Algèbre I : Structures fondamentales

Semestre automne 2015-2016

Licence STS Portail Maths/Info Université Claude Bernard - Lyon 1

Feuille n° 4

Exercice 1. Les applications suivantes sont-elles injectives, surjectives, bijectives?

$$f_6: \ \mathbb{C} \to \mathbb{C} \qquad f_7: \ \mathbb{R} \to \mathbb{R} \\ z \mapsto z^3 \qquad \qquad x \mapsto \cos(x) \qquad f_8: \ \mathbb{R} \to \mathbb{R}, \ x \mapsto \begin{cases} \frac{1}{x} & \text{si } x < 0 \\ x^2 & \text{si } x \ge 0 \end{cases}$$

$$u: \{1,2,3\} \to \{1,2,3\} \text{ telle que } u^{-1}(\{1\}) = \{3\}, u^{-1}(\{2\}) = \{1\}, u^{-1}(\{3\}) = \{2\};$$

$$v:\ \{1,2,3,4\} \to \{1,2,3\} \text{ telle que } v^{-1}(\{1\}) = \{1,2\}, v^{-1}(\{2\}) = \{4\}, v^{-1}(\{3\}) = \{3\}\ ;$$

l'application linéaire $g_1: \mathbb{R}^2 \to \mathbb{R}^2$ telle que $g_1(1,0) = (3,5)$ et $g_1(0,1) = (1,2)$;

l'application linéaire $g_2: \mathbb{R}^2 \to \mathbb{R}^2$ telle que $g_2(1,1) = (0,0)$ et $g_2(1,-1) = (-2,0)$;

l'application linéaire $g_3: \mathbb{R}^2 \to \mathbb{R}^2$ telle que $g_3(1,2) = (1,0)$ et $g_3(2,0) = (2,0)$.

Exercice 2. Décrire les ensembles qui suivent.

1.
$$\sin^{-1}(\{2\})$$
 2. $\cos^{-1}([0,1])$ 3. $\exp^{-1}([0,1])$

4.
$$f^{-1}([-2,1])$$
 pour $f: \mathbb{R} \to \mathbb{R}$, $x \mapsto |x|$ 5. $g^{-1}([-2,1])$ pour $g: \mathbb{C} \to \mathbb{R}$, $z \mapsto |z|$

$$6. \ h^{-1}([0,1]) \ \text{pour} \ h:[-1,4] \to \mathbb{R}, \ x \mapsto x^2 \\ \qquad \qquad 7. \ j^{-1}([0,1[) \ \text{pour} \ j:\mathbb{R}^2 \to \mathbb{R}, \ (x,y) \mapsto x$$

Exercice 3. On considère une application $f: I \to J$, $x \to x^2$ où I, J sont deux intervalles de \mathbb{R} . Trouver I et J tels que : (a) f est injective mais pas surjective ; (b) f est surjective mais pas injective ; (c) f est bijective.

Exercice 4. Soit $f: \mathbb{R}^2 \to \mathbb{R}^2$ l'application linéaire de matrice $A = \begin{pmatrix} 1 & -7 \\ 0 & \lambda^4 - 1 \end{pmatrix}$ dans la base canonique. Pour quelles valeurs de $\lambda \in \mathbb{R}$, f est-elle bijective?

Exercice 5. Soit $f: \mathbb{R}^2 \to \mathbb{R}^2$ une application linéaire. Montrer que f est injective si et seulement si $\operatorname{Ker} f = \{(0,0)\}.$

Exercice 6. Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction. Montrer que si f est strictement monotone alors f est injective.

Exercice 7. Soient $f: \mathbb{C} \to \mathbb{C}$ l'homothétie de centre 1+i et de rapport 3 et g la translation par 2+2i. Déterminer $f \circ g$ et $g \circ f$ et expliciter leurs natures.

Exercice 8. Soit $f: \mathbb{R} \setminus \{1\} \to \mathbb{R} \setminus \{1\}$, $x \mapsto \frac{x+1}{x-1}$. Calculer $f \circ f$. En déduire que f est bijective et déterminer f^{-1} .

Exercice 9. Soit $f: \mathbb{R} \to \mathbb{R}$, $x \mapsto 2x/(1+x^2)$.

1. f est-elle injective? surjective?

- 2. Montrer que $f(\mathbb{R}) = [-1, +1]$.
- 3. Montrer que la restriction $g: [-1,1] \to [-1,1]$, définie par g(x) = f(x) pour tout $x \in [-1,1]$, est une bijection.
- 4. Retrouver ce résultat en étudiant les variations de f.

Exercice 10. 1. Soit un nombre complexe $z = re^{i\theta}$ avec $r \in]0, +\infty[$ et $\theta \in]-\pi,\pi]$. Déterminer le module et un argument de z + |z|.

