
CHAPITRE II 

L’INTÉGRALE DE RIEMANN 

1. — Fonctions Riemann intégrables 

1.1. Définition de l’intégrale de Riemann. — 
Dans un mémoire de 18541, Bernhard RIEMANN  défi-
nit l’intégrale d’une fonction bornée [[[[ ]]]]f : a,b →→→→ ℝ  
comme la limite (lorsqu’elle existe) des sommes fi-
nies i ii f ( ξ )∆x∑∑∑∑  quand i iSup∆x 0→→→→ . Chaque 
somme i ii f ( ξ )∆x∑∑∑∑  est obtenue en divisant [[[[ ]]]]a,b  
en un nombre fini d’intervalles i i 1x ,x++++          de longueur 

i∆x , puis en choisissant arbitrairement un point 

iξ  dans chaque intervalle i i 1x ,x++++          ; elle s’interprète 
comme l’intégrale d’une fonction en escalier égale à 

if ( ξ )  sur i i 1x ,x++++          (cf. fig. 1). Pour que ce procédé 
définisse l’intégrale de f , il faut évidemment que les 
sommes i ii f ( ξ )∆x∑∑∑∑  convergent vers une limite 
                                                           
1 Bernhard RIEMANN  a défini l’intégrale qui porte son nom 
en 1854, dans les préliminaires d’un mémoire sur les séries 
trigonométriques. 
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quand i iSup∆x 0→→→→ , ce qu’impose RIEMANN . Détail-
lons cette construction.  

Soit [[[[ ]]]]f : a,b →→→→ ℝ  une fonction arbitraire. Par 
subdivision riemannienne de [[[[ ]]]]a,b , on désigne un 
couple (σ ,ξ )  formé d’une subdivision 

o 1 nσ : a x x ... x b= < < < == < < < == < < < == < < < =  
de [[[[ ]]]]a,b  et d’une suite o 1 n 1ξ ( ξ ,ξ ,...,ξ )−−−−====  de réels 
choisis de sorte que i i i 1ξ x ,x++++∈∈∈∈           quel que soit 
i 0,1,...,n 1= −= −= −= − . Le pas de la subdivision σ  est par 
définition la quantité : 

0 i n 1 i 1 iδ( σ ) Max ( x x )≤ ≤ − +≤ ≤ − +≤ ≤ − +≤ ≤ − += −= −= −= − . 

A toute subdivision riemannienne ( σ ,ξ )  de [[[[ ]]]]a,b , 
on associe la somme de RIEMANN  : 

n 1
i 1 i ii 0S( f ,σ ,ξ ) ( x x ) f (ξ )−−−−
++++===== −= −= −= −∑∑∑∑ . 

 

 

 

 

 

 

 

Fig.1. — Sommes de Riemann d’une fonction. 

DÉFINITION 1. — La fonction [[[[ ]]]]f : a,b →→→→ ℝ  est 
dite intégrable au sens de RIEMANN  sur [[[[ ]]]]a,b  si les 
sommes de RIEMANN  S( f ,σ ,ξ )  tendent vers une li-
mite I  quand δ( σ ) 0→→→→ . 
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Si f  est intégrable au sens de RIEMANN , la limite 
I  (qui est unique) est appelée intégrale de RIEMANN  
de f  sur [[[[ ]]]]a,b  ; on la note : 

b

a
I f ( x )dx==== ∫∫∫∫ . 

On désignera par [[[[ ]]]]1( a,b )RRRR  l’ensemble des fonc-
tions réelles intégrables au sens de RIEMANN  sur 
[[[[ ]]]]a,b . La fonction f  appartient donc à [[[[ ]]]]1( a,b )RRRR  
et a pour intégrale I  s’il existe, pour tout ε 0>>>> , un 
réel η 0>>>>  tel que l’on ait, quelle que soit la subdivi-
sion riemannienne ( σ ,ξ )  de [[[[ ]]]]a,b  : 

δ( σ ) η S( f ,σ ,ξ ) I ε≤≤≤≤ ⇒⇒⇒⇒ − ≤− ≤− ≤− ≤ . 

Comme ℝ  est un espace complet2, la convergence 
des sommes de RIEMANN  S( f ,σ ,ξ )  lorsque 
δ( σ ) 0→→→→  équivaut au fait qu’elles vérifient la pro-
priété de CAUCHY : 

S( f ,σ ,ξ ) S( f ,σ ,ξ ) 0∗ ∗∗ ∗∗ ∗∗ ∗− →− →− →− →  

quand δ( σ ),δ( σ ) 0∗∗∗∗ →→→→ . Ceci signifie qu’il existe, 
pour tout ε 0>>>> , un réel η 0>>>>  tel que l’on ait, quelles 
que soient les subdivisions riemanniennes ( σ ,ξ )  et 
( σ ,ξ )∗ ∗∗ ∗∗ ∗∗ ∗  de [[[[ ]]]]a,b : 

δ( σ ),δ( σ ) η S( f ,σ ,ξ ) S( f ,σ ,ξ ) ε∗ ∗ ∗∗ ∗ ∗∗ ∗ ∗∗ ∗ ∗≤≤≤≤ ⇒⇒⇒⇒ − ≤− ≤− ≤− ≤ . 

Donnons maintenant des exemples de fonctions in-
tégrables au sens de RIEMANN . 

PROPOSITION 1. — Toute fonction en escalier sur 
[[[[ ]]]]a,b  est intégrable au sens de RIEMANN , et son in-

                                                           
2 Rappelons que toute suite de CAUCHY de ℝ  converge. 
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tégrale de RIEMANN  coïncide avec son intégrale dé-
finie entre a  et b . 

En effet, soit [[[[ ]]]]f : a,b →→→→ ℝ  une fonction en escalier 
associée à une subdivision de [[[[ ]]]]a,b  en n  intervalles 

i i 1a ,a ++++          sur lesquels elle prend la valeur constante ic . 
Pour toute subdivision riemannienne ( σ ,ξ )  de [[[[ ]]]]a,b , on 
vérifie facilement (en considérant la subdivision formée 
des points de σ  et des ia ) que l’on a : 

n
i 1 i ii 0S( f ,σ ,ξ ) ( a a )c 4n f δ( σ )++++==== ∞∞∞∞− − ≤− − ≤− − ≤− − ≤∑∑∑∑ . 

Il s’ensuit que n
i 1 i ii 0S( f ,σ ,ξ ) ( a a )c++++====→ −→ −→ −→ −∑∑∑∑  quand 

δ( σ ) 0→→→→ , ce qui prouve que f  est RIEMANN  intégrable, 
d’intégrale égale à n

i 1 i ii 0( a a )c++++==== −−−−∑∑∑∑ . ■     

Plus généralement, toute fonction réglée sur [[[[ ]]]]a,b  
est intégrable au sens de RIEMANN , comme nous le 
verrons plus loin. On notera qu’il existe des fonctions 
non intégrables au sens de RIEMANN  et dont 
l’intégrale définie existe cependant.  

C’est le cas par exemple de la fonction de DIRICHLET 

[[[[ ]]]]χ : 0,1 →→→→ ℝ  définie par χ( x ) 0====  si x  est rationnel et 
χ( x ) 1====  sinon. La fonction χ  admet pour primitive (au 

sens défini au chapitre I) la fonction F( x ) x==== ; son inté-
grale est donc définie par la formule : 

1

o
χ( x )dx F(1) F(0 ) 1= − == − == − == − =∫∫∫∫ . 

La fonction χ  n’est cependant pas intégrable au sens de 
RIEMANN . On peut en effet associer à toute subdivision 

o 1 nσ : a x x ... x b= < < < == < < < == < < < == < < < =  
de [[[[ ]]]]0,1  une subdivision riemannienne ( σ ,ξ )  telle que 
tous les iξ  soient rationnels, et une autre (σ ,ξ )∗∗∗∗  dont tous 
les iξ

∗∗∗∗  sont irrationnels. On a alors : 
S(χ ,σ ,ξ ) S(χ ,σ ,ξ ) 0 1 1∗∗∗∗− = − =− = − =− = − =− = − = , 
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ce qui prouve que les sommes de RIEMANN  S(χ ,σ ,ξ )  ne 
convergent pas lorsque δ(σ ) 0→→→→ .     

1.2. Propriétés élémentaires de l’intégrale de Rie-
mann. — Une fonction intégrable au sens de RIE-

MANN  sur un intervalle [[[[ ]]]]a,b  est nécessairement bor-
née sur cet intervalle. En effet, désignons par 
 a x bf Sup f ( x )≤ ≤≤ ≤≤ ≤≤ ≤∞∞∞∞ ====  la norme de la convergence 
uniforme sur [[[[ ]]]]a,b  ; on a : 

PROPOSITION 2. — Soit [[[[ ]]]]f : a,b →→→→ ℝ  une fonc-
tion intégrable au sens de Riemann sur [[[[ ]]]]a,b . Alors, 
f  est bornée sur [[[[ ]]]]a,b  et on a : 

b

a
f ( x )dx (b a ) f ∞∞∞∞≤ −≤ −≤ −≤ −∫∫∫∫ . 

Comme f  est intégrable au sens de RIEMANN , il existe 
en vertu du critère de CAUCHY une subdivision : 

o 1 nσ : a x x ... x b= < < < == < < < == < < < == < < < =  

de [[[[ ]]]]a,b  telle que l’on ait, quelle que soit la manière de 
choisir ξ  et ξ ∗∗∗∗  pour former des subdivisions riemannien-
nes ( σ ,ξ )  et ( σ ,ξ )∗∗∗∗  de [[[[ ]]]]a,b  : 

(1)  S( f ,σ ,ξ ) S( f ,σ ,ξ ) 1∗∗∗∗− ≤− ≤− ≤− ≤ . 

