CHAPITREII
L'INTEGRALE DE RIEMANN

1. — Fonctions Riemann intégrables

1.1. Définition de l'intégrale de Riemann. —
Dans unmémoire de 1854 Bernhard REMANN défi-
nit lntégrale d’une fonction bornéd :[a,b] - R
comme la limite (lorsqu’elle existe) des sommes fi-
nies . f(&)4x quand Supdx — 0. Chaque
somme Y, f(¢& )4x% est obtenue en divisarjg,b]
en un nombre fini d’intervalIeExi ,>g+1:| de longueur
4%, puis en choisissant arbitrairement un point
& dans chaque intervallex x4, | ; elle s'interpréte
comme l'intégrale d’'une fonction en escalier égale
f(&) sur ] %[ (cf. fig. 1). Pour que ce procédé
définisse l'intégrale def , il faut évidemment que les
sommes ). (& )4% convergent vers une limite

! Bernhard REMANN a défini I'intégrale qui porte son nom
en 1854, dans les préliminaires d'un mémoire suségies
trigonométriques.
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quand Sup4x - 0, ce guimpose RMANN. Détail-
lons cette construction.

Soit f:[a,b] - R une fonction arbitraire. Par
subdivision riemanniennee [a,b], on désigne un
couple(a,¢) formé d’'une subdivision

cra=x<x<.<x=h

de [a,b] et d'une suited =(&,.,&,...4,) de réels
choisis de sorte quesO[X X4 | quel que soit
i=0,1,...,n— 1 Le pas de la subdivisions est par
définition la quantité :

(0 ) = MaXpgign-1 (Xa1 = % )-
A toute subdivision riemannienngs &) de [a,b],
on associe laomme d&IEMANN :

S(fr&)=i (% =% )1(&).

Fig.1. — Sommes de Riemann d’'une fonction.

DEFINITION 1. — La fonction f :[a,b] - R est
dite intégrable au sens dREMANN sur [a,b] si les
sommes dRIEMANN S( f g,&) tendent vers une li-
mite | quandd(s) - O.
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Si f estintégrable au sens deERANN, la limite
I (qui est unique) est appelétégrale deRIEMANN
de f sur[a,b] ; onla note :

=2 (x)dx.

On désignera pa&'([a,b]) l'ensemble des fonc-
tions réelles intégrables au sens de&eMANN sur
[a,b]. La fonction f appartient donc &'([a,b] )
et a pour intégrald s'il existe, pour toute >0, un
réel >0 tel que l'on ait, quelle que soit la subdivi-
sion riemanniennés &) de[a,b] :
do)sn=>|S(fré)-l|<e.
Comme R est un espace comgieta convergence
des sommes de IBMANN S(fg, &) lorsque
o(o) -» 0 équivaut au fait qu’elles vérifient la pro-
priété de GUCHY :

‘S( fo,&)-S(f 0'3,5'3)\ .0

quand 6(¢),d6(c") —» 0. Ceci signifie qu'il existe,
pour toute >0, un réely >0 tel que I'on ait, quelles
qgue soient les subdivisions riemannienrfes¢) et
(c7.¢0) defa,b]:

5(0),5(0”)577:\3( fo,&)-S(fpleD)|<e.

Donnons maintenant des exemples de fonctions in-
tégrables au sens deERANN.

ProPOSITION1. — Toute fonction en escalier sur
[a,b] estintégrable au sens dREMANN, et son in-

2 Rappelons que toute suite deUCHY de R converge.



COURS DE T. FACK 23

tégrale deRIEMANN coincide avec son intégrale dé-
finie entrea etb.

En effet, soit f :[a,b] -~ R une fonction en escalier
associée a une subdivision da,b] en n intervalles
[ai ,q+1:| sur lesquels elle prend la valeur constagte
Pour toute subdivision riemannienge,¢) de [a,b], on
vérifie facilement (en considérant la subdivisi@mrniée
des points des et desa, ) que I'on a:

[S(f7.8)-Zio(au -2 )| < 4 1], 5(0).

I s’ensuit que S(fg,¢) - Zilo(ai+l -8 )¢ quand
d(c) » 0, ce qui prouve quef est REMANN intégrable,

dintégrale égale &/ (3, -3 )G . =

Plus généralement, toute fonction réglée [sub]
est intégrable au sens déERANN, comme nous le
verrons plus loin. On notera qu'il existe des fomTs
non intégrables au sens delERANN et dont
l'intégrale définie existe cependant.

C’est le cas par exemple de la fonction del@HLET
2:[0,1] - R définie pary(x)=0 si x est rationnel et
x(x)=1 sinon. La fonctiony admet pour primitive (au
sens défini au chapitre 1) la fonctiodR( x )= x; son inté-
grale est donc définie par la formule :

[22(x)dx= F(1)- F(0)= 1
La fonction y n’est cependant pas intégrable au sens de
RIEMANN. On peut en effet associer a toute subdivision
gra=x<x<.<x=bhb
de [0,1 une subdivision riemannienngz,¢) telle que
tous les¢, soient rationnels, et une autfe,c%) dont tous
les ¢P sont irrationnels. On a alors :

S(r.0.8)=S(ro.c™|=l0-1=1,
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ce qui prouve gue les sommes deEMANN S(y,0,¢) ne
convergent pas lorsqu&s) - 0.

1.2. Propriétés élémentaires de l'intégrale de Rie-
mann. — Une fonction intégrable au sens de&-R
MANN Sur un intervalle{a,b] est nécessairement bor-
née sur cet intervalle. En effet, désignons par
I ]|, =Supc.s| f(x) la norme de la convergence
uniforme s%?[xg,b] ‘ona:

PROPOSITION2. — Soit f :[a,b] - R une fonc-
tion intégrable au sens de Riemann $arb] . Alors,
f estbornée sufa,b] etona:

2 f ()0 (b= a) A,

Comme f est intégrable au sens d&ERANN, il existe
en vertu du critere deADCHY une subdivision :
gra=x<x<.<x=bhb
de [a,b] telle que I'on ait, quelle que soit la maniere de
choisir ¢ et &Y pour former des subdivisions riemannien-
nes(o,&) et(s,¢P) defa,b]
(1) [S(fr.8)-S(fré?) 1.
Choisissonss de sorte quel; =x; pour tout j . Pouri

fixé et xO[ X X4 |, choisissonf'%I de sorte quef]-D=g“j
si j#i et & =x. Larelation(1)s’écrit alors :

(%1 =% )(FOF )= F(x))< 1
elle implique que :

[F O <[ F(x j"'mll-x < C= Max { f(x )+ e
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Comme cette majoration est vraie pour toul] X ,X,, |,
onalf(x)<C pourtoutxO[a,b] et f est bornée. De
la majoration évidente :

S(fo&)s(b-a)f],

on déduit alors, en faisant tend¥es ) versO :

‘j:f(x)d>{s (b-aj f|_.m

La proposition suivante énonce quelques propriétés
élémentaires de l'intégrale deERIANN.

