cas d’égalité :

Utiliser la norme euclidienne canonique sur Mn(R) .

Déduire que X est symétrique, puis X3 = In . Utiliser le

théorème fondamental pour se ramener à une matrice diago-

nale.

1) Un sens est évident.

2) Réciproquement, supposer : tr (tAA) = 2 et det (A) = 1 .

Former le polynôme caractéristique χt A A de tAA et utiliser le

théorème fondamental.

Soit x ∈ Ker (A). Pour Y ∈ Mn,1(R) , remarquer :

∀λ ∈ R, t(X + λY )A(X + λY ) � 0.

1) Appliquer l’inégalité de Cauchy et Schwarz dans

Mn(R) usuel à In et X , pour obtenir :(
tr (X)

)2 � n tr (tX X) .

Remarquer : ∀ (a,b) ∈ R
2, (a + b)2 � 2(a2 + b2).

2) Examiner le cas X = Y = 1√
2

In .

1) Soient k ∈ N − {0,1} et M ∈ Mn(R) tels que :

Mk = 0, Mk−1 �= 0, In + M ∈ On(R) .

Obtenir : tM + M +t M M = 0, multiplier par Mk−1 ,

et amener une contradiction.

2) M = 0 convient.

a) • Soit x ∈ Ker ( f ) . Calculer || f ∗(x)||2 et déduire

f ∗(x) = 0 .

• Appliquer le résultat précédent à f ∗ à la place de f.

b) • Montrer : Ker ( f ) ⊥ Im ( f ) .

• Utiliser le théorème du rang.

c) • Soit y ∈ Im ( f ∗) . Utiliser b) pour décomposer y sur Ker ( f )

et Im ( f ).

• Appliquer le résultat précédent à f ∗ à la place de f.

• Un sens est immédiat.

• Réciproquement, supposer f ◦ f ∗ = f 2.

Noter g = f − f ∗ et calculer g∗ ◦ g, puis utiliser le produit sca-

laire usuel sur L(E) .

Noter A = (ai j )i j = MatB( f ) .

Calculer, pour tout (i, j) ∈ {1,. . . ,n}2,
(

f (ei )
∣∣ e′

j

)
.

Noter E = (ek | e′
j ))1�k, j�n et montrer :
∑

1�i, j�n

(
f (ei )

∣∣ e′
j

) = ||tAE ||22 .

a) 1) Soient n ∈ N, Q ∈ En . Montrer que 

ϕQ : En −→ R, P �−→ (XP | Q)

est une forme linéaire sur En, et en déduire qu’il existe Q1 ∈ En

unique tel que : ∀ P ∈ E, ϕQ(P) = (P | Q1).

Remarque : On ne peut pas définir directement fn comme un

adjoint, car P �−→ XP n’est pas un endomorphisme de En.

2) Calculer (P | Xk+1) pour tout P ∈ En .

3) Revenir à la définition.

b) • On a déjà f2(1) et f2(X) d’après a) 2).

• Noter f2(X2) = α + βX + γ X2, (α,β,γ ) ∈ R
3

et traduire la définition de f2 .

a) 1) Existence : Cf. exercice 13.11.

2) Unicité :
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Soit R ∈ S+
n telle que R2 = S .

Considérer les sous-espaces propres pour R et pour S , et mon-

trer que ce sont les mêmes.

b) Utiliser un polynôme d’interpolation.

c) Utiliser b) et le cours sur les polynômes de matrices carrées.

1) Unicité :

Si (Ω,S) convient, déduire tAA = S2 , appliquer l’exercice 13.52,

et déduire aussi Ω .

2) Existence :

Utiliser les exercices 13.17 et 13.52.

Utiliser l’exercice 13.11 et R2 B = R(RB R)R−1 .

Appliquer le théorème fondamental à A, d’où, avec des

notations classiques, A = ΩDΩ−1 , puis noter C = Ω
−1 BΩ . On

se ramène ainsi, au lieu de (A,B), à (D,C) , où D est diagonale.

Passer alors aux éléments.

Soient X ∈ Mp,1(R), Y ∈ Mq,1(R) . En considérant

t

(
X
αY

)
S

(
X
αY

)
pour tout α ∈ R , déduire :

(tY B X)2 − (tX AX)(tY CY ) � 0 .

Appliquer l’exercice 13.37 (et un résultat analogue) pour

obtenir, par exemple :

∀ t ∈ R, f (t) = Min
||X ||2=1

(t
X (A + t B)X

)
.

Pour u,v ∈ R, α ∈ [0 ; 1], X ∈ Mn,1(R) tel que ||X ||2 = 1 , cal-

culer : tX
(
A + (

(1 − α)u + αv
)
B

)
X.

Utiliser le théorème fondamental pour se ramener à une

matrice diagonale et utiliser l’hypothèse convenablement

appliquée.

Utiliser l’exercice 13.11 pour se ramener à R AR à la place

de S A . Faire intervenir les nombres complexes. Pour

λ ∈ SpC(R AR) et X ∈ Mn,1(C) − {0} tels que (R AR)X = λX ,

calculer (X∗ R)(A +t A)(RX) .

a) Appliquer le théorème fondamental à A pour obtenir

A = ΩDΩ−1 , où Ω est orthogonale et D diagonale, et noter

C = Ω
−1 BΩ.

Se ramener à (D,C) au lieu de (A,B).

Calculer le produit matriciel (
0 tY
X A

)(
In 0

−A−1 X A−1

)
,

puis passer aux déterminants.

Remarquer : ∀ k ∈ N
∗,

1

k
=

∫ 1

0
tk−1 dt

et calculer t X Hn X pour X =




x1
.
.
.

xn


 ∈ Mn,1(R).

Montrer que A est inversible et factoriser par A, pour se

ramener à étudier A−1 + B .

Appliquer le théorème fondamental pour se ramener à une

matrice diagonale. Utiliser la convexité de 

ϕ : R −→ R, t �−→ ln(1 + et ) ,

et l’inégalité de Jensen.

a) Soit (α1,. . . ,αp−1) ∈ R
p−1 tel que 

p−1∑
i=1

αi xi = 0.

Considérer y =
p−1∑
i=1

|αi |xi, et calculer 

∣∣∣∣
∣∣∣∣

p−1∑
i=1

|αi |xi

∣∣∣∣
∣∣∣∣
2

−
∣∣∣∣
∣∣∣∣

p−1∑
i=1

αi xi

∣∣∣∣
∣∣∣∣
2

.

• Noter Ω =
(

A U

V B

)
.

Traduire Ω ∈ On(R) pour déduire :

tAA +t V V = Ip, V tV + B tB = In−p .

Utiliser l’exercice 12.49 pour déduire :

det (tAA) = det (tB B) .

• Montrer : Sp (tAA) ⊂ [0 ; 1] .

a) 1) Utiliser le théorème fondamental, S = P D P−1 , où
P ∈ On(R),D = diag (λ1,. . . ,λn) ∈ Dn(R) . Noter P = (pi j )i j .

Obtenir : ∀ i ∈ {1,. . . ,n}, sii =
n∑

k=1

λk p2
ik .

Utiliser la convexité de f en les λk avec coefficients

p2
ik , 1 � i � n .

2) • Supposer d’abord S ∈ S++
n et utiliser l’application

f : x �−→ −ln x .

• Traiter le cas : S ∈ S+
n et S /∈ S++

n .

b) Considérer S = AtA et appliquer a) à S .

Déduire tAA = γA + γ tA , où γ = α + β

2
> 0.

En notant Ω = 1

γ
A − In, obtenir :Ω ∈ On(R) .

Appliquer l’inégalité de Hadamard à A = γΩ+ γ In,

en notant Ω = (ωi j )i j .
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Considérer, pour tout domaine simple D de R2, la fonc-

tion caractéristique ϕD de D , définie par :

ϕD : R
2 −→ R, M �−→

{
1 si M ∈ D

0 si M /∈ D

et remarquer :

∀ (i, j) ∈ {1,. . . ,n}2, ϕDi ∩ Dj = ϕDi ϕDj .

Noter S =t AA = AtA et appliquer le théorème fonda-

mental pour obtenir, avec les notations usuelles, S = P D P−1 .

Noter B = P−1 AP et déduire B D = DB , puis B est diagonale.

• (i) �⇒ (ii) :

À partir de A = P D P−1 , exprimer tA .

• (ii) �⇒ (i) :

À partir de tA = S−1 AS , déduire que AS est symétrique et utili-

ser l’exercice 13.11 pour avoir R ∈ S++
n telle que S−1 = R2 .

Considérer alors R(AS)R .

a) Utiliser le théorème fondamental et la comparaison

entre moyenne arithmétique et moyenne géométrique.

b) 1) Appliquer a) à S = tAA .

2) Soient A,B ∈ S+
n .

• Si A /∈ S++
n , obtenir l’inégalité voulue.

• Si A ∈ S++
n , utiliser l’exercice 13.11 pour avoir R ∈ S++

n telle

que A = R2 , et appliquer a) à R AR .

Les matrices AtA et tAA sont symétriques réelles et ont le

même polynôme caractéristique.

a) α) Supposer A ∈ S+
n . Soit p ∈ {1,. . . ,n}.

Pour X =




x1
.
.
.

xp


 ∈ Mp,1(R) , compléter X par des termes nuls

pour obtenir un élément X ′ de Mn,1(R) et appliquer
tX ′ AX ′ � 0.

β) Considérer, par exemple, − E22 .

γ ) 1) Soit A ∈ S++
n . Montrer, comme en a) α) :

∀ p ∈ {1,. . . ,n}, det (Ap) > 0.

2) Réciproquement, supposer :

∀ p ∈ {1,. . . ,n}, det (Ap) > 0.

Montrer : ∀ p ∈ {1,. . . ,p}, Ap ∈ S++
p

par récurrence (bornée) sur p.

Pour passer de p à p + 1, utiliser une décomposition en blocs et

l’exercice 13.11.

b) Considérer l’application 

f : S+
n −→ R

n, A �−→ (
det (A1),. . . ,det (An)

)
.

c) Calculer les mineurs de Gauss de A et appliquer a) γ ) .

a) Pour le sens �⇒ , faire une récurrence sur n, en utilisant

une décomposition en blocs et un trinôme réel.

Pour le sens ⇐� , cf. exercice 13.17 a).

b) Utiliser a) et calculer des déterminants.

Utiliser le théorème fondamental.

Pour X =




x1
.
.
.

xn


 ∈ Mn,1(R), considérer X̃ =




|x1|
.
.
.

|xn |


 .

Calculer |tX AX | et X̃ AX̃ .

Récurrence sur n.

Le cas n = 1 est immédiat.

Supposer la propriété vraie pour tout p ∈ N
∗ tel que p < n, et

soit I un ensemble non vide, (Si )i∈I une famille d’éléments de

Sn(R) commutant deux à deux. Le cas 
(∀ i ∈ I, Si ∈ RIn

)
est tri-

vial. Supposer qu’il existe i0 ∈ I tel que Si0 /∈ RIn . Appliquer le

théorème fondamental à Si0 et décomposer en blocs.

• Appliquer le théorème fondamental à A et montrer, en

utilisant l’hypothèse portant sur P et un polynôme d’interpola-

tion, que A est un polynôme en P(A) .

De même pour B .

En déduire que A et B commutent.

• Utiliser l’exercice 13.77.

Noter D = diag (λ1,. . . ,λn) et Ω ∈ On(R) telle que

S = Ω DΩ−1 .

Pour i ∈ {1,. . . ,n} , noter Ci la i -ème colonne de la base cano-

nique de Mn,1(R) .

Remarquer que (ΩCi )1�i�n est une b.o.n. de Mn,1(R) .

Noter, pour r ∈ {0,. . . ,n − 1} :

Er+1 = Vect (ΩC1,. . . ,ΩCr+1)

E ′
r = Vect (ΩCr+1,. . . ,ΩCn) .

1) Soit X ∈ E ′
r. Montrer : tX SX = λt

r+1X X.

Déduire une inégalité.

2) Soit F ∈ Fr. Montrer : F ∩ Er+1 =/ {0}.

Utiliser un X ∈ F ∩ Er+1 tel que X �= 0 et obtenir :

tX SX � λt
r+1X X .

Déduire l’autre inégalité.
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Corrigés des exercices

1) Supposons F ⊂ C(φ).

Soient x,y ∈ F. On a alors : φ(x) = 0 et φ(y) = 0,

et, puisque F est un sev de E : x + y ∈ F ⊂ C(φ) ,

donc : φ(x + y) = 0. On déduit :

ϕ(x,y) = 1

2

(
φ(x + y) − φ(x) − φ(y)

) = 0 .

2) Réciproquement, supposons :

∀ (x,y) ∈ F2, ϕ(x,y) = 0 .

En particulier : ∀ x ∈ F, φ(x) = ϕ(x,x) = 0,

donc : F ⊂ C(φ).

Raisonnons par l’absurde : supposons que φ ne soit ni
positive ni négative. Il existe alors u,v ∈ E tels que :

φ(u) < 0 et φ(v) > 0. 

D’après l’hypothèse : 0 �
(
ϕ(u,v)

)2 � φ(u)φ(v) < 0,

contradiction.

On conclut : φ � 0 ou φ � 0.

a) Considérons l’application 

ϕ : E × E −→ R, ( f,g) �−→
∫ 1

0
f g −

(∫ 1

0
f

)(∫ 1

0
g

)
,

obtenue à partir de φ par dédoublement.

Il est clair que ϕ est symétrique et que ϕ est linéaire par rap-
port à la deuxième place donc ϕ est une fbs sur E . Et on a :

∀ f ∈ E, ϕ( f, f ) =
∫ 1

0
f 2 −

(∫ 1

0
f

)2

= φ( f ) .

On conclut que φ est une fq sur E et que la forme polaire 
de φ est ϕ.

b) 1) D’après l’inégalité de Cauchy et Schwarz sur les intégrales,
appliquée à f et 1 :

∀ f ∈ E,

(∫ 1

0
f

)2

�
(∫ 1

0
12

)(∫ 1

0
f 2

)
=

∫ 1

0
f 2 ,

donc : ∀ f ∈ E, φ( f ) =
∫ 1

0
f 2 −

(∫ 1

0
f

)2

� 0.

On conclut : φ est positive.

2) • Soit f ∈ Ker (ϕ) , c’est-à-dire telle que :

∀ g ∈ E, ϕ( f,g) = 0 .

En particulier : 0 = φ( f ) =
∫ 1

0
f −

(∫ 1

0
f

)2

.

D’après l’étude du cas d’égalité dans l’inégalité de Cauchy et
Schwarz, il en résulte que la famille (1, f ) est liée, donc
f ∈ R1 .

• Réciproquement, pour tout α ∈ R :

∀ g ∈ E, ϕ(α,g) =
∫ 1

0
αg −

(∫ 1

0
α

)(∫ 1

0
g

)
= 0 ,

donc : α ∈ Ker (ϕ). 

On conclut : Ker (ϕ) = R1.

On a, par l’inégalité triangulaire :
∣∣∣∣
∣∣∣∣

n∑
i=1

αi xi

∣∣∣∣
∣∣∣∣
2

�
( n∑

i=1

|αi | ||xi ||
)2

.

En appliquant l’inégalité de Cauchy et Schwarz, dans Rn

usuel, à (α1,. . . ,αn) et (||x1||,. . . ,||xn||) , on a :
( n∑

i=1

|αi | ||xi ||
)2

�
( n∑

i=1

|αi |2
)( n∑

i=1

||xi ||2
)

.

On conclut :

∣∣∣∣
∣∣∣∣

n∑
i=1

αi xi

∣∣∣∣
∣∣∣∣
2

�
( n∑

i=1

|αi |2
)( n∑

i=1

||xi ||2
)

.

Notons s la symétrie orthogonale autour de la droite
vectorielle engendrée par le vecteur unitaire

v = (v1,. . . ,vn) .

Soit x ∈ R
n .

D’après le cours, le projeté orthogonal p(x) de x sur Rv est

donné par : p(x) = (v | x)

||v||2 v = (v | x)v.

On a donc : s(x) = 2p(x) − x = 2(v | x)v − x .

En passant aux matrices dans la base canonique B de Rn, et en
notant X la matrice-colonne des coordonnées de x dans B, et
S la matrice de s dans B, on a :

SX = 2( tV X︸︷︷︸
∈ R

)V − X = 2V (tV X) − X = (2V tV − In)X .

On conclut que la matrice cherchée est S = 2V tV − In , ou en-
core :

S =




2v2
1 − 1 2v1v2 . . . 2v1vn

2v2v1
. . .

. . .
...

...
. . .

. . . 2vn−1vn

2vnv1 . . . 2vnvn−1 2v2
n − 1


 .

Remarque : S est symétrique et orthogonale.
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a) • Il est connu que Sn(R) et An(R) sont des sev de
Mn(R) .

• Soient S ∈ Sn(R), A ∈ An(R) . On a :

(S | A) = tr (tS A) = tr (S A) = tr (AS)

= tr
(
(−tA)S

) = − tr (tAS) = −(A | S) = −(S | A),

d’où : (S | A) = 0.

Ceci montre que Sn(R) et An(R) sont orthogonaux pour (. | .)
dans Mn(R) .

Il en résulte en particulier : Sn(R) ∩ An(R) = {0} .

• On a, pour toute M ∈ Mn(R) :

M = 1

2
(M +t M)︸ ︷︷ ︸
∈ Sn(R)

+ 1

2
(M −t M)︸ ︷︷ ︸
∈ An(R)

,

donc : Mn(R) = Sn(R) + An(R) .

Finalement, Sn(R) et An(R) sont supplémentaires orthogonaux
dans Mn(R) .

b) 1) Soit M ∈ Mn(R) .

Notons : S = 1

2
(M +t M), A = 1

2
(M −t M).

On a alors :

M = S + A, S ∈ Sn(R), A ∈ An(R) = (
Sn(R)

)⊥
.

Ceci montre que S est le projeté orthogonal de M sur Sn(R).
On a donc :

(
d
(
M,Sn(R)

))2 = ||M − S||2 = ||A||2 = tr (tAA)

= tr
[t(1

2
(M −t M)

)1

2
(M −t M)

]
= −1

4
tr

(
(M −t M)2

)
.

2) Pour M =
n∑

i=1

Ei1 =



1 0 . . . 0
...

... (0)
...

1 0 . . . 0


, on a :

A = 1

2
(M −t M) =




0 −1/2 . . . −1/2
1/2 0 . . . 0
...

... (0)
...

1/2 0 . . . 0


 ,

(
d
(
M,Sn(R)

))2 = ||A||2 =
∑

1�i, j�n

(
(A)i j

)2 = n − 1

2
.

On conclut : d
(
M,Sn(R)

) =
√

n − 1

2
.

• Il est clair que E = X R[X] est un sev de R(X].

Considérons l’application :

ϕ : E×E −→ R, (P,Q) �−→ 1

2

∫ 1

0
(P Q′ + P ′ Q + 2P ′ Q′) ,

obtenue par dédoublement à partir de q. Il est clair que ϕ est
symétrique, linéaire par rapport à la seconde place, et que :

∀ P ∈ E, ϕ(P,P) = q(P).

Il en résulte que q est une fq sur E , la fq associée à la fbs ϕ.
On a, pour tout P ∈ E :

q(P) =
∫ 1

0
(P + P ′)P ′ =

∫ 1

0
P P ′ +

∫ 1

0
P ′ 2

=
[ P2

2

]1

0
+

∫ 1

0
P ′ 2

=
(
P(1)

)2

2
−

(
P(0)

)2

2︸ ︷︷ ︸
=0

+
∫ 1

0
P ′ 2 � 0.

• Soit P ∈ E tel que q(P) = 0. D’après le calcul précédent,

on a alors :

(
P(1)

)2

2︸ ︷︷ ︸
�0

+
∫ 1

0
P ′ 2

︸ ︷︷ ︸
�0

= 0,

donc : P(1) = 0 et
∫ 1

0
P ′ 2 = 0.

Puisque P ′ 2 est continue et � 0, on déduit P ′ = 0, donc P est
une constante. Comme P(1) = 0, on obtient P = 0.

On conclut : q est une fq définie positive sur E .

Notons E = C([0 ; 1] ; R) muni du produit scalaire :

( f,g) �−→ ( f | g) =
∫ 1

0
f (x)g(x) dx .

Considérons les éléments f,ϕ1,ϕ2 de E définis, pour tout

x ∈ [0 ; 1], par :

f (x) =
{ x ln x si x =/ 0

0 si x = 0
ϕ1(x) = x2, ϕ2(x) = x ,

et notons F = Vect (ϕ1,ϕ2).

On a alors :

Inf
(a,b)∈R2

∫ 1

0
x2| ln x − ax − b|2 dx = (

d( f,F)
)2

.

D’après le théorème de la projection orthogonale,

il existe ϕ ∈ F unique tel que d( f,F) = || f − ϕ||
et ϕ est donné par : ϕ ∈ F et ϕ− f ∈ F⊥.

Soient (a,b) ∈ R
2, ϕ = aϕ1 + bϕ2 . On a :

ϕ− f ⊥ F ⇐⇒
{
ϕ− f ⊥ϕ1

ϕ− f ⊥ϕ2

⇐⇒
{

(aϕ1 + bϕ2 − f |ϕ1) = 0

(aϕ1 + bϕ2 − f |ϕ2) = 0

⇐⇒
{

a(ϕ1 |ϕ1) + b(ϕ2 |ϕ1) = ( f |ϕ1)

a(ϕ1 |ϕ2) + b(ϕ2 |ϕ2) = ( f |ϕ2).

13.6
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On calcule :

(ϕ1 |ϕ1) =
∫ 1

0
x4 dx = 1

5
,(ϕ1 |ϕ2) =

∫ 1

0
x3 dx = 1

4
,

(ϕ2 |ϕ2) =
∫ 1

0
x2 dx = 1

3
.

Pour ε ∈ ]0 ; 1] , on a, par intégration par parties :

∫ 1

ε
x3 ln x dx =

[
x4

4
ln x

]1

ε

−
∫ 1

ε

x4

4

1

x
dx

= −ε4

4
ln ε− 1

4

(
1

4
− ε4

4

)
−→
ε−→0

− 1

16
,

donc : ( f |ϕ1) =
∫ 1

0
x3 ln x dx = − 1

16
,

et de même : ( f |ϕ2) = −1

9
.

Ainsi :

(S) ⇐⇒




1

5
a + 1

4
b = − 1

16

1

4
a + 1

3
b = −1

9

⇐⇒




a = 5

3

b = 19

12
.

Enfin, puisque ϕ− f ⊥ϕ , d’après le théorème de Pythagore :

(
d( f,F)

)2 = ||ϕ− f ||2 = || f ||2 − ||ϕ||2

=
∫ 1

0
(x ln x)2 dx −

∫ 1

0

(5

3
x2 − 19

12

)2
dx .

On calcule la première intégrale comme plus haut (intégration
par parties sur [ε ; 1], puis ε −→ 0), et, après un calcul élé-
mentaire, on conclut :

Inf
(a,b)∈R2

∫ 1

0
x2

∣∣ ln x − ax − b
∣∣2

dx = 1

432
.

Puisque S ∈ Sn(R) , d’après le théorème fondamental,
il existe Ω ∈ On(R), D = diag (λ1,. . . ,λn) ∈ Dn(R) telles

que : S = ΩDΩ−1.

a) 1) Supposons S ∈ S+
n .

Soit λ ∈ Sp
R
(S) .

Il existe V ∈ Mn,1(R) − {0} tel que : SV = λV .

On a : 0 �t V SV =t V (λV ) = λ
tV V = λ ||V ||2︸ ︷︷ ︸

> 0

,

d’où : λ � 0.

Ceci montre : Sp
R
(S) ⊂ R+ .

2) Réciproquement, supposons Sp
R
(S) ⊂ R+.

Soit X ∈ Mn,1(R) . On a :

tX SX =t XΩDΩ−1 X =t (Ω−1 X)D(Ω−1 X) .

Notons Y = Ω
−1 X =




y1
...

yn


 . On a alors :

tX SX =t Y DY =
n∑

i=1

λi y2
i � 0 ,

ce qui montre : S ∈ S+
n . 

b) On reprend l’étude précédente en précisant le caractère strict
de certaines inégalités.

1) Soit S ∈ S++
n . Soit V ∈ Sp

R
(S) .

Il existe V ∈ Mn,1(R) − {0} tel que : SV = λV .

On a : 0 <t V SV =t V (λV ) = λ
tV V = λ ||V ||2︸ ︷︷ ︸

>0

,

d’où : λ > 0.

Ceci montre : Sp
R
(S) ⊂ R

∗
+.

2) Réciproquement, supposons Sp
R
(S) ⊂ R

∗
+.

Soit X ∈ Mn,1(R) − {0} . On a :

tX SX =t X (ΩDΩ−1)X =t (Ω−1 X)D(Ω−1 X) .

Notons Y = Ω
−1 X =




y1
...

yn


 . On a alors :

tX SX =t Y DY =
n∑

i=1

λi︸︷︷︸
> 0

y2
i � 0 .

De plus, si 
n∑

i=1

λi︸︷︷︸
> 0

y2
i︸︷︷︸

� 0

= 0 , alors :

∀ i ∈ {1,. . . ,n}, yi = 0 ,

donc Y = 0, puis X = ΩY = 0, contradiction.

On a montré : ∀ X ∈ Mn,1(R) − {0}, tX SX > 0,

et on conclut : S ∈ S++
n .

Le sens ⇐� est immédiat.

Réciproquement, supposons 
p∑

k=1

Sk = 0.

On a, pour tout X ∈ Mn,1(R) :

0 =t X

( p∑
k=1

Sk

)
X =

p∑
k=1

tX Sk X︸ ︷︷ ︸
� 0

.

Il en résulte :

∀ k ∈ {1,. . . ,p}, ∀ X ∈ Mn,1(R), tX Sk X = 0 .