Choisissons ξ  de sorte que j jξ x====  pour tout j . Pour i  
fixé et i i 1x x ,x++++∈∈∈∈          , choisissons ξ ∗∗∗∗  de sorte que j jξ ξ

∗∗∗∗ ====  
si j i≠≠≠≠  et  iξ x∗∗∗∗ ==== . La relation (1)s’écrit alors : 

i 1 i i( x x )( f ( x ) f ( x )) 1++++ − − ≤− − ≤− − ≤− − ≤  ; 

elle implique que : 

i 1 i i 1 i

1 1
i i ix x x xf ( x ) f ( x ) C Max ( f ( x ) )

+ ++ ++ ++ +− −− −− −− −≤ + ≤ = +≤ + ≤ = +≤ + ≤ = +≤ + ≤ = + . 
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Comme cette majoration est vraie pour tout i i 1x x ,x++++∈∈∈∈          , 
on a f ( x ) C≤≤≤≤  pour tout [[[[ ]]]]x a,b∈∈∈∈  et f  est bornée. De 
la majoration évidente : 

S( f ,σ ,ξ ) ( b a ) f ∞∞∞∞≤ −≤ −≤ −≤ −  

on déduit alors, en faisant tendre δ( σ ) vers 0  : 
b

a
f ( x )dx (b a ) f ∞∞∞∞≤ −≤ −≤ −≤ −∫∫∫∫ . ■ 

La proposition suivante énonce quelques propriétés 
élémentaires de l’intégrale de RIEMANN . 

PROPOSITION 3. — Soient a b<<<< . Alors [[[[ ]]]]1( a,b )RRRR  
est un sous-espace vectoriel de l’espace des fonctions 
bornées sur [[[[ ]]]]a,b  sur lequel l’intégrale de RIEMANN 

b

a
f f ( x )dx→→→→ ∫∫∫∫  est une forme linéaire possédant les 

propriétés suivantes : 
(i) Pour toute [[[[ ]]]]1f ( a,b )∈∈∈∈RRRR , on a : 

b

a
f ( x )dx (b a ) f ∞∞∞∞≤ −≤ −≤ −≤ −∫∫∫∫ . 

En particulier, la forme linéaire 
b

a
f f ( x )dx→→→→ ∫∫∫∫  est 

continue sur [[[[ ]]]]1( a,b )RRRR  muni de la norme de la 
convergence uniforme ; 

(ii) Si les fonctions f ,g  sont intégrables au sens 
de RIEMANN  et vérifient f ( x ) g( x )≤≤≤≤  pour tout x, 
on a : 

b b

a a
f ( x )dx g( x )dx≤≤≤≤∫ ∫∫ ∫∫ ∫∫ ∫ . 

En particulier, si m f ( x ) M≤ ≤≤ ≤≤ ≤≤ ≤  pour tout x, on a : 
b

a
m(b a ) f ( x )dx M(b a )− ≤ ≤ −− ≤ ≤ −− ≤ ≤ −− ≤ ≤ −∫∫∫∫ . 

Soient f ,g  deux fonctions intégrables au sens de RIE-

MANN  sur [[[[ ]]]]a,b  et λ,µ∈∈∈∈ℝ . Pour toute subdivision rie-
mannienne ( σ ,ξ )  de [[[[ ]]]]a,b , on a : 
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S(λf µg,σ ,ξ ) λS( f ,σ ,ξ ) µS( g,σ ,ξ )+ = ++ = ++ = ++ = + , 

et donc 
b b

a a
S(λf µg,σ ,ξ ) λ f ( x )dx µ g( x )dx+ → ++ → ++ → ++ → +∫ ∫∫ ∫∫ ∫∫ ∫  

quand δ( σ ) 0→→→→ . Ceci prouve que λf µg++++  est intégrable 
au sens de RIEMANN  sur [[[[ ]]]]a,b  et que : 

b b b

a a a
( λf µg )( x )dx λ f ( x )dx µ g( x )dx+ = ++ = ++ = ++ = +∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫ . 

Ainsi, [[[[ ]]]]1( a,b )RRRR  est un sous-espace vectoriel de l’espace 
des fonctions bornées sur [[[[ ]]]]a,b , et l’intégrale de RIEMANN  

b

a
f f ( x )dx→→→→ ∫∫∫∫  est une forme linéaire. La propriété (i) ré-

sulte de la proposition 2. Supposons enfin que les fonctions 
f ,g  de [[[[ ]]]]1( a,b )RRRR  vérifient f ( x ) g( x )≤≤≤≤  pour tout x . 

On en déduit que  S( f ,σ ,ξ ) S( g,σ ,ξ )≤≤≤≤  pour toute sub-
division riemannienne ( σ ,ξ )  de [[[[ ]]]]a,b , d’où la propriété 
(ii) quand δ( σ ) 0→→→→ . ■ 

1.3. Limites des fonctions intégrables. — Une 
limite simple de fonctions RIEMANN  intégrables n’est 
pas RIEMANN  intégrable en général (car cette limite 
peut ne pas être bornée). En revanche, pour les limi-
tes uniformes de fonctions intégrables au sens de RIE-

MANN , on a : 

THÉORÈME 1. — Soit [[[[ ]]]]nf : a,b →→→→ ℝ  une suite de 
fonctions intégrables au sens de RIEMANN  sur [[[[ ]]]]a,b . 
On suppose que les nf  convergent uniformément sur 
[[[[ ]]]]a,b  vers une fonction [[[[ ]]]]f : a,b →→→→ ℝ . Alors f  est 
intégrable au sens de RIEMANN  sur [[[[ ]]]]a,b  et on a :  

b b
na an

f ( x )dx lim f ( x )dx
→∞→∞→∞→∞

====∫ ∫∫ ∫∫ ∫∫ ∫ . 

En effet, de la relation : 
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b b
n p n pa a

f ( x )dx f ( x )dx (b a ) f f
∞∞∞∞

− ≤ − −− ≤ − −− ≤ − −− ≤ − −∫ ∫∫ ∫∫ ∫∫ ∫ , 

on déduit que la suite des intégrales 
b

n na
I f ( x )dx==== ∫∫∫∫  est 

de Cauchy, donc converge vers une limite I . Pour toute 
subdivision riemannienne ( σ ,ξ )  de [[[[ ]]]]a,b , on a : 

n

n n n

n n n n

S( f ,σ ,ξ ) I S( f ,σ ,ξ ) S( f ,σ ,ξ )

S( f ,σ ,ξ ) I I I

( b a ) f f S( f ,σ ,ξ ) I I I ,∞∞∞∞

− ≤ −− ≤ −− ≤ −− ≤ −
+ − + −+ − + −+ − + −+ − + −
≤ − − + − + −≤ − − + − + −≤ − − + − + −≤ − − + − + −

 

de sorte qu’il existe, pour tout ε 0>>>> , un entier N 1≥≥≥≥  tel 
que l’on ait : 

ε
N N2S( f ,σ ,ξ ) I S( f ,σ ,ξ ) I− ≤ + −− ≤ + −− ≤ + −− ≤ + −  

quelle que soit ( σ ,ξ ) . Comme N NS( f ,σ ,ξ ) I→→→→  quand 
δ(σ ) 0→→→→ , il existe η 0>>>>  tel que la condition δ( σ ) η≤≤≤≤  
implique ε

N N 2S( f ,σ ,ξ ) I− ≤− ≤− ≤− ≤ . Mais alors, on a : 
ε ε
2 2δ( σ ) η S( f ,σ ,ξ ) I ε≤≤≤≤ ⇒⇒⇒⇒ − ≤ + =− ≤ + =− ≤ + =− ≤ + = , 

ce qui prouve que f  est RIEMANN  intégrable et que son 
intégrale est égale à 

b
nan

I lim f ( x )dx
→∞→∞→∞→∞

==== ∫∫∫∫ . ■ 

Du théorème 1, on déduit immédiatement : 

COROLLAIRE 1. — La somme nn 0u u∞∞∞∞
======== ∑∑∑∑  d’une 

série uniformément convergente de fonctions RIE-

MANN  intégrables [[[[ ]]]]nu : a,b →→→→ℝ  est intégrable au 
sens de RIEMANN  sur [[[[ ]]]]a,b  et s’intègre terme à 
terme : 

b b
nn 0a a

u( x )dx u ( x )dx∞∞∞∞
======== ∑∑∑∑∫ ∫∫ ∫∫ ∫∫ ∫ . 

Le théorème 1 implique que les fonctions réglées 
sont intégrables au sens de RIEMANN  : 

COROLLAIRE 2. — Soit [[[[ ]]]]f : a,b →→→→ ℝ  une fonc-
tion réglée sur [[[[ ]]]]a,b . Alors, f  est intégrable au sens 
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de RIEMANN  sur [[[[ ]]]]a,b  et son intégrale de RIEMANN  
coïncide avec son intégrale définie entre a  à b . 

La fonction réglée [[[[ ]]]]f : a,b →→→→ ℝ  est RIEMANN  inté-
grable comme limite uniforme d’une suite 1 2( f , f ,...) de 
fonctions en escalier (donc RIEMANN  intégrables en vertu 
de la proposition 1). En outre, l’intégrale définie de f  en-
tre a  et b  est la limite des intégrales 

b
na

f ( x )dx∫∫∫∫  (cf. cha-
pitre I), tout comme l’intégrale de RIEMANN  de f  en vertu 
du théorème 1. ■  

2. — Le critère d’intégrabilité de Riemann 

L’intégrabilité (au sens de RIEMANN) d’une fonc-
tion réelle bornée sur un intervalle [[[[ ]]]]a,b  est directe-
ment reliée à la manière dont cette dernière oscille 
autour de chacune de ses valeurs. Un premier critère, 
dû à RIEMANN , établit qu’une fonction bornée 

[[[[ ]]]]f : a,b →→→→ ℝ  est intégrable si et seulement si son 
oscillation moyenne est nulle. Nous exposons ci-
dessous ce résultat. 