PROPOSITION3. — Soienta<b. Alors & *([a,b] )
est un sous-espace vectoriel de I'espace des émscti
bornées sufa,b] sur lequel l'ntégrale d&RIEMANN
f - j:f(x)dx est une forme linéaire possédant les
propriétés suivantes :

(i) Pour toute f OK'([a,b] ), on a:

RIS CEVE R

En particulier, la forme linéairef - j:f(x)dx est
continue sur®*([a,b]) muni de la norme de la
convergence uniforme ;

(ii) Si les fonctionsf,g sont intégrables au sens
de RIEMANN et vérifient f(x)< g(x) pour tout X,
ona:

b b
[, FOx)dxs [ g(x)db.
En particulier, sim< f(x)< M pour toutx, on a:
m(b-a)< [. f(x)d< M(b- a.
Soient f,g deux fonctions intégrables au sens de R

MANN sur [a,b] et 4,u0R . Pour toute subdivision rie-
mannienng(s,¢) defa,b],ona:
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S(Uf +ug,0,8)=AS(fr,&)+uS(gr.c),
et donc

SUf +ug.o,&) - 2 F(x)dx+ uf. g(x)dx

guandd(a) —» 0. Ceci prouve queif +ug est intégrable
au sens de IRMANN sur[a,b] et que :

b b b

[ Gf +ug)(x)dx=A[_ f(x)dx+ f_g(x)dx.
Ainsi, 9{1([a,b] ) est un sous-espace vectoriel de I'espace
des fonctions bornées sfa,b], et lintégrale de RMANN
f o j' f(x)dx est une forme linéaire. La propriétgré-
sulte de la proposition 2. Supposons enfin quédlestions
f,g de &'([a,b] ) vérifient f(x)< g(x) pour tout x.
On en déduit queS( f #,£)<S(gg,&) pour toute sub-
division riemannienngs,&) de [a,b], d'ou la propriété
(i) quando(c) - 0. m

1.3. Limites des fonctions intégrables. —Une
limite simple de fonctions IRMANN intégrables n’est
pas REMANN intégrable en général (car cette limite
peut ne pas étre bornée). En revanche, pour lés lim
tes uniformes de fonctions intégrables au sensigle R
MANN, on a :

THEOREME L. — Soit f, :[a,b] - R une suite de
fonctions intégrables au sens REMANN sur [a,b] .
On suppose que le§, convergent uniformément sur
[a,b] vers une fonctionf :[a,b] - R. Alors f est
intégrable au sens dREMANN sur [a,b] etona:

[ f(x)dx= lim [, (x)dx

En effet, de la relation :
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‘J':fn(x)dx—J': fp(x)d*s (b- af) f- ..

on déduit que la suite des intégrales= j;fn(x)dx est
de Cauchy, donc converge vers une limite Pour toute
subdivision riemannienngs,¢) defa,b], ona:
IS(fr.&)-1]<[S(fr.&)=-S(f 7))

+|S(f, 7.&) =1 #[1 -1

s(b=a)|f=f|, +|S(fa.&)=1,+[1,-1],
de sorte qu'il existe, pour tout>0, un entierN =2 1 tel
que l'on ait :

IS(fré)=1]sL+[S(fy 0.8)-1y]
quelle que soit(¢,¢). Comme S( fy ¢,£) - 1y quand
d(a) - 0, il existe >0 tel que la conditions(c) <7
implique [S(fy #,&)=1y|<%. Mais alors, on a:

5(0)517:>|S(fﬁ,f)—||s%+ﬁz'=e,
ce qui prouve quef est REMANN intégrable et que son
intégrale est égale b= rl1imw_[: fa(x)dX. m

Du théoréme 1, on déduit immédiatement :

COROLLAIRE 1. — La sommeu=3"_u, dune
série uniformément convergente de fonctidhs-
MANN intégrablesu, :[a,b] - R est intégrable au
sens deRIEEMANN sur [a,b] et siintegre terme a
terme :

b w (b
JLuO)dx=3 2o w (x)ab.
Le théoreme 1 implique que les fonctions réglées
sont intégrables au sens dEMRANN :

COROLLAIRE 2. — Soit f :[a,b] - R une fonc-
tion réglée sufa,b]. Alors, f est intégrable au sens
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de RIEMANN sur [a,b] et son intégrale dRIEMANN
coincide avec son intégrale définie entred b.

La fonction régléef :[a,b] - R est REMANN inté-
grable comme limite uniforme d'une suifef;, f,,...) de
fonctions en escalier (doncHRMANN intégrables en vertu
de la proposition 1). En outre, I’intégDraIe défidie f en-
tre a et b est la limite des intégraleg f,(x)dx (cf. cha-
pitre 1), tout comme l'intégrale delBMANN de f en vertu
du théoréeme Im

2. — Le critere d’intégrabilité de Riemann

L’intégrabilité (au sens delRMANN) d’une fonc-
tion réelle bornée sur un interval[a,b] est directe-
ment reliée a la maniére dont cette derniere escill
autour de chacune de ses valeurs. Un premieraritér
dd a ReMANN, établit qu’'une fonction bornée
f:[a,b] - R est intégrable si et seulement si son
oscillation moyenne est nulle. Nous exposons ci-
dessous ce résultat.