Comme de plus : ∀ k ∈ {1,. . . ,n}, Sk ∈ Sn(R),

il en résulte : ∀ k ∈ {1,. . . ,n}, Sk = 0,

puisque, Sk est alors la matrice de la forme quadratique nulle
dans la base canonique.
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a) Soit S ∈ S+
n . D’après le théorème fondamental, il

existe Ω ∈ On(R), D = diag (λ1,. . . ,λn) ∈ Dn(R) telles que

S = ΩDΩ−1. Comme S ∈ S+
n , d’après l’exercice 13.9, on a :

∀ k ∈ {1,. . . ,n}, λk � 0.

Notons � = diag (
√
λ1,. . . ,

√
λn), R = ΩDΩ−1 .

Alors :

• R ∈ Sn(R) car :

tR =t (Ω�Ω−1) =t
Ω

−1�t
Ω = Ω�Ω−1 = R

• R ∈ S+
n car :

R ∈ Sn(R) et Sp
R
(R) =

{√
λk ; k ∈ {1,. . . ,n}

}
⊂ R+ ,

cf. exercice 13.9.

• R2 =(Ω�Ω−1)2 =Ω�2Ω
−1 =ΩDΩ−1 = S ,

donc S convient.

b) Soit S ∈ S++
n .

D’après a), il existe R ∈ S+
n telle que S = R2 . Comme

S ∈ S++
n ⊂ GLn(R) , on a : det (S) =/ 0 , puis, comme(

det (R)
)2 = det (R2) = det (S) =/ 0 , on a : det (R) =/ 0 . 

Ainsi, R ∈ S+
n ∩ GLn(R) = S++

n . 

Remarque : On peut montrer qu’il y a unicité de R , cf. exer-
cice 13.52, mais, dans la plupart des utilisations, c’est seule-
ment l’existence de R qui sert.

Soit X ∈ Mn,1(R) tel que (S + A)X = 0.

On a alors : 0 =t X (S + A)X =t X SX +t X AX.

Puisque A ∈ An(R), on a :

tX AX =t X (−tA)X = −tX tAX = −t(tX AX︸ ︷︷ ︸
∈ R

) = −(tX AX),

d’où : tX AX = 0. 

On déduit : tX SX = 0.

Comme S ∈ S++
n , il s’ensuit : X = 0. 

On a montré :

∀ X ∈ Mn,1(R),
(
(S + A)X = 0 �⇒ X = 0

)
.

On conclut : S + A ∈ GLn(R) .

Il est clair que A ∈ Sn(R) .

On a, pour tout X =




x1
...

xn


 ∈ Mn,1(R) :

tX AX =
∑

1�i, j�n

ai j xi xj

= n
n∑

i=1

x2
i −

∑
1�i, j�n

xi xj = n
n∑

i=1

x2
i −

( n∑
i=1

xi

)2

.

1) D’après l’inégalité de Cauchy et Schwarz dans Mn,1(R) usuel,

appliquée à U =



1
...

1


 et à X =




x1
...

xn


 , on a :

( n∑
i=1

xi

)2

= (U | X)2 � ||U ||2||X ||2

=
( n∑

i=1

12

)( n∑
i=1

x2
i

)
= n

n∑
i=1

x2
i ,

d’où : tX AX � 0. 

Ceci montre : A ∈ S+
n .

2) On a, avec U ci-dessus : U =/ 0 et tU AU = 0,

donc : A /∈ S++
n .

a) Puisque S ∈ Sn(R) , d’après le théorème fonda-
mental, il existe Ω ∈ On(R), D = diag (λ1,. . . ,λn) ∈ Dn(R)

telles que : S = ΩDΩ−1.

Puisque S est nilpotente, il existe p ∈ N
∗ telle que S p = 0. On

a alors :

D p = (Ω−1 SΩ)p = Ω
−1 S p

Ω = Ω
−10Ω = 0 .

Mais : D p = diag (λ
p
1 ,. . . ,λp

n ).

D’où : ∀ k ∈ {1,. . . ,p}, λp
k = 0,

puis : ∀ k ∈ {1,. . . ,p}, λk = 0,

et donc D = 0 , puis S = 0.

b) Par hypothèse, A et tA commutent, et il existe p ∈ N
∗ tel

que Ap = 0.

Notons S =t AA ∈ Sn(R). Puisque A et tA commutent, on a :

S p = (tAA)p =t Ap Ap = 0.

Ainsi, S ∈ Sn(R) et S est nilpotente. D’après a), on déduit :
S = 0. 

Enfin, en faisant intervenir le produit scalaire canonique sur
Mn,1(R) et la norme euclidienne associée :

||A||2 = tr (tAA) = tr (S) = 0, donc : A = 0 .

Puisque S ∈ S++
n ⊂ Sn(R), d’après le théorème fon-

damental , il existe Ω ∈ On(R),

D = diag (λ1,. . . ,λn) ∈ Dn(R) telles que : S = ΩDΩ−1.

D’après l’exercice 13.9, puisque S ∈ S++
n , on a :

∀ k ∈ {1,. . . ,n}, λk > 0 .

En particulier, S est inversible.

Notons A = S + S−1 − 2 In .
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On a : A = Ω(D + D−1 − 2 In)Ω
−1,

et : D + D−1 − 2 In = diag(µ1,. . . ,µn),

où, pour tout k ∈ {1,. . . ,n} :

µk = λk + λ
−1
k − 2 = 1

λk
(λ2

k + 1 − 2λk) = (λk − 1)2

λk
.

Ainsi, A ∈ Sn(R) et Sp
R
(A) ⊂ R+,

donc, d’après l’exercice 13.9 : A ∈ S+
n . 

On conclut : S + S−1 − 2 In ∈ S+
n .

Puisque S ∈ Sn(R) , d’après le théorème fondamental,
il existe Ω ∈ On(R), D = diag (λ1,. . . ,λn) ∈ Dn(R) telles

que : S = ΩDΩ−1.

On a : D p = (Ω−1 SΩ)p = Ω
−1 S p

Ω = Ω
−1
Ω = In .

Mais : D = diag (λ
p
1 ,. . . ,λp

n ).

d’où : ∀ k ∈ {1,. . . ,n}, λp
k = 1.

• Si n est impair, on a alors, puisque les λk sont réels :

∀ k ∈ {1,. . . ,n}, λk = 1 ,

d’où : D = In, puis : S = In . 

• Si p est impair, on a alors :

∀ k ∈ {1,. . . ,n}, λk ∈ {−1,1} ,

donc : ∀ k ∈ {1,. . . ,n}, λ2
k = 1,

d’où : D2 = In , puis : S2 = ΩD2Ω
−1 = In .

a) On a : tS =t (tAA) =t AttA =t AA = S,

donc S ∈ Sn(R) , et :

∀ X ∈ Mn,1(R), tX SX =t X (tAA)X

= (tX tA)(AX) =t (AX)(AX) = ||AX ||22 � 0.

On conclut : S ∈ S+
n .

b) • Supposons S ∈ S++
n . Alors (cf. exercice 13.9),

Sp
R
(S) ⊂ R

∗
+, donc 0 /∈ Sp

R
(S), S est inversible. 

Comme 

det (S) = det (tAA) = det (tA) det (A) = (
det (A)

)2
,

on déduit det (A) =/ 0 , et donc A ∈ GLn(R) . 

• Réciproquement, supposons A ∈ GLn(R) . Alors :

det (S) = (
det (A)

)2 =/ 0 ,

donc 0 /∈ Sp
R
(S). D’après a) et l’exercice 13.9, on a donc

Sp
R
(S) ⊂ R

∗
+, et on conclut : S ∈ S++

n .

Par hypothèse, il existe P ∈ GLn(R), D ∈ Dn(R)

telles que : M = P D P−1 . On alors :

M = (P tP)(tP−1 D P−1) .

En notant A = P tP et B =t P−1 D P−1 , on a M = AB,

A ∈ S++
n (cf. exercice 13.17) et B ∈ Sn(R) , car :

tB =t (tP−1 D P−1) =t P−1 D P−1 = B .

Notons L1,L2,L3 les lignes de A .

Par hypothèse, L1 =
( 3

5

4

5
1
)

, et on a bien :

||L1||22 =
(

3

5

)2

+
(

4

5

)2

= 1 .

Notons L2 = ( a b c ) . On a :{
(L1 | L2) = 0

||L2||22 = 1

⇐⇒



3

5
a + 4

5
b = 0

a2 + b2 + c2 = 1

⇐⇒




b = −3

4
a

c2 = 1 − 25

16
a2.

Et : 1 − 25

16
a2 � 0 ⇐⇒ |a| � 4

5
.

Ainsi, L2 = ( a b c ) , où :

a ∈
[

− 4

5
; 4

5

]
, b = −3

4
a, c = ε

√
1 − 25

16
a2, ε = ±1 .

Enfin, L3 est, au signe près, le produit vectoriel de L1 et L2 ,
que l’on va présenter plus commodément en colonnes :




3

5

4

5

0


 ∧


 a

b
c


 =




4

5
c

−3

5
c

3

5
b − 4

5
a




=




4

5
c

−3

5
c

−5

4
a




.

On conclut que les matrices cherchées sont les 

A =




3

5

4

5
0

a −3

4
a c

ε′ 4
5

c −ε′ 3
5

c −ε5

4
a




,

où : a ∈
[

− 4

5
; 4

5

]
, c = ε

√
1 − 25

16
a2,

ε ∈ {−1,1}, ε′ ∈ {−1,1}.

• D’après le cours, A est la matrice, dans une b.o.n.,
d’une similitude directe si et seulement si :

∃α ∈ R
∗
+, αA ∈ SO3(R) .

Le carré de la norme euclidienne de la première colonne de αA

est : α2
(
22 + 22 + (−1)2

)
, c’est-à-dire 9α2 .
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Si  A convient, nécessairement, α = 1

3
. Il en résulte que  A

convient si et seulement si :
1

3
A ∈ SO3(R).

• Notons C1,C2,C3 les colonnes de 
1

3
A :

C1 = 1

3


 2

2
−1


 , C2 = 1

3


−1

2
2


 , C3 = 1

3


 a

b
c


 .

Comme (C1,C2) est une famille orthonormale, on a :

1

3
A ∈ SO3(R) ⇐⇒ C3 = C1 ∧ C2

⇐⇒ 1

3


 a

b
c


 = 1

3


 2

2
−1


 ∧ 1

3


−1

2
2




⇐⇒

 a

b
c


 =


 2

−1
2


 .

On conclut que  A convient si et seulement si :

(a,b,c) = (2,−1,2) .

On a, pour tout (x,y) ∈ E2 :
(

f (x)
∣∣ y

) = (
(a | x)b − (b | x)a

∣∣ y
)

= (a | x)(b | y) − (b | x)(a | y)

= (
x

∣∣ (b | y)a − (a | y)b
) = −(

x
∣∣ f (y)

)
,

d’où, par définition de l’adjoint : f ∗ = − f .

Autrement dit, f est antisymétrique.

• Le sens ⇐� est évident.

• Supposons : p∗ ∈ Vect (e,p) . Il existe (α,β) ∈ R
2 tel que :

p∗ = αe + βp . On a alors :

p∗ ◦ p = (αe + βp) ◦ p = αp + βp2 = (α+ β)p .

∗ Si α+ β =/ 0 , alors p = 1

α+ β
p∗ ◦ p , donc :

p∗ = 1

α+ β
(p∗ ◦ p)∗ = 1

α+ β
p∗ ◦ p = p .

∗ Si α+ β = 0, alors p∗ ◦ p = 0, d’où, pour tout x ∈ E :

||p(x)||2 = (
p(x)

∣∣ p(x)
) = (

x
∣∣ p∗(p(x)

)) = (x | 0) = 0 ,

et donc : ∀ x ∈ E, p(x) = 0 , puis p = 0, donc p∗ = p. 

On conclut : p∗ = p.

• 1) Si q est positive, alors, par définition : q(E) ⊂ R+.
D’autre part, comme ϕ =/ 0 , d’après le cours, q =/ 0, donc il
existe x ∈ E tel que q(x) =/ 0 , donc q(x) > 0. 

Alors : ∀ t ∈ R+, t = q

( √
t√

q(x)
x

)
∈ q(E).

On conclut : q(E) = R+. 

2) Si q est négative, de même : q(E) = R−.

3) Supposons q ni positive ni négative. Il existe alors u,v ∈ E
tels que : q(u) < 0 et q(v) > 0. 

Comme l’application α �−→ q(αu) = α2q(u) est une surjec-
tion de R+ sur R− , on déduit : R− ⊂ q(E) . De même, l’ap-
plication  β �−→ q(βv) = β

2q(v) est une surjection de R+ sur
R+ , donc : R+ ⊂ q(E) .

Enfin : R = R+ ∪ R− ⊂ q(E) ⊂ R,

donc : q(E) = R .

• 1) Supposons q(E) = R+. Si q était négative ou si qn’était
ni positive ni négative, d’après 1), on aurait q(E) = R− ou
q(E) = R , contradiction. On conclut que q est positive.

2), 3) De même, par raisonnement par l’absurde, on montre les
deux autres réciproques.

a) Il est clair que 

φ : R
n −→ R, (x1,. . . ,xn) �−→

∑
1�i< j�n

(xi − xj )
2

est un polynôme homogène de degré 2, donc φ est une fq 
sur E , et  

∀ x = (x1,. . . ,xn) ∈ R
n, φ(x) =

∑
1�i< j�n

(xi − xj )
2 � 0 ,

donc φ est positive.

b) On a, pour tout x = (x1,. . . ,xn) ∈ R
n :

x ∈ C(φ) ⇐⇒ φ(x) = 0 ⇐⇒
∑

1�i< j�n

(xi − xj )
2︸ ︷︷ ︸

� 0

= 0

⇐⇒∀ (i, j) ∈ {1,. . . ,n}2,
(
i < j �⇒ xi − xj = 0

)
⇐⇒ ∀ (i, j) ∈ {1,. . . ,n}2, xi = xj .

En notant u = (1,. . . ,1) , on conclut : C(φ) = Ru.

a) • Pour tout P ∈ E, φ(P) =
+∞∑
n=0

P(n)P(−n) e−n

existe. En effet, par prépondérance de l’exponentielle sur les
polynômes : n2 P(n)P(−n) e−n −−−→

n ∞
0,

donc, à partir d’un certain rang :

|P(n)P(−n) e−n| � 1

n2
,

ce qui montre que la série  
∑
n�0

P(n)P(−n) e−n est absolument

convergente, donc convergente.
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• Considérons l’application ϕ : E × E −→ R définie par :

(P,Q) �−→ 1

2

+∞∑
n=0

(
P(n)Q(−n) + P(−n)Q(n)

)
e−n ,

dont l’existence est assurée de la même façon que pour φ . Il
est immédiat que  ϕ est symétrique, linéaire par rapport à la
deuxième place, donc ϕ est une fbs, et on a :

∀ P ∈ E, ϕ(P,P) = φ(P) .

On conclut que  φ est une fq, la fq associée à la fbs ϕ.

b) Il est connu que E+ et E− sont des sev de E = R[X] sup-
plémentaires dans E .

• Soient P ∈ E+, Q ∈ E− . On a :

∀ n ∈ N, P(n)Q(−n) + P(−n)Q(n)

= −P(n)Q(n) + P(n)Q(n) = 0,

donc : ϕ(P,Q) = 0. 

Ainsi, E+ et  E− sont orthogonaux pour ϕ.

• Soit P ∈ E+ − {0} . On a :

φ(P) =
+∞∑
n=0

P(n)P(−n) e−n =
+∞∑
n=0

(
P(n)

)2

︸ ︷︷ ︸
� 0

e−n � 0 .

Supposons  φ(P) = 0.

On a donc : ∀ n ∈ N,
(
P(n)

)2
e−n = 0,

puis : ∀ n ∈ N, P(n) = 0.

Ainsi, le polynôme  P s’annule en une infinité de points, donc
P = 0, exclu.

On conclut : ∀ P ∈ E+ − {0}, φ(P) > 0.

• De même :

∀ P ∈ E− − {0}, φ(P) =
+∞∑
n=0

−(
P(n)

)2
e−n < 0 .

a) Considérons l’application 

ϕ : E × E −→ R, (x,y) �−→
p∑

i=1

αi (ui | x)(ui | y) ,

obtenue par dédoublement de φ .

Il est clair que  ϕ est symétrique et que  ϕ est linéaire par rap-
port à la deuxième place. On a :

∀ x ∈ E, ϕ(x,x) =
p∑

i=1

αi (ui | x)2 = φ(x) .

On conclut que  φ est une fq sur E et que la forme polaire ϕ
de φ est donnée par la formule vue plus haut.

b) On a : ∀ x ∈ E, φ(x) =
n∑

i=1

αi︸︷︷︸
>0

(ui | x)2︸ ︷︷ ︸
�0

� 0.

D’où :

ϕ est un ps sur E

⇐⇒ ∀ x ∈ E,
(
φ(x) = 0 �⇒x = 0

)

⇐⇒ ∀ x ∈ E,
( n∑

i=1

αi (ui | x)2 = 0 �⇒x = 0
)

⇐⇒ ∀ x ∈ E,
((∀ i ∈ {1,. . . ,p}, (ui | x) = 0

) �⇒x = 0
)

⇐⇒ ∀ x ∈ E,
(

x ∈ (
Vect (u1,. . . ,up)

)⊥ �⇒x = 0
)

⇐⇒ (
Vect (u1,. . . ,up)

)⊥ = {0}
⇐⇒ Vect (u1,. . . ,up) = E .

On conclut : ϕ est un ps sur E si et seulement si  (u1,. . . ,up)

engendre E .

Considérons l’application 

u : [0 ; 1] −→ R, t �−→
(

f
(
(1 − t)x + t y

)∣∣∣ (1 − t)x + t y
)

.

En développant par bilinéarité (et symétrie), il est clair que  u
est un polynôme du second degré, donc  u est une application
continue sur l’intervalle [0 ; 1] . De plus :{

u(0) = (
f (x)

∣∣ x
) = (λx | x) = λ||x ||2 � 0

u(1) = (
f (y)

∣∣ y
) = (µy | y) = µ||y||2 � 0.

D’après le théorème des valeurs intermédiaires, il existe
t ∈ [0 ; 1] tel que u(t) = 0.

On conclut : ∃ z ∈ [x ; y],
(

f (z)
∣∣ z

) = 0.

a) • Il est clair que ϕ est symétrique et que  ϕ est li-
néaire par rapport à la seconde place.

• On a, pour tout P ∈ E :

ϕ(P,P) =
n∑

k=0

(
P (k)(ak)

)2

︸ ︷︷ ︸
� 0

� 0 .

• Soit P ∈ E tel que ϕ(P,P) = 0. On a alors :

∀ k ∈ {0,. . . ,n}, P (k)(ak) = 0 .

Comme  P (n)(an) = 0 et  deg (P) � n, donc deg (P (n)) � 0,

on a : P (n) = 0, donc deg (P (n−1)) � 0.

Comme P (n−1)(an−1) = 0 et que deg (P (n−1)) � 0 , on a

P (n−1) = 0, donc deg (P (n−2)) � 0.

En réitérant, on déduit P = 0.

On conclut : ϕ est un produit scalaire sur E .

b) Nous allons appliquer le procédé de Schmidt à la base ca-

nonique (1,X,X2) de E , de façon à obtenir une base (P0,P1,P2)

de E orthogonale pour ϕ, puis normer pour obtenir une base
(U1,U2,U3) de E orthonormale pour ϕ.
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• On note P0 = 1, puis U0 = P0

||P0|| .

On a : ||P0||2 = ϕ(P0,P0) = 1,

donc ||P0|| = 1, U0 = 1.

• On note P1 = aX + b, (a,b) ∈ R
2 . On a :

ϕ(P0,P1) = 0

⇐⇒ P0(−1)P1(−1) + P ′
0(0)P ′

1(0) + P ′′
0 (1)P ′′

1 (1) = 0

⇐⇒ −a + b = 0 ⇐⇒ b = a,

d’où : P1 = a(X + 1). Et :

||P1||2 = (
P(−1)

)2 + (
P ′(0)

)2 + (
P ′′(1)

)2 = a2 ,

d’où, par exemple, ||P1|| = a, puis U1 = P1

||P1|| = X + 1.

• On note P2 = αX2 + βX + γ, (α,β,γ) ∈ R
3 . On a :{

ϕ(P0,P2) = 0

ϕ(P1,P2) = 0
⇐⇒

{
α− β+ γ = 0

β = 0
⇐⇒

{
γ = −α
β = 0,

d’où : P = α(X2 − 1) .

Et : ||P2||2 = (
P2(−1)

)2 + (
P ′

2(0)
)2 + (

P ′′
2 (1)

)2 = 4α2,

d’où, par exemple : α = 1

2
,

puis : U2 = P2

||P2|| = 1

2
(X2 − 1).

On conclut : une b.o.n. de E pour ϕ est, par exemple :(
1, X + 1,

1

2
(X2 − 1)

)
.

Notons  ϕ la forme polaire de φ . Puisque  ϕ est bili-
néaire et que E est de dimension finie, d’après le cours, il existe
M ∈ R+ tel que :

∀ (x,y) ∈ E2, |ϕ(x,y)| � M||x || ||y|| .

En particulier : ∀ x ∈ E, |φ(x)| = |ϕ(x,x)| � M||x ||2.
D’où :

0 �
∣∣φ(x)

∣∣3/4

||x || � (M||x ||2)3/4

||x || = M3/4||x ||1/2 −→
x−→0

0 .

On conclut, par théorème d’encadrement :
(
φ(x)

)3/4

||x || −→
x−→0

0.

Soit A ∈ Mn(R). Il est clair que l’application 

fA : Mn(R) −→ Mn(R), M �−→ AM

est linéaire.

L’endomorphisme f A de Mn(R) est un endomorphisme or-
thogonal si et seulement si :

∀ M,N ∈ Mn(R),
(

f A(M)
∣∣ f A(N )

) = (M | N ) .

On a, pour toutes M,N ∈ Mn(R) :
(

f A(M)
∣∣ f A(N )

) = (AM | AN )

= tr
(t
(AM)(AN )

) = tr (tM tAAN ).

D’où :

f A ∈ O
(
Mn(R)

)
⇐⇒ ∀ M,N ∈ Mn(R), tr (tM tAAN ) = tr (tM N )

⇐⇒ ∀ M,N ∈ Mn(R), tr
(t

M(tAA − In)N
) = 0

⇐⇒ ∀ M,N ∈ Mn(R), tr
(t[

(tAA − In)M
]
N

) = 0

⇐⇒ ∀ M ∈ Mn(R),
(
∀ N ∈ Mn(R), (tAA − In)M ⊥ N

)

⇐⇒ ∀ M ∈ Mn(R), (tAA − In)M = 0

⇐⇒ tAA − In = 0 ⇐⇒ A ∈ On(R).

On conclut : f A est un endomorphisme orthogonal de Mn(R)

si et seulement si A ∈ On(R) .

a) • Il est clair que (. | .) est symétrique et linéaire par
rapport à la seconde place.

• On a, pour toute f ∈ E :

( f | f ) = (
f (0)

)2 +
∫ 1

0

(
f ′(t)

)2
dt � 0 .

• De plus, pour toute f ∈ E , comme f ′ est continue et que

f ′2 � 0, on a :

( f | f ) = 0 ⇐⇒ (
f (0)

)2

︸ ︷︷ ︸
� 0

+
∫ 1

0

(
f ′(t)

)2
dt

︸ ︷︷ ︸
� 0

= 0

⇐⇒ f (0) = 0 et
∫ 1

0

(
f ′(t)

)2
dt = 0

⇐⇒ (
f (0) = 0 et f ′ = 0

) ⇐⇒ f = 0.

On conclut que (. | .) est un ps sur E .

b) 1) Soit f ∈ E . On a :

f ∈ F⊥ ⇐⇒ (e0 | f ) = 0

⇐⇒ e0(0)︸ ︷︷ ︸
= 1

f (0) +
∫ 1

0
e′

0(t)︸︷︷︸
= 0

f ′(t) dt = 0 ⇐⇒ f (0) = 0 ,

donc : F⊥ = { f ∈ E ; f (0) = 0} = G.

2) Soit f ∈ E .

• Supposons f ∈ G⊥. Considérons g = f − f (0)e0.

On a : g ∈ E et  g(0) = 0, donc g ∈ G .
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Il s’ensuit  ( f | g) = 0 . Ainsi :

0 = ( f | g) = (
f
∣∣ f − f (0)e0

) = ( f | f ) − f (0)( f | e0)

= (
f (0)

)2 +
∫ 1

0

(
f ′(t)

)2
dt − (

f (0)
)2 =

∫ 1

0

(
f ′(t)

)2
dt.

Comme f ′ est continue et que f ′2 � 0, il s’ensuit f ′ = 0, donc
f est constante, f ∈ F .

• Réciproquement, il est clair que e0 ∈ G⊥ , car :

∀ g ∈ G, (e0 | g) = e0(0) g(0)︸︷︷︸
= 0

+
∫ 1

0
e′

0(t)︸︷︷︸
= 0

g′(t) dt = 0 .

On conclut : G⊥ = Vect (e0) = F .

Ainsi, dans cet exercice : F⊥ = G et  G⊥ = F .

1) Soit x ∈ Ker ( f ) ∩ Ker ( f ∗) .

On a alors  f (x) = 0 et  f ∗(x) = 0, d’où :

( f + f ∗)(x) = f (x) + f ∗(x) = 0 + 0 = 0 ,

donc   x ∈ Ker ( f + f ∗) .

Ceci montre : Ker ( f ) ∩ Ker ( f ∗) ⊂ Ker ( f + f ∗).