2.1. Oscillation sur un ensemble. — Considérons 
une fonction bornée [[[[ ]]]]f : a,b →→→→ ℝ . Pour toute partie 
V  de [[[[ ]]]]a,b , on note respectivement par 

x V x Vm( f ,V ) Inf f ( x ) et M( f ,V ) Sup f ( x )∈ ∈∈ ∈∈ ∈∈ ∈= == == == =  

la borne inférieure et la borne supérieure de f sur V .  
La différence 

ω( f ,V ) M( f ,V ) m( f ,V )= −= −= −= −  

est appelée l’oscillation de f  sur V . On posera : 
[[[[ ]]]] [[[[ ]]]]m( f ) m( f , a,b ), M( f ) M( f , a,b )= == == == = , et 
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[[[[ ]]]]Ω( f ) ω( f , a,b ) M( f ) m( f )= = −= = −= = −= = − . 

On vérifie immédiatement que : 

a x b0 Ω( f ) 2Sup f ( x ) 2 f≤ ≤≤ ≤≤ ≤≤ ≤ ∞∞∞∞≤ ≤ =≤ ≤ =≤ ≤ =≤ ≤ = , 

où a x bf Sup f ( x )≤ ≤≤ ≤≤ ≤≤ ≤∞∞∞∞ ====  désigne la norme uni-
forme de f  sur [[[[ ]]]]a,b .  

On notera pour la suite que, si V ,W  sont deux par-
ties de [[[[ ]]]]a,b  telles que W V⊂⊂⊂⊂ , alors on a : 

m( f ,V ) m( f ,W ) M( f ,W ) M( f ,V )≤ ≤ ≤≤ ≤ ≤≤ ≤ ≤≤ ≤ ≤ , 

et donc : 
0 ω( f ,W ) ω( f ,V ) Ω( f )≤ ≤ ≤≤ ≤ ≤≤ ≤ ≤≤ ≤ ≤ . 

2.2. Sommes de Darboux. — Pour toute subdivi-
sion o 1 nσ : a x x ... x b= < < < == < < < == < < < == < < < =  du segment [[[[ ]]]]a,b , 
posons i i i 1m m( f , x ,x )++++====          , i i i 1M M( f , x ,x )++++====           
et i i i 1ω ω( f , x ,x )++++====          . Les sommes : 

n 1
i 1 i ii 0Σ ( f ,σ ) ( x x )m−−−−

− +− +− +− +===== −= −= −= −∑∑∑∑ , 
n 1

i 1 i ii 0Σ ( f ,σ ) ( x x )M−−−−
+ ++ ++ ++ +===== −= −= −= −∑∑∑∑ , 

n 1
i 1 i ii 0ω( f ,σ ) ( x x )ω−−−−
++++===== −= −= −= −∑∑∑∑ , 

sont appelées somme de DARBOUX inférieure, somme 
de DARBOUX supérieure et oscillation moyenne de 
f  relatives à la subdivision σ .  

On dira qu’une subdivision σ∗∗∗∗  de [[[[ ]]]]a,b  est plus 
fine qu’une subdivision σ  si les points de subdivision 
de σ  sont des points de subdivision de σ∗∗∗∗ . Étant 
donné deux subdivisions σ  et σ∗∗∗∗  de [[[[ ]]]]a,b , on notera 
σ σ∗∗∗∗∪∪∪∪  la subdivision formée des points de σ  et de 
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σ∗∗∗∗ . Il est clair que σ σ∗∗∗∗∪∪∪∪  est plus fine que σ  et σ∗∗∗∗ . 
Avec ces notations, on a :    

PROPOSITION 4. — Soit [[[[ ]]]]f : a,b →→→→ ℝ  une fonc-
tion bornée. 

( i ) Pour toute subdivision riemannienne (σ ,ξ )  de 
[[[[ ]]]]a,b , on a : 

Σ ( f ,σ ) S( f ,σ ,ξ ) Σ ( f ,σ )− +− +− +− +≤ ≤≤ ≤≤ ≤≤ ≤  ; 

( ii ) Si la subdivision σ∗∗∗∗  de [[[[ ]]]]a,b  est plus fine que 
la subdivision σ , on a : 

Σ ( f ,σ ) Σ ( f ,σ ) Σ ( f ,σ ) Σ ( f ,σ )∗ ∗∗ ∗∗ ∗∗ ∗
− − + +− − + +− − + +− − + +≤ ≤ ≤≤ ≤ ≤≤ ≤ ≤≤ ≤ ≤  ; 

( iii ) Quelles que soient les subdivisions rieman-
niennes (σ ,ξ )  et (σ ,ξ )∗ ∗∗ ∗∗ ∗∗ ∗  de [[[[ ]]]]a,b , on a : 

S( f ,σ ,ξ ) S( f ,σ ,ξ ) ω( f ,σ ) ω( f ,σ )∗ ∗ ∗∗ ∗ ∗∗ ∗ ∗∗ ∗ ∗− ≤ +− ≤ +− ≤ +− ≤ + . 

La propriété (i) est immédiate. Pour démontrer la pro-
priété (ii), il suffit de considérer le cas où  σ∗∗∗∗  est obtenue 
en ajoutant un point supplémentaire c  à la subdivision σ . 
Si i i 1c x ,x++++∈∈∈∈          , l’inégalité Σ ( f ,σ ) Σ ( f ,σ )∗∗∗∗

− −− −− −− −≤≤≤≤  se ra-
mène alors à la relation : 

i 1 i i i 1 i i

i 1 i 1

( x x )m( f , x ,x ) ( c x )m( f , x ,c )

( x c )m( f , c,x ),
+ ++ ++ ++ +

+ ++ ++ ++ +

− ≤ −− ≤ −− ≤ −− ≤ −                        
+ −+ −+ −+ −         

 

qui résulte immédiatement du fait que i i 1m( f , x ,x )++++          est 
inférieur ou égal à im( f , x ,c )          et à i 1m( f , c,x )++++         . On 
démontre de même l’inégalité Σ ( f ,σ ) Σ ( f ,σ )∗∗∗∗

+ ++ ++ ++ +≤≤≤≤ , 
d’où l’assertion (ii).  Pour démontrer l’assertion (iii) , consi-
dérons une subdivision riemannienne ( σ σ ,ζ )∗∗∗∗∪∪∪∪  de 
[[[[ ]]]]a,b . Comme la subdivision σ σ∗∗∗∗∪∪∪∪  est plus fine que σ , 
le segment Σ ( f ,σ σ ), Σ ( f ,σ σ )∗ ∗∗ ∗∗ ∗∗ ∗

− +− +− +− +    ∪ ∪∪ ∪∪ ∪∪ ∪      est contenu 
dans le segment [[[[ ]]]]Σ ( f ,σ ), Σ ( f ,σ )− +− +− +− +  en vertu de 
l’assertion (ii) . Il s’ensuit que S( f ,σ σ ,ζ )∗∗∗∗∪∪∪∪  appartient 
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au segment [[[[ ]]]]Σ ( f ,σ ), Σ ( f ,σ )− +− +− +− + , tout comme S( f ,σ ,ξ )  
(en vertu de (i)), d’où : 

(1)
S( f ,σ ,ξ ) S( f ,σ σ ,ζ ) Σ ( f ,σ ) Σ ( f ,σ )

ω( f ,σ ).

∗∗∗∗
+ −+ −+ −+ −− ∪ ≤ −− ∪ ≤ −− ∪ ≤ −− ∪ ≤ −

====
    

Le même raisonnement montre que : 

( 2 ) S( f ,σ σ ,ζ ) S( f ,σ ,ξ ) ω( f ,σ ),∗ ∗ ∗ ∗∗ ∗ ∗ ∗∗ ∗ ∗ ∗∗ ∗ ∗ ∗∪ − ≤∪ − ≤∪ − ≤∪ − ≤  

et l’assertion (iii)  résulte alors immédiatement de (1)  et 
( 2 ) (via l’inégalité triangulaire). ■    

Le lemme suivant permet de comparer ω( f ,σ )  et 
ω( f ,σ )∗∗∗∗  sans supposer que l’une ou l’autre des sub-
divisions σ ,σ∗∗∗∗  est plus fine que l’autre.   

LEMME 1. — Soient [[[[ ]]]]f : a,b →→→→ ℝ  une fonction 
bornée et oσ  une subdivision de [[[[ ]]]]a,b . Notons 

oN(σ )  le nombre de points de subdivision de oσ . 
Alors on a, pour toute subdivision σ  de [[[[ ]]]]a,b  : 

o oω( f ,σ ) ω( f ,σ ) 2N(σ )Ω( f )δ(σ )≤ +≤ +≤ +≤ + . 

Notons o,ix  (resp. jx ) les points de subdivision de 

oσ (resp. de σ ) et o,iω  (resp. jω ) l’oscillation de f  sur 

o,i o,i 1x ,x ++++          (resp. sur j j 1x ,x ++++         ). Pour tous les interval-
les j j 1x ,x ++++          contenus dans un même intervalle 

o,i o,i 1x ,x ++++         , on a j o,iω ω≤≤≤≤  ; par conséquent, la somme 
des quantités j 1 j j( x x )ω++++ −−−−  correspondantes est majorée 
par o,i 1 o,i o,i( x x )ω++++ −−−− . Il s’ensuit que la somme des nom-
bres j 1 j j( x x )ω++++ −−−−  associés aux intervalles j j 1x ,x ++++          qui 
sont contenus dans un intervalle o,i o,i 1x ,x ++++          est majorée 
par oω( f ,σ ) . Les intervalles j j 1x ,x ++++          non contenus 
dans un intervalle o,i o,i 1x ,x ++++          sont au plus au nombre de 

o o2 2( N(σ ) 2 ) 2N(σ )+ − ≤+ − ≤+ − ≤+ − ≤ . Pour de tels intervalles, le 
nombre j 1 j j( x x )ω++++ −−−−  est majoré par δ( σ )Ω( f ) . La 
somme des quantités j 1 j j( x x )ω++++ −−−−  associées aux interval-
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les j j 1x ,x ++++          non contenus dans un intervalle 

o,i o,i 1x ,x ++++          est donc majorée par o2N(σ )Ω( f )δ( σ ) , 
d’où le lemme 1. ■            

2.3. Oscillation moyenne d’une fonction. — Soit 
[[[[ ]]]]f : a,b →→→→ ℝ  une fonction bornée. On appelle oscil-

lation moyenne de f  la borne inférieure ω( f )  des 
oscillations ω( f ,σ )  lorsque σ  parcourt l’ensemble 
des subdivisions de [[[[ ]]]]a,b . Montrons que cette oscil-
lation moyenne est aussi la limite des ω( f ,σ )  quand 
δ( σ ) 0→→→→ :   

PROPOSITION 5. — L’oscillation moyenne ω( f )  
d’une fonction bornée [[[[ ]]]]f : a,b →→→→ ℝ  est la limite des 
oscillations ω( f ,σ )  relatives aux subdivisions  σ  de 
[[[[ ]]]]a,b  quand δ( σ ) 0→→→→ . 