2.1. Oscillation sur un ensemble. —€onsidérons
une fonction bornéd :[a,b] - R . Pour toute partie
V de[a,b], on note respectivement par

m(f.V )= Infy, f(x)etM(fV ¥ Sup, f(x
la borne inférieure et la borne supérieurefdsurV .
La différence

o(fV)=M(fV)-m(fV'
est appeléedscillationde f surV . On posera :

m(f)=m(f[al ), M(fx M(f[ab, et
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Q(f)=o(f[ab])=M(f)-m(f).
On vérifie immédiatement que :
0<Q(f)<2Supeyen T(X)= 2 1.
ol |f|. =Supc.p| f(Xx) désigne la norme uni-
forme def sur|a,b|.
On notera pour la suite que \6iW sont deux par-
ties de[a,b] telles quenv OV, alors on a
m(fV)xm(fWg M(fWg M(fV,
et donc:
Oso(fW)sw(fV)<Q(f).

2.2. Sommes de Darboux. —Pour toute subdivi-
sion g:a=x,<x<..<X%=b du segment{a,tﬂ,
posonsm =m(f} x . xs ], M;=M(f[%,x4])
etw =o( f[% Xy |). Les sommes :

(o)== (K =% M,
Z(1.0)= T 6 =% M,

o 1.0)= 2% (Xaa =% Jn
sont appeléesomme d®ARBOUX inférieure somme
de DARBOUX supérieureet oscillation moyenneale
f relatives a la subdivisioa .

On dira qu'une subdivisiow™ de [a,b] estplus
fine gu’une subdivisiors si les points de subdivision
de & sont des points de subdivision @&. Etant
donné deux subdivisions et ¢” de [a,b], on notera
o 00" la subdivision formée des points deet de
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o5 Il est clair ques O 67 est plus fine que et 67.
Avec ces notations, on a:

PROPOSITION4. — Soit f :[a,b] - R une fonc-
tion bornée.

(i) Pour toute subdivision riemannienne,£) de
[a,b],ona:

2 (fo)sS(fp,d)s2, (o) ;

(i) Si la subdivisions” de [a,b] est plus fine que
la subdivisions , on a :

Y (fo)sz (foMsz,(fol)s2, (fo);

(iii) Quelles que soient les subdivisions rieman-
niennes ¢,¢) et (¢7,¢7) defa,b], ona:

‘S( fp,&)=S(f pu,fu)‘Sw( fo)+o f,o0).

La propriété(i) est immédiate. Pour démontrer la pro-
priété (i), il suffit de considérer le cas ow" est obtenue
en ajoutant un point supplémentaitea la subdivisions .
Si cO[X X4 |, lnégalité =_(f,o)s2_(f,07) se ra-
méne alors a la relation :

(%42 =% )M( f[¥ aNl] x (e x )m( {'ix }' )

+(Xa—C)M(ffc.xa])
qui résulte immédiatement du fait que( | % ,>|<+1:| ) est
inférieur ou égal am( f[ % ,c|]) et am(f[c,x, [) On
démontre de méme [linégalite, (f ,c%)< >, (f,0),
d’'ou I'assertion(ii). Pour démontrer I'assertid(ii) , consi-
dérons une subdivision riemanniennerd6%¢) de
[a,b]. Comme la subdivisiow O " est plus fine ques,
le segment| >_(f,oc06%),%,(f,c00")| est contenu
dans le segment[X_(f,s),Z,(f,0)] "en vertu de
lassertion ii). Il s’ensuit queS( f g O05,¢) appartient
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au segmen{X_( f o), Z,( f,0)], tout commeS( f 7.¢)
(en vertu ddi)), d'ou :

(1)[S(F7)=S(170%0) S 2, (1.0)=2.(1.0)
=w(f,0).
Le méme raisonnement montre que :
(2)\5( fpO06%¢)-S(f a”,g”)\m(f,aﬂ),

et I'assertion(iii) résulte alors immédiatement &) et
(2)(via l'inégalité triangulaire)m

Le lemme suivant permet de compatgrf ,o) et
o( f,o5) sans supposer que I'une ou l'autre des sub-
divisions o,¢5 est plus fine que l'autre.

LEMME 1. — Soient f :[a,b] » R une fonction
bornée ets, une subdivision defa,b]. Notons
N(o,) le nombre de points de subdivision dg.
Alors on a, pour toute subdivisian de [a,b] :

o F.0)s o F.0,)+2N(0,)2(f)5(a).

Notons x,; (resp. x;) les points de subdivision de
o, (resp. dec) et w,; (resp.w;) l'oscillation de f sur
Xo i ,><O’i+1:| (resp. sur[xj ,%41 |)- Pour tous les interval-
les [xj , -+1] contenus dans un méme intervalle
gxo,i Xoi+1 |» ON @) Sa,; ; par conséquent, la somme
es quantité x;,; — X Jv; correspondantes est majoree
par (X,i+1 = %o J0o ;- Il s’ensuit que la somme des nom-
bres(X;,, = X; Jv; associes aux intervalle[9<j ,x‘-,,l] qui
sont contenus dans un intervalle, ;, X, ; 1] est majorée
par o( f,o,). Les intervalles| x;,%,, | non contenus
dans un intervallg x, ,)Q)M] sont au plus au nombre de
2+2(N(o,)—2)<2N(o,) . Pour de tels intervalles, le
nombre (X;,; =X ko; est majoré paré(s)Q(f). La
somme des quantitds;,; = X; Jv; associées aux interval-
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les [xj, -+1] non contenus dans un intervalle
g%,i,&’i+lﬁ est donc majorée paN(o,)Q2( f)o(o),
‘ol le lemme 1m

2.3. Oscillation moyenne d’une fonction. —Soit
f :[a,b] » R une fonction bornée. On appetiscil-
lation moyennale f la borne inférieuran( f ) des
oscillations w( f ,o) lorsque ¢ parcourt I'ensemble
des subdivisions dfa,b] . Montrons que cette oscil-
lation moyenne est aussi la limite de6f ,o) quand
5(0’) - 0:

PROPOSITIONS. — L’oscillation moyennedw( f )
d’une fonction bornée :[a,b] — R est la limite des
oscillationsw( f ,o) relatives aux subdivisiong de
[a,b] quandé(s) - 0.