2) Réciproquement, soit x ∈ Ker ( f + f ∗) . On a donc
( f + f ∗)(x) = 0. Comme f 2 = 0, on déduit :

0 = f (0) = f
(
( f + f ∗)(x)

)
= ( f 2 + f ◦ f ∗)(x) = f 2(x)︸ ︷︷ ︸

= 0

+ f ◦ f ∗(x).

Ensuite, en utilisant le produit scalaire :

0 = (
f ◦ f ∗(x)

∣∣ x
) = (

f ∗(x)
∣∣ f ∗(x)

) = || f ∗(x)||2 ,

d’où : f ∗(x) = 0, puis :

f (x) = ( f + f ∗)(x) − f ∗(x) = 0 − 0 = 0 .

On obtient : x ∈ Ker ( f ) ∩ Ker ( f ∗) .

Ceci montre : Ker ( f + f ∗) ⊂ Ker ( f ) ∩ Ker ( f ∗) .

On conclut : Ker ( f + f ∗) = Ker ( f ) ∩ Ker ( f ∗).

Puisque  P et  Q sont premiers entre eux, d’après le
théorème de Bezout, il existe  U,V ∈ R[X] tels que :

U P + V Q = 1. On a donc, pour tout x ∈ Ker
(
P( f )

)
:

x = IdE (x) = (U P + V Q)( f )(x)

= U( f )
(

P( f )(x)︸ ︷︷ ︸
= 0

) + Q( f )
(
V ( f )(x)

) = Q( f )
(
V ( f )(x)

)
,

puis, pour tout (x,y) ∈ Ker
(
P( f )

) × Ker
(
Q( f ∗)

)
:

(x | y) =
(

Q( f )
(
V ( f )(x)

) ∣∣∣ y
)

=
(

V ( f )(x)

∣∣∣ (Q( f )
)∗

(y)
)

=
(

V ( f )(x)
∣∣ Q( f ∗)(y)︸ ︷︷ ︸

= 0

) = 0.

On a montré :

∀ (x,y) ∈ Ker
(
P( f )

) × Ker
(
Q( f ∗)

)
, (x | y) = 0 ,

et on conclut : Ker
(
P( f )

) ⊥ Ker
(
Q( f ∗)

)
.

• Le sens ⇐� est évident.

• Supposons Sp (g) = {2}.

Comme g∗ = ( f + f ∗)∗ = f ∗ + f = g, g est symétrique.
D’après le cours, g est donc diagonalisable. Puisque  g est
diagonalisable et que  Sp (g) = {2}, on a : g = 2e, en notant
e = IdE. Alors :

( f − e)∗ ◦ ( f − e) = ( f ∗ − e) ◦ ( f − e)

= f ∗ ◦ f − ( f ∗ + f ) + e = e − 2e + e = 0,

puis, en utilisant le ps (u,v) �−→ tr (u∗ ◦ v) sur L(E) :

|| f − e||22 = tr
(
( f − e)∗ ◦ ( f − e)

) = 0 ,

donc f − e = 0, f = e .

1re méthode : Utilisation d’une factorisation de A :

On a :

A =




1 1 . . . 1
1 2 . . . 2
...

...
...

1 2 . . . n




=




1 (0)

. . .

(1) 1




︸ ︷︷ ︸
c’est tT




1 (1)

. . .

(0) 1




︸ ︷︷ ︸
notée T

.

Comme T est triangulaire et à termes diagonaux tous non nuls,
on a : T ∈ GLn(R) .

D’après l’exercice 13.17, on déduit : A ∈ S++
n .

2e méthode : Décomposition de la forme quadratique en somme
de carrés :

D’abord, il est clair que : A ∈ Sn(R) .

On a, pour tout X =




x1
...

xn


 ∈ Mn,1(R) :

tX AX =
∑

1�i, j�n

xi Min (i, j)xj

= (x1 + · · · + xn)
2 + (x2 + · · · + xn)

2 + · · · + x2
n ,

comme on le voit en développant cette dernière expression.

Il en résulte, d’une part tX AX � 0, et, d’autre part :
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tX AX = 0 ⇐⇒




x1 + · · · + xn = 0

x2 + · · · + xn = 0

...

xn = 0

⇐⇒




x1 = 0

...

xn = 0

⇐⇒ X = 0.

On conclut : A ∈ S++
n .

Soit i ∈ {1,. . . ,n} tel que aii = 0.

Soit j ∈ {1,. . . ,n} tel que j =/ i .

On a, pour tout α ∈ R :

0 �t (αEi + Ej )S(αEi + Ej )

= α
2 tEi SEi + 2αtEi SEj +t Ej SEj

= α
2 aii︸︷︷︸

= 0

+2αai j + a2
j j .

Ainsi : ∀α ∈ R, 2αai j + a2
j j � 0.

Si ai j > 0, 2αai j + a2
j j −→
α−→−∞

−∞ , contradiction.

Si ai j < 0, 2αai j + a2
j j −→
α−→+∞

−∞ , contradiction.

Il s’ensuit : ai j = 0.

On a montré ainsi que, si un terme diagonal de  S est nul, alors
tous les termes de  S situés sur la ligne ou la colonne de celui-
ci sont nuls.

Puisque S ∈ Sn(R) , d’après le théorème fondamental,
en notant D = diag(λ1,. . . ,λn) , il existe Ω ∈ On(R) telle que

S = ΩDΩ−1.

• Soit X ∈ Mn,1(R) tel que ||X ||2 = 1. En notant Y = �−1 X,

puisque Ω est orthogonale, on a : ||X ||2 = ||Y ||2 et
||SX ||2 = ||DY ||2.

Notons Y =




y1
...

yn


. On obtient :

||DY ||2 =
n∑

i=1

(λi yi )
2 �

(
ρ(S)

)2
n∑

i=1

y2
i = (

ρ(S)
)2

,

d’où : ||SX ||2 = ||DY ||2 � ρ(S) .

• D’autre part, il existe k ∈ {1,. . . ,n} tel que ρ(S) = |λk |, et,

en notant X = ΩEk (où Ek est le kème vecteur de la base cano-
nique de Mn,1(R) , on a :

||X ||2 = 1 et ||SX ||2 = ||DEk ||2 = |λk | = ρ(S).

Finalement, l’application X �−→ ||SX ||2 est bornée sur la

sphère-unité de 
(
Mn,1(R),|| · ||2

)
, sa borne supérieure est

ρ(S) , et celle-ci est atteinte.

1) Inégalité :

Puisque f ∈ S(E) , d’après le théorème fondamental, il existe

une b.o.n. B = (e1,. . . ,en) de E et une matrice diagonale

D = diag (λ1,. . . ,λn) ∈ Dn(R) telles que MatB( f ) = D .

Soit x ∈ E. Notons X = MatB(x) =




x1
...

xn


 . On a :

f (x) − ax = f

( n∑
i=1

xi ei

)
− a

( n∑
i=1

xi ei

)

=
n∑

i=1

xiλi ei −
n∑

i=1

axi ei =
n∑

i=1

(λi − a)xi ei .

D’où, puisque (e1,. . . ,en) est une b.o.n. :

(
f (x) − ax

∣∣ f (x) − bx
) =

n∑
i=1

(λi − a)(λi − b)x2
i .

Comme Sp ( f )∩ ]a ; b[ = ∅, on a :

∀ i ∈ {1,. . . ,n}, (
λi � a ou λi � b

)
,

donc : ∀ i ∈ {1,. . . ,n}, (λi − a)(λi − b) � 0,

d’où :
(

f (x) − ax
∣∣ f (x) − bx

)
� 0.

2) Étude du cas d’égalité :

On suppose ici plus précisément : Sp ( f ) ∩ [a ; b] = ∅.

Avec les notations de 1), on a, pour tout x ∈ E :
(

f (x) − ax
∣∣ f (x) − bx

) = 0

⇐⇒
n∑

i=1

(λi − a)(λi − b)︸ ︷︷ ︸
> 0

x2
i︸︷︷︸

� 0

= 0

⇐⇒ (∀ i ∈ {1,. . . ,n}, x2
i = 0

) ⇐⇒ x = 0.

On conclut qu’il y a égalité si et seulement si x = 0.

Il existe X ∈ Mn,1(R) − {0} tel que AX = λX . On a

alors :

t X SX = 1

2
t X (A + t A)X

= 1

2
t X (AX) + 1

2
t(AX)X = λ

t X X.

Puisque S ∈ Sn(R) , d’après le théorème fondamental, il existe

(λ1,. . . ,λn) ∈ R
n et Ω ∈ On(R) tels que, en notant

D = diag(λ1,. . . ,λn) , on ait S = ΩDΩ−1.

Notons Y = Ω
−1 X =




y1
...

yn


 . Alors :
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t X SX = tY DY =
n∑

i=1

λi y2
i et t X X = tY Y =

n∑
i=1

y2
i ,

d’où : λ

n∑
i=1

y2
i =

n∑
i=1

λi y2
i .

Comme : ∀i ∈ {1,. . . ,n}, (α � λi � β et y2
i � 0) ,

on obtient : α

n∑
i=1

y2
i � λ

n∑
i=1

y2
i � β

n∑
i=1

y2
i .

Enfin, puisque 
n∑

i=1

y2
i > 0, on conclut : α � λ � β.

• Il est clair que M est symétrique.

• Soit 

(
X
Y

)
∈ Mp+q,1(R) , où X ∈ Mp,1(R), Y ∈ Mq,1(R) .

On a :

M

(
X
Y

)
=

(
0
0

)
⇐⇒

(
A B
tB −C

)(
X
Y

)
=

(
0
0

)

⇐⇒
{

AX + BY = 0

tB X − CY = 0
⇐⇒

{
AX + BY = 0

tX B −t Y C = 0

�⇒
{

tX (AX + BY ) = 0

(tX B −t Y C)Y = 0
⇐⇒

{
tX AX +t X BY = 0

tX BY −t Y CY = 0

�⇒ tX AX︸ ︷︷ ︸
� 0

+ tY CY︸ ︷︷ ︸
� 0

= 0 �⇒︸︷︷︸
A ∈ S++

p , C ∈ S++
q

{ X = 0

Y = 0

�⇒
(

X
Y

)
=

(
0
0

)
.

On conclut : M est inversible.

Puisque S ∈ S++
n , d’après l’exercice 13.11, il existe

R ∈ S++
n telle que S = R2 . On a alors, en utilisant l’inégalité

de Cauchy et Schwarz dans Mn,1(R) usuel :

(tX SX)(tY S−1Y ) = (tX R2 X)
(t
Y (R−1)2Y

)
= (t

(RX)(RX)
)(t

(R−1Y )(R−1Y )
)

= ||RX ||22 ||R−1Y ||22 � (RX | R−1Y )2

= (t
(RX)(R−1Y )

)2 = (t
X (R R−1)Y

)2 = (tXY )2.

Notons C = AB − B A .

1) Inégalité :

On a :

tC =t (AB − B A) =t B tA −t AtB

= (−B)(−A) − (−A)(−B) = B A − AB = −C,

c’est-à-dire que C est antisymétrique.

Ensuite : t(C2) = (tC)2 = (−C)2 = C2,

donc  C2 est symétrique.

Enfin : C4 =t (C2)C2 ∈ S+
n , cf. exercice 13.17. D’où :

tr
(
(AB − B A)4

) = tr (tC2C2) = ||C2||22 � 0 .

2) Étude du cas d’égalité :

• Si tr (C4) = 0, alors ||C2||22 = 0, donc C2 = 0, puis :

||C||22 = tr (tCC) = tr (−C2) = 0 ,

donc   C = 0.

• Réciproquement, si C = 0, alors tr (C4) = 0.

On conclut qu’il y a égalité si et seulement si : AB = B A .

1) • Soit X convenant.

On a alors : tX =t X (X tX X) = (tX X)2 ∈ Sn(R),

donc : X ∈ Sn(R).

Il en résulte : X3 = X tX X = In.

• D’après le théorème fondamental, puisque X ∈ Sn(R), il 
existe Ω ∈ On(R), D = diag (λ1,. . . ,λn) ∈ Dn(R) telles que :
X = ΩDΩ−1 . On a alors :

X3 = In ⇐⇒ D3 = In ⇐⇒ (∀ k ∈ {1,. . . ,n}, λ3
k = 1

)
⇐⇒ (∀ k ∈ {1,. . . ,n}, λk = 1

) ⇐⇒ D = In ⇐⇒ X = In .

Ceci montre que, si X convient, alors X = In .

2) La réciproque est évidente : In convient. On conclut qu’il
y a une matrice et une seule convenant : X = In .

1) Si A ∈ SO2(R), alors  tAA = I2 et  det (A) = 1,
donc  tr (tAA) = 2 et  det (A) = 1.

2) Réciproquement, supposons :

tr (tAA) = 2 et det (A) = 1 .

Comme tAA ∈ M2(R), on a :

χtAA(λ) = λ
2 − tr (tAA)λ+ det (tAA)

= λ
2 − tr (tAA)λ+ (

det (A)
)2 = λ

2 − 2λ+ 1 = (λ− 1)2.

Puisque tAA ∈ S2(R) , d’après le théorème fondamental, tAA
est diagonalisable dans M2(R) .

Ainsi, tAA est diagonalisable et Sp
R
(tAA) = {1} , donc

tAA = In, A ∈ O2(R) . 
Comme, de plus, det (A) = 1, on conclut : A ∈ SO2(R).

1) Soit X ∈ Ker (A). On a donc : AX = 0.

Soit Y ∈ Mn,1(R) . D’après l’hypothèse, on a :

∀λ ∈ R, t(X + λY )A(X + λY ) � 0 ,
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c’est-à-dire : ∀λ ∈ R, λtX AY + λ
2 tY AY � 0,

et donc, en simplifiant par λ :

∀λ ∈ R
∗
+, tX AY + λ

tY AY � 0 .

En faisant tendre λ vers 0+ , on déduit : tX AY � 0.

En appliquant ce résultat à −Y à la place de Y , on a aussi :

−tX AY � 0.

On déduit : tX AY = 0 .

On a ainsi montré : ∀ Y ∈ Mn,1(R), tX AY = 0.

Il en résulte : tX A = 0, puis : tAX =t (tX A) = 0,

donc : X ∈ Ker (tA) .

Ceci montre : Ker (A) ⊂ Ker (tA) .

2) Comme : ∀ X ∈ Mn,1(R), tX tAX =t (tX AX),

on a : ∀ X ∈ Mn,1(R), tX tAX � 0.

On peut donc appliquer le résultat de 1) à tA à la place de A ,

d’où : Ker (tA) ⊂ Ker (A).

Finalement : Ker (tA) = Ker (A).

1) Soit (X,Y ) ∈ (
Mn(R)

)2
tel que : tX X +t Y Y = In .

Appliquons l’inégalité de Cauchy et Schwarz, dans Mn(R) muni
de son produit scalaire canonique (. | .) , au couple (In,X) :

(
tr (X)

)2 = (
tr (tIn X)

)2 = (In | X)2

� (In | In)(X | X) = n tr (tX X),

et de même :
(
tr (Y )

)2 � n tr (tY Y ).

D’autre part, on remarque :

∀ (a,b) ∈ R
2, (a + b)2 � 2(a2 + b2) ,

comme on le voit en développant. D’où :

(
tr (X) + tr (Y )

)2 � 2
((

tr (X)
)2 + (

tr (Y )
)2)

� 2n
(
tr (tX X) + tr (tY Y )

)
= 2n tr (tX X +t Y Y ) = 2n tr (In) = 2n2.

On déduit : tr (X) + tr (Y ) �
√

2 n.

2) Pour  X = Y = 1√
2

In, on a :

tX X +t Y Y = 1

2
In + 1

2
In = In

et tr (X) + tr (Y ) = 1√
2

n + 1√
2

n =
√

2 n.

On conclut que la borne supérieure demandée est égale à 
√

2 n .

1) Soit M convenant.

Supposons M =/ 0 . Puisque M est nilpotente, il existe

k ∈ N − {0,1} tel que : Mk = 0 et Mk−1 =/ 0.

D’autre part :

In + M ∈ On(R) ⇐⇒t (In + M)(In + M) = In

⇐⇒t M + M +t M M = 0.

En multipliant à droite par Mk−1, on déduit :

tM Mk−1 + Mk︸︷︷︸
= 0

+ tM Mk︸ ︷︷ ︸
= 0

= 0 ,

donc : tM Mk−1 = 0 . 

Puis, en multipliant à gauche par tMk−2 : tMk−1 Mk−1 = 0.

Alors, en utilisant la norme euclidienne associée au produit sca-
laire canonique sur Mn(R) :

||Mk−1||2 = tr
(t
(Mk−1)Mk−1

) = 0 ,

d’où  Mk−1 = 0, contradiction.

Ceci montre : M = 0.

2) Réciproquement, il est clair que M = 0 convient.

On conclut qu’il y a une matrice M et une seule convenant :

M = 0.

a) • Soit x ∈ Ker ( f ) . On a :

|| f ∗(x)||2 = (
f ∗(x)

∣∣ f ∗(x)
) = (

x
∣∣ f ◦ f ∗(x)

)
= (

x
∣∣ f ∗ ◦ f (x)

) = (
x

∣∣ f ∗(0)
) = 0,

d’où : f ∗(x) = 0, x ∈ Ker ( f ∗).

Ceci montre : Ker ( f ) ⊂ Ker ( f ∗).

• On a : ( f ∗)∗ ◦ f ∗ = f ◦ f ∗ = f ∗ ◦ f = f ∗ ◦ ( f ∗)∗

donc f ∗ vérifie la même hypothèse que f.

D’après le résultat précédent, appliqué à f ∗ à la place de f,
on a : Ker ( f ∗) ⊂ Ker ( f ∗∗) = Ker ( f ).

On conclut : Ker ( f ∗) = Ker ( f ).

b) • Soit (x,y) ∈ Ker ( f ) × Im ( f ). Alors, x ∈ Ker ( f ) et il
existe t ∈ E tel que y = f (t) . On a :

(x | y) = (
x

∣∣ f (t)
) = (

f ∗(x)
∣∣ t

)
.

Mais x ∈ Ker ( f ) = Ker ( f ∗) , donc f ∗(x) = 0 , puis
(x | y) = 0.

Ceci montre : Ker ( f ) ⊥ Im ( f ) .

• On a alors, en utilisant le théorème du rang :

dim
(
Ker ( f ) ⊕ Im ( f )

)
= dim

(
Ker ( f )

) + dim
(
Im ( f )

) = dim (E),
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donc : Ker ( f ) ⊕ Im ( f ) = E . 

Finalement : Ker ( f ) ©⊥ Im ( f ) = E .

c) • Soit y ∈ Im ( f ∗). Il existe x ∈ E tel que y = f ∗(x).
D’après b), il existe  u ∈ Ker ( f ), v ∈ Im ( f ) tels que
x = u + v . On a alors :

y = f ∗(x) = f ∗(u + v) = f ∗(u) + f ∗(v) .

Mais u ∈ Ker ( f ) = Ker ( f ∗) , donc f ∗(u) = 0 , puis :
y = f ∗(v) .

Ensuite, comme v ∈ Im ( f ), il existe t ∈ E tel que v = f (t) .
On a alors :

y = f ∗(v) = f ∗( f (t)
) = ( f ∗ ◦ f )(t)

= ( f ◦ f ∗)(t) = f
(

f ∗(t)
) ∈ Im ( f ).

Ceci montre : Im ( f ∗) ⊂ Im ( f ).

• Comme  f ∗ vérifie la même hypothèse que  f, en appliquant
le résultat précédent à f ∗ à la place de f , on a aussi :
Im ( f ) ⊂ Im ( f ∗).

On conclut : Im ( f ∗) = Im ( f ).

• Le sens ⇐� est évident.

• Supposons f ◦ f ∗ = f 2 . Notons g = f − f ∗. On a :

g∗ ◦ g = ( f − f ∗)∗ ◦ ( f − f ∗) = ( f ∗ − f ) ◦ ( f − f ∗)

= f ∗ ◦ f − f 2 − f ∗2 + f ◦ f ∗ = f ∗ ◦ f − f ∗2

= f ∗ ◦ f − ( f 2)∗ = f ∗ ◦ f − ( f ◦ f ∗)∗

= f ∗ ◦ f − f ◦ f ∗.

Considérons le produit scalaire sur L(E) défini par :

∀ (u,v) ∈ (
L(E)

)2
, (u | v) = tr (u∗ ◦ v) ,

et la norme euclidienne associée ||.||. On a alors :

||g||2 = tr (g∗ ◦ g) = tr ( f ∗ ◦ f − f ◦ f ∗)

= tr ( f ∗ ◦ f ) − tr ( f ◦ f ∗) = 0,

d’où  g = 0, c’est-à-dire : f = f ∗.

Notons  A = (ai j )i j = MatB( f ) ∈ Mn(R) .

On a : ∀ i ∈ {1,. . . ,n}, f (ei ) =
n∑

k=1

aki ek,

puis, pour tout (i, j) ∈ {1,. . . ,n}2 :

(
f (ei )

∣∣ e′
j

) =
( n∑

k=1

aki ek

∣∣∣ e′
j

)
=

n∑
k=1

aki (ek | e′
j ) .

Notons E = (ek | e′
j )1�k, j�n ∈ Mn(R) .

Ainsi, pour tout (i, j) ∈ {1,. . . ,n}2,
(

f (ei )
∣∣ e′

j

)
est le (i, j)ème

terme de tAE .

477

Les colonnes de  E sont les coordonnées des e′
j dans B.

Autrement dit, E est la matrice de passage de B à B′. Comme
B et  B′ sont des b.o.n., on déduit : E ∈ On(R). On a alors :
∑

1�i, j�n

(
f (ei )

∣∣ e′
j

)2 = ||tAE ||22 = tr
(t
(tAE)(tAE)

)

= tr
(t

E(AtAE)
) = tr

(
(AtAE)tE

)
= tr

(
(AtA)(E tE)

) = tr (AtA) = tr (tAA) = tr ( f ∗ ◦ f ).

a) Soit n ∈ N .

• Soit Q ∈ En. L’application 

ϕQ : En −→ R, P �−→ (XP | Q)

est une forme linéaire sur l’eve 
(
En,(. | .)

)
, donc, d’après le

cours, il existe Q1 ∈ En unique tel que :

∀ P ∈ En, ϕQ(P) = (P | Q1) .

Ceci montre qu’il existe une application et une seule
fn : En −→ En telle que :

∀ (P,Q) ∈ E2
n ,

(
P

∣∣ fn(Q)
) = (XP | Q) .

• Montrons que  fn est linéaire.

Soient α ∈ R, Q1,Q2 ∈ En. On a, pour tout P ∈ En :
(
P

∣∣ fn(αQ1 + Q2)
) = (XP |αQ1 + Q2)

= α(XP | Q1) + (XP | Q2)

= α
(
P

∣∣ fn(Q1)
) + (

P
∣∣ fn(Q2)

)
= (

P
∣∣α fn(Q1) + fn(Q2)

)
,

donc : fn(αQ1 + Q2) = α fn(Q1) + fn(Q2),

et on conclut que fn est linéaire. Finalement, pour tout n ∈ N ,
il existe fn ∈ L(E) unique tel que :

∀ (P,Q) ∈ E2
n ,

(
P

∣∣ fn(Q)
) = (XP | Q) .

Remarque : On ne peut pas définir directement  fn comme un
adjoint, car  P �−→ XP n’est pas un endomorphisme de En.

2) Soit n ∈ N .

On a, pour tout k ∈ {0,. . . ,n − 1} et tout P ∈ En :

(P | Xk+1) =
∫ 1

−1
P(x)xk+1 dx =

∫ 1

−1

(
x P(x)

)
xk dx

= (XP | Xk) = (
P

∣∣ fn(X
k)

)
,

d’où : fn(X
k) = Xk+1.

Remarque : On n’a pas fn(Xn) = Xn+1 , car Xn+1 /∈ En .

3) On a, pour tout (P,Q) ∈ E2
n :

(
P

∣∣ fn(Q)
) = (XP | Q)
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=
∫ 1

−1

(
x P(x)

)
Q(x) dx =

∫ 1

−1
P(x)

(
x Q(x)

)
dx

= (P | XQ) = (XQ | P) = (
Q

∣∣ fn(P)
)
.

On conclut : fn est auto-adjoint.

b) • D’après a) 2), on a : f2(1) = X, f2(X) = X2.

• Notons  f2(X2) = α+ βX + γX2, (α,β,γ) ∈ R
3.

On a, en utilisant la définition de f2 :


(
1
∣∣ f2(X2)

) = (X | X2)(
X

∣∣ f2(X2)
) = (X2 | X2)(

X2
∣∣ f2(X2)

) = (X3 | X2)

⇐⇒ (S)




α(1 | 1) + β(1 | X) + γ(1 | X2) = (X | X2)

α(X | 1) + β(X | X) + γ(X | X2) = (X2 | X2)

α(X2 | 1) + β(X2 | X) + γ(X2 | X2) = (X3 | X2).

Calculons les produits scalaires qui interviennent.

Par imparité :

(1 | X) = 0, (X | X2) = 0, (X3 | X2) = 0 .

et : (1 | 1) = 2, (1 | X2) = (X | X) = 2

3
, (X2 | X2) = 2

5
.

D’où :

(S) ⇐⇒




2α+ 2

3
γ = 0

2

3
β = 2

5

2

3
α+ 2

5
γ = 0

⇐⇒




α = 0

β = 3

5

γ = 0.

On obtient : f2(X
2) = 3

5
X.

On conclut : f2(1) = X, f2(X) = X2, f2(X
2) = 3

5
X.

a) 1) Existence

D’après le théorème fondamental, il existe (λ1,. . . ,λn) ∈ (R+)n

et Ω ∈ On(R) tels qu’en notant D = diag (λ1,. . . ,λn), on ait
S = ΩDΩ−1 . Considérons ∆ = diag(

√
λ1,. . . ,

√
λn ), et

R = Ω∆Ω
−1. Alors :

• R2 = Ω∆
2
Ω

−1 = ΩDΩ−1 = S

• t R = tΩ
−1
∆ tΩ = Ω∆Ω

−1 = R , donc  R ∈ Sn(R)

• R ∈ S+
n car R ∈ Sn(R) et  Sp

R
(R) ⊂ R+.