Par définition de l’oscillation moyenne, il existe en effet 
pour tout ε 0>>>>  une subdivision oσ  de [[[[ ]]]]a,b  telle que : 

ε
o 2ω( f ) ω( f ,σ ) ω( f )≤ ≤ +≤ ≤ +≤ ≤ +≤ ≤ + . 

Choisissons η 0>>>>  tel que ε
o 4N(σ )Ω( f )η ≤≤≤≤ . D’après le 

lemme 1, on a pour toute subdivision σ  telle que 
δ( σ ) η≤≤≤≤  : 

o o
ε ε
2 2

ω( f ) ω( f ,σ ) ω( f ,σ ) 2N(σ )Ω( f )η

ω( f ) ω( f ) ε,

≤ ≤ +≤ ≤ +≤ ≤ +≤ ≤ +
≤ + + = +≤ + + = +≤ + + = +≤ + + = +  

d’où ω( f ) ω( f ,σ ) ε− ≤− ≤− ≤− ≤ . Ceci démontre la proposition 
5. ■    

Il résulte de la proposition 5 que l’oscillation 
moyenne d’une fonction bornée est nulle si et seule-
ment si l’une des conditions équivalentes suivantes 
est vérifiée : 
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( i )  Pour tout ε 0>>>> , il existe η 0>>>>  tel que l’on ait, 
pour toute subdivision σ  de [[[[ ]]]]a,b  : 

δ( σ ) η ω( f ,σ ) ε≤≤≤≤ ⇒⇒⇒⇒ ≤≤≤≤  ; 

( ii )  Pour tout ε 0>>>> , il existe une subdivision σ  
de [[[[ ]]]]a,b  telle que ω( f ,σ ) ε≤≤≤≤ . 

2.4. Le critère de Riemann. — Avec les notations 
de la section précédente, le critère d’intégrabilité de 
RIEMANN  s’énonce : 

THÉORÈME 2. — Une fonction réelle bornée 
[[[[ ]]]]f : a,b →→→→ ℝ  est intégrable au sens de RIEMANN  si 

et seulement si son oscillation moyenne ω( f )  est 
nulle.   

Supposons que f soit intégrable au sens de RIEMANN  et 
montrons que ω( f ) 0==== . Pour tout ε 0>>>> , il existe une 
subdivision 

o 1 nσ : a x x ... x b= < < < == < < < == < < < == < < < =  
de [[[[ ]]]]a,b  telle que l’on ait, quels que soient les choix de ξ  
et ξ '  avec '

i i i i 1ξ ,ξ x ,x ++++∈∈∈∈           : 
(1)  S( f ,σ ,ξ ') S( f ,σ ,ξ ) ε− ≤− ≤− ≤− ≤ . 

Choisissons des suites ν ν( ξ )  et ν ν( ξ ' )  telles que, pour tout 
i 0,1,...,n 1= −= −= −= − , on ait ν ,i if ( ξ ) m→→→→  et ν ,i if ( ξ ' ) M→→→→  
quand ν → ∞→ ∞→ ∞→ ∞ . De la relation (1) , on déduit : 

n 1 '
i 1 i ν ,i ν ,ii 0 ( x x )( f (ξ ) f ( ξ ) ε

−−−−
++++==== − − ≤− − ≤− − ≤− − ≤∑∑∑∑ , 

d’où, en faisant tendre ν  vers l’infini : 
n 1

i 1 i i ii 0ω( f ,σ ) ( x x )( M m ) ε
−−−−

++++===== − − ≤= − − ≤= − − ≤= − − ≤∑∑∑∑ . 

Comme ε 0>>>>  est arbitraire, il s’ensuit que l’oscillation 
moyenne de f  est nulle.  
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Inversement, si ω( f ) 0==== , il existe pour tout ε 0>>>>  un 
réel η 0>>>>  tel que l’on ait pour toute subdivision σ  de 
[[[[ ]]]]a,b  (cf. proposition 5) :  

( 2 )  ε
2δ( σ ) η ω( f ,σ )≤≤≤≤ ⇒⇒⇒⇒ ≤≤≤≤ . 

Mais alors, si ( σ ,ξ )  et ( σ ,ξ )∗ ∗∗ ∗∗ ∗∗ ∗  sont deux subdivisions 
riemanniennes de [[[[ ]]]]a,b  qui vérifient δ(σ ),δ(σ ) η∗∗∗∗ ≤≤≤≤ , on 
a en vertu de la proposition 4 (iii)  et de la relation ( 2 )  : 

S( f ,σ ,ξ ) S( f ,σ ,ξ ) ω( f ,σ ) ω( f ,σ ) ε,∗ ∗ ∗∗ ∗ ∗∗ ∗ ∗∗ ∗ ∗− ≤ + ≤− ≤ + ≤− ≤ + ≤− ≤ + ≤  

ce qui prouve que f  est intégrable au sens de RIEMANN  
sur [[[[ ]]]]a,b . ■  

Ainsi, une fonction bornée [[[[ ]]]]f : a,b →→→→ ℝ  est inté-
grable au sens de RIEMANN  si et seulement si l’une 
des deux conditions équivalentes suivantes est réali-
sée : 

( i )  Pour tout ε 0>>>> , il existe η 0>>>>  tel que l’on ait, 
pour toute subdivision σ  de [[[[ ]]]]a,b  : 

δ( σ ) η ω( f ,σ ) ε≤≤≤≤ ⇒⇒⇒⇒ ≤≤≤≤  ; 

( ii )  Pour tout ε 0>>>> , il existe une subdivision σ  
de [[[[ ]]]]a,b  telle que ω( f ,σ ) ε≤≤≤≤ . 

On en déduit la caractérisation alternative suivante 
des fonctions intégrables au sens de RIEMANN  : 

COROLLAIRE 3. — Une fonction [[[[ ]]]]f : a,b →→→→ ℝ  est 
intégrable au sens de RIEMANN  si et seulement s’il 
existe, pour tout ε 0>>>> , deux fonctions εe  et εg  en 
escalier sur [[[[ ]]]]a,b  vérifiant  ε εe f g≤ ≤≤ ≤≤ ≤≤ ≤  et 

b
ε εa

g ( x ) e ( x ) dx ε− ≤− ≤− ≤− ≤        ∫∫∫∫ . 
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Si f  est Riemann intégrable sur [[[[ ]]]]a,b , il existe pour 
tout ε 0>>>>  une subdivision o 1 nσ : a x x ... x b= < < < == < < < == < < < == < < < =  de 
[[[[ ]]]]a,b  telle que l’on ait (cf. théorème 2) : 

(1)  Σ ( f ,σ ) Σ ( f ,σ ) ω( f ,σ ) ε+ −+ −+ −+ −− = ≤− = ≤− = ≤− = ≤ . 
Notons εe  (resp. εg ) la fonction en escalier égale à 

i i 1m( f , x ,x )++++         (resp. à i i 1M( f , x ,x )++++          ) sur i i 1x ,x++++         et 
à f ( b )  au point b . On a  ε εe f g≤ ≤≤ ≤≤ ≤≤ ≤  et, comme : 

b b
ε εa a

Σ ( f ,σ ) e ( x )dx, Σ ( f ,σ ) g ( x )dx− +− +− +− += == == == =∫ ∫∫ ∫∫ ∫∫ ∫ , 

la relation (1)  implique que : 
b

ε εa
g ( x ) e ( x ) dx ε− ≤− ≤− ≤− ≤        ∫∫∫∫ . 

Inversement, supposons l’existence de deux fonctions 
en escalier  εe  et εg  vérifiant les conditions du corollaire 
3 et montrons que f  est intégrable au sens de RIEMANN . 
Comme εe  et εg  sont bornées, la relation ε εe f g≤ ≤≤ ≤≤ ≤≤ ≤  im-
plique que f  est bornée. Notons εσ  une subdivision de 
[[[[ ]]]]a,b  associée à εe  (i.e. εe  est constante entre deux points 
consécutifs de εσ ). Quitte à modifier εe  aux points de εσ  
(par exemple en remplaçant la valeur de εe  en ces points 
par celle de f ) on peut supposer, sans changer la relation 

εe f≤≤≤≤ , que la borne inférieure de f  sur chaque intervalle 
de la subdivision εσ  est égale à la valeur prise par εe  à 
l’intérieur de cet intervalle. L’intégrale définie de εe  n’est 
pas modifiée, et on a : 

b
ε ε εa

Σ ( e ,σ ) e ( x )dx−−−− ==== ∫∫∫∫ . 

De même, il existe une subdivision εσ
∗∗∗∗  associée à εg (que 

l’on a éventuellement modifiée en certains points de cette 
subdivision sans changer la relation εf g≤≤≤≤ ) telle que l’on 
ait : 

b
ε ε εa

Σ ( g ,σ ) g ( x )dx∗∗∗∗
++++ ==== ∫∫∫∫ . 

On peut donc choisir les subdivisions εσ  et εσ
∗∗∗∗  de telle 

sorte que l’on ait : 
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b b
ε ε ε ε ε εa a

Σ ( g ,σ ) Σ ( e ,σ ) g ( x )dx e ( x )dx ε∗∗∗∗
+ −+ −+ −+ −− = − ≤− = − ≤− = − ≤− = − ≤∫ ∫∫ ∫∫ ∫∫ ∫ . 