- 2. On considère $A = \{re^{i\theta} \mid r \in]0, +\infty[, \theta \in]-\pi, \pi[\}$. Décrire géométriquement A.
- 3. En utilisant la première question, montrer que l'application $f:A\to\mathbb{C},\,z\mapsto z+|z|$ est injective.
- 4. L'application f est-elle surjective? Sinon, déterminer l'image de f.
- 5. Soit $g: \mathbb{C} \to \mathbb{C}$, $z \mapsto z + |z|$. Comparer l'image de g à celle de f.
- 6. Déterminer $g^{-1}(\{0\})$ et $g^{-1}(\mathbb{R})$. L'application g est-elle injective?

Exercice 11. Soient E et F deux ensembles et f une application de E dans F. Soient A et B deux parties de E, et C et D deux parties de F. Montrer que

- 1. $f(A \cup B) = f(A) \cup f(B)$
- 2. $f(A \cap B) \subset f(A) \cap f(B)$
- 3. $f^{-1}(C \cup D) = f^{-1}(C) \cup f^{-1}(D)$
- 4. $f^{-1}(C \cap D) = f^{-1}(C) \cap f^{-1}(D)$
- 5. $A \subset f^{-1}(f(A))$
- 6. $f(f^{-1}(C)) \subset C$

Exercice 12. Montrer que $\mathbb Z$ est dénombrable à l'aide de l'application $\phi: \mathbb Z \to \mathbb N$ définie par $\phi(n) = 2n - 1$ si n > 0 et $\phi(n) = -2n$ si $n \le 0$. (Un ensemble infini E est dit dénombrable s'il existe une bijection de $\mathbb N$ sur E.)

Exercice 13. Soit E un ensemble de cardinal $n \in \mathbb{N}^*$. Montrer qu'il y a n! bijections de E vers E.

Exercice 14. Soit $E = \{1, 2, 3, 4, 5, 6, 7\}$ et $F = \{1, 2, 3, 4, 5, 6\} \cup \{8, 10\}$.

1. Déterminer le nombre d'applications f de E dans F vérifiant la proposition suivante :

$$\forall n \in E, \ n \text{ pair } \iff f(n) \text{ pair }.$$

2. Déterminer le nombre d'injections f de E dans F vérifiant la proposition suivante :

$$\forall n \in E, n \text{ pair } \Longrightarrow f(n) \text{ pair }.$$

3. Déterminer le nombre d'injections f de E dans F vérifiant la proposition suivante :

$$\forall n \in E, n \text{ impair } \Longrightarrow f(n) \text{ impair }.$$

Exercice 15. Soit E un ensemble fini de cardinal $n \ge 1$. Notons F l'ensemble des applications de E dans $\{0,1\}$.

- 1. Quel est le cardinal de F?
- 2. Pour toute partie A de E, notons C_A la fonction de E dans $\{0,1\}$ définie par $C_A(x)=1$ si $x \in A$ et $C_A(x)=0$ si $x \notin A$. Soit φ l'application de $\mathcal{P}(E)$ dans F qui à toute partie A de E associe C_A . Montrer que φ est une application injective. En déduire que φ est bijective.

Exercices à préparer pour le contrôle du 27 novembre

Exercice 1. Etudier l'injectivité et la surjectivité de l'application f de \mathbb{R}^2 dans \mathbb{R}^2 , définie par f(x,y)=(4x-3y,5x-4y) pour tout $(x,y)\in\mathbb{R}^2$.

Exercice 2. Soit l'application f de \mathbb{R} dans \mathbb{R} définie par $f(x) = x^3 - x$ pour tout $x \in \mathbb{R}$.

- 1. Cette application est-elle injective, surjective? (Indication: étudier les variations de f.)
- 2. Déterminer $f^{-1}([-1,1])$.

Exercice 3. Soit $f: \mathbb{R} \setminus \{1\} \to \mathbb{R}, x \mapsto \frac{2x+5}{x-1}$.

- 1. L'application f est-elle injective? Est-elle surjective?
- 2. Montrer qu'il existe un sous-ensemble F de \mathbb{R} et une bijection g de $\mathbb{R} \setminus \{1\}$ sur F tels que g(x) = f(x) pour tout x de $\mathbb{R} \setminus \{1\}$. Déterminer g^{-1} .

Exercice 4. Pour toute application s de $]-\infty,1[$ dans \mathbb{R} , on considère l'application

$$f_s: \mathbb{R} \to \mathbb{R}, \ x \mapsto \begin{cases} x^2 - 2x + 1 & \text{si } x \ge 1\\ s(x) & \text{si } x < 1. \end{cases}$$

Donner un exemple d'application $s:]-\infty,1[\to\mathbb{R}$ pour que a) f_s soit injective mais pas surjective; b) f_s soit surjective mais pas injective; c) f_s soit bijective.

Exercice 5. Soient E et F deux ensembles non vides et $f: E \to F$.

- 1. Montrer que f est surjective si et seulement si, pour tout $B \in \mathcal{P}(F), f(f^{-1}(B)) = B$.
- 2. Montrer que f est injective si et seulement si, pour tout $A \in \mathcal{P}(E), f^{-1}(f(A)) = A$.