Par définition de I'oscillation moyenne, il exista effet
pour toute >0 une subdivisiors, de[a,b] telle que :
o(f)so(fo,)so(f)+5.
Choisissonsy >0 tel que N(o,)Q(f)y<4. D'apres le
lemme 1, on a pour toute subdivision telle que
o)<y .
o(f)so(f,o)so(f,o,)+2N(cy)Q(f )y
st+a(f)+S=a(f)+e,
d'ou |@( f)=-w(f,s)|<e. Ceci démontre la proposition
5nm

Il résulte de la proposition 5 que l'oscillation
moyenne d'une fonction bornée est nulle si et seule
ment si 'une des conditions équivalentes suivantes
est vérifiée :
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(i) Pour toute >0, il existe >0 tel que I'on ait,
pour toute subdivision de[a,b] :
oo)sn=>w(fo)<e ;
(it) Pour toute >0, il existe une subdivisiom
de[a,b] telle quea( f,o)<e.

2.4. Le critere de Riemann. —Avec les notations
de la section précédente, le critéere d’intégrabitie
RIEMANN s’énonce :

THEOREME 2. — Une fonction réelle bornée
f:[a,b] - R estintégrable au sens EEMANN si
et seulement si son oscillation moyennéf ) est
nulle.

Supposons quéd soit intégrable au sens deERANN et
montrons quew( f )=0. Pour toute >0, il existe une
subdivision

gra=Xx<x<.<x=bhb
de [a,b] telle que I'on ait, quels que soient les choixcde
et avecd & O[% Xy |-
(1) [S(fr&)-S(fré)<e.
Choisissons des suit€g, ), et (&', ), telles que, pour tout
i=0,1,.,n— 1 on ait f({;)->m et f(');)-> M
quandv - . De larelation(1), on déduit :

PUNCRESDEICHERIEND P
d’ou, en faisant tendre vers I'infini :
o 1,0)= T (% =% N(M —m )se.

Comme ¢ >0 est arbitraire, il s’ensuit que I'oscillation
moyenne def est nulle.
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Inversement, sio( f ) =0, il existe pour touts >0 un
réel >0 tel que l'on ait pour toute subdivision de
[a,b] (cf. proposition 5) :

(2) d(o)sn=0(fo)<s.
Mais alors, si(a,&) et (6°,¢P) sont deux subdivisions
riemanniennes dga,b] qui vérifient 6(c ),5(c") <7, on
a en vertu de la proposition() et de la relatior{2) :
‘S( f,&)-S(f ﬁD,fD)‘Sw( fo)+o fol)<e,

ce qui prouve quef est intégrable au sens deERANN
sur[a,b]. m

Ainsi, une fonction bornéé :[a,b] -~ R est inté-
grable au sens delEMANN si et seulement si I'une
des deux conditions équivalentes suivantes est réal
sée:

(i) Pour toute >0, il existen >0 tel que I'on ait,
pour toute subdivision de[a,b] :

oo)sn=>w(fo)<e;

(ii) Pour toute >0, il existe une subdivisiomr
de[a,b] telle quea( f,o)<e.

On en déduit la caractérisation alternative susant
des fonctions intégrables au sens ¢aviRNN :

COROLLAIRE 3. — Une fonctionf :[a,b] - R est
intégrable au sens dBIEMANN si et seulement s'il
existe, pour toute >0, deux fonctionse, et g, en
escalier surfa,b] vérifiant e, < f< g et

[Ta.(x)-e (x] dse.
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Si f est Riemann intégrable s{ia,b], il existe pour
tout ¢ >0 une subdivisiors:a=x, <X <..< X = bde
[a,b] telle que I'on ait (cf. théoréeme 2) :

(1) 2, (fo)=-2_(fo)=w(f,o)<e.
Notons e, (resp. g,) la fonction en escalier égale a

m( f[% %] )resp. aM(f[x.x,0])) sur[x x,.[ et
a f(b) aupointb.Onae < f< g et comme:

b b
S (fo)=] e (x)dx, Z.(f,0)=] g (x)dx,
la relation(1) implique que :

j:[gg(x)— g (x) dxe.

Inversement, supposons l'existence de deux forngtion
en escalier e, et g, Vvérifiant les conditions du corollaire
3 et montrons quef est intégrable au sens deERANN.
Commee, et g, sont bornées, la relatiog < f < g. im-
plique que f est bornée. Notons, une subdivision de
[a,b] associée &, (i.e. e, est constante entre deux points
consécutifs des, ). Quitte & modifiere, aux points des,
(par exemple en remplagant la valeur gleen ces points
par celle def ) on peut supposer, sans changer la relation
e. < f, que la borne inférieure dé sur chaque intervalle
de la subdivisions, est égale a la valeur prise par a
l'intérieur de cet intervalle. L’intégrale définde e, n'est
pas modifiée, eton a:

b
T(e 0,)=], e (x)dx.

De méme, il existe une subdivisiarl' associée &, (que

'on a éventuellement modifiée en certains poirgscdtte

subdivision sans changer la relatidn< g, ) telle que I'on
ait :

2,00, 0% =[2 g, (x)dx.

On peut donc choisir les subdivisions et o7 de telle
sorte que l'on ait :
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2.0, 0 -2(e 0,)=[ 9. (x)dx-[ & (x)dbK .
Considérons alors la subdivisian= o, O " de[a,b]. De
la relatione, < f on déduit que :

2 (eo,)s2 (fo,)s2_(f,0).
De méme, on montre que :
2 (fo)s 2 (fo)s 2 (g0r),
d’ou I'on déduit finalement que :
o 1,0)S2,(9,07)-2_(e 0,)Se.
Il résulte alors du théoréme 2 queest intégrable au sens
de REMANN sur[a,b] .m

3. — Le critere d'intégrabilité de Lebesgue

Nous démontrons dans ce paragraphe qu’une fonc-
tion bornée f :[a,b] » R est intégrable au sens de
RIEMANN si et seulement si I'ensemble de ses points
de discontinuité est négligeable. Ce critére, diEa
BESGUE relie I'intégrabilité d’'une fonction a la « pe-
titesse » de I'ensemble de ses discontinuitésstll e
trés utile en pratiqgue, méme s'il souligne surtigut
caractére trés particulier des fonctions intégiable
sens de RMANN.

3.1. Oscillation d'une fonction. —Rappelons tout
d’abord la définition de I'oscillation d'une fonot
bornéef :[a,b] - R en un pointxO[a,b.

