PCSI L2 UE MATH3

CC3 du 15 avril 2014 - 45 minutes

L'examen sera corrigé sur 20 points.

Les documents et calculatrices ne sont pas permises. Les téléphones portables doivent être éteints. Toute réponse doit être justifiée.

Question 1. (11 points)

Soit $E := \{P(t) \in \mathbb{R}_2[t] | P(0) = 0\} \equiv \{at + bt^2, a, b \in \mathbb{R}\}$ l'espace vectoriel des polynômes réels de degré au plus 2 qui s'annulent en zero. Évidemment, $P_1(t) = t$ et $P_2(t) = t^2$ forment une base dans E.

Considerons E muni du produit scalaire $\langle P, Q \rangle := \int_0^1 P(t)Q(t)dt$, $\forall P, Q \in E$.

a. Calculer
$$\langle P_1, P_1 \rangle$$
, $\langle P_1, P_2 \rangle$ et $\langle P_2, P_2 \rangle$. (3 pts)

b. Déterminer
$$\lambda \in \mathbb{R}_+$$
 tel que $b_1(t) := \lambda P_1(t)$ soit de norme 1. (1 pt)

- c. Déterminer $\mu \in \mathbb{R}$ tel que $c_1(t) := \mu P_1(t)$ soit la projection (orthogonale) de P_2 sur l'espace vectoriel engendré par P_1 . (2 pts)
- **d.** Calculer le polynôme $c_2(t) := P_2(t) c_1(t)$ et montrer que $\langle P_1, c_2 \rangle = 0$ et que aussi $\langle b_1, c_2 \rangle = 0$. (2 pts)
- e. Est-ce que (b_1, c_1) forment une base dans E? Même question pour (b_1, c_2) . Dans le cas d'une base, est-ce que la base est orthonormale? (3 pts) (Réponses avec justification).

Question 2. (9 points)

Déterminer les limites $l\in\mathbb{R}\cup\{-\infty,\infty\}$ des suites suivantes, si elles existent. (Justifier votre réponse.)

a.
$$x_n = (-1)^n \sin\left(\frac{(2n-1)\pi}{2}\right)$$
 (3 pts)

b.
$$y_n = (-1)^n \frac{2n}{3n^2 + 7}$$
 (3 pts)

$$\mathbf{c.} \ \ z_n = n^2 \sin\left(-\frac{\pi}{n}\right) \tag{3 pts}$$

Question 3. Bonus (8 points)

Considerons dans l'espace \mathbb{R}^2 la forme quadratique

$$q(\vec{x}) = 5x^2 - 2\sqrt{3}xy + 3y^2.$$

L'ensemble des points

$$\mathcal{E} = \{ \vec{x} \in \mathbb{R}^2 | q(\vec{x}) = 1 \}$$

est une ellipse (voir le dessin ci-dessous).

- a. Déterminer les longueurs a et b de grand et petit rayon de l'ellipse, resp. (3 pts)
- **b.** Déterminer les deux vecteurs $\vec{v_{\pm}}$ de norme 1 qui donnent les directions du grand rayon (cf la figure ci-dessous). (2 pts)
- c. Soit

$$\mathcal{E}' = \{(x, y) \in \mathbb{R}^2 | \left(\frac{x}{a}\right)^2 + \left(\frac{y}{b}\right)^2 = 1\}$$

l'ellipse avec les mêmes longueurs a et b pour les rayons comme dans la question **a.** mais avec les axes en position "standard" (direction $\vec{i} \equiv (1,0)$ et $\vec{j} \equiv (0,1)$, respectivement). Déterminer la rotation

$$R = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$

de passage qui transforme \mathcal{E}' en \mathcal{E} . Autrement dit, calculer l'angle θ entre les axes de grand rayon de \mathcal{E}' et \mathcal{E} et en deduire la matrice R. (3 pts) Indication : $\cos \pi/6 = 1/2$, $\cos \pi/4 = 1/\sqrt{2}$, $\cos \pi/3 = \sqrt{3}/2$.