Considérons alors la subdivision ε εσ σ σ∗∗∗∗= ∪= ∪= ∪= ∪  de [[[[ ]]]]a,b . De 
la relation εe f≤≤≤≤  on déduit que : 

ε ε εΣ ( e ,σ ) Σ ( f ,σ ) Σ ( f ,σ )− − −− − −− − −− − −≤ ≤≤ ≤≤ ≤≤ ≤ . 
De même, on montre que : 

ε εΣ ( f ,σ ) Σ ( f ,σ ) Σ ( g ,σ )∗ ∗∗ ∗∗ ∗∗ ∗
+ + ++ + ++ + ++ + +≤ ≤≤ ≤≤ ≤≤ ≤ , 

d’où l’on déduit finalement que : 

ε ε ε εω( f ,σ ) Σ ( g ,σ ) Σ ( e ,σ ) ε∗∗∗∗
+ −+ −+ −+ −≤ − ≤≤ − ≤≤ − ≤≤ − ≤ . 

Il résulte alors du théorème 2 que f est intégrable au sens 
de RIEMANN  sur [[[[ ]]]]a,b .■   

3. — Le critère d’intégrabilité de Lebesgue 

Nous démontrons dans ce paragraphe qu’une fonc-
tion bornée [[[[ ]]]]f : a,b →→→→ ℝ  est intégrable au sens de 
RIEMANN  si et seulement si l’ensemble de ses points 
de discontinuité est négligeable. Ce critère, dû à LE-

BESGUE, relie l’intégrabilité d’une fonction à la « pe-
titesse » de l’ensemble de ses discontinuités. Il est 
très utile en pratique, même s’il souligne surtout le 
caractère très particulier des fonctions intégrables au 
sens de RIEMANN . 

3.1. Oscillation d’une fonction. — Rappelons tout 
d’abord la définition de l’oscillation d’une fonction 
bornée [[[[ ]]]]f : a,b →→→→ ℝ  en un point [[[[ ]]]]x a,b∈∈∈∈ . 

DÉFINITION 2. — Soient [[[[ ]]]]f : a,b →→→→ ℝ  une fonc-
tion bornée et [[[[ ]]]]x a,b∈∈∈∈ . On appelle oscillation de f  
au point x la borne inférieure 

Vω( f ,x ) inf ω( f ,V )====  
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des oscillations ω( f ,V ) de f sur V lorsque V  par-
court l’ensemble des voisinages de x dans [[[[ ]]]]a,b . 

On vérifie aisément que ω( f ,x ) coïncide avec la 
borne inférieure des [[[[ ]]]]ω( f , a,b I )∩∩∩∩  lorsque I  par-
court l’ensemble des intervalles ouverts contenant x . 

 Par définition, la fonction f  est continue au point 
x  si et seulement si ω( f ,x ) 0==== . Si f  possède une 
limite à droite f ( x 0 )++++  et une limite à gauche 
f ( x 0 )−−−−  au point ]]]] [[[[x a,b∈∈∈∈ , on vérifie aisément 

que ω( f ,x ) est le plus grand des trois nombres sui-
vants : f ( x 0 ) f ( x 0 )+ − −+ − −+ − −+ − − , f ( x ) f ( x 0 )− +− +− +− +  et 
f ( x ) f ( x 0 )− −− −− −− − . 

La fonction x ω( f ,x )→→→→  n’est pas continue en gé-
néral. Elle est cependant toujours semi-continue supé-
rieurement, comme nous allons le voir. Rappelons 
qu’une fonction réelle [[[[ ]]]]h : a,b →→→→ ℝ  est dite semi-
continue supérieurement au point [[[[ ]]]]x a,b∈∈∈∈  s’il 
existe, pour tout réel ε 0>>>> , un voisinage V  de x  
dans [[[[ ]]]]a,b  tel que : 

y V h( y ) h( x ) ε∈∈∈∈ ⇒⇒⇒⇒ ≤ +≤ +≤ +≤ + . 
Si h  est semi-continue supérieurement en tout point 

[[[[ ]]]]x a,b∈∈∈∈ , on dit qu’elle est semi-continue supérieu-
rement sur [[[[ ]]]]a,b . On vérifie immédiatement que la  
semi-continuité supérieure de h  sur [[[[ ]]]]a,b  équivaut à 
l’une ou l’autre des deux assertions équivalentes sui-
vantes : 

( i )  Pour tout λ∈∈∈∈ℝ , l’ensemble des [[[[ ]]]]x a,b∈∈∈∈  tels 
que h( x ) λ<<<<  est ouvert dans [[[[ ]]]]a,b  ; 

( ii )  Pour tout λ∈∈∈∈ℝ , l’ensemble des [[[[ ]]]]x a,b∈∈∈∈  
tels que h( x ) λ≥≥≥≥  est fermé (dans [[[[ ]]]]a,b ). 
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Avec ces rappels, on a :   

PROPOSITION 6. — Soit [[[[ ]]]]f : a,b →→→→ ℝ  une fonc-
tion bornée. Alors, l’application x ω( f ,x )→→→→  est 
semi-continue supérieurement sur [[[[ ]]]]a,b . En particu-
lier, pour tout α 0≥≥≥≥ , l’ensemble des [[[[ ]]]]x a,b∈∈∈∈  tels 
que ω( f ,x ) α≥≥≥≥  est fermé dans [[[[ ]]]]a,b . 

Il suffit de vérifier que, si λ ω( f ,x )>>>> , il existe un voi-
sinage V  de x  dans [[[[ ]]]]a,b  tel que λ ω( f , y )>>>>  quel que 
soit y V∈∈∈∈ . Or, si λ ω( f ,x )>>>> , il existe un voisinage W  
de x  dans [[[[ ]]]]a,b  tel que ω( f ,W ) λ<<<< . Choisissons un 
voisinage ouvert V  de x  dans [[[[ ]]]]a,b  qui soit inclus dans 
W . Comme V  est un voisinage de chacun de ses points, 
on a : 

ω( f , y ) ω( f ,V ) ω( f ,W ) λ≤ ≤ <≤ ≤ <≤ ≤ <≤ ≤ < , 
pour tout y V∈∈∈∈ , ce qui démontre que la fonction 
x ω( f ,x )→→→→  est semi-continue supérieurement. ■ 

3.2. Ensembles négligeables. — On dit qu’un 
sous-ensemble N ⊂⊂⊂⊂ ℝ  est négligeable (ou de mesure 
nulle) s’il existe, pour tout ε 0>>>> , une suite 
d’intervalles n n nI a ,b====          , n 1≥≥≥≥ , dont la réunion 
contient N  et dont la somme des longueurs est infé-
rieure ou égale à ε : 

n 1 nN I≥≥≥≥⊂ ∪⊂ ∪⊂ ∪⊂ ∪  et n nn 1b a ε≥≥≥≥ − ≤− ≤− ≤− ≤∑∑∑∑ . 

On notera qu’un sous-ensemble négligeable 
N ⊂⊂⊂⊂ ℝ  est nécessairement d’intérieur vide (s’il 
contenait un intervalle ouvert, ce dernier devrait être 
de longueur inférieur à tout ε 0>>>> , ce qui est ab-
surde). Tout sous-ensemble fini de [[[[ ]]]]a,b  est claire-
ment négligeable. Un sous-ensemble dénombrable de 
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[[[[ ]]]]a,b  est également négligeable en vertu de la propo-
sition suivante : 

PROPOSITION 7. — Une réunion dénombrable 
d’ensembles négligeables est négligeable. 

Soit en effet 1 2N ,N ,... une suite d’ensembles négligea-
bles et notons N  leur réunion. Pour tout ε 0>>>>  et tout en-
tier n 1≥≥≥≥ , il existe une suite n,k k 1( I ) ≥≥≥≥  d’intervalles dont la 
réunion contient nI  et dont la somme des longueurs est 

n
ε

2
≤≤≤≤ . Les intervalles n,kI  ( n,k 1≥≥≥≥ )  recouvrent alors N  
et vérifient : 

(((( )))) n
ε

n,k n,kn,k 1 n 1 k 1 n 12
I I ε≥ ≥ ≥ ≥≥ ≥ ≥ ≥≥ ≥ ≥ ≥≥ ≥ ≥ ≥= ≤ == ≤ == ≤ == ≤ =∑ ∑ ∑ ∑∑ ∑ ∑ ∑∑ ∑ ∑ ∑∑ ∑ ∑ ∑ , 

où I  désigne la longueur de l’intervalle I , de sorte que 
N  est négligeable. ■ 

On prendra garde au fait qu’une réunion non dé-
nombrable d’ensembles négligeables n’est pas négli-
geable en général (sinon tout ensemble non vide de 
réels serait négligeable comme réunion de ses points). 
On notera également qu’il existe des ensembles né-
gligeables qui ne sont pas dénombrables. 

C’est par exemple le cas de l’ensemble triadique de 
CANTOR [[[[ ]]]]K 0,1⊂⊂⊂⊂ , constitué des réels x  de la forme : 

31 2
2 3

aa a
3 3 3

x ...= + + += + + += + + += + + +  

où les na  sont tous égaux à 0  ou à 2 . Cet ensemble 
s’obtient à partir du segment [[[[ ]]]]0,1  en itérant la construc-
tion qui consiste à diviser un intervalle fermé borné en 
trois segments égaux, et à enlever les points intérieurs à la 
partie du milieu. Ainsi, en retranchant de l’intervalle [[[[ ]]]]0,1  
le segment ouvert 1 2

3 3,         , on obtient un sous-ensemble 
1 2

1 3 3K 0, ,1            = ∪= ∪= ∪= ∪              formé de deux intervalles fermés dont 
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la somme des longueurs est égale à 2
3 . En appliquant la 

construction indiquée à chacun des intervalles de 1K , on 
construit alors un sous-ensemble 

2 2 2 2
7 81 2 1 2

2 13 33 3 3 3
K 0, , , ,1 K                            = ∪ ∪ ∪ ⊂= ∪ ∪ ∪ ⊂= ∪ ∪ ∪ ⊂= ∪ ∪ ∪ ⊂

                            
 

qui est réunion de 4  intervalles fermés dont la somme des 
longueurs est égale à (((( ))))24 2

9 3==== . En itérant cette construc-
tion, on met en évidence une suite de fermés emboîtés :  

[[[[ ]]]] 1 2 n n 10,1 K K ... K K ...++++⊃ ⊃ ⊃ ⊃ ⊃ ⊃⊃ ⊃ ⊃ ⊃ ⊃ ⊃⊃ ⊃ ⊃ ⊃ ⊃ ⊃⊃ ⊃ ⊃ ⊃ ⊃ ⊃  

dont l’intersection est exactement l’ensemble de CANTOR 
K . Comme l’ensemble de CANTOR K  est contenu dans 
chaque nK , qui est une réunion finie d’intervalles dont la 
somme des longueurs est égale à (((( ))))n2

3 , il est négligeable. 
En particulier, il est d’intérieur vide. Enfin, K  a la puis-
sance du continu3, puisqu’il a même cardinal que {{{{ }}}}0,2

ℕ
. 