2) Unicité

Soit R ∈ S+
n telle que R2 = S .

• On a :

{
Sp

R
(R) ⊂ {√µ;µ ∈ Sp

R
(S)}

∀λ ∈ Sp
R
(R), SEP(R,λ) ⊂ SEP(S,λ2)

,

car :

∀λ ∈ R, ∀ X ∈ Mn,1(R),

(RX = λX �⇒ SX = R2 X = λ
2 X).

Puisque  R et  S sont diagonalisables, on déduit :

Mn,1(R) =
⊕

λ∈SpR(R)

SEP(R,λ) ⊂
⊕

λ∈SpR(R)

SEP(S,λ2)

⊂
⊕

µ∈SpR(S)

SEP(S,µ) = Mn,1(R),

d’où nécessairement :

{
Sp

R
(S) = {λ2;λ ∈ Sp

R
(R)}

∀λ ∈ Sp
R
(R), SEP(R,λ = SEP(S,λ2)

.

• Il existe Ω ∈ On(R) , D ∈ Dn(R) telles que S = Ω DΩ−1.

D’après le résultat précédent, il existe D′ ∈ Dn(R) telle que
R = Ω D′Ω−1. Comme R ∈ S+

n , D′ est formée des racines car-
rées des éléments de D , d’où l’unicité de R .

b) Soit S ∈ S+
n . Avec les notations de la solution de a), d’après

le cours sur l’interpolation polynomiale, il existe P ∈ R[X] tel

que : ∀ k ∈ {1,. . . ,n},
√
λk = P(λk).

En effet, il suffit de prendre pour P un polynôme interpolant
les 

√
λk en les λk, en ne considérant que des λk deux à deux

distincts.

On a alors :

∆ = diag
1�k�n

(
√
λk) = diag

1�k�n

(
P(λk)

)

= P
(

diag
1�k�n

(λk)
) = P(D),

puis :

S1/2 = Ω∆Ω
−1 = ΩP(D)Ω−1 = P(ΩDΩ−1) = P(S) .

On conclut : ∀ S ∈ S+
n , ∃ P ∈ R[X], S1/2 = P(S).

c) Soit (A,B) ∈ (S+
n )2.

1) Supposons que  A1/2 et  B1/2 commutent. D’après le cours,
tout polynôme en  A1/2 commute alors avec tout polynôme en
B1/2. Comme A = (A1/2)2 et B = (B1/2)2, on conclut que  A
et  B commutent.

2) Réciproquement, supposons que  A et  B commutent.
D’après le cours, tout polynôme en A commute alors avec tout
polynôme en B . Comme, d’après b), A1/2 est un polynôme en
A et  B1/2 est un polynôme en B , on conclut que  A1/2 et
B1/2 commutent.

Soit A ∈ GLn(R) .

1) Unicité :

Si un couple  (Ω,S) convient, alors :

13.52
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tAA =t (ΩS)(ΩS) =t S(t
ΩΩ)S = S2 ,

donc, d’après l’exercice 13.52 : S = (tAA)1/2.

Ensuite, comme  S ∈ S++
n ⊂ GLn(R), on a : Ω = AS−1. 

Ceci montre l’unicité de (Ω,S) .

2) Existence :

D’après l’exercice 13.17, on a : tAA ∈ S++
n . Puis, d’après l’exer-

cice 13.52, il existe  S ∈ S++
n telle que : tAA = S2 .

Notons Ω = AS−1. On a alors A = ΩS , et :
t
ΩΩ =t (AS−1)AS−1 =t S−1(tAA)S−1 = S−1 S2 S−1 = In,

donc : Ω ∈ On(R). 

Ceci montre l’existence d’un couple (Ω,S) convenant.

Puisque A ∈ S++
n , d’après l’exercice 13.11, il existe

R ∈ S++
n telle que A = R2 .

On a : AB = R2 B = R(RB R)R−1,

donc AB est semblable à RB R.

Mais, RB R est symétrique, car :

t(RB R) =t RtB tR = RB R .

D’après le théorème fondamental, RB R est diagonalisable.

Puisque AB est semblable à une matrice diagonalisable, on
conclut que AB est diagonalisable dans Mn(R) .

Remarque : En particulier, χAB est scindé sur R.

1re méthode :

Soit (A,B) ∈ (S+
n )2. Puisque A ∈ S+

n ,

il existe (λ1,. . . ,λn) ∈ (R+)n et Ω ∈ On(R) tels que, en no-
tant D = diag(λ1,. . . ,λn) , on ait : A = ΩDΩ−1.

Notons C = Ω
−1 BΩ. 

Comme B ∈ S+
n et Ω ∈ On(R), on a C ∈ S+

n ; en effet :



tC = tΩ t B tΩ
−1 = Ω

−1 BΩ = C

∀X ∈ Mn,1(R),

t XC X = t XΩ−1 BΩX = t(ΩX)B(ΩX) � 0.

Notons C = (ci j )i j ; on a :

tr(A) = tr(D) =
n∑

i=1

λi , tr(B) = tr(C) =
n∑

i=1

cii ,

tr(AB) = tr(DC) =
n∑

i=1

λi cii .

D’une part, puisque A ∈ S+
n : ∀i ∈ {1,. . . ,n}, λi � 0.

D’autre part, puisque C ∈ S+
n , en notant Ei le i ème vecteur de

la base canonique de Mn,1(R) , on a :

cii = tEi C Ei � 0.

On a donc : 0 �
n∑

i=1

λi cii �
( n∑

i=1

λi

)( n∑
i=1

cii

)
,

et finalement : 0 � tr(AB) � tr(A) tr(B).

2e méthode, pour la première inégalité :

D’après l’exercice 13.11, puisque A,B ∈ S+
n , il existe R,S ∈ S+

n

telles que : A = R2 et B = S2 . On a alors, en faisant interve-
nir le produit scalaire canonique sur Mn,1(R) et la norme eu-
clidienne associée :

tr (AB) = tr (R2S2) = tr
(
R(RS2)

) = tr
(
(RS2)R

)
= tr

(
(RS)(SR)

) = tr
(t
(SR)(SR)

) = ||SR||22 � 0.

1) Obtention d’un résultat préliminaire :

Soient X ∈ Mp,1(R), Y ∈ Mq,1(R) .

On a, pour tout α ∈ R :

0 �t

(
X
αY

)
S

(
X
αY

)

= ( tX αtY )

(
A tB
B C

)(
X
αY

)

=t X AX + 2αtY B X + α
2 tY CY.

Le discriminant de ce trinôme du second degré est donc � 0 :

(tY B X)2 − (tX AX)(tY CY ) � 0.

2) • Soit X ∈ Ker (A). On a alors, d’après 1) :

∀ Y ∈ Mq,1(R), (tY B X))2 � 0 .

Ceci montre : ∀ Y ∈ Mq,1(R), tY (B X) = 0,

c’est-à-dire que B X est orthogonal à tout vecteur de Mq,1(R),

donc B X = 0, X ∈ Ker (B) .

On a montré : Ker (A) ⊂ Ker (B).

• Soit Y ∈ Ker (C) . On a alors, d’après a) :

∀ X ∈ Mp,1(R), (tY B X)2 � 0 .

Ceci montre : ∀ X ∈ Mp,1(R), t(tBY )X = 0,

c’est-à-dire que  tBY est orthogonal à tout vecteur de Mp,1(R),

donc tBY = 0, Y ∈ Ker (tB).

On a montré : Ker (C) ⊂ Ker (tB).

Puisque (A,B) ∈ (
Sn(R)

)2
, on a :

∀ t ∈ R, A + t B ∈ Sn(R) .

De même que dans l’exercice 13.37, on a alors, pour tout t ∈ R :


f (t) = Min
||X ||2=1

(t
X (A + t B)X

)

g(t) = Max
||X ||2=1

(t
X (A + t B)X

)
.
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Soient u,v ∈ R,α ∈ [0 ; 1].

On a, pour tout X ∈ Mn,1(R) tel que ||X ||2 = 1 :

tX
(

A + (
(1 − α)u + αv

)
B

)
X

=t X AX + (
(1 − α)u + αv

)t
X B X

= (1 − α)(tX AX + utX B X) + α(tX AX + vtX B X){� (1 − α) f (u) + α f (v)

� (1 − α)g(u) + αg(v).

Il en résulte, par définition de f
(
(1 − α)u + αv

)
et de

g
(
(1 − α)u + αv

)
:

{
f
(
(1 − α)u + αv

)
� (1 − α) f (u) + α f (v)

g
(
(1 − α)u + αv

)
� (1 − α)g(u) + αg(v).

On conclut : f est concave et  g est convexe.

• Puisque A ∈ Sn(R), d’après le théorème fonda-
mental, il existe Ω ∈ On(R),

D = diag (λ1,. . . ,λn) ∈ Dn(R) telles que : A = ΩDΩ−1.

Soit (µ1,. . . ,µn) ∈ (R∗
+)n quelconque.

Notons    ∆ = diag (µ1,. . . ,µn), B = Ω∆Ω
−1 .

Il est clair que : B ∈ S++
n .

D’après l’hypothèse, on a alors : tr (AB) � 0.

Mais :

tr (AB) = tr
(
ΩDΩ−1

Ω∆Ω
−1

) = tr (D∆) =
n∑

i=1

λiµi .

Ceci montre : ∀ (µ1,. . . ,µn) ∈ (R∗
+)n,

n∑
i=1

λiµi � 0.

• Soit i ∈ {1,. . . ,n} fixé. Choisissons µi = 1 et faisons tendre
µj (pour j =/ i ) vers 0 par valeurs > 0 . On obtient, par pas-

sage à la limite : λi � 0. Ainsi, A ∈ Sn(R) et Sp
R
(A) ⊂ R+.

D’après l’exercice 13.9, on conclut : A ∈ S+
n .

Puisque S ∈ S++
n , d’après l’exercice 13.11, il existe

R ∈ S++
n telle que : S = R2 .

Alors : S A = R2 A = R(R AR)R−1,

donc S A est semblable à R AR.

Soit λ ∈ Sp
C
(A) = Sp

C
(R AR) . Il existe X ∈ Mn,1(C) − {0}

tel que : (R AR)X = λX . On a alors, en utilisant la notion de
transconjuguée et la norme hermitienne sur Mn,1(C) :

(X∗ R)(A +t A)(RX) = X∗(R AR)X + X∗(RtAR)X

= X∗((R AR)X
) + (

(R AR)X
)∗

X = X∗
λX + (λX)∗ X

= λX∗ X + λX∗ X = (λ+ λ)||X ||22 .

D’autre part :

(X∗ R)(A +t A)(RX) = (RX)∗(A +t A)(RX) > 0 ,

car RX =/ 0

(puisque X =/ 0 et R ∈ S++
n ⊂ GLn(R) ⊂ GLn(C) ) et

A +t A ∈ S++
n .

Ainsi : (λ+ λ) ||X ||22︸ ︷︷ ︸
> 0

> 0, d’où : λ+ λ > 0.

On conclut : ∀λ ∈ Sp
C
(S A), Ré (λ) > 0.

a) Puisque A ∈ S+
n ⊂ Sn(R) , d’après le théorème fon-

damental, il existe Ω ∈ On(R),

D = diag (λ1,. . . ,λn) ∈ Dn(R) telles que : A = ΩDΩ−1.

De plus, d’après l’exercice 13.9, puisque A ∈ S+
n , on a :

∀ k ∈ {1,. . . ,n}, λk � 0.

Notons C = Ω
−1 BΩ de sorte que : B = ΩCΩ−1 .

On a alors :

AB + B A = 0 ⇐⇒ Ω(DC + C D)Ω−1 = 0

⇐⇒ DC + C D = 0.

Passons aux éléments : D = diag (λ1,. . . ,λn), C = (ci j )i j . 

On a, pour tout (i, j) ∈ {1,. . . ,n}2 :

(DC + C D)i j = λi ci j + ci jλj = (λi + λj )ci j .

Ainsi : ∀ (i, j) ∈ {1,. . . ,n}2, (λi + λj )ci j = 0.

Soit (i, j) ∈ {1,. . . ,n}2.

On a : λi + λj = 0 ou ci j = 0.

Comme les λk sont tous � 0, si λi + λj = 0, alors λi = 0 et

λj = 0. On a donc :
(
λi = 0 ou ci j = 0

)
et

(
λj = 0 ou ci j = 0

)
.

Ceci montre : DC = 0 et C D = 0, puis :

AB = Ω(DC)Ω−1 = 0 et B A = Ω(C D)Ω−1 = 0 .

b) L’exemple suivant convient :

A =
(

1 0
0 0

)
∈ S+

2 − {0}, B =
(

0 0
0 1

)
∈ S+

2 − {0} ,

dans lequel on a : AB = B A = 0 .

Puisque A ∈ S++
n , d’après l’exercice 13.9, les valeurs

propres de A sont toutes > 0 , donc  A est inversible. On a,

pour tout (X,Y ) ∈ (
Mn,1(R)

)2

(
0 tY
X A

)(
1 0

−A−1 X A−1

)
=

(−tY A−1 X tY A−1

0 In

)
,
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d’où, en passant aux déterminants :

−ϕ(X,Y ) det (A−1) = −tY A−1 X .

Ainsi : ϕ(X,Y ) =t Y
(
det (A)A−1

)
X.

Comme A ∈ S++
n , on a det (A) > 0, A−1 ∈ S++

n , donc

det (A)A−1 ∈ S++
n .

Il en résulte, d’après l’expression matricielle des fbs, que ϕ est
un produit scalaire sur Mn,1(R) .

• D’abord, il est clair que tHn = Hn, donc : Hn ∈ Sn(R).

Remarquons : ∀ k ∈ N
∗,

1

k
=

∫ 1

0
t k−1 dt.

• Soit X =




x1
...

xn


 ∈ Mn,1(R). On a :

tX Hn X =
∑

1�i, j�n

xi
1

i + j − 1
xj

=
∑

1�i, j�n

∫ 1

0
t i+ j−2xi xj dt

=
∫ 1

0

( ∑
1�i, j�n

t i+ j−2xi xj

)
dt

=
∫ 1

0

( n∑
i=1

t i−1xi

)( n∑
j=1

t j−1xj

)
dt

=
∫ 1

0

( n∑
i=1

t i−1xi

)2

dt � 0,

donc : Hn ∈ S+
n .

• Soit X =




x1
...

xn


 ∈ Mn,1(R) tel que tX Hn X = 0. Avec les no-

tations précédentes, on a donc :

∫ 1

0

( n∑
i=1

t i−1xi

)2

dt = 0 .

Comme l’application polynomiale  t �−→
n∑

i=1

t i−1xi est conti-

nue, il en résulte : ∀ t ∈ [0 ; 1],
n∑

i=1

t i−1xi = 0.

Ainsi, le polynôme  
n∑

i=1

xi X
i−1 s’annule en une infinité de

points, donc est le polynôme nul, d’où :

∀ i ∈ {1,. . . ,n}, xi = 0 ,

puis : X = 0.

On conclut : Hn ∈ S++
n .

Soient  A ∈ S++
n , B ∈ S+

n .

Puisque A ∈ S++
n ⊂ GLn(R) , A est inversible.

On a alors : In + AB = A(A−1 + B).

• Comme A ∈ S++
n , on a : A−1 ∈ Sn(R) et :

∀ X ∈ Mn,1(R) − {0},tX A−1 X

= (tX A−1)A(A−1 X) =t (A−1 X)A(A−1 X) > 0,

donc : A−1 ∈ S++
n . 

• Comme A−1 ∈ S++
n et B ∈ S+

n , on a A−1 + B ∈ Sn(R) et,

pour tout X ∈ Mn,1(R) − {0} :

tX (A−1 + B)X = tX A−1 X︸ ︷︷ ︸
> 0

+ tX B X︸ ︷︷ ︸
� 0

> 0 ,

donc : A−1 + B ∈ S++
n ⊂ GLn(R) .

• Enfin, comme A ∈ GLn(R) et A−1 + B ∈ GLn(R) , on dé-

duit : A(A−1 + B) ∈ GLn(R) .

On conclut : In + AB ∈ GLn(R) .

Soit S ∈ S+
n .

• D’après le théorème fondamental, il existe Ω ∈ On(R) ,
D = diag (λ1,. . . ,λn) ∈ Dn(R) telles que : S = ΩDΩ−1.

De plus, comme S ∈ S+
n , d’après l’exercice 13.9 :

∀ i ∈ {1,. . . ,n}, λi � 0 .

On a alors : 1 + (
det (S)

)1/n = 1 +
( n∏

i=1

λi

)1/n

et :
(
det (In + S)

)1/n =
( n∏

i=1

(1 + λi )
)1/n

.

Il suffit donc de montrer :

1 +
( n∏

i=1

λi

)1/n

�
( n∏

i=1

(1 + λi )

)1/n

.

S’il existe i ∈ {1,. . . ,n} tel que λi = 0, alors l’inégalité vou-
lue est triviale.

Supposons désormais : ∀ i ∈ {1,. . . ,n}, λi > 0.

• Considérons l’application 

ϕ : R −→ R, t �−→ ln(1 + et ) .

L’application ϕ est deux fois dérivable sur R et, pour tout t ∈ R :

ϕ
′(t) = et

1 + et
, ϕ′′(t) = et

(1 + et )2
� 0.

Ceci montre que ϕ est convexe.

D’après l’inégalité de Jensen, on a donc :

∀ t1,. . . ,tn ∈ R, ϕ

(
1

n

n∑
i=1

ti

)
� 1

n

n∑
i=1

ϕ(ti ) (1) .

Mais :
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(1) ⇐⇒ ln

[
1 + exp

(
1

n

n∑
i=1

ti

)]
� 1

n

n∑
i=1

ln (1 + eti )

⇐⇒ 1 +
( n∏

i=1

eti

)1/n

�
( n∏

i=1

(1 + eti )

)1/n

.

En appliquant cette inégalité à ti = lnλi , on conclut à l’inégalité
demandée.

a) Supposons (x1,. . . ,xp) obtusangle.

Soit (α1,. . . ,αp−1) ∈ R
p−1 tel que 

p−1∑
i=1

αi xi = 0.

Considérons y =
p−1∑
i=1

|αi |xi . , On a :

||y||2 =
∣∣∣∣
∣∣∣∣

p−1∑
i=1

|αi |xi

∣∣∣∣
∣∣∣∣
2

=
∣∣∣∣
∣∣∣∣

p−1∑
i=1

|αi |xi

∣∣∣∣
∣∣∣∣
2

−
∣∣∣∣
∣∣∣∣

p−1∑
i=1

αi xi

︸ ︷︷ ︸
= 0

∣∣∣∣
∣∣∣∣
2

=
[ p−1∑

i=1

|αi |2||xi ||2 + 2
∑

1�i< j�p−1

|αi | |αj |(xi | xj )

]

−
[ p−1∑

i=1

α
2
i ||xi ||2 + 2

∑
1�i< j�p−1

αiαj (xi | xj )

]

= 2
∑

1�i< j�p−1

( |αi | |αj | − αiαj︸ ︷︷ ︸
� 0

)
(xi | xj )︸ ︷︷ ︸

< 0

� 0,

d’où : y = 0. Il s’ensuit :

0 = (xp | y) =
(

xp

∣∣∣∣
p−1∑
i=1

|αi |xi

)
=

p−1∑
i=1

|αi |︸︷︷︸
� 0

(xp | xi )︸ ︷︷ ︸
< 0

.

Il en résulte : ∀ i ∈ {1,. . . ,p − 1}, |αi | = 0,

d’où : ∀ i ∈ {1,. . . ,p − 1}, αi = 0.

Ceci montre que la famille  (x1,. . . ,xp−1) est libre.

b) S’il existait une famille obtusangle (x1,. . . ,xp) telle que

p � n + 2, alors, d’après a), la famille (x1,. . . ,xp−1) serait libre

et de cardinal � n + 1, dans un ev de dimension n, contra-
diction.

On conclut que, dans un eve de dimension n, il n’existe pas de
famille obtusangle de cardinal � n + 2.

Remarque : On peut, dans tout eve de dimension n, construire
une famille obtusangle de cardinal n + 1.

• Notons Ω =
(

A U
V B

)
. On a :

Ω ∈ On(R) ⇐⇒
{

tΩΩ = In,

Ω
t
Ω = In

⇐⇒




(
tA tV
tU tB

)(
A U
V B

)
=

(
Ip 0
0 In−p

)

(
A U
V B

)(
tA tV
tU tB

)
=

(
Ip 0
0 In−p

)

�⇒
{ tAA +t V V = Ip

V tV + B tB = In−p.

D’après l’exercice 12.49, on déduit :

det (tAA) = det (Ip −t V V ) = (−1)p
χtV V (1)

= (−1)n−p
χV tV (1) = det (In−p − V tV ) = det (B tB),

d’où :

(
det (A)

)2 = det (tAA) = det (B tB) = (
det (B)

)2
,

et donc : |det (A)| = |det (B)|.
• On a : tAA ∈ S+

n .

Soit λ ∈ Sp (tAA) . Il existe X ∈ Mp,1(R) − {0} tel que
tAAX = λX . Puisque tAA +t V V = Ip ,

on a alors : tX (tAAX) +t X tV V X =t X X,

d’où : λ||X ||2 + ||V X ||2 = ||X ||2,
et donc : λ||X ||2 � ||X ||2.
Comme ||X || > 0, il s’ensuit : λ � 1.

Ainsi : Sp (tAA) ⊂ [0 ; 1] .

Comme tAA est diagonalisable dans Mp(R), il en résulte :

det (tAA) ∈ [0 ; 1] .

Mais : det (tAA) = (
det (A)

)2
.

On conclut : |det (A)| ∈ [0 ; 1] . 

De même : |det (B)| ∈ [0 ; 1].

a) 1) Puisque S ∈ S+
n ⊂ Sn(R) , d’après le théo-

rème fondamental, il existe P ∈ On(R) telle que

S = P DtP = P D P−1, où D = diag (λ1,. . . ,λn).

Notons P = (pi j )i j. On a, pour tout (i, j) ∈ {1,. . . ,n}2, par pro-

duit matriciel : si j =
n∑

k=1

pikλk pjk .

En particulier, pour tout i ∈ {1,. . . ,n} :

sii =
n∑

k=1

λk p2
ik .

Soit i ∈ {1,. . . ,n} fixé.

Puisque les  p2
ik,(1 � k � n) sont des réels � 0 tels que

n∑
k=1

p2
ik = 1, (car P est orthogonale) et que f est convexe, on

a, d’après l’inégalité de Jensen :
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f (sii ) = f

( n∑
k=1

p2
ikλk

)
�

n∑
k=1

p2
ik f (λk) .

D’où, en sommant pour i de 1 à n :

n∑
i=1

f (sii ) �
n∑

i=1

n∑
k=1

p2
ik f (λk)

=
n∑

k=1

( n∑
i=1

p2
ik

)
f (λk) =

n∑
k=1

f (λk),

car : ∀ k ∈ {1,. . . ,n},
n∑

i=1

p2
ik = 1,

puisque  P est orthogonale.

2) • Supposons d’abord S ∈ S++
n . On a alors :

∀ i ∈ {1,. . . ,n}, sii =t Ei SEi > 0 ,

et, d’après l’exercice 13.9 : ∀ k ∈ {1,. . . ,n}, λk > 0.

Considérons l’application 

f : ]0 ;+∞[−→ R, x �−→ − ln x ,

qui est convexe. On peut adapter le résultat de 1) (où  f était
convexe sur [0 ;+∞[) et on obtient :

n∑
i=1

f (sii ) �
n∑

k=1

f (λk) .

Mais :
n∑

i=1

f (sii ) =
n∑

i=1

− ln (sii ) = − ln

( n∏
i=1

sii

)

et :
n∑

k=1

f (λk) =
n∑

k=1

− lnλk = − ln

( n∏
k=1

λk

)
.

On déduit :
n∏

i=1

sii �
n∏

k=1

λk = det (D) = det (S).

• Si S ∈ S+
n et S /∈ S++

n , alors 0 est valeur propre de S, donc
det (S) = 0 , et, d’autre part, les sii sont tous � 0, d’où l’in-
égalité voulue.

b) Soit A = (ai j )i j ∈ Mn(R) . Notons S = AtA ∈ S+
n . 

D’après a) 2) : det (S) �
n∏

i=1

sii .

Mais : det (S) = det (AtA) = (
det (A)

)2
,

et, pour tout i ∈ {1,. . . ,n} : sii =
n∑

j=1

a2
i j .

On déduit :
(
det (A)

)2 �
n∏

i=1

( n∑
j=1

a2
i j

)
.

On conclut : |det (A)
∣∣ �

( n∏
i=1

n∑
j=1

a2
i j

)1/2
.

• Puisque tAA = αA + β tA, on déduit, en transposant :
tAA = α tA + βA , puis, en additionnant et en notant

γ = α+ β

2
: tAA = γA + γ

tA.

On a alors :

t(A − γ In)(A − γ In) = tAA − γA − γ
tA + γ

2In = γ
2In,

donc, en notant Ω = 1

γ
A − In , on a : tΩΩ = In ,

c’est-à-dire : Ω ∈ On(R) .

• Nous allons appliquer l’inégalité de Hadamard, cf exercice

13.67 b) : |det (A)| �
( n∏

i=1

n∑
j=1

a2
i j

)1/2

.

Notons  Ω = (ωi j )i j.

On a alors, puisque A = γΩ+ γIn :{∀ i ∈ {1,. . . ,n}, aii = γωi i + γ

∀ (i, j) ∈ {1,. . . ,n}2, i =/ j �⇒ ai j = γωi j .