DEFINITION 2. — Soient f :[a,b] - R une fonc-
tion bornée etxO[a,b]. On appelle oscillation def
au pointx la borne inférieure

o f,x)=inf, o V)
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des oscillationsw( f,V ) de f sur V lorsqueV par-
court 'ensemble des voisinages dedans|a,b] .

On vérifie aisément que( f,x) coincide avec la
borne inférieure deso( f [a,b] n 1) lorsquel par-
court 'ensemble des intervalles ouverts contenant

Par définition, la fonctionf est continue au point
x si et seulement sb( f,x)=0. Si f posséde une
limite a droite f(x+0) et une limite a gauche
f(x-0) au point xO] a,b[, on vérifie aisément
gue w( f,x) est le plus grand des trois nombres sui-
vants : |f(x+0)- f(x=0), |[f(x)-f(x+0]} et
|f(x)- f(x-0).

La fonction x - w( f,Xx) n’est pas continue en gé-
néral. Elle est cependant toujours semi-continpé-su
rieurement, comme nous allons le voir. Rappelons
qu'une fonction réelleh:[a,b] - R est ditesemi-
continue supérieuremenau point xO[a,f s'il
existe, pour tout réek >0, un voisinageV de x
dans[a,b] tel que :

yOV= h(y)s h(x)e.
Si h est semi-continue supérieurement en tout point
xO[a,b, on dit qu'elle est semi-continue supérieu-
rement sur[a,b]. On vérifie immédiatement que la
semi-continuité supérieure desur[a,b] équivaut &
'une ou l'autre des deux assertions équivalentés s
vantes :

(i) Pour toutZ O R, l'ensemble dexO[a,b tels
que h(x)< 4 est ouvert danfa,b] ;

(i) Pour tout A0R, l'ensemble desxO[a,d
tels queh(x)z 4 est fermé (danfa,b] ).
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Avec ces rappels, on a :

PROPOSITION6. — Soit f :[a,b] - R une fonc-
tion bornée. Alors, I'application x w(f,x) est
semi-continue supérieurement dur,b]. En particu-
lier, pour tout @20, I'ensemble desxO[a,b tels
que o( f,x)2a estfermé danfa,b] .

Il suffit de vérifier que, sit > w( f,x), il existe un voi-
sinageV de x dans[a,b] tel que 2> w( f,y) quel que
soit yOV . Or, si A>w( f,x), il existe un voisinagéV
de x dans[a,b] tel que w(f W )<.. Choisissons un
voisinage ouverV de x dans[a,b] qui soit inclus dans
W . CommeV est un voisinage de chacun de ses points,
ona:

o(f,y)o(fV)<o(f W),
pour tout yOV, ce qui démontre que la fonction
X - o f,x) est semi-continue supérieuremant.

3.2. Ensembles négligeables. -©n dit qu'un
sous-ensembl& O R estnégligeable(ou de mesure
nulle) s’l existe, pour toute>0, une suite
d'intervalles 1, =[a,,b,], nz1, dont la réunion
contient N et dont la somme des longueurs est infé-
rieure ou égale a:

NOOpl, ety b -a,se.

On notera qu'un sous-ensemble négligeable
NOR est nécessairement dintérieur vide (s'il
contenait un intervalle ouvert, ce dernier devégie
de longueur inférieur a tout >0, ce qui est ab-
surde). Tout sous-ensemble fini fia,b] est claire-
ment négligeable. Un sous-ensemble dénombrable de
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[a,b] est également négligeable en vertu de la propo-
sition suivante :

PROPOSITION 7. — Une réunion dénombrable
d’ensembles négligeables est négligeable.

Soit en effetN,;,N, ,... une suite d’ensembles négligea-
bles et notonsN leur réunion. Pour tout >0 et tout en-
tier n2 1, il existe une suité | , ), d'intervalles dont la
réunion contientl, et dont la somme des longueurs est
<. Les intervallesl ), (n,k2 1) recouvrent alorsN
et vérifient :

Zn,leljlnyk|=2rzl(2|ell n,k|)sz 2 ﬁ=5,

ou |I| désigne la longueur de l'intervalle, de sorte que
N est négligeablen

On prendra garde au fait qu'une réunion non dé-
nombrable d’ensembles négligeables n'est pas négli-
geable en général (sinon tout ensemble non vide de
réels serait négligeable comme réunion de sesg)oint
On notera également qu'il existe des ensembles né-
gligeables qui ne sont pas dénombrables.

C'est par exemple le cas de lI'ensemble triadique de
CanTor K 0[0,1], constitué des réels de la forme :

x=%+%+%+
ou les a, sont tous égaux & ou a 2. Cet ensemble
s'obtient & partir du segmef0,1] en itérant la construc-
tion qui consiste a diviser un intervalle fermé ri@ren
trois segments égaux, et a enlever les pointsiéntér a la
partie du milieu. Ainsi, en retranchant de l'intaite [0, 1]

le sefment ouvert|1,2| | on obtient un sous-ensemble

3 '5[ : >
K, = O%] a [% ,1:| formé de deux intervalles fermés dont
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la somme des longueurs est égal§ aEn appliquant la
construction indiquée a chacun des intervalleskge on
construit alors un sous-ensemble

. =[o2]a[3 Jal3 2]e[2 o
qui est réunion del intervalles fermés dont la somme des
longueurs est égale = (%) . En itérant cette construc-
tion, on met en évidence une suite de fermés egwoit
[0O0K OK,O..0K,0OK,,O.
dont l'intersection est exactement I'ensemble deitOR
K. Comme I'ensemble deARTOR K est contenu dans
chaqueK,, qui est une réunion fin;]e d’intervalles dont la
somme des longueurs est égal g , il est négligeable.
En particulier, il est d’'intérieur vide. Enfink a la puis-
sance du contiffupuisqu'il a méme cardinal QL{@,Z}N .

Une propriété P(x) portant sur les points d’'un
segment [a,b] est dite vraie presque partoutsi
'ensemble des pointg ou elle n'est pas vérifiée est
négligeable. Ainsi, une fonction presque partout
continue est une fonction dont les points de digcon
nuité forment un ensemble négligeable.