Une propriété P( x ) portant sur les points d’un 
segment [[[[ ]]]]a,b  est dite vraie presque partout si 
l’ensemble des points x  où elle n’est pas vérifiée est  
négligeable. Ainsi, une fonction presque partout 
continue est une fonction dont les points de disconti-
nuité forment un ensemble négligeable. 

3.3. La caractérisation de Lebesgue. — Henri 
LEBESGUE a donné une caractérisation très simple 
des fonctions intégrables au sens de RIEMANN  : 

THÉORÈME 3. — Une fonction réelle bornée 
[[[[ ]]]]f : a,b →→→→ ℝ  est intégrable au sens de RIEMANN  si 

                                                           
3 Le développement dyadique « propre » d’un nombre réel 
compris entre 0  et 1  permet de mettre en bijection  [[[[ ]]]]0,1  
(qui a la puissance du continu) et l’ensemble formé des 
suites de 0  et de 1 ,  qui a même cardinalité que {{{{ }}}}0,2

ℕ
.  
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et seulement si l’ensemble de ses points de disconti-
nuité est négligeable. 

Supposons que f soit intégrable au sens de RIEMANN  et 
montrons que l’ensemble D  des points où elle n’est pas 
continue est négligeable. Pour tout α 0>>>> , considérons 
l’ensemble [[[[ ]]]]{{{{ }}}}αD x a,b ω( f ,x ) α= ∈ ≥= ∈ ≥= ∈ ≥= ∈ ≥ . Comme D  
est la réunion des ensembles 1

n
D  où n  parcourt la suite 

des entiers positifs, il suffit de montrer que αD  est négli-
geable pour tout α 0>>>> . Puisque f  est intégrable au sens 
de RIEMANN , il existe pour tout ε 0>>>>  une subdivision 

o 1 nσ : a x x ... x b= < < < == < < < == < < < == < < < =  

de [[[[ ]]]]a,b  telle que l’on ait : 
n 1 ε

i 1 i i 1 ii 0 2ω( f ,σ ) ( x x )ω( f , x ,x ) α
−−−−

+ ++ ++ ++ +===== − ≤= − ≤= − ≤= − ≤        ∑∑∑∑ . 

Montrons que {{{{ }}}}α o 1 nD x ,x ,...,x\  est inclus dans une ré-
union d’intervalles i i 1x ,x++++          dont la somme des longueurs 
est ε

2≤≤≤≤ . Puisqu’ ensemble fini de points est négligeable, 
on en déduira que αD  est inclus dans une réunion finie 
d’intervalles dont la somme des longueurs est ε≤≤≤≤ , et donc 
qu’il est négligeable. Notons Λ  l’ensemble des entiers i  
tels que l’intervalle i i 1x ,x++++          contienne un point de 

{{{{ }}}}α o 1 nD x ,x ,...,x\ . Comme on a : 

{{{{ }}}}α o 1 n i Λ i i 1D x ,x ,...,x x x\ ,∈ +∈ +∈ +∈ +⊂ ∪⊂ ∪⊂ ∪⊂ ∪          , 

il suffit de montrer que la somme des longueurs des inter-
valles i i 1x ,x++++          pour i Λ∈∈∈∈  est ε

2≤≤≤≤ . Or, pour tout i Λ∈∈∈∈ , 
l’intervalle i i 1x ,x++++          est voisinage d’un point αx D∈∈∈∈  de 
sorte que l’on a : 

i i 1ω( f , x ,x ) ω( f ,x ) α++++ ≥ ≥≥ ≥≥ ≥≥ ≥         . 

Il s’ensuit que l’on a : 

i 1 i i 1 i i 1 ii Λ i Λ
ε
2

α ( x x ) ( x x )ω( f , x ,x )

ω( f ,σ ) α ,
+ + ++ + ++ + ++ + +∈ ∈∈ ∈∈ ∈∈ ∈− ≤ −− ≤ −− ≤ −− ≤ −         

≤ ≤≤ ≤≤ ≤≤ ≤
∑ ∑∑ ∑∑ ∑∑ ∑
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ce qui montre que la somme i 1 ii Λ( x x )++++∈∈∈∈ −−−−∑∑∑∑  des lon-
gueurs des intervalles i i 1x ,x++++          pour i Λ∈∈∈∈  est ε

2≤≤≤≤ . 

Supposons inversement que l’ensemble D  des points 
de discontinuité de la fonction f  soit négligeable et mon-
trons que f  est intégrable au sens de RIEMANN  sur [[[[ ]]]]a,b . 
Pour tout ε 0>>>> , posons ε

Ω( f ) b aε ' + −+ −+ −+ −==== , où 
[[[[ ]]]]Ω( f ) ω( f , a,b )==== . L’ensemble ε'D  est négligeable (car 

il est inclus dans D ). Il peut donc être recouvert par des 
intervalles ouverts n n nI a ,β====           dont la somme des lon-
gueurs est ε'≤≤≤≤ . Comme ε'D  est fermé (proposition 6) et 
borné, il peut être recouvert par un nombre fini 
d’intervalles nI . Quitte à regrouper ces intervalles, on peut 
supposer qu’ils sont deux à deux disjoints et les noter 

i iα ,β          ( i 1,2,...,n==== ) avec i i 1β α ++++<<<< .  Si a  appartient à 
]]]] [[[[1 1α ,β , on remplacera cet intervalle par [[[[ [[[[1a,β , et on 
procédera de même pour b  en remplaçant éventuellement 

n nα ,β          par nα ,b         .  La somme des longueurs de tous 
ces intervalles est donc ε'≤≤≤≤ . En outre, le complémentaire 
F  dans [[[[ ]]]]a,b  de la réunion de ces intervalles est un en-
semble compact (c’est la réunion des intervalles 

i i 1β ,α ++++         ).  Cela étant posé, on a ω( f ,x ) ε '<<<<  pour tout 
x F∈∈∈∈ . Il existe donc un voisinage V( x ) de x  dans [[[[ ]]]]a,b  
tel que ω( f ,V ) ε'<<<< . Par compacité de F , on peut le re-
couvrir par un nombre fini de voisinages V( x ), et obtenir 
ainsi une subdivision 

i i i
i o 1 n( i ) i 1β y y ... y α ++++= < < < == < < < == < < < == < < < =  

de chaque segment i i 1β ,α ++++          telle que l’on ait : 
i i
j j 1ω( f , y , y ) ε '++++     ≤≤≤≤      

pour tout intervalle de cette subdivision. Notons alors 

o 1 mσ :a x x ... x b= < < < == < < < == < < < == < < < =  la subdivision de [[[[ ]]]]a,b  for-
mée de tous les points i

i i jα ,β , y , et montrons que l’on a : 
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m 1
j 1 j j j 1j 0ω( f ,σ ) ( x x )ω( f , x ,x ) ε

−−−−
+ ++ ++ ++ +====

    = − ≤= − ≤= − ≤= − ≤    ∑∑∑∑ . 

A cet effet, notons Λ  l’ensemble des indices j  pour les-
quels l’intervalle j j 1x ,x ++++          est inclus dans F , et Λ'  son 
complémentaire dans {{{{ }}}}0,1,...,m 1−−−− . Si j Λ∈∈∈∈ , on a (par 
construction) j j 1ω( f , x ,x ) ε '++++     <<<<     , et donc : 

j 1 j j j 1j Λ( x x )ω( f , x ,x ) ε '( b a )+ ++ ++ ++ +∈∈∈∈
    − ≤ −− ≤ −− ≤ −− ≤ −    ∑∑∑∑ . 

Si j Λ'∈∈∈∈ , on a : 

j 1 j j j 1 j 1 j( x x )ω( f , x ,x ) ( x x )Ω( f )+ + ++ + ++ + ++ + +    − ≤ −− ≤ −− ≤ −− ≤ −     , 

et donc : 

c j 1 j j j 1j Λ

j 1 jj Λ'
n

i ii 1

( x x )ω( f , x ,x )

Ω( f ) ( x x )

Ω( f ) ( β α ) Ω( f )ε' .

+ ++ ++ ++ +∈∈∈∈

++++∈∈∈∈

====

    −−−−     
≤ −≤ −≤ −≤ −

≤ − ≤≤ − ≤≤ − ≤≤ − ≤

∑∑∑∑
∑∑∑∑

∑∑∑∑

 

Il s’ensuit que : 
m 1

j 1 j j j 1j 0ω( f ,σ ) ( x x )ω( f , x ,x )

ε'( b a ) Ω( f )ε ' ε,

−−−−
+ ++ ++ ++ +====

    = −= −= −= −     
≤ − + =≤ − + =≤ − + =≤ − + =
∑∑∑∑   

ce qui prouve que f  est intégrable au sens de RIEMANN  en 
vertu du théorème 2. ■ 

COROLLAIRE 4. — Si [[[[ ]]]]f : a,b →→→→ ℝ  est intégrable 
au sens de RIEMANN , la fonction f  l’est aussi et on 
a : 

b b

a a
f ( x )dx f ( x ) dx≤≤≤≤∫ ∫∫ ∫∫ ∫∫ ∫ . 