D’où, pour tout i ∈ {1,. . . ,n} :

n∑
j=1

a2
i j = a2

i i +
∑
j /= i

a2
i j = (γωi i + γ)2 +

∑
j /= i

γ
2
ω

2
i j

= γ
2 + 2γ2

ωi i + γ
2

n∑
j=1

ω
2
i j

︸ ︷︷ ︸
= 1

= 2γ2 + 2γ2
ωi i � 4γ2.

D’où : |det (A)| �
(
(4γ2)n

)1/2 = (2γ)n = (α+ β)n .

Notons A(D) l’aire d’un domaine simple D de R2.

• On a, pour tout (i, j) ∈ {1,. . . ,n}2 :

aji = A(Dj ∩ Di ) = A(Di ∩ Dj ) = ai j ,

donc : A ∈ Sn(R) .

• Notons, pour tout domaine simple D de R2, ϕD la fonction
caractéristique de D , définie par :

ϕD : R
2 −→ R, M �−→

{ 1 si M ∈ D

0 si M /∈ D.

Il est clair que, pour tous domaines simples D,D′ de R2 :

ϕD ∩ D′ = ϕDϕD′ .

On a donc, pour tout (i, j) ∈ {1,. . . ,n}2 :

ai j = A(Di ∩ Dj ) =
∫∫

R2
ϕDi ∩ Dj

(x,y) dx dy

=
∫∫

R2
ϕDi

(x,y)ϕDj
(x,y) dx dy.

D’où, pour tout X =




x1
...

xn


 ∈ Mn,1(R) :

tX AX =
∑

1�i, j�n

ai j xi xj
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=
∑

1�i, j�n

(∫∫
R2
ϕDi

(x,y)ϕDj
(x,y) dx dy

)
xi xj

=
∫∫

R2

( ∑
1�i, j�n

ϕDi
(x,y)ϕDj

(x,y)xi xj

)
dx dy

=
∫∫

R2

( n∑
i=1

ϕDi
(x,y)xi

)2

dx dy � 0.

On conclut : A ∈ S+
n .

Notons S = AtA =t AA.

Il est clair que S ∈ Sn(R) . D’après le théorème fondamental,
il existe P ∈ On(R), D = diag (λ1,. . . ,λn) ∈ Dn(R) telles

que : S = P D P−1.

Notons B = P−1 AP, de sorte que : A = P B P−1 .

On a : AS = A(tAA) = (AtA)A = S A,

donc :

B D = (P−1 AP)(P−1 S P) = P−1(AS)P

= P−1(S A)P = (P−1 S P)(P−1 AP) = DB.

Passons aux éléments. Notons B = (bi j )i j. On a alors :

B D = DB

⇐⇒ ∀ (i, j) ∈ {1,. . . ,n}2, bi j dj = di bi j

⇐⇒ ∀ (i, j) ∈ {1,. . . ,n}2, (dj − di )bi j = 0

⇐⇒ ∀ (i, j) ∈ {1,. . . ,n}2,
(
i =/ j �⇒ bi j = 0

)
,

car d1,. . . ,dn sont deux à deux distincts, par hypothèse.

Ceci montre que B est diagonale, donc symétrique.

On a alors :

tA =t (P B P−1) = tP−1tB tP = P B P−1 = A .

• (i) �⇒ (ii) :

Supposons  A diagonalisable dans Mn(R) . Il existe

P ∈ GLn(R), D ∈ Dn(R) telles que : A = P D P−1. On a
donc :

tA = t(P D P−1) = tP−1 D tP

= tP−1 P−1(P D P−1)P tP = (tP−1 P−1)A(P tP).

Notons S = P tP . Puisque  P ∈ GLn(R), d’après l’exercice
13.17, on a : S =t P P ∈ S++

n .

Et : S−1 = (P tP)−1 = tP−1 P−1.

On conclut : ∃ S ∈ S++
n , tA = S−1 AS.

• Supposons qu’il existe S ∈ S++
n telle que : tA = S−1 AS .

On a alors : t(AS) = t S tA = S(S−1 AS) = AS,

donc : AS ∈ Sn(R). Notons B = AS .

Puisque S ∈ S++
n ⊂ GLn(R), on déduit : A = BS−1 .

Puisque S ∈ S++
n , on a S−1 ∈ S++

n . D’après l’exercice 13.11,

il existe R ∈ S++
n telle que : S−1 = R2 .

On a alors : A = B R2 = R−1(RB R)R,

ce qui montre que  A est semblable à RB R.

Mais : t(RB R) = tRtB tR = RB R,

donc : RB R ∈ Sn(R).

D’après le théorème fondamental, RB R est diagonalisable dans
Mn(R) . Puisque  A est semblable à RB R et que  RB R est
diagonalisable dans Mn(R) , on conclut que A est diagonali-
sable dans Mn(R) .

a) Soit S ∈ S+
n . D’après le théorème fondamental, il

existe Ω ∈ On(R), D = diag (λ1,. . . ,λn) ∈ Dn(R) telles que :
S = ΩDΩ−1.

De plus, puisque S ∈ S+
n , d’après l’exercice 13.9 :

∀ k ∈ {1,. . . ,n}, λk � 0 .

Alors :
(
det (S)

)1/n =
( n∏

i=1

λi

)1/n

et
1

n
tr (S) = 1

n

n∑
i=1

λi .

D’après la comparaison entre moyenne arithmétique et moyenne
géométrique pour des réels � 0, on a :

( n∏
i=1

λi

)1/n

� 1

n

n∑
i=1

λi ,

d’où :
(
det (S)

)1/n � 1

n
tr (S).

b) 1) Soit A ∈ Mn(R). Notons S =t AA . D’après l’exercice
13.17 : S ∈ S+

n . Il s’ensuit, d’après a) :

(
det (S)

)1/n � 1

n
tr (S) .

Mais :

det (S) = det (tAA) = det (tA) det (A) = (
det (A)

)2
.

On conclut : |det (A)| �
(

1

n
tr (tAA)

)n/2

.

2) Soient A,B ∈ S+
n .

• Supposons A /∈ S++
n . Alors, comme A ∈ S+

n , 0  est valeur
propre de A , donc det (A) = 0. D’autre part, d’après l’exer-
cice 13.55, puisque A,B ∈ S+

n , on a : tr (AB) � 0, d’où l’in-
égalité voulue.

• Supposons A ∈ S++
n . D’après l’exercice 13.11, il existe

R ∈ S++
n telle que A = R2 . On a :

AB = R2 B = R(RB R)R−1 ,
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donc :

{
det (A) det (B) = det (AB) = det (RB R)

tr (AB) = tr (RB R).

De plus, il est clair que RB R ∈ S+
n . 

D’après a), appliqué à S = RB R , on a :(
det (RB R)

)1/n � 1

n
tr (RB R) .

On conclut : det (A) det (B) �
(

1

n
tr (AB)

)n

.

Puisque AtA et tAA sont symétriques réelles et que,
d’après l’exercice 12.49, elles ont le même polynôme carac-
téristique, il existe P,Q ∈ On(R), D ∈ Dn(R) telles que :

AtA = P D P−1 et tAA = Q DQ−1.

On a alors :
tAA = Q DQ−1 = Q

(
P−1(AtA)P

)
Q−1

= Q P−1(AtA)(Q P−1)−1.

En notant Ω = Q P−1 , comme P,Q ∈ On(R) , on a :

Ω ∈ On(R) . Ceci montre que  AtA et  tAA sont orthogo-
nalement semblables.

a) α) Supposons A ∈ S+
n , et soit p ∈ {1,. . . ,n} .

Soit X =




x1
...

xp


 ∈ Mp,1(R) ; complétons X en

X ′ = ( x1 . . . xp 0 . . . 0 ) ∈ Mn,1(R) . 

Comme A ∈ S+
n , on a   tX ′ AX ′ � 0. 

Mais : tX ′ AX ′ = tX Ap X,

d'où   tX Ap X � 0. Ainsi : Ap ∈ S+
p .

Puisque Ap ∈ S+
p , d'après le théorème fondamental, il existe

(λ1,. . . ,λp) ∈ (R+)p et � ∈ Op(R) tels que, en notant

D = diag(λ1,. . . ,λp), on ait Ap = �D�−1. 

D'où : det(Ap) = det(D) =
p∏

i=1

λi � 0.

β) La réciproque de α) est fausse (si n � 2), comme le montre
l'exemple A = −E22 (matrice élémentaire). En effet, tous les
mineurs de Gauss de A sont nuls, mais A /∈ S+

n , puisque
tE2 A E2 = −1 < 0.

γ) 1) Soit A ∈ S++
n . En raisonnant comme plus haut (solution

de a) α) ), on obtient, pour tout p de {1,. . . ,n}, det(Ap) > 0.

γ) 2) Réciproquement, supposons :

∀p ∈ {1,. . . ,n} , det(Ap) > 0.

Montrons : ∀p ∈ {1,. . . ,n} , Ap ∈ S++
p , par récurrence (bor-

née) sur p. Il en résultera, en particulier, A = An ∈ S++
n .

Il est clair que A1 = (
det(A1)

) ∈ S++
1 .

Supposons Ap ∈ S++
p , et décomposons Ap+1 en blocs :

Ap+1 =
(

Ap
tCp

Cp ap+1 p+1

)
, où Cp ∈ Mp,1(R).

D'après l'exercice 13.11, il existe Rp ∈ S++
p telle que Ap = R2

p .

Cherchons α ∈ R et L p ∈ M1,p(R) pour que, en

notant M =
(

Rp L p

0 α

)
, on ait Ap+1 = tM M .

On a :

tM M = Ap+1 ⇐⇒
(

Rp 0
tL p α

)(
Rp L p

0 α

)

=
(

Ap
tCp

Cp ap+1 p+1

)

⇐⇒
(

R2
p = Ap, Rp L p = tCp,

tL p L p + α
2 = ap+1 p+1

)
.

Comme Rp ∈ S++
p ⊂ GLp(R) , on peut choisir L p = R−1

p
tCp.

Alors :
tL p L p + α

2 = ap+1 p+1

⇐⇒ Cp R−1
p R−1

p
tCp + α

2 = ap+1 p+1

⇐⇒ α
2 = ap+1 p+1 − Cp A−1

p
tCp.

Il suffit donc de montrer : ap+1 p+1 − Cp A−1
p

tCp > 0 .

Remarquons :

( Ap
tCp

Cp ap+1 p+1

)( A−1
p −A−1

p
tCp

0 1

)

=
( Ip 0

Cp A−1
p ap+1 p+1 − Cp A−1

p Cp

)
,

d'où, en passant aux déterminants:

det(Ap+1)det(A−1
p ) = ap+1 p+1 − Cp A−1

p
tCp.

Comme, par hypothèse, det(Ap) > 0 et det(Ap+1) > 0, on dé-

duit : ap+1 p+1 − Cp A−1
p

tCp > 0 , et on choisit, par exemple,

α > 0 convenant.

Alors M =
(

Rp L p

0 α

)
∈ GLp+1(R) ,

et donc Ap+1 = tM M ∈ S++
p+1 , ce qui établit la récurrence.

b) L'application f : S+
n −→ R

n définie par :

∀A ∈ S+
n , f (A) = (

det(A1),. . . ,det(An)
)

est continue, et d'après a) γ) , S++
n = f −1

(
]0;+∞[n

)
. 

Comme ]0;+∞[n est ouvert dans Rn, on en conclut que S++
n

est ouvert dans S+
n .

De même, S++
n est ouvert dans Sn(R).
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c) Notons, pour  p ∈ N
∗ , Dp = det(Ap) = det

(
(a|i− j |)1�ii j �p

)
. 

On a, par développement par rapport à la première ligne :

∀p ∈ N
∗, Dp+1 = (1 − a2)Dp ,

d’où, par une récurrence immédiate :

∀p ∈ N
∗, Dp = (1 − a2)p−1 .

Ainsi : ∀p ∈ {1,. . . ,n}, det(Ap) = (1 − a2)p−1 > 0 .

On conclut, en utilisant a) γ) : A ∈ S++
n .

a) �⇒ :

Récurrence sur n.

La propriété est évidente pour n = 1.

Supposons-la vraie pour un n de N∗ , et soit S ∈ S+
n+1.

Décomposons S en blocs :

S =
(
α trC
C S1

)
, où α ∈ R, C ∈ Mn,1(R), S1 ∈ Sn(R).

Nous allons déterminer β ∈ R , L ∈ M1,n(R) , T1 ∈ Tn,s(R) de

façon qu'en notant  T =
(
β L
0 T1

)
, on ait S = tT T.

On a :

S = tT T ⇐⇒
(
α tC
C S1

)
=

(
β 0

t L tT1

)(
β L
0 T1

)

⇐⇒
(
β

2 = α, βL = tC, t L L + tT1T1 = S1

)
.

Soient x ∈ R , X1 ∈ Mn,1(R) , X =
(

x
X1

)
. 

Puisque S ∈ S+
n+1, on a t X SX � 0 , c'est-à-dire, en dévelop-

pant :

αx2 + 2x tC X1 + t X1 S1 X1 � 0.

En particulier, en remplaçant x par 1 et X1 par 0, on déduit
α � 0 . En choisissant β = √

α , on a donc   β 2 = α.

• Cas α > 0

Notons L = 1√
α

tC. On a, pour tout X1 de Mn,1(R) , en rem-

plaçant plus haut x par − 1

α

tC X1 :

− 1

α
(tC X1)

2 + t X1 S1 X1 � 0,

c'est-à-dire : t X1(S1 − t L L)X1 � 0.

Ainsi, S1 − t L L ∈ S+
n .

D'après l'hypothèse de récurrence, il existe T1 ∈ Tn,s(R) telle
que S1 − t L L = tT1T1 .

En notant T =
(
β L
0 T1

)
, on obtient ainsi :

T ∈ Tn+1,s(R) et S = tT T .

• Cas α = 0

On a alors :

∀X1 ∈ Mn,1(R) , ∀x ∈ R , 2x tC X1 + t X1 S1 X1 � 0 ,

d'où : ∀X1 ∈ Mn,1(R) , (tC X1 = 0 et    tr X1 S1 X1 � 0),

et donc : C = 0 et    S1 ∈ S+
n .

D'après l'hypothèse de récurrence, il existe T1 ∈ Tn,s(R) telle

que S1 = tT1T1 , d'où, en notant T =
(

0 0
0 T1

)
:

T ∈ Tn+1,s(R) et S = tT T .

�⇒ :

S'il existe T ∈ Tn,s(R) telle que S = tT T, alors, pour toute X

de Mn,1(R):

t X SX = t X tT T X = t(T X)T X = ||T X ||22 � 0,

et donc : S ∈ S+
n .

b) �⇒ :

Soit S ∈ S++
n . 

D'après a), il existe T ∈ Tn,s(R) telle que S = tT T. 

Comme :
(
det(T )

)2 = det(tT T ) = det(S) =/ 0 ,

on a   det(T ) =/ 0, et donc T ∈ GLn(R) .

�⇒ :

S'il existe T ∈ Tn,s(R) telle que S = tT T, alors (cf. a)) S ∈ S+
n ,

et : det(S) = (
det(T )

)2 =/ 0,

donc S ∈ S+
n ∩ GLn(R) = S++

n .

Remarque : Pour b), �⇒, on peut  utiliser  le procédé d'or-
thogonalisation de Schmidt, appliqué à la base canonique  B0

de Mn,1(R) et au produit scalaire de matrice S dans B0.  

Puisque A ∈ Sn(R) , d’après le théorème fondamental,
il existe Ω ∈ On,(R), D = diag (λ1,. . . ,λn) ∈ Dn(R) telles

que : A = ΩDΩ−1.

Il existe X ∈ Mn,1(R) − {0} tel que : AX = λn X.

On a : tX AX = λ
t
nX X = λn||X ||2.

Notons  X =




x1
...

xn


 et  X̃ =




|x1|
...

|xn|


 ∈ Mn,1(R).

On a : tX AX =
∑

1�i, j�n

ai j xi xj .

Puisque les ai j sont tous � 0, on déduit :

|tX AX | =
∣∣∣∣

∑
1�i, j�n

ai j xi xj

∣∣∣∣ �
∑

1�i, j�n

ai j |xi | |xj | =t X̃ AX̃ .
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Notons Y = Ω
−1 X̃ , de sorte que : X̃ = ΩY , et notons

Y =




y1
...

yn


 . On a alors :

t̃X AX̃ =t (ΩY )A(ΩY ) =t Y t
ΩAΩY

=t Y DY =
n∑

i=1

λi y2
i �

n∑
i=1

λ1 y2
i = λ1

n∑
i=1

y2
i

= λ1||Y ||2 = λ1||Ω−1Y ||2 = λ1||X̃ ||2 = λ1||X ||2.
Ainsi : |λn| ||X ||2 = |tX AX | �t X̃ AX̃ � λ1||X ||2.
Comme ||X ||2 > 0, on conclut : |λn| � λ1.

Récurrence sur n. 

La propriété est triviale  pour n = 1. 

Supposons-la vraie pour tout p de N∗ tel que  p < n , et  soient
I un ensemble non vide, (Si )i∈I une famille d'éléments de Sn(R)

commutant  deux à deux. 

Le cas (∀ i ∈ I, Si ∈ R In) est trivial. 

Supposons  donc  qu'il existe i0 ∈ I tel que Si0 /∈ RIn . 

D'après le théorème fondamental, il existe Ω ∈ On(R),

D ∈ Dn(R) telles que Si0 = ΩDΩ−1 . 

Comme Si0 /∈ RIn, les éléments diagonaux de D ne sont  pas

tous égaux. On  peut donc  supposer D =
(
λ0Ir 0

0 D′

)
, où

λ0 ∈ R, r ∈ {1,. . . ,n − 1} , D′ ∈ Dn−r (R) à termes diago-
naux =/ λ0. 

Pour chaque  i de  I, décomposons Ω−1 SiΩ en blocs :

Ω
−1 SiΩ =

(
Ai Bi

t Bi Ci

)
,

où Ai ∈ Sr (R), Bi ∈ Mr,n−r (R), Ci ∈ Sn−r (R).

Comme  les Si (i ∈ I ) commutent deux à deux, en particu-
lier : ∀ i ∈ I, Si Si0 = Si0 Si . 

En effectuant un produit par blocs, on en déduit :

∀ i ∈ I, λ0 Bi = Bi D′ ,

c'est-à-dire : ∀ i ∈ I, Bi (D′ − λ0In−r ) = 0 .

Mais  D′ − λ0In−r est inversible, d'où : ∀ i ∈ I, Bi = 0. 

On déduit  alors : ∀ (i, j) ∈ I 2,

{ Ai Aj = Aj Ai

Ci Cj = Cj Ci

.

On peut donc  appliquer l'hypothèse de récurrence aux deux
familles (Ai )i∈I et (Ci )i∈I .

Il existe donc  Ω1 ∈ Or (R) et Ω2 ∈ On−r (R)

telles que :

∀ i ∈ I,

{
Ω

−1
1 AiΩ1 ∈ Dr (R)

Ω
−1
2 CiΩ2 ∈ Dn−r (R)

.

En notant  Ω′ = Ω

(
Ω1 0
0 Ω2

)
, on a alors facilement :

Ω ′ ∈ On(R) et :

∀ i ∈ I, Ω′−1 SiΩ
′ ∈ Dn(R).

• Puisque A ∈ S+
n ⊂ Sn(R) , d’après le théorème 

fondamental, il existe Ω ∈ On(R),

D = diag
1�k�n

(λk) ∈ Dn(R) telles que : A = ΩDΩ−1.

De plus, comme A ∈ S+
n , d’après l’exercice 13.9, on a :

∀ k ∈ {1,. . . ,n}, λk � 0 .

Notons, pour tout k ∈ {1,. . . ,n} , µk = P(λk) ∈ R+

et � = diag
1�k�n

(µk) . On a donc :

P(A) = P(ΩDΩ−1) = ΩP(D)Ω−1 = ΩΩ
−1 .

Puisque l’application R+ −→ R+, λ �−→ P(λ)

est injective, d’après le cours sur l’interpolation polynomiale,
il existe Q ∈ R[X] tel que :

∀ k ∈ {1,. . . ,n}, Q(µk) = λk .

On a alors :

Q(∆) = diag
1�k�n

(
Q(µk)

) = diag
1�k�n

(λk) = D ,

puis :

Q
(
P(A)

) = Q(Ω∆Ω−1) = ΩQ(∆)Ω−1 = ΩDΩ−1 = A .

Ceci montre que  A est un polynôme en P(A) . De même,
B est un polynôme en P(B). Comme P(A) = P(B), il en ré-
sulte que A et B sont des polynômes d’une même matrice, donc
A et B commutent.

• D’après l’exercice 13.77, puisque  A,B ∈ Sn(R) et
AB = B A , A et  B sont simultanément orthodiagonalisables,
c’est-à-dire qu’il existe R ∈ On(R), E,F ∈ Dn(R) telles que :
A = RE R−1 et B = RF R−1.

On a alors :

{
P(A) = P(RE R−1) = R P(E)R−1

P(B) = P(RF R−1) = R P(F)R−1,

donc, puisque P(A) = P(B), on a : P(E) = P(F).

Notons   E = diag
1�k�n

(αk), F = diag
1�k�n

(βk) ,

où α1,. . . ,αn,β1,. . . ,βn ∈ R+ .

On a donc : ∀ k ∈ {1,. . . ,n}, P(αk) = P(βk).

Comme P|R+ est injective, il s’ensuit :

∀ k ∈ {1,. . . ,n}, αk = βk ,

d’où  E = F , puis : A = B.

13.77

13.78
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Notons D = diag (λ1,. . . ,λn) . Il existe donc

Ω ∈ On(R) telle que : S = ΩDΩ−1.

Pour i ∈ {1,. . . ,n}, notons Ci le i-ème vecteur de la base ca-
nonique de Mn,1(R) , et, pour tout r ∈ {0,. . . ,n − 1} , notons

Er+1 = Vect (ΩC1,. . . ,ΩCr+1)

et E ′
r = Vect (ΩCr+1,. . . ,ΩCn).

1) Soit X ∈ E ′
r .

Il existe (xr+1,. . . ,xn) ∈ R
n−r tel que X =

n∑
i=r+1

xiΩCi .

On a alors :

SX =
n∑

i=r+1

xi SΩCi =
n∑

i=r+1

xiΩDCi =
n∑

i=r+1

xiλiΩCi ,

puis, comme (ΩCi )i est orthonormale :

tX SX =
n∑

i=r+1

xi (xiλi ) =
n∑

i=r+1

λi x
2
i

� λr+1

n∑
i=r+1

x2
i = λ

t
r+1X X.

Ceci montre :

∀ X ∈ E ′
r ,

(t
X X = 1 �⇒t X SX � λr+1

)
,

d’où : Sup
X∈Er et tX X=1

tX SX � λr+1,

et donc : Inf
F∈Fr

(
Sup

X∈F et tX X=1

tX SX

)
� λr+1.

2) Soit F ∈ Fr.

Comme dim (F) = n − r et dim (Er+1) = r + 1, on a :

dim (F) + dim (Er+1) = n + 1 ,

donc nécessairement : F ∩ Er+1 =/ {0}.
Il existe donc X ∈ F ∩ Er+1 − {0} . Ensuite, il existe

(x1,. . . ,xr+1) ∈ R
r+1 tel que X =

r+1∑
i=1

xiΩCi .

On a alors : SX =
r+1∑
i=1

xiλiΩCi ,

puis, comme (ΩCi )i est orthonormale :

tX SX =
r+1∑
i=1

λi x
2
i � λr+1

r+1∑
i=1

x2
i = λr+1

tX X .

Ceci montre : Sup
X∈F et tX X=1

tX SX � λr+1.

Il en résulte : Inf
F∈Fr

(
Sup

X∈F et tX X=1

tX SX

)
� λr+1.

Finalement : λr+1 = Inf
F∈Fr

(
Sup

X∈F et tX X=1

tX SX

)
.

13.79
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14CHAPITRE 14Géométrie

Thèmes abordés dans les exercices

• Détermination de l’enveloppe d’une famille de droites du plan (PT)

• Détermination de la développée d’une courbe du plan (PT)

• Détermination des développantes d’une courbe du plan (PT)

• Reconnaître si une courbe de l’espace est plane, et si oui, déterminer son plan

• Calcul d’une abscisse curviligne, d’une longueur d’arc

• Détermination de la tangente en un point régulier d’un arc paramétré

• Détermination la normale ou/et du plan tangent en un point régulier d’une sur-
face

• Réduction des quadriques

• Détermination de toutes les droites tracées sur une surface donnée

• Former une EC d’un cylindre donné par une directrice et la direction des géné-
ratrices (PT)

• Reconnaître un cylindre sur son EC (PT)

• Former une EC d’un cône donné par le sommet et une directrice (PT)

• Reconnaître un cône sur son EC (PT)

• Reconnaître si une surface est réglée, développable (PT).

Points essentiels du cours
pour la résolution des exercices

• Théorème donnant l’enveloppe d’une famille de droites (Dt)t∈I du plan à par-
tir d’une EC de Dt (PT)

• Les deux caractérisations de la développée d’une courbe du plan : lieu du
centre de courbure, enveloppe des normales (PT)

• Caractérisation des développantes d’une courbe du plan par la formule :

−−→
O M = −→

OC + (s0 − s)
−→
T (PT)

• Formule donnant la dérivée de l’abscisse curviligne sur un arc paramétré

• Vecteur directeur de la tangente en un point régulier d’un arc paramétré

• Pour une surface S donnée par une EC F(x,y,z) = 0, le plan tangent à S en

un point régulier M(x,y,z) de S est orthogonal à 
−−→
grad F(x,y,z)

Les méthodes à retenir 490

Énoncés des exercices 493

Du mal à démarrer ? 496

Corrigés 499

Plan
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Les méthodes à retenir
Par commodité, on utilise les abréviations suivantes :

RP pour : représentation paramétrique
EC pour : équation cartésienne
SEC pour : système d’équations cartésiennes.
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• Pour une surface S donnée par une RP (u,v) �−→ M(u,v), le plan tangent à

S en un point régulier M(u,v) de S est normal à 
−→
∂M

∂u
(u,v) ∧

−→
∂M

∂v
(u,v)

• Le tableau des quadriques sur leur équation réduite

• Définition des cylindres, cônes, surfaces de révolution, surfaces réglées, sur-
faces développables (PT)

• Forme de l’EC d’un cylindre, d’un cône, d’une surface de révolution (PT)

• Définition des surfaces réglées (PT)

• Caractérisation des surfaces développables parmi les surfaces réglées. (PT)

Obtenir d’abord une EC a(t)x + b(t)y + c(t) = 0 de Dt .