3.3. La caractérisation de Lebesgue— Henri
LEBESGUE a donné une caractérisation trés simple
des fonctions intégrables au sens ¢aviRNN :

THEOREME 3. — Une fonction réelle bornée
f :[a,b] - R est intégrable au sens REEMANN Si

% Le développement dyadique « propre » d’'un noméee r
compris entred et 1 permet de mettre en bijectiof, 1]
(qui a la puissance du continu) et I'ensemble fodes
suites ded et del, qui a méme cardinalité qt{@,Z}N .
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et seulement si 'ensemble de ses points de discont
nuité est négligeable.

Supposons quéd soit intégrable au sens deERANN et
montrons que I'ensembl® des points ou elle n'est pas
continue est négligeable. Pour tout>0, considérons
I'ensemble D, =fx|:|[a,d| o f,x)Za} . Comme D
est la réunion des ensembl® ou n parcourt la suite
des entiers positifs, il suffit de’ montrer qi@, est négli-
geable pour toux >0. Puisque f est intégrable au sens
de REMANN, il existe pour tout >0 une subdivision

cra=x,<¥%<.<x%=b
de[a,b] telle que I'on ait :

o 1.0)= Ty (aa =% Yo F [ %0 ¥ ]S a5
Montrons queD,\ xo,xl,...,)g,} est inclus dans une ré-
union d’intervalles x ,>g+1:| dont la somme des longueurs
est 5. Puisqu’ ensemble fini de points est négligeable,
on en déduira queéd, est inclus dans une réunion finie
d’intervalles dont la somme des longueurs=st, et donc
gu’il est négligeable. Notonst I'ensemble des entiers
tels que lintervalle [x ,%,, | contienne un point de
D,\{%.% ...} . Comme ona:

DM %} B 0p[ % %],
il suffit de montrer que la somme des longueursiodis-
valles [ % ,%,, | pourid4 est<<. Or, pour touti 04,
lintervalle [ X ,%,, | est voisinage d’un poinkOD, de
sorte que 'on a:
o f ,[)ﬁ ,)§+1:|)2 o(f,xX)za.
Il s’ensuit que lI'on a :
0 iga (a1 = % )S2igs (K = X Jo( f ,[X+1 vX])
<so(f,o)gat,
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ce qui montre que la sommEiDA(xm—)g) des lon-
gueurs des intervalldsq %, | pourid4 est<<.

Supposons inversement que I'ensemhle des points
de discontinuité de la fonctiorfi soit négligeable et mon-
trons quef est intégrable au sens de&ERANN sur[a,b] .

Pour tout &>0, posons ¢ =m, ou
Q(f)=w(f[ab]). L'ensembleD, est négligeable (car
il est inclus dansD ). Il peut donc étre recouvert par des
intervalles ouvertsl, = ]a,,,[ dont la somme des lon-
gueurs esi<¢' . Comme D, est fermé (proposition 6) et
borné, il peut étre recouvert par un nombre fini
d'intervalles |, . Quitte & regrouper ces intervalles, on peut
supposer qu'ils sont deux a deux disjoints et letem
a.f [ (i=1,2,..,n) avec f <, . Sia appartient a
ay,B, [, on remplacera cet intervalle ppa,g, [, et on
procédera de méme pobr en remplacant éventuellement
Jon.B,[ par ]a,.b]. La somme des longueurs de tous
ces intervalles est dons ¢' . En outre, le complémentaire
F dans[a,b] de la réunion de ces intervalles est un en-
semble compact (c'est la réunion des intervalles
[ 0541 ])- Cela étant posé, on@( f,x)<e' pour tout
xO F . il existe donc un voisinagé(x) de x dans[a,b]
tel que w( f,V )<e¢'. Par compacité dé , on peut le re-
couvrir par un nombre fini de voisinag®q x ), et obtenir
ainsi une subdivision

Bi=yo<Hh<.< )i/n(i) = Oy
de chaque segmep, ¢ ,; | telle que l'on ait :
o( f[ Y)Y ])se
pour tout intervalle de cette subdivision. Notorera
g1a=X% <% <..< %= b la subdivision de[a,b] for-
mée de tous les pointg, ,y: , et montrons que I'on a :
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o(f,o)= Z?:Ol( Xjsg = X Yo( f ,[xj ,>g+1:| )<e.
A cet effet, notons4 I'ensemble des indiceg pour les-
quels I’intervalle[xj ,x]-+1:| est inclus dang-, et 4" son
complémentaire danf0,L,...m- }. Si jO4, on a (par
construction)e( f ,[xj ,xj+1:| )<¢', etdonc:
T i =X X £, 5 )6/ (b=2).
Si jO4',ona:
(Xjaa =% o0 [ X %0 ]S Oaa = RAT),
et donc:
2 i (X =% 2ol [ % % ])
<Qf )ZjDA'(Xjﬂ =% )
<)X (f-a)sQ(f)e.
Il s’ensuit que :
o(f,o)= ZTL-Ol( Xj41 =X Jo( f -[Xj % +l] )
<g'(b-a)+Q(f)e' =¢,
ce qui prouve quef est intégrable au sens dERANN en
vertu du théoréme &

COROLLARE 4. — Si f :[a,b] - R est intégrable
au sens d&IEMANN, la fonction|f| I'est aussi et on
a:

b b
‘ja f(x)d%su £(x) dx.

Comme la fonction| f| est continue aux points ot
I'est, elle est EMANN intégrable en vertu du théoréeme 3.
En outre, on 4S(f 7,&)|<S( f| #,&) pour toute subdi-
vision riemannienng¢,¢) de [a,b]. Le corollaire s’en
déduit par passage a la limise.
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COROLLARRE 5. — Si f,g:[a,b] -~ B sont inté-
grables au sens dRIEMANN, il en va de méme des
fonctions fg, Sup( f,g), Inf( f,g.

C’est une conséquence immédiate du théoréme 3.

COROLLAIRE 6. — Soienta<b< c. Une fonction
f:[a,b] - R estintégrable au sens EMANN si
et seulement si elle est intégrable duar,c] et sur
[c.b],etona:

I: F(x)dx=[ f(x)dx+j'f f(x)d.

Nous laissons le soin au lecteur d'établir ce tésuén
utilisant le théoréme 3 et en observant qu’une isigidn
de [a,c| et une subdivision dfc,d] fournissent, par jux-
taposition, une subdivision de,b] . m

Soit f :[a,b] - R une fonction intégrable au sens
de REMANN. Pour tout«Ofa,b], on posera par
convention : [ f(x)dx= 0. Par ailleurs, sz, sont
deux points dda,b] tels ques <, on posera :

jff(x)dx:—j; f(x)dx .