Comme la fonction f  est continue aux points où f  
l’est, elle est RIEMANN  intégrable en vertu du théorème 3. 
En outre, on a S( f ,σ ,ξ ) S( f ,σ ,ξ )≤≤≤≤  pour toute subdi-
vision riemannienne ( σ ,ξ )  de [[[[ ]]]]a,b . Le corollaire s’en 
déduit par passage à la limite. ■ 
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COROLLAIRE 5. — Si [[[[ ]]]]f ,g : a,b →→→→ℝ  sont inté-
grables au sens de RIEMANN , il en va de même des 
fonctions fg , Sup( f ,g ), Inf ( f ,g ). 

C’est une conséquence immédiate du théorème 3. ■ 

COROLLAIRE 6. — Soient a b c< << << << < . Une fonction 
[[[[ ]]]]f : a,b →→→→ ℝ  est intégrable au sens de RIEMANN  si 

et seulement si elle est intégrable sur [[[[ ]]]]a,c  et sur 
[[[[ ]]]]c,b , et on a : 

b c b

a a c
f ( x )dx f ( x )dx f ( x )dx= += += += +∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫ . 

Nous laissons le soin au lecteur d’établir ce résultat, en 
utilisant le théorème 3 et en observant qu’une subdivision 
de [[[[ ]]]]a,c  et une subdivision de [[[[ ]]]]c,d  fournissent, par jux-
taposition, une subdivision de [[[[ ]]]]a,b . ■ 

Soit [[[[ ]]]]f : a,b →→→→ ℝ  une fonction intégrable au sens 
de RIEMANN . Pour tout [[[[ ]]]]α a,b∈∈∈∈ , on posera par 
convention : 

α

α
f ( x )dx 0====∫∫∫∫ . Par ailleurs, si α,β  sont 

deux points de [[[[ ]]]]a,b  tels que β α<<<< , on posera : 
β α

α β
f ( x )dx f ( x )dx= −= −= −= −∫ ∫∫ ∫∫ ∫∫ ∫  . 

Avec ces notations, la relation de CHASLES pour les 
intégrales :  

β γ β

α α γ
f ( x )dx f ( x )dx f ( x )dx= += += += +∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫  

est vérifiée quels que soient les points [[[[ ]]]]α,β ,γ a,b∈∈∈∈ . 

3.4. Intégrale de Riemann et primitives. — Soit 
[[[[ ]]]]f : a,b →→→→ ℝ  une fonction intégrable au sens de 
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RIEMANN  sur [[[[ ]]]]a,b . On appelle intégrale indéfinie 
de f  l’une quelconque des fonctions : 

x

a
F( x ) f ( t )dt C= += += += +∫∫∫∫ , 

où C  est une constante réelle. Indiquons quelques 
propriétés de l’intégrale indéfinie.   

PROPOSITION 7. — Soit [[[[ ]]]]f : a,b →→→→ ℝ  une fonc-
tion intégrable au sens de RIEMANN  sur [[[[ ]]]]a,b  et po-
sons, pour tout [[[[ ]]]]x a,b∈∈∈∈  : 

x

a
F( x ) f ( t )dt==== ∫∫∫∫ . 

(i) F  est continue sur [[[[ ]]]]a,b  ; 
(ii) F est dérivable en tout point x où f est conti-

nue, et on a F '( x ) f ( x )==== . En particulier, 
F '( x ) f ( x )====  pour presque tout [[[[ ]]]]x a,b∈∈∈∈ .   

La propriété (i) résulte immédiatement de l’inégalité : 
x

y
F( x ) F( y ) f ( t )dt f x y∞∞∞∞− = ≤ −− = ≤ −− = ≤ −− = ≤ −∫∫∫∫ , 

où x, y  sont deux points quelconques de [[[[ ]]]]a,b . Si f  est 
continue au point ox  il existe, pour tout ε 0>>>> , un réel 
η 0>>>>  tel que l’on ait : 

o ox x η f ( x ) f ( x ) ε− ≤− ≤− ≤− ≤ ⇒⇒⇒⇒ − ≤− ≤− ≤− ≤ . 

Pour o0 x x η< − ≤< − ≤< − ≤< − ≤ , on a alors : 
o

o o o

o o

o

o

xF( x ) F( x ) 1
o ox x x x x

x1
x x x

ε x x

x x

f ( x ) ( f ( t ) f ( x ))dt

ε dt

ε,

−−−−
−−−− −−−−

−−−−
−−−−
−−−−

− = −− = −− = −− = −

≤≤≤≤

≤ =≤ =≤ =≤ =

∫∫∫∫

∫∫∫∫  

ce qui prouve que F  est dérivable en ox , de dérivée : 

o oF '( x ) f ( x )==== . 
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Comme les discontinuités d’une fonction RIEMANN  inté-
grable constituent un ensemble négligeable, la proposition 
7 est démontrée. ■   

Ainsi, pour une fonction [[[[ ]]]]f : a,b →→→→ ℝ  intégrable 
au sens de RIEMANN , la fonction 

x

a
F( x ) f ( t )dt==== ∫∫∫∫  

est continue et vérifie F'( x ) f ( x )====  pour presque 
tout [[[[ ]]]]x a,b∈∈∈∈ . La fonction F  peut donc être consi-
dérée comme une primitive de f  en un sens généra-
lisé. On observera cependant que, si les fonctions 

stex F( x ) C→ +→ +→ +→ +   admettent f ( x ) pour dérivée en 
presque tout point x , ce ne sont pas les seules fonc-
tions continues à posséder cette propriété. En effet, 
on peut montrer l’existence de fonctions continues 
non constantes admettant presque partout une dérivée 
nulle. En ajoutant une telle fonction à F , on obtient 
une fonction continue dont la dérivée est presque par-
tout égale à f , mais qui n’est pas égale à  F  à une 
constante près. L’intégrale de RIEMANN  permet ce-
pendant d’exprimer une fonction dérivable à partir de 
sa dérivée, à condition que cette dernière soit bornée 
et presque partout continue. On a en effet :   

PROPOSITION 8. — Soit [[[[ ]]]]F : a,b →→→→ ℝ  une fonc-
tion dérivable sur [[[[ ]]]]a,b . Si F’ est bornée et presque 
partout continue, on a pour tout [[[[ ]]]]x a,b∈∈∈∈  : 

x

a
F( x ) F( a ) F'( t )dt= += += += + ∫∫∫∫ . 

En effet, la fonction f F '====  est RIEMANN  intégrable en 
vertu du critère de LEBESGUE. Par ailleurs, fixons 

[[[[ ]]]]x a,b∈∈∈∈  et subdivisons l’intervalle [[[[ ]]]]a,b  en n  segments 

i i 1x ,x++++          de longueur x a
n
−−−− . D’après le théorème des ac-
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croissements finis, il existe pour tout i 0,1,...,n 1= −= −= −= −  un 
réel i i i 1ξ x ,x++++∈∈∈∈           tel que l’on ait : 

i 1 i i 1 i iF( x ) F( x ) ( x x ) f (ξ )+ ++ ++ ++ +− = −− = −− = −− = − . 

On en déduit que : 
n 1

i 1 ii 0
n 1

i 1 i ii 0

F( x ) F( a ) F( x ) F( x )

( x x ) f (ξ ),

−−−−
++++====

−−−−
++++====

− = −− = −− = −− = −

= −= −= −= −
∑∑∑∑
∑∑∑∑

 

d’où l’égalité désirée en faisant tendre n  vers l’infini, 
puisque f F '====  est intégrable au sens de RIEMANN . ■     

On notera qu’une fonction admettant une primitive 
au sens indiqué au chapitre I n’est pas nécessairement 
intégrable au sens de RIEMANN , même si elle est bor-
née. C’est par exemple le cas de la fonction de DIRI-

CHLET. Par ailleurs, on peut montrer qu’il existe des 
fonctions [[[[ ]]]]F : a,b →→→→ ℝ  dérivables, mais dont la dé-
rivée n’est pas RIEMANN  intégrable. L’intégrale de 
RIEMANN  ne peut donc pas réellement être considérée 
comme l’opération inverse de la dérivation4.   

EXERCICES 

Pour éviter toute confusion dans ce qui suit, rappelons qu’une 
fonction f  admet une primitive F sur [[[[ ]]]]a,b  si F'( x ) f ( x )====  
sauf peut-être pour un ensemble dénombrable de valeurs de x . 
Dans ce cas, l’intégrale définie 

x

a
f ( t )dt∫∫∫∫  a un sens ; c’est par 

définition la différence F( x ) F( a )−−−− .   

EXERCICE 1. On considère la fonction  [[[[ ]]]]f : 0,1 →→→→ ℝ  
définie par f ( x ) 1====  si 1 1

2n 2n 1x −−−−< ≤< ≤< ≤< ≤  ( n 1,2,...==== ), et 

                                                           
4 C’est précisément pour essayer de clarifier la question de 
la primitivation des fonctions bornées que LEBESGUE a in-
troduit l’intégrale qui porte son nom. 
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f ( x ) 0====  sinon. Montrer que f  est RIEMANN  intégrable 
sur [[[[ ]]]]0,1 , mais qu’elle n’est pas réglée sur ce segment. 

EXERCICE 2 (Une fonction non RIEMANN intégrable, 
dont le module est intégrable). On considère la fonction  

[[[[ ]]]]f : 0,1 →→→→ ℝ  définie par f ( x ) 1====  si x  est rationnel et 
f ( x ) 1= −= −= −= −  sinon.  

a) Montrer que f  n’est pas RIEMANN  intégrable sur 
[[[[ ]]]]0,1 , mais que f  l’est.   

b) Montrer que l’intégrale définie 
x

o
F( x ) f ( t )dt==== ∫∫∫∫  a 

un sens pour tout [[[[ ]]]]x 0,1∈∈∈∈  et donner sa valeur en fonction 
de x . Montrer que F  est dérivable partout, mais que F '  
n’est pas égale à f . 

