Contrôle 1, 16 octobre 2015, 45 min.

Notes de cours et appareils électroniques sont interdits.

Exercice 1. Pour
$$x \in \mathbb{R}$$
, on définit $f(x) = \int_0^{+\infty} \frac{1}{(1+t^2)(x^2+t)^2} dt$.

- 1. Montrer que le domaine de définition de f est $\mathbb{R} \setminus \{0\}$, et que f est continue sur ce domaine (on pourra commencer par montrer que f est continue sur $[a, +\infty[$ pour tout a > 0).
- 2. (a) Montrer que, pour tout t > 0 fixé, $\frac{x^4}{(x^2 + t)^2}$ tend vers 1 quand x tend vers $+\infty$.
 - (b) Montrer que $x^4 f(x)$ tend vers $\frac{\pi}{2}$ quand x tend vers $+\infty$.
 - (c) Montrer que $I = \int_{1}^{+\infty} x f(x) dx$ converge.
- 3. Montrer que $I=\int_0^{+\infty} \frac{dt}{2(1+t^2)(1+t)}$ et calculer cette intégrale.