Avec ces notations, la relation deiASLES pour les
intégrales :

[7 £ (x)dx=] f(x)dx+jf f(x)d>
est vérifiée quels que soient les poiatg,yO[a,b] .

3.4. Intégrale de Riemann et primitives— Soit
f:[a,b] - R une fonction intégrable au sens de
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RIEMANN sur [a,b]. On appelleintégrale indéfinie
de f l'une quelconque des fonctions :

F(x)=[ f(t)dt+C,
ou C est une constante réelle. Indiquons quelques
propriétés de l'intégrale indéfinie.

PROPOSITION7. — Soit f :[a,b] - R une fonc-
tion intégrable au sens dREMANN sur [a,b] et po-
sons, pour touO[a,b :

F(x)=[, f(t)dt.

(i) F est continue sufa,b] ;

(i) F est dérivable en tout point ou f est conti-
nue, et on a F'(x)=f(x). En particulier,
F'(x)= f(x) pour presque toukO[a,l .

La propriétg(i) résulte immédiatement de l'inégalité :

FO0- ROy =|f foafs] |- .

ol X,y sont deux points quelconques fb]. Si f est
continue au pointx, il existe, pour toute >0, un réel
n >0 tel que I'on ait :
|x=x| <= F(x)=- f(x)<e.
Pour0<|x-x|<#, onaalors:
FOO-F(%) _ -1 | -
[FOERL— £ (x, ) = g CFC0)= £ el
I dt‘
X
x|
= x|
ce qui prouve qud= est dérivable erx,, de dérivée :
F'(%)= (%)

<1 ¢
[x=3|

&,
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Comme les discontinuités d’une fonctionERANN inté-
grable constituent un ensemble négligeable, lagqsitipn
7 est démontrém

Ainsi, pour une fonctionf :[a,b] » R intégrable
au sens de IRMANN, la fonction F(x)= [ f(t)dt
est continue et vérifieF'(x)= f(x) pour presque
tout xO[a,b. La fonction F peut donc étre consi-
dérée comme une primitive de en un sens généra-
lisé. On observera cependant que, si les fonctions
X - F(x)+ C™ admettentf(x) pour dérivée en
presque tout poink, ce ne sont pas les seules fonc-
tions continues a posséder cette propriété. En, effe
on peut montrer I'existence de fonctions continues
non constantes admettant presque partout une dérivé
nulle. En ajoutant une telle fonctionm, on obtient
une fonction continue dont la dérivée est presgue p
tout égale af , mais qui n'est pas égale & a une
constante pres. L'intégrale deERANN permet ce-
pendant d’exprimer une fonction dérivable a patér
sa dérivée, a condition que cette derniére soitdmor
et presque partout continue. On a en effet :

PROPOSITION8. — Soit F :[a,b] - R une fonc-
tion dérivable sufa,b]. Si F’ est bornée et presque
partout continue, on a pour towtd[a,d :

F(x)=F(a)+ [ F(t)dt.

En effet, la fonctionf = F' est REMANN intégrable en
vertu du crittre de EBESGUE Par ailleurs, fixons
xO[a,f et subdivisons l'intervallda,b] enn segments
|:><i X4 | de longueur*-2. D'apres le théoreme des ac-
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croissements finis, il existe pour tout=0,1,...,n— 1 un
réel & O[ X %4 | tel que l'on ait ;

F(%4)=F(X )=t = x )G
On en déduit que :

F(x)=F(a)= X5 FOta )= F(¥ )

= 2 (1 =% ) (&),

d’'ou I'égalité désirée en faisant tendre vers l'infini,
puisque f = F' est intégrable au sens dERANN. m

On notera qu’une fonction admettant une primitive
au sens indiqué au chapitre | n’est pas nécessaitem
intégrable au sens degRIANN, méme si elle est bor-
née. C'est par exemple le cas de la fonction ge- D
CHLET. Par ailleurs, on peut montrer qu'’il existe des
fonctions F :[a,b] - R dérivables, mais dont la dé-
rivée n'est pas RMANN intégrable. L'intégrale de
RIEMANN ne peut donc pas réellement étre considérée
comme l'opération inverse de la dérivafion

EXERCICES

Pour éviter toute confusion dans ce qui suit, rdppg qu’une
fonction f admet une primitiveF sur [a,b] si F'(x)= f(x)
sauf peut-étre pour un ensemble dénombrable deinsabie x .
Dans ce cas, l'intégrale définiﬁf(t)dt a un sens; c'est par
définition la différenceF(x)-F(a).

EXERCICE 1. On considére la fonctionf :[0,1] - R

définie par f(x)=1 si ;<x<3l5 (n=12,.), et

* C'est précisément pour essayer de clarifier |astioe de
la primitivation des fonctions bornées qUEBESGUEa in-
troduit I'intégrale qui porte son nom.
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f(x)=0 sinon. Montrer quef est REMANN intégrable
sur [O]] , mais qu’elle n'est pas réglée sur ce segment.

EXERcCICE 2 (Une fonction non RMANN intégrable,
dont le module est intégrabledn considére la fonction
f:[0,4] - R définie par f(x)=1 si x est rationnel et
f(x)=-1 sinon.

a) Montrer que f n'est pas BEMANN intégrable sur
[0.1], mais que|f| I'est.

b) Montrer que l'intégrale définieF(x)=J': f(t)dt a
un sens pour touXI:I[O,]] et donner sa valeur en fonction
de x. Montrer queF est dérivable partout, mais que€
n'est pas égale 4 .

ExercICE 3 (Une fonction réglée a ensemble de dis-
continuités partout densefPour toutx 2 0, on note(x) la
différence entrex et I'entier le plus voisin. Considérons la
fonction f :[0,1] - R définie paT :

()= o,

a) Déterminer I'ensemble des discontinuités de
Montrer que cet ensemble est dénombrable et partout
dense dan§0,1] .

b) Montrer quef est réglée. En déduire quieest in-
tégrable au sens deeRiANN sur [0,]] .

