Algèbre I : Structures fondamentales

Licence STS Portail Maths/Info Semestre automne 2015-2016 Université Claude Bernard - Lyon 1

Feuille n° 2

Exercice 1 (*). Calculer la partie réelle et la partie imaginaire des nombres suivants :

- 1. $z_1 = \frac{1+i}{1-i}$
- $2 z_2 = e^2 e^{i\pi/3}$
- 3. $z_3 = e^{i\theta} + 1 \text{ pour } \theta \in \mathbb{R}$

Exercice $2 (\star)$. Calculer le module et l'argument des nombres complexes de l'exercice précédent.

Exercice 3. Soit $(a, b, c, d) \in \mathbb{R}^4$ tels que ad - cb = 1. Montrer que pour tout $z \in \mathbb{C}$ dont la partie imaginaire est strictement positive, on a :

$$\operatorname{Im}\left(\frac{az+b}{cz+d}\right) > 0 \ .$$

Exercice 4 (**). Retrouver les formules de $\cos(a+b)$ et $\sin(a+b)$ en fonction de $\cos(a)$, $\cos(b)$, $\sin(a)$ et $\sin(b)$ pour $a, b \in \mathbb{R}$.

Exercice 5. Soit z un nombre complexe non nul tel que $z^3 = i/\bar{z}$. Montrer que le module de z est égal à 1. Déterminez les valeurs possibles de z.

Exercice 6. Déterminer et représenter dans le plan \mathbb{R}^2 les ensembles de nombres complexes suivants

- 1. $\star \{z \in \mathbb{C} \mid |1-z| < \frac{1}{2}\}$
- 2. $\star \{z \in \mathbb{C} \mid Re(1-z) \leq \frac{1}{2} \}$
- 3. $\{z \in \mathbb{C}^* \mid |1 \frac{1}{z}|^2 = 2\}$
- 4. $\star \{z \in \mathbb{C} \setminus \{-3\} \mid \left| \frac{z-3}{z+3} \right| = 2\}$

Exercice 7. Soient $a, b \in \mathbb{R}$, tels que $a \neq b$. Montrer que pour tout $z \in \mathbb{C}$ on a l'équivalence

$$|z-a| = |z-b| \Leftrightarrow \operatorname{Re}(z) = \frac{a+b}{2}.$$

Exercice 8. Calculer les racines carrées des nombres complexes suivants

a)*
$$z_1 = 7 + 24i$$
, b) $z_2 = 9 + 40i$, c) $z_3 = 1 + i$

Exercice 9. (\star) Résoudre dans \mathbb{C} les équations suivantes

- 1. $z^4 + 4 = 0$
- 2. $iz^2 + (1-5i)z + 6i 2 = 0$
- 3. $z^5 z = 0$

Exercice 10 (\star) . Résoudre dans \mathbb{C} de deux façons différentes l'équation

$$z^2 = \frac{\sqrt{2}}{2}(1+i).$$

En déduire la valeur de $\cos(\pi/8)$ et $\sin(\pi/8)$.

Exercice 11. Soit $n \in \mathbb{N}$, $n \geq 1$. On rappelle qu'il existe exactement n nombres complexes z vérifiant $z^n = 1$. Ces nombres sont appelés les n racines n-ièmes de l'unité.

- 1. ★ Représenter dans le plan complexe C les racines 6-ièmes de l'unité et les racines 4-ièmes de l'unité
- 2. On dit que ω est une racine primitive n-ième de l'unité si et seulement si toute racine n-ième de l'unité s'écrit comme une puissance de ω .
 - (a) ★ Quelles sont les racines primitives 6-ième de l'unité?
 - (b) Quelles sont les racines primitives 5-ième de l'unité?

Exercice 12. (\star) Soit $\theta \in \mathbb{R}$.

- 1. Calculer $\cos(3\theta)$ (resp. $\sin(3\theta)$) en fonction de $\cos(\theta)$ (resp. $\sin(\theta)$)
- 2. En utilisant la formule du binôme de Newton

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}, \ a, b \in \mathbb{C}, \ n \in \mathbb{N}$$

exprimer $\cos(n\theta)$ et $\sin(n\theta)$ en fonction de $\cos(\theta)$ et $\sin(\theta)$

Exercice 13. Déterminer la forme trigonométrique de $(1+i)^n$ pour tout $n \in \mathbb{N}$.

Exercice 14. (\star) Soit $n \in \mathbb{N}$, $\theta \in \mathbb{R}$. Calculer

$$\sum_{k=0}^{n} \cos(k\theta) \text{ et } \sum_{k=0}^{n} \sin(k\theta)$$

Exercice 15. (*)On considère l'application de $f: \mathbb{C} \to \mathbb{C}, \ z \mapsto z^2$. Que deviennent par cette transformation

- 1. un cercle de rayon de centre (0,0) et de rayon r_0 où $r_0 \in \mathbb{R}$?
- 2. une droite d'équation polaire $\theta = \theta_0$, où $\theta_0 \in \mathbb{R}$?
- 3. la droite d'équation Re(z) = 2?

Exercice 16. Soit $c \in \mathbb{C}$ tel que |c| < 1.

- 1. Montrer que pour tout $z \in \mathbb{C}$, on a $|z+c| \le |1+\bar{c}z|$ si et seulement si $|z| \le 1$.
- 2. On note $D=\{z\in\mathbb{C},\,|z|\leq 1\}$ et $C=\{z\in\mathbb{C},\,|z|=1\}.$ Montrer que l'application

$$f: D \to D, \ z \mapsto \frac{z+c}{1+\bar{c}z}$$

est bien définie, qu'elle est bijective et que f(C) = C.

Exercices à préparer pour le contrôle.

Exercice 1. Calculer les parties réelles et imaginaires des nombres complexes suivants :

- 1. $(5+i)e^{i\theta}$ avec $\theta \in \mathbb{R}$
- $2. \frac{1-3i}{9+4i}$

Exercice 2. Calculez les racines carrées des nombres complexes suivants

- 1. -3 + 4i
- 2. -3 4i

Exercice 3. Résoudre dans $\mathbb C$ de deux façons

$$z^2 = \frac{\sqrt{3}}{2} - \frac{i}{2} \ .$$

En déduire $\cos(\frac{\pi}{12})$.

Exercice 4. Quellle est l'image du cercle centré en (0,0) et de rayon 1 par la fonction $f: \mathbb{C} \to \mathbb{C}$ définie par $f(z) = 4 + z^2$?

Exercice 5. Déterminer les racines primitives 8-ième de l'unité.

Exercice 6. Résoudre dans $\mathbb C$ l'équation suivante :

$$z^2 - z + 2i + 4 = 0.$$