Une RP de l’enveloppe C de (Dt)t∈I est obtenue en résolvant le sys-
tème de deux équations formé par l’EC de Dt et l’équation de la
« droite-dérivée »:{

a(t)x + b(t)y + c(t) = 0 Dt

a′(t)x + b′(t)y + c(t) = 0 D′
t .

➥ Exercices 14.3, 14.10, 14.11.

Pour déterminer 
l’enveloppe C
d’une famille de droites (Dt)t∈I

Utiliser l’une des deux méthodes suivantes :
• C est le lieu du centre de courbure à Γ .

Sur C, donnée par une RP x = x(t), y = y(t), calculer successi-

vement x ′, y′, s ′2, s ′,tanϕ,ϕ′, R,
−→
T ,

−→
N , et enfin le centre de

courbure I en M à Γ , et en déduire une RP de C, qui est le lieu de
I lorsque M décrit Γ .

➥ Exercices 14.12, 14.23. 

• C est l’enveloppe des normales à Γ . Former une EC de la normale
Nt en le point courant M de Γ puis chercher l’enveloppe de la famil-
le de droites (Nt)t .

Pour déterminer 
la développée C
d’une courbe Γ
donnnée par une RP

PT

PT
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Pour montrer
qu’une courbe
donnée par une RP
est plane

• Essayer d’éliminer le paramètre t entre x(t), y(t), z(t) , de façon à
obtenir une EC de plan.

➥ Exercices 14.1, 14.14

• Chercher (A,B,C,D) ∈ R
4, tel que (A,B,C) =/ (0,0,0), et tel que :

∀ t, Ax(t) + By(t) + Cz(t) + D = 0.

En particulier, se rappeler qu’un polynôme P est le polynôme nul si et
seulement si P s’annule en une infinité de points.

➥ Exercice 14.14.

Pour calculer
une abscisse curviligne
sur un arc paramétré

Appliquer la formule du cours, pour la dérivée de l’abscisse curvi-

ligne : s ′(t) =
√(

x ′(t)
)2 + (

y′(t)
)2 + (

z′(t)
)2

, puis, pour la lon-

gueur d’un arc : L = |s(b) − s(a)| =
∣∣∣
∫ b

a
s ′(t) dt

∣∣∣.
➥ Exercice 14.2.

Pour étudier
le plan tangent
ou la normale
en un point régulier M
d’une surface S

• Si la surface S est donnée par une EC F(x,y,z) = 0, où F est de

classe C1 sur un ouvert de R3, la normale à S en un point régulier
M(x,y,z) de S est la droite passant par M et dirigée par
−−→
grad F(x,y,z), et le plan tangent en M à S admet pour EC :

(X − x)F ′
x(x,y,z) + (Y − y)F ′

y(x,y,z) + (Z − z)F ′
z(x,y,z) = 0 .

➥ Exercices 14.4, 14.16

• Si la surface S est donnée par une RP (u,v) �−→ M(u,v), où M est

de classe C1 sur un ouvert de R2, la normale à S en un point régulier

M(u,v) de S est dirigée par 
−→
∂M

∂u
(u,v) ∧

−→
∂M

∂v
(u,v) , et le plan tangent

en M à S est le plan passant par M et dirigé par 
−→
∂M

∂u
(u,v) et

−→
∂M

∂v
(u,v).

➥ Exercice 14.5.

Pour déterminer
les développantes
d’une courbe C

Sur C, donnée par une RP, calculer successivement x ′, y′, s ′2,

s ′, s,
−→
T . Une RP d’une développante Γs0 de C est alors donnée par :

−−→
O M = −→

OC + (s0 − s)
−→
T , où le point C est le point courant de la

courbe C.

➥ Exercice 14.13.

PT

©
 D

un
od

. L
a 

ph
ot

oc
op

ie
 n

on
 a

ut
or

is
ée

 e
st

 u
n 

dé
lit

.



Chapitre 14 • Géométrie

492

Pour étudier
la tangente
en un point régulier M(t)
d’un arc paramétré C

Utiliser le fait que la tangente en M(t) à C est dirigée par 
−→
dM

dt
.

➥ Exercice 14.15.

Pour déterminer
la nature
d’une quadrique S,
donnée par une EC
F(x,y,z) = 0,
et pour nommer S

Il est d’abord nécessaire de retenir le tableau des quadriques, qui est
dans le cours.
Écrire la matrice Q de la forme quadratique canoniquement associée
à S.
• Si Q est inversible, alors S est une quadrique à centre. Le centre

Ω(x,y,z) de S est obtenu en résolvant 
−−→
grad F(x,y,z) = −→

0 . Changer
d’origine, nouvelle origine Ω. Déterminer une base orthonormée (direc-

te) (
−→
I ,

−→
J ,

−→
K ) de réduction de Q. Dans le repère (Ω ;−→

I ,
−→
J ,

−→
K ),

S admet une équation réduite. Reconnaître alors la nature de S et
nommer S.
• Si Q n’est pas inversible, déterminer une base orthonormée (directe)

(
−→
I ,

−→
J ,

−→
K ) de réduction de Q, et écrire l’équation de S dans le

repère (O ;−→
I ,

−→
J ,

−→
K ) . Utiliser des mises sous formes canoniques

de trinômes, pour obtenir une équation réduite de S.

➥ Exercice 14.17.

Pour déterminer
toutes les droites ∆
tracées sur une surface S

Si ∆ n’est pas horizontale, ∆ admet un SEC de la forme :{ x = az + p

y = bz + q
(a,b,p,q) ∈ R

4 .

Reporter dans l’EC de S. L’inclusion de ∆ dans S se traduit par un
système d’équations d’inconnue (a,b,p,q) . Résoudre ce système.

➥ Exercice 14.24 a)

Pour former une EC
d’un cylindre S
dont on donne 
une directrice Γ
et la direction
des génératrices
par un vecteur −→u

Un point M(X,Y,Z) est sur S si et seulement s’il existe un point

m(x,y,z) de Γ tel que 
−→
mM soit colinéaire à −→u , ce qui se traduit par :

∃λ,m,
−→
mM = λ

−→u , et passer aux coordonnées.

➥ Exercice 14.6.

Pour reconnaître
un cylindre S sur une EC

Mettre l’EC de S sous la forme f (P,Q) = 0, où P,Q sont deux (pre-
miers membres d’EC de) plans. Les génératrices de S ont alors pour
direction : P = 0 et Q = 0.

➥ Exercice 14.7.

Pour former
une EC d’un cône S
dont on donne
une directrice Γ
et le sommet Ω

Un point M(X,Y,Z) est sur S si et seulement s’il existe un point

m(x,y,z) de Γ tel que 
−→
ΩM soit colinéaire à 

−→
Ωm ce qui se traduit par :

∃λ,m,
−→
ΩM = λ

−−→
Ω m, et passer aux coordonnées.

➥ Exercice 14.20.

PT

PT

PT
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Pour reconnaître
un cône sur une EC

• Essayer de mettre l’EC de S sous la forme f
( x

z
,

y

z

)
= 0, auquel cas

S est un cône de sommet O.

➥ Exercice 14.8 

• Essayer de mettre l’EC de S sous la forme f
( P

R
,

Q

R

)
= 0, où

P,Q,R sont des (premiers membres d’EC de) plans, auquel cas S
est un cône dont le sommet Ω est défini par : P = 0, Q = 0, R = 0.

Pour trouver Ω on peut chercher un point de S en lequel S n’a pas

de plan tangent, et résoudre 
−−→
grad F(x,y,z) = −→

0 et F(x,y,z) = 0,

où F(x,y,z) = 0 est l’EC de S.

➥ Exercice 14.21.

PT

Pour montrer
qu’une surface S,

donnée par une RP,
est réglée

Mettre la RP de S sous la forme :
−−→
O M(u,v) = m(u) + v

−−→
G(u).

➥ Exercices 14.9, 14.22. 

Pour décider
si une surface réglée S
est développable

Obtenir d’abord une RP de S sous la forme

−−→
O M(u,v) = m(u) + v

−−→
G(u).

La surface S est développable si et seulement si :

∀(u,v), det
(
−→
i ,

−→
j ,

−→
k )

(−−→
m′(u),

−−→
G(u),

−−−→
G ′(u)

) = 0.

Calculer ce déterminant.

➥ Exercices 14.9, 14.22. 

PT

PT

PT

Énoncés des exercices
Courbe plane dans l’espace

Montrer que la courbe C de RP : x = cos

(
t − π

3

)
, y = cos t, z = cos

(
t + π

3

)
, t ∈ R

est plane, déterminer son plan, et reconnaître la nature de C. 

Exemple de calcul d’abscisse curviligne

Calculer l’abscisse curviligne s(t) en tout point M(t) de l’arc paramétré C de RP :

x = et cos t, y = et sin t, z =
√

2 et , t ∈ R

en prenant comme origine des abscisses curvilignes le point de C de paramètre t = 0. 

Exemple de détermination de l’enveloppe d’une famille de droites du plan

Déterminer, par une RP puis par une EC, l’enveloppe C de la famille de droites :

Dt : t3x + 2t y + 2 = 0, t ∈ R
∗.

14.1

14.2

14.3

PT
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Condition sur la normale en un point d’une surface

Existe-t-il un point M de la surface S d’EC x2 + y2 − z2 = 1 en lequel la normale soit dirigée par
−→u (1, 2, 3) ? par −→v (3, 2, 1) ? 

Plan tangent en un point d’une surface donnée par une RP

Soit S la surface de RP : x = eu, y = ev, z = uv, (u,v) ∈ R
2.

Montrer que tout point de S est régulier, et déterminer le plan tangent en tout point M(u,v) de S.

Former une EC d’un cylindre

Former une EC du cylindre S de directrice Γ

{
x4 + y4 = 1

z = 0
et de génératrices dirigées par le vec-

teur −→u (1,3,2).

Reconnaître un cylindre sur son EC

Reconnaître la surface S d’EC : z3 + x2 − 2xy + y2 + 2x − 2y − 1 = 0.

Reconnaître un cône de sommet O sur son EC

Reconnaître la surface S d’EC : x3 + y3 + z3 − 2xyz = 0.

Une surface est-elle réglée, développable ?

Pour chacune des surfaces suivantes, dont on donne une RP de paramètre (u,v) ∈ R
2, est-elle

réglée ? développable ?

a) x = u + v, y = 1 + uv, z = −u3

3
+ u2v

b) x = u + v, y = u2

2
+ uv, z = u3

3
+ u2v

2
.

Exemple de détermination de l’enveloppe d’une famille de droites du plan

Soient p > 0, P la parabole d’EC y2 = 2px . Un point M décrit P sauf O. La normale en M à P
coupe Ox en un point I. On note D la perpendiculaire en I à (I M). Déterminer, par une RP et une
EC, l’enveloppe C de (I M), reconnaître C et tracer C.

Exemple de détermination de l’enveloppe d’une famille de droites du plan

On considère, pour λ ∈ R
∗, la courbe Γλ de RP :

x = λ

t
+ 1

t + 1
, y = 1

t
+ λ

t − 1
, t ∈ R − {−1,0,1}.

a) Montrer que, pour tout λ ∈ R
∗, Γλ admet une droite asymptote Dλ lorsque t tend vers 0, et

former une EC de Dλ.

b) Déterminer, par une RP puis par une EC, l’enveloppe C de (Dλ)λ∈R∗ , et reconnaître C.

Exemple de développée

Déterminer la développée C de la courbe Γ de RP : x = 3t − t3, y = 3t2, t ∈ R.

Exemple de détermination des développantes d’une courbe

Déterminer, par des RP, les développantes de la courbe C de RP :

x = 3 tan2t, y = 2 tan3t, t ∈ [0 π/2[.

14.4

14.5

14.6

14.7

14.8

14.9

14.10

14.11

14.12

14.13

PT

PT

PT

PT

PT

PT

PT

PT
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Courbe plane dans l’espace

Montrer que la courbe Γ de RP : x = t − 1

t
, y = t + 1

t − 1
, z = 1

t2 − t
, t ∈ R − {0,1}

est plane et déterminer son plan. 

Condition sur la tangente en un point d’une courbe

Soit Γ la courbe de RP : x = et cos t, y = et sin t, z = 2 et + 1, t ∈ R.

Montrer que la tangente en tout point M de Γ fait un angle constant avec le plan x Oy . 

Plan tangent contenant une droite donnée

Déterminer le (ou les) plan(s) tangent(s) à la surface S d’EC x2 + y2 − z2 = 1 et contenant la

droite D de SEC 

{
x = 1

y = z + 2.

Réduction des quadriques

Pour chaque quadrique S d’équation donnée, préciser :

• un repère orthonormé (direct) dans lequel S admet une équation réduite

• une équation réduite de S

• la nature de S.

a) 7x2 + 4xy − 4xz + 4y2 − 2yz + 4z2 − 2x + 8y − 14z + 16 = 0

b) 11x2 − 16xy − 4xz + 5y2 − 20yz + 2z2 + 30x − 66y + 24z + 45 = 0

c) x2 − 2xy + y2 + 2z2 + 2x − 5 = 0

d) 2(x + y)(y − z) − 3x = 0

e) 2x2 + 3y2 + z2 + 2
√

6 xy + 2
√

2 xz + 2
√

3 yz + √
2 x + 2

√
3 y + 4z + 1 = 0 . 

Exemple de nature d’une quadrique

Quelle est la nature de la quadrique S d’EC : (2x + 3y)2 + (y + 2z)2 + (3z − x)2 = 1 ?

Lieu des points équidistants de deux droites données

Soit (θ,h) ∈ ]0 ;π/2[×]0 ;+∞[ . Former une EC de la surface S lieu des ponts M de E3 équi-

distants des deux droites D

{
x cos θ = y sin θ

z = h
D′

{
x cos θ = −y sin θ

z = −h.

Quelle est la nature de S ? 

Former une EC d’un cône

Former une EC du cône S de sommet Ω(1,1,1) et de directrice

Γ

{
x3 + y3 − 3xy − 1 = 0

z = 0.

Reconnaître un cône sur une EC

Reconnaître la surface S d’EC : xz2 + y3 + 3y2 − z2 + 3y + 1 = 0.
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Exemple de surface réglée, condition de développabilité

Soit f : R −→ R une application de classe C1 telle que f (0) = 1. On note S la surface de RP :

x = sin u + v cos u, y = cos u − v sin u, z = f (u) + v eu, (u,v) ∈ R
2.

a) Montrer que S est réglée.

b) Montrer qu’il existe une application f et une seule telle que S soit développable, et déterminer f. 

Exemple de développées successives

On considère la courbe Γ d’EC : y = −ln cos x, x ∈ [0 ;π/2[.

a) Déterminer une RP de la développée C1 de C.

b) Déterminer une RP de la développée C2 de C1.

c) Tracer C, C1, C2 sur un même schéma.

Droites tracées sur une surface, plan tangent

On note S la surface d’EC x3 + y3 + z3 = 1.

a) Déterminer les droites tracées sur S.

b) Montrer que ces droites sont situées dans un même plan P, que l’on déterminera.

c) Quel est le plan tangent à S en chacun des points d’intersection de ces droites deux à deux ? 

Ensemble des points équidistants de deux droites données

Former une EC de la surface S, réunion des droites ∆ de E3 rencontrant les trois droites :

D1

{ x = 0

z = 1
D2

{
y = 0

z = −1
D3

{ x = y

z = 0.

14.22

14.23

14.24

14.25
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Du mal à démarrer ?

Développer cos
(

t − π

3

)
et cos

(
t + π

3

)
, puis combiner

x,y,z pour faire apparaître une EC de plan.

Calculer x ′(t), y′(t), z′(t) ,

puis   s ′(t) =
√(

x ′(t)
)2 + (

y′(t)
)2 + (

z′(t)
)2

,

et enfin  s(t) =
∫ t

0
s′(u) du.

Résoudre le système formé par l’EC de Dt et l’équation

dérivée.

La normale N en tout point M(x,y,z) de S est dirigée par  
−−→
grad F(x,y,z) , où F(x,y,z) est le premier membre d’une EC 

de S , de la forme F(x,y,z) = 0. Traduire que −→u (resp. −→v ) diri-

ge N par la colinéarité de 
−−→
grad F(x,y,z) à −→u (resp. −→v ).

Calculer 
−→
∂M

∂u
∧

−→
∂M

∂v
en tout point M(u,v) de S , montrer

que ce vecteur n’est pas nul, puis écrire une EC du plan passant

par M(u,v) et dirigé par 
−→
∂M

∂u
et 

−→
∂M

∂v
.

Un point M(X,Y,Z) est sur S si et seulement s’il existe un

point m(x,y,z) de Γ tel que 
−−→
mM soit colinéaire à −→u .

Grouper les termes pour faire apparaître x − y.
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Du mal à démarrer ?

Montrer que S admet une EC de la forme f

(
x

z
,

y

z

)
= 0,

donc S est un cône de sommet O.

a) et b) : 1) Mettre la RP de S sous la forme :

−−→
O M = −−→

m(u) + v
−−→
G(u).

2) Calculer det
(
−→
i ,

−→
j ,

−→
k )

(−−→
m′(u),

−−→
G(u),

−−−→
G ′(u)

)
.

Former une EC de la normale N en M à P, calculer les

coordonnées de I, puis former une EC de la droite Dt perpen-

diculaire en I à (I M). Enfin, résoudre le système formé par l’EC

de Dt et l’équation dérivée.

a) On obtient : Dλ : λy − x + λ2 + 1 = 0.

b) Résoudre le système formé par l’EC de Dλ et l’équation déri-

vée.

Calculer successivement :

x ′, y′, s′ par s′ 2 = x ′ 2 + y′ 2 et s′ � 0, tan ϕ par tan ϕ = y

x
, ϕ′

par dérivation, R par R = s′

ϕ′ ,
−→
T par 

−→
T =

−→
dM

ds
,

−→
N par

−→
N = Rotπ/2(

−→
T ), et enfin le centre de courbure C en M par

−−→
MC = R

−→
N .

Calculer successivement :

x ′, y′, s′ par s′ 2 = x ′ 2 + y′ 2 et s′ � 0, s en intégrant, et enfin

le point courant M d’une développante Γs0 par :

−−→
O M = −−→

OC + (s0 − s)
−→
T .

1) 1re méthode : Combinaison judicieuse de x,y,z :

Exprimer x,y,z en fonction de 
1

t
et de 

1

t − 1
, puis combiner

x,y,z pour éliminer 
1

t
et 

1

t − 1
.

2) 2e méthode : Recherche de tout plan pouvant convenir :

Écrire l’EC générale d’un plan P :

Ax + By + Cz + D = 0 ,

puis traduire Γ ⊂ P.

Déterminer un vecteur directeur 
−−→
V1(t) de la tangente à Γ

en M(t), puis calculer l’angle θ entre cette tangente et le plan

x Oy , à l’aide du produit scalaire de 
−−→
V1(t) et 

−→
k .

Former une EC du plan tangent Π0 en un point quel-

conque M0(x0,y0,z0) de S , puis traduire que ce plan contient la

droite D . Ne pas oublier la condition M0 ∈ S .

Pour une quadrique S d’EC, dans un repère orthonormé

(direct) R = (O ;−→
i ,

−→
j ,

−→
k ) :

Ax2 + 2Bxy + 2Cxz + Dy2 + 2Eyz + Fz2

+ 2Gx + 2H y + 2I z + J = 0,

notons Q =



A B C

B D E

C E F


 ∈ S3(R).

• Si Q est inversible, alors S est une quadrique à centre, et le
centre Ω(x,y,z) de S est obtenu en résolvant l’équation
−−→
grad F(x,y,z) = −→

0 , où F : (x,y,z) �−→ Ax2 + · · · + J .

Ayant calculé Ω , on se place dans le repère orthonormé (direct)

R′ = (Ω ;−→
i ,

−→
j ,

−→
k ) , et S admet pour EC dans R′ :

AX2 + 2B XY + 2C X Z + DY 2 + 2EY Z + F Z2 + J1 = 0 ,

où J1 est à calculer.

On détermine ensuite une base orthonormée (directe)

(
−→
I ,

−→
J ,

−→
K ) de réduction de la matrice symétrique réelle Q .

Dans R′′ = (Ω ;−→
I ,

−→
J ,

−→
K ) , S admet une EC de la forme :

λu2 + µv2 + νw2 + J1 = 0.

• Si Q n’est pas inversible,on calcule une base orthonormée (direc-

te) (
−→
I ,

−→
J ,

−→
K ) de réduction de Q . Dans R′ =(O ;−→

I ,
−→
J ,

−→
K ),

S admet une EC de la forme :

λX2 + µY 2 + νZ2 + 2G1 X + 2H1Y + 2I1 Z + J = 0 .

Des mises sous formes canoniques de trinômes permettront

ensuite d’aboutir à une équation réduite.

Remarquer que les expressions 2x + 3y, y + 2z, 3z − x

sont liées.

Déterminer un point de D et un vecteur directeur de D . En

déduire, pour tout M(x,y,z) ∈ E3 , l’expression de 
(
d(M,D)

)2
.

Faire de même pour 
(
d(M,D′)

)2
.Traduire ensuite M(x,y,z) ∈ S

par :
(
d(M,D)

)2 = (
d(M,D′)

)2
.

Un point M(X,Y,Z) est sur S si et seulement s’il existe un

point m(x,y,z) de Γ tel que 
−−→
ΩM soit colinéaire à 

−→
Ωm .

Remarquer le groupement de termes :

y3 + 3y2 + 3y + 1 = (y + 1)3.

a) Mettre la RP de S sous la forme :

−−→
O M = −−→

m(u) + v
−−→
G(u).

b) Calculer det
(
−→
i ,

−→
j ,

−→
k )

(−−→
m′(u),

−−→
G(u),

−−−→
G ′(u)

)
.

a) Calculer successivement :

x ′, y′, s′ par s′ 2 = x ′ 2 + y′ 2 et s′ � 0, tan ϕ par tan ϕ = y′

x ′ , ϕ′

en remarquant ϕ ≡ x [π], R par R = s′

ϕ′ ,
−→
T par 
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−→
T =

−→
dM

ds
,

−→
N par 

−→
N = Rotπ/2(

−→
T ), et enfin le centre de

courbure I en M par 
−→
M I = R

−→
N .

b) Même méthode qu’en a), en remplaçant C1 par C .

a) Soit ∆ une droite de E3 .

1) Si ∆ n’est pas horizontale,∆ admet un SEC de la forme :{ x = az + p

y = bz + q
(a,b,p,q) ∈ R

4.

Traduire ∆ ⊂ S par un ensemble de conditions sur a,b,p,q ,

puis résoudre ces conditions.

2) Si ∆ est horizontale, par une permutation de lettres, se rame-

ner au cas précédent.

b) Un plan très simple contient les trois droites obtenues en a).

c) 1) 1re méthode : Détermination des plans tangents :

Déterminer, en un point d’intersection des droites précédentes,

le plan tangent, et constater que ce plan est le plan P obtenu

en b).

2) 2e méthode : Utilisation de tangentes à des courbes tracées sur

une surface :

Remarquer que, par exemple, le plan tangent en le point de

D1 ∩ D2 contient D1 et D2 .

Remarquer que ∆ ne peut pas être horizontale, donc ∆

admet un SEC de la forme :{ x = az + p

y = bz + q
(a,b,p,q) ∈ R

4 .

Traduire que ∆ rencontre D1, D2, D3 , et exprimer, par exemple,

b,p,q en fonction de a. On obtient ainsi une droite ∆a, a ∈ R .

Enfin, éliminer a entre les deux équations de ∆a pour obtenir

une EC de la surface S .

14.24

14.25
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Corrigés des exercices

• En développant les formules données dans l’énoncé,
la courbe C admet la RP :




x(t) = 1

2
cos t +

√
3

2
sin t

y(t) = cos t

z(t) = 1

2
cos t −

√
3

2
sin t,

d’où, en combinant : ∀ t ∈ R, x(t) − 2y(t) + z(t) = 0,

ce qui montre que C est plane, contenue dans le plan P d’EC :

x − 2y + z = 0.

• On a, pour tout M(x,y,z) ∈ E3 :

M ∈ C ⇐⇒ ∃ t ∈ R,




x = x(t)

y = y(t)

z = z(t)

⇐⇒ ∃ t ∈ R,




x + z = cos t

y = cos t

x − z = √
3 sin t

⇐⇒




x + z = y

y2 +
(

x − z√
3

)2

= 1.

Ainsi, C = P ∩ S, où P est un plan et S un cylindre elliptique.

On conclut que C est une ellipse.

Les applications x,y,z sont de classe C1 sur R et, pour

tout t ∈ R :




x ′(t) = et ( cos t − sin t)

y′(t) = et ( sin t + cos t)

z(t) = √
2 et .

D’où, pour tout t ∈ R :

(
s ′(t)

)2 = (
x ′(t)

)2 + (
y′(t)

)2 + (
z′(t)

)2

= e2t
(
( cos t − sin t)2 + ( sin t + cos t)2 + 2

) = 4 e2t .

Comme s ′ � 0 (par définition), on déduit :

∀ t ∈ R, s ′(t) = 2 et .