EXERCICE4 (Une fonction REMANN intégrable qui n'est
pas réglég Soit K 0[0,1] rensemble triadique deAB:-
TOR. On considére la fonctiorf : [0,1] -~ R égale al en
tout point deK et a 0 sinon. Montrer que les points de
discontinuité def sont exactement les points d&. En
déduire quef est REMANN intégrable, mais qu’elle n'est
pas réglée.

® Cet exemple est d(i AERANN.
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ExERCICE 5. Soit K 0[0,1] I'ensemble triadique de
CANTOR. Pour toutxd[0,1], on pose :
d(x,K)= InfDK|x—Lj

a) Montrer que la fonctiorx — d(x,K) est continue
sur[0,1].

b) On considére la fonctionf :[0,1] -~ R définie par
f(x)=d(x,K)si xOK et f(x)=1 si xOK. Montrer
que f est REMANN intégrable, mais qu’elle n’est pas ré-
glée (on pourra montrer qui€ est 'ensemble des points
de discontinuité def ).

EXERCICE6. Montrer que la série de fonctions :

+00 _1\n X"

Zn:O( 1) n+1l

est uniformément convergente smﬁf),]]. Calculer sa
somme et montrer que I’on a:

1_?"'— (n+1)2

—_[ In(1+ x¥x.

EXERCICE 7. Montrer que, poul0<r <1, la série de
fonctions :

Zn ,CoS( nx)—

est uniformément convergente s{@,2z]. En déduire
que : ,
[T In(1+r? =2rcos x)dx= C.

EXERCICE 8. Montrer que I'on a, pour toute fonction
continue f :[0,1] - R :
lim nj X" f(x)dx= f(1.
N - +o0
(On pourra se ramener au cas b(l)=0et majorer cha-
cune des mtegralef et j' pour un choix convenable
dea).

EXeERcICE 9 (Une limite simple des fonctionsERANN
intégrable qui n'est pas intégrablen range I'ensemble
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des rationnels compris entr® et 1 en une suite
(ry,ry,...). Pour tout entiem2 1, on note f,, la fonction
définie sur[0,1] par :

fo(x)=1si xO{r,rp,....1} et f,(x)=0 sinon.

a) Montrer que lesf, sont intégrables au sens de-R
MANN sur[0,1].

b) Montrer que la suitg f;, f,,...) est croissante et
gu’elle converge en tout point vers une fonctién qui
nest pas EMANN intégrable suff0,1]. La convergence
est-elle uniforme ?

¢) Montrer que la limite lim jlfn(x)dx existe, que
f posséde une primitivé sdP‘[U,ﬂ , mais que :

lim [ f,(x)dx# F(1)- F(0).

EXeERcICE 10 (Exemple d’'une fonction IRMANN inté-
grable avec un ensemble dense de discontinui®s)
considére la fonction périodique de périabeléfinie® sur
R par:

e(x)= xsi -3 <x<3 ete(x3)=0.

a) Montrer que, pour tow O R , la séneZ:’=l
convergente.

b) Pour xO[0,]], on posef(x)=Z:=Ie(n2X) . Déter-
miner I'ensembleD des discontinuités dé . Montrer que
D est dénombrable et partout dense dang] .

c) Montrer que f est REMANN intégrable suf0,1] et
calculer son intégrale deiERIANN.

e(nx)

- est

EXercICE 11 (Une fonction dérivable a dérivée non
RIEMANN intégrable) Soit F :[0,1] - R la fonction défi-
nie par F(x)= X sin(x—lz) si x#0 et F(0)=0 sinon.

8 La construction est dUEREEMANN .
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Montrer queF est dérivable suf0,1] , mais que sa déri-
vée F' n'est pas RMANN intégrable suf0,1] (on mon-
trera queF' n’est pas bornée).

EXERcICE 12 (Fonction continue, a dérivée nulle pres-
gue partout mais non constant&oit K I'ensemble tria-
dique de Cantor, et notoris,, le fermé obtenu lors de sa
construction aprés avoir enlevé successiven@htseg-
ments ouverts def0,1]. Soit f,:[0,1] -~ R lunique
fonction continue définie en posant(i) f,(0)=0,
f,(1)=1; (ii) f, est constante sur chaque intervalle ou-
vert du complémentaire di,, et prend respectivement les
vaIeursz—ln,%,...,z;;l sur ces intervalles, énumérés de la
gauche vers la droite(jii) f, est affine sur les segments
fermeés deK,,.

a) Montrer que les fonctionsf, sont croissantes et
convergent uniformément vers une fonction continue
sur[0,1].

b) Montrer que f est croissante et qué' =0 sur le
complémentaire d&K dans[0,1]. En déduire I'existence
de fonctions croissantes et continues [smﬂ] , dérivables
presque partout et de dérivée nulle, mais qui m¢ pas
constantes.

c) Calculerji f(x)dx et j'ole (x)dx.

EXercICE 13 (Une fonction REMANN intégrable qui
n'admet pas de primitiveBoit K I'ensemble triadique de
Cantor, et noton«,, le fermé obtenu lors de la construc-
tion de K aprés avoir enlevé successivemghtsegments
ouverts de[0,1]. Considérons la fonctiorf : [0,1] - R
définie par f(x)=1 si xOK et f(x)=0 sinon.

a) Montrer que f est intégrable au sens deERANN
sur[0,].

On suppose désormais qu'il existe une fonctionieont
nue F:[0,1] - R dérivable sauf sur un ensemble dé-
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nombrable D et qui vérifie F'(x)= f(x) pour xOD.
On poseG(x)= F(x)- F(0). Pour tout entiem=1, on
note G, :[0,1] - R I'unique fonction continue définie en
posant :(i) G,(0)=0, (i) G, est affine de pentd sur
chaque intervalle fermé dK,; (i) G, est constante sur
les intervalles du complémentaire He, .

b) Montrer que les fonction§,, convergent uniformeé-
ment sur[0,1] vers la fonction nulle.

c) Montrer que la dérivée d&—-G, est <0 sur le
complémentaire d’'un ensemble dénombrable. En déduir
gue G(x)< G, (x) pour toutx.

d) Montrer queF est constante, et que sa dérivée ne
peut pas étre égale & en dehors d’un ensemble dénom-
brable.

e) Déduire de ce qui précéde gden’admet pas de
primitive F au sens indiqué.