EXERCICE 3 (Une fonction réglée à ensemble de dis-
continuités partout dense). Pour tout x 0≥≥≥≥ , on note (((( ))))x  la 
différence entre x  et l’entier le plus voisin. Considérons la 
fonction [[[[ ]]]]f : 0,1 →→→→ ℝ  définie par5 : 

(((( ))))2x( x ) ( 3x )
1 4 9f ( x ) ...= + + += + + += + + += + + +  

a) Déterminer l’ensemble des discontinuités de f . 
Montrer que cet ensemble est dénombrable et partout 
dense dans [[[[ ]]]]0,1 . 

b) Montrer que f  est réglée. En déduire que f est in-
tégrable au sens de RIEMANN  sur [[[[ ]]]]0,1 .  

EXERCICE 4 (Une fonction RIEMANN intégrable qui n’est 
pas réglée). Soit [[[[ ]]]]K 0,1⊂⊂⊂⊂  l’ensemble triadique de CAN-

TOR. On considère la fonction [[[[ ]]]]f : 0,1 →→→→ ℝ  égale à 1  en 
tout point de K et à 0  sinon. Montrer que les points de 
discontinuité de f  sont exactement les points de K . En 
déduire que f  est RIEMANN  intégrable, mais qu’elle n’est 
pas réglée. 

                                                           
5 Cet exemple est dû à RIEMANN . 
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EXERCICE 5. Soit [[[[ ]]]]K 0,1⊂⊂⊂⊂  l’ensemble triadique de 
CANTOR. Pour tout [[[[ ]]]]x 0,1∈∈∈∈ , on pose : 

u Kd( x,K ) Inf x u∈∈∈∈= −= −= −= − . 
a) Montrer que la fonction x d( x,K )→→→→  est continue 

sur [[[[ ]]]]0,1 . 
b) On considère la fonction  [[[[ ]]]]f : 0,1 →→→→ ℝ  définie par 

f ( x ) d( x,K )====  si x K∉∉∉∉  et f ( x ) 1====  si x K∈∈∈∈ . Montrer 
que f  est RIEMANN  intégrable, mais qu’elle n’est pas ré-
glée (on pourra montrer que K  est l’ensemble des points 
de discontinuité de f ). 

EXERCICE 6. Montrer que la série de fonctions : 
nn x

n 0 n 1( 1)+∞+∞+∞+∞
==== ++++−−−−∑∑∑∑  

est uniformément convergente sur [[[[ ]]]]0,1 . Calculer sa 
somme et montrer que l’on a :  

n

2 2 2

1( 1 ) dx1 1
xo2 3 ( n 1 )

1 ... ... ln(1 x )−−−−
++++

− + − + + = +− + − + + = +− + − + + = +− + − + + = +∫∫∫∫ . 

EXERCICE 7. Montrer que, pour 0 r 1≤ <≤ <≤ <≤ < , la série de 
fonctions : 

nr
n 1 ncos( nx )+∞+∞+∞+∞

====∑∑∑∑  

est uniformément convergente sur [[[[ ]]]]0,2π . En déduire 
que :  

2π 2
o

ln(1 r 2r cos x )dx 0+ − =+ − =+ − =+ − =∫∫∫∫ . 

EXERCICE 8. Montrer que l’on a, pour toute fonction 
continue [[[[ ]]]]f : 0,1 →→→→ ℝ  : 

1 n
0n

lim n x f ( x )dx f (1)
→+∞→+∞→+∞→+∞

====∫∫∫∫ . 

(On pourra se ramener au cas où f (1) 0==== et majorer cha-
cune des intégrales 

a

o∫∫∫∫ et 
1

a∫∫∫∫ pour un choix convenable 
de a ) . 

EXERCICE 9 (Une limite simple des fonctions RIEMANN 
intégrable qui n’est pas intégrable). On range l’ensemble 
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des rationnels compris entre 0  et 1  en une suite 

1 2( r ,r ,...) . Pour tout entier n 1≥≥≥≥ , on note nf  la fonction 
définie sur [[[[ ]]]]0,1  par : 

nf ( x ) 1====  si {{{{ }}}}1 2 nx r ,r ,...,r∈∈∈∈  et nf ( x ) 0====  sinon. 

a) Montrer que les nf  sont intégrables au sens de RIE-

MANN  sur [[[[ ]]]]0,1 . 
b) Montrer que la suite 1 2( f , f ,...) est croissante et 

qu’elle converge en tout point vers une fonction f  qui 
n’est pas RIEMANN  intégrable sur [[[[ ]]]]0,1 . La convergence 
est-elle uniforme ? 

 c) Montrer que la limite  
1

non
lim f ( x )dx
→∞→∞→∞→∞ ∫∫∫∫

 existe, que 
f  possède une primitive F  sur [[[[ ]]]]0,1 , mais que : 

1
non

lim f ( x )dx F(1) F(0 )
→∞→∞→∞→∞

≠ −≠ −≠ −≠ −∫∫∫∫ . 

EXERCICE 10 (Exemple d’une fonction RIEMANN inté-
grable avec un ensemble dense de discontinuités). On 
considère la fonction périodique de période 1  définie6 sur 
ℝ  par : 

e( x ) x====  si 1 1
2 2x− < <− < <− < <− < <  et 1

2e( ) 0± =± =± =± = . 

a) Montrer que, pour tout x∈∈∈∈ℝ , la série 2

e( nx )
n 1 n

∞∞∞∞
====∑∑∑∑  est 

convergente. 
b) Pour [[[[ ]]]]x 0,1∈∈∈∈ , on pose 2

e( nx )
n 1 n

f ( x ) ∞∞∞∞
======== ∑∑∑∑  . Déter-

miner l’ensemble D des discontinuités de f . Montrer que 
D  est dénombrable et partout dense dans [[[[ ]]]]0,1 .  

c) Montrer que f  est RIEMANN  intégrable sur [[[[ ]]]]0,1  et 
calculer son intégrale de RIEMANN . 

EXERCICE 11 (Une fonction dérivable à dérivée non 
RIEMANN intégrable). Soit [[[[ ]]]]F : 0,1 →→→→ ℝ  la fonction défi-
nie par 2

2 1
x

F( x ) x sin( )====  si x 0≠≠≠≠  et F(0 ) 0====  sinon. 

                                                           
6 La construction est due à RIEMANN . 
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Montrer que F  est dérivable sur [[[[ ]]]]0,1  , mais que sa déri-
vée F '  n’est pas RIEMANN  intégrable sur [[[[ ]]]]0,1  (on mon-
trera que F '  n’est pas bornée).  

EXERCICE 12 (Fonction continue, à dérivée nulle pres-
que partout mais non constante). Soit K  l’ensemble tria-
dique de Cantor, et notons nK  le fermé obtenu lors de sa 
construction après avoir enlevé successivement n2  seg-
ments ouverts de [[[[ ]]]]0,1 . Soit [[[[ ]]]]nf : 0,1 →→→→ ℝ  l’unique 
fonction continue définie en posant : (i) nf (0 ) 0==== , 

nf (1) 1==== ; (ii)  nf  est constante sur chaque intervalle ou-
vert du complémentaire de nK  et prend respectivement les 
valeurs 

n

n n n
1 2 2 1
2 2 2

, ,..., −−−−  sur ces intervalles, énumérés de la 
gauche vers la droite ; (iii) nf  est affine sur les segments 
fermés de nK .   

a) Montrer que les fonctions nf  sont croissantes et 
convergent uniformément vers une fonction continue f  
sur [[[[ ]]]]0,1 . 

b) Montrer que f  est croissante et que f ' 0====  sur le 
complémentaire de K  dans [[[[ ]]]]0,1 . En déduire l’existence 
de fonctions croissantes et continues sur [[[[ ]]]]0,1 , dérivables 
presque partout et de dérivée nulle, mais qui ne sont pas 
constantes.  

c) Calculer 
1

o
f ( x )dx∫∫∫∫  et 

1

o
xf ( x )dx∫∫∫∫ . 

EXERCICE 13 (Une fonction RIEMANN intégrable qui 
n’admet pas de primitive). Soit K  l’ensemble triadique de 
Cantor, et notons nK  le fermé obtenu lors de la construc-
tion de K  après avoir enlevé successivement n2  segments 
ouverts de [[[[ ]]]]0,1 . Considérons la fonction [[[[ ]]]]f : 0,1 →→→→ ℝ  
définie par f ( x ) 1====  si x K∈∈∈∈  et f ( x ) 0====  sinon. 

a) Montrer que f  est intégrable au sens de RIEMANN  
sur [[[[ ]]]]0,1 . 

On suppose désormais qu’il existe une fonction conti-
nue [[[[ ]]]]F : 0,1 →→→→ ℝ  dérivable sauf sur un ensemble dé-
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nombrable D  et qui vérifie F '( x ) f ( x )====  pour x D∉∉∉∉ . 
On pose G( x ) F( x ) F(0 )= −= −= −= − . Pour tout entier n 1≥≥≥≥ , on 
note [[[[ ]]]]nG : 0,1 →→→→ ℝ  l’unique fonction continue définie en 
posant : (i) nG (0 ) 0==== , (ii)  nG  est affine de pente 1  sur 
chaque intervalle fermé de nK ; (iii)   nG  est constante sur 
les intervalles du complémentaire de nK . 

b) Montrer que les fonctions nG  convergent uniformé-
ment sur [[[[ ]]]]0,1  vers la fonction nulle. 

c) Montrer que la dérivée de nG G−−−−  est 0≤≤≤≤  sur le 
complémentaire d’un ensemble dénombrable. En déduire 
que nG( x ) G ( x )≤≤≤≤  pour tout x .   

d) Montrer que F  est constante, et que sa dérivée ne 
peut pas être égale à f  en dehors d’un ensemble dénom-
brable. 

e) Déduire de ce qui précède que f n’admet pas de 
primitive F  au sens indiqué.  

  