Enfin :

∀ t ∈ R, s(t) =
∫ t

0
2 eu du = [2 eu]t

0 = 2(et − 1) .

• Une RP de l’enveloppe C de la famille de droites
(Dt )t∈R∗ est obtenue en résolvant le système de deux équations
formé par l’EC de Dt et l’équation dérivée (par rapport à t) :
{

t3x + 2t y + 2 = 0

3t2x + 2y = 0

⇐⇒



−2t3x + 2 = 0

y = −3t2x

2

⇐⇒




x = 1

t3

y = − 3

2t
.

• Une EC de C est obtenue à partir de la RP précédente en éli-
minant t :

∃ t ∈ R
∗,




x = 1

t3

y = − 3

2t
.

⇐⇒ x =/ 0 et x =
(

− 3

2y

)−3

= −
(

2

3

)3

y3.

Une EC de C est donc : 27x + 8y3 = 0 et x =/ 0.

L’application 

F : R
3 −→ R, (x,y,z) �−→ x2 + y2 − z2 − 1

est de classe C1 sur R3 et, pour tout (x,y,z) ∈ R
3 :

−−→
grad F(x,y,z) = (2x, 2y,−2z) .

D’où :
−−→
grad F(x,y,z) = −→

0 ⇐⇒ (x,y,z) = (0,0,0),

mais (0,0,0) /∈ S. Ainsi, tout point de S est régulier.

La normale N en un point M(x,y,z) de S est dirigée par
−−→
grad F(x,y,z) , ou encore par (x, y,−z).

1)

−→u dirige N ⇐⇒ (x,y,−z) colinéaire à (1,2,3)

⇐⇒ ∃λ ∈ R,
(
x = λ, y = 2λ, z = −3λ

)
.

On a alors :

x2 + y2 − z2 =1 ⇐⇒ (12 + 22 − 32)λ2 =1 ⇐⇒ −4λ2 =1 ,

impossible.

On conclut qu’il n’existe aucun point de S en lequel la normale

à S soit dirigée par −→u .
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2)

−→v dirige N ⇐⇒ (x,y,−z) colinéaire à (3,2,1)

⇐⇒ ∃µ ∈ R,
(
x = 3µ, y = 2µ, z = −µ)

.

On a alors :

x2 + y2 − z2 = 1 ⇐⇒ (32 + 22 − 12)µ2 = 1

⇐⇒ 12µ2 = 1 ⇐⇒ µ = ±
√

3

6
.

On conclut qu’il existe exactement deux points de S en lesquels

la normale à S est dirigée par −→v .

• L’application 

M : (u,v) �−→ M(u,v) = O + eu −→
i + ev −→

j + uv
−→
k

est de classe C1 sur l’ouvert R2, et, pour tout (u,v) ∈ R
2 :

−→
∂M

∂u
(u,v) =


 eu

0
v


 ,

−→
∂M

∂v
(u,v) =


 0

ev

u


 ,

d’où :
−→
∂M

∂u
(u,v) ∧

−→
∂M

∂v
(u,v) =


 −v ev

−u eu

eu+v


 .

Comme eu+v =/ 0, on a :
−→
∂M

∂u
(u,v) ∧

−→
∂M

∂v
(u,v) =/ −→

0 ,

donc tout point M(u,v) de S est régulier.

• On a, pour tout point P(X,Y,Z) de E3, en notant Π le plan
tangent en M(u,v) à S :

P ∈ Π ⇐⇒
∣∣∣∣∣∣

X − eu eu 0
Y − ev 0 ev

Z − uv v u

∣∣∣∣∣∣ = 0

⇐⇒ −v ev(X − eu) − u eu(Y − ev) + eu+v(Z − uv) = 0.

On conclut que le plan tangent en M(u,v à S admet pour EC,

après simplification par −e−(u+v) :

v e−u X + u e−vY − Z + (u + v − uv) = 0 .

Un point M(X,Y,Z) est sur S si et seulement s’il existe

un point m(x,y,z) de Γ tel que 
−→
mM soit colinéaire à −→u :

M ∈ S

⇐⇒ ∃ (λ,x,y,z) ∈ R
4,

X − x = λ, Y − y = 3λ, Z − z = 2λ, x4 + y4 = 1, z = 0

⇐⇒ ∃λ ∈ R, λ = Z

2
, (X − λ)4 + (Y − 3λ)4 = 1

⇐⇒
(

X − Z

2

)4

+
(

Y − 3Z

2

)4

= 1

⇐⇒ (2X − Z)4 + (2Y − 3Z)4 − 16 = 0,

ce qui donne une EC de S.

Par groupement de termes, S admet l’EC :

z3 + (x − y)2 + 2(x − y) − 1 = 0,

qui est de la forme f (P,Q) = 0 où P = z et Q = x − y sont
des (premiers membres d’EC de) plans. D’après le cours, S est
un cylindre. Les génératrices de S sont dans la direction d’EC
P = 0 et Q = 0, donc les génératrices de S sont dirigées par
le vecteur (1,1,0).

On a, pour z =/ 0, en divisant par z3 :

x3 + y3 + z3 − 2xyz = 0

⇐⇒
(

x

z

)3

+
(

y

z

)3

+ 1 − 2
x

z

y

z
= 0,

qui est une EC de la forme f

(
P

R
,

Q

R

)
= 0, où P = x, Q = y,

R = z sont des (premiers membres d’EC de) plans. D’après le
cours, S est un cône. Le sommet Ω de S est défini par P = 0,
Q = 0, R = 0, donc � = O.

a) 1) En notant m(u) le point de coordonnées(
u, 1,−u3

3

)
et 

−−→
G(u) le vecteur de composantes (1, u, u2),

on voit que S admet la RP :(u,v) �−→ m(u) + v
−−→
G(u),

donc S est réglée.

2) Les applications m et 
−→
G sont de classe C1 sur R et, pour

tout u ∈ R :

det
(
−→
i ,

−→
j ,

−→
k )

(−−→
m′(u),

−−→
G(u),

−−−→
G ′(u)

) =
∣∣∣∣∣

1 1 0
0 u 1

−u2 u2 2u

∣∣∣∣∣
= 0,

donc, d’après le cours, S est développable.

b) 1) En notant m(u) le point de coordonnées 

(
u,

u2

2
,

u3

3

)
et

−−→
G(u) le vecteur de coordonnées 

(
1, u,

u2

2

)
, on voit que S

admet la RP : (u,v) �−→ m(u) + v
−−→
G(u),

donc S est réglée.

2) Les applications m et 
−→
G sont de classe C1 sur R et, pour

tout u ∈ R :
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det
(
−→
i ,

−→
j ,

−→
k )

(−−→
m(u),

−−→
G(u),

−−−→
G ′(u)

)

=

∣∣∣∣∣∣∣
1 1 0
u u 1

u2 u2

2
u

∣∣∣∣∣∣∣
= u2

2
=/ 0 (pour u =/ 0),

donc S n’est pas développable.

On obtient une EC de C en éliminant t dans la RP précédente
de C :

∃ t ∈ R
∗,




px = p2 − t2

2
y = −t

⇐⇒ px = p2 − y2

2
et y =/ 0

⇐⇒ y2 = −2p(x − p) et y =/ 0.

Sur cette EC, on reconnaît que C est une parabole (privée d’un
point), la parabole symétrique de P par rapport à la droite d’EC

x = p

2
.

y

P

xO

M

Dt

I

y

P

xO

M
C

Dt

I

Notons M

(
t2

2p
,t

)
le point courant de P − {O} , t ∈ R

∗.

Un vecteur tangent en M à P est 

(
t

p
,1

)
, ou encore (t, p),

donc la normale N en M à P admet pour EC :

t

(
x − t2

2p

)
+ p(y − t) = 0.

Cette normale coupe Ox en un point I dont les coordonnées
(x,y) sont la solution du système :


t

(
x − t2

2p

)
+ p(y − t) = 0

y = 0

⇐⇒




x = p + t2

2p

y = 0.

Le vecteur 
−→
I M a pour composantes : (p,−t) . 

Une EC de la droite Dt, perpendiculaire en I à (I M) , est :

p

(
x −

(
p + t2

2p

))
− t (y − 0) = 0

⇐⇒ px − t y −
(

p2 + t2

2

)
= 0.

Une RP de l’enveloppe C de (Dt )t∈R∗ est donnée par la réso-
lution du système de deux équations formé par l’équation de
Dt et l’équation dérivée :

 px − t y −
(

p2 + t2

2

)
= 0

−y − t = 0
⇐⇒




px = p2 − t2

2
y = −t

.

14.10

a) Soit λ ∈ R
∗ fixé. On a :

x(t) = λ

t
+ 1

t + 1
−→
t−→0

±∞

y(t) = 1

t
+ λ

t − 1
−→
t−→0

±∞,

donc Γλ admet une branche infinie lorsque t −→ 0.

On a : x(t) ∼
t−→0

λ

t
et y(t) ∼

t−→0

1

t
,

donc :
y(t)

x(t)
−→
t−→0

1

λ
,

puis :

y(t) − 1

λ
x(t) =

(
1

t
+ λ

t − 1

)
− 1

λ

(
λ

t
+ 1

t + 1

)

= λ

t − 1
− 1

λ(t + 1)
−→
t−→0

−λ− 1

λ
.

On conclut que  Γλ admet, lorsque t −→ 0, l’asymptote Dλ ,

d’EC : y − 1

λ
x = −λ− 1

λ
, ou encore :

λy − x + λ
2 + 1 = 0.

14.11
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b) Une RP de l’enveloppe C de (Dλ)λ∈R∗ est obtenue en ré-
solvant le système de deux équations formé par l’équation de
Dλ et l’équation dérivée :

{
λy − x + λ

2 + 1 = 0

y + 2λ = 0
⇐⇒

{
x = −λ2 + 1

y = −2λ.

On obtient une EC de C en éliminant λ entre les deux équa-
tions précédentes :

∃λ ∈ R
∗,

{
x = −λ2 + 1

y = −2λ
⇐⇒ y =/ 0 et x = − y2

4
+ 1.

Ainsi, C admet l’EC y2 = −4(x − 1) et y =/ 0,

donc C est une parabole, privée de son sommet.

On calcule successivement, les dérivations se faisant
par rapport à t :

• x ′ = 3 − 3t2, y′ = 6t,

• s ′ 2 = x ′ 2 + y 2 = (3 − 3t2)2 + (6t)2 = 9(1 + t4 + 2t2)

= 9(1 + t2)2, 0 � s ′ = 3(1 + t2),

• tanϕ = y′

x ′ = 6t

3 − 3t2
= 2t

1 − t2
,

(1 + tan2
ϕ)ϕ′ = 2(1 − t2) − 2t (−2t)

(1 − t2)2
= 2 + 2t2

(1 − t2)2
,

et

1 + tan2
ϕ = 1 +

(
2t

1 − t2

)2

= (1 − t2)2 + (2t)2

(1 − t2)2
= (1 + t2)2

(1 − t2)2
,

donc : ϕ
′ = 2

1 + t2
,

• R = s ′

ϕ′ = 3

2
(1 + t2)2,

• 
−→
T =

−→
dM

ds
= dt

ds

−→
dM

dt
= 1

3(1 + t2)

(
3(1 − t2)

−→
i + 6t

−→
j

)

= 1

1 + t2

(
(1 − t2)

−→
i + 2t

−→
j

)
−→
N = Rotπ/2(

−→
T ) = 1

1 + t2

( − 2t
−→
i + (1 − t2)

−→
j

)

• 
−→
MC = R

−→
N , d’où les coordonnées (X,Y ) du centre de cour-

bure C en M :

X = x + R
−2t

1 + t2
= 3t − t3 + 3

2
(1 + t2)2 −2t

1 + t2

= 3t − t3 − 3t (1 + t2) = −4t3,

Y = y + R
1 − t2

1 + t2
= 3t2 + 3

2
(1 + t2)2 1 − t2

1 + t2

= 3t2 + 3

2
(1 − t4) = 3

2
(1 + 2t2 − t4).

On conclut : la développée C de Γ admet la RP :

x = −4t3, y = 3

2
(1 + 2t2 − t4), t ∈ R.

14.12

y

xO

Γ

2 4

9

3/2

C

On a successivement, avec les notations usuelles, les
dérivations se faisant par rapport à t :

• x ′ = 6 tan t (1 + tan2t) = 6
sin t

cos3t
,

y′ = 6 tan2t (1 + tan2t) = 6
sin2t

cos4t

• s ′ 2 = x ′ 2 + y 2 =
(

6 sin t

cos4t

)2

, 0 � s ′ = 6
sin t

cos4t
,

d’où, en primitivant, à une constante près :

s =
∫

6
sin t

cos4t
dt = 2

cos3t

•
−→
T =

−→
dM

ds
= dt

ds

−→
dM

dt

= cos4t

6 sin t

6 sin t

cos4t
( cos t

−→
i + sin t

−→
j ) = cos t

−→
i + sin t

−→
j .

Avec les notations classiques 
−−→
O M = −→

OC + (s0 − s)
−→
T , pour

chaque s0 ∈ R, une RP de la développante Γs0 est :

X = x + (s0 − s) cos t = 3 tan2t +
(

s0 − 2

cos3t

)
cos t

Y = y + (s0 − s) sin t = 2 tan3t +
(

s0 − 2

cos3t

)
sin t.

1re méthode : Combinaison judicieuse de x,y,z :

Faisons apparaître 
1

t
et 

1

t − 1
.

On a, pour tout t ∈ R − {0,1} :



x = t − 1

t
= 1 − 1

t

y = t + 1

t − 1
= 1 + 2

t − 1

z = 1

t2 − t
= 1

(t − 1)t
= 1

t − 1
− 1

t
.

14.13

14.14
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Combinons pour éliminer 
1

t
et 

1

t − 1
. Par exemple :

z = 1

t − 1
− 1

t
= y − 1

2
+ x − 1 .

Ainsi, tout point M(x,y,z) de Γ vérifie :

2x + y − 2z − 3 = 0 .

On conclut que Γ est plane, incluse dans le plan P d’EC :

2x + y − 2z − 3 = 0.

2e méthode : Recherche de tout plan pouvant convenir :

Soient (A,B,C,D) ∈ R
4 tel que (A,B,C) =/ (0,0,0), et P le

plan d’EC Ax + By + Cz + D = 0. On a :

Γ ⊂ P

⇐⇒ ∀ t ∈ R − {0,1},

A
t − 1

t
+ B

t + 1

t − 1
+ C

1

t2 − t
+ D = 0

⇐⇒ ∀ t ∈ R − {0,1},
A(t − 1)2 + Bt (t + 1) + C + D(t2 − t) = 0

⇐⇒ ∀ t ∈ R − {0,1},
(A + B + D)t2 + (−2A + B − D)t + (A + C) = 0

⇐⇒




A + B + D = 0

−2A + B − D = 0

A + C = 0

⇐⇒




A = 2B

C = −2B

D = −3B.

Ainsi, A,B,C,D sont déterminés à un coefficient multiplica-
tif non nul près.

On conclut que Γ est plane, incluse dans le plan P d’EC :

2x + y − 2z − 3 = 0.

• Les applications x,y,z sont de classe C1 sur R, et,

pour tout t ∈ R :




x ′(t) = et ( cos t − sin t)

y′(t) = et ( sin t + cos t)

z(t) = 2 et .

En particulier, comme z′(t) = 2 et =/ 0 , tout point de Γ est ré-
gulier.

• La tangente en M(t) à Γ est dirigée par :

−−→
V1(t)=

−→
dM

dt
=et ( cos t − sin t)

−→
i +et ( sin t + cos t)

−→
j +2 et −→k .

En notant θ l’angle de la tangente en M à Γ avec x Oy , on a
θ ∈ [0 ;π/2] et :

sin θ =
−−→
V1(t) · −→k

||−−→
V1(t)|| ||−→k ||

= 2 et

(
e2t ( cos t − sin t)2 + e2t ( sin t + cos t)2 + 4 e2t

)1/2

= 2 et

(6 e2t )1/2
= 2√

6
=

√
6

3
.

On conclut que la tangente en tout point de Γ fait un angle

constant, égal à Arcsin

√
6

3
, avec le plan x Oy .

Une EC du plan tangent Π0 en un point quelconque
M0(x0,y0,z0) de S est :

(x − x0)2x0 + (y − y0)2y0 + (z − z0)(−2z0) = 0 ,

ou encore : x0x + y0 y − z0z = 1.

On a :

D ⊂ Π0 ⇐⇒ ∀ z ∈ R, x0 + y0(z + 2) − z0z = 1

⇐⇒ ∀ z ∈ R, (y0 − z0)z + (x0 + 2y0 − 1) = 0

⇐⇒
{

y0 − z0 = 0

x0 + 2y0 − 1 = 0
⇐⇒

{ z0 = y0

x0 = −2y0 + 1.

Alors :

M0 ∈ S ⇐⇒ x2
0 + y2

0 − z2
0 = 1

⇐⇒ (−2y0 + 1)2 + y2
0 − y2

0 = 1

⇐⇒ (2y0 − 1)2 = 1 ⇐⇒ (
y0 = 0 ou y0 = 1

)
.

On a alors :

x0 = −2y0 + 1 = 1, y0 = 0, z0 = y0 = 0

ou x0 = −2y0 + 1 = −1, y0 = 1, z0 = y0 = 1.

Il y a donc exactement deux plans convenant, les plans d’EC :
x − y + z + 1 = 0, x = 1.

a) La matrice Q =

 7 2 −2

2 4 −1
−2 −1 4


 est inversible,

donc S est une quadrique à centre.

Le centre Ω(x,y,z) est obtenu en résolvant le système d'équa-

tions 




14x + 4y − 4z − 2 = 0
4x + 8y − 2z + 8 = 0

−4x − 2y + 8z − 14 = 0
.

On obtient Ω(1,−1,2) .

Considérons le r.o.n.d. R′ = (Ω; −→
i ,

−→
j ,

−→
k ). Les formules

de changement de repère, pour un point M de coordonnées
(x,y,z) dans R et (X,Y,Z) dans R′, sont:

x = X + 1, y = Y − 1, z = Z + 2.

14.15

14.16

14.17
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On obtient donc une équation cartésienne de S dans R′ :

7X2 + 4XY − 4X Z + 4Y 2 − 2Y Z + 4Z 2 − 3 = 0.

On calcule les valeurs propres de Q ; on trouve : 3 (double)
et 9 (simple).

Une base de SEP (Q, 9) est (
−→
K ), où 

−→
K a pour coordonnées

1√
6


 2

1
−1


 dans (

−→
i ,

−→
j ,

−→
k ) .

Un vecteur normé de SEP (Q, 3) est, par exemple,
−→
I de co-

ordonnées 
1√
5


−1

2
0


 dans (

−→
i ,

−→
j ,

−→
k ) .

En notant 
−→
J = −→

K ∧ −→
I , de coordonnées 

1√
30


 2

1
5


 dans

(
−→
i ,

−→
j ,

−→
k ) , (

−→
I ,

−→
J ,

−→
K ) est une b.o.n.d. de réduction

de Q .

Une équation cartésienne de S dans R′′ = (Ω ; −→
I ,

−→
J ,

−→
K )

est alors :

3ξ2 + 3ζ2 + 9η2 − 3 = 0,

ou encore : ξ2 + ζ
2 + η2

(
1√
3

)2 = 1.

On conclut : S est un ellipsoïde, de révolution.

b) La matrice Q =

 11 −8 −2

−8 5 −10
−2 −10 2


 est inversible, donc

S est une quadrique à centre.

Le centre Ω(x,y,z) est obtenu en résolvant le système d'équa-

tions 




22x − 16y − 4z + 30 = 0
−16x + 10y − 20z − 66 = 0
−4x − 20y + 4z + 24 = 0

. 

On obtient Ω(−1, 1, −2) .

Considérons le r.o.n.d. R′ = (Ω ; −→
i ,

−→
j ,

−→
k ) . Les formules

de changement de repère sont :

x = X − 1, y = Y + 1, z = Z − 2.

On obtient donc une équation cartésienne de S dans R′ :

11X2 − 16XY − 4X Z + 5Y 2 − 20Y Z + 2Z 2 − 27 = 0.

Une b.o.n.d. de vecteurs propres associés respectivement aux

valeurs propres 9, 18, −9 de Q est (
−→
I ,

−→
J ,

−→
K ) , où

−→
I ,

−→
J ,

−→
K ont respectivement pour coordonnées dans

(
−→
i ,

−→
j ,

−→
k ) :

1

3


 2

1
−2


 ,

1

3


−2

2
−1


 ,

1

3


 1

2
2


 .

Une équation cartésienne de S dans R′′ = (Ω; −→
I ,

−→
J ,

−→
K )

est alors:

9ξ2 + 18ζ2 − 9η2 − 27 = 0,

ou encore :

ξ
2

3
+ ζ

2

3

2

− η2

3
= 1. 

On conclut : S est un hyperboloïde à une nappe.

c) La matrice Q =

 1 −1 0

−1 1 0
0 0 2


 n'est pas inversible, donc

S n'est pas une quadrique à centre.

On calcule les valeurs propres de Q : 2 (double), 0 (simple),

et une b.o.n.d. (
−→
I ,

−→
J ,

−→
K ) de vecteurs propres associés, par

exemple ceux de coordonnées, dans (
−→
i ,

−→
j ,

−→
k ) :

1√
2


−1

1
0


,


 0

0
1


,

1√
2


 1

1
0


.

Considérons le r.o.n.d. R′ = (O ; −→
I ,

−→
J ,

−→
K ) . Les formules

de changement de repère sont données par :


 x

y
z


 =




− 1√
2

0
1√
2

1√
2

0
1√
2

0 1 0





 X

Y
Z


 ,

c'est-à-dire : x = −X + Z√
2

, y = X + Z√
2

, z = Y.

Une équation cartésienne de S dans R′ est donc :

2X2 + 2Y 2 +
√

2(−X + Z) − 5 = 0 (1).

Puis :

(1) ⇐⇒ X2 + Y 2 − 1√
2

X + 1√
2

Z − 5

2
= 0

⇐⇒
(

X − 1

2
√

2

)2

+ Y 2 + 1√
2

Z − 21

8
= 0

⇐⇒
(

X − 1

2
√

2

)2

+ Y 2 = −2
1

2
√

2

(
Z − 21

√
2

8

)
.

Notons A le point de coordonnées 

(
1

2
√

2
, 0,

21
√

2

8

)
dans

R′, et R′′ le r.o.n.d. R′′ = (A ; −→
I ,

−→
J ,

−→
K ) . 
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Une équation de S dans R′′ est :

ξ
2 + ζ

2 = −2
1

2
√

2
η.

On conclut : S est un paraboloïde elliptique, de révolution.

d) La matrice Q =

 0 1 −1

1 2 −1
−1 −1 0


 n'est pas inver-

sible, donc S n'est pas une quadrique à centre. 

On calcule les valeurs propres de Q : 3, −1, 0 simples. 

On calcule une b.o.n.d. de vecteurs propres associés, par

exemple (
−→
I ,

−→
J ,

−→
K ) , où 

−→
I ,

−→
J ,

−→
K ont pour coordonnées

dans (
−→
i ,

−→
j ,

−→
k ) :

1√
6


 1

2
−1


 ,

1√
2


 1

0
1


 ,

1√
3


 1

−1
−1


 .

Considérons le r.o.n.d. R′ = (O; −→
I ,

−→
J ,

−→
K ) . Les formules

de changement de repère sont données par :


 x

y
z


 =




1√
6

1√
2

1√
3

2√
6

0 − 1√
3

− 1√
6

1√
2

− 1√
3





 X

Y
Z


 ,

c'est-à-dire :




x = X√
6

+ Y√
2

+ Z√
3

y = 2X√
6

− Z√
3

z = − X√
6

+ Y√
2

− Z√
3

.

Une équation cartésienne de S dans R′ est donc :

2

(
3X√

6
+ Y√

2

)(
3X√

6
− Y√

2

)
− 3

(
X√
6

+ Y√
2

+ Z√
3

)
= 0

(1).

Puis :

(1) ⇐⇒ 3X2 − Y 2 − 3X√
6

− 3Y√
2

−
√

3Z = 0

⇐⇒ 3

(
X − 1

2
√

6

)2

− 1

8
−

(
Y + 3

2
√

2

)2

+ 9

8
−

√
3Z = 0

⇐⇒ 3

(
X − 1

2
√

6

)2

−
(

Y + 3

2
√

2

)2

=
√

3

(
Z − 1√

3

)
.

Notons A le point de coordonnées 

(
1

2
√

6
, − 3

2
√

2
,

1√
3

)

dans R′, et R′′ = (A ; −→
I ,

−→
J ,

−→
K ) . 

Une équation cartésienne de S dans R′′ est :

3ξ2 − ζ
2 =

√
3η,

ou encore :
ξ

2

1

3

− ζ
2

1
= 2

√
3

2
η .

On conclut : S est un paraboloïde hyperbolique.

e) La matrice Q =

 2

√
6

√
2√

6 3
√

3√
2

√
3 1


 n'est pas inversible,

donc S n'est pas une quadrique à centre.

On calcule les valeurs propres de Q : 6 (simple), 0 (double).
On calcule une b.o.n.d. de vecteurs propres associés, par

exemple (
−→
I ,

−→
J ,

−→
K ) , où 

−→
I ,

−→
J ,

−→
K ont pour coordonnées

dans (
−→
i ,

−→
j ,

−→
k ) :




1√
3

1√
2

1√
6




,




− 1√
3

0

2√
6




,




1√
3

− 1√
2

1√
6




.

Considérons le r.o.n.d. R′ = (O; −→
I ,

−→
J ,

−→
K ) . Les formules

de changement de repère sont données par :


 x

y
z


 =




1√
3

− 1√
3

1√
3

1√
2

0 − 1√
2

1√
6

2√
6

1√
6





 X

Y
Z


 ,

c'est-à-dire :




x = 1√
3
(X − Y + Z)

y = 1√
2
(X − Z)

z = 1√
6
(X + 2Y + Z).

Une équation cartésienne de S dans R′ est donc :

6X2 +
√

2√
3
(X − Y + Z) + 2

√
3√
2

(X − Z)

+ 4√
6
(X + 2Y + Z) + 1 = 0 (1).



506

Puis :

(1) ⇐⇒ 6X2 + 2
√

6 X +
√

6 Y + 1 = 0

⇐⇒ 6

(
X + 1√

6

)2

= −
√

6 Y.

Notons A le point de coordonnées 

(
− 1√

6
, 0, 0

)
dans R′, et

R′′ = (A; −→
I ,

−→
J ,

−→
K ) . 

Une équation cartésienne de S dans R′′ est :

ξ
2 = −2

√
6

12
ζ.

On conclut : S est un cylindre parabolique.

Voyons si les expressions 

A = 2x + 3y, B = y + 2z, C = 3z − x

sont liées entre elles.

Ou bien on remarque :

3B − 2C = 3(y + 2z) − 2(3z − x) = 2x + 3y = A ,

ou bien on résout le système d’équations d’inconnue (x,y,z),
et on s’aperçoit que les trois formes linéaires envisagées sont
liées. 

Ainsi, en notant X = 2x + 3y, Z = 3z − x par changement de
repère (non orthonormé), S admet pour EC :

(3Y − 2Z)2 + Y 2 + Z 2 = 1 ,

donc S est un cylindre elliptique.

Un point de D est, par exemple, A(0,0,h) , et un vec-

teur directeur de D est, par exemple, −→v ( sin θ, cos θ,0) .
D’après le cours, on a alors, pour tout point M(x,y,z) de E3 :

(
d(M,D)

)2 = ||−→
AM ∧ −→v ||2

||−→v ||2
= (

cos θ(z − h)
)2 + (

sin θ(z − h)
)2 + (x cos θ− y sin θ)2

= (z − h)2 + (x cos θ− y sin θ)2.

De même, en remplaçant (θ,h) par (−θ,−h), on a :

(
d(M,D′)

)2 = (z + h)2 + (x cos θ+ y sin θ)2 .

D’où :

M ∈ S ⇐⇒ (
d(M,D)

)2 = (
d(M,D′)

)2

⇐⇒ (z − h)2 + (x cos θ− y sin θ)2

= (z + h)2 + (x cos θ+ y sin θ)2

⇐⇒ hz + sin θ cos θxy = 0.

La surface S est un paraboloïde hyperbolique.

Un point M(X,Y,Z) est sur S si et seulement s’il

existe un point m(x,y,z) de Γ tel que 
−→
ΩM soit colinéaire à 

−→
Ωm :

M ∈ S

⇐⇒ ∃ (λ,x,y,z) ∈ R
4,

X − 1 = λ(x − 1), Y − 1 = λ(y − 1), Z − 1 = λ(z − 1),

x3 + y3 − 3xy − 1 = 0, z = 0

⇐⇒ ∃ (λ,x,y,z) ∈ R
4, z = 0, λ = −(Z − 1),

x − 1 = − X − 1

Z − 1
, y − 1 = − Y − 1

Z − 1
,

x3 + y3 − 3xy − 1 = 0

⇐⇒ ∃ (x,y) ∈ R
2, x = Z − X

Z − 1
, y = Z − Y

Z − 1
,

x3 + y3 − 3xy − 1 = 0

⇐⇒
(

Z − X

Z − 1

)3

+
(

Z − Y

Z − 1

)3

− 3
Z − X

Z − 1

Z − Y

Z − 1
− 1 = 0

⇐⇒ (Z − X)3 + (Z − Y )3

−3(Z − X)(Z − Y )(Z − 1) − (Z − 1)3 = 0,

ce qui fournit une EC du cône S.

Si S est un cône, alors son sommet Ω(x,y,z) est un point
en lequel S n’admet pas de plan tangent, donc, en notant
F(x,y,z) le premier membre de l’EC de S, on a :
−−→
grad F(x,y,z) = 0 ;

Ici, F : (x,y,z) �−→ xz2 + y3 + 3y2 − z2 + 3y + 1

est de classe C1 sur R3 et, pour tout (x,y,z) ∈ R
3 :

−−→
grad F(x,y,z) = −→

0 ⇐⇒




F ′
x (x,y,z) = 0

F ′
y(x,y,z) = 0

Fz(x,y,z) = 0

⇐⇒




z2 = 0

3y2 + 6y + 3 = 0

2xz − 2z = 0

⇐⇒
{

z = 0

y = −1.

On va donc faire apparaître y + 1 et z dans l’EC de S :

xz2 + y3 + 3y2 − z2 + 3y + 1 = 0

⇐⇒ (x − 1)z2 + (y + 1)3 = 0,

c’est-à-dire, si z =/ 0 :
x − 1

z
+

(
y + 1

z

)2

= 0.

Cette EC est de la forme f

(
P

R
,

Q

R

)
= 0, où P,Q,R sont des

(premiers membres d’EC de) plans :

P = x − 1, Q = y + 1, R = z,

donc S est un cône.

14.18

14.19

14.20

14.21



507

Le sommet Ω de S est défini par P = 0, Q = 0, R = 0, donc :
Ω(1,−1,0).

Une directrice Γ de s est obtenue en coupant S par le plan d’EC

y = 0, par exemple : Γ

{
(x − 1)z2 + 1 = 0

y = 0.

a) En notant m(u) le point de coordonnées
(

sin u, cos u, f (u)
)

et 
−−→
G(u) le vecteur de composantes(

cos u,− sin u, eu
)
, on voit que S admet la RP :

(u,v) �−→ m(u) + v
−−→
G(u),

donc S est réglée.

b) Les applications m,
−→
G sont de classe C1 sur R et, pour tout

u ∈ R :

det
(
−→
i ,

−→
j ,

−→
k )

(−−→
m′(u),

−−→
G(u),

−−−→
G ′(u)

)

=
∣∣∣∣∣∣

cos u cos u − sin u
− sin u − sin u − cos u

f ′(u) eu eu

∣∣∣∣∣∣

=
C1 C1 − C2

∣∣∣∣∣∣
0 cos u − sin u
0 − sin u − cos u

f ′(u) − eu eu eu

∣∣∣∣∣∣
= − f ′(u) + eu .

D’où :

S développable

⇐⇒ ∀u ∈ R, det
(
−→
i ,

−→
j ,

−→
k )

(−−→
m ′(u),

−−→
G(u),

−−−→
G ′(u)

)
= 0

⇐⇒ ∀u ∈ R, f ′(u) = eu

⇐⇒ ∃ C ∈ R, ∀u ∈ R, f (u) = eu + C.

De plus, on a alors : f (0) = 1 ⇐⇒ C = 0.

On conclut qu’il existe une application f et une seule conve-
nant : f : R −→ R, u �−→ eu .

a) La courbe C admet la RP

x = x, y = −ln cos x, x ∈ [0 π/2[.

On a successivement, avec les notations usuelles, les dériva-
tions se faisant par rapport à x :

• x ′ = 1, y′ = tan x

• s ′ 2 = x ′ 2 + y′ 2 = 1 + tan2x = 1

cos2x
, 0 � s ′ = 1

cos x

• tanϕ = y′

x ′ = tan x, donc  ϕ ≡ x [π], puis  ϕ′ = 1

• R = s ′

ϕ′ = 1

cos x

• 
−→
T =

−→
dM

ds
= dx

ds

−→
dM

dx

= cos x(
−→
i + tan x

−→
j ) = cos x

−→
i + sin x

−→
j

• 
−→
N = Rotπ/2(

−→
T ) = − sin x

−→
i + cos x

−→
j

• 
−→
M I = R

−→
N , d’où les coordonnées (X,Y ) du centre de cour-

bure I en M à C :

{
X = x + R(− sin x) = x − tan x

Y = y + R cos x = −ln cos x + 1.

On conclut que la développée C1 de C admet la RP :

X = x − tan x, Y = −ln cos x + 1, x ∈ [0 π/2[.

b) On applique la même méthode qu’en a), mais avec C1 à la
place de C. Pour la commodité, on garde les notations clas-
siques, en partant de la RP de C1 obtenue ci-dessus :

• X ′ = −tan2x, Y ′ = tan x

• s ′ 2 = X ′ 2 + Y ′ 2 = tan4x + tan2x = sin2x

cos4x
,

donc   0 � s ′ = sin x

cos2x

• tanϕ = Y ′

X ′ = − 1

tan x
= tan

(
π

2
+ x

)
,

donc   ϕ ≡ π

2
+ x [π], puis   ϕ′ = 1

• R = s ′

ϕ′ = sin x

cos2x

• 
−→
T =

−→
dM

ds
= dx

ds

−→
dM

dx

= cos2x

sin x
(−tan2x

−→
i + tan x

−→
j ) = − sin x

−→
i + cos x

−→
j

• 
−→
N = Rotπ/2(

−→
T ) = − cos x

−→
i − sin x

−→
j

• 
−→
M J = R

−→
N , donc les coordonnées (X2,Y2) du centre de

courbure J en C à C1 sont :

X2 = X + R(− cos x) = x − tan x − sin x

cos x
= x − 2 tan x,

Y2 = Y + R(− sin x) = −ln cos x + 1 − tan2x .

On conclut que C2 admet la RP :

X = x − 2 tan x, Y = −ln cos x + 1 − tan2x, x ∈ [0 π/2[.

14.22

14.23
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a) Soit ∆ une droite de E3.

1) Si ∆ n’est pas horizontale, ∆ admet un SEC {
x = az + p

y = bz + q
, (a,b,p,q) ∈ R

4.

On a :

∆ ⊂ S ⇐⇒ ∀ z ∈ R, (az + p)3 + (bz + q)3 + z3 =1

⇐⇒ ∀ z ∈ R, (a3 + b3 + 1)z3 + (3a2 p + 3b2q)z2

+ (3ap2 + 3bq2)z + (p3 + q3 − 1) = 0

⇐⇒ (S)




a3 + b3 + 1 = 0

a2 p + b2q = 0

ap2 + bq2 = 0

p3 + q3 − 1 = 0.

Exprimons, par exemple, q en fonction de a,b,p dans la der-
nière équation de (S) :

(S) ⇐⇒
(
b = 0, a3 + 1 = 0,

a2 p = 0, ap2 = 0, p3 + q3 − 1 = 0
)

ou
(
b =/ 0, a3 + b3 + 1 = 0, q = −a2

b2
p,

ap2 + b
a4

b4
p2 = 0, p3 + a6

b6
p3 − 1 = 0

)
⇐⇒ (

b = 0, a = −1, p = 0, q = 1
)

ou
(
b =/ 0, a3 + b3 + 1 = 0, q = −a2

b2
p,

ap2(a3 + b3) = 0, p3(a6 + b6) − b6 = 0
)

⇐⇒ (
b = 0, a = −1, p = 0, q = 1

)
ou

(
b =/ 0, a = 0, b = −1, q = 0, p = 1

)
.

Ceci donne deux droites, correspondant aux quadruplets
(a,b,p,q) = (−1,0,0,1), (0,−1,1,0) :

D1

{
x = −z

y = 1
D2

{
x = 1

y = −z.

2) Si ∆ est horizontale, comme S est invariante par toute per-
mutation de (x,y,z),∆ correspond, par permutation, à D1 ou
D2 , d’où la troisième droite :

D3

{ x = −y

z = 1.

On conclut qu’il y a trois droites exactement tracées sur S, les
droites :

D1

{
x + z = 0

y = 1
, D2

{ y + z = 0

x = 1
, D3

{ z + x = 0

z = 1.

b) Il est évident que les trois droites D1,D2,D3 sont incluses
dans le plan P : x + y + z = 1 . 

c) 1re méthode : Détermination des plans tangents :

L’application 

F : R
3 −→ R, (x,y,z) �−→ x3 + y3 + z3 − 1

est de classe C1 sur l’ouvert R3 et, pour tout (x,y,z) ∈ R
3 :

−−→
grad F(x,y,z) = (3x2, 3y2, 3z2).

Comme :
−−→
grad F(x,y,z) = −→

0 ⇐⇒ (x,y,z) = (0,0,0)

et que O /∈ S , on a :

∀ M(x,y,z) ∈ S,
−−→
grad F(x,y,z) =/ −→

0 ,

donc tout point de S est régulier. 

Une EC du plan tangent à S en M0(x0,y0,z0) ∈ S est :

(X − x0)3x2
0 + (Y − y0)3y2

0 + (Z − z0)3z2
0 = 0.

D’autre part, les points d’intersection des trois droites D1,D2,D3

deux à deux sont :

A(1,1,−1), B(−1,1,1), C(1,−1,1) .

Une EC du plan tangent en A à S est :

(X − 1)3 + (Y − 1)3 + (Z + 1)3 = 0 ,

c’est-à-dire : X + Y + Z = 1,

donc ce plan tangent est le plan P obtenu en b). 

De même pour les points B et C. 

y C

xO

M

C1

C2

I

π
2

1

14.24
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On conclut que les trois plans tangents en les trois points d’in-
tersection de D1,D2,D3 deux à deux sont confondus et sont
égaux à P .

2e méthode : Utilisation de tangentes à des courbes tracées sur
une surface :

Puisque D1 et D2 se coupent en A et que D1 et D2 sont tra-
cées sur S, le plan tangent en A à S contient les tangentes en
A à D1 et D2 , c’est-à-dire contient D1 et D2 , donc ce plan est
le plan P de la question b).

De même pour les points B et C.

Une droite horizontale ∆ ne peut pas rencontrer D1 et
D2 , qui sont dans des plans horizontaux distincts.

Une droite non horizontale ∆ admet un système d'équations
cartésiennes :{

x = az + p
y = bz + q

, (a,b,p,q) ∈ R
4.

On a :

• ∆ ∩ D1 =/ ∅ ⇐⇒
(
∃ (x,y,z) ∈ R

3,

(x = 0, z = 1, x = az + p, y = bz + q)
)

⇐⇒ a + p = 0

• ∆ ∩ D2 =/ ∅ ⇐⇒
(
∃ (x,y,z) ∈ R

3,

(y =0, z =−1, x =az + p, y =bz + q)
)

⇐⇒ −b + q =0

• ∆ ∩ D3 =/ ∅ ⇐⇒
(
∃ (x,y,z) ∈ R

3,

(x = y, z = 0, x = az + p, y = bz + q)
)

⇐⇒ p = q .

Donc ∆ rencontre D1, D2, D3 si et seulement si ∆ admet un

SEC :

{
x = az − a
y = −az − a

, a ∈ R .

Puis, pour tout point M(x,y,z) de l'espace :

M ∈ S ⇐⇒
(

∃a ∈ R,

{
x = az − a
y = −az − a

)

⇐⇒

∣∣∣∣∣∣∣

(z = 1 et x = 0)

ou(
z =/ 1 et y = − x(z + 1)

z − 1

)

⇐⇒ xz + yz + x − y = 0.

Ainsi, S admet pour équation cartésienne :

xz + yz + x − y = 0.

14.25
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Index alphabétique

A

abscisse (–– curviligne), 491
addition (–– des DL), 28
adjoint, 450
alternance, 390
application (–– continue), 25
approximation (–– uniforme par des polynômes), 160
arc (–– paramétré), 491

B

b.o.n., 448
base (–– duale), 367
base (–– préduale), 366, 367

C

C1 -difféomorphisme, 351
caractérisation (–– séquentielle de la continuité), 4
caractérisation (–– séquentielle des fermés), 3
caractérisation (–– séquentielle des limites), 159
Cauchy (suite de ––), 5
changement (–– de fonction inconnue), 24, 351, 352
changement (–– de variable(s)), 24, 27, 58, 59, 224, 310, 351,

352
changement (–– de variable qui échange les bornes), 58

classe (–– C1, Ck , C∞, pour la limite d’une suite 
de fonctions), 159

classe C∞ , 225, 351
coefficients (–– de Fourier), 284, 285
colonne, 389, 390
comatrice, 391
combinaison (–– linéaire), 224
commutant, 410
compacte (partie ––), 5
comparaison (–– série/intégrale), 114, 117, 164
comparaison (–– somme/intégrale), 116
comparaisons (pour les séries), 117
composition (–– des DL), 28
cône, 492, 493
constante (–– d’Euler), 116
continue, 4, 159

continue (–– en un point), 4
continue (–– par morceaux), 58
convergence  (–– absolue d’une série d’applications), 161
convergence  (–– normale d’une série d’applications), 161
convergence (––  uniforme d’une suite d’applications), 158
convergence (––  uniforme d’une série d’applications), 162
convergence (–– d’une série), 114
convergence (–– simple d’une suite d’applications), 158
convergence (–– simple d’une série d’applications), 161
convergence (–– uniforme), 158
convergences (–– d’une série d’applications), 160
convergences (–– de la série de Fourier), 284
convergente (série absolument ––), 115
courbe, 491
cylindre, 492

D

décomposition (–– en éléments simples), 25, 223
dédoublement, 448
dérivation, 28, 223, 224
dérivée (–– n-ème), 25
dérivées (–– partielles premières), 350
dérivées (–– partielles secondes), 351
déterminant, 389, 390, 410
déterminants (–– d’ordre n), 390
déterminants (–– d’ordre trois ou quatre), 389
déterminants (–– d’un endomorphisme), 390
déterminants (–– d’une matrice carrée), 390
déterminants (–– d’une matrice triangulaire), 390
déterminants (–– de matrices triangulaires par blocs), 409
développable, 493
développantes, 491
développée, 490
développement (–– asymptotique), 28, 115
développement (–– asymptotique d’une intégrale dépendant

d’un paramètre), 59
développement (–– limité), 28
développer, 389, 390
diagonalisabilité, 409
diagonalisable, 409
diagonalisation, 410
diagonaliser, 409



Index alphabétique

512

directrice, 492
distance, 2
distance (–– d(x,A)), 4
distance (–– associée à une norme), 2
diverge (–– pour une série), 115
diverge (–– grossièrement, pour une série), 115
dSE(0), 224, 226
dual, 366
dualité, 367

E

EC, 490, 491, 492
EC (–– de plan), 491
EDL1 (–– ASM  normalisée), 308
EDL1 (–– ASM non normalisée), 308
EDL1 (–– SSM), 308
EDL1 (–– SSM normalisée), 308
EDL2 (–– SSM), 310
EDL2 (–– SSM, normalisée), 309
égalités, 449
enveloppe, 490
équation (–– polynomiale), 390
équation (–– fonctionnelle), 24, 311
équation (–– intégrale), 311
équation  (–– matricielle), 409, 410
équation (–– aux dérivées partielles du deuxième ordre

(EDP2)), 351
équation (–– aux dérivées partielles du premier ordre (EDP1)),

351
équation (–– caractéristique), 309
équation (–– réduite), 492
équivalent (–– simple), 222
équivalent (–– simple d’une intégrale dépendant  d’un para-

mètre), 59
espace (–– préhilbertien), 5, 449
espace (–– vectoriel ev), 2
espace (–– vectoriel normé evn), 2
ev, 366, 448
eve, 448
extrémums (–– globaux), 352
extrémums (–– locaux), 352

F

factorisation (–– d’une matrice), 367
famille (–– infinie libre), 366
famille (–– infinie liée), 366
fbs, 448
fermée, 3
fonction (–– impaire), 24
fonction (–– paire), 24
fonction (–– périodique), 24
fonction (–– coordonnée), 4
fonctions (–– partielles), 350

forme (–– quadratique), 5
forme (–– linéaire), 366
forme (–– polaire), 448
formule (–– de Leibniz), 25
formule (–– de Parseval), 284
formule (–– de Stirling), 116
formule (–– fondamentale de l’analyse), 27
fq, 448
fraction (–– rationnelle), 25

G

génératrice, 492

I

inégalité, 25, 285
inégalité (–– de Cauchy et Schwarz), 5, 26, 448
inégalité (–– de Minkowski), 5
inégalité (–– portant sur des intégrales), 26
inégalité (–– triangulaire), 2, 4, 448
inégalité (–– triangulaire renversée), 2, 4
inégalités, 449
inéquation (–– différentielle), 26
inéquation (–– intégrale), 26
intégrabilité, 58, 116
intégrale, 27, 58
intégrale (–– à paramètre), 60
intégrale (–– d’un produit), 26
intégrale (–– = série), 226
intégrale (–– = somme de série), 164
intégrale (–– dépendant d’un paramètre), 225
intégrale (–– dépendant d’un paramètre), 27
intégrale (–– impropre), 59
intégrales (–– à paramètre), 60
intégrales (–– de carrés de fonctions), 285
intégration (–– par parties), 26, 27, 58, 59, 160, 284
intervention (–– de l’exponentielle complexe), 284
inverse (pour un DL), 28
inversible, 391

J

jacobien, 351

L

lemme (–– fondamental pour les séries), 115
lien (–– suite/série), 115, 116
ligne, 389, 390
limite, 28
limite (–– d’une intégrale dépendant  d’un paramètre), 59
limite (–– d’intégrale), 28
limite (–– en un point), 350
linéarisation, 284
linéarité (–– de l’intégration), 27, 160
lipschitzienne, 4, 25
loi (–– externe, pour un DL), 28
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M

majoration, 222
majoration (–– géométrique), 164
matrice (–– orthogonale), 449
matrice (–– symétrique réelle), 450
matrice (–– compagnon), 409
méthode (–– de Lagrange), 309
méthode (–– de variation de la constante) 308
méthode (–– de variation des constantes), 310
minoration, 222
mises (–– sous formes canoniques de trinômes), 492
monotonie, 25
multilinéarité, 390
multiplication (–– des DL), 28

N

nature (–– d'une quadrique), 492
nature (–– d’une série), 114, 115
nature (–– d’une suite), 115
normale, 491
norme, 2
norme (–– équivalente), 3
norme (–– non équivalente), 3
normes (–– euclidiennes), 448, 449

O

orthogonal, 449
orthogonaux, 5
ouverte, 3

P

paquet (–– de termes), 115
paramètre (–– à l’intérieur de l’intégrale), 59
paramètre (–– aux bornes), 59
partie (–– compacte), 5
permutation (–– intégrale/série), 164
permuter (–– intégrale et limite), 159
permuter (–– intégrale et série), 225
plan (–– tangent), 491
plusieurs (–– variables réelles), 350
point (–– régulier), 491
points (–– critiques), 352
polynôme (–– caractéristique), 408, 409
polynôme (–– annulateur), 408, 410
polynômes (–– de matrices carrées), 410
primitivation, 28, 223, 224
primitives usuelles, 27
produit, 5, 224
produit (–– scalaire) 5, 448, 449
projecteurs, 367
projeté (–– orthogonal), 449
ps, 448
puissances  d’une matrice carrée 410

Q

quadratique, 5

R

raccords, 308, 310
radiale (théorème de la limite ––) 226
rang, 367
rangée, 389, 390
rayon (–– d’une série entière), 223
rayon (–– de convergence d’une série entière), 222
règle (–– nαun), 114
règle (–– xα f (x) ), 58
règle (–– de d’Alembert), 114, 222
réglée, 493
relation (–– de Chasles), 27, 160
relation (–– de récurrence), 390
restes (–– de séries convergentes), 117
RP, 490

S

S+
n , 450

S++
n , 450

SDL1 (–– ASM, à coefficients constants), 309
SDL1 (–– SSM, à coefficients constants), 309
SEC, 490
série, 115
série (–– de Fourier), 164
série (–– entière), 164, 222
série (–– entière dérivée), 223
série (–– trigonométrique), 285
séries (–– entières connues), 223
sev, 366, 448
sev (–– orthogonaux), 449
solution générale 308
solution (–– maximale d’un problème de Cauchy), 310
solution (–– particulière), 308
solutions (––  y d’une ED (E) développables  en 0), 311
sommation, 27
somme (–– d’une série entière), 223
somme (–– d’une série numérique), 225
sommes (–– partielles de la série), 114
sommes (–– partielles de séries divergentes), 117
sous-espaces (–– vectoriel, sev), 2
sous-espaces (–– propres), 408
sous-famille (–– finie), 366
spectre, 410
suite, 3
suite (–– d’applications), 158
suite (–– de Cauchy), 5
surface, 491, 492
symbole (–– de Kronecker), 366
système (–– affine), 390©
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T

tableau (–– des quadriques), 492
télescopage, 117
terme (–– constant de la série entière), 224
théorème (–– d’équivalence), 58
théorème (–– de Cauchy et Lipschitz), 310
théorème (–– de continuité sous le signe intégrale), 59, 60
théorème (–– de convergence dominée), 28, 159
théorème (–– de dérivation sous le signe intégrale), 60
théorème (–– de majoration), 58
théorème (–– de minoration), 58
théorème (–– de projection orthogonale), 5
théorème (–– de Rolle), 25
théorème (–– de Weierstrass), 160
théorème (–– des accroissements finis), 25
théorème (–– fondamental), 450
théorème (–– spectral), 409, 450
théorème (–– sur convergence uniforme et continuité), 226
théorème (–– sur convergence uniforme et continuité en un

point), 162
théorème (–– sur convergence uniforme et intégration sur un

segment), 163
théorème (–– sur convergence uniforme et limite), 162

théorème (–– sur convergence uniforme sur tout segment et
continuité sur l’intervalle de départ), 162

théorème (–– sur l’intégration sur un intervalle quelconque
pour une série de fonctions), 225

théorèmes (–– de Dirichlet), 284
théorèmes (–– généraux), 4, 350, 351
trace, 367, 410
tracées, 492
tridiagonale, 390
trigonalisabilité, 410
trigonalisation, 410
troncature (–– d’un DL), 28
TSCSA, 115, 164

V

valeurs (–– propres), 408
valeurs (–– propres réelles), 409
variables (deux –– réelles), 350
variations (–– d’une fonction), 25
vecteurs (–– propres), 408
vp, 408
−→vp , 408
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